Science.gov

Sample records for improves blood flow

  1. Intraperitoneal Resuscitation Improves Intestinal Blood Flow Following Hemorrhagic Shock

    PubMed Central

    Zakaria, El Rasheid; Garrison, R. Neal; Spain, David A.; Matheson, Paul J.; Harris, Patrick D.; Richardson, J. David

    2003-01-01

    Objective To study the effects of peritoneal resuscitation from hemorrhagic shock. Summary Background Data Methods for conventional resuscitation (CR) from hemorrhagic shock (HS) often fail to restore adequate intestinal blood flow, and intestinal ischemia has been implicated in the activation of the inflammatory response. There is clinical evidence that intestinal hypoperfusion is a major factor in progressive organ failure following HS. This study presents a novel technique of peritoneal resuscitation (PR) that improves visceral perfusion. Methods Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure (MAP) and resuscitated with shed blood plus 2 equal volumes of saline (CR). Groups were 1) sham, 2) HS + CR, and 3) HS + CR + PR with a hyperosmolar dextrose-based solution (Delflex 2.5%). Groups 1 and 2 had normal saline PR. In vivo videomicroscopy and Doppler velocimetry were used to assess terminal ileal microvascular blood flow. Endothelial cell function was assessed by the endothelium-dependent vasodilator acetylcholine. Results Despite restored heart rate and MAP to baseline values, CR animals developed a progressive intestinal vasoconstriction and tissue hypoperfusion compared to baseline flow. PR induced an immediate and sustained vasodilation compared to baseline and a marked increase in average intestinal blood flow during the entire 2-hour post-resuscitation period. Endothelial-dependent dilator function was preserved with PR. Conclusions Despite the restoration of MAP with blood and saline infusions, progressive vasoconstriction and compromised intestinal blood flow occurs following HS/CR. Hyperosmolar PR during CR maintains intestinal blood flow and endothelial function. This is thought to be a direct effect of hyperosmolar solutions on the visceral microvessels. The addition of PR to a CR protocol prevents the splanchnic ischemia that initiates systemic inflammation. PMID:12724637

  2. Improvement in Myocardial Function and Coronary Blood Flow in Ischemic Myocardium after Mannitol

    PubMed Central

    Willerson, James T.; Powell, Wm. John; Guiney, Timothy E.; Stark, James J.; Sanders, Charles A.; Leaf, Alexander

    1972-01-01

    The purpose of this study was to evaluate the effect of hyperosmolality on the performance of, and the collateral blood flow to, ischemic myocardium. The myocardial response to mannitol, a hyperosmolar agent which remains extracellular, was evaluated in anesthetized dogs. Mannitol was infused into the aortic roots of 31 isovolumic hearts and of 15 dogs on right heart bypass, before and during ischemia. Myocardial ischemia was produced by temporary ligation of either the proximal or mid-left anterior descending coronary artery. Mannitol significantly improved the depressed ventricular function curves which occurred with left anterior descending coronary artery occlusion. Mannitol also significantly lessened the S-T segment elevation (epicardial electrocardiogram) occurring during myocardial ischemia in the isovolumic hearts and this reduction was associated with significant increases in total coronary blood flow (P < 0.005) and with increased collateral coronary blood flow to the ischemia area (P < 0.005). Thus, increases in serum osmolality produced by mannitol result in the following beneficial changes during myocardial ischemia: (a) improved myocardial function, (b) reduced S-T segment elevation, (c) increased total coronary blood flow, and (d) increased collateral coronary blood flow. PMID:4640943

  3. Blood flow

    MedlinePlus Videos and Cool Tools

    As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body’s tissues and ... returns to the heart from the lungs, which pumps it throughout the body.

  4. Blood flow

    MedlinePlus Videos and Cool Tools

    As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body's tissues and vital organs. ... brain, liver, kidneys, stomach, and muscles, including the heart muscle itself. At the same time, the veins ...

  5. Effects of terlipressin on patients with sepsis via improving tissue blood flow.

    PubMed

    Xiao, Xudong; Zhang, Jie; Wang, Yaoli; Zhou, Jian; Zhu, Yu; Jiang, Dongpo; Liu, Liangming; Li, Tao

    2016-01-01

    Terlipressin (TP), an analog of arginine vasopressin, was reported beneficial in sepsis patients when combined use with norepinephrine (NE), but the undetermined action, mechanism, and safety limited it to become the first-line vasopressor for sepsis patients. With 32 septic shock patients, we investigated the effects of a small dose of TP (1.3 μg/kg/h) on hemodynamic, tissue blood flow, vital organ function, acid-base balance, and coagulation function to systemically know the beneficial effect and side effects of TP on septic shock. The results showed that as compared with the single use of NE group (17 patients), a small dose of TP (1.3 μg/kg/h) in combination with NE continuous infusion, except for decreasing the mortality and NE requirement, could better improve and stabilize the hemodynamics, improve the tissue blood flow, increase the blood oxygen saturation and urine volume, and decrease the lactate level and complication rate (47% versus 82.3% in NE group). Meanwhile, TP + NE did not induce blood bilirubin increase and platelet count decrease and hyponatremia that vasopressin has. The results show that low dose of TP continuous infusion can help NE achieve the good resuscitation effect by improving tissue blood flow, stabilizing hemodynamics, and protecting organ function in septic shock patients while did not induce the side effects that high dose or bonus of TP or vasopressin induced. Low dose of TP may be recommended as the first-line vasopressor for refractory hypotension after severe sepsis or septic shock. PMID:26253455

  6. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow

    PubMed Central

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-01

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma–bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment. PMID:26797645

  7. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow.

    PubMed

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-01

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma-bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment. PMID:26797645

  8. Perilla oil improves blood flow through inhibition of platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang-Sei; Lee, Sung-Pyo; Kang, Myung-Hwa; Choi, Ehn-Kyoung

    2014-01-01

    The inhibitory effects of perilla oil on the platelet aggregation in vitro and thrombosis in vivo were investigated in comparison with aspirin, a well-known blood flow enhancer. Rabbit platelet-rich plasma was incubated with perilla oil and aggregation inducers collagen or thrombin, and the platelet aggregation rate was analyzed. Perilla oil significantly inhibited both the collagen- and thrombin-induced platelet aggregations, in which the thromboxane B2 formation from collagen-activated platelets were reduced in a concentration-dependent manner. Rats were administered once daily by gavage with perilla oil for 1 week, carotid arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Perilla oil delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 0.5 mL/kg. In addition, a high dose (2 mL/kg) of perilla oil greatly prevented the occlusion, comparable to the effect of aspirin (30 mg/kg). The results indicate that perilla oil inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is proposed that perilla oil could be a good candidate without adverse effects for the improvement of blood flow. PMID:24707301

  9. CD4+ LYMPHOCYTES IMPROVE VENOUS BLOOD FLOW IN EXPERIMENTAL ARTERIOVENOUS FISTULAE

    PubMed Central

    Duque, Juan C.; Martinez, Laisel; Mesa, Annia; Wei, Yuntao; Tabbara, Marwan; Salman, Loay H.; Vazquez-Padron, Roberto I.

    2015-01-01

    Background The role of immune cells in arteriovenous fistulae (AVF) maturation is poorly understood and has received, until quite recently, little attention. This study examines the role of T lymphocytes in AVF vascular remodeling. Methods Experimental fistulae were created in athymic rnu nude rats lacking mature T lymphocytes and euthymic control animals by anastomosing the left superior epigastric vein to the nearby femoral artery. Blood flow rates, wall morphology and histological changes were assessed in AVF 21 days after creation. The effect of CD4+ lymphocytes on AVF maturation in athymic animals was analyzed by adoptive transfer of cells after fistula creation. Results The absence of T lymphocytes compromised blood flow in experimental fistulae. Histopathological inspection of AVF from athymic rats revealed that T cell immunodeficiency negatively affected venous vascular remodeling, as evidenced by a reduced lumen, a thick muscular layer and a low number of inflammatory cells compared to control animals. Adoptive transfer of CD4+ lymphocytes from euthymic rats into athymic animals before and after fistula creation improved blood flow and reduced intima-media thickness. Conclusion These results point at the protective role of CD4+ lymphocytes in the remodeling of the AVF vascular wall. PMID:25999254

  10. Improved instrumentation for blood flow velocity measurements in the microcirculation of small animals

    NASA Astrophysics Data System (ADS)

    de Mesquita, Jayme Alves; Bouskela, Eliete; Wajnberg, Eliane; de Melo, Pedro Lopes

    2007-02-01

    Microcirculation is the generic name of vessels with internal diameter less than 100μm of the circulatory system, whose main functions are tissue nutrition and oxygen supply. In microcirculatory studies, it is important to know the amount of oxyhemoglobin present in the blood and how fast it is moving. The present work describes improvements introduced in a classical hardware-based instrument that has usually been used to monitor blood flow velocity in the microcirculation of small animals. It consists of a virtual instrument that can be easily incorporated into existing hardware-based systems, contributing to reduce operator related biases and allowing digital processing and storage. The design and calibration of the modified instrument are described as well as in vitro and in vivo results obtained with electrical models and small animals, respectively. Results obtained in in vivo studies showed that this new system is able to detect a small reduction in blood flow velocity comparing arteries and arterioles (p<0.002) and a further reduction in capillaries (p<0.0001). A significant increase in velocity comparing capillaries and venules (p<0.001) and venules and veins (p<0.001) was also observed. These results are in close agreement with biophysical principles. Moreover, the improvements introduced in the device allowed us to clearly observe changes in blood flow introduced by a pharmacological intervention, suggesting that the system has enough temporal resolution to track these microcirculatory events. These results were also in close conformity to physiology, confirming the high scientific potential of the modified system and indicating that this instrument can also be useful for pharmacological evaluations.

  11. Improved instrumentation for blood flow velocity measurements in the microcirculation of small animals

    SciTech Connect

    Mesquita, Jayme Alves Jr. de; Bouskela, Eliete; Wajnberg, Eliane; Lopes de Melo, Pedro

    2007-02-15

    Microcirculation is the generic name of vessels with internal diameter less than 100 {mu}m of the circulatory system, whose main functions are tissue nutrition and oxygen supply. In microcirculatory studies, it is important to know the amount of oxyhemoglobin present in the blood and how fast it is moving. The present work describes improvements introduced in a classical hardware-based instrument that has usually been used to monitor blood flow velocity in the microcirculation of small animals. It consists of a virtual instrument that can be easily incorporated into existing hardware-based systems, contributing to reduce operator related biases and allowing digital processing and storage. The design and calibration of the modified instrument are described as well as in vitro and in vivo results obtained with electrical models and small animals, respectively. Results obtained in in vivo studies showed that this new system is able to detect a small reduction in blood flow velocity comparing arteries and arterioles (p<0.002) and a further reduction in capillaries (p<0.0001). A significant increase in velocity comparing capillaries and venules (p<0.001) and venules and veins (p<0.001) was also observed. These results are in close agreement with biophysical principles. Moreover, the improvements introduced in the device allowed us to clearly observe changes in blood flow introduced by a pharmacological intervention, suggesting that the system has enough temporal resolution to track these microcirculatory events. These results were also in close conformity to physiology, confirming the high scientific potential of the modified system and indicating that this instrument can also be useful for pharmacological evaluations.

  12. Single Limb Exercise Induces Femoral Artery Remodeling and Improves Blood Flow in the Hemiparetic Leg Post-Stroke

    PubMed Central

    Billinger, Sandra A.; Gajewski, Byron J.; Guo, Lisa X.; Kluding, Patricia M.

    2009-01-01

    Background and Purpose After stroke, individuals have decreased mobility of the hemiparetic leg, which demands less muscle oxygen consumption; thus, blood flow decreases. The purpose of this study was to determine the effect of single limb exercise (SLE) on femoral artery blood flow, diameter and peak flow velocity in the hemiparetic leg after stroke. Methods Twelve individuals (60.6 ± 14.5 years of age; 5 male) with chronic stroke (69.1 ± 82.2 months; 5 with right-side hemiparesis) participated in the study. The intervention consisted of a SLE knee extension/flexion protocol three times per week for 4 weeks. Using Doppler ultrasound, bilateral femoral artery blood flow, diameter and peak flow velocity was assessed at baseline, after 2 weeks and after 4 weeks of SLE. Results Using repeated measures ANOVA, femoral artery blood flow, arterial diameter, and blood flow velocity in the hemiparetic limb were significantly improved (p < 0.0001) after the SLE. No significant changes occurred in the non-trained limb for any outcome measures. Conclusions These data suggest that a 4-week SLE training program that increases muscular activity in the hemiparetic limb improves femoral artery blood flow, diameter, and peak velocity. SLE may be an important training strategy in stroke rehabilitation to minimize the vascular changes that occur post-stroke due to decreased activity of the hemiparetic limb. PMID:19520990

  13. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  14. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  15. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery. PMID:23852404

  16. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease.

    PubMed

    Rossman, Matthew J; Trinity, Joel D; Garten, Ryan S; Ives, Stephen J; Conklin, Jamie D; Barrett-O'Keefe, Zachary; Witman, Melissa A H; Bledsoe, Amber D; Morgan, David E; Runnels, Sean; Reese, Van R; Zhao, Jia; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2015-09-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P < 0.05, control vs. AOC, respectively), leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. PMID:26188020

  17. Improvement of the accuracy of continuous hematocrit measurement under various blood flow conditions

    NASA Astrophysics Data System (ADS)

    Kim, Myounggon; Yang, Sung

    2014-04-01

    We propose an accurate method for continuous hematocrit (HCT) measurement of flowing blood under varying plasma conditions of electrical conductivity, osmolality, and flow rate. Two parameters, namely the hematocrit estimation parameter (HEP) and normalized difference, are proposed to reduce the HCT measurement error. HEP was demonstrated in a previous work. The results of multiple linear regression analysis showed that the two parameters were strongly correlated with the reference HCT measured by microcentrifugation. The measurement error was less than 9% despite significant simultaneous variations in the plasma properties and shear rate.

  18. Patient-specific blood flow simulation to improve intracranial aneurysm diagnosis

    NASA Astrophysics Data System (ADS)

    Fenz, Wolfgang; Dirnberger, Johannes

    2011-03-01

    We present a novel simulation system of blood flow through intracranial aneurysms including the interaction between blood lumen and vessel tissue. It provides the means to estimate rupture risks by calculating the distribution of pressure and shear stresses in the aneurysm, in order to support the planning of clinical interventions. So far, this has only been possible with commercial simulation packages originally targeted at industrial applications, whereas our implementation focuses on the intuitive integration into clinical workflow. Due to the time-critical nature of the application, we exploit most efficient state-of-the-art numerical methods and technologies together with high performance computing infrastructures (Austrian Grid). Our system builds a three-dimensional virtual replica of the patient's cerebrovascular system from X-ray angiography, CT or MR images. The physician can then select a region of interest which is automatically transformed into a tetrahedral mesh. The differential equations for the blood flow and the wall elasticity are discretized via the finite element method (FEM), and the resulting linear equation systems are handled by an algebraic multigrid (AMG) solver. The wall displacement caused by the blood pressure is calculated using an iterative fluid-structure interaction (FSI) algorithm, and the fluid mesh is deformed accordingly. First simulation results on measured patient geometries show good medical relevance for diagnostic decision support.

  19. Mechanics of blood flow.

    PubMed

    Skalak, R; Keller, S R; Secomb, T W

    1981-05-01

    The historical development of the mechanics of blood flow can be traced from ancient times, to Leonardo da Vinci and Leonhard Euler and up to the present times with increasing biological knowledge and mathematical analysis. In the last two decades, quantitative and numerical methods have steadily given more complete and precise understanding. In the arterial system wave propagation computations based on nonlinear one-dimensional modeling have given the best representation of pulse wave propagation. In the veins, the theory of unsteady flow in collapsible tubes has recently been extensively developed. In the last decade, progress has been made in describing the blood flow at junctions, through stenoses, in bends and in capillary blood vessels. The rheological behavior of individual red blood cells has been explored. A working model consists of an elastic membrane filled with viscous fluid. This model forms a basis for understanding the viscous and viscoelastic behavior of blood. PMID:7024641

  20. Delayed Treatment with Sodium Hydrosulfide Improves Regional Blood Flow and Alleviates Cecal Ligation and Puncture (CLP)-Induced Septic Shock.

    PubMed

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2016-08-01

    oxidative stress) in heart as well as in liver and myeloperoxidase levels (an index of neutrophil infiltration) in heart and lung. Plasma levels of IL-1β, IL-5, IL-6, TNF-α, and HMGB1 were attenuated by NaHS. Treatment of NaHS at 3 mg/kg i.p. (but not 1 mg/kg or 6 mg/kg), starting 24 h post-CLP, with dosing repeated every 6 h, improved the survival rate in CLP animals. In summary, treatment with 3 mg/kg H2S-when started in a delayed manner, when CLP-induced organ injury, inflammation and blood flow redistribution have already ensued-improves blood flow to several organs, protects against multiple organ failure, and reduces the plasma levels of multiple pro-inflammatory mediators. These findings support the view that H2S donation may have therapeutic potential in sepsis. PMID:26863032

  1. Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease.

    PubMed

    Ohira, Hiroshi; Dowsley, Taylor; Dwivedi, Girish; deKemp, Robert A; Chow, Benjamin J; Ruddy, Terrence D; Davies, Ross A; DaSilva, Jean; Beanlands, Rob S B; Hessian, Renee

    2014-09-01

    Cardiac PET has been evolving over the past 30 years. Today, it is accepted as a valuable imaging modality for the noninvasive assessment of coronary artery disease. PET has demonstrated superior diagnostic accuracy for the detection of coronary artery disease compared with single-photon emission computed tomography, and also has a well-established prognostic value. The routine addition of absolute quantification of myocardial blood flow increases the diagnostic accuracy for three-vessel disease and provides incremental functional and prognostic information. Moreover, the characterization of the vasodilator capacity of the coronary circulation may guide proper decision-making and monitor the effects of lifestyle changes, exercise training, risk factor modification or medical therapy for improving regional and global myocardial blood flow. This type of image-guided approach to individualized patient therapy is now attainable with the routine use of cardiac PET flow reserve imaging. PMID:25354033

  2. Tissue blood flow mapping

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.

    1997-01-01

    The operating principles of Laser Doppler Perfusion Imaging (LDPI) for visualization of the tissue blood perfusion are explained. Using this emerging technology skin perfusion has been investigated in healthy volunteers and in patients with various conditions that affect skin blood flow. LDPI is anticipated to be particularly useful in evaluation of peripheral circulation in diabetics, as an objective tool in irritancy patch testing, assessment of burnt skin and visualization of spot-wise hyperperfusion in breast skin in association with carcinoma.

  3. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    PubMed Central

    Guan, Li; Zhang, Yan-Lin; Li, Zong-Yang; Zhu, Ming-Xia; Yao, Wei-Juan; Zhao, Jin-Yuan

    2015-01-01

    Carbon monoxide (CO) poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP) occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA) on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct), plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA) levels in red blood cells (RBCs). These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning. PMID:25705671

  4. Intravenous Infusion of Magnesium Chloride Improves Epicenter Blood Flow during the Acute Stage of Contusive Spinal Cord Injury in Rats

    PubMed Central

    Muradov, Johongir M.

    2013-01-01

    Abstract Vasospasm, hemorrhage, and loss of microvessels at the site of contusive or compressive spinal cord injury lead to infarction and initiate secondary degeneration. Here, we used intravenous injection of endothelial-binding lectin followed by histology to show that the number of perfused microvessels at the injury site is decreased by 80–90% as early as 20 min following a moderate T9 contusion in adult female rats. Hemorrhage within the spinal cord also was maximal at 20 min, consistent with its vasoconstrictive actions in the central nervous system (CNS). Microvascular blood flow recovered to up to 50% of normal volume in the injury penumbra by 6 h, but not at the epicenter. A comparison with an endothelial cell marker suggested that many microvessels fail to be reperfused up to 48 h post-injury. The ischemia was probably caused by vasospasm of vessels penetrating the parenchyma, because repeated Doppler measurements over the spinal cord showed a doubling of total blood flow over the first 12 h. Moreover, intravenous infusion of magnesium chloride, used clinically to treat CNS vasospasm, greatly improved the number of perfused microvessels at 24 and 48 h. The magnesium treatment seemed safe as it did not increase hemorrhage, despite the improved parenchymal blood flow. However, the treatment did not reduce acute microvessel, motor neuron or oligodendrocyte loss, and when infused for 7 days did not affect functional recovery or spared epicenter white matter over a 4 week period. These data suggest that microvascular blood flow can be restored with a clinically relevant treatment following spinal cord injury. PMID:23302047

  5. Modeling blood flow heterogeneity.

    PubMed

    King, R B; Raymond, G M; Bassingthwaighte, J B

    1996-01-01

    It has been known for some time that regional blood flows within an organ are not uniform. Useful measures of heterogeneity of regional blood flows are the standard deviation and coefficient of variation or relative dispersion of the probability density function (PDF) of regional flows obtained from the regional concentrations of tracers that are deposited in proportion to blood flow. When a mathematical model is used to analyze dilution curves after tracer solute administration, for many solutes it is important to account for flow heterogeneity and the wide range of transit times through multiple pathways in parallel. Failure to do so leads to bias in the estimates of volumes of distribution and membrane conductances. Since in practice the number of paths used should be relatively small, the analysis is sensitive to the choice of the individual elements used to approximate the distribution of flows or transit times. Presented here is a method for modeling heterogeneous flow through an organ using a scheme that covers both the high flow and long transit time extremes of the flow distribution. With this method, numerical experiments are performed to determine the errors made in estimating parameters when flow heterogeneity is ignored, in both the absence and presence of noise. The magnitude of the errors in the estimates depends upon the system parameters, the amount of flow heterogeneity present, and whether the shape of the input function is known. In some cases, some parameters may be estimated to within 10% when heterogeneity is ignored (homogeneous model), but errors of 15-20% may result, even when the level of heterogeneity is modest. In repeated trials in the presence of 5% noise, the mean of the estimates was always closer to the true value with the heterogeneous model than when heterogeneity was ignored, but the distributions of the estimates from the homogeneous and heterogeneous models overlapped for some parameters when outflow dilution curves were

  6. Improving placental blood flow in pre-eclampsia with prostaglandin A1.

    PubMed

    Toppozada, M; Medhat, I; Sallam, H; Ismail, A A; el-Badawy, E S; Abd Rabbo, S

    1992-01-01

    Prostaglandin A1 is a potent hypotensive, peripheral vasodilator, a weak oxytocic, antiplatelet aggregator. It improves the renal hemodynamics. Its effect on placental circulation was evaluated (expressed as systolic/diastolic ratio and umbilical artery resistance index) in 20 women with severe pre-eclampsia and 10 normotensive pregnant women, by using the Doppler technique. Moreover, another 10 women with severe pre-eclampsia received dextrose 5% as a placebo for comparative purposes. Significant improvements in both parameters studied were observed in the women with severe pre-eclampsia. The beneficial changes differed significantly from the recorded values when using dextrose in pre-eclampsia or prostaglandin A1 in normotensive subjects. Such promising data add another important perspective to prostaglandin A1 in severe pre-eclampsia and may open up new avenues for its use in other situations with compromised placental flow. PMID:1315092

  7. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength.

    PubMed

    de Oliveira, M F M; Caputo, F; Corvino, R B; Denadai, B S

    2016-09-01

    The present study aimed to analyze and compare the effects of four different interval-training protocols on aerobic fitness and muscle strength. Thirty-seven subjects (23.8 ± 4 years; 171.7 ± 9.5 cm; 70 ± 11 kg) were assigned to one of four groups: low-intensity interval training with (BFR, n = 10) or without (LOW, n = 7) blood flow restriction, high-intensity interval training (HIT, n = 10), and combined HIT and BFR (BFR + HIT, n = 10, every session performed 50% as BFR and 50% as HIT). Before and after 4 weeks training (3 days a week), the maximal oxygen uptake (VO2max ), maximal power output (Pmax ), onset blood lactate accumulation (OBLA), and muscle strength were measured for all subjects. All training groups were able to improve OBLA (BFR, 16%; HIT, 25%; HIT + BFR, 22%; LOW, 6%), with no difference between groups. However, VO2max and Pmax improved only for BFR (6%, 12%), HIT (9%, 15%) and HIT + BFR (6%, 11%), with no difference between groups. Muscle strength gains were only observed after BFR training (11%). This study demonstrates the advantage of short-term low-intensity interval BFR training as the single mode of training able to simultaneously improve aerobic fitness and muscular strength. PMID:26369387

  8. Clinical utility of far-infrared therapy for improvement of vascular access blood flow and pain control in hemodialysis patients

    PubMed Central

    Choi, Soo Jeong; Cho, Eun Hee; Jo, Hye Min; Min, Changwook; Ji, Young Sok; Park, Moo Yong; Kim, Jin Kuk; Hwang, Seung Duk

    2015-01-01

    Background Maintenance of a well-functioning vascular access and minimal needling pain are important goals for achieving adequate dialysis and improving the quality of life in hemodialysis (HD) patients. Far-infrared (FIR) therapy may improve endothelial function and increase access blood flow (Qa) and patency in HD patients. The aim of this study was to evaluate effects of FIR therapy on Qa and patency, and needling pain in HD patients. Methods This prospective clinical trial enrolled 25 outpatients who maintained HD with arteriovenous fistula. The other 25 patients were matched as control with age, sex, and diabetes. FIR therapy was administered for 40 minutes during HD 3 times/wk and continued for 12 months. The Qa was measured by the ultrasound dilution method, whereas pain was measured by a numeric rating scale at baseline, then once per month. Results One patient was transferred to another facility, and 7 patients stopped FIR therapy because of an increased body temperature and discomfort. FIR therapy improved the needling pain score from 4 to 2 after 1 year. FIR therapy increased the Qa by 3 months and maintained this change until 1 year, whereas control patients showed the decrease in Qa. The 1-year unassisted patency with FIR therapy was not significantly different from control. Conclusion FIR therapy improved needling pain. Although FIR therapy improved Qa, the unassisted patency was not different compared with the control. A larger and multicenter study is needed to evaluate the effect of FIR therapy. PMID:27069856

  9. Salutary effect of adjunctive intracoronary nicorandil administration on restoration of myocardial blood flow and functional improvement in patients with acute myocardial infarction.

    PubMed

    Sakata, Y; Kodama, K; Komamura, K; Lim, Y J; Ishikura, F; Hirayama, A; Kitakaze, M; Masuyama, T; Hori, M

    1997-06-01

    Salutary effect of nicorandil, a K+ adenosine triphosphate channel opener, on restoration of myocardial blood flow and functional improvement after coronary revascularization was investigated in 20 patients with first anterior acute myocardial infarction. Ten patients received intracoronary administration of nicorandil (2 mg) after coronary revascularization; the other 10 patients received coronary revascularization only and served as control subjects. Myocardial contrast echocardiography and two-dimensional echocardiography were performed to assess microvascular integrity and regional function in the infarcted area. Nicorandil improved peak contrast intensity ratio (p < 0.001), calculated as the ratio of peak contrast intensity in the infarcted and noninfarcted areas, indicating the restoration of myocardial blood flow to the infarcted myocardium. Regional wall motion improved more significantly in 1 month in patients who received nicorandil (p < 0.01). Thus our results suggested the usefulness of intracoronary nicorandil administration after coronary revascularization for restoring blood flow and functional improvement in patients with acute myocardial infarction. PMID:9200388

  10. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  11. Neuroprotective effects of compound FLZ in an ischemic model mediated by improving cerebral blood flow and enhancing Hsp27 expression.

    PubMed

    Ma, Bo; Li, Min; Ma, Tao; Liu, Geng-Tao; Zhang, Jianjun

    2016-08-01

    Compound FLZ is a synthetic novel derivate of natural squamosamide, which has potent neuroprotective effects based on our previous study. We are now aiming to investigate the effects of FLZ on cerebral blood flow (CBF), infarct volume, neurological function, heat shock protein 70 (Hsp70), and Hsp27 expression in transient focal ischemia. For this goal, an animal model of middle cerebral artery occlusion (MCAO) for 2h followed by reperfusion was used, and animals received low or high doses of FLZ (150 or 300mg/kg), orally 10min after MCAO onset. The results show that the infarct volume was 32.7% for the vehicle control group, and reduced to 17.6 and 12.8% for the low and high dose FLZ-treated groups, respectively. FLZ treatment also significantly improved the neurobehavioral score from 2.6 in the vehicle control group to 1.0 and 0.9 in the low and high dose groups, respectively. Further, FLZ significantly induced Hsp27 over-expression and reduced over-expression of HSP70, a sensitive marker of acute ischemia, in ipsilateral cortex by a dose-dependent manner. In addition, CBF was quantified using laser-Doppler flowmetry. During ischemia, regional CBF (rCBF) was improved from approximately 30% to over 50% of the baseline and the reperfusion-induced hyperemia was reduced in both FLZ dosage groups. Particularly, high dose FLZ reduced rCBF during hyperemia by 30%. In conclusion, FLZ (150 and 300mg/kg) can significantly reduce the infarct volume and improve neurobehavioral deficits in a rat MCAO model, most likely through improving CBF in the penumbra and enhancing Hsp27 expression. PMID:24675028

  12. [Blood flow changes in the optic nerve head of albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism].

    PubMed

    Nirei, M

    1996-02-01

    The blood flow changes in the optic nerve head in adult albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism, were investigated employing the hydrogen clearance method. In the brovincamine fumarate (0.1 mg/kg)-administered group, the blood flow in the optic nerve head increased soon after injection and reached the maximal value of 124.2 +/- 7.3% against the value before injection, at 20 minutes after injection, followed by a gradual decrease in the blood flow. Statistical analysis showed a significant increase (p < 0.05) in the blood flow at 10 to 40 minutes after injection, compared with the value before injection in the brovincamine fumarate (0.1 mg/kg)-administered group, but no significant increases in the blood flow were observed in either the brovincamine fumarate (0.5 mg/kg)-administered group or the control group given no brovincamine fumarate throughout the course. No significant changes in the mean values of the blood pressure in the femoral artery, pulse rate, respiratory rate or rectal temperature were observed in any group through the experiment. To learn the mechanism of the different efficacy of the two doses, further studies are needed in light of the cyclic adenosine monophosphate (cyclic AMP) changes induced by brovincamine fumarate administration or in light of the receptor responsiveness to the drug concentration. PMID:8851150

  13. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M; Heerschap, Arend; Kiliaan, Amanda J

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  14. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    PubMed Central

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  15. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  16. Brain Function and Blood Flow

    ERIC Educational Resources Information Center

    Lassen, Niels A.; And Others

    1978-01-01

    Discusses the use of radioactive isotopes to graphically represent changes in the amount of blood flowing in areas of the human cerebral cortex, reflecting changes in the activity of those areas. Numerous illustrations are included. (Author/MA)

  17. Facilitating Mitochondrial Calcium Uptake Improves Activation-Induced Cerebral Blood Flow and Behavior after mTBI

    PubMed Central

    Murugan, Madhuvika; Santhakumar, Vijayalakshmi; Kannurpatti, Sridhar S.

    2016-01-01

    Mild to moderate traumatic brain injury (mTBI) leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca2+ overload. However, in the surviving cellular population, mitochondrial Ca2+ influx, and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca2+ uptake in a rat model of mTBI. In developing rats (P25-P26) sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF) in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI) at adulthood (P67-P73). Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca2+ uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca2+ uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity following kaempferol

  18. Chaotic advection in blood flow.

    PubMed

    Schelin, A B; Károlyi, Gy; de Moura, A P S; Booth, N A; Grebogi, C

    2009-07-01

    In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation. PMID:19658798

  19. Improvements in tissue blood flow and lumbopelvic stability after lumbopelvic core stabilization training in patients with chronic non-specific low back pain

    PubMed Central

    Paungmali, Aatit; Henry, Leonard Joseph; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn

    2016-01-01

    [Purpose] This study investigated the effects of lumbopelvic stabilization training on tissue blood flow changes in the lumbopelvic region and lumbopelvic stability compared to placebo treatment and controlled intervention among patients with chronic non-specific low back pain. [Subjects and Methods] A total of 25 participants (7 males, 18 females; mean age, 33.3 ± 14.4 years) participated in this within-subject, repeated-measures, double-blind, placebo-controlled comparison trial. The participants randomly underwent three types of interventions that included lumbopelvic stabilization training, placebo treatment, and controlled intervention with 48 hours between sessions. Lumbopelvic stability and tissue blood flow were measured using a pressure biofeedback device and a laser Doppler flow meter before and after the interventions. [Results] The repeated-measures analysis of variance results demonstrated a significant increase in tissue blood flow over the lumbopelvic region tissues for post- versus pre-lumbopelvic stabilization training and compared to placebo and control interventions. A significant increase in lumbopelvic stability before and after lumbopelvic stabilization training was noted, as well as upon comparison to placebo and control interventions. [Conclusion] The current study supports an increase in tissue blood flow in the lumbopelvic region and improved lumbopelvic stability after core training among patients with chronic non-specific low back pain. PMID:27064327

  20. Improvements in tissue blood flow and lumbopelvic stability after lumbopelvic core stabilization training in patients with chronic non-specific low back pain.

    PubMed

    Paungmali, Aatit; Henry, Leonard Joseph; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn

    2016-01-01

    [Purpose] This study investigated the effects of lumbopelvic stabilization training on tissue blood flow changes in the lumbopelvic region and lumbopelvic stability compared to placebo treatment and controlled intervention among patients with chronic non-specific low back pain. [Subjects and Methods] A total of 25 participants (7 males, 18 females; mean age, 33.3 ± 14.4 years) participated in this within-subject, repeated-measures, double-blind, placebo-controlled comparison trial. The participants randomly underwent three types of interventions that included lumbopelvic stabilization training, placebo treatment, and controlled intervention with 48 hours between sessions. Lumbopelvic stability and tissue blood flow were measured using a pressure biofeedback device and a laser Doppler flow meter before and after the interventions. [Results] The repeated-measures analysis of variance results demonstrated a significant increase in tissue blood flow over the lumbopelvic region tissues for post- versus pre-lumbopelvic stabilization training and compared to placebo and control interventions. A significant increase in lumbopelvic stability before and after lumbopelvic stabilization training was noted, as well as upon comparison to placebo and control interventions. [Conclusion] The current study supports an increase in tissue blood flow in the lumbopelvic region and improved lumbopelvic stability after core training among patients with chronic non-specific low back pain. PMID:27064327

  1. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus – results from an exploratory study

    PubMed Central

    2013-01-01

    Numerous rheological and microvascular alterations characterize the vascular pathology in patients with type 2 diabetes mellitus (T2DM). This study investigated effects of vildagliptin in comparison to glimepiride on retinal microvascular blood flow and erythrocyte deformability in T2DM. Fourty-four patients with T2DM on metformin monotherapy were included in this randomized, exploratory study over 24 weeks. Patients were randomized to receive either vildagliptin (50 mg twice daily) or glimepiride individually titrated up to 4 mg in addition to ongoing metformin treatment. Retinal microvascular blood flow (RBF) and the arteriolar wall to lumen ratio (WLR) were assessed using a laser doppler scanner. In addition, the erythrocyte elongation index (EI) was measured at different shear stresses using laserdiffractoscopy. Both treatments improved glycaemic control (p < 0.05 vs. baseline; respectively). While only slight changes in RBF and the WLR could be observed during treatment with glimepiride, vildagliptin significantly increased retinal blood flow and decreased the arterial WLR (p < 0.05 vs. baseline respectively). The EI increased during both treatments over a wide range of applied shear stresses (p < 0.05 vs. baseline). An inverse correlation could be observed between improved glycaemic control (HbA1c) and EI (r = −0.524; p < 0.0001) but not with the changes in retinal microvascular measurements. Our results suggest that vildagliptin might exert beneficial effects on retinal microvascular blood flow beyond glucose control. In contrast, the improvement in erythrocyte deformability observed in both treatment groups, seems to be a correlate of improved glycaemic control. PMID:23565740

  2. Regulation of pulpal blood flow

    SciTech Connect

    Kim, S.

    1985-04-01

    The regulation of blood flow of the dental pulp was investigated in dogs and rats anesthetized with sodium pentobarbital. Pulpal blood flow was altered by variations of local and systemic hemodynamics. Macrocirculatory blood flow (ml/min/100 g) in the dental pulp was measured with both the /sup 133/Xe washout and the 15-microns radioisotope-labeled microsphere injection methods on the canine teeth of dogs, to provide a comparison of the two methods in the same tooth. Microcirculatory studies were conducted in the rat incisor tooth with microscopic determination of the vascular pattern, RBC velocity, and intravascular volumetric flow distribution. Pulpal resistance vessels have alpha- and beta-adrenergic receptors. Activation of alpha-receptors by intra-arterial injection of norepinephrine (NE) caused both a reduction in macrocirculatory Qp in dogs and decreases in arteriolar and venular diameters and intravascular volumetric flow (Qi) in rats. These responses were blocked by the alpha-antagonist PBZ. Activation of beta-receptors by intra-arterial injection of isoproterenal (ISO) caused a paradoxical reduction of Qp in dogs. In rats, ISO caused a transient increase in arteriolar Qi followed by a flow reduction; arteriolar dilation was accompanied by venular constriction. These macrocirculatory and microcirculatory responses to ISO were blocked by the alpha-antagonist propranolol.

  3. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

    PubMed Central

    Zuloaga, Kristen L.; Zhang, Wenri; Roese, Natalie E.; Alkayed, Nabil J.

    2015-01-01

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs), is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS) female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15–18 month old) and young (3–4 month old) female sEH knockout (sEHKO) mice and wild type (WT) mice were subjected to 45 min middle cerebral artery occlusion (MCAO) with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24 h thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography (OMAG). Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24 h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24 h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice. PMID:25642188

  4. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    PubMed

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  5. Estrogens are needed for the improvement in endothelium-mediated dilation induced by a chronic increase in blood flow in rat mesenteric arteries.

    PubMed

    Tarhouni, K; Guihot, A L; Vessieres, E; Procaccio, V; Grimaud, L; Abraham, P; Lenfant, F; Arnal, J F; Favre, J; Loufrani, L; Henrion, D

    2016-05-01

    Resistance arteries play a key role in the control of local blood flow. They undergo outward remodeling in response to a chronic increase in blood flow as seen in collateral artery growth in ischemic disorders. We have previously shown that mesenteric artery outward remodeling depends on the endothelial estrogen receptor alpha. As outward arterial remodeling is associated with improved endothelium-dependent dilation, we hypothesized that estrogens might also play a role in flow-mediated improvement of endothelium-dependent dilation. Local increase in blood flow in first order mesenteric arteries was obtained after ligation of adjacent arteries in three-month old ovariectomized female rats treated with 17-beta-estradiol (OVX+E2) or vehicle (OVX). After 2 weeks, diameter was equivalent in high flow (HF) than in normal flow (NF) arteries with a greater wall to lumen ratio in HF vessels in OVX rats. Acetylcholine-mediated relaxation was lower in HF than in NF vessels. eNOS and caveolin-1 expression level was equivalent in HF and NF arteries. By contrast, arterial diameter was 30% greater in HF than in NF arteries and the wall to lumen ratio was not changed in OVX+E2 rats. Acetylcholine-mediated relaxation was higher in HF than in NF arteries. The expression level of eNOS was higher and that of caveolin-1 was lower in HF than in NF arteries. Acetylcholine (NO-dependent)-mediated relaxation was partly inhibited by the NO-synthesis blocker L-NAME in OVX rats whereas L-NAME blocked totally the relaxation in OVX+E2 rats. Endothelium-independent relaxation (sodium nitroprusside) was equivalent in OXV and OVX+E2 rats. Similarly, serotonin- and phenylephrine-mediated contractions were higher in HF than in NF arteries in both OVX and OVX+E2 rats in association with high ratio of phosphorylated ERK1/2 to ERK1/2. Thus, we demonstrated the essential role of endogenous E2 in flow-mediated improvement of endothelium (NO)-mediated dilatation in rat mesenteric arteries. PMID:26471832

  6. Ocular Blood Flow Autoregulation Mechanisms and Methods

    PubMed Central

    Luo, Xue; Shen, Yu-meng; Jiang, Meng-nan; Lou, Xiang-feng; Shen, Yin

    2015-01-01

    The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described. PMID:26576295

  7. Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia

    PubMed Central

    Lucas, Rebekah A. I.; Pearson, James; Schlader, Zachary J.

    2013-01-01

    Heat-related decreases in cerebral perfusion are partly the result of ventilatory-related reductions in arterial CO2 tension. Cerebral perfusion likely contributes to an individual's tolerance to a challenge like lower body negative pressure (LBNP). Thus increasing cerebral perfusion may prolong LBNP tolerance. This study tested the hypothesis that a hypercapnia-induced increase in cerebral perfusion improves LBNP tolerance in hyperthermic individuals. Eleven individuals (31 ± 7 yr; 75 ± 12 kg) underwent passive heat stress (increased intestinal temperature ∼1.3°C) followed by a progressive LBNP challenge to tolerance on two separate days (randomized). From 30 mmHg LBNP, subjects inhaled either (blinded) a hypercapnic gas mixture (5% CO2, 21% oxygen, balanced nitrogen) or room air (SHAM). LBNP tolerance was quantified via the cumulative stress index (CSI). Mean middle cerebral artery blood velocity (MCAvmean,) and end-tidal CO2 (PetCO2) were also measured. CO2 inhalation of 5% increased PetCO2 at ∼40 mmHg LBNP (by 16 ± 4 mmHg) and at LBNP tolerance (by 18 ± 5 mmHg) compared with SHAM (P < 0.01). Subsequently, MCAvmean was higher in the 5% CO2 trial during ∼40 mmHg LBNP (by 21 ± 12 cm/s, ∼31%) and at LBNP tolerance (by 18 ± 10 cm/s, ∼25%) relative to the SHAM (P < 0.01). However, hypercapnia-induced increases in MCAvmean did not alter LBNP tolerance (5% CO2 CSI: 339 ± 155 mmHg × min; SHAM CSI: 273 ± 158 mmHg × min; P = 0.26). These data indicate that inhaling a hypercapnic gas mixture increases cerebral perfusion during LBNP but does not improve LBNP tolerance when hyperthermic. PMID:23864641

  8. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  9. Fisetin-Rich Extracts of Rhus verniciflua Stokes Improve Blood Flow Rates in Mice Fed Both Normal and High-Fat Diets.

    PubMed

    Im, Won Kyun; Park, Hyun Jung; Lee, Kwang Soo; Lee, Jung Hoon; Kim, Young Dong; Kim, Kyeong-Hee; Park, Sang-Jae; Hong, Seokmann; Jeon, Sung Ho

    2016-02-01

    Although it has been previously reported that Rhus verniciflua Stokes (RVS) possesses in vitro anti-inflammatory activity, the precise in vivo mechanisms of RVS extracts and a main active component called fisetin have not been well elucidated. In this study, using newly developed protocols, we prepared urushiol-free but fisetin-enriched RVS extracts and investigated their effects on the vascular immune system. We found that the water-soluble fractions of detoxified RVS with the flavonoid fisetin can inhibit lipopolysaccharide-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Furthermore, RVS can reduce inducible nitric oxide synthase and COX2 gene expression levels, which are responsible for NO and PGE2 production, respectively, in RAW264.7 macrophage cells. Because inflammation is linked to the activation of the coagulation system, we hypothesized that RVS and its active component fisetin possess anticoagulatory activities. As expected, we found that both RVS and fisetin could inhibit the coagulation of human peripheral blood cells. Moreover, in vivo RVS treatment could return the retarded blood flow elicited by a high-fat diet (HFD) back to the normal level in mice. In addition, RVS treatment has significantly reduced body weight gained by HFD in mice. Taken together, the fisetin-rich RVS extracts have potential antiplatelet and antiobesity activities and could be used as a functional food ingredient to improve blood circulation. PMID:26741654

  10. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  11. Cutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.; Staberg, B.

    1983-12-01

    The disappearance rate of /sup 133/Xe was studied in 20 patients with psoriasis vulgaris, using an epicutaneous labeling technique in involved skin lesions or normal-appearing skin of the proximal extensor site of the forearm. Control experiments were performed in 10 normal subjects. Calculations of the cutaneous blood flow (CBF) in psoriatic skin lesions were performed using a tissue-to-blood partition coefficient for /sup 133/Xe, lambda c,pso, of 1.2 ml/100 g/min. lambda c,pso was estimated after the relative content of water, lipids, and proteins had been analyzed in psoriatic skin biopsies of 6 patients with untreated psoriasis. The mean relative content of water was markedly reduced to 23.5 +/- 1.5% (SEM), and lipids and proteins were markedly increased to 2.5 +/- 0.7% and 74.0 +/- 2.2, respectively, compared to previously published data for normal skin (water 72.5%, lipids 1%, proteins 26.5%). Mean CBF in untreated psoriatic skin was 63.5 +/- 9.0 ml/100 g/min. This was significantly higher than the mean CBF in 10 normal subjects, 6.3 +/- 0.5 ml/100 g/min (p much less than 0.0001). Mean CBF in normal-appearing skin in patients with psoriasis was 11.0 +/- 1.3 ml/100 g/min. This was significantly higher than CBF in normal subjects (p less than 0.0002).

  12. Regional cerebral blood flow in schizophrenia

    SciTech Connect

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  13. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  14. Orbital decompression surgery and horse chestnut seed extract improved superior orbital vein blood flow in patients with thyroid-associated ophthalmopathy

    PubMed Central

    Wu, Yu-Jie; Wei, Xin; Xiao, Man-Yi; Xiong, Wei

    2016-01-01

    AIM To evaluate the efficacy and safety of orbital decomposition (OD) surgery in combination with horse chestnut seed extract (HCSE), as compared to OD alone, in patients with thyroid-associated ophthalmopathy (TAO). METHODS Sixty-two orbits from 62 TAO patients were randomly assigned to OD or OD+HCSE at 1:1 ratio (31 received OD alone, 31 received OD+HCSE). Forty-two orbits from 21 healthy subjects were used as controls. Complete ophthalmic examination and color Doppler flow imaging (CDFI) were performed before surgery and 3mo post-surgery on all 62 orbits from the TAO patients. CDFI were also performed on the 42 control orbits. The effect of OD+HCSE and OD alone on TAO orbits was compared on several endpoints, including superior ophthalmic vein blood flow (SOVBF) parameters, subjective assessment, soft tissue involvement, lid retraction, diplopia, eye movement restriction, degree of exophthalmos, and intraocular pressure. The control orbits were used as reference for the SOVBF parameters. RESULTS OD surgery with or without HCSE improved SOVBF, symptoms and soft tissue involvement, decreased degree of exophthalmos and intraocular pressure in orbits of TAO patients. The OD+HCSE combination led to significantly better improvement of SOVBF than OD alone. The differences between the reductions of SOVBF in the two groups are 1.26 cm/s in max-volecity and 0.52 cm/s in min-volecity (P<0.0001). CONCLUSION SOVBF is significantly reduced in the orbits affected with TAO, indicating that congestion may be an important factor contributing to TAO pathogenesis. OD surgery improves the SOVBF, and combination of HCSE medication and OD surgery further improved venous return than OD surgery alone. PMID:27366690

  15. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  16. Multifractality of cerebral blood flow

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz

    2003-02-01

    Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.

  17. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  18. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  19. Pancreatic islet blood flow and its measurement.

    PubMed

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  20. Impact of Endothelium Roughness on Blood Flow

    PubMed Central

    Park, Sangwoo; Intaglietta, Marcos; Tartakovsky, Daniel M.

    2012-01-01

    Cell free layer (CFL), a plasma layer bounded by the red blood cell (RBC) core and the endothelium, plays an important physiological role. Its width affects the effective blood viscosity as well as the scavenging and production of nitric oxide (NO). Measurements of the CFL and its spatio-temporal variability are highly uncertain, exhibiting random fluctuations. Yet traditional models of blood flow and NO scavenging treat the CFL’s bounding surfaces as deterministic and smooth. We investigate the effects of the endothelium roughness and uncertain (random) spatial variability on blood flow and estimates of effective blood viscosity. PMID:22300799

  1. Subcutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.

    1985-03-01

    The simultaneously recorded disappearance rates of /sup 133/xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant in NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for /sup 133/Xe was therefore measured--using a double isotope washout method (/sup 133/Xe and (/sup 131/I)antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin.

  2. A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction.

    PubMed

    Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng

    2015-06-01

    Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in

  3. Improvements in the Quantitative Assessment of Cerebral Blood Volume and Flow with the Removal of Vessel Voxels from MR Perfusion Images

    PubMed Central

    Teng, Michael Mu Huo; Cho, I-Chieh; Kao, Yi-Hsuan; Chuang, Chi-Shuo; Chiu, Fang-Ying; Chang, Feng-Chi

    2013-01-01

    Objective. To improve the quantitative assessment of cerebral blood volume (CBV) and flow (CBF) in the brain voxels from MR perfusion images. Materials and Methods. Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature. Using the scaling factors, the relative values were converted to the absolute CBV and CBF. Voxels with either CBV > 8 mL/100 g or CBF > 100 mL/100 g/min were characterized as vessel voxels and were excluded from the quantitative measurements. Results. The segmented brain parenchyma with normal perfusion was consistent with the angiographic findings for each patient. We confirmed the necessity of dual thresholds including CBF and CBV for proper removal of vessel voxels. The scaling factors were 0.208 ± 0.041 for CBV, and 0.168 ± 0.037, 0.172 ± 0.037 for CBF calculated using standard and circulant singular value decomposition techniques, respectively. Conclusion. The automatic scaling and vessel removal techniques provide an alternative method for obtaining improved quantitative assessment of CBV and CBF in patients with thromboembolic cerebral arterial disease. PMID:23586033

  4. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  5. Radioisotopic flow scanning for portal blood flow and portal hypertension

    SciTech Connect

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-08-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed.

  6. Hemodilution increases cerebral blood flow in acute ischemic stroke

    SciTech Connect

    Vorstrup, S.; Andersen, A.; Juhler, M.; Brun, B.; Boysen, G.

    1989-07-01

    We measured cerebral blood flow in 10 consecutive, but selected, patients with acute ischemic stroke (less than 48 hours after onset) before and after hemodilution. Cerebral blood flow was measured by xenon-133 inhalation and emission tomography, and only patients with focal hypoperfusion in clinically relevant areas were included. Hemodilution was done according to the hematocrit level: for a hematocrit greater than or equal to 42%, 500 ml whole blood was drawn and replaced by the same volume of dextran 40; for a hematocrit between 37% and 42%, only 250 ml whole blood was drawn and replaced by 500 cc of dextran 40. Mean hematocrit was reduced by 16%, from 46 +/- 5% (SD) to 39 +/- 5% (SD) (p less than 0.001). Cerebral blood flow increased in both hemispheres by an average of 20.9% (p less than 0.001). Regional cerebral blood flow increased in the ischemic areas in all cases, on an average of 21.4 +/- 12.0% (SD) (p less than 0.001). In three patients, a significant redistribution of flow in favor of the hypoperfused areas was observed, and in six patients, the fractional cerebral blood flow increase in the hypoperfused areas was of the same magnitude as in the remainder of the brain. In the last patient, cerebral blood flow increased relatively less in the ischemic areas. Our findings show that cerebral blood flow increases in the ischemic areas after hemodilution therapy in stroke patients. The marked regional cerebral blood flow increase seen in some patients could imply an improved oxygen delivery to the ischemic tissue.

  7. Polyethylene glygol conjugated superoxide dismutase (PEG-SOD) improves recovery of hypercapnia cerebral blood flow (CBF) reactivity following transient global ischemia in piglets

    SciTech Connect

    Traystman, R.J.; Kirsch, J.R.; Helfaer, M.A.; Haun, S.E. )

    1991-03-15

    This study tested the hypothesis that alteration in hypercapnic cerebral blood flow (CBF) reactivity is due to oxygen-derived free radical mediated vascular damage and therefore could be inhibited by treatment with PEG-SOD. Pentobarbital anesthetized piglets were mechanically ventilated and hemodynamically monitored. CBF was measured at PaCO{sub 2} of approximately 25, 40 and 55 mmHg. Reactivity was tested in all piglets prior to and 2 hours following reperfusion from global ischemia. Control piglets received PEG prior to ischemia and at reperfusion. Experimental piglets received either PEG-SOD prior to ischemia and PEG at reperfusion or PEG prior to ischemia and PEG-SOD at reperfusion. During reperfusion cerebral perfusion pressure was maintained constant between groups by intravenous infusion of epinephrine. Pre-ischemic hypercapnic reactivity was not different between groups. At 2 hr reperfusion hypercapnic CBF reactivity in control piglets was diminished to forebrain and brainstem but hypercapnic reactivity was not different than preischemic values in either group receiving PEG-SOD. The authors conclude that administration of PEG-SOD, either prior to or following transient global ischemia, improves recovery of post-ischemic hypercapnic reactivity in piglets. This implicates oxygen-derived free radicals as important mediators of reperfusion injury in brain.

  8. Exercise Training Could Improve Age-Related Changes in Cerebral Blood Flow and Capillary Vascularity through the Upregulation of VEGF and eNOS

    PubMed Central

    Viboolvorakul, Sheepsumon; Patumraj, Suthiluk

    2014-01-01

    This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, n = 5), sedentary aged (SE-Aged, n = 8), immersed-aged (IM-Aged, n = 5), and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, n = 8) rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF) in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (P < 0.05). Moreover, the percentage of capillary vascularity (%CV) and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (P < 0.05). These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS. PMID:24822184

  9. Inhibition of Mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection.

    PubMed

    Zhang, Tong; Li, Zhuangjie; Dang, Huong; Chen, Ruoping; Liaw, Chen; Tran, Thuy-Anh; Boatman, P Douglas; Connolly, Daniel T; Adams, John W

    2012-01-01

    The Mas receptor is a class I G-protein-coupled receptor that is expressed in brain, testis, heart, and kidney. The intracellular signaling pathways activated downstream of Mas are still largely unknown. In the present study, we examined the expression pattern and signaling of Mas in the heart and assessed the participation of Mas in cardiac ischemia-reperfusion injury. Mas mRNA and protein were present in all chambers of human hearts, with cardiomyocytes and coronary arteries being sites of enriched expression. Expression of Mas in either HEK293 cells or cardiac myocytes resulted in constitutive coupling to the G(q) protein, which in turn activated phospholipase C and caused inositol phosphate accumulation. To generate chemical tools for use in probing the function of Mas, we performed a library screen and chemistry optimization program to identify potent and selective nonpeptide agonists and inverse agonists. Mas agonists activated G(q) signaling in a dose-dependent manner and reduced coronary blood flow in isolated mouse and rat hearts. Conversely, treatment of isolated rat hearts with Mas inverse agonists improved coronary flow, reduced arrhythmias, and provided cardioprotection from ischemia-reperfusion injury, an effect that was due, at least in part, to decreased cardiomyocyte apoptosis. Participation of Mas in ischemia-reperfusion injury was confirmed in Mas knockout mice, which had reduced infarct size relative to mice with normal Mas expression. These results suggest that activation of Mas during myocardial infarction contributes to ischemia-reperfusion injury and further suggest that inhibition of Mas-G(q) signaling may provide a new therapeutic strategy directed at cardioprotection. PMID:22003054

  10. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  11. CARBOXYHEMOGLOBIN AND BRAIN BLOOD FLOW IN HUMANS

    EPA Science Inventory

    It has been shown that with increased carboxyhemoglobin (COHb) and associated decrease in blood oxygen-carrying capacity, a compensatory increase in brain-blood flow (BBF) develops. he BBF response in humans has been shown to be quite variable. wo experiments were conducted in wh...

  12. Nutrient and nonnutrient renal blood flow

    SciTech Connect

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H. )

    1990-06-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%).

  13. Pancreatic blood flow in experimental acute pancreatitis

    SciTech Connect

    Berry, A.R.; Millar, A.M.; Taylor, T.V.

    1982-05-01

    The etiology and pathogenesis of acute necrotizing hemorrhagic pancreatitis remain controversial. Recent work has suggested that an early fall in pancreatic blood flow, causing ischemia, may be the initiating factor. Using an established rat model of hemorrhagic pancreatitis and the fractional indicator distribution technique with /sup 86/RbCl, pancreatic blood flow and tissue perfusion have been measured at various times in the condition. Six groups of ten rats were studied: control sham operation and pancreatitis groups were sacrificed at 1, 6, and 24 hr. Pancreatic blood flow (% of cardiac output) and perfusion (blood flow/g tissue) were measured. Blood flow was increased by a maximum of 53% at 1 hr (P less than 0.001) and remained elevated for 24 hr, and perfusion was increased by a maximum of 70% (P less than 0.001) at 1 hr and remained elevated at 6 hr. Pancreatic perfusion declines after 6 hr due to increasing gland edema. The results demonstrate a significant increase in pancreatic blood flow and perfusion in experimentally induced acute pancreatitis, suggesting a primary inflammatory response, and refute the ischemic etiological theory.

  14. Regulation of exercise blood flow: Role of free radicals.

    PubMed

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  15. Raynaud's disease: reduced hand blood flows with normal blood viscosity.

    PubMed

    McGrath, M A; Peek, R; Penny, R

    1978-04-01

    Hand blood flows and the blood and plasma viscosities were measured in patients with Raynaud's disease in an attempt to identify the mechanism of the episodic vascular insufficiency. Using venous occlusion plethysmography the following observations were made: (1) the hand blood flows were significantly less than in normals at 32 degrees, 27 degrees and 20 degrees C; (2) the percentage decrease in flow with cooling was greater in normals and (3) cooling of one hand from 32 degrees to 27 degrees C caused an abnormal decrease in flow through the contralateral hand. Using a rotational viscometer the blood and plasma viscosities were found to be normal at both high and low shear rates. The percentage increase in the blood viscosity with cooling from 35 degrees to 25 degrees was also normal. These studies demonstrate an increased constrictive response of the cutaneous vasculature of the hand to both local and reflex stimulation, and exclude a rheological abnormality, under conditions similar to those of the present study. PMID:277163

  16. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  17. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  18. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  19. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  20. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  1. Improved Whole-Blood-Staining Device

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian; Paul, Bonnie; Melton, Shannon; Guess, Terry

    2012-01-01

    Dramatic improvements have been made in NASA s Whole Blood Staining Device (WBSD) since it was last described in "Whole-Blood-Staining Device," NASA Tech Briefs, Vol. 23, No. 10 (October 1999), page 64. The new system has a longer shelf life, a simpler and more effective operational procedure, improved interface with instrumentation, and shorter processing time. More specifically, the improvements have targeted bag and locking clip materials, sampling ports, and air pocket prevention. The WBSD stains whole blood collected during spaceflight for subsequent flow cytometric analysis. In short, the main device stains white blood cells by use of monoclonal antibodies conjugated to various fluorochromes, followed by lysing and fixing of the cells by use of a commercial reagent that has been diluted according to NASA safety standards. This system is compact, robust, and does not require electric power, precise mixing, or precise incubation times. Figure 1 depicts the present improved version for staining applications, which is a poly(tetrafluoroethylene) bag with a Luer-lock port and plastic locking clips. An InterLink (or equivalent) intravenous- injection port screws into the Luer-lock port. The inflatable/collapsible nature of the bag facilitates loading and helps to minimize the amount of air trapped in the fully loaded bag. Some additional uses have been identified for the device beyond whole blood staining. The WBSD has been configured for functional assays that require culture of live cells by housing sterile culture media, mitogens, and fixatives prior to use [Figure 2(a)]. Simple injection of whole blood allows cell-stimulation culture to be performed in reduced gravity conditions, and product stabilization prior to storage, while protecting astronauts from liquid biohazardous materials. Also, the improved WBSD has reconstituted powdered injectable antibiotics by mixing them with diluent liquids [Figure 2(b)]. Although such mixing can readily be performed on

  2. Effect of trabeculectomy on ocular blood flow

    PubMed Central

    Berisha, F; Schmetterer, K; Vass, C; Dallinger, S; Rainer, G; Findl, O; Kiss, B; Schmetterer, L

    2005-01-01

    Background/aim: Current evidence suggests that vascular insufficiencies in the optic nerve head play an important part in the pathogenesis of glaucomatous optic neuropathy. Trabeculectomy is the most common operative procedure for the treatment of medically uncontrolled glaucoma. This study was conducted to investigate whether trabeculectomy may improve ocular haemodynamics. Methods: 30 patients with primary open angle glaucoma about to undergo trabeculectomy were included in the study. Patients were evaluated before surgery and at 2 and 10 weeks after trabeculectomy. Optic nerve head blood flow (OnhBF) was assessed with scanning laser Doppler flowmetry. Fundus pulsation amplitude (FPA) measurements were obtained with laser interferometry. Results: Because of the decrease in intraocular pressure there was a significant increase in ocular perfusion pressure (OPP) following trabeculectomy (18.5% (SD 12.0%) and 19.0% (17.1%) at 2 and 10 weeks postoperatively; p <0.001). A significant increase in OnhBF was observed after trabeculectomy (11.6% (16.4%) and 16.2% (20.2%) for each postoperative visit, respectively; p <0.001). FPA was also significantly higher compared with baseline values (17.2% (17.3%) and 17.4% (16.3%), respectively; p <0.001). A significant association between the increase in OPP and the increase in OnhBF and FPA was observed 10 weeks after surgery (r = 0.47; p = 0.009, and r = 0.50; p = 0.005, respectively). Conclusion: The results of this study suggest that trabeculectomy improves ocular blood flow in patients with chronic open angle glaucoma. PMID:15665350

  3. Modeling Blood Flow in the Aorta.

    ERIC Educational Resources Information Center

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  4. Angiogenesis and Improved Cerebral Blood Flow in the Ischemic Boundary Area Detected by MRI after Administration of Sildenafil to Rats with Embolic Stroke

    PubMed Central

    Li, Lian; Jiang, Quan; Zhang, Li; Ding, Guangliang; Zhang, Zheng Gang; Li, Qingjiang; Ewing, James R.; Lu, Mei; Panda, Swayamprava; Ledbetter, Karyn A.; Whitton, Polly A.; Chopp, Michael

    2007-01-01

    To dynamically investigate the long-term response of an ischemic lesion in rat brain to the administration of sildenafil, male Wistar rats subjected to embolic stroke were treated with sildenafil (n=11) or saline (n=10) at a dose of 10mg/Kg administered subcutaneously 24-hours after stroke and daily for an additional 6-days. Magnetic resonance images were acquired and functional performance was measured in all animals at 1-day, 2-days and weekly for 6-weeks post-stroke. All rats were sacrificed 6-weeks after stroke and endothelial barrier antigen immunostaining was employed for morphological analysis and quantification of cerebral vessels. Map-ISODATA was computed from T1, T2 and T1sat maps. ISODATA derived tissue signatures characterize the degree of ischemic injury. Based on the map-ISODATA calculated at 6-weeks, the ischemic lesion for each animal was divided into two specific regions, the ischemic boundary and ischemic core. The temporal profiles of cerebral blood flow (CBF) and tissue signature were retrospectively tracked in these two regions and were compared with histological evaluation and functional outcome. After 1-week of sildenafil treatment, the ischemic lesion exhibited two significantly different regions, with higher CBF level and correspondingly, lower tissue signature value in the boundary region than in the core region. Sildenafil treatment did not significantly reduce the lesion size, but did enhance angiogenesis. Functional performance was significantly increased after sildenafil treatment compared with the control group. Administration of sildenafil to rats with embolic stroke enhances angiogenesis and selectively increases the CBF level in the ischemic boundary, and improves neurological functional recovery compared to saline-treated rats. PMID:17188664

  5. Acupuncture affects regional blood flow in various organs.

    PubMed

    Uchida, Sae; Hotta, Harumi

    2008-06-01

    In this review, our recent studies using anesthetized animals concerning the neural mechanisms of vasodilative effect of acupuncture-like stimulation in various organs are briefly summarized. Responses of cortical cerebral blood flow and uterine blood flow are characterized as non-segmental and segmental reflexes. Among acupuncture-like stimuli delivered to five different segmental areas of the body; afferent inputs to the brain stem (face) and to the spinal cord at the cervical (forepaw), thoracic (chest or abdomen), lumbar (hindpaw) and sacral (perineum) levels, cortical cerebral blood flow was increased by stimuli to face, forepaw and hindpaw. The afferent pathway of the responses is composed of somatic groups III and IV afferent nerves and whose efferent nerve pathway includes intrinsic cholinergic vasodilators originating in the basal forebrain. Uterine blood flow was increased by cutaneous stimulation of the hindpaw and perineal area, with perineal predominance. The afferent pathway of the response is composed of somatic group II, III and IV afferent nerves and the efferent nerve pathway includes the pelvic parasympathetic cholinergic vasodilator nerves. Furthermore, we briefly summarize vasodilative regulation of skeletal muscle blood flow via a calcitonin gene-related peptide (CGRP) induced by antidromic activation of group IV somatic afferent nerves. These findings in healthy but anesthetized animals may be applicable to understanding the neural mechanisms improving blood flow in various organs following clinical acupuncture. PMID:18604254

  6. Mesoscale simulation of blood flow in microvessels

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2006-11-01

    Computational modeling of blood flow in microvessels (20--500 micron) is a major challenge. Blood in such vessels behaves as a multiphase suspension of deformable particles. Individual red blood cell (RBC), which is highly deformable, must be considered in the model. Multiple cells, often a few thousands in number, must also be considered. We present two dimensional computational simulation of blood flow in 20--300 micron vessels at discharge hematocrit of 10--60 percent taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population of up to 2500 cells is simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell- free layer are studied. Results on the trajectory and velocity traces of the RBCs are presented. Also presented are the plug flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The computational results are in good agreement with the experimental results of Bishop et al (2001, 2002) and Pries et al (1992).

  7. Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels.

    PubMed

    McHedlishvili, G; Maeda, N

    2001-02-01

    The review article deals with phenomena of the blood flow structure (structuring) in narrow microvessels-capillaries and the adjacent arterioles and venules. It is particularly focused on the flow behavior of red blood cells (RBCs), namely, on their specific arrangements of mutual interaction while forming definite patterns of self-organized microvascular flow. The principal features of the blood flow structure in microvessels, including capillaries, include axial RBC flow and parietal plasma layer, velocity profile in larger microvessels, plug (or bolus) flow in narrow capillaries, and deformation and specific behavior of the RBCs in the flow. The actual blood flow structuring in microvessels seems to be a most significant factor in the development of pathological conditions, including arterial hypertension, brain and cardiac infarctions, inflammation, and many others. The blood flow structuring might become a basic concept in determining the blood rheological properties and disorders in the narrow microvessels. No solid theoretical (biorheological) basis of the blood flow structuring in microvessel has been found, but in the future it might become a foundation for a better understanding of the mechanisms of these properties under normal and pathological conditions in the narrowest microvessels 5 to 25 microm large. It is also a topic for further biorheological research directed to find the background of actual physiopathological phenomena in the microcirculation. PMID:11281993

  8. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  9. Blood flow distribution in cerebral arteries

    PubMed Central

    Zarrinkoob, Laleh; Ambarki, Khalid; Wåhlin, Anders; Birgander, Richard; Eklund, Anders; Malm, Jan

    2015-01-01

    High-resolution phase–contrast magnetic resonance imaging can now assess flow in proximal and distal cerebral arteries. The aim of this study was to describe how total cerebral blood flow (tCBF) is distributed into the vascular tree with regard to age, sex and anatomic variations. Forty-nine healthy young (mean 25 years) and 45 elderly (mean 71 years) individuals were included. Blood flow rate (BFR) in 21 intra- and extracerebral arteries was measured. Total cerebral blood flow was defined as BFR in the internal carotid plus vertebral arteries and mean cerebral perfusion as tCBF/brain volume. Carotid/vertebral distribution was 72%/28% and was not related to age, sex, or brain volume. Total cerebral blood flow (717±123 mL/min) was distributed to each side as follows: middle cerebral artery (MCA), 21% distal MCA, 6% anterior cerebral artery (ACA), 12%, distal ACA, 4% ophthalmic artery, 2% posterior cerebral artery (PCA), 8% and 20% to basilar artery. Deviating distributions were observed in subjects with ‘fetal' PCA. Blood flow rate in cerebral arteries decreased with increasing age (P<0.05) but not in extracerebral arteries. Mean cerebral perfusion was higher in women (women: 61±8; men: 55±6 mL/min/100 mL, P<0.001). The study describes a new method to outline the flow profile of the cerebral vascular tree, including reference values, and should be used for grading the collateral flow system. PMID:25564234

  10. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  11. Transcutaneous measurement of volume blood flow

    NASA Technical Reports Server (NTRS)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  12. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  13. Blood flow dynamics in the snake spectacle.

    PubMed

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed. PMID:24172887

  14. Effects of flow geometry on blood viscoelasticity.

    PubMed

    Thurston, George B; Henderson, Nancy M

    2006-01-01

    The viscoelastic properties of blood are dominated by microstructures formed by red cells. The microstructures are of several types such as irregular aggregates, rouleaux, and layers of aligned cells. The dynamic deformability of the red cells, aggregation tendency, cell concentration, size of confining vessel and rate of flow are determining factors in the microstructure. Viscoelastic properties, viscosity and elasticity, relate to energy loss and storage in flowing blood while relaxation time and Weissenberg number play a role in assessing the importance of the elasticity relative to the viscosity. These effects are shown herein for flow in a large straight cylindrical tube, a small tube, and a porous medium. These cases approximate the geometries of the arterial system: large vessels, small vessels and vessels with many branches and bifurcations. In each case the viscosity, elasticity, relaxation time and Weissenberg number for normal human blood as well as blood with enhanced cell aggregation tendency and diminished cell deformability are given. In the smaller spaces of the microtubes and porous media, the diminished viscosity shows the possible influence of the Fåhraeus-Lindqvist effect and at high shear rates, the viscoelasticity of blood shows dilatancy. This is true for normal, aggregation enhanced and hardened cells. PMID:17148856

  15. Ergot alkaloids decrease rumen epithelial blood flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  16. Hypovolemic shock, pancreatic blood flow, and pancreatitis.

    PubMed

    Robert, J H; Toledano, A E; Toth, L S; Premus, G; Dreiling, D A

    1988-05-01

    Electromagnetic blood flow determinations were carried out on the superior pancreatic duodena (SPDA), the splenic (SA) and the superior mesenteric (SMA) arteries and compared to cardiac output (CO, thermodilution technique) in 12 anesthetized dogs submitted to hypovolemic shock of various duration: 5 dogs underwent a one-hour and 7 a three-hour period of shock. A 50 mm Hg level of mean arterial blood pressure (MABP) was maintained throughout hypovolemia. Dogs were then reinfused. Control preshock values were 4.12 l/min for CO, 38.0 ml/min for SPDA, 405.9 ml/min for SA, and 963.6 ml/min for SMA. SPDA, SA and SMA flows expressed as % of CO amounted to 0.9, 9.8 and 23.4% respectively. No significant changes in SPDA and SMA flows were noted within the first hour of shock. However, from the end of the second hour on, both flows differed significantly (P less than 0.01), SMA increasing from -75.6% of its control value at the end of bleeding to -61.0%, and SPDA decreasing from -75.6 to -86.9%. Similar observations were made when respective flows were considered as % of CO. The SA behaved somewhat in an intermediate fashion. This relative spoliation in pancreatic blood supply as hypovolemia proceeds supports an ischemic etiology of acute pancreatitis (AP), which could account for some of the so-called idiopathic cases of AP. PMID:3385221

  17. Local aggregation characteristics of microscale blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, Efstathios; Sherwood, Joseph M.; Dusting, Jonathan; Balabani, Stavroula

    2015-11-01

    Erythrocyte aggregation (EA) is an important aspect of microvascular flows affecting blood flow and viscosity. Microscale blood flows have been studied extensively in recent years using computational and microfluidic based approaches. However, the relationship between the local structural characteristics of blood and the velocity field has not been quantified. We report simultaneous measurements of the local velocity, aggregation and haematocrit distributions of human erythrocytes flowing in a microchannel. EA was induced using Dextran and flows were imaged using brightfield microscopy. Local aggregation characteristics were investigated using statistical and edge-detection image processing techniques while velocity profiles were obtained using PIV algorithms. Aggregation intensity was found to strongly correlate with local variations in velocity in both the central and wall regions of the channel. The edge detection method showed that near the side wall large aggregates are associated with high local velocities and low local shear rates. In the central region large aggregates occurred in regions of low velocity and high erythrocyte concentration. The results demonstrate the combined effect of haematocrit and velocity distributions on local aggregation characteristics.

  18. Modeling of blood flow in arterial trees.

    PubMed

    Anor, Tomer; Grinberg, Leopold; Baek, Hyoungsu; Madsen, Joseph R; Jayaraman, Mahesh V; Karniadakis, George E

    2010-01-01

    Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees. We discuss alternative approaches and validity of various assumptions often made to simplify the modeling. To highlight the similarities and discrepancies of data computed with different models, computationally intensive three-dimensional (3D) and inexpensive one-dimensional (1D) flow simulations in very large arterial networks are employed. Finally, we discuss the possibilities, challenges, and limitations of the computational methods for predicting outcomes of therapeutic interventions for individual patients. PMID:20836052

  19. [Blood regulation in Brazil: contextualization for improvement].

    PubMed

    Silva Júnior, João Batista; Costa, Christiane da Silva; Baccara, João Paulo de Araújo

    2015-10-01

    The use of blood products as essential medicines and the recognition of the high risk associated with blood transfusions require governments to take regulatory action with a focus on quality and safety. In this scenario, regulatory agencies play an essential role in socially advancing the guarantee that blood components will be produced according to current operating rules. Thus, in the effort to manage sanitary risks involved in the processing and use of blood, the Brazilian regulatory model, based on the construction of a national blood policy overseen by the State, has undergone conceptual improvement and review of the tools employed to achieve its goals. With the inclusion of good manufacturing practices as part of the Brazilian norms, as recommended by the World Health Organization, the country has moved forward in its view of blood facilities as manufacturing centers producing blood-derived biologics for therapeutic applications. It has also strengthened the need to develop safety mechanisms for blood donors and recipients. The development of a State-coordinated national blood policy and the institution of a national surveillance system with legitimate power of inspection are essential elements used in Brazil to guarantee the amount, quality, safety, and timeliness of blood supply to the population. The present article aims to discuss the present context of the blood regulatory model in Brazil so as to identify the challenges for improvement of this model. PMID:26758225

  20. Dexmedetomidine decreases the oral mucosal blood flow.

    PubMed

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  1. Ocular Blood Flow and Normal Tension Glaucoma

    PubMed Central

    Fan, Ning; Wang, Pei; Tang, Li; Liu, Xuyang

    2015-01-01

    Normal tension glaucoma (NTG) is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP) does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI), magnetic resonance imaging (MRI), and laser speckle flowgraphy (LSFG), have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer's disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction. PMID:26558263

  2. Ocular Blood Flow and Normal Tension Glaucoma.

    PubMed

    Fan, Ning; Wang, Pei; Tang, Li; Liu, Xuyang

    2015-01-01

    Normal tension glaucoma (NTG) is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP) does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI), magnetic resonance imaging (MRI), and laser speckle flowgraphy (LSFG), have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer's disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction. PMID:26558263

  3. Measurement of Liver Blood Flow: A Review

    PubMed Central

    Stansby, G. P.; Hobbs, K. E. F.; Hawkes, D. J.; Colchester, A. C. F.

    1991-01-01

    The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The liver has the most complicated circulation of any organ and many physiological and pathological processes can affect it1,2. This review surveys the methods available for assessing liver blood flow, examines the different parameters being measured and outlines problems of applicability and interpretation for each technique. The classification of these techniques is to some extent arbitrary and several so called “different” methods may share certain common principles. The methods reviewed have been classified into two groups (Table 1): those primarily reflecting flow through discrete vessels or to the whole organ and those used to assess local microcirculatory blood flow. All techniques have their advantages and disadvantages and in some situations a combination may provide the most information. In addition, because of the many factors affecting liver blood flow and sinusoidal perfusion, readings in a single subject may vary depending on positioning, recent food intake, anxiety, anaesthesia and drug therapy. This must be borne in mind if different studies are to be meaningfully compared. PMID:1931785

  4. Global impairment of coronary blood flow in the setting of acute coronary syndromes (a RESTORE substudy). Randomized Efficacy Study of Tirofiban for Outcomes and Restenosis.

    PubMed

    Gibson, C M; Goel, M; Murphy, S A; Dotani, I; Marble, S J; Deckelbaum, L I; Dodge, J T; King, S B

    2000-12-15

    Acute coronary syndromes result in a global impairment of coronary blood flow with nonculprit artery blood flow being associated with culprit artery flow and vice versa. Improvements in nonculprit artery flow are related to improvements in culprit artery flow after percutaneous intervention; nonculprit arteries with abnormal flow sustain greater improvements in their flow after culprit artery intervention. PMID:11113417

  5. X-ray PIV measurements of blood flows without tracer particles

    NASA Astrophysics Data System (ADS)

    Kim, Guk Bae; Lee, Sang Joon

    2006-08-01

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects.

  6. Caffeine reduces myocardial blood flow during exercise.

    PubMed

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes. PMID:23764265

  7. Deterministic Aperiodic Sickle Cell Blood Flows

    NASA Astrophysics Data System (ADS)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  8. Myocardial blood flow: Roentgen videodensitometry techniques

    NASA Technical Reports Server (NTRS)

    Smith, H. C.; Robb, R. A.; Wood, E. H.

    1975-01-01

    The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.

  9. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  10. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  11. Gender Differences in Ocular Blood Flow

    PubMed Central

    Schmidl, Doreen; Garhöfer, Gerhard; Popa-Cherecheanu, Alina

    2015-01-01

    Gender medicine has been a major focus of research in recent years. The present review focuses on gender differences in the epidemiology of the most frequent ocular diseases that have been found to be associated with impaired ocular blood flow, such as age-related macular degeneration, glaucoma and diabetic retinopathy. Data have accumulated indicating that hormones have an important role in these diseases, since there are major differences in the prevalence and incidence between men and pre- and post-menopausal women. Whether this is related to vascular factors is, however, not entirely clear. Interestingly, the current knowledge about differences in ocular vascular parameters between men and women is sparse. Although little data is available, estrogen, progesterone and testosterone are most likely important regulators of blood flow in the retina and choroid, because they are key regulators of vascular tone in other organs. Estrogen seems to play a protective role since it decreases vascular resistance in large ocular vessels. Some studies indicate that hormone therapy is beneficial for ocular vascular disease in post-menopausal women. This evidence is, however, not sufficient to give any recommendation. Generally, remarkably few data are available on the role of sex hormones on ocular blood flow regulation, a topic that requires more attention in the future. PMID:24892919

  12. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping

    2005-12-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  13. Operative blood transfusion quality improvement audit

    PubMed Central

    Al Sohaibani, Mazen; Al Malki, Assaf; Pogaku, Venumadhav; Al Dossary, Saad; Al Bernawi, Hanan

    2014-01-01

    Context: To determine how current anesthesia team handless the identification of surgical anaesthetized patient (right patient). And the check of blood unit before collecting and immediately before blood administration (right blood) in operating rooms where nurses have minimal duties and responsibility to handle blood for transfusion in anaesthetized patients. Aims: To elicit the degree of anesthesia staff compliance with new policies and procedures for anaesthetized surgical patient the blood transfusion administration. Settings and Design: Setting: A large tertiary care reference and teaching hospital. Design: A prospective quality improvement. Elaboration on steps for administration of transfusion from policies and procedures to anaesthetized patients; and analysis of the audit forms for conducted transfusions. Subjects and Methods: An audit form was used to get key performance indicators (KPIs) observed in all procedures involve blood transfusion and was ticked as item was met, partially met, not met or not applicable. Statistical Analysis Used: Descriptive statistics as number and percentage Microsoft excel 2003. Central quality improvement committee presented the results in number percentage and graphs. Results: The degree of compliance in performing the phases of blood transfusion by anesthesia staff reached high percentage which let us feel certain that the quality is assured that the internal policy and procedures (IPP) are followed in the great majority of all types of red cells and other blood products transfusion from the start of requesting the blood or blood product to the prescript of checking the patient in the immediate post-transfusion period. Conclusions: Specific problem area of giving blood transfusion to anaesthetized patient was checking KPI concerning the phases of blood transfusion was audited and assured the investigators of high quality performance in procedures of transfusion. PMID:25886107

  14. Restoring Blood Flow Beats Exercise for Poor Leg Circulation

    MedlinePlus

    ... news/fullstory_158683.html Restoring Blood Flow Beats Exercise for Poor Leg Circulation Opening vessels could prevent ... restore blood flow may have greater benefits than exercise, preliminary research suggests. People with peripheral artery disease ( ...

  15. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. PMID:26071649

  16. Gender differences in regional cerebral blood flow

    SciTech Connect

    Gur, R.E.; Gur, R.C. )

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined.

  17. Foetal placental blood flow in the lamb

    PubMed Central

    Faber, J. Job; Green, Thomas J.

    1972-01-01

    1. Fifteen sheep foetuses of 1·5-5·2 kg body weight were prepared with indwelling arterial and venous catheters for experimentation one to six days later. 2. Unanaesthetized foetuses were found to have mean arterial and central venous blood pressures of 40 ± 1·5 (S.E. of mean) and 2·0 ± 0·3 (S.E. of mean) mm Hg respectively, compared to intra-uterine pressure. Intra-uterine pressure was 16 ± 0·8 (S.E. of mean) mm Hg with respect to atmospheric pressure at mid-uterine level. 3. Mean placental blood flow of the foetuses was 199 ± 20 (S.E. of mean) ml./(min.kg body wt.). Mean cardiac output in eleven of the foetuses was 658 ± 102 (S.E. of mean) ml./(min.kg). 4. Mean foetal and maternal colloid osmotic pressures were 17·5 ± 0·7 (S.E. of mean) and 20·5 ± 0·6 (S.E. of mean) mm Hg respectively at 38° C. 5. Intravenous infusions into six ewes of 1·8 mole of mannitol and 0·4 mole of NaCl resulted in significant increases in foetal plasma osmolarity, sodium, potassium, and haemoglobin concentrations, without detectable transfer of mannitol to the foetal circulation. 6. In the sheep placenta there is osmotic and hydrostatic equilibration of water. As a consequence, there should be an interaction between foetal placental blood flow and foetal water exchange with the maternal circulation. It was concluded that this interaction tends to stabilize foetal placental blood flow. PMID:5039279

  18. Unsteady Flow in Stenotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy L.; Devi Williamson, Shobha; Berger, Stanley A.; Saloner, David

    2003-11-01

    Recent studies show that many heart attacks and strokes occur from sudden rupture of partially occluding atherosclerotic plaque rather than total vessel occlusion. Our goal is to understand how the mechanical forces induced by blood flow on specific plaque deposits makes them vulnerable to rupture. Models of severely stenotic carotid bifurcations are created from MR images and grids generated for the flow domains. The three-dimensional, unsteady, incompressible Navier-Stokes equations in finite-volume form are solved numerically using physiological boundary conditions. During systole a high velocity jet forms at the stenotic throat in one of the branches, and a long recirculation zone is observed downstream of the plaque. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady with chaotic streamlines. Whereas flow in healthy arteries is laminar, irregular geometries and sharp changes in vessel diameter of a severely stenotic artery significantly disrupt the flow, with consequences for shear and normal wall stresses at the wall, and important implications for plaque stability. Supported by NIH Grant HL61823

  19. Regional cerebral blood flow in childhood headache

    SciTech Connect

    Roach, E.S.; Stump, D.A.

    1989-06-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical.

  20. Myocardial Ischemia: Lack of Coronary Blood Flow or Myocardial Oxygen Supply/Demand Imbalance?

    PubMed

    Heusch, Gerd

    2016-07-01

    Regional myocardial blood flow and contractile function in ischemic myocardium are well matched, and there is no evidence for an oxygen supply/demand imbalance. Thus, myocardial ischemia is lack of coronary blood flow with electric, functional, metabolic, and structural consequences for the myocardium. All therapeutic interventions must aim to improve blood flow to ischemic myocardium as much and as quickly as possible. PMID:27390331

  1. Renal pericytes: regulators of medullary blood flow

    PubMed Central

    Kennedy-Lydon, T M; Crawford, C; Wildman, S S P; Peppiatt-Wildman, C M

    2013-01-01

    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla. PMID:23126245

  2. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  3. Integrative regulation of human brain blood flow.

    PubMed

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-03-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  4. Numerical analysis of blood flow in the clearance regions of a continuous flow artificial heart pump.

    PubMed

    Anderson, J; Wood, H G; Allaire, P E; Olsen, D B

    2000-06-01

    The CFVAD3 is the third prototype of a continuous flow ventricular assist device being developed for implantation in humans. The pump consists of a fully shrouded 4-blade impeller supported by magnetic bearings. On either side of this suspended rotating impeller is a small clearance region through which the blood flows. The spacing and geometry of these clearance regions are very important to the successful operation of this blood pump. Computational fluid dynamics (CFD) solutions for this flow were obtained using TascFlow, a software package available from AEA Technology, U.K. Flow in these clearance regions was studied parametrically by varying the size of the clearance, the blood flow rate into the pump, and the rotational speed of the pump. The numerical solutions yield the direction and magnitude of the flow and the dynamic pressure. Experimentally measured pump flow rates are compared to the numerical study. The results of the study provide guidance for improving pump efficiency. It is determined that current clearances can be significantly reduced to improve pump efficiency without negative impacts. PMID:10886072

  5. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  6. Quantitative Assessment of Myocardial Blood Flow with SPECT.

    PubMed

    Petretta, Mario; Storto, Giovanni; Pellegrino, Teresa; Bonaduce, Domenico; Cuocolo, Alberto

    2015-01-01

    The quantitative assessment of myocardial blood flow (MBF) and coronary flow reserve (CFR) may be useful for the functional evaluation of coronary artery disease, allowing judgment of its severity, tracking of disease progression, and evaluation of the anti-ischemic efficacy of therapeutic strategies. Quantitative estimates of myocardial perfusion and CFR can be derived from single-photon emission computed tomography (SPECT) myocardial perfusion images by use of equipment, tracers, and techniques that are available in most nuclear cardiology laboratories. However, this method underestimates CFR, particularly at high flow rates. The recent introduction of cardiac-dedicated gamma cameras with solid-state detectors provides very fast perfusion imaging with improved resolution, allowing fast acquisition of serial dynamic images during the first pass of a flow agent. This new technology holds great promise for MBF and CFR quantification with dynamic SPECT. Future studies will clarify the effectiveness of dynamic SPECT flow imaging. PMID:25560327

  7. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging

    PubMed Central

    You, Jiang; Du, Congwu; Volkow, Nora D.; Pan, Yingtian

    2014-01-01

    Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible. PMID:25401033

  8. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.

    1988-12-22

    An improved method of chemical synthesis of radiohalogenated thienylethylamine derivatives useful in brain imaging is described. These 5-halo-thiophene-2-isopropyl amines readily cross the blood- brain barrier and are retained in the brain for a sufficient length of time to allow evaluation of regional blood flow in the cerebrum. The advantages of the invention include a simpler synthesis route and a final compound which is less diluted with nonradioactive halogen. Use of this invention will allow clearer radioimaging or lower radiation doses to the patient, depending on the objective. 2 figs., 1 tab. (MHB)

  9. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound

    PubMed Central

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Heo, Jung; Lee, DongHak; Choi, Jung-il

    2015-01-01

    Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance. PMID:26078773

  10. Cerebral blood flow in humans following resuscitation from cardiac arrest

    SciTech Connect

    Cohan, S.L.; Mun, S.K.; Petite, J.; Correia, J.; Tavelra Da Silva, A.T.; Waldhorn, R.E.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage.

  11. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  12. Dynamic radioisotope bone imaging as a noninvasive indicator of canine tibial blood flow

    SciTech Connect

    Nutton, R.W.; Fitzgerald, R.H. Jr.; Brown, M.L.; Kelly, P.J.

    1984-01-01

    The relative values of dynamic and static bone imaging with hydroxymethylenediphosphonate technetium /sup 99m/ (/sup 99m/Tc HDP) as an indicator of bone blood flow was investigated in the tibia of mature dogs. The dynamic bone scan consisted of 60 1-s images formed after the intravenous injection of /sup 99m/Tc HDP, and the static bone scan was a 45-min uptake image. Blood flow to the tibia was determined by using radioactively labeled microspheres. Studies were carried out in control dogs, in dogs in which blood flow was increased in one leg with ATP, and in dogs in which blood flow was decreased in one leg with norepinephrine. A significant linear relationship between the dynamic scan values and bone blood flow was found at a wide range of blood flow rates. When blood flow increased by more than 50%, the effects of diffusion limitation were seen in the static scans: increase in tracer uptake was disproportionately small for a significant increase in blood flow. There is no method currently available for estimating bone blood flow by a noninvasive technique. The method described here may be useful for providing a semiquantitative measure of bone blood flow. This improved versatility of bone imaging may have a role in the management of osteomyelitis or complicated fractures, or in assessing the viability of vascularized bone grafts.

  13. Effects of vasoactive stimuli on blood flow to choroid plexus

    SciTech Connect

    Faraci, F.M.; Mayhan, W.G.; Williams, J.K.; Heistad, D.D. )

    1988-02-01

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-{mu}m microspheres were similar, which suggest that shunting of 15-{mu}m microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 {plus minus} 26 (means {plus minus} SE) ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} in dogs and 385 {plus minus} 73 ml {center dot} min{sup {minus}1} 100 g{sup {minus}1} in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by {approx} 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum.

  14. Mechanical axial flow blood pump to support cavopulmonary circulation.

    PubMed

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  15. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  16. Blood-Flow Magnetic Resonance Imaging of Retinal Degeneration

    PubMed Central

    Li, Yingxia; Cheng, Haiying; Shen, Qiang; Kim, Moon; Thule, Peter M; Olson, Darin E; Pardue, Machelle T; Duong, Timothy Q

    2009-01-01

    Purpose To investigate quantitative basal blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas of the Royal-College-of-Surgeons (RCS) rats with spontaneous retinal degeneration and to compare with those of normal rat retinas. Methods Experiments were performed on male RCS rats at post-natal day P90 (n=4), P220 (n=5) and age-matched controls at P90 (n=7) and P220 (n=6). Hyperoxic (100% O2) and hypercapnic (5% CO2, 21% O2, balance N2) challenges were used to modulate blood flow. Quantitative baseline blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas were imaged using continuous arterial-spin-labeling magnetic resonance imaging at 90×90×1500 μm. Results In the normal rat retinas, basal blood flow was 5.5ml/gram/min, significantly higher than those reported in the brain (∼1ml/gram/min). Hyperoxia decreased blood flow due to vasoconstriction and hypercapnia increased blood flow due to vasodilation in the normal retinas. In the RCS rat retinas, basal blood flow was diminished significantly (P<0.05). Interestingly, absolute hyperoxia- and hypercapnia-induced blood-flow changes in the RCS retinas were not statistically different from those in the normal retinas (P>0.05). However, percent changes in blood-flow were significantly larger than in normal retinas due to lower basal blood flow. Conclusion Retinal degeneration markedly reduces basal blood-flow but does not appear to impair vascular reactivity. These data also suggest caution when interpreting the relative stimulus-evoked functional MRI changes in diseased states where basal parameters are significantly perturbed. Quantitative blood-flow MRI may serve as a valuable tool to study the retina without depth limitation. PMID:18952917

  17. Cerebral blood flow tomography with xenon-133

    SciTech Connect

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  18. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    PubMed Central

    2004-01-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation. PMID:15841265

  19. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  20. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  1. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  2. Improving cord blood transplantation in children.

    PubMed

    Locatelli, Franco

    2009-10-01

    Umbilical cord blood transplantation (UCBT) is widely used to treat children affected by many disorders. In comparison to bone marrow transplantation, the advantages of UCBT are represented by lower incidence and severity of graft-versus-host disease, easier procurement and prompter availability of cord blood cells, and by the possibility of using donors showing human leucocyte antigen disparities with the recipient. Despite these advantages, the large experience gained over the last decade has clearly demonstrated that UCBT patients may be exposed to an increased risk of early fatal complications, due to the lower engraftment rate of donor haematopoiesis, delayed kinetics of neutrophil recovery and lack of adoptive transfer of pathogen-specific memory T-cells. An inverse correlation between the number of nucleated cord blood cells infused per kilogramme recipient body weight and the risk of dying from transplantation-related causes exists. Thus, it is not surprising that strategies aimed at increasing the number of cord blood progenitors, favouring stem cell homing, and transferring pathogen-specific lymphocytes, have been recently investigated. In particular, selection of the richest cord blood units, infusion of 2 units in the same recipient, intrabone injection of cord blood cells, and transplantation of ex-vivo expanded progenitors can contribute to improve the results of UCBT. PMID:19796271

  3. Volumetric liquid flow measurement through thermography to simulate blood flow in an artery

    NASA Astrophysics Data System (ADS)

    Villaseñor-Mora, Carlos; Rabell-Montiel, Adela; González-Vega, Arturo; Gutierrez-Juarez, Gerardo

    2015-09-01

    Encouraged to improve the procedure to measure the blood flow in cases with peripheral artery disease using thermography, that allows to evaluate several arteries simultaneously, it was developed an alternative to measure the volumetric flow through a conduit, it was studied the variation of the thermal energy computed from thermal images due to changes in flow at different temperatures, and it was observed that the measurement is not strongly influenced by the emissivity of the conduit, the ambient temperature and humidity, but that is necessary to establish an adequate calibration of the camera to can use it as measurement instrument.

  4. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  5. Topical menthol increases cutaneous blood flow.

    PubMed

    Craighead, Daniel H; Alexander, Lacy M

    2016-09-01

    Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol+ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol+ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux·mmHg(-1)) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 vs 1.1±0.19CVC: p<0.001). During the dose-response, SkBF increased with increasing doses of menthol (main effect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol

  6. Cerebral blood flow in normal pressure hydrocephalus

    SciTech Connect

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-11-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed.

  7. Intraoperative cerebral blood flow imaging of rodents

    NASA Astrophysics Data System (ADS)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  8. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  9. Mapping blood flow directionality in the human brain.

    PubMed

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis. PMID:26968145

  10. Pulp blood flow assessment in human teeth by laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Pettersson, Hans; Oberg, P. Ake

    1991-05-01

    A laser Doppler instrument has been designed for blood flow measurements in the human pulp. By using infrared laser light from a laser diode the penetration into the tooth is considerably improved in comparison with earlier He-Ne measurements. A hand-held, pen-shaped probe facilitates the clinical use of the instrument. Restricted blood flow conditions in trauma patients, as well as the heart-rate synchronous pulsating nature of pulp blood in normal subjects, have been investigated.

  11. Blood flow in microvascular networks: A study in nonlinear biology

    PubMed Central

    Geddes, John B.; Carr, Russell T.; Wu, Fan; Lao, Yingyi; Maher, Meaghan

    2010-01-01

    Plasma skimming and the Fahraeus–Lindqvist effect are well-known phenomena in blood rheology. By combining these peculiarities of blood flow in the microcirculation with simple topological models of microvascular networks, we have uncovered interesting nonlinear behavior regarding blood flow in networks. Nonlinearity manifests itself in the existence of multiple steady states. This is due to the nonlinear dependence of viscosity on blood cell concentration. Nonlinearity also appears in the form of spontaneous oscillations in limit cycles. These limit cycles arise from the fact that the physics of blood flow can be modeled in terms of state dependent delay equations with multiple interacting delay times. In this paper we extend our previous work on blood flow in a simple two node network and begin to explore how topological complexity influences the dynamics of network blood flow. In addition we present initial evidence that the nonlinear phenomena predicted by our model are observed experimentally. PMID:21198135

  12. Quantitative Estimation of Tissue Blood Flow Rate.

    PubMed

    Tozer, Gillian M; Prise, Vivien E; Cunningham, Vincent J

    2016-01-01

    The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging.Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method. PMID:27172960

  13. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  14. Transport of platelets in flowing blood.

    PubMed

    Eckstein, E C; Bilsker, D L; Waters, C M; Kippenhan, J S; Tilles, A W

    1987-01-01

    Distribution and transport of platelets in flowing blood were studied experimentally using suspensions of washed red cells and fluorescent latex beads as platelet analogues. Distributions of the platelet analogues were obtained from stroboscopic epifluorescence photomicrographs of flow in 50-micron channels and from images of the cut cross sections of cryogenically frozen thin-walled 200-micron tubes. Concentration profiles of platelet analogues had a substantial near-wall excess for situations with a substantial hematocrit (greater than 10%) and a substantial wall shear rate (greater than 400 s-1). The viscosity of the suspending fluid was found to affect the size of the near-wall excess and its shear-dependent onset. Additionally, the shear-rate dependence of the near-wall excess did not occur with suspensions of hardened red cells. The excess extended a substantial distance from the wall in the 200-micron tubes and a portion of the profile could be fitted to an exponential curve. The random walk model that is used to describe enhanced platelet diffusion is envisioned as a walk (lateral platelet motion) caused by shear-induced collisions with red cells. A more comprehensive random walk model that includes biased collisions produces an effective lateral motion of convective nature in addition to a diffusional motion; it is used to explain the observed nonuniform distributions of platelet analogues. PMID:3439741

  15. Noninvasive method of estimating human newborn regional cerebral blood flow

    SciTech Connect

    Younkin, D.P.; Reivich, M.; Jaggi, J.; Obrist, W.; Delivoria-Papadopoulos, M.

    1982-12-01

    A noninvasive method of estimating regional cerebral blood flow (rCBF) in premature and full-term babies has been developed. Based on a modification of the /sup 133/Xe inhalation rCBF technique, this method uses eight extracranial NaI scintillation detectors and an i.v. bolus injection of /sup 133/Xe (approximately 0.5 mCi/kg). Arterial xenon concentration was estimated with an external chest detector. Cerebral blood flow was measured in 15 healthy, neurologically normal premature infants. Using Obrist's method of two-compartment analysis, normal values were calculated for flow in both compartments, relative weight and fractional flow in the first compartment (gray matter), initial slope of gray matter blood flow, mean cerebral blood flow, and initial slope index of mean cerebral blood flow. The application of this technique to newborns, its relative advantages, and its potential uses are discussed.

  16. Bone blood flow after spinal paralysis in the rat

    SciTech Connect

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K. )

    1990-05-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow.

  17. A Discussion on the Regulation of Blood Flow and Pressure.

    PubMed

    Wolff, Christopher B; Collier, David J; Shah, Mussadiq; Saxena, Manish; Brier, Timothy J; Kapil, Vikas; Green, David; Lobo, Melvin

    2016-01-01

    This paper discusses two kinds of regulation essential to the circulatory system: namely the regulation of blood flow and that of (systemic) arterial blood pressure. It is pointed out that blood flow requirements sub-serve the nutritional needs of the tissues, adequately catered for by keeping blood flow sufficient for the individual oxygen needs. Individual tissue oxygen requirements vary between tissue types, while highly specific for a given individual tissue. Hence, blood flows are distributed between multiple tissues, each with a specific optimum relationship between the rate of oxygen delivery (DO2) and oxygen consumption (VO2). Previous work has illustrated that the individual tissue blood flows are adjusted proportionately, where there are variations in metabolic rate and where arterial oxygen content (CaO2) varies. While arterial blood pressure is essential for the provision of a sufficient pressure gradient to drive blood flow, it is applicable throughout the arterial system at any one time. Furthermore, It is regulated independently of the input resistance to individual tissues (local arterioles), since they are regulated locally, that being the means by which the highly specific adequate local requirement for DO2 is ensured. Since total blood flow is the summation of all the individually regulated tissue blood flows cardiac inflow (venous return) amounts to total tissue blood flow and as the heart puts out what it receives cardiac output is therefore determined at the tissues. Hence, regulation of arterial blood pressure is independent of the distributed independent regulation of individual tissues. It is proposed here that mechanical features of arterial blood pressure regulation will depend rather on the balance between blood volume and venous wall tension, determinants of venous pressure. The potential for this explanation is treated in some detail. PMID:26782204

  18. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    NASA Astrophysics Data System (ADS)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  19. Blood flow distribution in submerged and surface-swimming ducks.

    PubMed

    Stephenson, R; Jones, D R

    1992-05-01

    Observations that the response of the avian heart rate to submergence varies under different circumstances have led to speculation about variability of blood flow distribution during voluntary dives. We used a radiological imaging technique to examine the patterns of circulating blood flow in captive redhead ducks (Aythya americana) during rest, swimming, escape dives, forced dives and trapped escape dives and have shown that blood flow distribution in escape dives was the same as that in ducks swimming at the water surface. The response during trapped escape dives, however, was highly variable. Blood pressure was unchanged from the resting value during all activities. Predictions made about blood flow distribution during unrestrained dives on the basis of heart rate and other indirect data were confirmed in this study. However, the trapped escape dive responses indicated that heart rate alone is not always a reliable indicator of tissue blood flow in exercising ducks. PMID:1602277

  20. Quantification of Blood Flow and Topology in Developing Vascular Networks

    PubMed Central

    Kloosterman, Astrid; Hierck, Beerend; Westerweel, Jerry; Poelma, Christian

    2014-01-01

    Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25–500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules. PMID:24823933

  1. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  2. Blood flow augmentation by intrinsic venular contraction in vivo.

    PubMed

    Dongaonkar, Ranjeet M; Quick, Christopher M; Vo, Jonathan C; Meisner, Joshua K; Laine, Glen A; Davis, Michael J; Stewart, Randolph H

    2012-06-15

    Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion. PMID:22513742

  3. Measuring tissue blood flow using ultrasound modulated diffused light

    NASA Astrophysics Data System (ADS)

    Ron, A.; Racheli, N.; Breskin, I.; Metzger, Y.; Silman, Z.; Kamar, M.; Nini, A.; Shechter, R.; Balberg, M.

    2012-02-01

    We demonstrate the ability of a novel device employing ultrasound modulation of near infrared light (referred as "Ultrasound tagged light" or UTL) to perform non-invasive monitoring of blood flow in the microvascular level in tissue. Monitoring microcirculatory blood flow is critical in clinical situations affecting flow to different organs, such as the brain or the limbs. . However, currently there are no non-invasive devices that measure microcirculatory blood flow in deep tissue continuously. Our prototype device (Ornim Medical, Israel) was used to monitor tissue blood flow on anesthetized swine during controlled manipulations of increased and decreased blood flow. Measurements were done on the calf muscle and forehead of the animal and compared with Laser Doppler (LD). ROC analysis of the sensitivity and specificity for detecting an increase in blood flow on the calf muscle, demonstrated AUC = 0.951 for 23 systemic manipulations of cardiac output by Epinephrine injection, which is comparable to AUC = 0.943 using laser Doppler. Some examples of cerebral blood flow monitoring are presented, along with their individual ROC curves. UTL flowmetry is shown to be effective in detecting changes in cerebral and muscle blood flow in swine, and has merit in clinical applications.

  4. Regional blood flow during cardiopulmonary resuscitation in dogs.

    PubMed

    Luce, J M; Rizk, N A; Niskanen, R A

    1984-10-01

    We studied regional blood flow (QR) using radiolabeled microspheres in 12 anesthetized dogs during cardiopulmonary resuscitation (CPR). A circumferential vest and abdominal binder were used with a mechanical ventilator to deliver 30 simultaneous chest compressions and ventilations per minute. When this device was modified to increase aortic pressure (Pao) during compression and the aortic-to-right atrial pressure gradient (Pao-Pra) during relaxation, cerebral and myocardial QR increased significantly. These findings suggest that QR during CPR can be improved by augmenting perfusion-pressure gradients across the cerebral and coronary circulations. PMID:6488828

  5. The use of vasoconstrictors to improve the tumor to non-tumor blood flow ratio (T/NT) in intraarterial chemotherapy (IAC) of head and neck cancer (H and N CA)

    SciTech Connect

    Ziessman, H.A.; Forastiere, A.A.; Wheeler, R.H.; Wahl, R.L.; Ackerman, R.J.; Juni, J.E.

    1984-01-01

    IAC of H and N CA can result in increased drug concentration to the tumor with decreased systemic toxicity. However, the reported response rate has not been significantly improved from conventional IV chemotherapy. Tumor vessels lack the smooth muscle of precapillary arterioles, therefore vasoconstrictors have the potential of shunting blood from normal tissue to tumor, improving the T/NT. The purpose of this study is to evaluate the effect of vasoconstrictors on regional blood flow, systemic shunting and the T/NT. In 5 studies, patients received increasing doses of norepiniphrine (NE) ranging from 0.1 to 15 gm/ml/min. IA TcMAA was infused prior to NE and after each NE infusion. Static images were acquired on computer, ROI's flagged for tumor and selected normal tissue. Images were obtained for each dose of NE using subtraction techniques. In all pts the perfusion pattern changed with increasing doses of NE. In 2 pts with significantly improved T/NT ratios, SPECT was performed with and without NE. Quantitation was done by drawing ROIs for tumor in each reconstructed transaxial slice. The T/NT ratio was calculated after summing all slices through the H and N with and without NE. In 1 pt the T/NT increased by 35% and the % A-V shunting to the lungs decreased from 31% to 26%. The other pt had a definite change in perfusion pattern but inconsistent with the planar study. This work in progress study suggests that infusion of vasoconstrictors may be useful in improving the T/NT but TcMAA perfusion studies are necessary to help determine the appropriate dosage. SPECT can help quantitate the change.

  6. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.

    PubMed

    Anderson, J B; Wood, H G; Allaire, P E; Bearnson, G; Khanwilkar, P

    2000-05-01

    A computational fluid dynamics study of blood flow in the continuous flow ventricular assist device, Prototype No. 3 (CFVAD3), which consists of a 4 blade shrouded impeller fully supported in magnetic bearings, was performed. This study focused on the regions within the pump where return flow occurs to the pump inlet, and where potentially damaging shear stresses and flow stagnation might occur: the impeller blade passages and the narrow gap clearance regions between the impeller-rotor and pump housing. Two separate geometry models define the spacing between the pump housing and the impeller's hub and shroud, and a third geometry model defines the pump's impeller and curved blades. The flow fields in these regions were calculated for various operating conditions of the pump. Pump performance curves were calculated, which compare well with experimentally obtained data. For all pump operating conditions, the flow rates within the gap regions were predicted to be toward the inlet of the pump, thus recirculating a portion of the impeller flow. Two smaller gap clearance regions were numerically examined to reduce the recirculation and to improve pump efficiency. The computational and geometry models will be used in future studies of a smaller pump to determine increased pump efficiency and the risk of hemolysis due to shear stress, and to insure the washing of blood through the clearance regions to prevent thrombosis. PMID:10848679

  7. Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Deng, Haoyu; Song, Guangyi; He, Jian-Jun

    2014-11-01

    A method for measuring blood oxygenation and blood flow rate using a single widely tunable semiconductor laser is proposed and investigated. It is shown that a 700-nm-band tunable laser gives the highest sensitivity for blood oxygen measurement. The corresponding tunable laser is designed using the V-coupled cavity structure. The wavelength tuning range can reach 8 nm, which is sufficient for the blood oxygenation measurement in the 700-nm-band by using the Beer- Lambert law. In contrast to conventional blood oxygenation measurement method based on two LEDs, the laser can be used at the same time to measure the blood flow rate based on the Doppler principle.

  8. A mechanistic approach to blood flow occlusion.

    PubMed

    Loenneke, J P; Wilson, G J; Wilson, J M

    2010-01-01

    Low-Intensity occlusion training provides a unique beneficial training mode for promoting muscle hypertrophy. Training at intensities as low as 20% 1RM with moderate vascular occlusion results in muscle hypertrophy in as little as three weeks. The primary mechanisms by which occlusion training is thought to stimulate growth include, metabolic accumulation, which stimulates a subsequent increase in anabolic growth factors, fast-twitch fiber recruitment (FT), and increased protein synthesis through the mammalian target of rapamycin (mTOR) pathway. Heat shock proteins, Nitric oxide synthase-1 (NOS-1) and Myostatin have also been shown to be affected by an occlusion stimulus. In conclusion, low-intensity occlusion training appears to work through a variety of mechanisms. The research behind these mechanisms is incomplete thus far, and requires further examination, primarily to identify the actual metabolite responsible for the increase in GH with occlusion, and determine which mechanisms are associated to a greater degree with the hypertrophic/anti-catabolic changes seen with blood flow restriction. PMID:19885776

  9. Synthetic Capillaries to Control Microscopic Blood Flow

    NASA Astrophysics Data System (ADS)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  10. Synthetic Capillaries to Control Microscopic Blood Flow.

    PubMed

    Sarveswaran, K; Kurz, V; Dong, Z; Tanaka, T; Penny, S; Timp, G

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using "live cell lithography"(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision-no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  11. Blood flow-restricted exercise in space

    PubMed Central

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and endurance when performed in a variety of ambulatory populations. This training methodology couples a remarkably low exercise training load (approximately 20%–50% one repetition maximum (1RM)) with an inflated external cuff (width, ranging between approximately 30–90 mm; pressure, ranging between approximately 100–250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise training adaptations, mechanisms, and safety and will provide directions for future research. PMID:23849078

  12. Synthetic Capillaries to Control Microscopic Blood Flow

    PubMed Central

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  13. Pulsatile blood flow in Abdominal Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  14. Tissue Blood Flow During Remifentanil Infusion With Carbon Dioxide Loading.

    PubMed

    Kanbe, Hiroaki; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya

    2015-01-01

    The aim of this study was to investigate the effect of changes in end-tidal carbon dioxide tension (ETCO2) during remifentanil (Remi) infusion on oral tissue blood flow in rabbits. Eight male tracheotomized Japan White rabbits were anesthetized with sevoflurane under mechanical ventilation. The infusion rate of Remi was 0.4 μg/kg/min. Carbon dioxide was added to the inspired gas to change the inspired CO2 tension to prevent changes in the ventilating condition. Observed variables were systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), common carotid artery blood flow (CCBF), tongue mucosal blood flow (TBF), mandibular bone marrow tissue blood flow (BBF), masseter muscle tissue blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF). The CCBF, TBF, BBF, UBF, and LBF values were increased, while MBF was decreased, under hypercapnia, and vice versa. The BBF, UBF, and LBF values were increased, while the MBF value was decreased, under hypercapnia during Remi infusion, and vice versa. The BBF, MBF, UBF, and LBF values, but not the CCBF and TBF values, changed along with ETCO2 changes during Remi infusion. PMID:26061573

  15. Effect of prolonged hypokinesia on tissue blood flow

    NASA Technical Reports Server (NTRS)

    Levites, Z. P.; Fedotova, V. F.

    1979-01-01

    The influence of hypokinesia on the blood flow in the tissues of rabbits was studied. Motor activity of animals was restricted during 90 days and blood flow recorded through resorption rate of NaI-131. Perfusion of tissues under the influence of hypokinesia was found to be reduced.

  16. Statistical variations of ultrasound signals backscattered from flowing blood.

    PubMed

    Huang, Chih-Chung; Wang, Shyh-Hau

    2007-12-01

    The statistical distributions of ultrasonic signals backscattered from blood have recently been used to characterize hemodynamic properties, such as red blood cell (RBC) aggregation and blood coagulation. However, a thorough understanding of the relationship between blood properties and the statistical behavior of signals backscattered from flowing blood is still lacking. This prompted us to use the statistical parameter to characterize signals backscattered from both whole blood and RBC suspensions at different flow velocities (from 10 to 60 cm/s) and hematocrits (from 20% to 50%) under a steady laminar flow condition. The Nakagami parameter, scaling parameter, backscatter amplitude profile and flow velocity profile across a flow tube were acquired using a 10 MHz focused ultrasonic transducer. The backscattered signal peaked approximately at the centerline of the flow tube due to the effects of RBC aggregation, with the peak value increasing as the flow velocity of whole blood decreased. The Nakagami parameter increased from 0.45 to 0.78 as the flow velocity increased from 10 to 60 cm/s. The probability density function (PDF) of signals backscattered from flowing whole blood conformed with a pre-Rayleigh distribution. The Nakagami parameter was close to 1 for signals backscattered from RBC suspensions at all the flow velocities and hematocrits tested, for which the PDF was Rayleigh distributed. These differences in the statistical distributions of backscattered signals between whole blood and RBC suspensions suggest that variations in the size of dynamic scatterers in the flow affect the shape of the backscattered signal envelope, which should be considered in future statistical models used to characterize blood properties. PMID:17673357

  17. Muscle metaboreflex and cerebral blood flow regulation in humans: implications for exercise with blood flow restriction.

    PubMed

    Prodel, Eliza; Balanos, George M; Braz, Igor D; Nobrega, Antonio C L; Vianna, Lauro C; Fisher, James P

    2016-05-01

    We investigated the effect of activating metabolically sensitive skeletal muscle afferents (muscle metaboreflex) on cerebral blood flow and the potentially confounding influence of concomitant changes in the partial pressure of arterial carbon dioxide. Eleven healthy males (25 ± 4 yr) performed submaximal leg cycling exercise on a semirecumbent cycle ergometer (heart rate: ∼120 beats/min), and assessments were made of the partial pressure of end-tidal carbon dioxide (PetCO2 ), internal carotid artery blood flow (ICAQ) and conductance (ICACVC), and middle cerebral artery mean blood velocity (MCAvm) and conductance index (MCACVCi).The muscle metaboreflex was activated during cycling with leg blood flow restriction (BFR) or isolated with postexercise ischemia (PEI). In separate trials, PetCO2 was either permitted to fluctuate spontaneously (control trial) or was clamped at 1 mmHg above resting levels (PetCO2 clamp trial). In the control trial, leg cycling with BFR decreased PetCO2 (Δ-4.8 ± 0.9 mmHg vs. leg cycling exercise) secondary to hyperventilation, while ICAQ, ICACVC, and MCAvm were unchanged and MCACVCi decreased. However, in the PetCO2 clamp trial, leg cycling with BFR increased both MCAvm (Δ5.9 ± 1.4 cm/s) and ICAQ (Δ20.0 ± 7.8 ml/min) and attenuated the decrease in MCACVCi, while ICACVC was unchanged. In the control trial, PEI decreased PetCO2 (Δ-7.0 ± 1.3 mmHg vs. rest), MCAvm and MCACVCi, whereas ICAQ and ICACVC were unchanged. In contrast, in the PetCO2 clamp trial both ICAQ (Δ18.5 ± 11.9 ml/min) and MCAvm (Δ8.8 ± 2.0 cm/s) were elevated, while ICACVC and MCACVCi were unchanged. In conclusion, when hyperventilation-related decreases in PetCO2 are prevented the activation of metabolically sensitive skeletal muscle afferent fibers increases cerebral blood flow. PMID:26873971

  18. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  19. Mammary blood flow regulation in the nursing rabbit

    SciTech Connect

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  20. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  1. Blood flow changes in arteriovenous malformation during behavioral activation.

    PubMed

    Deutsch, G

    1983-01-01

    Striking task-dependent fluctuations were observed in the cerebral blood flow pattern of a patient with a left posterior hemispheric arteriovenous malformation (AVM). Two-dimensional measures of regional cerebral flow in the resting state, using the xenon 133 inhalation technique, revealed a region of high flow coincident with the AVM seen on the patient's arteriograms. In subsequent studies, the AVM stood out as a region of high blood flow during a relaxed state, while it approached normal levels of flow when there was attentional demand. These observations suggest that focal regulatory mechanisms exist at the AVM or else that very substantial redistributions of blood flow are taking place which the flow rate in the AVM reflects only passively. Patients considered for embolic treatment of an AVM would benefit from an assessment of behavioral influences on flow in the AVM. PMID:6830163

  2. Measurement of microvesicle levels in human blood using flow cytometry.

    PubMed

    Chandler, Wayne L

    2016-07-01

    Microvesicles are fragments of cells released when the cells are activated, injured, or apoptotic. Analysis of microvesicle levels in blood has the potential to shed new light on the pathophysiology of many diseases. Flow cytometry is currently the only method that can simultaneously separate true lipid microvesicles from other microparticles in blood, determine the cell of origin and other microvesicle characteristics, and handle large numbers of clinical samples with a reasonable effort, but expanded use of flow cytometric measurement of microvesicle levels as a clinical and research tool requires improved, standardized assays. The goal of this review is to aid investigators in applying current best practices to microvesicle measurements. First pre-analytical factors are evaluated and data summarized for anticoagulant effects, sample transport and centrifugation. Next flow cytometer optimization is reviewed including interference from background in buffers and reagents, accurate microvesicle counting, swarm interference, and other types of coincidence errors, size calibration, and detection limits using light scattering, impedance and fluorescence. Finally current progress on method standardization is discussed and a summary of current best practices provided. © 2016 Clinical Cytometry Society. PMID:26606416

  3. Fluid dynamics aspects of miniaturized axial-flow blood pump.

    PubMed

    Kang, Can; Huang, Qifeng; Li, Yunxiao

    2014-01-01

    Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated. PMID:24211957

  4. Retinal blood flow measurement by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Fabritius, Tapio; Miura, Masahiro; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2008-02-01

    Quantification of the three-dimensional (3D) retinal vessel structure and blood flow is demonstrated. 3D blood flow distribution is obtained by Doppler optical coherence angiography (D-OCA). Vessel parameters, i.e. diameter, orientation, and position, are determined in an en face vessel image. The Doppler angle is estimated as the angle between the retinal vessel and the incident probing beam in representative cross-sectional flow image which extracted from the 3D flow distribution according to the vessel parameters. Blood flow velocity and volume rate can be quantified with these vessel parameters. The retinal blood flow velocity and volume rate are measured in the retinal vessels around the optic nerve head.

  5. Outflow Boundary Conditions for Blood Flow in Arterial Trees

    PubMed Central

    Du, Tao; Hu, Dan; Cai, David

    2015-01-01

    In the modeling of the pulse wave in the systemic arterial tree, it is necessary to truncate small arterial crowns representing the networks of small arteries and arterioles. Appropriate boundary conditions at the truncation points are required to represent wave reflection effects of the truncated arterial crowns. In this work, we provide a systematic method to extract parameters of the three-element Windkessel model from the impedance of a truncated arterial tree or from experimental measurements of the blood pressure and flow rate at the inlet of the truncated arterial crown. In addition, we propose an improved three-element Windkessel model with a complex capacitance to accurately capture the fundamental-frequency time lag of the reflection wave with respect to the incident wave. Through our numerical simulations of blood flow in a single artery and in a large arterial tree, together with the analysis of the modeling error of the pulse wave in large arteries, we show that both a small truncation radius and the complex capacitance in the improved Windkessel model play an important role in reducing the modeling error, defined as the difference in dynamics induced by the structured tree model and the Windkessel models. PMID:26000782

  6. Cerebral blood flow at high altitude.

    PubMed

    Ainslie, Philip N; Subudhi, Andrew W

    2014-06-01

    This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3-5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes: 1) hypoxic cerebral vasodilatation; 2) hypocapnic cerebral vasoconstriction; 3) hypoxic ventilatory response; and 4) hypercapnic ventilatory response. Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain's large and consistent demand for oxygen. This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided. PMID:24971767

  7. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-07-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries. PMID:26414530

  8. On the Role of the Blood Vessel Endothelial Microvilli in the Blood Flow in Small Capillaries

    PubMed Central

    Makarov, Vladimir; Zueva, Lidia; Sanabria, Priscila; Wessinger, William Dave; Golubeva, Tatiana; Khmelinskii, Igor; Inyushin, Mikhail

    2015-01-01

    Endothelial microvilli that protrude into the capillary lumen, although invisible in the optical microscopy, may play an important role in the blood flow control in the capillaries. Because of the plug effects, the width of the gap between the capillary wall and the blood cell is especially critical for the blood flow dynamics in capillaries, while microvilli located on the capillary wall can easily control the velocity of the blood flow. We report that microvilli in the capillaries of different vertebrate species have similar characteristics and density, suggesting similarities between the respective regulation mechanisms. A simplified physical model of the capillary effective diameter control by the microvilli is presented. PMID:26604921

  9. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  10. The importance of splenic blood flow in clearing pneumococcal organisms.

    PubMed Central

    Horton, J; Ogden, M E; Williams, S; Coln, D

    1982-01-01

    Overwhelming infection from encapsulated bacteria occurs after splenectomy. Decreases in IgM, tufsin, and serum opsonin are known to occur in animals and humans after splenectomy. A substantial immunologic advantage exists if some splenic tissue remains, but this may not offer sufficient protection from encapsulated bacteria if splenic arterial blood flow is reduced. This experiment was designed to examine the rate of pneumococcal clearance by the spleen and to determine the relationship between splenic blood flow and splenic tissue mass in bacterial clearance from the blood. Pneumococcal clearance, splenic blood flow, and residual splenic weight were measured in 171 rabbits with normal spleens, ligated splenic arteries, splenic autotransplants, hemisplenectomies, and splenectomies. Interruption of the splenic artery results in delayed pneumococcal clearance that is due to reduced blood flow and not to a decrease in splenic tissue mass. Splenic artery ligation to preserve an injured spleen cannot be assumed to give protection from sepsis. PMID:7055394

  11. Laser speckle technique for monitoring of blood and lymph flow

    NASA Astrophysics Data System (ADS)

    Fedosov, Ivan V.; Tuchin, Valery V.

    2004-07-01

    Laser speckle technique developed for monitoring of micro scale blood and lymph flows is described and discussed. It is based on the space-time correlation properties of dynamic speckle field formed by coherent light scattered by capillary flow of blood or lymph. As it was proved experimentally, the estimating of cross-correlation of speckle-field intensity fluctuations recorded in two different point allows for measurement of flow velocity and flow direction discrimination. Developed technique was applied for investigation of push-pull dynamics of lymph flow in rat mesentery. The results of experiments with models of bioflows and in vivo measurements are presented.

  12. Nasal mucosal blood flow after intranasal allergen challenge

    SciTech Connect

    Holmberg, K.; Bake, B.; Pipkorn, U.

    1988-03-01

    The nasal mucosal blood flow in patients with allergic rhinitis was determined at nasal allergen challenges with the /sup 133/Xenon washout method. Determinations were made in 12 subjects before and 15 minutes after challenge with diluent and increasing doses of allergen. The time course was followed in eight subjects by means of repeated measurements during 1 hour after a single allergen dose. Finally, the blood flow was measured after unilateral allergen challenge in the contralateral nasal cavity. A dose-dependent decrease in blood flow was found after nasal challenge with increasing doses of allergens, whereas challenge with diluent alone did not induce any changes. The highest allergen dose, which also induced pronounced nasal symptoms, resulted in a decrease in blood flow of 25% (p less than 0.001). The time-course study demonstrated a maximum decrease in blood flow 10 to 20 minutes after challenge and then a gradual return to baseline. Unilateral allergen challenge resulted in a decrease in blood flow in the contralateral, unchallenged nasal cavity, suggesting that part of the allergen-induced changes in blood flow were reflex mediated.

  13. Acute cocaine administration alters posttraumatic blood pressure and cerebral blood flow in rats.

    PubMed

    Muir, J K; Ellis, E F

    1995-01-01

    Cocaine abuse is widespread, and it is possible that its two main pharmacological actions, sympathomimetic and local anesthetic, could influence the blood pressure and cerebral blood flow response to brain injury, which occurs with increased frequency in drug abusers. We tested this hypothesis in ventilated barbiturate-anesthetized rats. Brain injury was induced using the fluid-percussion method, and cortical blood flow was measured using laser-Doppler flowmetry. Saline, cocaine, methamphetamine, or lidocaine was administered 10 min before injury. Upon injury, both cocaine- and saline-pretreated rats showed a similar acute hypertensive phase, which was followed by a period of more pronounced hypotension in the cocaine group (68 +/- 4 vs. 100 +/- 6 mmHg). Cortical blood flow increased dramatically 3-15 s following injury-induced hypertension in both the cocaine and saline groups (approximately 230-260%), but then fell below preinjury values within minutes. At 1 h postinjury, the blood flow in the saline group was 53 +/- 6% of the preinjury value, while in the cocaine group, flow was 74 +/- 7% of preinjury baseline. Similar to the cocaine-treated animals, methamphetamine also caused a more pronounced hypotensive event, but blood flow was not significantly different from saline controls. Lidocaine did not alter posttraumatic blood pressure but did significantly elevate blood flow throughout the 1-h postinjury period. At 60 min posttrauma, blood flow in the lidocaine group was 80 +/- 10% of the preinjury value. The mechanism by which cocaine alters blood pressure and blood flow after injury is not entirely certain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7840303

  14. Effects of non Newtonian spiral blood flow through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  15. Anharmonic analysis of arterial blood pressure and flow pulses.

    PubMed

    Voltairas, P A; Fotiadis, D I; Massalas, C V; Michalis, L K

    2005-07-01

    Fourier analysis is usually employed for the computation of blood flow in arteries. Although the orthogonality of Fourier eigenfunctions guarantees the accurate mathematical modeling of the blood pressure and flow waveforms, the physics behind this objective function is frequently missing. We propose a new method to account for the blood pressure and flow, single-cycle (systole-diastole) waveforms. It is based on the one dimensional hydrodynamic mass and momentum conservation equations for viscous flow. The similarity of the linear problem, under discussion, with related transmission line theory in electromagnetic wave propagation, permits expansion in anharmonic, non-separable eigenfunctions. In some cases one term in the expansion is adequate to fit the main peak of the observed waveforms. Analytical formulas are derived for the dependence of the pressure and flow main peaks on whole blood viscosity and distance from the heart, which interpret observations related to hypertension. PMID:15922753

  16. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  17. Uterine artery blood flow, fetal hypoxia and fetal growth.

    PubMed

    Browne, Vaughn A; Julian, Colleen G; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G

    2015-03-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  18. Effect of swirling blood flow on vortex formation at post-stenosis.

    PubMed

    Ha, Hojin; Choi, Woorak; Park, Hanwook; Lee, Sang Joon

    2015-02-01

    Various clinical observations reported that swirling blood flow is a normal physiological flow pattern in various vasculatures. The swirling flow has beneficial effects on blood circulation through the blood vessels. It enhances oxygen transfer and reduces low-density lipoprotein concentration in the blood vessel by enhancing cross-plane mixing of the blood. However, the fluid-dynamic roles of the swirling flow are not yet fully understood. In this study, inhibition of material deposition at the post-stenosis region by the swirling flow was observed. To reveal the underlying fluid-dynamic characteristics, pathline flow visualization and time-resolved particle image velocimetry measurements were conducted. Results showed that the swirling inlet flow increased the development of vortices at near wall region of the post-stenosis, which can suppress further development of stenosis by enhancing transport and mixing of the blood flow. The fluid-dynamic characteristics obtained in this study would be useful for improving hemodynamic characteristics of vascular grafts and stents in which the stenosis frequently occurred. Moreover, the time-resolved particle image velocimetry measurement technique and vortex identification method employed in this study would be useful for investigating the fluid-dynamic effects of the swirling flow on various vascular environments. PMID:25767153

  19. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  20. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively. PMID:24110631

  1. Modified Beer-Lambert law for blood flow

    NASA Astrophysics Data System (ADS)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  2. A Porous Media Model for Blood Flow within Reticulated Foam

    PubMed Central

    Ortega, J.M.

    2013-01-01

    A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10−8 to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation data of blood flow through two reticulated foam geometries, the model adequately captures the pressure gradient within all three regimes, especially that within the Newtonian regime where blood transitions from a power-law to a constant viscosity fluid. PMID:24031095

  3. Abnormal Myocardial Blood Flow Reserve Observed in Cardiac Amyloidosis

    PubMed Central

    Nel, Karen; Senior, Roxy; Greaves, Kim

    2016-01-01

    We performed real-time myocardial contrast echocardiography on a patient with cardiac amyloidosis and previous normal coronary angiography presenting with atypical chest pain to assess myocardial blood flow reserve (MBFR). Myocardial contrast echocardiography was performed and flash microbubble destruction and replenishment analysis was used to calculate myocardial blood flow. Dipyridamole was used to achieve hyperemia. MBFR was derived from the ratio of peak myocardial blood flow at hyperemia and rest. The results show a marked reduction in MBFR in our patient. Previous reports of luminal obstruction of intramyocardial rather than epicardial vessels by amyloid deposition may be causing microvascular dysfunction. PMID:27081447

  4. Numerical Simulation of Cellular Blood Flow through a Rigid Artery

    NASA Astrophysics Data System (ADS)

    Reasor, Daniel; Clausen, Jonathan; Aidun, Cyrus

    2009-11-01

    In blood flow, red blood cells (RBCs), the most numerous constituent of blood, influence continuum-level measures by altering the suspension at microscopic scales. The presence of RBCs alters the stress and diffusion individual cells experience, which can influence cardiovascular diseases by affecting other cells present in blood like platelets and white blood cells. Simulations of blood at a cellular level provide a tool that allows exploration of both the rheology and the stress and diffusion of individual suspended cells. In this work, a hybrid lattice-Boltzmann/finite element method is used to simulate suspension flows characteristic of blood with deformable RBCs at realistic hematocrit values. We have shown the ability to simulate thousands deformable suspensions capturing non-Newtonian flow characteristics such as shear thinning, and the results agree well with experimental observations. Simulations through rigid arteries have been deformed with as many as 2500 RBCs. This work outlines results obtained for pressure-gradient driven blood flow through a rigid artery with 20%, 30%, 40%, and 50% hematocrit values. Results include the effect these deformable RBCs have on mean velocity, flow rate, radial variation of RBC concentration, and the effective viscosity for simulations at moderate to low cell capillary numbers, Ca <=0.08.

  5. Capillary pericytes regulate cerebral blood flow in health and disease

    PubMed Central

    Sutherland, Brad A.; O’Farrell, Fergus M.; Buchan, Alastair M.; Lauritzen, Martin; Attwell, David

    2014-01-01

    Brain blood flow increases, evoked by neuronal activity, power neural computation and are the basis of BOLD functional imaging. It is controversial whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease which damages neurons after stroke. PMID:24670647

  6. Blood flow estimation in gastroscopic true-color images

    NASA Astrophysics Data System (ADS)

    Jacoby, Raffael S.; Herpers, Rainer; Zwiebel, Franz M.; Englmeier, Karl-Hans

    1995-05-01

    The assessment of blood flow in the gastrointestinal mucosa might be an important factor for the diagnosis and treatment of several diseases such as ulcers, gastritis, colitis, or early cancer. The quantity of blood flow is roughly estimated by computing the spatial hemoglobin distribution in the mucosa. The presented method enables a practical realization by calculating approximately the hemoglobin concentration based on a spectrophotometric analysis of endoscopic true-color images, which are recorded during routine examinations. A system model based on the reflectance spectroscopic law of Kubelka-Munk is derived which enables an estimation of the hemoglobin concentration by means of the color values of the images. Additionally, a transformation of the color values is developed in order to improve the luminance independence. Applying this transformation and estimating the hemoglobin concentration for each pixel of interest, the hemoglobin distribution can be computed. The obtained results are mostly independent of luminance. An initial validation of the presented method is performed by a quantitative estimation of the reproducibility.

  7. Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis).

    PubMed

    Jensen, Bjarke; Elfwing, Magnus; Elsey, Ruth M; Wang, Tobias; Crossley, Dane A

    2016-01-01

    Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure. PMID:26436857

  8. Relationship between beta-adrenoceptors and coronary blood flow heterogeneity

    SciTech Connect

    Upsher, M.E.; Weiss, H.R.

    1989-01-01

    The purpose of this study was to investigate the hypothesis that the heterogeneous distribution of ..beta.. adrenoceptors contributes to the control of flow heterogeneity in the canine myocardium. ..beta.. adrenoceptor density and affinity were measured simultaneously with coronary blood flow in multiple sections of the left ventricle of 14 anesthetized open chest dogs. Radioactive microspheres were used for the measurement of blood flow. Receptor density (Bmax) and dissociation constant (Kd) were measured using (/sup 125/I)- iodopindolol. The average control myocardial blood flow (MBF) was 86/+-/15 ml/min/100 g. Isoproterenol increased MBF by 82%, whereas propranolol reduced MBF by 13%. The mean value of Bmax was unaltered by either treatment. Under control conditions, a significant positive positive correlation was observed between Bmax and blood flow. In the isoproterenol treatment group, this correlation was enhanced. Beta adrenoceptor blockade led to a negative correlation. Kd showed no overall correlation with blood flow. Kd but not Bmax was significantly higher in the EPI than in the ENDO and in the base compared to the apex. There appears to be a direct linear relationship between the distribution of beta adrenoceptors and MBF distribution which is enhanced under conditions of high beta adrenergic activity. There is a correlation between beta adrenoceptor activity and blood flow distribution in the canine myocardium.

  9. Optic Nerve Head Blood Flow Autoregulation during Changes in Arterial Blood Pressure in Healthy Young Subjects

    PubMed Central

    Boltz, Agnes; Told, Reinhard; Napora, Katarzyna J.; Palkovits, Stefan; Werkmeister, René M.; Schmidl, Doreen; Popa-Cherecheanu, Alina; Garhöfer, Gerhard; Schmetterer, Leopold

    2013-01-01

    Aim In the present study the response of optic nerve head blood flow to an increase in ocular perfusion pressure during isometric exercise was studied. Based on our previous studies we hypothesized that subjects with an abnormal blood flow response, defined as a decrease in blood flow of more than 10% during or after isometric exercise, could be identified. Methods A total of 40 healthy subjects were included in this study. Three periods of isometric exercise were scheduled, each consisting of 2 minutes of handgripping. Optic nerve head blood flow was measured continuously before, during and after handgripping using laser Doppler flowmetry. Blood pressure was measured non-invasively in one-minute intervals. Intraocular pressure was measured at the beginning and the end of the measurements and ocular perfusion pressure was calculated as 2/3*mean arterial pressure –intraocular pressure. Results Isometric exercise was associated with an increase in ocular perfusion pressure during all handgripping periods (p < 0.001). By contrast no change in optic nerve head blood flow was seen. However, in a subgroup of three subjects blood flow showed a consistent decrease of more than 10% during isometric exercise although their blood pressure values increased. In addition, three other subjects showed a consistent decline of blood flow of more than 10% during the recovery periods. Conclusion Our data confirm previous results indicating that optic nerve head blood flow is autoregulated during an increase in perfusion pressure. In addition, we observed a subgroup of 6 subjects (15%) that showed an abnormal response, which is in keeping with our previous data. The mechanisms underlying this abnormal response remain to be shown. PMID:24324774

  10. Skeletal Blood Flow in Bone Repair and Maintenance

    PubMed Central

    Tomlinson, Ryan E.; Silva, Matthew J.

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups. PMID:26273509

  11. Aging, regional cerebral blood flow, and neuropsychological functioning

    SciTech Connect

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-10-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the /sup 133/xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning.

  12. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  13. Experimental comparison of mammalian and avian blood flow in microchannels

    NASA Astrophysics Data System (ADS)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  14. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    SciTech Connect

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  15. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    PubMed

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm < D < 100 μm. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can

  16. Effect of pulsatile swirling flow on stenosed arterial blood flow.

    PubMed

    Ha, Hojin; Lee, Sang Joon

    2014-09-01

    The existence of swirling flow phenomena is frequently observed in arterial vessels, but information on the fluid-dynamic roles of swirling flow is still lacking. In this study, the effects of pulsatile swirling inlet flows with various swirling intensities on the flow field in a stenosis model are experimentally investigated using a particle image velocimetry velocity field measurement technique. A pulsatile pump provides cyclic pulsating inlet flow and spiral inserts with two different helical pitches (10D and 10/3D) induce swirling flow in the stenosed channel. Results show that the pulsatile swirling flow has various beneficial effects by reducing the negative wall shear stress, the oscillatory shear index, and the flow reverse coefficient at the post-stenosis channel. Temporal variations of vorticity fields show that the short propagation length of the jet flow and the early breakout of turbulent flow are initiated as the swirling flow disturbs the symmetric development of the shear layer. In addition, the overall energy dissipation rate of the flow is suppressed by the swirling component of the flow. The results will be helpful for elucidating the hemodynamic characteristics of atherosclerosis and discovering better diagnostic procedures and clinical treatments. PMID:24984589

  17. Blood-flow measurement in muscle with Xe-133

    SciTech Connect

    Chung, S.Y.; Kim, I.; Ryo, U.Y.; Maskin, C.; Pinsky, S.

    1987-11-01

    An alternative method to the conventional miniature probe system for the measurement of blood flow in muscle has been developed. Xenon-133 was injected into the quadriceps muscles of ten subjects. A gamma camera and an online computer were then used to measure the half-clearance time of the Xe-133 while the subject was both at rest and exercising on an upright bicycle ergometer. The blood flow in the muscle was then calculated from the acquired data.

  18. Effect of tropicamide on ocular blood flow in the rabbit

    SciTech Connect

    Delgado, D.; Michel, P.; Jaanus, S.D.

    1982-05-01

    Intracardiac injection of 15 microspheres labeled with /sup 85/Sr (strontium) and /sup 141/Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed.

  19. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  20. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  1. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.

    1990-02-13

    This patent describes radiopharmaceuticals useful in brain imaging. They comprise radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  2. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia.

    PubMed

    Coverdale, Nicole S; Gati, Joseph S; Opalevych, Oksana; Perrotta, Amanda; Shoemaker, J Kevin

    2014-11-15

    To establish the accuracy of transcranial Doppler ultrasound (TCD) measures of middle cerebral artery (MCA) cerebral blood flow velocity (CBFV) as a surrogate of cerebral blood flow (CBF) during hypercapnia (HC) and hypocapnia (HO), we examined whether the cross-sectional area (CSA) of the MCA changed during HC or HO and whether TCD-based estimates of CBFV were equivalent to estimates from phase contrast (PC) magnetic resonance imaging. MCA CSA was measured from 3T magnetic resonance images during baseline, HO (hyperventilation at 30 breaths/min), and HC (6% carbon dioxide). PC and TCD measures of CBFV were measured during these protocols on separate days. CSA and TCD CBFV were used to calculate CBF. During HC, CSA increased from 5.6 ± 0.8 to 6.5 ± 1.0 mm(2) (P < 0.001, n = 13), while end-tidal carbon dioxide partial pressure (PETCO2) increased from 37 ± 3 to 46 ± 5 Torr (P < 0.001). During HO, CSA decreased from 5.8 ± 0.9 to 5.3 ± 0.9 mm(2) (P < 0.001, n = 15), while PetCO2 decreased from 36 ± 4 to 23 ± 3 Torr (P < 0.001). CBFVs during baseline, HO, and HC were compared between PC and TCD, and the intraclass correlation coefficient was 0.83 (P < 0.001). The relative increase from baseline was 18 ± 8% greater (P < 0.001) for CBF than TCD CBFV during HC, and the relative decrease of CBF during HO was 7 ± 4% greater than the change in TCD CBFV (P < 0.001). These findings challenge the assumption that the CSA of the MCA does not change over modest changes in PETCO2. PMID:25012027

  3. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter. PMID:27335889

  4. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  5. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  6. Cerebral aneurysms treated with flow-diverting stents: Computational models using intravascular blood flow measurements

    PubMed Central

    Levitt, Michael R; McGah, Patrick M; Aliseda, Alberto; Mourad, Pierre D; Nerva, John D; Vaidya, Sandeep S; Morton, Ryan P; Ghodke, Basavaraj V; Kim, Louis J

    2013-01-01

    Background and Purpose Computational fluid dynamics modeling is useful in the study of the hemodynamic environment of cerebral aneurysms, but patient-specific measurements of boundary conditions, such as blood flow velocity and pressure, have not been previously applied to the study of flow-diverting stents. We integrated patient-specific intravascular blood flow velocity and pressure measurements into computational models of aneurysms before and after treatment with flow-diverting stents to determine stent effects on aneurysm hemodynamics. Methods Blood flow velocity and pressure were measured in peri-aneurysmal locations using an intravascular dual-sensor pressure and Doppler velocity guidewire before and after flow-diverting stent treatment of four unruptured cerebral aneurysms. These measurements defined inflow and outflow boundary conditions for computational models. Intra-aneurysmal flow rates, wall shear stress and wall shear stress gradient were calculated. Results Measurements of inflow velocity and outflow pressure were successful in all four patients. Computational models incorporating these measurements demonstrated significant reductions in intra-aneurysmal wall shear stress and wall shear stress gradient, and a trend in reduced intra-aneurysmal blood flow. Conclusions Integration of intravascular dual-sensor guidewire measurements of blood flow velocity and blood pressure provided patient-specific computational models of cerebral aneurysms. Aneurysm treatment with flow-diverting stents reduces blood flow and hemodynamic shear stress in the aneurysm dome. PMID:23868162

  7. Measuring bovine mammary gland blood flow using a transit time ultrasonic flow probe.

    PubMed

    Gorewit, R C; Aromando, M C; Bristol, D G

    1989-07-01

    Lactating cattle were used to validate a transit time ultrasonic blood flow metering system for measuring mammary gland arterial blood flow. Blood flow probes were surgically placed around the right external pudic artery. An electromagnetic flow probe was implanted in tandem with the ultrasonic probe in two cows for comparative measurements. The absolute accuracy of the implanted flow probes was assessed in vivo by mechanical means on anesthetized cows after 2 to 3 wk of implantation. The zero offset of the ultrasonic probes ranged from -12 to 8 ml/min. When the ultrasonic probe was properly implanted, the slopes of the calibration curves were linear and ranged from .92 to .95, tracking absolute flow to within 8%. The transit time instrument's performance was examined under a variety of physiological conditions. These included milking and hormone injections. The transit time ultrasonic flow meter accurately measured physiological changes in mammary arterial blood flow in chronically prepared conscious cattle. Blood flow increased 29% during milking. Epinephrine decreased mammary blood flow by 90 to 95%. Oxytocin doses increased mammary blood flow by 15 to 24%. PMID:2674232

  8. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children.

    PubMed

    Chaddock-Heyman, Laura; Erickson, Kirk I; Chappell, Michael A; Johnson, Curtis L; Kienzler, Caitlin; Knecht, Anya; Drollette, Eric S; Raine, Lauren B; Scudder, Mark R; Kao, Shih-Chun; Hillman, Charles H; Kramer, Arthur F

    2016-08-01

    The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development. PMID:27419884

  9. Blood flow and arterial endothelial dysfunction: Mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Barakat, Abdul I.

    2013-06-01

    The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

  10. Measurement of normal portal venous blood flow by Doppler ultrasound.

    PubMed

    Brown, H S; Halliwell, M; Qamar, M; Read, A E; Evans, J M; Wells, P N

    1989-04-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the supine position was 864 (188)ml/min (mean 1SD). When standing, the mean volume blood flow was significantly reduced by 26% to 662 (169)ml/min. There was, however, no significant difference between flow when supine and when tilted head down at 20 degrees from the horizontal. PMID:2653973

  11. Validation studies for brain blood flow assessment by radioxenon tomography

    SciTech Connect

    Rezai, K.; Kirchner, P.T.; Armstrong, C.; Ehrhardt, J.C.; Heistad, D.

    1988-03-01

    A tomographic technique has been used recently for cerebral blood flow measurements with inhaled radioxenon. Based on experiments in a specially developed dynamic phantom and on studies in primates in vivo, we have analyzed the validity of this method for measurements of both regional and total blood flow in the brain. We have also examined the errors introduced into flow computations as a function of changes in such parameters as: rate of xenon input, size of region of interest, magnitude of regional flow rates, and inter-regional flow differences. Our findings indicate a reasonable degree of accuracy for flow measurements in gray matter regions that are 3 cm in diameter or larger, while white matter blood flow is generally overestimated. The accuracy for regional flow assessments degrades as a function of: diminishing region size, increasing inter-regional flow differences, and flow rates in excess of 100 ml/100 g/min. Measurements for brain regions 2 cm or smaller in diameter can be in error by 25-50% as a result of partial volume averaging. Although the technique is not ideal for accurate flow measurements in small regions of the brain, it nevertheless provides a convenient means of assessing perfusion in major vascular territories of the brain in routine clinical applications.

  12. Measurement of directed blood flow by laser speckle

    NASA Astrophysics Data System (ADS)

    Hirst, Evan R.; Thompson, Oliver B.; Andrews, Michael K.

    2011-03-01

    Recent success in reconciling laser Doppler and speckle measurements of dermal perfusion by the use of multi-exposure speckle has prompted an investigation of speckle effects arising from directed blood flow which might be expected in the small blood vessels of the eye. Unlike dermal scatter, the blood in retinal vessels is surrounded by few small and stationary scatterers able to assist the return of light energy by large-angle scatter. Returning light is expected to come from multiple small angle scatter from the large red blood cells which dominate the fluid. This work compares speckle measurements on highly scattering skin, with measurements on flow in a retinal phantom consisting of a glass capillary which is itself immersed in an index matching fluid to provide a flat air-phantom interface. Brownian motion dominated measurements when small easily levitated scatters were used, and flow was undetectable. With whole-blood, Brownian motion was small and directed flows in the expected region of tens of mm/s were detectable. The nominal flow speed relates to the known pump rate; within the capillary the flow will have a profile reducing toward the walls. The pulsatile effects on laser speckle contrast in the retina are discussed with preliminary multi-exposure measurements on retinal vessels using a fundus camera. Differences between the multiple exposure curves and power spectra of perfused tissue and ordered flow are discussed.

  13. Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow.

    PubMed

    Li, Chunyan; Wu, Pei-ming; Wu, Zhizhen; Limnuson, Kanokwan; Mehan, Neal; Mozayan, Cameron; Golanov, Eugene V; Ahn, Chong H; Hartings, Jed A; Narayan, Raj K

    2015-10-01

    Cerebral blood flow (CBF) plays a critical role in the exchange of nutrients and metabolites at the capillary level and is tightly regulated to meet the metabolic demands of the brain. After major brain injuries, CBF normally decreases and supporting the injured brain with adequate CBF is a mainstay of therapy after traumatic brain injury. Quantitative and localized measurement of CBF is therefore critically important for evaluation of treatment efficacy and also for understanding of cerebral pathophysiology. We present here an improved thermal flow microsensor and its operation which provides higher accuracy compared to existing devices. The flow microsensor consists of three components, two stacked-up thin film resistive elements serving as composite heater/temperature sensor and one remote resistive element for environmental temperature compensation. It operates in constant-temperature mode (~2 °C above the medium temperature) providing 20 ms temporal resolution. Compared to previous thermal flow microsensor based on self-heating and self-sensing design, the sensor presented provides at least two-fold improvement in accuracy in the range from 0 to 200 ml/100 g/min. This is mainly achieved by using the stacked-up structure, where the heating and sensing are separated to improve the temperature measurement accuracy by minimization of errors introduced by self-heating. PMID:26256480

  14. Luteal blood flow in patients undergoing GnRH agonist long protocol

    PubMed Central

    2011-01-01

    Background Blood flow in the corpus luteum (CL) is closely related to luteal function. It is unclear how luteal blood flow is regulated. Standardized ovarian-stimulation protocol with a gonadotropin-releasing hormone agonist (GnRHa long protocol) causes luteal phase defect because it drastically suppresses serum LH levels. Examining luteal blood flow in the patient undergoing GnRHa long protocol may be useful to know whether luteal blood flow is regulated by LH. Methods Twenty-four infertile women undergoing GnRHa long protocol were divided into 3 groups dependent on luteal supports; 9 women were given ethinylestradiol plus norgestrel (Planovar) orally throughout the luteal phase (control group); 8 women were given HCG 2,000 IU on days 2 and 4 day after ovulation induction in addition to Planovar (HCG group); 7 women were given vitamin E (600 mg/day) orally throughout the luteal phase in addition to Planovar (vitamin E group). Blood flow impedance was measured in each CL during the mid-luteal phase by transvaginal color-pulsed-Doppler-ultrasonography and was expressed as a CL-resistance index (CL-RI). Results Serum LH levels were remarkably suppressed in all the groups. CL-RI in the control group was more than the cutoff value (0.51), and only 2 out of 9 women had CL-RI values < 0.51. Treatments with HCG or vitamin E significantly improved the CL-RI to less than 0.51. Seven of the 8 women in the HCG group and all of the women in the vitamin E group had CL-RI < 0.51. Conclusion Patients undergoing GnRHa long protocol had high luteal blood flow impedance with very low serum LH levels. HCG administration improved luteal blood flow impedance. This suggests that luteal blood flow is regulated by LH. PMID:21219663

  15. Nonlinear dynamics of the blood flow studied by Lyapunov exponents.

    PubMed

    Bracic, M; Stefanovska, A

    1998-05-01

    In order to gain an insight into the dynamics of the cardiovascular system throughout which the blood circulates, the signals measured from peripheral blood flow in humans were analyzed by calculating the Lyapunov exponents. Over a wide range of algorithm parameters, paired values of both the global and the local Lyapunov exponents were obtained, and at least one exponent equaled zero within the calculation error. This may be an indication of the deterministic nature and finite number of degrees of freedom of the cardiovascular system governing the blood-flow dynamics on a time scale of minutes. A difference was observed in the Lyapunov dimension of controls and athletes. PMID:9608852

  16. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  17. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    SciTech Connect

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  18. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  19. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  20. Cerebral blood flow measured by NMR indicator dilution in cats

    SciTech Connect

    Ewing, J.R.; Branch, C.A.; Helpern, J.A.; Smith, M.B.; Butt, S.M.; Welch, K.M.

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  1. The effects of hypoxemia on myocardial blood flow during exercise.

    PubMed

    Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J

    1989-03-01

    We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2704596

  2. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality.

    PubMed

    Bellapart, Judith; Chan, Gregory S H; Tzeng, Yu-Chieh; Ainslie, Philip N; Dunster, Kimble R; Barnett, Adrian G; Boots, Rob; Fraser, John F

    2011-09-01

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects. PMID:21775798

  3. Detecting Blood Flow Response to Stimulation of the Human Eye

    PubMed Central

    Pechauer, Alex D.; Huang, David; Jia, Yali

    2015-01-01

    Retinal blood supply is tightly regulated under a variety of hemodynamic considerations in order to satisfy a high metabolic need and maintain both vessel structure and function. Simulation of the human eye can induce hemodynamics alterations, and attempt to assess the vascular reactivity response has been well documented in the scientific literature. Advancements in noninvasive imaging technologies have led to the characterization of magnitude and time course in retinal blood flow response to stimuli. This allowed for a better understanding of the mechanism in which blood flow is regulated, as well as identifying functional impairments in the diseased eye. Clinically, the ability to detect retinal blood flow reactivity during stimulation of the eye offers potential for the detection, differentiation, and diagnosis of diseases. PMID:26504775

  4. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140

  5. Use of laser speckle flowgraphy in ocular blood flow research.

    PubMed

    Sugiyama, Tetsuya; Araie, Makoto; Riva, Charles E; Schmetterer, Leopold; Orgul, Selim

    2010-11-01

    Laser speckle flowgraphy (LSFG) allows for the quantitative estimation of blood flow in the optic nerve head, choroid, retina and iris in vivo. It was developed to facilitate the non-contact analysis of ocular blood flow in living eyes, utilizing the laser speckle phenomenon. The technique uses a fundus camera, a diode laser, an image sensor, an infrared charge-coupled device (CCD) camera and a high-resolution digital CCD camera. Normalized blur (NB), an approximate reciprocal of speckle contrast, represents an index of blood velocity, and shows a good correlation with tissue blood flow rates determined with the microsphere method in the retina, choroid or iris, as well as blood flow rates determined with the hydrogen gas clearance method in the optic nerve head. The square blur ratio (SBR), another index for quantitative estimation of blood velocity, is proportional to the square of the NB. The SBR is theoretically a more exact measurement which is proportional to velocity, whereas the NB is an approximation. Normalized blur was calculated in earlier versions of LSFG because of technical limitations; the SBR is used in current versions of the LSFG instrument. As these values are in arbitrary units, they should not be used to make comparisons between different eyes or different sites in an eye. Clinical protocols, calibration, evaluation procedures and possible limitations of the LSFG technique are described and the results of ocular blood flow studies using LSFG are briefly summarized. The LSFG method is suitable for monitoring the time-course of change in the tissue circulation at the same site in the same eye at various intervals, ranging from seconds to months. Unresolved issues concern the effect of pupil size on measurement results, the effects of various stimulations, and how to measure choroidal and retinal blood flow velocity separately without using the blue-component of argon laser. PMID:19725814

  6. Appearance of rapidly flowing blood on magnetic resonance images

    SciTech Connect

    Bradley, W.G. Jr.; Waluch, V.; Lai, K.S.; Fernandez, E.J.; Spalter, C.

    1984-12-01

    The appearance of rapidly flowing blood on imaging (MRI) was evaluated using flow phantoms and dye infusion experiments. Laminar flow can be maintained at high velocities in small-diameter vessels. Under such conditions, flow-related enhancement may be observed several slices into a multislice imaging volume. As the velocity increases, turbulence occurs. The increased random motion of the protons causes loss of intensity on the first-echo image, although rephasing with increased intensity can be noted on the second-echo image. The flow pattern of a simple intraluminal obstruction is demonstrated by MRI and dye infusion experiments. Clinical examples of the phantom findings are shown and applications are discussed.

  7. Quantitative OCT angiography of optic nerve head blood flow

    PubMed Central

    Jia, Yali; Morrison, John C.; Tokayer, Jason; Tan, Ou; Lombardi, Lorinna; Baumann, Bernhard; Lu, Chen D.; Choi, WooJhon; Fujimoto, James G.; Huang, David

    2012-01-01

    Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma. PMID:23243564

  8. Quantifying the glycocalyx effects in blood flow in capillaries

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    We employ Dissipative Particle Dynamics (DPD) to simulate blood flow in small capillaries with the glycocalyx attached to the endothelial surface. The effects of the glycocalyx on hematocrit and resistance to blood flow are analyzed by comparing with and without glycocalyx attached to the surface. Of particular interest is the quantification of the slip boundary condition at the edge of glycocalyx and also of the glycocalyx deformation at different grafting densities, stiffness and height of the glycocalyx. In addition to the physical insight gained for this important but relatively unexplored bio-flow, simple models for the slip velocity will be proposed that can be used in continuum simulations of blood flow in micro-vessels.

  9. Regional myocardial blood flow in man during dipyridamole coronary vasodilation

    SciTech Connect

    Sorensen, S.G.; Groves, B.M.; Horwitz, L.D.; Chaudhuri, T.K.

    1985-06-01

    Regional myocardial blood flow before and after intravenous dipyridamole (0.56 mg/kg) was measured during cardiac catheterization in 11 patients using the /sup 133/Xe washout technique. Significant increases in heart rate and decreases in systolic blood pressure were observed with dipyridamole infusion. However, double product and cardiac output did not differ before or after drug infusion. Regional myocardial blood flow increased from 67 to 117 ml/100 mg/min in myocardial segments supplied by nonobstructed coronary arteries. In stenotic coronary arteries, flow increased from 57 to 79 ml/100 mg/min with dipyridamole. We conclude that dipyridamole infusion results in flow differences which discriminate stenotic from nonstenotic coronary arteries.

  10. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity. PMID:24962383