Science.gov

Sample records for improved sfr cores

  1. Uncertainty analysis of a SFR core with sodium plenum

    SciTech Connect

    Canuti, E.; Ivanov, E.; Tiberi, V.; Pignet, S.

    2012-07-01

    The new concepts of Sodium-cooled Fast Reactors have to reach the Generation IV safety objectives. In this regard the Sodium Void Effect has to be minimized for the future projects of large-size SFR as well as the uncertainties on it. The Inst. of Radiological Protection and Nuclear Safety (IRSN) as technological support of French public authorities is in charge of safety assessment of operating and under construction reactors, as well as future projects. In order to state about the safety of new SFR designs the IRSN must be able to evaluate core parameters and their uncertainties. In this frame a sensitivity and uncertainty study has been performed to evaluate the impact of nuclear data uncertainty on sodium void effect, for the benchmark model of large SFR BN-800. The benchmark parameters (effective multiplication factor and sodium void effect) have been evaluated using two codes, the deterministic code ERANOS and the Monte Carlo code SCALE, while the S/U analysis has been performed only with SCALE. The results of the these studies point out the most relevant cross section uncertainties that affect the SVE and how efforts should be done in increasing the existing nuclear data accuracies. (authors)

  2. Evaluation of AGNI SFR core neutronics parameters with VESTA and ERANOS

    NASA Astrophysics Data System (ADS)

    Ecrabet, Fabrice; Haeck, Wim; Chaitanya Tadepalli, Sai

    2014-06-01

    This paper presents the calculation of core neutronics parameters for so called AGNI Sodium Fast Reactor (SFR) model performed with ERANOS code and Monte Carlo depletion interface software VESTA. The AGNI core has been developed at IRSN for its own R&D needs, i.e. to test performance of calculation codes for safety assessment of a generation IV SFR project. The ERANOS code is used as reference code for SFR core calculations at IRSN. In this work, VESTA calculations have been performed and compared with corresponding ERANOS results. These calculations have a double purpose: mastering the use of tools for the evaluation of SFR core static neutronics parameters and validate the use of VESTA for SFR cores.

  3. IRSN working program status on tools for evaluation of SFR cores static neutronics safety parameters

    SciTech Connect

    Ivanov, E.; Tiberi, V.; Ecrabet, F.; Chegrani, Y.; Canuti, E.; Bisogni, D.; Sargeni, A.; Bernard, F.

    2012-07-01

    As technical support of the French Nuclear Safety Authority, IRSN will be in charge of safety assessment of any future project of Sodium Fast Reactor (SFR) that could be built in France. One of the main safety topics will deal with reactivity control. Since the design and safety assessment of the last two SFR plants in France (Phenix and Superphenix, more than thirty years ago), methods, codes and safety objectives have evolved. That is why a working program on core neutronic simulations has been launched in order to be able to evaluate accuracy of future core characteristics computations. The first step consists in getting experienced with the ERANOS well-known deterministic code used in the past for Phenix and Superphenix. Then Monte-Carlo codes have been tested to help in the interpretation of ERANOS results and to define what place this kind of codes can have in a new SFR safety demonstration. This experience is based on open benchmark computations. Different cases are chosen to cover a wide range of configurations. The paper shows, as an example, criticality results obtained with ERANOS, SCALE and MORET, and the first conclusions based on these results. In the future, this work will be extended to other safety parameters such as sodium void and Doppler effects, kinetic parameters or flux distributions. (authors)

  4. Improving SFR Economics Through Innovations from Thermal Design and Analysis Aspects

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Vincent Mousseau; Per F. Peterson

    2009-06-01

    Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements for large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, a multiple reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and reduce safety related overnight and operation costs, and modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three of these areas and their potential beneficial impacts on SFR economics.

  5. Improving SFR Economics through Innovations from Thermal Design and Analysis Aspects

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Vincent Mousseau; Per F. Peterson

    2008-06-01

    Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements for large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, a multiple reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and reduce safety related overnight and operation costs, and modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three of these areas and their potential beneficial impacts on SFR economics.

  6. Impact of the control rod consumption on the reactivity control of a SFR break-even core

    SciTech Connect

    Blanchet, D.; Fontaine, B.

    2012-07-01

    Current design studies on Sodium Fast Reactor (SFR) differ from those performed in the past by the fact that design criteria are now those of the Generation IV reactors. In order to improve their safety, reactors with break-even cores are preferred because they minimize the needs in terms of reactivity control and limit the consequences of control rod withdrawal. Furthermore, as the reactivity control needs are low, break-even core enables the use of absorbing materials with reduced efficiency (natural boron, hafnium...). Nevertheless, the use of control rods with few absorbing materials may present the disadvantage of a non-negligible ({approx}10%) loss of efficiency due to their consumption under irradiation. This paper presents a methodology to calculate accurately and analyze this consumption. (authors)

  7. Transmutation abilities of the SFR low void effect core concept 'CFV' 3600 MWth

    SciTech Connect

    Buiron, L.; Fontaine, B.; Andriolo, L.

    2012-07-01

    This paper presents an evaluation of the potential of minor actinide transmutation in a 3600 MWth SFR core designed with the low void effect core concept (namely 'CFV concept'). This concept is based upon an axially heterogeneous design with an internal fertile zone, and two radial fuel zones with different heights. Two modes of minor actinide transmutation are considered. The homogeneous mode where the minor actinides (MA) are diluted in the fuel is studied considering different options: - MA diluted in the whole core, - MA diluted in the internal and external fuel zone, - MA diluted in the internal fertile zone, for which different isotopic vectors and contents in fuel are analyzed. The heterogeneous mode is also studied with MA placed in external blanket bearings, with contents of 20%. The results are compared to those obtained with a traditional homogenous core concept (SFRV2B type) in terms of transmutation performances. Impacts of the transmutation assumptions on transmutation performances, on fuel cycle and safety parameters (void effect, Doppler) are also presented. (authors)

  8. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  9. Recent SFR calibrations and the constant SFR approximation

    NASA Astrophysics Data System (ADS)

    Cerviño, M.; Bongiovanni, A.; Hidalgo, S.

    2016-04-01

    Aims: Star formation rate (SFR) inferences are based on the so-called constant SFR approximation, where synthesis models are required to provide a calibration. We study the key points of such an approximation with the aim to produce accurate SFR inferences. Methods: We use the intrinsic algebra of synthesis models and explore how the SFR can be inferred from the integrated light without any assumption about the underlying star formation history (SFH). Results: We show that the constant SFR approximation is a simplified expression of deeper characteristics of synthesis models: It characterizes the evolution of single stellar populations (SSPs), from which the SSPs as a sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e., about 13 Gyr for z = 0 systems); (2) constant SFR and steady-state luminosities are not required to calibrate the SFR; (3) it is not possible to define a single SFR timescale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with untypical ones (optical or IR fluxes) to correct the SFR for the contribution of the old component of the SFH. We show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger or softer than the older component. Conclusions: Despite of SFR calibrations are unaffected by this work, the meaning of results obtained by SFR inferences does. In our framework, results such as the correlation of SFR timescales with galaxy colors, or the sensitivity of different SFR indices to variations in the SFH, fit naturally. This framework provides a theoretical guide-line to optimize the available information from data and numerical experiments to improve the accuracy of SFR inferences.

  10. Recent SFR calibrations and the constant SFR approximation

    NASA Astrophysics Data System (ADS)

    Cerviño, M.; Bongiovanni, A.; Hidalgo, S.

    2016-05-01

    Aims: Star formation rate (SFR) inferences are based on the so-called constant SFR approximation, where synthesis models are required to provide a calibration. We study the key points of such an approximation with the aim to produce accurate SFR inferences. Methods: We use the intrinsic algebra of synthesis models and explore how the SFR can be inferred from the integrated light without any assumption about the underlying star formation history (SFH). Results: We show that the constant SFR approximation is a simplified expression of deeper characteristics of synthesis models: It characterizes the evolution of single stellar populations (SSPs), from which the SSPs as a sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e., about 13 Gyr for z = 0 systems); (2) constant SFR and steady-state luminosities are not required to calibrate the SFR; (3) it is not possible to define a single SFR timescale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with untypical ones (optical or IR fluxes) to correct the SFR for the contribution of the old component of the SFH. We show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger or softer than the older component. Conclusions: Despite of SFR calibrations are unaffected by this work, the meaning of results obtained by SFR inferences does. In our framework, results such as the correlation of SFR timescales with galaxy colors, or the sensitivity of different SFR indices to variations in the SFH, fit naturally. This framework provides a theoretical guide-line to optimize the available information from data and numerical experiments to improve the accuracy of SFR inferences.

  11. Behavior of an heterogeneous annular FBR core during an unprotected loss of flow accident: Analysis of the primary phase with SAS-SFR

    SciTech Connect

    Massara, S.; Schmitt, D.; Bretault, A.; Lemasson, D.; Darmet, G.; Verwaerde, D.; Struwe, D.; Pfrang, W.; Ponomarev, A.

    2012-07-01

    In the framework of a substantial improvement on FBR core safety connected to the development of a new Gen IV reactor type, heterogeneous core with innovative features are being carefully analyzed in France since 2009. At EDF R and D, the main goal is to understand whether a strong reduction of the Na-void worth - possibly attempting a negative value - allows a significant improvement of the core behavior during an unprotected loss of flow accident. Also, the physical behavior of such a core is of interest, before and beyond the (possible) onset of Na boiling. Hence, a cutting-edge heterogeneous design, featuring an annular shape, a Na-plena with a B{sub 4}C plate and a stepwise modulation of fissile core heights, was developed at EDF by means of the SDDS methodology, with a total Na-void worth of -1 $. The behavior of such a core during the primary phase of a severe accident, initiated by an unprotected loss of flow, is analyzed by means of the SAS-SFR code. This study is carried-out at KIT and EDF, in the framework of a scientific collaboration on innovative FBR severe accident analyses. The results show that the reduction of the Na-void worth is very effective, but is not sufficient alone to avoid Na-boiling and, hence, to prevent the core from entering into the primary phase of a severe accident. Nevertheless, the grace time up to boiling onset is greatly enhanced in comparison to a more traditional homogeneous core design, and only an extremely low fraction of the fuel (<0.1%) enters into melting at the end of this phase. A sensitivity analysis shows that, due to the inherent neutronic characteristics of such a core, the gagging scheme plays a major role on the core behavior: indeed, an improved 4-zones gagging scheme, associated with an enhanced control rod drive line expansion feed-back effect, finally prevents the core from entering into sodium boiling. This major conclusion highlights both the progress already accomplished and the need for more detailed

  12. On the use of moderating material to enhance the feedback coefficients in SFR cores with high minor actinide content

    SciTech Connect

    Merk, B.; Weiss, F. P.

    2012-07-01

    The use of fine distributed moderating material to enhance the feedback effects and to reduce the sodium void effecting sodium cooled fast reactor cores is described. The influence of the moderating material on the neutron spectrum, the power distribution, and the burnup distribution is shown. The consequences of the use of fine distributed moderating material into fuel assemblies with fuel configurations foreseen for minor actinide transmutation is analyzed and the transmutation efficiency is compared. The degradation of the feedback effects due to the insertion of minor actinides and the compensation by the use of moderating materials is discussed. (authors)

  13. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities. PMID:19026017

  14. Trade-off study on the power capacity of a prototype SFR in Korea

    SciTech Connect

    Baek, M. H.; Kim, S. J.; Yoo, J.; Bae, I. H.

    2012-07-01

    The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared with the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)

  15. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  16. Generation of SFR few-group constants using the Monte Carlo code Serpent

    SciTech Connect

    Fridman, E.; Rachamin, R.; Shwageraus, E.

    2013-07-01

    In this study, the Serpent Monte Carlo code was used as a tool for preparation of homogenized few-group cross sections for the nodal diffusion analysis of Sodium cooled Fast Reactor (SFR) cores. Few-group constants for two reference SFR cores were generated by Serpent and then employed by nodal diffusion code DYN3D in 2D full core calculations. The DYN3D results were verified against the references full core Serpent Monte Carlo solutions. A good agreement between the reference Monte Carlo and nodal diffusion results was observed demonstrating the feasibility of using Serpent for generation of few-group constants for the deterministic SFR analysis. (authors)

  17. R and D program for core instrumentation improvements devoted for French sodium fast reactors

    SciTech Connect

    Jeannot, J. P.; Rodriguez, G.; Jammes, C.; Bernardin, B.; Portier, J. L.; Jadot, F.; Maire, S.; Verrier, D.; Loisy, F.; Prele, G.

    2011-07-01

    Under the framework of French R and D studies for Generation IV reactors and more specifically for sodium-cooled fast reactors (SFR); the CEA, EDF and AREVA have launched a joint coordinated research programme. This paper deals with the R and D sets out to achieve better inspection, maintenance, availability and decommissioning. In particular the instrumentation requirements for core monitoring and detection in the case of accidental events. Requirements mainly involve diversifying the means of protection and improving instrumentation performance in terms of responsiveness and sensitivity. Operation feedback from the Phenix and Superphenix prototype reactors and studies, carried out within the scope of the EFR projects, has been used to define the needs for instrumentation enhancement. (authors)

  18. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  19. Bonding core mating surfaces improves transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1978-01-01

    Modifications to assembly procedures for C-core transformers virtually eliminates changes in core end gaps due to temperature cycling during impregnation and potting stages, thus stabilizing magnetization properties of core.

  20. Improving Core Strength to Prevent Injury

    ERIC Educational Resources Information Center

    Oliver, Gretchen D.; Adams-Blair, Heather R.

    2010-01-01

    Regardless of the sport or skill, it is essential to have correct biomechanical positioning, or postural control, in order to maximize energy transfer. Correct postural control requires a strong, stable core. A strong and stable core allows one to transfer energy effectively as well as reduce undue stress. An unstable or weak core, on the other…

  1. Nuclear data uncertainty propagation for neutronic key parameters of CEA's SFR V2B and CFV sodium fast reactor designs

    SciTech Connect

    Archier, P.; Buiron, L.; De Saint Jean, C.; Dos Santos, N.

    2012-07-01

    This paper presents a nuclear data uncertainty propagation analysis for two CEA's Sodium-cooled Fast Reactor designs: the SFR V2B and CFV cores. The nuclear data covariance matrices are provided by the DER/SPRC/LEPh's nuclear data team (see companion paper) for several major isotopes. From the current status of this analysis, improvements on certain nuclear data reactions are highlighted as well as the need for new specific integral experiments in order to meet the technological breakthroughs proposed by the CFV core. (authors)

  2. Adding calcium improves lithium ferrite core

    NASA Technical Reports Server (NTRS)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  3. Core Skills Assessment to Improve Mathematical Competency

    ERIC Educational Resources Information Center

    Carr, Michael; Bowe, Brian; Ní Fhloinn, Eabhnat

    2013-01-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these…

  4. Fast reactor core concepts to improve transmutation efficiency

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  5. Fast reactor core concepts to improve transmutation efficiency

    SciTech Connect

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-31

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  6. Rotary Mode Core Sample System availability improvement

    SciTech Connect

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  7. Mold with improved core for metal casting operation

    DOEpatents

    Gritzner, Verne B.; Hackett, Donald W.

    1977-01-01

    The present invention is directed to a mold containing an improved core for use in casting hollow, metallic articles. The core is formed of, or covered with, a layer of cellular material which possesses sufficient strength to maintain its structural integrity during casting, but will crush to alleviate the internal stresses that build up if the normal contraction during solidification and cooling is restricted.

  8. Improving Engine Efficiency Through Core Developments

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2011-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs.

  9. RISK-INFORMED BALANCING OF SAFETY, NONPROLIFERATION, AND ECONOMICS FOR THE SFR

    SciTech Connect

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-10-20

    , particularly concerning seismic and aircraft impactrelated risks. Most importantly, within the context of the TNF historical SFR safety concerns about energetic core disruptive accidents are seen to be unimportant, but those of rare scenarios mentioned above are seen to be of dominant concern. In terms of proliferation risks the SFR energy system is seen not to be of considerably greater concern than with other nuclear power technologies, providing that highly effective safeguards are employed. We find the economic performance of proposed SFRs likely, due to the problems of using sodium as a coolant, to be inferior to those of LWRs unless they can be credited for services to improve nuclear waste disposal, nuclear fuel utilization and proliferation risk reductions. None of the design innovations investigated offers the promise to reverse this conclusion. The most promising innovation investigated is that of improving the plant's thermodynamic efficiency via use of the supercritical CO{sub 2} (rather than steam Rankine) power conversion system. We were unable to reach conclusions about the economic and proliferation risk implications of competing nuclear fuel processing methods, as available designs are too little developed to justify any such results. Overall, we find the SFR to be a promising alternative to LWRs should the conditions governing the valuation change substantially from current ones.

  10. Improvements in Fabrication of Sand/Binder Cores for Casting

    NASA Technical Reports Server (NTRS)

    Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit

    2005-01-01

    Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.

  11. On the [CII]-SFR Relation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Gallerani, S.; Ferrara, A.; Pallottini, A.; Yue, B.

    2015-11-01

    After two Atacama Large Millimeter/submillimeter Array (ALMA) observing cycles, only a handful of [C ii] 158 μm emission line searches in z > 6 galaxies have reported a positive detection, questioning the applicability of the local [C ii]-star formation rate (SFR) relation to high-z systems. To investigate this issue we use the Vallini et al. (V13) model,based on high-resolution, radiative transfer cosmological simulations to predict the [C ii] emission from the interstellar medium of a z ≈ 7 (halo mass Mh = 1.17 × 1011 M⊙) galaxy. We improve the V13 model by including (a) a physically motivated metallicity (Z) distribution of the gas, (b) the contribution of photodissociation regions (PDRs), and (c) the effects of cosmic microwave background (CMB) on the [C ii] line luminosity. We study the relative contribution of diffuse neutral gas to the total [C ii] emission (Fdiff/Ftot) for different SFR and Z values. We find that the [C ii] emission arises predominantly from PDRs: regardless of the galaxy properties, Fdiff/Ftot ≤ 10%, since at these early epochs the CMB temperature approaches the spin temperature of the [C ii] transition in the cold neutral medium (TCMB ˜ {T}s{{CNM}} ˜ 20 K). Our model predicts a high-z [C ii]-SFR relation, consistent with observations of local dwarf galaxies (0.02 < Z/Z⊙ < 0.5). The [C ii] deficit suggested by actual data (LCii < 2.0 × 107 L⊙ in BDF3299 at z ≈ 7.1) if confirmed by deeper ALMA observations, can be ascribed to negative stellar feedback disrupting molecular clouds around star formation sites. The deviation from the local [C ii]-SFR would then imply a modified Kennicutt-Schmidt relation in z > 6 galaxies. Alternatively/in addition, the deficit might be explained by low gas metallicities (Z < 0.1 Z⊙).

  12. Innovative power conversion system for the French SFR prototype, ASTRID

    SciTech Connect

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-07-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  13. Comparison of JSFR design with EDF requirements for future SFR

    SciTech Connect

    Uematsu, M. M.; Prele, G.; Mariteau, P.; Sauvage, J. F.; Hayafune, H.; Chikazawa, Y.

    2012-07-01

    A comparison of Japan sodium-cooled fast reactor (JSFR) design with future French SFR concept has been done based on the requirement of EDF, the investor-operator of future French SFR, and the French safety baseline, under the framework of EDF-JAEA bilateral agreement of research and development cooperation on future SFR. (authors)

  14. Core analysis and CT imaging improve shale completions

    SciTech Connect

    Blauch, M.E.; Venditto, J.J. ); Rothman, E.; Hyde, P. )

    1992-11-16

    To improve hydraulic fracturing efficiency in Devonian shales, core analysis and computerized tomography (CT) can provide data for orienting perforations, determining fracture direction, and selecting deviated well trajectories. This article reports on technology tested in a West Virginia well for improving the economics of developing Devonian shale and other low permeability gas reservoirs. With slight production increase per well, Columbia Natural Resources Inc. (CNR) has determined that marginal gas well payout time can be shortened enough to encourage additional drilling. For eight wells completed by CNR in 1992, the absolute open flow (AOF) averaged 116 Mcfd before stimulation. After stimulation using long-standing fracture stimulation procedures, the AOF averaged 500 Mcfd.

  15. Improved cryogenic coring device for sampling wetland soils

    SciTech Connect

    Cahoon, D.R.; Lynch, J.C.; Knaus, R.M.

    1996-09-01

    This paper is the third in a series on the design and construction (Knaus 1986) and improvements (Knaus and Cahoon 1990) of a cryogenic soil-coring device (cryocorer). Freezing wetland soils in place during sampling eliminates compaction, dewatering, and loss of flocculent material at the water-sediment interface. The cryocorer is suitable for sampling soils of emergent marsh and mangrove forests as well as shallow water bottoms, although it has been used primarily for the former. A small-diameter frozen soil core minimizes disruption of the surface, can be evaluated immediately for overall quality, and can be used to measure soil profiles and subsample for further analysis. The cryocorer continues to be used in studies of wetland accretion and soil bulk density throughout the US. Concomitant with the increased use of the device, improvements in cryocorer design and application have occurred. Reported here are improvements in design that have been made since 1992 with references to wetland research in which the cryocorer has been used extensively.

  16. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    PubMed

    Wathugala, Deepthi L; Richards, Shane A; Knight, Heather; Knight, Marc R

    2011-09-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabidopsis. OsSFR6 was identified by homology searches, and a full-length coding region isolated using reverse transcription polymerase chain reaction (RT-PCR) from Oryza sativa cDNA. To test for orthology, OsSFR6 was expressed in an Arabidopsis sfr6 loss-of-function mutant background, and restoration of wild-type phenotypes was assessed. Searching the rice genome revealed a single homologue of AtSFR6. Cloning and sequencing the OsSFR6 coding region showed OsSFR6 to have 61.7% identity and 71.1% similarity to AtSFR6 at the predicted protein sequence level. Expression of OsSFR6 in the atsfr6 mutant background restored the wild-type visible phenotype, as well as restoring wild-type levels of COR gene expression and tolerance of osmotic and freezing stresses. OsSFR6 is an orthologue of AtSFR6, and thus a target for future manipulation to improve tolerance to osmotic and other abiotic stresses. PMID:21585388

  17. Rapid core measure improvement through a "business case for quality".

    PubMed

    Perlin, Jonathan B; Horner, Stephen J; Englebright, Jane D; Bracken, Richard M

    2014-01-01

    Incentives to improve performance are emerging as revenue or financial penalties are linked to the measured quality of service provided. The HCA "Getting to Green" program was designed to rapidly increase core measure performance scores. Program components included (1) the "business case for quality"-increased awareness of how quality drives financial performance; (2) continuous communication of clinical and financial performance data; and (3) evidence-based clinical protocols, incentives, and tools for process improvement. Improvement was measured by comparing systemwide rates of adherence to national quality measures for heart failure (HF), acute myocardial infarction (AMI), pneumonia (PN), and surgical care (SCIP) to rates from all facilities reporting to the Centers for Medicare and Medicaid Services (CMS). As of the second quarter of 2011, 70% of HCA total measure set composite scores were at or above the 90th percentile of CMS scores. A test of differences in regression coefficients between the CMS national average and the HCA average revealed significant differences for AMI (p = .001), HF (p = .012), PN (p < .001), and SCIP (p = .015). This program demonstrated that presentation of the financial implications of quality, transparency in performance data, and clearly defined goals could cultivate the desire to use improvement tools and resources to raise performance. PMID:22931509

  18. Core bit design reduces mud invasion, improves ROP

    SciTech Connect

    Clydesdale, G. ); Leseultre, A.; Lamine, E. )

    1994-08-08

    A recently developed core bit reduces fluid invasion in the cut core by minimizing the exposure to the drilling fluid and by increasing the rate of penetration (ROP). A high ROP during coring is one of the major factors in reducing mud filtrate invasion in cores. This new low-invasion polycrystalline diamond compact (PDC) core bit was designed to achieve a higher ROP than conventional PDC core bits without detriment to the cutting structure. The paper describes the bit and its operation, results of lab tests, fluid dynamics, and results of field tests.

  19. Using dedicated nurses to improve core measures compliance.

    PubMed

    Green, Amanda; Buckler, Lacey

    2014-03-01

    To ensure The Joint Commission and Centers of Medicare and Medicaid Services core measures were being met, University of Kentucky Health Care created a team to explore the issues and create solutions. Six nurses were placed in the role of core measure nurse, who were responsible for identification of Core Measure patients, standard work, concurrent review, and working with the informaticist team to increase core measure performance. Building strong relationships with the bedside staff was also a key step to the success of these nurses. After the pilot, the compliance perfection scores were sustained as the roles were adopted by administration and made permanent. PMID:24485185

  20. Core symptoms of autism improved after vitamin D supplementation.

    PubMed

    Jia, Feiyong; Wang, Bing; Shan, Ling; Xu, Zhida; Staal, Wouter G; Du, Lin

    2015-01-01

    Autism spectrum disorder (ASD) is a common neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. Among the environmental factors, vitamin D3 (cholecaliferol) seems to play a significant role in the etiology of ASD because this vitamin is important for brain development. Lower concentrations of vitamin D3 may lead to increased brain size, altered brain shape, and enlarged ventricles, which have been observed in patients with ASD. Vitamin D3 is converted into 25-hydroxyvitamin D3 in the liver. Higher serum concentrations of this steroid may reduce the risk of autism. Importantly, children with ASD are at an increased risk of vitamin D deficiency, possibly due to environmental factors. It has also been suggested that vitamin D3 deficiency may cause ASD symptoms. Here, we report on a 32-month-old boy with ASD and vitamin D3 deficiency. His core symptoms of autism improved significantly after vitamin D3 supplementation. This case suggests that vitamin D3 may play an important role in the etiology of ASD, stressing the importance of clinical assessment of vitamin D3 deficiency and the need for vitamin D3 supplementation in case of deficiency. PMID:25511123

  1. Star formation histories of z~2 galaxies and their intrinsic characteristics on the SFR-M* plane

    NASA Astrophysics Data System (ADS)

    Lee, Bomee; Giavalisco, Mauro; CANDELS

    2016-01-01

    Using CANDELS in the GOODS-North and South field, we investigate how galaxies quench their star formations and evolve on the SFR-M* plane at 1improved SED fitting technique, we are able to obtain more accurate stellar mass and SFR by testing various star formation histories (SFH) for each galaxy, not just commonly used tau model. We show that galaxies are apparently separated in four different populations: starbursts which lie above the main sequence of star formation (MS), normal star-forming galaxies on the tight MS, galaxies below the MS with a little star-forming activity, and quiescent galaxies with different time evolutions of SFR. We constrain the slope and the scatter on the MS better at 110.5, indicating that star formation efficiency decreases at high masses. We study morphologies of galaxies using non-parametric (Sersic Index) and parametric measures as well as a projected mass surface density. We find that the average morphologies of SB galaxies are disky and generally have much more diffuse optical light profile than massive compact early-type galaxies (ETGs). The sizes of the SB galaxies are clearly larger than those of the MS galaxies on average. Using a projected mass surface density, more distinct morphological differences are shown among different galaxy populations. As star formation activities decrease, galaxies become more compact at all explored redshifts. The morphologies of galaxies below the MS are similar to those of quiescent galaxies, which are compact and mostly have steep optical light profiles. The existence of compact star-forming galaxies (SFGs) supports the idea that galaxies quench their star formations as they increase the core-growth in SFGs. Very compact SB galaxies are rather rare. Our morphological analysis is not consistent with the dissipative mechanism that gas-rich merging is the key driver to assemble very compact

  2. Improving College Readiness in the Age of the Common Core

    ERIC Educational Resources Information Center

    MDRC, 2013

    2013-01-01

    Over the next ten years, more than half of all jobs will require some education beyond high school. The majority of students entering college do not earn a college credential that would give them better access to these jobs. While the Common Core State Standards should lead to more college-ready students over time, students will still need…

  3. An Innovative Hybrid Loop-Pool SFR Design and Safety Analysis Methods: Today and Tomorrow

    SciTech Connect

    Hongbin Zhang; Haihua Zhao; Vincent Mousseau

    2008-04-01

    Investment in commercial sodium cooled fast reactor (SFR) power plants will become possible only if SFRs achieve economic competitiveness as compared to light water reactors and other Generation IV reactors. Toward that end, we have launched efforts to improve the economics and safety of SFRs from the thermal design and safety analyses perspectives at Idaho National Laboratory. From the thermal design perspective, an innovative hybrid loop-pool SFR design has been proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to further improve economics and safety. From the safety analyses perspective, we have initiated an effort to develop a high fidelity reactor system safety code.

  4. Enhanced oil recovery. Improved reservoir evaluation object of sponge coring process

    SciTech Connect

    Mickey, V.

    1981-04-01

    Oil saturation data determined by core analysis have improved. One result is the development of the sponge coring process. In the sponge coring method, the core sample is taken in much the same way as in conventional coring. The major difference is the porous, hard sponge that lines the core barrel. The sponge is so porous (approximately 80%) that cigarette smoke can be blown through it. It has one full darcy permeability and is oil-wet. The sponge is inside a thin polyvinyl chloride liner with small perforations in it. As the sponge core barrel is run into the hole, the sponge becomes wet with drilling fluid, usually water. Any oil in the core being forced out by the water and the reduction in pressure as the core is brought to surface is caught by the sponge. Since it is oil-wet the oil is retained. But water is forced out the small perforations in the liner. At the surface the 20-ft core is cut into 5-ft sections and put into special containers filled with fluid from the formation. That keeps the core in standard condition. Even much of the gas in solution remains in the core. This is noted during capping operations as the cap is forced back until the glue on it holds and seals the tube.

  5. Exploring Systematic Effects in the Mass-Metallicity-SFR Relation

    NASA Astrophysics Data System (ADS)

    Telford, O. G.; Dalcanton, J.; Skillman, E.; Conroy, C.

    2016-06-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of the correlation between metallicity and SFR may be used along with chemical evolution models to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows), but the observed strength of this correlation varies widely among studies using both single-fiber and IFU spectroscopy. We analyze possible sources of systematic error that could affect the observed strength of this correlation, including choice of metallicity calibration. We present the first analysis of the relation between stellar mass, gas phase metallicity and SFR using a new set of theoretically calibrated abundance diagnostics from Dopita et al. (2013) for ~150,000 star-forming galaxies in the Sloan Digital Sky Survey. Using any of these new strong emission line abundance diagnostics yields a relatively weak correlation between metallicity and SFR at fixed stellar mass, in contrast to the stronger correlation found by some previous studies using other metallicity diagnostics. We also consider other possible sources of bias that can affect the metallicity correlation with SFR, including uncertainty in stellar mass determination, aperture effects, and dust. Finally, we present preliminary results from current work investigating the effect of the choice of binning technique on derivations of direct method metallicities for stacked galaxy spectra and the subsequent impact on the correlation between metallicity and SFR. The large uncertainty in the true strength of the relation between mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  6. Dynamical analysis of innovative core designs facing unprotected transients with the MAT5 DYN code

    SciTech Connect

    Darmet, G.; Massara, S.

    2012-07-01

    Since 2007, advanced Sodium-cooled Fast Reactors (SFR) are investigated by CEA, AREVA and EDF in the framework of a joint French collaboration. A prototype called ASTRID, sets out to demonstrate progress made in SFR technology, is due to operate in the years 2020's. The modeling of unprotected transients by computer codes is one of the key safety issues in the design approach to such SFR systems. For that purpose, the activity on CATHARE, which is the reference code for the transient analysis of ASTRID, has been strengthened during last years by CEA. In the meantime, EDF has developed a simplified and multi-channel code, named MAT5 DYN, to analyze and validate innovative core designs facing protected and unprotected transients. First, the paper consists in a description of MAT5 DYN: a code based on the existing code MAT4 DYN including major improvements on geometry description and physical modeling. Second, two core designs based on the CFV core design developed at CEA are presented. Then, the dynamic response of those heterogeneous cores is analyzed during unprotected loss of flow (ULOF) transient and unprotected transient of power (UTOP). The results highlight the importance of the low void core effect specific to the CFV design. Such an effect, when combined with a sufficient primary pump halving time and an optimized cooling group scheme, allows to delay (or, possibly, avoid) the sodium boiling onset during ULOF accidents. (authors)

  7. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis

  8. An empirical SFR estimator for high redshift galaxies:

    NASA Astrophysics Data System (ADS)

    Arnouts, Stephane

    2015-08-01

    At high redshift, most of the SFR indicators are limited to the most massive galaxies (Far-IR, radio) and out of reach of optical spectroscopy (Halpha). The UV continuum is the only one available at all redshifts and for galaxies within a large range of mass. The main question is then to properly account for dust absorption. The SED fitting are always limited in the choice of popular attenuation laws (if not only one, starburst) which relies on the slope of the UV continuum. The alternative is to measure the net budget between the absorbed vs un-absorbed UV light i.e. the infrared excess (IRX= Lir/Luv).By using the deep 24 micron in the COSMOS field, we have observed a remarkable behaviour of IRX stripes within the (NUV-r)o vs (r-K)o color diagram which can be used to derive robust SFR estimates just with the Luv, Lr and Lk luminosities (Arnouts et al, 2013). We have shown that we can explain the correlation if we consider a two component models for the birth clouds and the ISM and also a complete model for galaxy inclination to explain the extrem IRX values. We are now extended the method with Herschel data at higher redshift (z~2) and lower masses (M~10^8Mo) by using stacking techniques and find that the IRX-NUVrK correlation persists (Le Floc’h , in prep). This method allows us to derive an accurate SFR for each individual galaxy based on its location in the NUVrK diagram and with no assumption on dust attenuation law, a main caveat for SED fitting technique.We investigated the behavior of the scatter of the SFR-Mass in GOODS and COSMOS fields and find that both SFR (Lir+Luv) or SFR(NUVrK) estimatesare consistent (Ilbert et al., 2015). Finally will investigate the dust-free UV luminosity functions in between 0SFR densities down to 10^8-8.5 Mo, with no resort to stacking technique as in Far-IR or radio wavelength.

  9. Pre-conceptual design study of ASTRID core

    SciTech Connect

    Varaine, F.; Marsault, P.; Chenaud, M. S.; Bernardin, B.; Conti, A.; Sciora, P.; Venard, C.; Fontaine, B.; Devictor, N.; Martin, L.; Scholer, A. C.; Verrier, D.

    2012-07-01

    In the framework of the ASTRID project at CEA, core design studies are performed at CEA with the AREVA and EDF support. At the stage of the project, pre-conceptual design studies are conducted in accordance with GEN IV reactors criteria, in particularly for safety improvements. An improved safety for a sodium cooled reactor requires revisiting many aspects of the design and is a rather lengthy process in current design approach. Two types of cores are under evaluation, one classical derived from the SFR V2B and one more challenging called CFV (low void effect core) with a large gain on the sodium void effect. The SFR V2b core have the following specifications: a very low burn-up reactivity swing (due to a small cycle reactivity loss) and a reduced sodium void effect with regard to past designs such as the EFR (around 2$ minus). Its performances are an average burn-up of 100 GWd/t, and an internal conversion ratio equal to one given a very good behavior of this core during a control rod withdrawal transient). The CFV with its specific design offers a negative sodium void worth while maintaining core performances. In accordance of ASTRID needs for demonstration those cores are 1500 MWth power (600 MWe). This paper will focus on the CFV pre-conceptual design of the core and S/A, and the performances in terms of safety will be evaluated on different transient scenario like ULOF, in order to assess its intrinsic behavior compared to a more classical design like V2B core. The gap in term of margin to a severe accident due to a loss of flow initiator underlines the potential capability of this type of core to enhance prevention of severe accident in accordance to safety demonstration. (authors)

  10. Improvements to an Electrical Engineering Skill Audit Exam to Improve Student Mastery of Core EE Concepts

    ERIC Educational Resources Information Center

    Parent, D. W.

    2011-01-01

    The San Jose State University Electrical Engineering (EE) Department implemented a skill audit exam for graduating seniors in 1999 with the purpose of assessing the teaching and the students' mastery of core concepts in EE. However, consistent low scores for the first years in which the test was administered suggested that students had little…

  11. Modified Y-TZP Core Design Improves All-ceramic Crown Reliability

    PubMed Central

    Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.

    2011-01-01

    This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036

  12. The SFR and IMF of the galactic disk

    NASA Astrophysics Data System (ADS)

    Just, Andreas

    2003-04-01

    There is a long term dynamical heating of stellar populations with age observed in the age velocity dispersion relation (AVR). This effect allows a determination of the star formation history SFR(t) from local kinematical data of main sequence stars. Using a self-consistent disk model for the vertical structure of the disk, we find from the kinematics of the stars in the solar neighbourhood that the SFR shows a moderate star burst about 10 Gyr ago followed by a continuous decline to the present day value consistent with the observed number of OB stars. The gravitational potential of the gas component and of the Dark Matter Halo is included and the effect of chemical enrichment, finite lifetime of the stars and mass loss of the stellar component are taken into account. The scale heights for main sequence stars together with the SFR is then used to determine constistently the IMF from the observed local luminosity function. The main new result is that the power law break in the present day mass function (PDMF) around 1 M ⊙ is entirely due to evolutionary effects of the disk and does not appear in the IMF.

  13. The SFR-M* Relation and Empirical Star-Formation Histories from ZFOURGE* at 0.5 < z < 4

    NASA Astrophysics Data System (ADS)

    Tomczak, Adam R.; Quadri, Ryan F.; Tran, Kim-Vy H.; Labbé, Ivo; Straatman, Caroline M. S.; Papovich, Casey; Glazebrook, Karl; Allen, Rebecca; Brammer, Gabreil B.; Cowley, Michael; Dickinson, Mark; Elbaz, David; Inami, Hanae; Kacprzak, Glenn G.; Morrison, Glenn E.; Nanayakkara, Themiya; Persson, S. Eric; Rees, Glen A.; Salmon, Brett; Schreiber, Corentin; Spitler, Lee R.; Whitaker, Katherine E.

    2016-02-01

    We explore star formation histories (SFHs) of galaxies based on the evolution of the star formation rate stellar mass relation (SFR-M*). Using data from the FourStar Galaxy Evolution Survey (ZFOURGE) in combination with far-IR imaging from the Spitzer and Herschel observatories we measure the SFR-M* relation at 0.5 < z < 4. Similar to recent works we find that the average infrared spectral energy distributions of galaxies are roughly consistent with a single infrared template across a broad range of redshifts and stellar masses, with evidence for only weak deviations. We find that the SFR-M* relation is not consistent with a single power law of the form {SFR}\\propto {M}*α at any redshift; it has a power law slope of α ˜ 1 at low masses, and becomes shallower above a turnover mass (M0) that ranges from 109.5 to 1010.8 M⊙, with evidence that M0 increases with redshift. We compare our measurements to results from state-of-the-art cosmological simulations, and find general agreement in the slope of the SFR-M* relation albeit with systematic offsets. We use the evolving SFR-M* sequence to generate SFHs, finding that typical SFRs of individual galaxies rise at early times and decline after reaching a peak. This peak occurs earlier for more massive galaxies. We integrate these SFHs to generate mass growth histories and compare to the implied mass growth from the evolution of the stellar mass function (SMF). We find that these two estimates are in broad qualitative agreement, but that there is room for improvement at a more detailed level. At early times the SFHs suggest mass growth rates that are as much as 10× higher than inferred from the SMF. However, at later times the SFHs under-predict the inferred evolution, as is expected in the case of additional growth due to mergers. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the

  15. Optimization of a heterogeneous fast breeder reactor core with improved behavior during unprotected transients

    SciTech Connect

    Poumerouly, S.; Schmitt, D.; Massara, S.; Maliverney, B.

    2012-07-01

    Innovative Sodium-cooled Fast Reactors (SFRs) are currently being investigated by CEA, AREVA and EDF in the framework of a joint French collaboration, and the construction of a GEN IV prototype, ASTRID (Advanced Sodium Technical Reactor for Industrial Demonstration), is scheduled in the years 2020. Significant improvements are expected so as to improve the reactor safety: the goal is to achieve a robust safety demonstration of the mastering of the consequences of a Core Disruptive Accident (CDA), whether by means of prevention or mitigation features. In this framework, an innovative design was proposed by CEA in 2010. It aims at strongly reducing the sodium void effect, thereby improving the core behavior during unprotected loss of coolant transients. This design is strongly heterogeneous and includes, amongst others, a fertile plate, a sodium plenum associated with a B{sub 4}C upper blanket and a stepwise modulation of the fissile height of the core (onwards referred to as the 'diabolo shape'). In this paper, studies which were entirely carried out at EDF are presented: the full potential of this heterogeneous concept is thoroughly investigated using the SDDS methodology. (authors)

  16. Core muscle strengthening's improvement of balance performance in community-dwelling older adults: a pilot study.

    PubMed

    Kahle, Nicole; Tevald, Michael A

    2014-01-01

    To determine the effect of core muscle strengthening on balance in community-dwelling older adults, 24 healthy men and women between 65 and 85 years old were randomized to either exercise (EX; n = 12) or control (CON; n = 12) groups. The exercise group performed a core strengthening home exercise program thrice weekly for 6 wk. Core muscle (curl-up test), functional reach (FR) and Star Excursion Balance Test (SEBT) were assessed at baseline and follow-up. There were no group differences at baseline. At follow-up, EX exhibited significantly greater improvements in curl-up (Cohen's d = 4.4), FR (1.3), and SEBT (>1.9 for all directions) than CON. The change in curl-up was significantly correlated with the change in FR (r = .44, p = .03) and SEBT (r > .61, p ≤ .002). These results suggest that core strengthening should be part of a comprehensive balance-training program for older adults. PMID:23348043

  17. Measuring the reduced scattering coefficient and γ with SFR spectroscopy: studying the phase function dependence (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Post, Anouk L.; Zhang, Xu; Bosschaart, Nienke; Van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.

    2016-03-01

    Both Optical Coherence Tomography (OCT) and Single Fiber Reflectance Spectroscopy (SFR) are used to determine various optical properties of tissue. We developed a method combining these two techniques to measure the scattering anisotropy (g1) and γ (=1-g2/1-g1), related to the 1st and 2nd order moments of the phase function. The phase function is intimately associated with the cellular organization and ultrastructure of tissue, physical parameters that may change during disease onset and progression. Quantification of these parameters may therefore allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. With SFR the reduced scattering coefficient and γ can be extracted from the reflectance spectrum (Kanick et al., Biomedical Optics Express 2(6), 2011). With OCT the scattering coefficient can be extracted from the signal as a function of depth (Faber et al., Optics Express 12(19), 2004). Consequently, by combining SFR and OCT measurements at the same wavelengths, the scattering anisotropy (g) can be resolved using µs'= µs*(1-g). We performed measurements on a suspension of silica spheres as a proof of principle. The SFR model for the reflectance as a function of the reduced scattering coefficient and γ is based on semi-empirical modelling. These models feature Monte-Carlo (MC) based model constants. The validity of these constants - and thus the accuracy of the estimated parameters - depends on the phase function employed in the MC simulations. Since the phase function is not known when measuring in tissue, we will investigate the influence of assuming an incorrect phase function on the accuracy of the derived parameters.

  18. Development of a core drug list towards improving prescribing education and reducing errors in the UK

    PubMed Central

    Baker, Emma; Pryce Roberts, Adele; Wilde, Kirsty; Walton, Hannah; Suri, Sati; Rull, Gurvinder; Webb, Andrew

    2011-01-01

    AIM To develop a core list of 100 commonly prescribed drugs to support prescribing education. METHODS A retrospective analysis of prescribing data from primary care in England (2006 and 2008) and from two London Teaching Hospitals (2007 and 2009) was performed. A survey of prescribing by foundation year 1 (FY1) doctors in 39 NHS Trusts across London was carried out. RESULTS A core list of 100 commonly prescribed drugs comprising ≥0.1% prescriptions in primary and/or secondary care was developed in 2006/7. The core list remained stable over 2 years. FY1 doctors prescribed 65% drugs on the list at least monthly. Seventy-six% of FY1 doctors did not regularly prescribe any drugs not on the core list. There was a strong correlation between prescribing frequency (prescriptions for each drug class expressed as percentage of all prescriptions written) and error rate described in the EQUIP study (errors made when prescribing each drug class expressed as a percentage of all errors made), n= 39, r= 0.861, P= 0.000. CONCLUSIONS Our core drug list identifies drugs that are commonly used and associated with error and is stable over at least 2 years. This list can now be used to develop learning resources and training programmes to improve prescribing of drugs in regular use. Complementary skills required for prescribing less familiar drugs must be developed in parallel. Ongoing research is required to monitor the effect of new training initiatives on prescribing error and patient safety. PMID:21219399

  19. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30-50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles.

  20. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  1. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    USGS Publications Warehouse

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a

  2. Improving core medical training--innovative and feasible ideas to better training.

    PubMed

    Tasker, Fiona; Dacombe, Peter; Goddard, Andrew F; Burr, Bill

    2014-12-01

    A recent survey of UK core medical training (CMT) training conducted jointly by the Royal College of Physicians (RCP) and Joint Royal College of Physicians Training Board (JRCPTB) identified that trainees perceived major problems with their training. Service work dominated and compromised training opportunities, and of great concern, almost half the respondents felt that they had not been adequately prepared to take on the role of medical registrar. Importantly, the survey not only gathered CMT trainees' views of their current training, it also asked them for their 'innovative and feasible ways to improve CMT'. This article draws together some of these excellent ideas on how the quality of training and the experience of trainees could be improved. It presents a vision for how CMT trainees, consultant supervisors, training programme directors, clinical directors and managers can work together to implement relevant, feasible and affordable ways to improve training for doctors and deliver the best possible care for patients. PMID:25468846

  3. X-SRQ - Improving Scalability and Performance of Multi-Core InfiniBand Clusters

    SciTech Connect

    Shipman, Galen M; Poole, Stephen W

    2008-01-01

    To improve the scalability of InfiniBand on large scale clusters Open MPI introduced a protocol known as B-SRQ [2]. This protocol was shown to provide much better memory utilization of send and receive buffers for a wide variety of benchmarks and real-world applications. Unfortunately B-SRQ increases the number of connections between communicating peers. While addressing one scalability problem of InfiniBand the protocol introduced another. To alleviate the connection scalability problem of the B-SRQ protocol a small enhancement to the reliable connection transport was requested which would allow multiple shared receive queues to be attached to a single reliable connection. This modified reliable connection transport is now known as the extended reliable connection transport. X-SRQ is a new transport protocol in Open MPI based on B-SRQwhich takes advantage of this improvement in connection scalability. This paper introduces the X-SRQ protocol and details the significantly improved scalability of the protocol over B-SRQand its reduction of the memory footprint of connection state by as much as 2 orders of magnitude on large scale multi-core systems. In addition to improving scalability, performance of latency-sensitive collective operations are improved by up to 38% while significantly decreasing the variability of results. A detailed analysis of the improved memory scalability as well as the improved performance are discussed.

  4. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.

    PubMed

    He, Haibing; Wang, Puxiu; Cai, Cuifang; Yang, Rui; Tang, Xing

    2015-09-30

    To improve the oral absorption of insulin, a novel carrier of Vitamin B12 (VB12) gel core solid lipid nanopaticles (Gel-Core-SLN, GCSLN) was designed with a gel core, lipid matrix and VB12-coated surface. VB12-stearate was synthesized and characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Sol-gel conversion following ultrasonic heating and double emulsion technology were combined to implant the insulin-containing gel into solid lipid nanoparticles (SLN). The influence of the mode of administration, food, the amount of VB12-stearate and the particle size on the oral absorption of insulin incorporated in the VB12-GCSLN was investigated. The determined partition coefficient (LogP) of VB12-stearate in a dichloromethane (DCM)-water system was 3.4. This new structure of VB12-GCSLN had higher insulin encapsulation efficiency (EE) of 55.9%, a lower burst release of less than 10% in the first 2h. In vivo studies demonstrated that stronger absorption of insulin with a relative pharmacological availability (PA) of 9.31% compared with the normal insulin-loaded SLN and GCSLN and fairly stable blood glucose levels up to 12h were maintained without any sharp fluctuations. This study suggests that VB12-GCSLN containing insulin appears to be a promising nano carrier for oral delivery of biomacromolecules with relatively high pharmacological availability. PMID:26253378

  5. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha.

    PubMed

    Feng, Yuxin; Singleton, David; Guo, Chun; Gardner, Amanda; Pakala, Suresh; Kumar, Rakesh; Jensen, Elwood; Zhang, Jinsong; Khan, Sohaib

    2013-01-01

    Estrogen receptor alpha (ERα), a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER's ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER's transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy. PMID:23874500

  6. Summary of South Fence Road phase II 1993 field operations at Site SFR-4

    SciTech Connect

    Foutz, W.L.; McCord, J.P.

    1996-05-01

    This report is a basic data report for field operations associated with the drilling, logging, completion, and development of South Fence Road Wells SFR-4P and SFR-4T. These test/monitoring wells were installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

  7. Summary of South Fence Road phase II 1993 field operations at site SFR-3

    SciTech Connect

    Foutz, W.L.; McCord, J.P.

    1996-05-01

    This report is a basic data report fro field operations associated with the drilling, logging, completion, and development of South Fence Road Wells SFR-3P and SFR-3T. These test/monitoring wells were installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

  8. Combining SIP and NMR Measurements to Develop Improved Estimates of Permeability in Sandstone Cores

    NASA Astrophysics Data System (ADS)

    Keating, K.; Binley, A. M.

    2013-12-01

    Permeability is traditionally measured in-situ by inducing groundwater flow using pumping, slug, or packer tests; however, these methods require the existence of wells, can be labor intensive and can be constrained by measurement support volumes. Indirect estimates of permeability based on geophysical techniques benefit from relatively short measurement times, do not require fluid extraction, and are non-invasive when made from the surface (or minimally invasive when made in a borehole). However, estimates of permeability based on a single geophysical method often require calibration for rock type, and cannot be used to uniquely determine all of the physical properties required to accurately determine permeability. In this laboratory study we present the first critical step towards developing a method for estimating permeability based on the synergistic coupling of two complementary geophysical methods: spectral induced polarization (SIP) and nuclear magnetic resonance (NMR). To develop an improved model for estimating permeability, laboratory SIP and NMR measurements were collected on a series of sandstone cores, covering a wide range of permeabilities. Current models for estimating permeability from each individual geophysical measurement were compared to independently obtained estimates of permeability. The comparison confirmed previous research showing that estimates from SIP or NMR alone only yield the permeability within order of magnitude accuracy and must be calibrated for rock type. Next, the geophysical parameters determined from SIP and NMR were compared to independent measurements the physical properties of the sandstone cores including gravimetric porosity and pores-size distributions (obtained from mercury injection porosimetry); this comparison was used to evaluate which geophysical parameter more consistently and accurately predicted each physical property. Finally, we present an improved method for estimating permeability in sandstone cores based

  9. Bi-content Gadolinia as Burnable Absorber in PWR to Improve the Reactor Core Behaviour

    SciTech Connect

    Zheng, S.

    2007-07-01

    The gadolinia product is one of the standard burnable absorbers used in the PWR long and low leakage fuel cycle in order to control the radial power distribution and to hold down the initial core reactivity. This product presents a large number of advantages such as the high efficiency with only a small number of gadolinia-bearing rods, the easy adjustment between the number and the content of the gadolinia-bearing rods according to the cycle length need and the initial reactivity hold-down, no increasing of boron concentration versus cycle depletion, no additional increasing of internal pressure in poisoned rods, very low additional manufacture cost. On the other hand, some unfavourable phenomena are also observed during the utilization of the gadolinia: amplification of the asymmetrical power distribution and more negative axial offset. Based on the correlation between the gadolinia burnout and its content, the use of gadolinia bi-content will improve the parameters indicated here above. The gadolinia bi-content have been used in BWR for more than 20 years. In this paper, the comparison of the main reactor core physical parameters in PWR, calculated with the AREVA NP standard neutronic code package SCIENCE, is made by using the mono- and bi-content of the gadolinia products in the same fuel assembly. The results show that the asymmetrical axial and azimuthal power distribution can be improved in the case of the bi-content gadolinia product. (authors)

  10. Improved P-wave Tomography of the Lowermost Mantle and Consequences for Mantle and Core Dynamics

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Muir, J. B.

    2014-12-01

    The core mantle boundary (CMB) separates the liquid iron core from the slowly-convecting solid mantle. The ~300 km thick barrier above the boundary has proven to be far more than a simple dividing layer; rather it is a complex region with a range of proposed phenomena such as thermal and compositional heterogeneity, partial melting and anisotropy. Characterizing the heterogeneity in the lowermost mantle through seismic tomography will prove crucial to accurately understanding key geodynamical processes within our planet, not just in the mantle above, but also a possible "mapping" onto the inner core boundary (ICB) through a thermochemical convection in the outer core, which in turn might control the growth of the inner core (e.g. Aubert et al., 2008; Gubbins et al., 2011). Here we obtain high-resolution compressional wave (P-wave) velocity images and uncertainty estimates for the lowermost mantle using travel time data collected by waveform cross-correlation. Strikingly, independent datasets of seismic phases that "see" the lowermost mantle in a different way yield similar P-wave velocity distributions at lower harmonic degrees. We also consider the effect of CMB topography. The images obtained are void of explicit model parameterization and regularization (through transdimensional Bayesian tomography) and contain features on multiple spatial scales. Subsequent spectral analyses reveal a power of heterogeneity three times larger than previous estimates. The P-wave tomograms of the lowermost mantle contain the harmonic degree 2-structure, similar to tomographic images derived from S-wave data (e.g. Ritsema et al. 2011), but with additional higher harmonic degrees (notably, 3-7). In other words, the heterogeneity size is uniformly distributed between about 500 and 6000 km. Inter alia, the resulting heterogeneity spectrum provides a bridge between the long-wavelength features of most global models and the very short-scale dimensions of scatterers mapped in independent

  11. Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration.

    PubMed

    Panarese, Joseph D; Cho, Hykeyung P; Adams, Jeffrey J; Nance, Kellie D; Garcia-Barrantes, Pedro M; Chang, Sichen; Morrison, Ryan D; Blobaum, Anna L; Niswender, Colleen M; Stauffer, Shaun R; Conn, P Jeffrey; Lindsley, Craig W

    2016-08-01

    This Letter describes the continued chemical optimization of the VU0453595 series of M1 positive allosteric modulators (PAMs). By surveying alternative 5,6- and 6,6-heterobicylic cores for the 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine-5-one core of VU453595, we found new cores that engendered not only comparable or improved M1 PAM potency, but significantly improved CNS distribution (Kps 0.3-3.1). Moreover, this campaign provided fundamentally distinct M1 PAM chemotypes, greatly expanding the available structural diversity for this valuable CNS target, devoid of hydrogen-bond donors. PMID:27173801

  12. Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics

    PubMed Central

    Grossi, Enzo; Melli, Sara; Dunca, Delia; Terruzzi, Vittorio

    2016-01-01

    Objectives: Autism spectrum disorder is a neurodevelopmental condition that typically displays socio-communicative impairment as well as restricted stereotyped interests and activities, in which gastrointestinal disturbances are commonly reported. We report the case of a boy with Autism Spectrum Disorder (ASD) diagnosis, severe cognitive disability and celiac disease in which an unexpected improvement of autistic core symptoms was observed after four months of probiotic treatment. Method: The case study refers to a 12 years old boy with ASD and severe cognitive disability attending the Villa Santa Maria Institute in resident care since 2009. Diagnosis of ASDs according to DSM-V criteria was confirmed by ADOS-2 assessment (Autism Diagnostic Observation Schedule). The medication used was VSL#3, a multi-strain mixture of ten probiotics. The treatment lasted 4 weeks followed by a four month follow-up. The rehabilitation program and the diet was maintained stable in the treatment period and in the follow up. ADOS-2 was assessed six times: two times before starting treatment; two times during the treatment and two times after interruption of the treatment. Results: The probiotic treatment reduced the severity of abdominal symptoms as expected but an improvement in Autistic core symptoms was unexpectedly clinically evident already after few weeks from probiotic treatment start. The score of Social Affect domain of ADOS improved changing from 20 to 18 after two months treatment with a further reduction of 1 point in the following two months. The level 17 of severity remained stable in the follow up period. It is well known that ADOS score does not fluctuate spontaneously along time in ASD and is absolutely stable. Conclusions: The appropriate use of probiotics deserves further research, which hopefully will open new avenues in the fight against ASD. PMID:27621806

  13. Identification of SFR6, a key component in cold acclimation acting post-translationally on CBF function.

    PubMed

    Knight, Heather; Mugford, Sarah G; Ulker, Bekir; Gao, Dahai; Thorlby, Glenn; Knight, Marc R

    2009-04-01

    The sfr6-1 mutant of Arabidopsis thaliana was identified previously on the basis of its failure to undergo acclimation to freezing temperatures following exposure to low positive temperatures. This failure is attributed to a defect in the pathway leading to cold on-regulated (COR) gene expression via CBF (C-box binding factor) transcription factors. We identified a region of chromosome 4 containing SFR6 by positional mapping. Fine mapping of the sfr6-1 mutation proved impossible as the locus resides very close to the centromere. Therefore, we screened 380 T-DNA lines with insertions in genes within the large region to which sfr6-1 mapped. This resulted in the identification of two further mutant alleles of SFR6 (sfr6-2 and sfr6-3); like the original sfr6-1 mutation, these disrupt freezing tolerance and COR gene expression. To determine the protein sequence, we cloned an SFR6 cDNA based on the predicted coding sequence, but this offered no indication as to the mechanism by which SFR6 acts. The SFR6 gene itself is not strongly regulated by cold, thus discounting regulation of SFR6 activity at the transcriptional level. We show that over-expression of CBF1 or CBF2 transcription factors, which constitutively activate COR genes in the wild-type, cannot do so in sfr6-1. We demonstrate that CBF protein accumulates to wild-type levels in response to cold in sfr6-1. These results indicate a role for the SFR6 protein in the CBF pathway -downstream of CBF translation. The fact that the SFR6 protein is targeted to the nucleus may suggest a direct role in modulating gene expression. PMID:19067974

  14. Six Weeks of Core Stability Training Improves Landing Kinetics Among Female Capoeira Athletes: A Pilot Study

    PubMed Central

    Araujo, Simone; Cohen, Daniel; Hayes, Lawrence

    2015-01-01

    Core stability training (CST) has increased in popularity among athletes and the general fitness population despite limited evidence CST programmes alone lead to improved athletic performance. In female athletes, neuromuscular training combining balance training and trunk and hip/pelvis dominant CST is suggested to reduce injury risk, and specifically peak vertical ground reaction forces (vGRF) in a drop jump landing task. However, the isolated effect of trunk dominant core stability training on vGRF during landing in female athletes had not been evaluated. Therefore, the objective of this study was to evaluate landing kinetics during a drop jump test following a CST intervention in female capoeira athletes. After giving their informed written consent, sixteen female capoeira athletes (mean ± SD age, stature, and body mass of 27.3 ± 3.7 years, 165.0 ± 4.0 cm, and 59.7 ± 6.3 kg, respectively) volunteered to participate in the training program which consisted of static and dynamic CST sessions, three times per week for six weeks. The repeated measures T-test revealed participants significantly reduced relative vGRF from pre- to post-intervention for the first (3.40 ± 0.78 vs. 2.85 ± 0.52 N·NBW-1, respectively [p<0.05, effect size = 0.60]), and second landing phase (5.09 ± 1.17 vs. 3.02 ± 0.41 N·NBW-1, respectively [p<0.001, effect size = 0.87]). The average loading rate was reduced from pre- to post-intervention during the second landing phase (30.96 ± 18.84 vs. 12.06 ± 9.83 N·NBW·s-1, respectively [p<0.01, effect size = 0.68]). The peak loading rate was reduced from pre- to post-intervention during the first (220.26 ± 111.51 vs. 120.27 ± 64.57 N·NBW·s-1 respectively [p<0.01, effect size = 0.64]), and second (99.52 ± 54.98 vs. 44.71 ± 30.34 N·NBW·s-1 respectively [p<0.01, effect size = 0.70]) landing phase. Body weight, average loading rate during the first landing phase, and jump height were not significantly different between week 0 and week 6

  15. Six weeks of core stability training improves landing kinetics among female capoeira athletes: a pilot study.

    PubMed

    Araujo, Simone; Cohen, Daniel; Hayes, Lawrence

    2015-03-29

    Core stability training (CST) has increased in popularity among athletes and the general fitness population despite limited evidence CST programmes alone lead to improved athletic performance. In female athletes, neuromuscular training combining balance training and trunk and hip/pelvis dominant CST is suggested to reduce injury risk, and specifically peak vertical ground reaction forces (vGRF) in a drop jump landing task. However, the isolated effect of trunk dominant core stability training on vGRF during landing in female athletes had not been evaluated. Therefore, the objective of this study was to evaluate landing kinetics during a drop jump test following a CST intervention in female capoeira athletes. After giving their informed written consent, sixteen female capoeira athletes (mean ± SD age, stature, and body mass of 27.3 ± 3.7 years, 165.0 ± 4.0 cm, and 59.7 ± 6.3 kg, respectively) volunteered to participate in the training program which consisted of static and dynamic CST sessions, three times per week for six weeks. The repeated measures T-test revealed participants significantly reduced relative vGRF from pre- to post-intervention for the first (3.40 ± 0.78 vs. 2.85 ± 0.52 N·NBW-1, respectively [p<0.05, effect size = 0.60]), and second landing phase (5.09 ± 1.17 vs. 3.02 ± 0.41 N·NBW-1, respectively [p<0.001, effect size = 0.87]). The average loading rate was reduced from pre- to post-intervention during the second landing phase (30.96 ± 18.84 vs. 12.06 ± 9.83 N·NBW·s-1, respectively [p<0.01, effect size = 0.68]). The peak loading rate was reduced from pre- to post-intervention during the first (220.26 ± 111.51 vs. 120.27 ± 64.57 N·NBW·s-1 respectively [p<0.01, effect size = 0.64]), and second (99.52 ± 54.98 vs. 44.71 ± 30.34 N·NBW·s-1 respectively [p<0.01, effect size = 0.70]) landing phase. Body weight, average loading rate during the first landing phase, and jump height were not significantly different between week 0 and week 6

  16. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    DOE PAGESBeta

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; et al

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.« less

  17. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    SciTech Connect

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  18. Modifications to WRF's dynamical core to improve the treatment of moisture for large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, William I.; Vogelmann, Andrew M.; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-12-01

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic substepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1 + 1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic substeps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  19. Donor core-cooling provides improved static preservation for heart-lung transplantation.

    PubMed

    Fraser, C D; Tamura, F; Adachi, H; Kontos, G J; Brawn, J; Hutchins, G M; Borkon, A M; Reitz, B A; Baumgartner, W A

    1988-03-01

    Twenty-three dairy calves underwent heart-lung allotransplantation after donor organs were procured using either donor core-cooling through cardiopulmonary bypass (CPB) or pulmonary artery flush (PAF) to assess which method provides optimal graft preservation. In Groups 1 (control) and 2, donors were cooled to 15 degrees C on CPB and organs were either immediately transplanted (Group 1) or stored in saline solution (4 degrees C) for 4 hours (Group 2) prior to transplantation. In Group 3, donors were pretreated with prostaglandin E1 prior to PAF with modified Euro-Collins solution. Organs were stored in saline solution (4 degrees C) for 4 hours and were then transplanted. Acute cardiopulmonary function following transplantation was assessed by the ratio of end-systolic pressure to end-systolic dimension, extravascular lung water (EVLW), lung compliance, arterial oxygenation, and lung biopsy. Cardiac function after the transplantation procedure was similar in all groups, but EVLW values and lung biopsy scores were worse after PAF. Arterial O2 tension appeared lower after PAF, but not significantly so. Core-cooling provides superior static preservation and thus improved graft function in the acute bovine model. PMID:3126721

  20. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  1. An improved resonance self-shielding method for heterogeneous fast reactor assembly and core calculations

    SciTech Connect

    Lee, C.; Yang, W. S.

    2013-07-01

    An improved resonance self-shielding method has been developed to accurately estimate the effective multigroup cross sections for heterogeneous fast reactor assembly and core calculations. In the method, the heterogeneity effect is considered by the use of isotopic escape cross sections while the resonance interference effect is accounted for through the narrow resonance approximation or slowing-down calculations for specific compositions. The isotopic escape cross sections are calculated by solving fixed-source transport equations with the method of characteristics for the whole problem domain. This method requires no pre-calculated resonance integral tables or parameters that are typically necessary in the subgroup method. Preliminary results for multi pin-cell fast reactor problems show that the escape cross sections estimated from the explicit-geometry fixed source calculations produce more accurate eigenvalue and self-shielded effective cross sections than those from conventional one-dimensional geometry models. (authors)

  2. An improved method for field extraction and laboratory analysis of large, intact soil cores

    USGS Publications Warehouse

    Tindall, J.A.; Hemmen, K.; Dowd, J.F.

    1992-01-01

    Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.

  3. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  4. Greater Biopsy Core Number Is Associated With Improved Biochemical Control in Patients Treated With Permanent Prostate Brachytherapy

    SciTech Connect

    Bittner, Nathan; Wallner, Kent E.

    2010-11-15

    Purpose: Standard prostate biopsy schemes underestimate Gleason score in a significant percentage of cases. Extended biopsy improves diagnostic accuracy and provides more reliable prognostic information. In this study, we tested the hypothesis that greater biopsy core number should result in improved treatment outcome through better tailoring of therapy. Methods and Materials: From April 1995 to May 2006, 1,613 prostate cancer patients were treated with permanent brachytherapy. Patients were divided into five groups stratified by the number of prostate biopsy cores ({<=}6, 7-9, 10-12, 13-20, and >20 cores). Biochemical progression-free survival (bPFS), cause-specific survival (CSS), and overall survival (OS) were evaluated as a function of core number. Results: The median patient age was 66 years, and the median preimplant prostate-specific antigen was 6.5 ng/mL. The overall 10-year bPFS, CSS, and OS were 95.6%, 98.3%, and 78.6%, respectively. When bPFS was analyzed as a function of core number, the 10-year bPFS for patients with >20, 13-20, 10-12, 7-9 and {<=}6 cores was 100%, 100%, 98.3%, 95.8%, and 93.0% (p < 0.001), respectively. When evaluated by treatment era (1995-2000 vs. 2001-2006), the number of biopsy cores remained a statistically significant predictor of bPFS. On multivariate analysis, the number of biopsy cores was predictive of bPFS but did not predict for CSS or OS. Conclusion: Greater biopsy core number was associated with a statistically significant improvement in bPFS. Comprehensive regional sampling of the prostate may enhance diagnostic accuracy compared to a standard biopsy scheme, resulting in better tailoring of therapy.

  5. A Team-Based Approach to Improving Core Instructional Reading Practices within Response to Intervention

    ERIC Educational Resources Information Center

    Harlacher, Jason E.; Potter, Jon B.; Weber, Jill M.

    2015-01-01

    Core instruction is an important part of an effective response to intervention (RTI) model. To implement RTI effectively, school teams should regularly examine the effectiveness of their core instruction to determine if at least 80% of students meet the proficiency standard with core support alone. However, some educators may not have the skills…

  6. Operation and performance of the Supercritical Fluids Reactor (SFR)

    SciTech Connect

    Hanush, R.G.; Rice, S.F.; Hunter, T.B.; Aiken, J.D.

    1995-11-01

    The Supercritical Fluids Reactor (SFR) at Sandia National Laboratories, CA has been developed to examine and solve engineering, process, and fundamental chemistry issues regarding the development of supercritical water oxidation (SCWO). This report details the experimental apparatus, procedures, analytical methods used in these experiments, and performance characteristics of the reactor. The apparatus consists of pressurization, feed, preheat, reactor, cool down, and separation subsystems with ancillary control and data acquisition hardware and software. Its operating range is from 375 - 650{degrees} at 3250 - 6300 psi with resident times from 0.09 to 250 seconds. Procedures required for experimental operations are described. They include maintenance procedures conducted between experiments, optical alignment for acquisition of spectroscopic data, setup of the experiment, reactor start up, experimental operations, and shutdown of apparatus. Analytical methods used are Total Organic Carbon analysis, Gas Chromatography, ion probes, pH probes, turbidity measurements and in situ Raman spectroscopy. Experiments conducted that verify the accuracy of measurement and sampling methods are described.

  7. 50 CFR 86.92 - Who can use the SFR logo?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.92 Who can use the SFR logo? The...

  8. 50 CFR 86.92 - Who can use the SFR logo?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.92 Who can use the SFR logo? The...

  9. 50 CFR 86.93 - Where should I use the SFR logo?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.93 Where should I use the SFR logo?...

  10. 50 CFR 86.93 - Where should I use the SFR logo?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.93 Where should I use the SFR logo?...

  11. 50 CFR 86.92 - Who can use the SFR logo?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.92 Who can use the SFR...

  12. 50 CFR 86.92 - Who can use the SFR logo?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.92 Who can use the SFR...

  13. 50 CFR 86.92 - Who can use the SFR logo?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.92 Who can use the SFR logo? The...

  14. 50 CFR 86.93 - Where should I use the SFR logo?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.93 Where should I use the SFR logo?...

  15. Effects of stellar rotation on star formation rates and comparison to core-collapse supernova rates

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F.; Bothwell, Matt S.; Thompson, Todd A.

    2013-06-01

    We investigate star formation rate (SFR) calibrations in light of recent developments in the modeling of stellar rotation. Using new published non-rotating and rotating stellar tracks, we study the integrated properties of synthetic stellar populations and find that the UV to SFR calibration for the rotating stellar population is 30% smaller than for the non-rotating stellar population, and 40% smaller for the Hα to SFR calibration. These reductions translate to smaller SFR estimates made from observed UV and Hα luminosities. Using the UV and Hα fluxes of a sample of ∼300 local galaxies, we derive a total (i.e., sky-coverage corrected) SFR within 11 Mpc of 120-170 M {sub ☉} yr{sup –1} and 80-130 M {sub ☉} yr{sup –1} for the non-rotating and rotating estimators, respectively. Independently, the number of core-collapse supernovae discovered in the same volume requires a total SFR of 270{sub −80}{sup +110} M{sub ⊙} yr{sup −1}, suggesting a tension with the SFR estimates made with rotating calibrations. More generally, when compared with the directly estimated SFR, the local supernova discoveries strongly constrain any physical effects that might increase the energy output of massive stars, including, but not limited to, stellar rotation. The cosmic SFR and cosmic supernova rate data, on the other hand, show the opposite trend, with the cosmic SFR higher than that inferred from cosmic supernovae, constraining a significant decrease in the energy output of massive stars. Together, these lines of evidence suggest that the true SFR calibration factors cannot be too far from their canonical values.

  16. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  17. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  18. Development of Ni-Zn nanoferrite core material with improved saturation magnetization and DC resistivity

    NASA Astrophysics Data System (ADS)

    Kumar, A. Mahesh; Varma, M. Chaitanya; Dube, Charu Lata; Rao, K. H.; Kashyap, Subhash C.

    Nanostructured Nickel-Zinc ferrite of composition Ni 0.65Zn 0.35Fe 2O 4 was prepared by sol-gel, co-precipitation, citrate-gel and oxalate precursor methods. X-ray diffraction (XRD) patterns of all the samples showed the spinel structure. A comparison of average crystallite size clearly indicated that the sol-gel method was the effective one in producing small crystallite sized samples having insignificant variation with annealing or sintering temperatures. Also, sol-gel method was observed to provide high saturation magnetization values in samples sintered even at lower temperatures. The high magnetization values are, in general, reported in bulk samples prepared at higher sintering temperatures by conventional ceramic method. Direct-current (DC) resistivity of these samples was also considerably improved as compared to that of the bulk materials. Discussion has been made on the basis of observed higher values of saturation magnetization and dc resistivity towards the development of a high-quality core material useful for high-frequency applications.

  19. Improvement of transformer core magnetic properties using the step-lap design

    NASA Astrophysics Data System (ADS)

    Valkovic, Z.; Rezic, A.

    1992-07-01

    Magnetic properties of the step-lap joints have been investigated experimentally on two three-phase three-leg transformer cores. Using the step-lap joint design, a reduction of the total core loss of 2 to 4.4% and of the exciting power of 31 to 37% has been obtained.

  20. Application of the IGSN for improved data - sample - drill core linkage

    NASA Astrophysics Data System (ADS)

    Behnken, Andree; Wallrabe-Adams, Hans-Joachim; Röhl, Ursula; Krysiak, Frank

    2016-04-01

    The large number of samples resulting from geoscientific research creates a need for a system that has the ability to allocate unique identifiers for individual samples (cores, core sections, rock samples...). In this abstract we present a solution that utilises the IGSN (1) Registry Metadata Store (2) to automatically register unique IGSN's for samples and submit corresponding metadata. An automated workflow has been set up to register IGSN's and submit metadata for cores stored for example at the IODP (3) Bremen Core Repository (BCR) in Bremen and the BGR National Core Repository for Research Drilling in Berlin, and partly transfer the core information to the GESEP (4) Virtual Core Repository (5). Detailed metadata for these cores are stored in a DIS (6), from which xml files containing all necessary information for IGSN and metadata submission are automatically generated. These files are automatically processed to extract and register the unique IGSN as well as the corresponding metadata. After this parsing process, the IGSN registration and metadata submission processes are triggered by posting the appropriate IGSN API (7) service calls. 1. International Geo Sample Number 2. https://doidb.wdc-terra.org/igsn/ 3. Integrated Ocean Drilling Program / International Ocean Discovery Program 4. German Scientific Earth Probing Consortium 5. http://www.gesep.org/infrastruktur/kernlager/portal/ 6. Drilling Information System 7. https://doidb.wdc-terra.org/igsn/static/apidoc

  1. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    PubMed

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. PMID:26652424

  2. HUBBLE'S NEW IMPROVED OPTICS PROBE THE CORE OF A DISTANT GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This comparison image of the core of the galaxy M100 shows the dramatic improvement in Hubble Space Telescope's view of the universe. The new image was taken with the second generation Wide Field and Planetary Camera (WFPC-2) which was installed during the STS-61 Hubble Servicing Mission. The picture beautifully demonstrates that the corrective optics incorporated within the WFPC-2 compensate fully for optical aberration in Hubble's primary mirror. The new camera will allow Hubble to probe the universe with unprecedented clarity and sensitivity, and to fulfill many of the most important scientific objectives for which the telescope was originally built. [ Right ] The core of the grand design spiral galaxy M100, as imaged by Hubble Space Telescope's Wide Field Planetary Camera 2 in its high resolution channel. The WFPC-2 contains modified optics that correct for Hubble's previously blurry vision, allowing the telescope for the first time to cleanly resolve faint structure as small as 30 light-years across in a galaxy which is tens of millions of light years away. The image was taken on December 31, 1993. [Left ] For comparison, a picture taken with the WFPC-1 camera in wide field mode, on November 27, 1993, just a few days prior to the STS-61 servicing mission. The effects of optical aberration in HST's 2.4-meter primary mirror blur starlight, smear out fine detail, and limit the telescope's ability to see faint structure. Both Hubble images are 'raw;' they have not been subject to computer image reconstruction techniques commonly used in aberrated images made before the servicing mission. TARGET INFORMATION: M100 The galaxy M100 (100th object in the Messier Catalog of non-stellar objects) is one of the brightest members of the Virgo Cluster of galaxies. The galaxy is in the spring constellation Coma Berenices and can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The

  3. GAMA/H-ATLAS: A meta-analysis of SFR indicators - comprehensive measures of the SFR-M relation and Cosmic Star Formation History at z < 0.4

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Driver, S. P.; Robotham, A. S. G.; Grootes, M. W.; Popescu, C. C.; Tuffs, R. J.; Hopkins, A.; Alpaslan, M.; Andrews, S. K.; Bland-Hawthorn, J.; Bremer, M. N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Croom, S.; da Cunha, E.; Dunne, L.; Lara-López, M. A.; Liske, J.; Loveday, J.; Moffett, A. J.; Owers, M.; Phillipps, S.; Sansom, A. E.; Taylor, E. N.; Michalowski, M. J.; Ibar, E.; Smith, M.; Bourne, N.

    2016-06-01

    We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M★ relation for each. We compare and contrast published methods to extract the SFR from each indicator, using a well-defined local sample of morphologically-selected spiral galaxies, which excludes sources which potentially have large recent changes to their SFR. The different methods are found to yield SFR-M★ relations with inconsistent slopes and normalisations, suggesting differences between calibration methods. The recovered SFR-M★ relations also have a large range in scatter which, as SFRs of the targets may be considered constant over the different timescales, suggests differences in the accuracy by which methods correct for attenuation in individual targets. We then recalibrate all SFR indicators to provide new, robust and consistent luminosity-to-SFR calibrations, finding that the most consistent slopes and normalisations of the SFR-M★ relations are obtained when recalibrated using the radiation transfer method of Popescu et al. These new calibrations can be used to directly compare SFRs across different observations, epochs and galaxy populations. We then apply our calibrations to the GAMA II equatorial dataset and explore the evolution of star-formation in the local Universe. We determine the evolution of the normalisation to the SFR-M★ relation from 0 < z < 0.35 - finding consistent trends with previous estimates at 0.3 < z < 1.2. We then provide the definitive z < 0.35 Cosmic Star Formation History, SFR-M★ relation and its evolution over the last 3 billion years.

  4. GAMA/H-ATLAS: a meta-analysis of SFR indicators - comprehensive measures of the SFR-M* relation and cosmic star formation history at z < 0.4

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Driver, S. P.; Robotham, A. S. G.; Grootes, M. W.; Popescu, C. C.; Tuffs, R. J.; Hopkins, A.; Alpaslan, M.; Andrews, S. K.; Bland-Hawthorn, J.; Bremer, M. N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Croom, S.; da Cunha, E.; Dunne, L.; Lara-López, M. A.; Liske, J.; Loveday, J.; Moffett, A. J.; Owers, M.; Phillipps, S.; Sansom, A. E.; Taylor, E. N.; Michalowski, M. J.; Ibar, E.; Smith, M.; Bourne, N.

    2016-09-01

    We present a meta-analysis of star formation rate (SFR) indicators in the Galaxy And Mass Assembly (GAMA) survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator, using a well-defined local sample of morphologically selected spiral galaxies, which excludes sources which potentially have large recent changes to their SFR. The different methods are found to yield SFR-M* relations with inconsistent slopes and normalizations, suggesting differences between calibration methods. The recovered SFR-M* relations also have a large range in scatter which, as SFRs of the targets may be considered constant over the different time-scales, suggests differences in the accuracy by which methods correct for attenuation in individual targets. We then recalibrate all SFR indicators to provide new, robust and consistent luminosity-to-SFR calibrations, finding that the most consistent slopes and normalizations of the SFR-M* relations are obtained when recalibrated using the radiation transfer method of Popescu et al. These new calibrations can be used to directly compare SFRs across different observations, epochs and galaxy populations. We then apply our calibrations to the GAMA II equatorial data set and explore the evolution of star formation in the local Universe. We determine the evolution of the normalization to the SFR-M* relation from 0 < z < 0.35 - finding consistent trends with previous estimates at 0.3 < z < 1.2. We then provide the definitive z < 0.35 cosmic star formation history, SFR-M* relation and its evolution over the last 3 billion years.

  5. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance—Part II: Experiments

    NASA Astrophysics Data System (ADS)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-12-01

    A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core. It is found that certain modifications of the face/core interface region influence the kinking behavior, which is studied experimentally in the present paper. A sandwich double cantilever beam specimen loaded by uneven bending moments (DCB-UBM) allows for accurate measurements of the J integral as the crack propagates under large scale fibre bridging. By altering the mode-mixity of the loading, the crack path changes and deflects from the interface into the adjacent face or core. The transition points where the crack kinks are identified and the influence of four various interface design modifications on the propagation path and fracture resistance are investigated.

  6. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.

    PubMed

    Gurudayal; Chee, Png Mei; Boix, Pablo P; Ge, Hu; Yanan, Fang; Barber, James; Wong, Lydia Helena

    2015-04-01

    We report a simple method to produce a stable and repeatable photoanode for water splitting with a core-shell hematite (α-Fe2O3) nanorods system by combining spray pyrolysis and hydrothermal synthesis. Impedance spectroscopy revealed passivation of the surface states by the shell layer, which results in an increase of the charge injection through the hematite conduction band. In pristine hematite more holes are accumulated on the surface and the charge transfer to the electrolyte occurs through surface states, whereas in the core-shell hematite photoanode the majority of hole transfer process occurs through the valence band. As a result the photoactivity of the core-shell nanorods, 1.2 mA cm(-2), at 1.23 V vs RHE, is twice that of pristine hematite nanorods. The alteration of the interface energetics is supported by TEM, showing that the crystallinity of the surface has been improved by the deposition of the shell. PMID:25790720

  7. Design and Performance Improvements of the Prototype Open Core Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Pang, D.; Anand, D. K. (Editor); Kirk, J. A. (Editor)

    1996-01-01

    A prototype magnetically suspended composite flywheel energy storage (FES) system is operating at the University of Maryland. This system, designed for spacecraft applications, incorporates recent advances in the technologies of composite materials, magnetic suspension, and permanent magnet brushless motor/generator. The current system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. This paper will present design improvements for enhanced and robust performance. Initially, when the OCCF prototype was spun above its first critical frequency of 4,500 RPM, the rotor movement would exceed the space available in the magnetic suspension gap and touchdown on the backup mechanical bearings would occur. On some occasions it was observed that, after touchdown, the rotor was unable to re-suspend as the speed decreased. Additionally, it was observed that the rotor would exhibit unstable oscillations when the control system was initially turned on. Our analysis suggested that the following problems existed: (1) The linear operating range of the magnetic bearings was limited due to electrical and magnetic saturation; (2) The inductance of the magnetic bearings was affecting the transient response of the system; (3) The flywheel was confined to a small movement because mechanical components could not be held to a tight tolerance; and (4) The location of the touchdown bearing magnifies the motion at the pole faces of the magnetic bearings when the linear range is crucial. In order to correct these problems an improved design of the flywheel energy storage system was undertaken. The magnetic bearings were re-designed to achieve a large linear operating range and to withstand load disturbances of at least 1 g. The external position transducers were replaced by a unique design which were resistant to magnetic field noise and allowed cancellation of the radial growth of the flywheel at high speeds. A central rod was utilized to ensure the concentricity

  8. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications. PMID:20359188

  9. Role of the RAD51-SWI5-SFR1 Ensemble in homologous recombination.

    PubMed

    Su, Guan-Chin; Yeh, Hsin-Yi; Lin, Sheng-Wei; Chung, Chan-I; Huang, Yu-Shan; Liu, Yi-Chung; Lyu, Ping-Chiang; Chi, Peter

    2016-07-27

    During DNA double-strand break and replication fork repair by homologous recombination, the RAD51 recombinase catalyzes the DNA strand exchange reaction via a helical polymer assembled on single-stranded DNA, termed the presynaptic filament. Our published work has demonstrated a dual function of the SWI5-SFR1 complex in RAD51-mediated DNA strand exchange, namely, by stabilizing the presynaptic filament and maintaining the catalytically active ATP-bound state of the filament via enhancement of ADP release. In this study, we have strived to determine the basis for physical and functional interactions between Mus musculus SWI5-SFR1 and RAD51. We found that SWI5-SFR1 preferentially associates with the oligomeric form of RAD51. Specifically, a C-terminal domain within SWI5 contributes to RAD51 interaction. With specific RAD51 interaction defective mutants of SWI5-SFR1 that we have isolated, we show that the physical interaction is indispensable for the stimulation of the recombinase activity of RAD51. Our results thus help establish the functional relevance of the trimeric RAD51-SWI5-SFR1 complex and provide insights into the mechanistic underpinnings of homology-directed DNA repair in mammalian cells. PMID:27131790

  10. DISSECTING THE STELLAR-MASS-SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES

    SciTech Connect

    Salmi, F.; Daddi, E.; Elbaz, D.; Sargent, M. T.; Bethermin, M.; Renzini, A.; Le Borgne, D. E-mail: edaddi@cea.fr

    2012-07-20

    Using a mass-limited sample of 24 {mu}m detected, star-forming galaxies at 0.5 < z < 1.3, we study the mass-star formation rate (SFR) correlation and its tightness. The correlation is well defined ({sigma} = 0.28 dex) for disk galaxies (n{sub Sersic} < 1.5), while more bulge-dominated objects often have lower specific SFRs (sSFRs). For disk galaxies, a much tighter correlation ({sigma} = 0.19 dex) is obtained if the rest-frame H-band luminosity is used instead of stellar mass derived from multi-color photometry. The sSFR correlates strongly with rest-frame optical colors (hence luminosity-weighted stellar age) and also with clumpiness (which likely reflects the molecular gas fraction). This implies that most of the observed scatter is real, despite its low level, and not dominated by random measurement errors. After correcting for these differential effects a remarkably small dispersion remains ({sigma} = 0.14 dex), suggesting that measurement errors in mass or SFR are {approx}< 0.10 dex, excluding systematic uncertainties. Measurement errors in stellar masses, the thickening of the correlation due to real sSFR variations, and varying completeness with stellar mass, can spuriously bias the derived slope to lower values due to the finite range over which observables (mass and SFR) are available. When accounting for these effects, the intrinsic slope for the main sequence for disk galaxies gets closer to unity.

  11. Sensitivity Analysis of Neutron Cross-Sections Considered for Design and Safety Studies of Lfr and SFR Generation IV Systems

    NASA Astrophysics Data System (ADS)

    Tucek, Kamil; Carlsson, Johan; Wider, Hartmut

    2006-04-01

    We evaluated the sensitivity of several design and safety parameters with regard to five different nuclear data libraries, JEF2.2, JEFF3.0, ENDF/B-VI.8, JENDL3.2, and JENDL3.3. More specifically, the effective multiplication factor, burn-up reactivity swing and decay heat generation in available LFR and SFR designs were estimated. Monte Carlo codes MCNP and MCB were used in the analyses of the neutronic and burn-up performance of the systems. Thermo-hydraulic safety calculations were performed by the STAR-CD CFD code. For the LFR, ENDF/B-VI.8 and JEF2.2 showed to give a harder neutron spectrum than JEFF3.0, JENDL3.2, and JENDL3.3 data due to the lower inelastic scattering cross-section of lead in these libraries. Hence, the neutron economy of the system becomes more favourable and keff is higher when calculated with ENDF/B-VI.8 and JEF2.2 data. As for actinide cross-section data, the uncertainties in the keff values appeared to be mainly due to 239Pu, 240Pu and 241Am. Differences in the estimated burn-up reactivity swings proved to be significant, for an SFR as large as a factor of three (when comparing ENDF/B-VI.8 results to those of JENDL3.2). Uncertainties in the evaluation of short-term decay heat generation showed to be of the order of several per cent. Significant differences were, understandably, observed between decay heat generation data quoted in literature for LWR-UOX and those calculated for an LFR (U,TRU)O2 spent fuel. A corresponding difference in calculated core parameters (outlet coolant temperature) during protected total Loss-of-Power was evaluated.

  12. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.

    PubMed

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-19

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants. PMID:27160795

  13. Effectiveness of core muscle strengthening for improving pain and dynamic balance among female patients with patellofemoral pain syndrome

    PubMed Central

    Chevidikunnan, Mohamed Faisal; Al Saif, Amer; Gaowgzeh, Riziq Allah; Mamdouh, Khaled A

    2016-01-01

    [Purpose] Patellofemoral pain syndrome is a frequent musculoskeletal disorder, which can result from core muscles instability that can lead to pain and altered dynamic balance. The objective of this study is to assess the effect of core muscle strengthening on pain and dynamic balance in female patients with patellofemoral pain syndrome. [Subjects and Methods] Twenty female patients with age ranging from 16 to 40 years with patellofemoral pain syndrome were divided into study (N=10) and control (N=10) groups. Both groups were given 4 weeks of conventional physical therapy program and an additional core muscle strengthening for the study group. The tools used to assess the outcome were Visual Analogue Scale and Star Excursion Balance Test. [Results] The results of the study show that participants in the study group revealed a significantly greater improvement in the intensity of pain and dynamic balance as compared to the control group. [Conclusion] Adding a core muscle-strengthening program to the conventional physical therapy management improves pain and dynamic balance in female patients with patellofemoral pain syndrome. PMID:27313363

  14. Improvements in Sand Mold/Core Technology: Effects on Casting Finish

    SciTech Connect

    Prof. John J. Lannutti; Prof. Carroll E. Mobley

    2005-08-30

    In this study, the development and impact of density gradients on metal castings were investigated using sand molds/cores from both industry and from in-house production. In spite of the size of the castings market, almost no quantitative information about density variation within the molds/cores themselves is available. In particular, a predictive understanding of how structure and binder content/chemistry/mixing contribute to the final surface finish of these products does not exist. In this program we attempted to bridge this gap by working directly with domestic companies in examining the issues of surface finish and thermal reclamation costs resulting from the use of sand molds/cores. We show that these can be substantially reduced by the development of an in-depth understanding of density variations that correlate to surface finish. Our experimental tools and our experience with them made us uniquely qualified to achieve technical progress.

  15. Improved oxygen reduction activity on the Ih Cu@Pt core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Zongxian; Geng, Zhixia; Zhang, Yanxing; Wang, Jinlong; Ma, Shuhong

    2011-09-01

    The minimum energy path (MEP) for the dissociation of O 2 on the Ih Cu@Pt12 core-shell nanoparticle. Ih Cu@Pt12 is the most stable among the symmetric Cu@Pt12 core-shell isomers. O 2 prefers to be adsorbed on the Ih Cu@Pt12 with the t-b-t configuration. The Ih Cu@Pt12 has enhanced activity for O 2 dissociation and O diffusion. Ih Cu@Pt12 nanoparticle is a good candidate for being the ORR catalyst.

  16. Improved diamond coring bits developed for dry and chip-flush drilling

    NASA Technical Reports Server (NTRS)

    Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

    1971-01-01

    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

  17. Assessing the Common Core Standards: Opportunities for Improving Measures of Instruction

    ERIC Educational Resources Information Center

    Porter, Andrew; McMaken, Jennifer; Hwang, Jun; Yang, Rui

    2011-01-01

    This article responds to comments on the authors' "Educational Researcher" article "Common Core Standards: The New U.S. Intended Curriculum" (April 2011). The authors note points of agreement and difference with the commentators. They observe that Cobb and Jackson, in their response, and Beach, in his, appear to accept the authors' methods and…

  18. Investigating the Efficacy of a Core Kindergarten Mathematics Curriculum to Improve Student Mathematics Learning Outcomes

    ERIC Educational Resources Information Center

    Clarke, Ben; Baker, Scott; Smolkowski, Keith; Doabler, Christian; Strand Cary, Mari; Fien, Hank

    2015-01-01

    This study examined the efficacy of a core kindergarten mathematics program, Early Learning in Mathematics (ELM), a 120-lesson program with four content strands: (a) number operations, (b) geometry, (c) measurement, and (d) vocabulary. The study utilized a randomized block design, with 129 classrooms randomly assigned within schools to treatment…

  19. Core ADHD Symptom Improvement with Atomoxetine versus Methylphenidate: A Direct Comparison Meta-Analysis

    ERIC Educational Resources Information Center

    Hazell, Philip L.; Kohn, Michael R.; Dickson, Ruth; Walton, Richard J.; Granger, Renee E.; van Wyk, Gregory W.

    2011-01-01

    Objective: Previous studies comparing atomoxetine and methylphenidate to treat ADHD symptoms have been equivocal. This noninferiority meta-analysis compared core ADHD symptom response between atomoxetine and methylphenidate in children and adolescents. Method: Selection criteria included randomized, controlled design; duration 6 weeks; and…

  20. ADRIANA project: Identification of research infrastructures for the SFR, within the frame of European industrial initiative for sustainable nuclear fission

    SciTech Connect

    Latge, C.; Gastaldi, O.; Vala, L.; Gerbeth, G.; Homann, C.; Benoit, P.; Papin, J.; Girault, N.; Roelofs, F.; Bucenieks, I.; Paffumi, E.; Ciampichetti, A.

    2012-07-01

    Fast neutron reactors have a large potential as sustainable energy source. In particular, Sodium Fast Reactors (SFR) with a closed fuel cycle and potential for minor actinide burning may allow minimization of volume and heat load of high level waste and provide improved use of natural resources (as compared to only 1% energy recovery in the current once-through fuel cycle, with Thermal Reactors, such as EPR). The coordinating action ADRIANA (Advanced Reactor Initiative And Network Arrangement) has been initiated to set up a network dedicated to the construction and operation of research infrastructures in support of developments for the European Industrial Initiative for sustainable nuclear fission. The Project sets these objectives for the following reactor systems and related technologies: Sodium Fast Reactor (SFR), Lead Fast Reactor (LFR), Gas Fast Reactor (GFR, including very high temperature technologies), Instrumentation, diagnostics and experimental devices, Irradiation facilities and hot laboratories, Zero power reactors. Among the fast reactor systems, the sodium cooled reactor has the most comprehensive technological basis as result of the experience gained from worldwide operation of several experimental, prototype and commercial size reactors, since the forties (see Appendix I). This concept is currently considered as the reference, within the European strategy. Innovations are needed to further enhance safety, reduce capital cost and improve efficiency reliability and operability, making the Generation IV SFR an attractive option for electricity production. Currently, in France, a moderate (500 to 600 MWe) power demonstrator named ASTRID (Advanced Sodium Test Reactor for Industrial Demonstration) has been proposed and endorsed by EU. Presently, the reference configuration is a pool concept. General R and D needs have been identified and experimental facilities required to satisfy these needs have been listed for the following domains: material and

  1. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  2. EMERGENCE OF THE KENNICUTT-SCHMIDT RELATION FROM THE SMALL-SCALE SFR-DENSITY RELATION

    SciTech Connect

    Gnedin, Nickolay Y.; Tasker, Elizabeth J.; Fujimoto, Yusuke

    2014-05-20

    We use simulations of isolated galaxies with a few parsec resolution to explore the connection between the small-scale star formation rate (SFR)-gas density relation and the induced large-scale correlation between the SFR surface density and the surface density of the molecular gas (the Kennicutt-Schmidt relation). We find that, in the simulations, a power-law small-scale ''star formation law'' directly translates into an identical power-law Kennicutt-Schmidt relation. If this conclusion holds in the reality as well, it implies that the observed approximately linear Kennicutt-Schmidt relation must reflect the approximately linear small-scale ''star formation law''.

  3. Improved fluorescence properties of core-sheath electrospun nanofibers sensitized by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, Shipeng; Zhang, Rong; Hu, Shui; Zhang, Liqun; Liu, Li

    2015-09-01

    Silver nanoparticles (Ag-NPs) were used to enhance the fluorescence properties of nanofibers containing the Tb(acac)3phen (Tb = terbium, acac = acetylacetone, phen = 1,10-phenanthroline) complex. Tb(acac)3phen/PLLA//Ag-NPs/PVP (PLLA = polylacticacid, PVP = polyvinylpyrrolidone) core-sheath fluorescence nanofibers were prepared by coaxial electrospinning. SEM images demonstrated that the fibers had an average diameter of 550 nm. TEM images illustrated that the Ag-NPs and Tb(acac)3phen were uniformly dispersed in the outer and inner fibrous layers in the form of nanoparticles and molecular clusters, respectively. The fluorescence intensity of the Tb(acac)3phen/PLLA//Ag-NPs/PVP core-sheath nanofibers with a molar ratio Ag/Tb of 1 increased by 69%, the quantum efficiency increased by 53%, and the fluorescence lifetime increased by 4% over those of the fibers without Ag-NPs because of the localized surface plasmon resonance (LSPR) effect of Ag-NPs. The prepared fibers with a core-sheath structure have great potential in a wide range of fluorescence applications.

  4. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  5. The integration of single fiber reflectance (SFR) spectroscopy during endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) in pancreatic masses: a feasibility study

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; Bonsing, Bert A.; Amelink, Arjen; Vahrmeijer, Alexander L.; Dijkstra, Jouke; Robinson, Dominic J.

    2016-03-01

    EUS-FNA can be used for pathological confirmation of a suspicious pancreatic mass. However, performance depends on an on-site cytologist and time between punction and final pathology results can be long. SFR spectroscopy is capable of extracting biologically relevant parameters (e.g. oxygenation and blood volume) in real-time from a very small tissue volume at difficult locations. In this study we determined feasibility of the integration of SFR spectroscopy during EUSFNA procedures in pancreatic masses. Patients with benign and malignant pancreatic masses who were scheduled for an EUS-FNA were included. The working guide wire inside the 19 gauge endoscopic biopsy needle was removed and the sterile single fiber (300 μm core and 700 μm outer diameter, wide-angle beam, NA 0.22) inserted through the needle. Spectroscopy measurements in the visiblenear infrared wavelength region (400-900 nm) and autofluorescence measurements (excitation at 405 nm) were taken three times, and subsequently cytology was obtained. Wavelength dependent optical properties were compared to cytology results. We took measurements in 13 patients with corresponding cytology results (including mucinous tumor, ductal adenocarcinoma, neuroendocrine tumor, and pancreatitis). In this paper we show the first analyzed results comparing normal pancreatic tissue with cancerous tissue in the same patient. We found a large difference in blood volume fraction, and blood oxygenation was higher in normal tissue. Integration of SFR spectroscopy is feasible in EUS-FNA procedures, the workflow hardly requires changes and it takes little time. The first results differentiating normal from tumor tissue are promising.

  6. Black-Scholes-Schrödinger-Zipf-Mandelbrot model framework for improving a study of the coauthor core score

    NASA Astrophysics Data System (ADS)

    Rotundo, Giulia

    2014-06-01

    The data and findings by Miskiewicz (2013) on the relationship between the number (J) of publications ranked according to their decreasing importance, for some scientist with her/his coauthors (CA), i.e. J∝1/rα, as found in Ausloos (2013), when specific types of publications, i.e. proceedings (in a generalized sense) and peer-review journals, are considered, are reexamined along the Zipf-Mandelbrot law Mandelbrot (1977), i.e. J∝1/(. The statistics are much improved. The exponent α and ζ are compared. The ma core value, i.e. the core number of CAs [1] is unaffected, of course. A Black-Scholes-Schrödinger model framework is proposed to describe the findings.

  7. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    NASA Astrophysics Data System (ADS)

    Parsapour, Amir; Dehkordi, Behzad Mirzaeian; Moallem, Mehdi

    2015-03-01

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared.

  8. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism. PMID:12857181

  9. The NCEA Core Practice Framework: An Organizing Guide to Sustained School Improvement

    ERIC Educational Resources Information Center

    Dougherty, Chrys; Rutherford, Jean

    2009-01-01

    What fundamental ideas from higher performing schools underlie a coherent approach to educational improvement? First, only a system-wide approach to improving teaching and learning can make it possible for students to receive good teaching, year after year, across different subjects. Given the difficulty of the task, isolated and uncoordinated…

  10. Can Technology Improve Large Class Learning? The Case of an Upper-Division Business Core Class

    ERIC Educational Resources Information Center

    Stanley, Denise

    2013-01-01

    Larger classes are often associated with lower student achievement. The author tested the hypothesis that the introduction of personal response systems significantly improves scores in a 250-seat classroom, through the channels of improved attendance and engagement. She focused on how continuous participation with the technology could change…

  11. Improving Middle School Parental Engagement in Transition to Common Core State Standards: An Action Research Study

    ERIC Educational Resources Information Center

    Harla, Donna K.

    2014-01-01

    Parental involvement in schools is an important potential contributor to improving American education and making the U.S. more globally competitive. This qualitative and quantitative mixed-methodology action research study probed the viability of engaging parents around issues of educational improvement by inviting them to participate in training…

  12. Creating a high-reliability health care system: improving performance on core processes of care at Johns Hopkins Medicine.

    PubMed

    Pronovost, Peter J; Armstrong, C Michael; Demski, Renee; Callender, Tiffany; Winner, Laura; Miller, Marlene R; Austin, J Matthew; Berenholtz, Sean M; Yang, Ting; Peterson, Ronald R; Reitz, Judy A; Bennett, Richard G; Broccolino, Victor A; Davis, Richard O; Gragnolati, Brian A; Green, Gene E; Rothman, Paul B

    2015-02-01

    In this article, the authors describe an initiative that established an infrastructure to manage quality and safety efforts throughout a complex health care system and that improved performance on core measures for acute myocardial infarction, heart failure, pneumonia, surgical care, and children's asthma. The Johns Hopkins Medicine Board of Trustees created a governance structure to establish health care system-wide oversight and hospital accountability for quality and safety efforts throughout Johns Hopkins Medicine. The Armstrong Institute for Patient Safety and Quality was formed; institute leaders used a conceptual model nested in a fractal infrastructure to implement this initiative to improve performance at two academic medical centers and three community hospitals, starting in March 2012. The initiative aimed to achieve ≥ 96% compliance on seven inpatient process-of-care core measures and meet the requirements for the Delmarva Foundation and Joint Commission awards. The primary outcome measure was the percentage of patients at each hospital who received the recommended process of care. The authors compared health system and hospital performance before (2011) and after (2012, 2013) the initiative. The health system achieved ≥ 96% compliance on six of the seven targeted measures by 2013. Of the five hospitals, four received the Delmarva Foundation award and two received The Joint Commission award in 2013. The authors argue that, to improve quality and safety, health care systems should establish a system-wide governance structure and accountability process. They also should define and communicate goals and measures and build an infrastructure to support peer learning. PMID:25517699

  13. Improving measurement methods in rehabilitation: core concepts and recommendations for scale development.

    PubMed

    Velozo, Craig A; Seel, Ronald T; Magasi, Susan; Heinemann, Allen W; Romero, Sergio

    2012-08-01

    Validated measurement scales are essential to evaluating clinical outcomes and conducting meaningful and reliable research. The purpose of this article is to present the clinician and researcher with a contemporary 8-stage framework for measurement scale development based on a mixed-methods qualitative and quantitative approach. Core concepts related to item response theory are presented. Qualitative methods are described to conceptualize scale constructs; obtain patient, family, and other stakeholder perspectives; and develop item pools. Item response theory statistical methodologies are presented, including approaches for testing the assumptions of unidimensionality, local independence, monotonicity, and indices of model fit. Lastly, challenges faced by scale developers in implementing these methodologies are discussed. While rehabilitation research has recently started to apply mixed-methods qualitative and quantitative methodologies to scale development, these approaches show considerable promise in advancing rehabilitation measurement. PMID:22840881

  14. Total Automation for the Core Laboratory: Improving the Turnaround Time Helps to Reduce the Volume of Ordered STAT Tests.

    PubMed

    Ialongo, Cristiano; Porzio, Ottavia; Giambini, Ilio; Bernardini, Sergio

    2016-06-01

    The transition to total automation represents the greatest leap for a clinical laboratory, characterized by a totally new philosophy of process management. We have investigated the impact of total automation on core laboratory efficiency and its effects on the clinical services related to STAT tests. For this purpose, a 47-month retrospective study based on the analysis of 44,212 records of STAT cardiac troponin I (CTNI) tests was performed. The core laboratory reached a new efficiency level 3 months after the implementation of total automation. Median turnaround time (TAT) was reduced by 14.9±1.5 min for the emergency department (p < 0.01), reaching 41.6±1.2 min. In non-emergency departments, median TAT was reduced by 19.8±2.2 min (p < 0.01), reaching 52±1.3 min. There was no change in the volume of ordered STAT CTNI tests by the emergency department (p = 0.811), whereas for non-emergency departments there was a reduction of 115.7±50 monthly requests on average (p = 0.026). The volume of ordered tests decreased only in time frames of the regular shift following the morning round. Thus, total automation significantly improves the core laboratory efficiency in terms of TAT. As a consequence, the volume of STAT tests ordered by hospital departments (except for the emergency department) decreased due to reduced duplicated requests. PMID:25882188

  15. Core/shell-structured nickel/nitrogen-doped onion-like carbon nanocapsules with improved electromagnetic wave absorption properties

    NASA Astrophysics Data System (ADS)

    Wu, Niandu; Liu, Xianguo; Or, Siu Wing

    2016-05-01

    Core/shell-structured nickel/nitrogen-doped onion-like carbon (Ni/(C, N)) nanocapsules are synthesized by a modified arc-discharge method using N2 gas as the source of N atoms. Core/shell-structured Ni/C nanocapsules are also prepared for comparison. The Ni/(C, N) nanocapsules with diameters of 10-80 nm exhibit a clear core/shell structure. The doping of N atoms introduces more lattice defects into the (C, N) shells and creates more disorderly C in the (C, N) shells. This leads to a slight shift in the dielectric resonance peak to the lower frequency side and an increase in the dielectric loss tangent for the Ni/(C, N) nanocapsules in comparison with the Ni/C nanocapsules. The magnetic permeability of both types of nanocapsules remains almost unaltered since the N atoms exist only in the (C, N) shells. The reflection loss (RL) of the Ni/(C, N) nanocapsules not only reaches a high value of -35 dB at 13.6 GHz, but also is generally improved in the low-frequency S and C microwave bands covering 2-8 GHz as a result of the N-doping-induced additional dipolar polarization and dielectric loss from the (C, N) shells.

  16. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-09-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  17. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment.

    PubMed

    Zanotto-Filho, Alfeu; Coradini, Karine; Braganhol, Elizandra; Schröder, Rafael; de Oliveira, Cláudia Melo; Simões-Pires, André; Battastini, Ana Maria Oliveira; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Forcelini, Cassiano Mateus; Beck, Ruy Carlos Ruver; Moreira, José Cláudio Fonseca

    2013-02-01

    In this study, we developed curcumin-loaded lipid-core nanocapsules (C-LNCs) in an attempt to improve the antiglioma activity of this polyphenol. C-LNC showed nanotechnological properties such as nanometric mean size (196 nm), 100% encapsulation efficiency, polydispersity index below 0.1, and negative zeta potential. The in vitro release assays demonstrated a controlled release of curcumin from lipid-core nanocapsules. In C6 and U251MG gliomas, C-LNC promoted a biphasic delivery of curcumin: the first peak occurred early in the treatment (1-3h), whereas the onset of the second phase occurred after 48 h. In C6 cells, the cytotoxicity of C-LNC was comparable to non-encapsulated curcumin only after 96 h, whereas C-LNCs were more cytotoxic than non-encapsulated curcumin after 24h of incubation in U251MG. Induction of G2/M arrest and autophagy were observed in C-LNC as well as in free-curcumin treatments. In rats bearing C6 gliomas, C-LNC (1.5mg/kg/day, i.p.) decreased the tumor size and malignance and prolonged animal survival when compared to same dose of non-encapsulated drug. In addition, serum markers of tissue toxicity and histological parameters were not altered. Considered overall, the data suggest that the nanoencapsulation of curcumin in LNC is an important strategy to improve its pharmacological efficacy in the treatment of gliomas. PMID:23219677

  18. Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility

    NASA Astrophysics Data System (ADS)

    Patil, R. M.; Shete, P. B.; Thorat, N. D.; Otari, S. V.; Barick, K. C.; Prasad, A.; Ningthoujam, R. S.; Tiwale, B. M.; Pawar, S. H.

    2014-04-01

    Superparamagnetic magnetite nanoparticles are of great interest due to their potential biomedical applications. In the present investigation, Fe3O4 magnetic nanoparticles were prepared by alkaline precipitation using ferrous chloride as the sole source. An amphiphilic polyelectrolyte with the property of biocompatibility and functional carboxyl groups was used as a stabilizer to prepare a well-dispersed suspension of superparamagnetic Fe3O4 nanoparticles. The final material composed of Fe3O4 core and chitosan (CH) shell was produced. The amino groups of CH coated on Fe3O4 nanoparticles were further cross linked using glutaraldehyde (GLD) for stable coating. FTIR spectra, XPS and TGA confirmed the coating of CH/GLD on the surface of Fe3O4 nanoparticles. XRD patterns indicate the pure phase Fe3O4 with a spinel structure. The nanoparticles were superparamagnetic at room temperature with saturation magnetization values for bare and coated nanoparticles which were 51.68 emu/g and 48.60 emu/g, respectively. Zeta potential values showed higher colloidal stability of coated nanoparticles than the bare one. Cytotoxicity study up to 2 mg mL-1 concentration showed no drastic change in cell viability of nanoparticles after coating. Also, coated nanoparticles showed increased SAR value, making them suitable for hyperthermia therapy application.

  19. Improvement of advanced nodal method used in 3D core design system

    SciTech Connect

    Rauck, S.; Dall'Osso, A.

    2006-07-01

    This paper deals with AREVA NP progress in the modelling of neutronic phenomena, evaluated through 3D determinist core codes and using 2-group diffusion theory. Our report highlights the advantages of taking into account the assembly environment in the process used for the building of the 2-group collapsed neutronic parameters, such as cross sections or discontinuity factors. The interest of the present method, developed in order to account for the impact of the environment on the above mentioned parameters, resides (i) in the very definition of a global correlation between collapsed neutronic data calculated in an infinite medium and those calculated in a 3D-geometry, and (ii) in the use of a re-homogenization method. Using this approach, computations match better with actual measurements on control rod worth. They also present smaller differences on pin by pin power values compared to the ones computed with another code considered as a reference since it relies on multigroup transport theory. (authors)

  20. Lipid-Core Nanocapsules Improved Antiedematogenic Activity of Tacrolimus in Adjuvant-Induced Arthritis Model.

    PubMed

    Friedrich, Rossana B; Coradini, Karine; Fonseca, Francisco N; Guterres, Silvia S; Beck, Ruy C R; Pohlmann, Adriana R

    2016-02-01

    Despite significant technological advances, rheumatoid arthritis remains an incurable disease with great impact on the life quality of patients. We studied the encapsulation of tacrolimus in lipidcore nanocapsules (TAC-LNC) as a strategy to enhance its systemic anti-arthritic properties. TAC-LNC presented unimodal distribution of particles with z-average diameter of 212 +/- 11, drug content close to the theoretical value (0.80 mg mL(-1)), and 99.43% of encapsulation efficiency. An in vitro sustained release was determined for TAC-LNC with anomalous transport mechanism (n = 0.61). In vivo studies using an arthritis model induced by Complete Freund's Adjuvant demonstrated that the animals treated with TAC-LNC presented a significantly greater inhibition of paw oedema after intraperitoneal administration. Furthermore, the encapsulation of TAC in lipid-core nanocapsules was potentially able to prevent hyperglycemia in the animals. In conclusion, TAC-LNC was prepared with 100% yield of nanoscopic particles having satisfactory characteristics for systemic use. This formulation represents a promising strategy to the treatment of rheumatoid arthritis in the near future. PMID:27433576

  1. OSCAR-Na: A New Code for Simulating Corrosion Product Contamination in SFR

    NASA Astrophysics Data System (ADS)

    Génin, J.-B.; Brissonneau, L.; Gilardi, T.

    2016-07-01

    A code named OSCAR-Na has been developed to calculate the mass transfer of corrosion products in the primary circuit of sodium fast reactors (SFR). It is based on a solution/precipitation model, including diffusion in the steel (enhanced under irradiation), diffusion through the sodium boundary layer, equilibrium concentration of each element, and velocity of the interface (bulk corrosion or deposition). The code uses a numerical method for solving the diffusion equation in the steel and the complete mass balance in sodium for all elements. Corrosion and deposition rates are mainly determined by the iron equilibrium concentration in sodium and its oxygen-enhanced dissolution rate. All parameters of the model have been assessed from a literature review, but iron solubility had to be adjusted. A simplified primary system description of PHENIX French SFR was able to assess the correct amounts and profiles of contamination on heat exchanger surfaces for the main radionuclides.

  2. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-18

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  3. LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests

    SciTech Connect

    Herranz, L. E.; Garcia, M.; Morandi, S.

    2012-07-01

    The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

  4. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-01

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  5. An improved multipole approximation for self-gravity and its importance for core-collapse supernova simulations

    SciTech Connect

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l {sub max}. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  6. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    SciTech Connect

    Harada, Satoshi Ehara, Shigeru; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Sato, Takahiro; Oikawa, Shyoichi; Kamiya, Tomihiro; Arakawa, Kazuo; Yokota, Wataru; Sera, Koichiro; Ito, Jyun

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium. These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.

  7. Platinum-monolayer Electrocatalysts: Palladium Interlayer on IrCo Alloy Core Improves Activity in Oxygen-reduction Reaction

    SciTech Connect

    Gong, K.; Chen, W.-F.; Sasaki, K.; Su, D.; Vukmirovic, M.B.; Zhou, W.; Izzo, E.L.; Perez-Acosta, C.; Hirunsit, P.; Balbuena, P.B.; Adzic, R.R.

    2010-11-15

    We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core, a Pd interlayer, and a surface Pt monolayer, emphasizing the interlayer's role in improving electrocatalytic activity for the oxygen-reduction reaction on Pt in HClO{sub 4} solution. We prepared the IrCo alloys by decomposing, at 800 C, hexacyanometalate, KCoIr(CN){sub 6}, adsorbed on the carbon surfaces. The synthesis of Ir{sub 3}Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 C. Thereafter, we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer. The electrocatalysts were characterized using structural- and electrochemical-techniques. For PtML/PdML/IrCo/C, we observed a Pt mass activity of 1.18 A/mg{sub (Pt)} and the platinum-group-metals mass of 0.16 A/mg{sub (Pt, Pd, Ir)}. In comparison, without a Pd interlayer, i.e., Pt{sub ML}/IrCo/C, the activities of 0.15 A/mg{sub (Pt)} and 0.036 A/mg{sub (Pt, Pd, Ir)} were considerably lower. We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core, so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction. A similar trend was observed for Pt{sub ML}/Pd{sub ML} and Pt{sub ML} deposited on Ir{sub 3}Co/C alloy core. We used density functional theory to interpret the observed phenomena.

  8. Modifications to WRF’s dynamical core to improve the treatment of moisture for large­-eddy simulations

    SciTech Connect

    Xiao, Heng; Endo, Satoshi; Wong, May Ws; Skamarock, W.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, William I.; Vogelmann, A. M.; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their Weather Research and Forecasting (WRF) large-eddy simulations (LESs) of marine stratocumulus exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub­stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub­steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub­steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  9. Novel copper (Cu) loaded core-shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties.

    PubMed

    Maniprasad, Pavithra; Santra, Swadeshmukul

    2012-08-01

    We report synthesis of a novel core-shell silica based antimicrobial nanoparticles where the silica shell has been engineered to accommodate copper (Cu). Synthesis of the core-shell Cu-silica nanoparticle (C-S CuSiO2NP) involves preparation of base-hydrolyzed Stöber silica "seed" particles first, followed by the acid-catalyzed seeded growth of the Cu-silica shell layer around the core. The Scanning Electron Microscopy (SEM) and the Transmission Electron Microscopy (TEM) measured the seed particle size to be -380 nm and the shell thickness to be -35 nm. The SEM particle characterization confirms formation of highly monodispersed particles with smooth surface morphology. Characterization of particle size distribution in solution by Dynamic Light Scattering (DLS) technique was fairly consistent with the electron microscopy results. Loading of Cu to nanoparticles was confirmed by the SEM-Energy Dispersive X-Ray Spectroscopy (EDS) and Atomic Absorption Spectroscopy (AAS). The Cu loading was estimated to be 0.098 microg of metallic copper per mg of C-S CuSiO2NP material by the AAS technique. Antibacterial efficacy of C-S CuSiO2NP was evaluated against E. coli and B. subtilis using Cu hydroxide ("Insoluble" Cu compound, sub-micron size particles) as positive control and silica "seed" particles (without Cu loading) as negative control. Bacterial growth in solution was measured against different concentrations of C-S CuSiO2NP to determine the Minimum Inhibitory Concentration (MIC) value. The estimated MIC values were 2.4 microg metallic Cu/mL for both E. coli and B. subtilis. Bac-light fluorescence microscopy based assay was used to count relative population of the live and dead bacteria cells. Antibacterial study clearly shows that C-S CuSiO2NP is more effective than insoluble Cu hydroxide particles at equivalent metallic Cu concentration, suggesting improvement of Cu bioavailability (i.e., more soluble Cu) in C-SCuSiO2NP material due to its core-shell design. PMID

  10. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    SciTech Connect

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-09-07

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al{sub 2}O{sub 3}) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoring internal stresses.

  11. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  12. Laser modified ZnO/CdSSe core-shell nanowire arrays for Micro-Steganography and improved photoconduction.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  13. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    PubMed Central

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  14. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  15. Enhanced exchange bias and improved ferromagnetic properties in Permalloy-BiFe0.95Co0.05O3 core-shell nanostructures.

    PubMed

    Javed, K; Li, W J; Ali, S S; Shi, D W; Khan, U; Riaz, S; Han, X F

    2015-01-01

    Hybrid core-shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties. PMID:26658956

  16. "Score the Core" Web-based pathologist training tool improves the accuracy of breast cancer IHC4 scoring.

    PubMed

    Engelberg, Jesse A; Retallack, Hanna; Balassanian, Ronald; Dowsett, Mitchell; Zabaglo, Lila; Ram, Arishneel A; Apple, Sophia K; Bishop, John W; Borowsky, Alexander D; Carpenter, Philip M; Chen, Yunn-Yi; Datnow, Brian; Elson, Sarah; Hasteh, Farnaz; Lin, Fritz; Moatamed, Neda A; Zhang, Yanhong; Cardiff, Robert D

    2015-11-01

    Hormone receptor status is an integral component of decision-making in breast cancer management. IHC4 score is an algorithm that combines hormone receptor, HER2, and Ki-67 status to provide a semiquantitative prognostic score for breast cancer. High accuracy and low interobserver variance are important to ensure the score is accurately calculated; however, few previous efforts have been made to measure or decrease interobserver variance. We developed a Web-based training tool, called "Score the Core" (STC) using tissue microarrays to train pathologists to visually score estrogen receptor (using the 300-point H score), progesterone receptor (percent positive), and Ki-67 (percent positive). STC used a reference score calculated from a reproducible manual counting method. Pathologists in the Athena Breast Health Network and pathology residents at associated institutions completed the exercise. By using STC, pathologists improved their estrogen receptor H score and progesterone receptor and Ki-67 proportion assessment and demonstrated a good correlation between pathologist and reference scores. In addition, we collected information about pathologist performance that allowed us to compare individual pathologists and measures of agreement. Pathologists' assessment of the proportion of positive cells was closer to the reference than their assessment of the relative intensity of positive cells. Careful training and assessment should be used to ensure the accuracy of breast biomarkers. This is particularly important as breast cancer diagnostics become increasingly quantitative and reproducible. Our training tool is a novel approach for pathologist training that can serve as an important component of ongoing quality assessment and can improve the accuracy of breast cancer prognostic biomarkers. PMID:26410019

  17. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives. PMID:27243766

  18. Combining Concentrated Autologous Bone Marrow Stem Cells Injection With Core Decompression Improves Outcome for Patients with Early-Stage Osteonecrosis of the Femoral Head: A Comparative Study.

    PubMed

    Tabatabaee, Reza Mostafavi; Saberi, Sadegh; Parvizi, Javad; Mortazavi, Seyed Mohammad Javad; Farzan, Mahmoud

    2015-09-01

    The management of early-stage osteonecrosis of the femoral head (ONFH) remains challenging. This study aimed to evaluate the effects of core decompression and concentrated bone marrow implantation on ONFH. The study recruited 28 hips with early ONFH randomly assigned into two groups of core decompression with (group A) and without (group B) bone marrow injection. Patients were evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire, Visual Analogue Scale (VAS) pain index, and MRI. The mean WOMAC and VAS scores in all patients improved significantly (P<0.001). MRI showed a significant improvement in group A (P=0.046) and significant worsening in group B (P<0.001). Bone marrow stem cell injection with core decompression can be effective in early ONFH. PMID:26143238

  19. A Comparison Study of Creep-Fatigue Defect Growth Evaluations for a SFR IHTS Piping

    NASA Astrophysics Data System (ADS)

    Park, Chang-Gyu; Kim, Jong-Bum; Lee, Jae-Han

    A defect behavior is one of the principal concerns to be dealt with for a structural integrity since defects may lead to the failure of a SFR(Sodium-cooled Fast Reactor) structure under high temperature loading conditions. A thin-walled and large diametric piping is adopted for the IHTS (Intermediate Heat Transport System) piping system of a SFR to enhance the system's economy and to reduce the thermal stress level. The structural material for the piping is Type 316 austenitic stainless steel. In this study, a defect growth evaluation of IHTS piping was performed for a semi-elliptical surface defect subjected to a combined mechanical loading and thermal loading of a high temperature above 500°C including a cyclic loading condition corresponding to a reactor refueling cycle. The creep-fatigue defect behavior evaluations were carried out by following the French Assessment Procedure A16, the UK Assessment Procedure R5 and the JNC procedure. The results were compared with each other and their strong and weak points were discussed. Also the degree of conservatism of each procedure was reviewed.

  20. Effect of the star formation histories on the SFR-M∗ relation at z ≥ 2

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Maccagni, D.; Garilli, B.; Scodeggio, M.; Thomas, R.; Le Fèvre, O.; Zamorani, G.; Schaerer, D.; Lemaux, B. C.; Cassata, P.; Le Brun, V.; Pentericci, L.; Tasca, L. A. M.; Vanzella, E.; Zucca, E.; Amorín, R.; Bardelli, S.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-08-01

    We investigate the effect of different star formation histories (SFHs) on the relation between stellar mass (M∗) and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift zspec> 2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from a new library of single stellar population (SSPs) models, weighted by a set of 28 different star formation histories based on the Schmidt function, and characterized by different ratios of the gas infall timescale τinfall to the star formation efficiency ν. Dust extinction and re-emission were treated by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique was performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the intergalactic medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR-M∗ plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best fit by models with SFHs characterized by a high τinfall/ν ratio. We discuss the reliability of a low percentage of dusty and highly star-forming galaxies in the context of their detection in the far infrared (FIR).

  1. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM z {approx} 2.5 TO z {approx} 0.1

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Magnelli, Benjamin; Genzel, Reinhard; Lutz, Dieter; Berta, Stefano; Gracia-Carpio, Javier; Nordon, Raanan; Van der Wel, Arjen; Guo, Yicheng; Aussel, Herve; Le Floc'h, Emeric; Hathi, Nimish P.; Huang, Kuang-Han; Koekemoer, Anton M.; Lee, Kyoung-Soo; and others

    2011-12-01

    We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation ({Sigma}{sub SFR} and SFR{sub IR}/SFR{sub UV}) on the position of galaxies in the star formation rate (SFR) versus mass diagram. Our sample comprises roughly 640,000 galaxies at z {approx} 0.1, 130,000 galaxies at z {approx} 1, and 36,000 galaxies at z {approx} 2. Structural measurements for all but the z {approx} 0.1 galaxies are based on Hubble Space Telescope imaging, and SFRs are derived using a Herschel-calibrated ladder of SFR indicators. We find that a correlation between the structure and stellar population of galaxies (i.e., a 'Hubble sequence') is already in place since at least z {approx} 2.5. At all epochs, typical star-forming galaxies on the main sequence are well approximated by exponential disks, while the profiles of quiescent galaxies are better described by de Vaucouleurs profiles. In the upper envelope of the main sequence, the relation between the SFR and Sersic index reverses, suggesting a rapid buildup of the central mass concentration in these starbursting outliers. We observe quiescent, moderately and highly star-forming systems to co-exist over an order of magnitude or more in stellar mass. At each mass and redshift, galaxies on the main sequence have the largest size. The rate of size growth correlates with specific SFR, and so does {Sigma}{sub SFR} at each redshift. A simple model using an empirically determined star formation law and metallicity scaling, in combination with an assumed geometry for dust and stars, is able to relate the observed {Sigma}{sub SFR} and SFR{sub IR}/SFR{sub UV}, provided a more patchy dust geometry is assumed for high-redshift galaxies.

  2. Mode-Area Scaling of Helical-Core, Dual-Clad Fiber Lasers and Amplifiers Using an Improved Bend-Loss Model

    SciTech Connect

    Jiang, Z.; Marciante, J.R.

    2006-09-28

    For small-bend radii, the waveguide condition for total internal reflection is violated in a large angular spread of incident angles at the interface of the fiber core. To account for this, we derived an improved semi-analytic bend-loss model that allows for the propagation of radiated fields outside the plane of the fiber bend. This new model is applied to large-mode-area helical-core fibers (which require small-bend radii) for use as high-power fiber lasers and amplifiers. In particular, the limits of scaling the mode area while maintaining good beam quality are explored.

  3. Improved stratigraphic dating at a low accumulation Alpine ice core through laser ablation trace element profiling at sub-mm depth resolution

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Spaulding, Nicole; Mayewski, Paul; Sneed, Sharon; Handley, Mike; Erhardt, Tobias; Wagenbach, Dietmar

    2015-04-01

    The small scale Colle Gnifetti glacier saddle (4450 m asl, Monte Rosa region) is the only ice core drilling site in the European Alps with a net accumulation low enough to offer multi-millennia climate records. However, a robust interpretation of such long term records (i.e. mineral dust, stable water isotopes) at the Colle Gnifetti (CG) multi core array is strongly challenged by depositional noise associated with a highly irregular annual layer stratigraphy. In combination with a relatively large vertical strain rate and rapid layer thinning, annual layer counting gets increasingly ambiguous as of approximately 100 years. In addition, this prevents clear attribution of likely volcanic horizons to historical eruption dates. To improve stratigraphic dating under such intricate conditions, we deployed laser ablation (LA) ICP-MS at sub-mm sample resolution. We present here the first LA impurity profiles from a new Colle Gnifetti ice core drilled 73 m to bedrock in 2013 at a site where the net snow accumulation is around 20 cm w.e. per year. We contrast the LA signal variability (including Ca, Fe, Na) to continuous flow analyses (CFA) records at cm-resolution (Ca, Na, melt water conductivity, micro- particle) recorded over the whole core length. Of special concern are the lower 28 m to bedrock, which have been continuously profiled in LA Ca, thus offering the direct comparison of Ca-signals between CFA and LA. By this means, we first validate at upper depths LA based annual layer identification through agreement with CFA based counting efforts before demonstrating the LA based counting still works at depths where CFA derived annual layers become spurious since embedded in strong, multi-year cycles. Finally, LA ice core profiling of our CG core has potential for not only dating improvement but also reveals benefits in resolving highly thinned basal ice sections including accounting for micro-structural features such as grain boundaries.

  4. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis.

    PubMed

    Riau, Andri K; Mondal, Debasish; Yam, Gary H F; Setiawan, Melina; Liedberg, Bo; Venkatraman, Subbu S; Mehta, Jodhbir S

    2015-10-01

    Patients with advanced corneal disease do poorly with conventional corneal transplantation and require a keratoprosthesis (KPro) for visual rehabilitation. The most widely used KPro is constructed using poly(methyl methacrylate) (PMMA) in the central optical core and a donor cornea as skirt material. In many cases, poor adherence between the PMMA and the soft corneal tissue is responsible for device "extrusion" and bacterial infiltration. The interfacial adhesion between the tissue and the PMMA was therefore critical to successful implantation and device longevity. In our approach, we modified the PMMA surface using oxygen plasma (plasma group); plasma followed by calcium phosphate (CaP) coating (p-CaP); dopamine followed by CaP coating (d-CaP); or plasma followed by coating with (3-aminopropyl)triethoxysilane (3-APTES). To create a synthetic KPro model, we constructed and attached 500 μm thick collagen type I hydrogel on the modified PMMA surfaces. Surface modifications produced significantly improved interfacial adhesion strength compared to untreated PMMA (p < 0.001). The p-CaP group yielded the best interfacial adhesion with the hydrogel (177 ± 27 mN/cm(2)) followed by d-CaP (168 ± 31 mN/cm(2)), 3-APTES (145 ± 12 mN/cm(2)), and plasma (119 ± 10 mN/cm(2)). Longer-term stability of the adhesion was achieved by d-CaP, which, after 14 and 28 days of incubation in phosphate buffered saline, yielded 164 ± 25 mN/cm(2) (p = 0.906 compared to adhesion at day 1) and 131 ± 20 mN/cm(2) (p = 0.053), respectively. In contrast, significant reduction of adhesion strength was observed in p-CaP group over time (p < 0.001). All surface coatings were biocompatible to human corneal stromal fibroblasts, except for the 3-APTES group, which showed no live cells at 72 h of culture. In contrast, cells on d-CaP surface showed good anchorage, evidenced by the expression of focal adhesion complex (paxillin and vinculin), and prominent filopodia protrusions. In conclusion, d-CaP can

  5. On the effect of different placing ZrH moderator material on the performance of a SFR core

    SciTech Connect

    Merk, B.; Weiss, F. P.

    2012-07-01

    This study describes the development of a sodium fast reactor fuel assembly design with reduced void reactivity coefficient, achieved through the use of the ZrH moderating material. In the study the sodium void effect, as well as the major feedback coefficients are analyzed. Besides the feedback coefficients, the influence on the operational parameters like neutron flux distribution, power distribution, and burnup distribution is investigated for the different possibilities of arranging the moderating material in the fuel assembly. Additionally, the fuel cycle parameters - breeding and minor actinide production - are analyzed. For a first evaluation of the behavior during transients the influence of temperature changes in the ZrH is studied. (authors)

  6. Star formation in the local Universe from the CALIFA sample. I. Calibrating the SFR using integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration

    2015-12-01

    Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005 SFR and to shed light on the origin of the discrepancies between tracers. Updated calibrations referred to Hα are provided. The well-defined selection criteria and large statistics allow us to carry out this analysis globally and split by properties, including stellar mass and morphological type. Methods: We derive integrated, extinction-corrected Hα fluxes from CALIFA, UV surface and asymptotic photometry from GALEX and integrated WISE 22 μm and IRAS fluxes. Results: We find that the extinction-corrected Hα luminosity agrees with the hybrid updated SFR estimators based on either UV or Hα plus IR luminosity over the full range of SFRs (0.03-20 M⊙ yr-1). The coefficient that weights the amount of energy produced by newly-born stars that is reprocessed by dust on the hybrid tracers, aIR, shows a large dispersion. However, this coefficient does not became increasingly small at high attenuations, as expected if significant highly-obscured Hα emission were missed, i.e., after a Balmer decrement-based attenuation correction is applied. Lenticulars, early-type spirals, and type-2 AGN host galaxies show smaller coefficients because of the

  7. Star Formation in the Local Universe from the CALIFA sample: calibration and contribution of disks to the SFR density

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, Cristina; Gil de Paz, Armando; Castillo-Morales, África; Iglesias-Páramo, Jorge; Sánchez, Sebastián F.

    2015-02-01

    The study of the star formation rate (SFR) is crucial for understanding the birth and evolution of the galaxies (Kennicutt 1998), with this aim in mind, we make use of a well-characterized sample of 380 nearby galaxies from the CALIFA survey that fill the entire color-magnitude diagram in the Local Universe. The availability of wide-field CALIFA IFS ensures a proper determination of the underlying stellar continuum and, consequently, of the extiction-corrected Hα luminosity. We compare our integrated Hα-based SFRs with single and hybrids tracers at other wavelengths found in the literature (Calzetti 2013). Then, we provide a new set of single-band and hybrid calibrators anchored to the extinction-corrected Hα luminosities. In the case of the hybrid calibrators we determine the best fitting aIR coefficients for different combinations of observed (UV or Hα) and dust-reprocessed (22μm or TIR) SFR contributions (where SFR ~ Lobs + aIR × L[IR]). This analysis allow us to provide, for the first time, a set of hybrid calibrations for different morphological types and masses. These are particularly useful in case that the sample to be analyzed shows a different bias in terms of morphology or, more commonly, luminosity or stellar mass. We also study the dependence of this coefficient with color and ionized-gas attenuation. The distributions of a IR values are quite wide in all cases. We found that not single physical property can by itself explain the variation found in a IR. Finally, we explore the spatial distribution of the SFR by measuring the contribution of disks to the total SFR in the Local Universe. Our preliminary spatially-resolved analysis shows that the disk to total (disk + spheroidal component) SFR ratio is on average ~ 88%. The use of the 2D spectroscopic data is critical to properly determine the Hα luminosity function and SFR density in the Local Universe per galaxy components, the ultimate goal of this project.

  8. The evolution of the dust temperatures of galaxies in the SFR-M∗ plane up to z ∼ 2

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Lutz, D.; Saintonge, A.; Berta, S.; Santini, P.; Symeonidis, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; Bock, J.; Bongiovanni, A.; Cepa, J.; Cimatti, A.; Conley, A.; Daddi, E.; Elbaz, D.; Förster Schreiber, N. M.; Genzel, R.; Ivison, R. J.; Le Floc'h, E.; Magdis, G.; Maiolino, R.; Nordon, R.; Oliver, S. J.; Page, M.; Pérez García, A.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Rosario, D.; Roseboom, I.; Sanchez-Portal, M.; Scott, D.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wang, L.; Wuyts, S.

    2014-01-01

    We study the evolution of the dust temperature of galaxies in the SFR- M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M∗) and redshift estimates, we grid the SFR- M∗parameter space in several redshift ranges and estimate the mean dust temperature (Tdust) of each SFR-M∗ - z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100-500 μm) of our SFR-M∗ - z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M∗), and distances with respect to the main sequence (MS) of the SFR- M∗ plane (i.e., Δlog (SSFR)MS = log [SSFR(galaxy)/SSFRMS(M∗,z)]). The Tdust - SSFR and Tdust - Δlog (SSFR)MS correlations are statistically much more significant than the Tdust - LIR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ~ 2. We convert these results into a recipe to derive Tdust from SFR, M∗ and z, valid out to z ~ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong Tdust - Δlog (SSFR)MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the Tdust - Δlog (SSFR)MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/Mgas) with Δlog (SSFR)MS as found locally by molecular gas studies. Secondly, at fixed Δlog (SSFR)MS, the constant dust temperature observed in galaxies probing wide ranges in SFR and M∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in

  9. Optimizing LiFePO₄@C core-shell structures via the 3-aminophenol-formaldehyde polymerization for improved battery performance.

    PubMed

    Chi, Zi-xiang; Zhang, Wei; Wang, Xu-sheng; Cheng, Fu-quan; Chen, Ji-tao; Cao, An-min; Wan, Li-jun

    2014-12-24

    Polyanion-type cathode materials are well-known for their low electronic conductivity; accordingly, the addition of conductive carbon in the cathode materials becomes an indispensable step for their application in lithium ion batteries. To maximize the contribution of carbon, a core-shell structure with a full coverage of carbon should be favorable due to an improved electronic contact between different particles. Here, we report the formation of a uniform carbon nanoshell on a typical cathode material, LiFePO4, with the shell thickness precisely defined via the 3-aminophenol-formaldehyde polymerization process. In addition to the higher discharge capacity and the improved rate capability as expected from the carbon nanoshell, we identified that the core-shell configuration could lead to a much safer cathode material as revealed by the obviously reduced iron dissolution, much less heat released during the cycling, and better cyclability at high temperature. PMID:25453295

  10. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-11-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapour equilibration and laser spectrometry (DVE-LS) was first described in 2008, and has since been rapidly adopted. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement, as well as accuracy, is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g. water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g. clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g. sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents > 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas-sampling bags were determined to be as good as, if not better than, other, more expensive specialty bags. Sample storage in sample bags provides acceptable results for up to 10 days of storage; however, measurable water loss, as well as evaporitic isotopic enrichment, occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high-resolution pore water

  11. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapor equilibration laser spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-06-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapor equilibration and laser spectroscopy (DVE-LS) was first described in 2008, and has since been widely adopted by others. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement and accuracy is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g., water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g., clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g., sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents < 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas sampling bags were determined to be as good as, if not better, than other, more expensive bags. Sample storage in gas tight sample bags provides acceptable results for up to 10 days of storage; however, measureable water loss and evaporitic isotopic enrichment occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high resolution pore water

  12. Microstructured fiber@HZSM-5 core-shell catalysts with dramatic selectivity and stability improvement for the methanol-to-propylene process.

    PubMed

    Wang, Xiangyu; Wen, Ming; Wang, Chunzheng; Ding, Jia; Sun, Ying; Liu, Ye; Lu, Yong

    2014-06-18

    We report a macroscopic stainless-steel-fiber@HZSM-5 core-shell catalyst by direct growth of 27 wt% HZSM-5 on a 3D microfibrous structure using 20 μm SS fibers, demonstrating dramatic selectivity and stability improvement in the MTP process. The unprecedented performance is due to the promotion of the olefin methylation/cracking cycle in methanol-to-hydrocarbon catalysis. PMID:24798420

  13. Enhanced X-ray emission from Lyman break analogues and a possible LX-SFR-metallicity plane

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Prestwich, A.; Mirabel, I. F.

    2016-04-01

    The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Lyman break analogue (LBA) galaxies are local galaxies that strongly resemble the high-redshift, star-forming Lyman break galaxies and have been suggested as local analogues to these metal-deficient galaxies found in the early Universe. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity. We found that for LBAs with metallicities in the range 12 + log10(O/H) = 8.15-8.80, the LX -SFR relation was log _{10} (L_X/SFR {[erg s^{-1} M_{⊙}^{-1} yr]}) = 39.85(± 0.10) in the 0.5-8 keV band with a dispersion of σ = 0.25 dex. This is an enhancement of nearly a factor of 2 in the L0.5-8 keV-SFR relation relative to results for nearby, near-solar metallicity galaxies. The enhancement is significant at the 98.2 per cent level (2.4σ). Our enhanced LX/SFR relation is consistent with the metallicity-dependent predicted value from population synthesis models. We discuss the possibility of an LX-SFR-metallicity plane for star-forming galaxies. These results are important to our understanding of reionization and the formation of early galaxies.

  14. Improved microbial growth inhibition activity of bio-surfactant induced Ag-TiO2 core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Nithyadevi, D.; Kumar, P. Suresh; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.; Meena, P.

    2015-02-01

    Surfactant induced silver-titanium dioxide core shell nanoparticles within the size range of 10-50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver-titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver-titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV-vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver-titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell nanoparticles have comparatively rapid, less expensive and wider applications in modern antibacterial therapy.

  15. Four-Strand Core Suture Improves Flexor Tendon Repair Compared to Two-Strand Technique in a Rabbit Model

    PubMed Central

    Beyersdoerfer, Sascha Tobias; Vollmar, Brigitte; Mittlmeier, Thomas; Gierer, Philip

    2016-01-01

    Introduction. This study was designed to investigate the influence of the amount of suture material on the formation of peritendinous adhesions of intrasynovial flexor tendon repairs. Materials and Methods. In 14 rabbits, the flexor tendons of the third and the fourth digit of the right hind leg were cut and repaired using a 2- or 4-strand core suture technique. The repaired tendons were harvested after three and eight weeks. The range of motion of the affected toes was measured and the tendons were processed histologically. The distance between the transected tendon ends, the changes in the peritendinous space, and cellular and extracellular inflammatory reaction were quantified by different staining. Results. A 4-strand core suture resulted in significantly less gap formation. The 2-strand core suture showed a tendency to less adhesion formation. Doubling of the intratendinous suture material was accompanied by an initial increase in leukocyte infiltration and showed a greater amount of formation of myofibroblasts. From the third to the eighth week after flexor tendon repair, both the cellular and the extracellular inflammation decreased significantly. Conclusion. A 4-strand core suture repair leads to a significantly better tendon healing process with less diastasis between the sutured tendon ends despite initially pronounced inflammatory response. PMID:27446949

  16. Examining the Effects of a National League for Nursing Core Competencies Workshop as an Intervention to Improve Nurse Faculty Practice

    ERIC Educational Resources Information Center

    VanBever Wilson, Robin R.

    2010-01-01

    Due to the complex challenges facing schools of nursing, a research study was implemented to introduce nurse faculty at one small rural northeastern Tennessee school of nursing to the NLN "Core Competencies for Nurse Educators". Utilizing Kalb's Nurse Faculty Self-Evaluation Tool as a pre- and post-intervention test, 30 nurse faculty members…

  17. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug.

    PubMed

    Savian, Ana L; Rodrigues, Daiane; Weber, Julia; Ribeiro, Roseane F; Motta, Mariana H; Schaffazick, Scheila R; Adams, Andréa I H; de Andrade, Diego F; Beck, Ruy C R; da Silva, Cristiane B

    2015-01-01

    Dithranol is a very effective drug for the topical treatment of psoriasis. However, it has some adverse effects such as irritation and stain in the skin that make its application and patient adherence to treatment difficult. The aims of this work were to prepare and characterize dithranol-loaded nanocapsules as well as to evaluate the photostability and the irritation potential of these nanocarriers. Lipid-core nanocapsules containing dithranol (0.5 mg/mL) were prepared by interfacial deposition of preformed polymer. EDTA (0.05%) or ascorbic acid (0.02%) was used as antioxidants. After preparation, dithranol-loaded lipid-core nanocapsules showed satisfactory characteristics: drug content close to the theoretical concentration, encapsulation efficiency of about 100%, nanometric mean size (230-250 nm), polydispersity index below 0.25, negative zeta potential, and pH values from 4.3 to 5.6. In the photodegradation study against UVA light, we observed a higher stability of the dithranol-loaded lipid-core nanocapsules comparing to the solution containing the free drug (half-life times around 4 and 1h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing EDTA, respectively; half-life times around 17 and 7h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing ascorbic acid, respectively). Irritation test by HET-CAM method was conducted to evaluate the safety of the formulations. From the results it was found that the nanoencapsulation of the drug decreased its toxicity compared to the effects observed for the free drug. PMID:25491961

  18. An improved dynamic core for a non-hydrostatic model system on the Yin-Yang grid

    NASA Astrophysics Data System (ADS)

    Li, Xiaohan; Peng, Xindong; Li, Xingliang

    2015-05-01

    A 3D dynamic core of the non-hydrostatic model GRAPES (Global/Regional Assimilation and Prediction System) is developed on the Yin-Yang grid to address the polar problem and to enhance the computational efficiency. Three-dimensional Coriolis forcing is introduced to the new core, and full representation of the Coriolis forcing makes it straightforward to share code between the Yin and Yang subdomains. Similar to that in the original GRAPES model, a semi-implicit semi-Lagrangian scheme is adopted for temporal integration and advection with additional arrangement for cross-boundary transport. Under a non-centered second-order temporal and spatial discretization, the dry nonhydrostatic frame is summarized as the solution of an elliptical problem. The resulting Helmholtz equation is solved with the Generalized Conjugate Residual solver in cooperation with the classic Schwarz method. Even though the coefficients of the equation are quite different from those in the original model, the computational procedure of the new core is just the same. The bi-cubic Lagrangian interpolation serves to provide Dirichlet-type boundary conditions with data transfer between the subdomains. The dry core is evaluated with several benchmark test cases, and all the tests display reasonable numerical stability and computing performance. Persistency of the balanced flow and development of both the mountain-induced Rossby wave and Rossby-Haurwitz wave confirms the appropriate installation of the 3D Coriolis terms in the semi-implicit semi-Lagrangian dynamic core on the Yin-Yang grid.

  19. Hematite homogeneous core/shell hierarchical spheres: Surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation

    SciTech Connect

    Lian Suoyuan; Li Haitao; He Xiaodie; Kang Zhenhui; Liu Yang; Lee, Shuit Tong

    2012-01-15

    Solvothermal synthesis is an efficient synthetic method for preparing nano and micromaterials. Preparation of hematite through alcoholysis of ferric ion under solvothermal condition has been carried out at low concentrations. In this paper, Fe{sub 2}O{sub 3} homogeneous core/shell hierarchical nanostructures were synthesized via solvothermal treatment of FeCl{sub 3}{center_dot}6H{sub 2}O and ethanol. The achievements of such structures can be attributed to two important factors: high temperature and high concentration. Besides, the crystal water and reaction time were also important factors to the synthesis of hematite. The prepared samples were characterized using X-ray powder diffraction, Raman spectra, scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer, transmission electron microscopy and Brunauer-Emmett-Teller surface area and pore size distribution. X-ray photoelectron spectroscopy showed a satellite peak at 719.8 eV, which is the characteristic peak of Fe(III). The formation mechanism of the spheres and the effects of the reactant concentrations and reaction temperatures have been discussed. Moreover, the enhanced catalytic activity of the spheres has also been investigated through oxidation of benzyl alcohol to benzaldehyde with high conversion (42%) and selectivity (95%). - Graphical abstract: Fe{sub 2}O{sub 3} homogeneous core/shell hierarchical microspheres were synthesized by solvothermal method. Owing to the special structure, the synthesized Fe{sub 2}O{sub 3} microspheres exhibit a superior catalytic activity in benzyl oxidation. Highlights: Black-Right-Pointing-Pointer Hierarchical Fe{sub 2}O{sub 3} core/shell microspheres were synthesized. Black-Right-Pointing-Pointer Microspheres were assembled by {beta}-FeOOH. Black-Right-Pointing-Pointer The sample exhibits a superior catalytic activity and selectivity. Black-Right-Pointing-Pointer The high activity and selectivity are due to the hierarchical core/shell structure.

  20. Summary final report: Contract between the Japan atomic power company and the U.S. Department of Energy Improvement of core safety - study on GEM (III)

    SciTech Connect

    Burke, T.M.; Lucoff, D.M.

    1997-03-18

    This report provides a summary of activities associated with the technical exchange between representatives of the Japan Atomic Power Company (JAPC) and the United States Department of Energy (DOE) regarding the development and testing of Gas Expansion Modules (GEM) at the Fast Flux Test Facility (FFTF). Issuance of this report completes the scope of work defined in the original contract between JAPC and DOE titled ''Study on Improvement of Core Safety - Study on GEM (III).'' Negotiations related to potential modification of the contract are in progress. Under the proposed contract modification, DOE would provide an additional report documenting FFTF pump start tests with GEMs and answer additional JAPC questions related to core safety with and without GEMs.

  1. Improved L-C resonant decay technique for Q measurement of quasilinear power inductors: New results for MPP and ferrite powdered cores

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Gerber, Scott S.

    1995-01-01

    The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.

  2. Using Water Vapor Isotope Observations from above the Greenland Ice Sheet to improve the Interpretation of Ice Core Water Stable Isotope Records

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Risi, C. M.; Yoshimura, K.; Werner, M.; Butzin, M.; Brun, E.; Landais, A.; Bonne, J. L.; Dahl-Jensen, D.

    2014-12-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. For the purpose of improving the climatic interpretation from ice core records, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm surface layer has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We compare the observed water vapor isotopic composition with model outputs from three isotope-enabled general circulation models: LMDZiso, isoGSM, ECHAM-wiso. This allows us to benchmark the models and address effect of model resolution, effect of transport, effect of isotope parameterization, and representation of significant source region contributions. We find for all models that the simulated isotopic value δD are significantly biased towards too enriched values. A bias, which is only partly explained by the air temperature. The simulated amplitude in d-excess variations is ~50% smaller than observed and the simulated average summer level is ~10‰ lower than in observations. Using back trajectories we observe water vapor of Arctic origin to have a high d-excess fingerprint. This fingerprint is not observed in the GCMiso simulations indicating a problem of simulating accurately the Arctic hydrological cycle. The bias in the simulated δD and d-excess water vapor is similar to the already-documented bias in the simulated δD and d-excess of Greenland ice core records. This suggests that if we improve the simulation of the water vapor isotopic composition we might also improve the simulation of the ice core isotope record. During periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is

  3. MODFLOW-LGR-Modifications to the streamflow-routing package (SFR2) to route streamflow through locally refined grids

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2011-01-01

    This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.

  4. Improving Response to Foodborne Disease Outbreaks in the United States: Findings of the Foodborne Disease Centers for Outbreak Response Enhancement (FoodCORE), 2010–2012

    PubMed Central

    Biggerstaff, Gwen

    2015-01-01

    Context Each year foodborne diseases (FBD) affect approximately 1 in 6 Americans, resulting in 128,000 hospitalizations and 3,000 deaths. Decreasing resources impact the ability of public health officials to identify, respond to, and control FBD outbreaks. Geographically dispersed outbreaks necessitate multijurisdictional coordination across all levels of the public health system. Rapid response depends on rapid detection. Objective Targeted resources were provided to state and local health departments to improve completeness and timeliness of laboratory, epidemiology, and environmental health (EH) activities for FBD surveillance and outbreak response. Design Foodborne Disease Centers for Outbreak Response Enhancement (FoodCORE) centers, selected through competitive award, implemented work plans designed to make outbreak response more complete and faster in their jurisdiction. Performance metrics were developed and used to evaluate the impact and effectiveness of activities. Participants Departments of Health in Connecticut, New York City, Ohio, South Carolina, Tennessee, Utah, and Wisconsin. Results From the first year (Y1) of the program in October 2010 to the end of second year (Y2) in December 2012, the centers completed molecular subtyping for a higher proportion of Salmonella, Shiga toxin-producing E. coli, and Listeria (SSL) isolates (86% vs 98%) and reduced the average time to complete testing from a median of 8 to 4 days. The centers attempted epidemiologic interviews with more SSL case-patients (93% vs 99%) and the average time to attempt interviews was reduced from a median of 4 to 2 days. During Y2, nearly 200 EH assessments were conducted. FoodCORE centers began documenting model practices such as streamlining and standardizing case-patient interviewing. Conclusion Centers used targeted resources and process evaluation to implement and document practices that improve the completeness and timeliness of FBD surveillance and outbreak response activities

  5. The contribution of adenines in the catalytic core of 10-23 DNAzyme improved by the 6-amino group modifications.

    PubMed

    Zhu, Junfei; Li, Zhiwen; Wang, Qi; Liu, Yang; He, Junlin

    2016-09-15

    In the catalytic core of 10-23 DNAzyme, its five adenine residues are moderate conservative, but with highly conserved functional groups like 6-amino group and 7-nitrogen atom. It is this critical conservation that these two groups could be modified for better contribution. With 2'-deoxyadenosine analogues, several functional groups were introduced at the 6-amino group of the five adenine residues. 3-Aminopropyl substituent at 6-amino group of A15 resulted in a five-fold increase of kobs. More efficient DNAzymes are expected by delicate design of the linkage and the external functional groups for this 6-amino group of A15. With this modification approach, other functional groups or residues could be optimized for 10-23 DNAzyme. PMID:27506560

  6. Improvement on electrochemical performance by partial replacement of Ru@Pt core-shell nanocatalyst by temperature modification

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Juei; Lin, Liang-You; Tseng, Fan-Gang

    2014-11-01

    In this paper, the homemade open-loop reduction system (OLRS), and redox transmetalation method were utilized to produce the core-shell Ru (ruthenium)/Pt (platinum) catalysts on the carbon cloth (CC) for direct methanol fuel cell (DMFC) application. By adjusting pH value and heating to proper temperature of the ionized reduction environment, Pt4+ can be first converted into Pt2+ to allow partial Ru replacement with Pt by redox transmetalation and produce Ru@Pt core-shell nanostructures[1]. And we change the reduction temperature to see how it affects the efficiency of the DMFC. The scanning electron microscopic (SEM) top-view micrographs showing that the apparent Ru@Pt nanoparticles successfully deposited on both the inner and outer surfaces of the hydrophilically-treated CC. At high SEM magnification, the small size and high-density distribution of the Ru@Pt nanoparticles were clearly observed on the hydrophilically-treated CC, and much more Pt@Ru catalyst deposit on the CC surface with the sample of 80 °C. The electrosorption charges of hydrogen ion (QH) and the peak current density (IP) of the samples in the cyclic voltammetry (CV) curves. The magnitude of peak current density is positive correlation to the temperature. However, the CO tolerance, indicated that the better CO tolerance contributed to the less Pt replace on Ru cluster, which allow the Ru oxidizing CO to CO2 efficiently, is negative correlation-- to the temperature. The sample of 50 °C shows the better combination catalyst efficiency between the CO tolerance and the electrochemical performance.

  7. Performance of supercritical CO{sub 2} Brayton cycle with additive gases at varying critical points for SFR application

    SciTech Connect

    Jeong, W. S.; Jeong, Y. H.

    2012-07-01

    The supercritical carbon dioxide Brayton cycle (S-CO{sub 2} cycle) has received attention as alternative to the energy conversion system for a Sodium-cooled Fast Reactor (SFR). The high cycle efficiency of S-CO{sub 2} cycle is attributed to significantly reduced compressor work. This is because the compressor operates like a pump in the vicinity of CO{sub 2} critical point. To make use of this feature, the minimum cycle operating range of S-CO{sub 2} cycle, which is the main compressor inlet condition, should be located close to the critical point of CO{sub 2}. This translated into that the critical point of CO{sub 2} is the limitation of the lowest cycle condition of S-CO{sub 2} cycles. To increase the flexibility and broaden the applicability of the cycle, changing the critical point of CO{sub 2} by mixing additive gases could be adopted. An increase in the efficiency of the S-CO{sub 2} cycle could be achieved by decreasing critical point of CO{sub 2}. In addition, increasing critical point of CO{sub 2} could be utilized to obtain improved cycle performances at ascending heat sink temperature of hot arid areas. Due to the rapid fluctuations of thermo-physical properties of gas mixtures near the critical point, an in-house cycle analysis code coupled to NIST property database was developed. Several gases were selected as potential additives through the screening process for thermal stability and chemical interaction with sodium. By using the developed cycle code, optimized cycles of each gas mixture were compared with the reference case of S-CO{sub 2} cycle. For decreased critical temperatures, CO{sub 2}-Xe and CO{sub 2}-Kr showed an increase in the total cycle efficiency. At increasing critical temperatures, the performance of CO{sub 2}-H{sub 2}S and CO{sub 2}-cyclohexane is superior to S-CO{sub 2}cycle when the compressor inlet temperature is above the critical temperature of CO{sub 2}. (authors)

  8. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  9. Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizine‐Based Core Skeleton

    PubMed Central

    Lee, Youngjun; Jo, Ala

    2015-01-01

    Abstract The rational improvement of photophysical properties can be highly valuable for the discovery of novel organic fluorophores. Using our new design strategy guided by the oscillator strength, we developed a series of full‐color‐tunable furoindolizine analogs with improved molar absorptivity through the fusion of a furan ring into the indolizine‐based Seoul fluorophore. The excellent correlation between the computable values (oscillator strength and theoretical S0–S1 energy gap) and photophysical properties (molar absorptivity and emission wavelength) confirmed the effectualness of our design strategy. PMID:26563569

  10. Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells

    PubMed Central

    2014-01-01

    CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells. PMID:24910576

  11. A Review of the Research: Common Core State Standards for Improving Rural Children's School Readiness

    ERIC Educational Resources Information Center

    Bailey, Lora Battle

    2014-01-01

    Although a plethora of research focuses on economically at-risk preschool children in general across the United States, little can be found that investigates methods for improving rural children's academic outcomes. This review of research is intended to provide a contextual understanding of the background and current conditions that exist…

  12. Single-nucleotide polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia.

    PubMed

    Costa, Ana Rosa da Silveira; Vasudevan, Anupama; Krepischi, Ana; Rosenberg, Carla; Chauffaille, Maria de Lourdes L F

    2013-01-01

    Acute myeloid leukemia (AML) is a group of clonal diseases, resulting from two classes of mutation. Investigation for additional abnormalities associated with a well-recognized subtype, core-binding factor AML (CBF-AML) can provide further understanding and discrimination to this special group of leukemia. In order to better define genetic alterations in CBF-AML and identify possible cooperating lesions, a single-nucleotide polymorphism-array (SNP-array) analysis was performed, combined to KIT mutation screening, in a set of cases. Validation of SNP-array results was done by array comparative genomic hybridization and FISH. Fifteen cases were analyzed. Three cases had microscopic lesions better delineated by arrays. One case had +22 not identified by arrays. Submicroscopic abnormalities were mostly non-recurrent between samples. Of relevance, four regions were more frequently affected: 4q28, 9p11, 16q22.1, and 16q23. One case had an uncovered unbalanced inv(16) due to submicroscopic deletion of 5´MYH11 and 3´CBFB. Telomeric and large copy number neutral loss of heterozygosity (CNN-LOH) regions (>25 Mb), likely representing uniparental disomy, were detected in four out of fifteen cases. Only three cases had mutation on KIT gene, enhancing the role of abnormalities by SNP-array as presumptive cooperating alterations. Molecular karyotyping can add valuable information to metaphase karyotype analysis, emerging as an important tool to uncover and characterize microscopic, submicroscopic genomic alterations, and CNN-LOH events in the search for cooperating lesions. PMID:23636907

  13. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  14. Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core.

    PubMed

    Xia, Lianpeng; Xue, Yuyuan; Xiong, Kang; Cai, Chaosheng; Peng, Zuosheng; Wu, Ying; Li, Yuan; Miao, Jingsheng; Chen, Dongcheng; Hu, Zhanhao; Wang, Jianbin; Peng, Xiaobin; Mo, Yueqi; Hou, Lintao

    2015-12-01

    We present an investigation of deep-blue fluorescent polymer light-emitting diodes (PLEDs) with a novel functional 1,3,5-triazine core material (HQTZ) sandwiched between poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) layer and poly(vinylcarbazole) layer as a hole injection layer (HIL) without interface intermixing. Ultraviolet photoemission spectroscopy and Kelvin probe measurements were carried out to determine the change of anode work function influenced by the HQTZ modifier. The thin HQTZ layer can efficiently maximize the charge injection from anode to blue emitter and simultaneously enhance the hole mobility of HILs. The deep-blue device performance is remarkably improved with the maximum luminous efficiency of 4.50 cd/A enhanced by 80% and the maximum quantum efficiency of 4.93%, which is 1.8-fold higher than that of the conventional device without HQTZ layer, including a lower turn-on voltage of 3.7 V and comparable Commission Internationale de L'Eclairage coordinates of (0.16, 0.09). It is the highest efficiency ever reported to date for solution-processed deep-blue PLEDs based on the device structure of ITO/HILs/poly(9,9-dialkoxyphenyl-2,7-silafluorene)/CsF/AL. The results indicate that HQTZ based on 1,3,5-triazine core can be a promising candidate of interfacial materials for deep-blue fluorescent PLEDs. PMID:26422296

  15. Improved performance of dye-sensitized solar cells with TiO 2/alumina core-shell formation using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ganapathy, V.; Karunagaran, B.; Rhee, Shi-Woo

    Alumina (Al 2O 3) shell formation on TiO 2 core nanoparticles by atomic layer deposition (ALD) is studied to suppress the recombination of charge carriers generated in a dye-sensitized solar cell (DSSC). It is relatively easy to control the shell thickness using the ALD method by controlling the number of cycles. An optimum thickness can be identified, which allows tunneling of the forward current while suppressing recombination. High-resolution TEM measurements show that a uniform Al 2O 3 shell is formed around the TiO 2 core particles and elemental mapping of the porous TiO 2 layer reveals that the Al 2O 3 distribution is uniform throughout the layer. The amount of dye absorption is increased with increase in the shell thickness but electrochemical impedance spectroscopic (EIS) measurement shows a drastic increase in the resistance. With an optimum Al 2O 3 thickness of 2 nm deposited by ALD, a 35% improvement in the cell efficiency (from 6.2 to 8.4%) is achieved.

  16. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    An, Yanling; Wei, Pan; Fan, Meiqiang; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g-1 after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  17. Tretinoin-loaded lipid-core nanocapsules decrease reactive oxygen species levels and improve bovine embryonic development during in vitro oocyte maturation.

    PubMed

    Lucas, Caroline Gomes; Remião, Mariana Härter; Komninou, Eliza Rossi; Domingues, William Borges; Haas, Cristina; Leon, Priscila Marques Moura de; Campos, Vinicius Farias; Ourique, Aline; Guterres, Silvia S; Pohlmann, Adriana R; Basso, Andrea Cristina; Seixas, Fabiana Kömmling; Beck, Ruy Carlos Ruver; Collares, Tiago

    2015-12-01

    In vitro oocyte maturation (IVM) protocols can be improved by adding chemical supplements to the culture media. Tretinoin is considered an important retinoid in embryonic development and its association with lipid-core nanocapsules (TTN-LNC) represents an innovative way of improving its solubility, and chemical stability, and reducing its toxicity. The effects of supplementing IVM medium with TTN-LNC was evaluated by analyzing production of reactive oxygen species (ROS), S36-phosphorilated-p66Shc levels and caspase activity in early embryonic development, and expression of apoptosis and pluripotency genes in blastocysts. The lowest concentration tested (0.25μM) of TTN-LNC generated higher blastocyst rate, lower ROS production and S36-p66Shc amount. Additionally, expression of BAX and SHC1 were lower in both non-encapsulated tretinoin (TTN) and TTN-LNC-treated groups. Nanoencapsulation allowed the use of smaller concentrations of tretinoin to supplement IVM medium thus reducing toxic effects related with its use, decreasing ROS levels and apoptose frequency, and improving the blastocyst rates. PMID:26476360

  18. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  19. A new fabrication route for SFR fuel using (U, Pu)O2 powder obtained by oxalic co-conversion

    NASA Astrophysics Data System (ADS)

    Vaudez, Stéphane; Belin, Renaud C.; Aufore, Laurence; Sornay, Philippe; Grandjean, Stéphane

    2013-11-01

    The standard powder metallurgy preparation of SFR (Sodium Fast Reactor) oxide fuel involves UO2 and PuO2 co-milling. An alternative route, using a solid-solution of mixed oxide obtained by oxalic co-conversion as the starting material, is presented. It was used to manufacture nuclear fuels for the "COPIX" irradiation conducted in the Phenix SFR. Two processes using co-converted powders were tested to elaborate fuel pellets: (1) the Direct Process that consists in pressing and sintering the mixed oxide with the final Pu content and (2) the Dilution Process, which involves the dilution of a high Pu content mixed oxide with UO2. After studying the structural and microstructural evolution with temperature of these innovative raw materials, the elaboration parameters were adjusted to obtain final pellets in accordance with the Phenix fuel specifications. This study demonstrates the feasibility of such new fabrication route at laboratory scale and, from a more fundamental prospect, allows a better understanding of the underlying phenomena involved during sintering.

  20. Toward the Cenozoic Megasplice - high-resolution XRF core scanning data and improved composite records from IODP Expedition 320: implications for fine scale paleoceanography (Invited)

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Bown, P. R.; Dunkley Jones, T.; Lyle, M. W.; Moore, T. C.; Pälike, H.; Roehl, U.; Wilkens, R. H.; Expedition 320/321 Scientists

    2010-12-01

    A critical need to study past climate change is to sufficiently constrain the ages of past climate events so that global relationships can be discerned. Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality pelagic Cenozoic records with over 800 dated paleomagnetic reversals and decimeter-scale cyclic sediments. These new profiles provide an outstanding framework to inter-calibrate major microfossil groups and refine magnetic polarity chrons for the late Miocene, the entire Oligocene and the late Eocene Epochs. The compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including those from key records already recovered during Ocean Drilling Program (ODP) Leg 199 is one of the major objectives of the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320 & 321) and prerequisite for further reconstructing the climate history of the Equatorial Pacific in detail. Here we present extended post-cruise refinements of the shipboard composite records of IODP Exp. 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established which covers the time interval from 20 to 40 Ma. This framework will be the key for further high-resolution paleoceanographic interpretations of the late Paleogene, e.g. the E/O transition. As part of our study we also present high resolution X-ray fluorescence (XRF) core scanning data acquired from more than 1200 meters of sediment cores from Exp. 320 and Leg 199 encompassing the middle Eocene to early Oligocene (magnetochrons C12n to C20n). These new, critical records enable us to improve the orbitally tuned time scale and to reconstruct variations in the carbonate

  1. One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2007-10-01

    Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR’s, and recently extended to analyze high temperature reactors), TRAC (for LWR’s), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is

  2. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  3. Improvements in tissue blood flow and lumbopelvic stability after lumbopelvic core stabilization training in patients with chronic non-specific low back pain

    PubMed Central

    Paungmali, Aatit; Henry, Leonard Joseph; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn

    2016-01-01

    [Purpose] This study investigated the effects of lumbopelvic stabilization training on tissue blood flow changes in the lumbopelvic region and lumbopelvic stability compared to placebo treatment and controlled intervention among patients with chronic non-specific low back pain. [Subjects and Methods] A total of 25 participants (7 males, 18 females; mean age, 33.3 ± 14.4 years) participated in this within-subject, repeated-measures, double-blind, placebo-controlled comparison trial. The participants randomly underwent three types of interventions that included lumbopelvic stabilization training, placebo treatment, and controlled intervention with 48 hours between sessions. Lumbopelvic stability and tissue blood flow were measured using a pressure biofeedback device and a laser Doppler flow meter before and after the interventions. [Results] The repeated-measures analysis of variance results demonstrated a significant increase in tissue blood flow over the lumbopelvic region tissues for post- versus pre-lumbopelvic stabilization training and compared to placebo and control interventions. A significant increase in lumbopelvic stability before and after lumbopelvic stabilization training was noted, as well as upon comparison to placebo and control interventions. [Conclusion] The current study supports an increase in tissue blood flow in the lumbopelvic region and improved lumbopelvic stability after core training among patients with chronic non-specific low back pain. PMID:27064327

  4. Improvements in tissue blood flow and lumbopelvic stability after lumbopelvic core stabilization training in patients with chronic non-specific low back pain.

    PubMed

    Paungmali, Aatit; Henry, Leonard Joseph; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn

    2016-01-01

    [Purpose] This study investigated the effects of lumbopelvic stabilization training on tissue blood flow changes in the lumbopelvic region and lumbopelvic stability compared to placebo treatment and controlled intervention among patients with chronic non-specific low back pain. [Subjects and Methods] A total of 25 participants (7 males, 18 females; mean age, 33.3 ± 14.4 years) participated in this within-subject, repeated-measures, double-blind, placebo-controlled comparison trial. The participants randomly underwent three types of interventions that included lumbopelvic stabilization training, placebo treatment, and controlled intervention with 48 hours between sessions. Lumbopelvic stability and tissue blood flow were measured using a pressure biofeedback device and a laser Doppler flow meter before and after the interventions. [Results] The repeated-measures analysis of variance results demonstrated a significant increase in tissue blood flow over the lumbopelvic region tissues for post- versus pre-lumbopelvic stabilization training and compared to placebo and control interventions. A significant increase in lumbopelvic stability before and after lumbopelvic stabilization training was noted, as well as upon comparison to placebo and control interventions. [Conclusion] The current study supports an increase in tissue blood flow in the lumbopelvic region and improved lumbopelvic stability after core training among patients with chronic non-specific low back pain. PMID:27064327

  5. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Jiahuan; Yuan, Yong; Liu, Ting; Zhou, Shungui

    2015-01-01

    Three-dimensional (3D) electrodes have been intensively investigated as alternatives to conventional plate electrodes in the development of high-performance microbial fuel cells (MFCs). However, the energy output of the MFCs with the 3D anodes is still limited for practical applications. In this study, a 3D anode modified with a nano-structured capacitive layer is prepared to improve the performance of an microbial fuel cell (MFC). The capacitive layer composes of titanium dioxide (TiO2) and egg white protein (EWP)-derived carbon assembled core-shell nanoparticles, which are integrated into loofah sponge carbon (LSC) to obtain a high-capacitive 3D electrode. The as-prepared 3D anode produces a power density of 2.59 ± 0.12 W m-2, which is 63% and 201% higher than that of the original LSC and graphite anodes, respectively. The increased energy output is contributed to the enhanced electrochemical capacitance of the 3D anodes as well as the synergetic effects between TiO2 and EWP-derived carbon due to their unique properties, such as relatively high surface area, good biocompatibility, and favorable surface functionalization for interfacial microbial electron transfer. The results obtained in this study will benefit the optimized design of new 3D materials to achieve enhanced performance in MFCs.

  6. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  7. Blood Pressure Control Has Improved in People with and without Type 2 Diabetes but Remains Suboptimal: A Longitudinal Study Based on the German DIAB-CORE Consortium

    PubMed Central

    Rückert, Ina-Maria; Baumert, Jens; Schunk, Michaela; Holle, Rolf; Schipf, Sabine; Völzke, Henry; Kluttig, Alexander; Greiser, Karin-Halina; Tamayo, Teresa; Rathmann, Wolfgang; Meisinger, Christa

    2015-01-01

    Background Hypertension is a very common comorbidity and major risk factor for cardiovascular complications, especially in people with Type 2 Diabetes (T2D). Nevertheless, studies in the past have shown that blood pressure is often insufficiently controlled in medical practice. For the DIAB-CARE study, we used longitudinal data based on the German DIAB-CORE Consortium to assess whether health care regarding hypertension has improved during the last decade in our participants. Methods Data of the three regional population-based studies CARLA (baseline 2002-2006 and follow-up 2007-2010), KORA (baseline 1999-2001 and follow-up 2006-2008) and SHIP (baseline 1997-2001 and follow-up 2002-2006) were pooled. Stratified by T2D status we analysed changes in frequencies, degrees of awareness, treatment and control. Linear mixed models were conducted to assess the influence of sex, age, study, and T2D status on changes of systolic blood pressure between the baseline and follow-up examinations (mean observation time 5.7 years). We included 4,683 participants aged 45 to 74 years with complete data and accounted for 1,256 participants who were lost to follow-up by inverse probability weighting. Results Mean systolic blood pressure decreased in all groups from baseline to follow-up (e.g. – 8.5 mmHg in those with incident T2D). Pulse pressure (PP) was markedly higher in persons with T2D than in persons without T2D (64.14 mmHg in prevalent T2D compared to 52.87 mmHg in non-T2D at baseline) and did not change much between the two examinations. Awareness, treatment and control increased considerably in all subgroups however, the percentage of those with insufficiently controlled hypertension remained high (at about 50% of those with hypertension) especially in prevalent T2D. Particularly elderly people with T2D often had both, high blood pressure ≥140/90 mmHg and a PP of ≥60 mmHg. Blood pressure in men had improved more than in women at follow-up, however, men still had higher

  8. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  9. DUBLIN CORE

    EPA Science Inventory

    The Dublin Core is a metadata element set intended to facilitate discovery of electronic resources. It was originally conceived for author-generated descriptions of Web resources, and the Dublin Core has attracted broad ranging international and interdisciplinary support. The cha...

  10. Simulator of Galaxy Millimeter/Submillimeter Emission (SíGAME): The [C ii]-SFR Relationship of Massive z = 2 Main Sequence Galaxies

    NASA Astrophysics Data System (ADS)

    Olsen, Karen P.; Greve, Thomas R.; Narayanan, Desika; Thompson, Robert; Toft, Sune; Brinch, Christian

    2015-11-01

    We present SÍGAME simulations of the [C II] 157.7 μm fine structure line emission from cosmological smoothed particle hydrodynamics simulations of seven main sequence galaxies at z = 2. Using sub-grid physics prescriptions the gas in our simulations is modeled as a multi-phased interstellar medium comprised of molecular gas residing in giant molecular clouds, an atomic gas phase associated with photo-dissociation regions (PDRs) at the cloud surfaces, and a diffuse, ionized gas phase. Adopting logotropic cloud density profiles and accounting for heating by the local FUV radiation field and cosmic rays by scaling both with local star formation rate (SFR) volume density, we calculate the [C II] emission using a photon escape probability formalism. The [C II] emission peaks in the central ≲ 1 kpc of our galaxies as do the SFR radial profiles, with most [C II] (≳ 70%) originating in the molecular gas phase, whereas further out (≳ 2 kpc), the atomic/PDR gas dominates (≳ 90%) the [C II] emission, no longer tracing ongoing star formation. Throughout, the ionized gas contribution is negligible (≲ 3%). The [C II] luminosity versus SFR ([C II]-SFR) relationship, integrated as well as spatially resolved (on scales of 1 kpc), delineated by our simulated galaxies is in good agreement with the corresponding relations observed locally and at high redshifts. In our simulations, the molecular gas dominates the [C II] budget at SFR≳ 20 {M}⊙ yr-1 (ΣSFR ≳ 0.5 {M}⊙ yr-1 kpc-2), while atomic/PDR gas takes over at lower SFRs, suggesting a picture in which [C II] predominantly traces the molecular gas in high-density/pressure regions where star formation is ongoing, and otherwise reveals the atomic/PDR gas phase.

  11. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Sveinbjörnsdottir, A. E.; Peters, A.; Werner, M.; Risi, C. M.; Yoshimura, K.; Masson-Delmotte, V.

    2015-12-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  12. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei

    2016-04-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  13. The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion

    PubMed Central

    Etienne, Loïc; Blanchard, Emmanuelle; Boyer, Audrey; Desvignes, Virginie; Gaillard, Julien; Meunier, Jean-Christophe; Roingeard, Philippe; Hourioux, Christophe

    2015-01-01

    Hepatitis C virus (HCV) assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD) surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER) membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis. PMID:26339783

  14. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M∗ plane up to z~2

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Ivison, R. J.; Lutz, D.; Valtchanov, I.; Farrah, D.; Berta, S.; Bertoldi, F.; Bock, J.; Cooray, A.; Ibar, E.; Karim, A.; Le Floc'h, E.; Nordon, R.; Oliver, S. J.; Page, M.; Popesso, P.; Pozzi, F.; Rigopoulou, D.; Riguccini, L.; Rodighiero, G.; Rosario, D.; Roseboom, I.; Wang, L.; Wuyts, S.

    2015-01-01

    We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate - stellar masse (i.e. SFR-M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M∗-z bin. The infrared luminosities of our SFR-M∗-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν-α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields - GOODS-N, GOODS-S, ECDFS, and COSMOS - covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 SFR-M∗ plane (i.e. Δlog (SSFR)MS = log [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)-0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ q

  16. Producing gapped-ferrite transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1980-01-01

    Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

  17. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  18. Core strengthening.

    PubMed

    Arendt, Elizabeth A

    2007-01-01

    Several recent studies have evaluated interventional techniques designed to reduce the risk of serious knee injuries, particularly noncontact anterior cruciate ligament injuries in female athletes. Maintenance of rotational control of the limb underneath the pelvis, especially in response to cutting and jumping activities, is a common goal in many training programs. Rotational control of the limb underneath the pelvis is mediated by a complex set of factors including the strength of the trunk muscles and the relationship between the core muscles. It is important to examine the interrelationship between lower extremity function and core stability. PMID:17472321

  19. Understanding and improving flavor in beans: Screening the USDA Phaseolus core collection for pod sugar and flavor compounds in snap and dry bean accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of our research is to gain knowledge regarding variation in sugar and flavor content among a sample of dry bean and green pod-type accessions from the USDA Phaseolus Germplasm Core Collection, Pullman, WA. Knowledge of the variation will allow better utilization of germplasm resources ...

  20. The role of galaxy interaction in the SFR-M {sub *} relation: characterizing morphological properties of Herschel-selected galaxies at 0.2 < z < 1.5

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Casey, C. M.; Lee, N.; Barnes, J. E.; Koss, M.; Larson, K. L.; Lockhart, K.; Man, A. W. S.; Mann, A. W.; Capak, P.; Kartaltepe, J. S.; Le Floc'h, E.; Riguccini, L.; Scoville, N.; Symeonidis, M.

    2013-12-01

    Galaxy interactions/mergers have been shown to dominate the population of IR-luminous galaxies (L {sub IR} ≳ 10{sup 11.6} L {sub ☉}) in the local universe (z ≲ 0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M {sub *} relation or the {sup g}alaxy main sequence{sup )} have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy main sequence. Since the typical SFR at a given M {sub *} increases with redshift, the existence of the galaxy main sequence implies that massive, IR-luminous galaxies at high z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M {sub *} relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Using a detailed visual classification scheme, we show that the fraction of 'disk galaxies' decreases and the fraction of 'irregular' galaxies increases systematically with increasing L {sub IR} out to z ≲ 1.5 and z ≲ 1.0, respectively. At L {sub IR} >10{sup 11.5} L {sub ☉}, ≳ 50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M {sub *} relation, supporting the view that galaxies falling above the main sequence are more dominated by mergers than the main-sequence galaxies. Meanwhile, we find that ≳ 18% of massive IR-luminous 'main-sequence galaxies' are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.

  1. Validation of updated neutronic calculation models proposed for Atucha-II PHWR. Part II: Benchmark comparisons of PUMA core parameters with MCNP5 and improvements due to a simple cell heterogeneity correction

    SciTech Connect

    Grant, C.; Mollerach, R.; Leszczynski, F.; Serra, O.; Marconi, J.; Fink, J.

    2006-07-01

    In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure vessel design with 451 vertical coolant channels and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update of reactor physics calculation methods and models was recently carried out covering cell, supercell (control rod) and core calculations. This paper presents benchmark comparisons of core parameters of a slightly idealized model of the Atucha-I core obtained with the PUMA reactor code with MCNP5. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, more symmetric than Atucha-II, and has some experimental data available. To validate the new models benchmark comparisons of k-effective, channel power and axial power distributions obtained with PUMA and MCNP5 have been performed. In addition, a simple cell heterogeneity correction recently introduced in PUMA is presented, which improves significantly the agreement of calculated channel powers with MCNP5. To complete the validation, the calculation of some of the critical configurations of the Atucha-I reactor measured during the experiments performed at first criticality is also presented. (authors)

  2. Structurally Well-Defined Au@Cu2- x S Core-Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency.

    PubMed

    Ji, Muwei; Xu, Meng; Zhang, Wei; Yang, Zhenzhong; Huang, Liu; Liu, Jiajia; Zhang, Yong; Gu, Lin; Yu, Youxing; Hao, Weichang; An, Pengfei; Zheng, Lirong; Zhu, Hesun; Zhang, Jiatao

    2016-04-01

    Au@Cu2- x S core-shell nanocrystals (NCs) have been synthesized under large lattice mismatch with high crystallinity, controllable shape, and nonstoichiometric composition. Both experimental observations and simulations are used to verify the flexible dual-mode plasmon coupling. The enhanced photothermal effect is harnessed for diverse HeLa cancer cell ablation applications in the NIR-I window (750-900 nm) and the NIR-II window (1000-1400 nm). PMID:26913692

  3. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  4. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  5. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  6. Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance

    NASA Astrophysics Data System (ADS)

    Cheng, Yayi; Huang, Jianfeng; Li, Jiayin; Xu, Zhanwei; Cao, Liyun; Qi, Hui

    2016-08-01

    Sn/SnO2/C ternary composite with core-shell structures is synthesized using a hydrothermal method and subsequent heat treatment at 973 K. This Sn/SnO2/C composite exhibits the micro-sphere structure that nanosized Sn and SnO2 particles are well encapsulated in the carbon matrix. As anode for sodium-ion batteries, the composite displays superior cycling stability and rate capability to SnO2/C and Sn/C composites. It delivers a high initial discharge capacity of 1110 mAh g-1 with good cyclability. Even at a high current density of 1000 mA g-1, a reversible capacity of 120 mAh g-1 is still remained. The enhanced sodium storage performance of Sn/SnO2/C anode is attributed to the synergistic effect provided by Sn, SnO2 and unique core-shell structure. Since the deformation of Sn can increase the reversible capacity of the SnO2 electrode and the carbon matrix could act as a buffer to accommodate the volume change.

  7. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  8. The Percent of Positive Biopsy Cores Improves Prediction of Prostate Cancer-Specific Death in Patients Treated With Dose-Escalated Radiotherapy

    SciTech Connect

    Qian Yushen; Feng, Felix Y.; Halverson, Schuyler; Blas, Kevin; Sandler, Howard M.; Hamstra, Daniel A.

    2011-11-01

    Purpose: To examine the prognostic utility of the percentage of positive cores (PPC) at the time of prostate biopsy for patients treated with dose-escalated external beam radiation therapy. Methods and Materials: We performed a retrospective analysis of patients treated at University of Michigan Medical Center to at least 75 Gy. Patients were stratified according to PPC by quartile, and freedom from biochemical failure (nadir + 2 ng/mL), freedom from metastasis (FFM), cause-specific survival (CSS), and overall survival (OS) were assessed by log-rank test. Receiver operator characteristic (ROC) curve analysis was used to determine the optimal cut point for PPC stratification. Finally, Cox proportional hazards multivariate regression was used to assess the impact of PPC on clinical outcome when adjusting for National Comprehensive Cancer Network (NCCN) risk group and androgen deprivation therapy. Results: PPC information was available for 651 patients. Increasing-risk features including T stage, prostate-specific antigen, Gleason score, and NCCN risk group were all directly correlated with increasing PPC. On log-rank evaluation, all clinical endpoints, except for OS, were associated with PPC by quartile, with worse clinical outcomes as PPC increased, with the greatest impact seen in the highest quartile (>66.7% of cores positive). ROC curve analysis confirmed that a cut point using two-thirds positive cores was most closely associated with CSS (p = 0.002; area under ROC curve, 0.71). On univariate analysis, stratifying patients according to PPC less than or equal to 66.7% vs. PPC greater than 66.7% was prognostic for freedom from biochemical failure (p = 0.0001), FFM (p = 0.0002), and CSS (p = 0.0003) and marginally prognostic for OS (p = 0.055). On multivariate analysis, after adjustment for NCCN risk group and androgen deprivation therapy use, PPC greater than 66.7% increased the risk for biochemical failure (p = 0.0001; hazard ratio [HR], 2.1 [95% confidence

  9. Characterisation of an intrinsically disordered protein complex of Swi5-Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering.

    PubMed

    Saikusa, Kazumi; Kuwabara, Naoyuki; Kokabu, Yuichi; Inoue, Yu; Sato, Mamoru; Iwasaki, Hiroshi; Shimizu, Toshiyuki; Ikeguchi, Mitsunori; Akashi, Satoko

    2013-03-01

    It is now recognized that intrinsically disordered proteins (IDPs) play important roles as hubs in intracellular networks, and their structural characterisation is of significance. However, due to their highly dynamic features, it is challenging to investigate the structures of IDPs solely by conventional methods. In the present study, we demonstrate a novel method to characterise protein complexes using electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) in combination with small-angle X-ray scattering (SAXS). This method enables structural characterisation even of proteins that have difficulties in crystallisation. With this method, we have characterised the Schizosaccharomyces pombe Swi5-Sfr1 complex, which is expected to have a long disordered region at the N-terminal portion of Sfr1. ESI-IM-MS analysis of the Swi5-Sfr1 complex revealed that its experimental collision cross-section (CCS) had a wide distribution, and the CCS values of the most dominant ions were ∼56% of the theoretically calculated value based on the SAXS low-resolution model, suggesting a significant size reduction in the gas phase. The present study demonstrates that the newly developed method for calculation of the theoretical CCSs of the SAXS low-resolution models of proteins allows accurate evaluation of the experimental CCS values of IDPs provided by ESI-IM-MS by comparing with the low-resolution solution structures. Furthermore, it was revealed that the combination of ESI-IM-MS and SAXS is a promising method for structural characterisation of protein complexes that are unable to crystallise. PMID:23324799

  10. Core Journal Lists: Classic Tool, New Relevance

    ERIC Educational Resources Information Center

    Paynter, Robin A.; Jackson, Rose M.; Mullen, Laura Bowering

    2010-01-01

    Reviews the historical context of core journal lists, current uses in collection assessment, and existing methodologies for creating lists. Outlines two next generation core list projects developing new methodologies and integrating novel information/data sources to improve precision: a national-level core psychology list and the other a local…

  11. Evaluation of the effect of B and N on the microstructure of 9Cr-2W steel during an aging treatment for SFR fuel cladding tubes

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Hee; Park, Sang-Gyu; Kim, Sung Ho; Kim, Young Do

    2015-12-01

    In this study, the microstructure of sodium-cooled fast reactor (SFR) fuel cladding steel with different B and N contents after aging is compared. The addition of nitrogen produces a large quantity of MX precipitates with sizes of 0.1 μm or smaller during the initial thermal treatment process and this contributes to help such precipitates maintain stability without being excessively affected by aging. B is primarily distributed in the grain boundary precipitates and grain interior precipitates in the initial stage. The B distribution is believed to move to the Cr precipitates after 7000 h and to contribute to suppressing the growth of M23C6.

  12. A Search for Gravitationally Bound Cloud Cores within the CMZ

    NASA Astrophysics Data System (ADS)

    Gehret, Elizabeth; Battersby, Cara

    2016-01-01

    In general, current star formation theories successfully model the rate at which stars are forming throughout our Galaxy as well as others, with the star formation rate (SFR) in a given region being proportional to the amount of gas above a threshold density. The Central Molecular Zone (CMZ) of our Galaxy is an excellent place to test these models. It is home to the highest amount of dense, molecular gas within our Galaxy-and yet, the SFR within this region is an order of magnitude lower than would be expected using current star formation models. This project utilizes data taken from the SMA Legacy Survey of the CMZ, in a search for gravitationally bound structures within three small gas clouds near the Galactic Center, as well as the 1.6 degree cloud. Dense gas structures are detected using H2CO-a dense gas tracer, and 1.3mm cold, dust continuum. These regions are catalogued using dendrograms to identify which structures have continuous and significant H2CO emission. Gravitationally bound candidates were identified by deriving each structure's virial ratio. Within the three clouds near the GC, 40 structures were catalogued, with one structure that was found to be gravitationally bound. Very large virial ratios are the result of large H2CO line widths, possibly due to a high degree of tidal compression. This analysis is also performed on the 1.6 degree cloud, in a region with two suspected bound cores. One of these two cores is close to virial equilibrium and likely gravitationally bound, thus providing support for the use of this method on other clouds within the CMZ. This work supported in part by the NSF REU and DoD ASSURE programs under grant no. 1262851 and by the Smithsonian Institution.

  13. Improved room-temperature luminescence of core-shell InGaAs/GaAs nanopillars via lattice-matched passivation

    NASA Astrophysics Data System (ADS)

    Komolibus, Katarzyna; Scofield, Adam C.; Gradkowski, Kamil; Ochalski, Tomasz J.; Kim, Hyunseok; Huffaker, Diana L.; Huyet, Guillaume

    2016-02-01

    Optical properties of GaAs/InGaAs/GaAs nanopillars (NPs) grown on GaAs(111)B were investigated. Employment of a mask-etching technique allowed for an accurate control over the geometry of NP arrays in terms of both their diameter and separation. This work describes both the steady-state and time-resolved photoluminescence of these structures as a function of the ensemble geometry, composition of the insert, and various shell compounds. The effects of the NP geometry on a parasitic radiative recombination channel, originating from an overgrown lateral sidewall layer, are discussed. Optical characterization reveals a profound influence of the core-shell lattice mismatch on the carrier lifetime and emission quenching at room temperature. When the lattice-matching conditions are satisfied, an efficient emission from the NP arrays at room temperature and below the band-gap of silicon is observed, clearly highlighting their potential application as emitters in optical interconnects integrated with silicon platforms.

  14. Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    PubMed Central

    2012-01-01

    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future. PMID:22439604

  15. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters. PMID:27464191

  16. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  17. Structure-Based Engineering of Methionine Residues in the Catalytic Cores of Alkaline Amylase from Alkalimonas amylolytica for Improved Oxidative Stability

    PubMed Central

    Yang, Haiquan; Wang, Mingxing; Li, Jianghua; Wang, Nam Sun; Du, Guocheng

    2012-01-01

    This work aims to improve the oxidative stability of alkaline amylase from Alkalimonas amylolytica through structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H2O2 at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%, and 43% of the original activity, respectively. Concomitantly, the alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant were also improved. The pH stability of the mutants (M145L, M214L, M229L, and M317L) remained unchanged compared to that of the wild-type enzyme, while the stable pH range of the M247L mutant was extended from pH 7.0 to 11.0 for the wild type to pH 6.0 to 12.0 for the mutant. The wild-type enzyme lost its activity after incubation at 50°C for 2 h, and the M145L, M214L, M229L, and M317L mutants retained less than 14% of the activity, whereas the M247L mutant retained 34% of the activity under the same conditions. Compared to the wild-type enzyme, the kcat values of the M145L, M214L, M229L, and M317L mutants decreased, while that of the M247L mutant increased slightly from 5.0 × 104 to 5.6 × 104 min−1. The mechanism responsible for the increased oxidative stability, alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant was further analyzed with a structure model. The combinational mutants were also constructed, and their biochemical properties were characterized. The resistance of the wild-type enzyme and the mutants to surfactants and detergents was also investigated. Our results indicate that the M247L mutant has great potential in the detergent and textile industries. PMID:22865059

  18. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  19. Core Stability Training for Injury Prevention

    PubMed Central

    Huxel Bliven, Kellie C.; Anderson, Barton E.

    2013-01-01

    Context: Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. Evidence Acquisition: PubMed was searched for epidemiologic, biomechanic, and clinical studies of core stability for injury prevention (keywords: “core OR trunk” AND “training OR prevention OR exercise OR rehabilitation” AND “risk OR prevalence”) published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Results: Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Conclusion: Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport. PMID:24427426

  20. Recognition of a core fragment of Beauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential

    PubMed Central

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (Phyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (Phyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length Phyd1. Further truncating Phyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in Phyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under Phyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, Phyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of PgpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, Phyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides. PMID:22639846

  1. Core Competencies: What They Are and How To Use Them.

    ERIC Educational Resources Information Center

    Naylor, Richard J.

    2000-01-01

    Describes characteristics of core competencies. Examines the competencies a librarian should possess. Discusses types of competence and reviews advantages of developing and improving core competencies. Looks at core competencies in terms of the major service areas of public libraries. Presents several steps for building core competencies.…

  2. Status of the core and the mini core collections for the U.S. gemrplasm collection of peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To maximize their usefulness, core and mini core collections should be dynamic. The peanut core collection was developed in the early 1990's, and the mini core was developed in the late 1990's. Research has shown that these collections can be used to improve the efficiency and effectiveness of ide...

  3. Cooling, AGN Feedback, and Star Formation in Simulated Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.; Ruszkowski, Mateusz; Voit, G. Mark; O'Shea, Brian W.; Donahue, Megan

    2015-10-01

    Numerical simulations of active galactic nuclei (AGNs) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation, and stellar feedback, focusing on the interplay between cooling, AGN heating, and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the intracluster medium (ICM) and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations of cool-core clusters. ICM cooling is dynamically balanced by AGN heating, and a cool-core appearance is preserved. The minimum cooling time to free-fall time ratio typically varies between a few and ≳ 20. The star formation rate (SFR) covers a wide range, from 0 to a few hundred {M}⊙ {{yr}}-1, with an average of ˜ 40 {M}⊙ {{yr}}-1. The instantaneous SMBH accretion rate shows large variations on short timescales, but the average value correlates well with the SFR. Simulations without stellar feedback or self-gravity produce qualitatively similar results, but a lower SMBH feedback efficiency (0.1% compared to 1%) results in too many stars.

  4. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  5. Horizontal core acquisition and orientation for formation evaluation

    SciTech Connect

    Skopec, R.A. ); Mann, M.M. ); Grier, S.P. )

    1992-03-01

    The increase in horizontal drilling activity has produced a need for improved coring technology. The development of a reliable horizontal (medium-radius) coring and orientation system has greatly improved the acquisition of information necessary for formation evaluation and reservoir engineering. This paper describes newly developed hardware and methods for obtaining horizontal core sections.

  6. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  7. Common Core in the Real World

    ERIC Educational Resources Information Center

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  8. List of Core Journals in Earth Sciences.

    ERIC Educational Resources Information Center

    International Council for Scientific and Technical Information, Paris (France).

    Selection and acquisition of relevant materials for building and developing an information infrastructure are modern worldwide problems. This document provides a core listing of journals in the earth sciences in an effort to develop a tool for the improvement of information handling and transfer. The core list was generated using several databases…

  9. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  10. Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (1 1 1) as a basis for improved InGaN-based photovoltaics and LEDs

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Sandana, V. E.; Gautier, S.; Moudakir, T.; Abid, M.; Ougazzaden, A.; Teherani, F. Hosseini; Bove, P.; Molinari, M.; Troyon, M.; Peres, M.; Soares, Manuel J.; Neves, A. J.; Monteiro, T.; McGrouther, D.; Chapman, J. N.; Drouhin, H.-J.; McClintock, R.; Razeghi, M.

    2015-06-01

    Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (1 1 1) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400-720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN.