Sample records for improves nutrient uptake

  1. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  2. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  3. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (amore » combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.« less

  4. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Treesearch

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  5. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Treesearch

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  6. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer.

    PubMed

    Sigua, G C; Novak, J M; Watts, D W; Johnson, M G; Spokas, K

    2016-01-01

    In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake

  7. Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans.

    PubMed

    O'Connor, Isabel A; Veltman, Karin; Huijbregts, Mark A J; Ragas, Ad M J; Russel, Frans G M; Hendriks, A Jan

    2014-11-01

    Most toxicokinetic models consider passive diffusion as the only mechanism when modeling the oral uptake of chemicals. However, the overall uptake of nutrients and xenobiotics, such as pharmaceuticals and environmental pollutants, can be increased by influx transport proteins. We incorporated carrier-mediated transport into a one-compartment toxicokinetic model originally developed for passive diffusion only. The predictions were compared with measured oral uptake efficiencies of nutrients and pharmaceuticals, i.e. the fraction of the chemical reaching systemic circulation. Including carrier-mediated uptake improved model predictions for hydrophilic nutrients (RMSE=10% vs. 56%, Coefficient of Efficiency CoE=0.5 vs. -9.6) and for pharmaceuticals (RMSE=21% vs. 28% and CoE=-0.4 vs. -1.1). However, the negative CoE for pharmaceuticals indicates that further improvements are needed. Most important in this respect is a more accurate estimation of vMAX and KM as well as the determination of the amount of expressed and functional transport proteins both in vivo and in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    USGS Publications Warehouse

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  9. Nutrient uptake of peanut genotypes under different water regimes

    USDA-ARS?s Scientific Manuscript database

    Drought is a serious environmental stress limiting growth and productivity in peanut and other crops. Nutrient uptake of peanut is reduced under drought conditions, which reduces yield. The objectives of this study were to investigate nutrient uptake of peanut genotypes in response to drought and ...

  10. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    USGS Publications Warehouse

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  11. Impact of FGD gypsum on soil fertility and plant nutrient uptake

    USDA-ARS?s Scientific Manuscript database

    Use of FGD gypsum is thought to improve soil productivity and increase plant production. Thus, a study was conducted to evaluate the effects of FGD gypsum on yield, plant nutrient uptake and soil productivity. The study was conducted on an established bermudagrass pasture. Poultry litter was applied...

  12. Estimating nutrient uptake requirements for soybean using QUEFTS model in China

    PubMed Central

    Yang, Fuqiang; Xu, Xinpeng; Wang, Wei; Ma, Jinchuan; Wei, Dan; He, Ping; Pampolino, Mirasol F.; Johnston, Adrian M.

    2017-01-01

    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear–parabolic–plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha−1 and the linear part was continuing until the yield reached about 60–70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean. PMID:28498839

  13. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    DOE PAGES

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    2016-10-07

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less

  14. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less

  15. Discontinuities in stream nutrient uptake below lakes in mountain drainage networks

    USGS Publications Warehouse

    Arp, C.D.; Baker, M.A.

    2007-01-01

    In many watersheds, lakes and streams are hydrologically linked in spatial patterns that influence material transport and retention. We hypothesized that lakes affect stream nutrient cycling via modifications to stream hydrogeomorphology, source-waters, and biological communities. We tested this hypothesis in a lake district of the Sawtooth Mountains, Idaho. Uptake of NO3- and PO4-3 was compared among 25 reaches representing the following landscape positions: lake inlets and outlets, reaches >1-km downstream from lakes, and reference reaches with no nearby lakes. We quantified landscape-scale hydrographic and reach-scale hydrogeomorphic, source-water, and biological variables to characterize these landscape positions and analyze relationships to nutrient uptake. Nitrate uptake was undetectable at most lake outlets, whereas PO4-3 uptake was higher at outlets as compared to reference and lake inlet reaches. Patterns in nutrient demand farther downstream were similar to lake outlets with a gradual shift toward reference-reach functionality. Nitrate uptake was most correlated to sediment mobility and channel morphology, whereas PO 4-3 uptake was most correlated to source-water characteristics. The best integrated predictor of these patterns in nutrient demand was % contributing area (the proportion of watershed area not routing through a lake). We estimate that NO3- and PO 4-3 demand returned to 50% of pre-lake conditions within 1-4-km downstream of a small headwater lake and resetting of nutrient demand was slower downstream of a larger lake set lower in a watershed. Full resetting of these nutrient cycling processes was not reached within 20-km downstream, indicating that lakes can alter stream ecosystem functioning at large spatial scales throughout mountain watersheds. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  16. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake.

    PubMed

    Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E

    2015-10-01

    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice.

    PubMed

    Iwamoto, Masao; Tagiri, Akemi

    2016-02-01

    Fertilizers are often potential environmental pollutants, therefore increasing productivity and the efficiency of nutrient uptake to boost crop yields without the risk of environmental pollution is a desirable goal. Here, we show that the transcription factor encoding gene RDD1 plays a role in improving the uptake and accumulation of various nutrient ions in rice. RDD1 was found to be targeted by the microRNA miR166. An RDD1 transgene driven by a strong constitutive promoter exhibited a diurnally oscillating expression similar to that of the endogenous RDD1, and nucleotide substitution within the miR166 recognition site to prevent miR166-RDD1 mRNA pairing resulted in constitutive RDD1 expression. The RDD1 protein was localized to vascular tissue because miR166 repressed RDD1 expression in the mesophyll. The overexpression of RDD1 induced the expression of genes associated with the transport of several nutrients such as NH4(+), Na(+), SO4(2-), Cl(-), PO4(3-) and sucrose, and the uptake and accumulation of various nutrient ions under low-nutrient conditions. Moreover, the overexpression of RDD1 increased nitrogen responsiveness and grain productivity. Our results suggest that RDD1 can contribute to the increased grain productivity of rice via inducing the efficient uptake and accumulation of various nutrient ions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Can uptake length in strams be determined by nutrient addition experiments? Results from an interbiome comparison study

    Treesearch

    P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim

    2002-01-01

    Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...

  19. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  20. Research Paper. Nutrient uptake and mineralization during leaf decay in streams-a model simulation.

    Treesearch

    J.R. Webster; J.D. Newbold; S.A. Thomas; H.M. Valett; P.J. Mulholland

    2009-01-01

    We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of...

  1. Endocytotic uptake of nutrients in carnivorous plants.

    PubMed

    Adlassnig, Wolfram; Koller-Peroutka, Marianne; Bauer, Sonja; Koshkin, Edith; Lendl, Thomas; Lichtscheidl, Irene K

    2012-07-01

    Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.

  3. Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry

    NASA Astrophysics Data System (ADS)

    Yin, Kedong; Liu, Hao; Harrison, Paul J.

    2017-05-01

    We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3- was depleted with excess PO43- and SiO4- remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43- continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3- (the most limiting nutrient) and then PO43- and SiO4- (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3- (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of

  4. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  5. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  6. Nutrient uptake from liquid digestate using ornamental aquatic macrophytes (Canna indica, Iris pseudacorus, Typha latifolia) in a constructed wetland system

    NASA Astrophysics Data System (ADS)

    Ediviani, W.; Priadi, C. R.; Moersidik, S. S.

    2018-05-01

    Indonesia has implemented energy recovery from organic (food) waste by anaerobic digestion method, but the digestate was commonly treated only by composting, and still as a separated treatment (not integrated into a resource recovery system). Whilst not getting any pretreatment, the digestate was disposed to the environment and then act as a pollutant. Yet it contains nutrients which could be recovered as a nutrient source for plants. The study was about how ornamental aquatic macrophytes could uptake nitrogen from liquid digestate in a constructed wetland method. Canna indica, Iris pseudacorus, and Typha latifolia were the experimented ornamental aquatic macrophytes used to uptake the nutrient (nitrogen—N) from liquid digestate. The study showed that the highest N uptake was done by C. indica (25.1%) which has the highest biomass increment as well (80.5%). Effluent quality improvement also shown by N removal by C. indica (68.5—76.4% TN), I. pseudacorus (61.8—71.3% TN), and T. latifolia (61.6—74.5%). This research proved that C. indica has the performance for the N uptake, best N removal efficiency, with a great growth rate as well. This system using C. indica could also improve the water quality of the effluent and add the aesthetic of environment.

  7. INTERREGIONAL COMPARISON OF NUTRIENT UPTAKE RATES IN MANAGED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared nutrient uptake rates to examine the effect of timber harvest on streams. From 1999-2002, nutrient additions were conducted in 50 stream reaches in 4 ecoregions (southern Blue Ridge, NC, Ouachita Mountains, AR, Cascade Mountains, OR, and the redwood forests of the Co...

  8. A novel nanoparticle approach for imaging nutrient uptake by soil bacteria

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Antonopoulos, D. A.; Boyanov, M.; Durall, D. M.; Jones, M. D.; Lai, B.; O'Loughlin, E. J.; Kemner, K. M.

    2014-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout their habitat. Here we use a novel imaging technique with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to measure bacterial uptake of substrates of varying complexity. Cultures of two organisms differing in cell wall structure — Bacillus subtilis and Pseudomonas fluorescens — were grown in one of four ecologically relevant experimental conditions: nitrogen (N) limitation, phosphorus (P) limitation, N and P limitation, or no nutrient limitation. The cultures were then exposed to QDs with and without organic nutrients attached. X-ray fluorescence imaging was performed at 2ID-D at the Advanced Photon Source (APS) to determine the elemental distributions within both planktonic and surface-adhered (i.e, biofilms) cells. Uptake of unconjugated QDs was neglibible, and QDs conjugated to organic substrates varied depending on growth conditions and substrate, suggesting that they are a useful indicator of bacterial ecology. Cellular uptake was similar for the two bacterial species (2212 ± 273 nanoparticles per cm3 of cell volume for B. subtilis and 1682 ± 264 for P. fluorescens). On average, QD assimilation was six times greater when N or P was limiting, and cells took up about twice as much phosphoserine compared to other substrates, likely because it was the only compound providing both N and P. These results showed that regardless of their cell wall structure, bacteria can selectively take up quantifiable levels of QDs based on substrate and environmental conditions. APS

  9. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress.

    PubMed

    Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan

    2018-05-31

    Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.

  10. Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model

    Treesearch

    Wendell P. Cropper; N.B. Comerford

    2005-01-01

    Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...

  11. Nutrient Uptake and Use Efficiency by Tropical Legume Cover Crops at varying pH of an Oxisol

    USDA-ARS?s Scientific Manuscript database

    Oxisols comprise large soil group in tropical America. These soils are acidic and having low fertility. Use of tropical legume cover crops in cropping systems is an important strategy to improve fertility of these soils for sustainable crop production. Data are limited on nutrient uptake and use ef...

  12. Nutrient Uptake and Outcome network (NUOnet): Connecting a Wide Range of Natural Resource Conservation Networks

    USDA-ARS?s Scientific Manuscript database

    Nutrient application and its uptake by crops are essential to increasing agricultural production, which is essential to feed a growing world population. Efficiency in management of nutrients could be increased with conservation practices that reduce nutrient losses to the environment and promote con...

  13. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  14. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    PubMed Central

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-01-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs. PMID:27353576

  15. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-06-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  16. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse.

    PubMed

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J; Goehlich, Henry; Latijnhouwers, Kelly R W; van Heeringen, Seth; Honcoop, Saskia A S; Bleyenberg, Tanja E; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J A; Visser, Petra M

    2016-06-29

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  17. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less

  18. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2.

    PubMed

    Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael

    2017-12-04

    The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.

  19. Uptake of perfluorinated compounds by plants grown in nutrient solution.

    PubMed

    García-Valcárcel, A I; Molero, E; Escorial, M C; Chueca, M C; Tadeo, J L

    2014-02-15

    The uptake rates of three perfluorinated carboxylates and three perfluorinated sufonates by a grass (B diandrus) grown in nutrient solution at two different perfluorinated compounds (PFCs) concentrations were assessed. Grass can be ingested by grazing animals causing the PFCs to enter the food chain, which is a pathway of human exposure to these compounds. A rapid and miniaturized method was developed to determine PFCs in plants, based on a matrix solid-phase dispersion (MSPD) extraction procedure followed by quantitation by HPLC-MS/MS with an MQL in the range from 1 to 9 ng/g. An increase of PFCs levels in plant was observed along the exposure time. Differences in uptake for studied perfluorinated carboxylates were found, showing a decrease with carbon chain length (from 3027 to 1,167 ng/g at the end of assay), whereas no significant differences in absorption were obtained between perfluorinated sulfonates (about 1,700 ng/g). Initially, higher PFC transfer factors (ratio between concentration in plant and concentration in initial nutrient solution) were obtained for plants growing in the nutrient solution at the highest PFC concentration, but these factors became similar with time to plants exposed to the lowest concentration. © 2013 Elsevier B.V. All rights reserved.

  20. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C.

    2013-12-01

    Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.

  1. Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance

    Treesearch

    R. Kasten Dumroese; Deborah S. Page-Dumroese; K. Francis Salifu; Douglass F. Jacobs

    2005-01-01

    We evaluated nutrient uptake efficiency and subsequent leaching fractions for western white pine (Pinus monticola Dougl. ex D. Don) seedlings grown with exponentially increasing or conventional (constant) fertilization in a greenhouse. Conventional fertilization was associated with higher leachate electrical conductivity and greater nutrient losses,...

  2. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, R; McFarlane, K; Lucash, M

    2009-10-09

    Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium,more » nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  5. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  6. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  7. Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...

  8. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. [Pisolithus tinctorius, Pinus virginiana Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.

    One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less

  9. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings.

    PubMed

    Chen, Shuangchen; Zhao, Hongjiao; Zou, Chenchen; Li, Yongsheng; Chen, Yifei; Wang, Zhonghong; Jiang, Yan; Liu, Airong; Zhao, Puyan; Wang, Mengmeng; Ahammed, Golam J

    2017-01-01

    Mycorrhizal inoculation stimulates growth, photosynthesis and nutrient uptake in a wide range of host plants. However, the ultimate effects of arbuscular mycorrhyzal (AM) symbiosis vary with the plants and fungal species involved in the association. Therefore, identification of the appropriate combinations of AM fungi (AMF) that interact synergistically to improve their benefits is of high significance. Here, three AM fungal compositions namely VT ( Claroideoglomus sp., Funneliformis sp., Diversispora sp., Glomus sp., and Rhizophagus sp.) and BF ( Glomus intraradices , G. microageregatum BEG and G. Claroideum BEG 210), and Funneliformis mosseae (Fm) were investigated with respect to the growth, gas exchange parameters, enzymes activities in Calvin cycles and related gene expression in cucumber seedlings. The results showed that VT, BF and Fm could successfully colonize cucumber root to a different degree with the colonization rates 82.38, 74.65, and 70.32% at 46 days post inoculation, respectively. The plant height, stem diameter, dry weight, root to shoot ratio of cucumber seedlings inoculated with AMF increased significantly compared with the non-inoculated control. Moreover, AMF colonization greatly increased the root activity, chlorophyll content, net photosynthetic rate, light saturated rate of the CO 2 assimilation ( A sat), maximum carboxylation rate ( V cmax ) and maximum ribulose-1,5-bis-phosphate (RuBP) regeneration rate ( J max), which were increased by 52.81, 30.75, 58.76, 47.00, 69.15, and 65.53% when inoculated with VT, respectively. The activities of some key enzymes such RuBP carboxylase/oxygenase (RuBisCO), D-fructose-1,6-bisphosphatase (FBPase), D-fructose-6-phosphatase (F6P) and ribulose-5-phosphate kinase (Ru5PK), and related gene expression involved in the Calvin cycle including RCA , FBPase , FBPA , SBPase , rbcS and rbcL were upregulated by AMF colonization. AMF inoculation also improved macro- and micro nutrient contents such as N, P, K, S

  10. Toward a universal mass-momentum transfer relationship for predicting nutrient uptake and metabolite exchange in benthic reef communities

    NASA Astrophysics Data System (ADS)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin

    2016-09-01

    Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.

  11. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  12. The Potential of the Nutrient Uptake and Outcome network (NUOnet) to Contribute to Soil and Water Conservation

    USDA-ARS?s Scientific Manuscript database

    With the national and global environmental challenges that we have related to nutrient management, there is a need to use large quantities of information to solve the complex agricultural challenges humanity faces. USDA-ARS is developing a national network called the Nutrient Uptake and Outcome netw...

  13. Correlation of Emulsion Structure with Cellular Uptake Behavior of Encapsulated Bioactive Nutrients: Influence of Droplet Size and Interfacial Structure.

    PubMed

    Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song

    2016-11-16

    In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p < 0.01). The results suggested that delivery in an emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.

  14. Nutrient Uptake and Cycles of Change: the Ventura River in Southern California

    NASA Astrophysics Data System (ADS)

    Leydecker, A.; Simpson, J.; Grabowski, L.

    2003-12-01

    Watersheds in Mediterranean climates are characterized by extreme seasonal and inter-annual rainfall variability. This variability engenders cycles of sediment deposition and removal, algal growth, and the advance and retreat of riparian and aquatic vegetation. In turn, these changes dramatically alter the appearance and biological functioning of rivers and streams, regulating the uptake of nutrients. The Ventura River drains 580 sq. km of mountainous coastal watershed 100 km northwest of Los Angles, Ca. More than 90 % of the average annual rainfall of 500 mm falls between December and March with most of the annual runoff occurring within a few days. Since 1930, annual runoff has varied from 0.01 to 70 cm/ha, with a mean of 12 and median of 4 cm. We have been measuring dissolved nutrient concentrations at four locations on the lower 9 kilometers of the river for the past 3 years (annual runoff of 19, 0.6 and 14 cm, respectively) and quantifying the relative abundance of plants and algae during 2003. A subsequent decrease in nutrient concentrations below a treated sewage outfall at km 8 provides estimates of nutrient uptake under changing conditions. Nitrate concentrations on the river peak in early winter, presumably from mineralization and mobilization after the advent of the rainy season, and decrease to a minimum by late summer. Phosphate, controlled by dry-season treatment plant outflows, has an opposite pattern. The seasonal variation in both is considerable (0 to 380 microM for nitrate, 0 to 35 microM for phosphate). Major winter storms, such as occur during severe El Nino years (peak flows > 1000 cms), begin a transformational cycle by completely scouring the channel of vegetation and fine sediment; this occurs, on average, once every 10 to 12 years (the interval has varied from 3 to 30 years). The scoured channel, with warmer water temperatures, the absence of shade and a nutrient rich environment, becomes dominated by filamentous algae (principally

  15. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    PubMed

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    PubMed

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    PubMed

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  18. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach.

    PubMed

    Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W

    2008-01-01

    Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.

  19. NUTRIENT UPTAKE LENGTH, CHANNEL STRUCTURE, AND TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    Channel structure and transient storage were correlated with nutrient uptake length in streams draining old-growth and harvested watersheds in the Cascade Mountains of Oregon, and the redwood forests of northwestern California. Channel width and riparian canopy were measured at 1...

  20. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake.

    PubMed

    Saliba, Elie; Evangelinos, Minoas; Gournas, Christos; Corrillon, Florent; Georis, Isabelle; André, Bruno

    2018-03-23

    The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H + influx catalyzed by amino-acid/H + symporters. H + -dependent uptake of other nutrients, ionophore-mediated H + diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H + elicited by these processes stimulates the compensating H + -export activity of the plasma membrane H + -ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H + -ATPase, H + influx or increase fails to activate TORC1. Our results show that H + influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. © 2018, Saliba et al.

  1. Isolation and characterization of N2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake.

    PubMed

    Xu, Jia; Kloepper, Joseph W; Huang, Ping; McInroy, John A; Hu, Chia H

    2018-05-01

    The aims of this study were to isolate and characterize N 2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N 2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improving crop nutrient efficiency through root architecture modifications.

    PubMed

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  3. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake.

    PubMed

    Sharma, Paresh; Wollenberg, Kurt; Sellers, Morgan; Zainabadi, Kayvan; Galinsky, Kevin; Moss, Eli; Nguitragool, Wang; Neafsey, Daniel; Desai, Sanjay A

    2013-07-05

    Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.

  4. Irrigation frequency alters nutrient uptake in container-grown Rhododendron plants grown with different rates of nitrogen

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilize...

  5. Effects of Harvesting Intensity and Herbivory by White-tailed Deer on Vegetation and Nutrient Uptake in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Yorks, T. E.; Leopold, D. J.; Raynal, D. J.; Murdoch, P. S.; Burns, D. A.

    2003-12-01

    We quantified the response of vegetation and nutrient uptake in a northern hardwood forest in southeastern New York for three to four years after three intensities of harvesting: clearcutting, heavy timber stand improvement (TSI), light TSI (97, 29, and 10% basal area reductions, respectively). We also quantified effects of white-tailed deer (Odocoileus virginianus) herbivory on nutrient retention by vegetation. Total biomass and nutrient accumulation in vegetation was higher after TSI than clearcutting in the first two years but was highest in the fenced clearcut in subsequent years, indicating that TSI or partial harvesting is a viable management tool for harvesting timber while consistently maintaining high rates of nutrient retention. After clearcutting, biomass and nutrient retention were initially dominated by woody stems <1.4 m tall and herbaceous vegetation, but saplings 0.1-5.0 cm DBH became the most important contributors to biomass and nutrient accumulation within four years. However, after both intensities of TSI, trees >5.0 cm DBH continued to account for most biomass and nutrient accumulation whereas understory vegetation accumulated little biomass or nutrients. Heavy TSI resulted in increased regeneration of only two tree species (Acer pensylvanicum, Fagus grandifolia), but clearcutting allowed these two species, mature forest species (A. saccharum, Betula alleghaniensis), and the early successional Prunus pensylvanica to regenerate. Several early successional shrub and herbaceous species were also important to nutrient retention after clearcutting, including Polygonum cilinode, Rubus spp., and Sambucus racemosa. Herbivory by white-tailed deer dramatically reduced biomass and nutrient accumulation by woody stems <5 cm DBH after clearcutting (5.5 vs. 0.7 Mg biomass/ha and 30.4 vs. 6.3 kg N/ha on fenced and unfenced clearcut sites, respectively, after four years), indicating the important influence this herbivore can have on nutrient retention in

  6. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    PubMed

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-09-08

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  7. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  8. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  9. Irrigation frequency during container production alters Rhodendron growth, nutrient uptake, and flowering after transplanting into a landscape

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation frequency (same amount of water per day given at different times) and nitrogen (N) fertilizer application rate during container on nutrient uptake, growth (biomass) and flowering of evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhod...

  10. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions.

    PubMed

    Mardukhi, Baran; Rejali, Farhad; Daei, Gudarz; Ardakani, Mohammad Reza; Malakouti, Mohammad Javad; Miransari, Mohammad

    2011-07-01

    Since most experiments regarding the symbiosis between arbuscular mycorrhizal (AM) fungi and their host plants under salinity stress have been performed only under greenhouse conditions, this research work was also conducted under field conditions. The effects of three AM species including Glomus mosseae, G. etunicatum and G. intraradices on the nutrient uptake of different wheat cultivars (including Roshan, Kavir and Tabasi) under field and greenhouse (including Chamran and Line 9) conditions were determined. At field harvest, the concentrations of N, Ca, Mg, Fe, Cu, and Mn, and at greenhouse harvest, plant growth, root colonization and concentrations of different nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl were determined. The effects of wheat cultivars on the concentrations of N, Ca, and Mn, and of all nutrients were significant at field and greenhouse conditions, respectively. In both experiments, AM fungi significantly enhanced the concentrations of all nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl. The synergistic and enhancing effects of co-inoculation of AM species on plant growth and the inhibiting effect of AM species on Na(+) rather than on Cl(-) uptake under salinity are also among the important findings of this research work. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams

    EPA Science Inventory

    We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...

  12. Influences of Geomorphic Complexity and Rehabilitation on Nutrient Uptake in an Urban Stream

    NASA Astrophysics Data System (ADS)

    Mueller, J. S.; Baker, D. W.; Bledsoe, B. P.

    2006-12-01

    Headwater streams, which are highly vulnerable to anthropogenic impacts associated with land use change, have large surface-to-volume ratios that favor retention and removal of nitrogen. We describe a study focused on how geomorphic complexity is related to nutrient retention in impacted and restored headwater streams along a gradient of human land use. A key element of the study is a detailed protocol for characterizing the spatial distribution of physical habitat units composed of relatively distinct combinations of flow hydraulics and textural facies. We are using the detailed physical characterization and nutrient injections in paired segments of a Colorado Front Range urban stream to examine associations among geomorphic complexity, nitrogen uptake, and the degree and style of channel rehabilitation. The results of the study have implications for the viability of stream rehabilitation as a tool for reducing N delivery to downstream aquatic systems that are vulnerable to eutrophication.

  13. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes

    NASA Astrophysics Data System (ADS)

    Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm

    2017-06-01

    Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape characterised by relatively fast (˜ 220 t km-2 yr-1) denudation and a kinetically limited weathering regime of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, which we attribute to the nutrient uptake by forest trees. Therefore both the Mg isotopes and the flux comparison suggest that a substantial part of the major element weathering flux is consumed by the tree biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaves suggests that tree trunks account for a substantial fraction of the net uptake of Mg. This isotopic and elemental compartment separation is prevented from obliteration (which would occur by Mg redissolution) by two potential effects. Either the mineral nutrients accumulate today in regrowing forest biomass after clear cutting, or they are exported in litter and coarse woody debris (CWD) such that they remain in solid biomass. Over pre-forest-management weathering timescales, this removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our approach provides entirely novel means towards the direct

  14. Nutrient inputs via rock weathering point to enhanced CO2 uptake capacity of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.

    2016-12-01

    Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover

  15. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE, TRANSIENT STORAGE AND NUTRIENT UPTAKE IN STREAMS DRAINING MANAGED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...

  16. Improving influenza vaccine uptake in frontline staff.

    PubMed

    Aziz, Ann-Marie

    Influenza is a highly contagious upper respiratory tract disease causing significant morbidity and mortality among high-risk groups. Immunization of frontline healthcare workers (HCWs) in the NHS is thought to be beneficial in reducing subclinical infection, staff sickness absences and protects patients. Each year Public Health England launches the Seasonal Flu Campaign to help reduce influenza transmission by reinforcing the message that it is vital that frontline HCWs get vaccinated. Public Health produces figures on frontline workers who have been vaccinated annually. The 2011/2012 campaign showed uptake figures of the influenza vaccine was averaging 44.6% nationally. The efforts of an NHS trust to increase staff uptake of the annual seasonal flu vaccination programme has been highly commended as it achieved an impressive 68.7% uptake against a target of 70%. This article shows how the trust worked hard to improve uptake on flu vaccinations for HCWs during the 2012/2013 flu season. Recognised as a Top Improver by NHS Employers (2013) for vaccination uptake, the Trust identifies how measures can be adopted to improve vaccination rates and what barriers can prevent total compliance. High rates of HCW vaccination can benefit staff, patients and the communities within which they work and live.

  17. Nutrient acquisition strategies of mammalian cells.

    PubMed

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  18. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  19. Approaches in the Determination of Plant Nutrient Uptake and Distribution in Space Flight Conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, Mark

    1998-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which may impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the nuclides Ca45 and Fe59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  20. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes

    NASA Astrophysics Data System (ADS)

    Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm

    2017-04-01

    Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, that we attribute to the nutrient uptake by forest trees. Therefore, both the Mg isotopes and the flux comparison suggests that a substantial part of the major element weathering flux is consumed by the tree biomass. This isotopic and elemental compartment separation is preserved only if the mineral nutrients contained in biomass are prevented from re-dissolution after litter fall, showing that these nutrients have been removed as "solid" biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaf litter suggests that this removal occurs mainly in coarse woody debris (CWD). Today, CWD is exported from the ecosystem by tree logging. Over pre-anthropogenic weathering time scales, a similar removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our data provides the first direct quantification of biogenic uptake following weathering. We find that Mg and other bio-elements are taken up by trees at up to 7 m depth, and surface recycling of all bio-elements but P is minimal. Thus, in the

  1. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    PubMed Central

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  2. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    NASA Astrophysics Data System (ADS)

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in

  3. Impact of ocean phytoplankton diversity on phosphate uptake

    PubMed Central

    Lomas, Michael W.; Bonachela, Juan A.; Levin, Simon A.; Martiny, Adam C.

    2014-01-01

    We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients. PMID:25422472

  4. Effects of different fertilizers on growth and nutrient uptake of Lolium multiflorum grown in Cd-contaminated soils.

    PubMed

    Liu, Mohan; Li, Yang; Che, Yeye; Deng, Shaojun; Xiao, Yan

    2017-10-01

    This study aimed to explore the effects of different fertilizers and their combinations on growth and nutrient and Cd uptake of Lolium multiflorum. Compared with control treatment, chemical fertilizer, organic manure, and their conjunctions with biofertilizer increased shoot biomass. Biofertilizers were found to cause significant reductions in shoot biomass of plants grown in organic manure-treated and control soil. Decreased soil-available N and P and shoot N and K concentrations in biofertilizer amendment treatments indicated that plant growth and nutrient absorption might be negatively affected under nutrient deficiency conditions. Elevated shoot biomasses contributed to the highest shoot Cd contents in chemical fertilizer and chemical fertilizer + biofertilizer treatments among all treatments. But the maximum translocation efficiency occurred in biofertilizer + chemical fertilizer + organic manure treatment, followed by organic manure and chemical fertilizer + organic manure treatments. Based on the results, we can conclude that the application of only the biofertilizer Bacillus subtilis should be avoided in nutrient-limited soils. Chemical fertilizer application could benefit the amount of Cd in shoots, and organic manure application and its combinations could result in the higher translocation efficiency.

  5. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    NASA Astrophysics Data System (ADS)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  6. Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering.

    PubMed

    Lossec, G; Lebreton, Y; Hulin, J C; Fillaut, M; Herpin, P

    1998-11-01

    Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment. Indirect calorimetry and arterio-venous techniques were used. The cold challenge (23 C at 1 day old and 15 C at 5 days old for 90 min) induced a similar increase (+90 %) in regulatory heat production at both ages. Hindquarters blood flow was higher at 5 days than 1 day old at thermal neutrality (26 +/- 3 vs. 17 +/- 1 ml min-1 (100 g hindquarters)-1) and its increase in the cold was much more marked (+65 % at 5 days old vs. +25 % at 1 day old). Oxygen extraction by the hindquarters rose from 30-35 % at thermal neutrality to 65-70 % in the cold at both ages. The calculated contribution of skeletal muscle to total oxygen consumption averaged 34-40 % at thermal neutrality and 50-64 % in the cold and skeletal muscle was the major contributor to regulatory thermogenesis. Based on hindquarters glucose uptake and lactate release, carbohydrate appeared to be an important fuel for shivering. However, net uptake of fatty acids increased progressively during cold exposure at 5 days old. The enhancement in muscular blood supply and fatty acid utilization during shivering is probably related to the postnatal improvement in the thermoregulatory response of the piglet.

  7. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  8. Improvement of aquaponic performance through micro- and macro-nutrient addition.

    PubMed

    Ru, Dongyun; Liu, Jikai; Hu, Zhen; Zou, Yina; Jiang, Liping; Cheng, Xiaodian; Lv, Zhenting

    2017-07-01

    Aquaponics is one of the "zero waste" industry in the twenty-first century, and is considered to be one of the major trends for the future development of agriculture. However, the low nitrogen utilization efficiency (NUE) restricted its widely application. To date, many attempts have been conducted to improve its NUE. In the present study, effect of micro- and macro-nutrient addition on performance of tilapia-pak choi aquaponics was investigated. Results showed that the addition of micro- and macro-nutrients improved the growth of plant directly and facilitated fish physiology indirectly, which subsequently increased NUE of aquaponics from 40.42 to 50.64%. In addition, remarkable lower total phosphorus concentration was obtained in aquaponics with micro- and macro-nutrient addition, which was attributed to the formation of struvite. Most of the added micro-nutrients were enriched in plant root, while macro-nutrients mainly existed in water. Moreover, no enrichment of micro- and macro-nutrients in aquaponic products (i.e., fish and plant leaves) was observed, indicating that it had no influence on food safety. The findings here reported manifest that appropriate addition of micro- and macro-nutrients to aquaponics is necessary, and would improve its economic feasibility.

  9. Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2009-01-01

    Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.

  10. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  11. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    PubMed

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  12. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  13. Nitrogen and Phosphorus Plant Uptake During Periods with no Photosynthesis Accounts for About Half of Global Annual Uptake

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2017-12-01

    Uncertainties in current Earth System Model (ESM) predictions of terrestrial carbon-climate feedbacks over the 21st century are as large as, or larger than, any other reported natural system uncertainties. Soil Organic Matter (SOM) decomposition and photosynthesis, the dominant fluxes in this regard, are tightly linked through nutrient availability, and the recent Coupled Model Inter-comparison Project 5 (CMIP5) used for climate change assessment had no credible representations of these constraints. In response, many ESM land models (ESMLMs) have developed dynamic and coupled soil and plant nutrient cycles. Here we quantify terrestrial carbon cycle impacts from well-known observed plant nutrient uptake mechanisms ignored in most current ESMLMs. In particular, we estimate the global role of plant root nutrient competition with microbes and abiotic process at night and during the non-growing season using the ACME land model (ALMv1-ECA-CNP) that explicitly represents these dynamics. We first demonstrate that short-term nutrient uptake dynamics and competition between plants and microbes are accurately predicted by the model compared to 15N and 33P isotopic tracer measurements from more than 20 sites. We then show that global nighttime and non-growing season nitrogen and phosphorus uptake accounts for 46 and 45%, respectively, of annual uptake, with large latitudinal variation. Model experiments show that ignoring these plant uptake periods leads to large positive biases in annual N leaching (globally 58%) and N2O emissions (globally 68%). Biases these large will affect modeled carbon cycle dynamics over time, and lead to predictions of ecosystems that have overly open nutrient cycles and therefore lower capacity to sequester carbon.

  14. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    NASA Astrophysics Data System (ADS)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  15. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  16. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  17. Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli.

    PubMed

    Ayyildiz, Dilara; Arga, Kazim Yalcin; Avci, Fatma Gizem; Altinisik, Fatma Ece; Gurer, Caglayan; Gulsoy Toplan, Gizem; Kazan, Dilek; Wozny, Katharina; Brügger, Britta; Mertoglu, Bulent; Sariyar Akbulut, Berna

    2017-08-01

    Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 μg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.

  18. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  19. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake.

    PubMed

    Batty, Lesley C; Younger, Paul L

    2004-11-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.

  20. ‘And then there were three’: highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads

    PubMed Central

    Winkler, Uwe; Zotz, Gerhard

    2010-01-01

    Background and Aims Vascular epiphytes have to acquire nutrients from atmospheric wash out, stem-flow, canopy soils and trapped litter. Physiological studies on the adaptations to nutrient acquisition and plant utilization of nutrients have focused on phosphorus and nitrogen; potassium, as a third highly abundant nutrient element, has received minor attention. In the present study, potassium uptake kinetics by leaves, within-plant distribution and nutrient accumulation were analysed to gain an improved understanding of physiological adaptations to non-terrestrial nutrient supply of plants. Methods Radioactively labelled 86RbCl was used as an analogue to study uptake kinetics of potassium absorbed from tanks of epiphytes, its plant distribution and the correlation between uptake efficiency and abundance of trichomes, functioning as uptake organs of leaves. Potassium in leaves was additionally analysed by atomic absorption spectroscopy to assess plant responses to potassium deficiency. Key Results Labelled rubidium was taken up from tanks over a wide range of concentrations, 0·01–90 mm, which was achieved by two uptake systems. In four tank epiphytes, the high-affinity transporters had average Km values of 41·2 µm, and the low-affinity transporters average Km values of 44·8 mm. Further analysis in Vriesea splenriet showed that high-affinity uptake of rubidium was an ATP-dependent process, while low-affinity uptake was mediated by a K+-channel. The kinetic properties of both types of transporters are comparable with those of potassium transporters in roots of terrestrial plants. Specific differences in uptake velocities of epiphytes are correlated with the abundance of trichomes on their leaf surfaces. The main sinks for potassium were fully grown leaves. These leaves thus function as internal potassium sources, which allow growth to be maintained during periods of low external potassium availability. Conclusions Vascular epiphytes possess effective mechanisms

  1. Comparison of mineral weathering and biomass nutrient uptake in two small forested watersheds underlain by quartzite bedrock, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.

    2014-01-01

    To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.

  2. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao

    2017-12-31

    Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean

  4. BELOWGROUND NITROGEN UPTAKE AND ALLOCATION ...

    EPA Pesticide Factsheets

    Anthropogenic nitrogen inputs coupled with rising sea level complicate predictions of marsh stability. As marsh stability is a function of its vegetation, it is important to understand the mechanisms that drive community dynamics. Many studies have examined aboveground dynamics and nutrient cycling, but few have studied the belowground uptake and allocation of nitrogen. Literature suggests that D. spicata may dominate the marsh platform in nutrient-rich conditions, though the mechanism driving the vegetation shift is unclear. Our study examines belowground nutrient uptake and allocation underlying these patterns. To determine whether D. spicata is a more efficient scavenger of nutrients than S. alterniflora we performed a 15N pulse-chase experiment. Tracer was added to mesocosms growing D. spicata and S. alterniflora in monoculture. After the initial pulse, a subset of pots were sacrificed weekly and partitioned into detailed depth intervals for 15N analysis of several belowground pools: live coarse and fine roots, live rhizomes, dead organic matter, and bulk sediment. Comparisons between D. spicata and S. alterniflora uptake and allocation can explain mechanisms of competitive advantage and predictions of D. spicata dominance. Additionally, we used denitrification enzyme assays (DEA) and greenhouse gas slurries to quantify denitrification rates and potentials. Initial results suggest that the vegetation types support similar N-relevant microbial communities. Th

  5. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE PAGES

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...

    2016-12-23

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  6. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  7. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as

  8. Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film.

    PubMed

    An, Di; Yang, Ling; Liu, Boyang; Wang, Ting-Jie; Kan, Chengyou

    2017-12-20

    Matching the nutrient release rate of coated fertilizer with the nutrient uptake rate of the crop is the best way to increase the utilization efficiency of nutrients and reduce environmental pollution from the fertilizer. The diffusion property and mechanism of nutrients through the film are the theoretical basis for the product pattern design of coated fertilizers. For the coated fertilizer with a single-component nutrient, an extended solution-diffusion model was used to describe the difference of nutrient release rate, and the release rate is proportional to the permeation coefficient and the solubility of the nutrient. For the double- and triple-component fertilizer of N-K, N-P, and N-P-K, because of the interaction among nutrient molecules and ions, the release rates of different nutrients were significantly affected by the components in the composite fertilizer. Coating the single-component fertilizer (i.e., nitrogen fertilizer, phosphate fertilizer, and potash fertilizer) first and subsequently bulk blending is expected to be a promising way to adjust flexibly the nutrient release rate to meet the nutrient uptake rate of the crop.

  9. CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane.

    PubMed

    Gupta, Ankit; Balabaskaran-Nina, Praveen; Nguitragool, Wang; Saggu, Gagandeep S; Schureck, Marc A; Desai, Sanjay A

    2018-05-08

    Malaria parasites increase host erythrocyte permeability to ions and nutrients via a broad-selectivity channel known as the plasmodial surface anion channel (PSAC), linked to parasite-encoded CLAG3 and two associated proteins. These proteins lack the multiple transmembrane domains typically present in channel-forming proteins, raising doubts about their precise roles. Using the virulent human Plasmodium falciparum parasite, we report that CLAG3 undergoes self-association and that this protein's expression determines channel phenotype quantitatively. We overcame epigenetic silencing of clag3 paralogs and engineered parasites that express two CLAG3 isoforms simultaneously. Stoichiometric expression of these isoforms yielded intermediate channel phenotypes, in agreement with observed trafficking of both proteins to the host membrane. Coimmunoprecipitation and surface labeling revealed formation of CLAG3 oligomers. In vitro selections applied to these transfectant lines yielded distinct mutants with correlated changes in channel activity. These findings support involvement of the identified oligomers in PSAC formation and parasite nutrient acquisition. IMPORTANCE Malaria parasites are globally important pathogens that evade host immunity by replicating within circulating erythrocytes. To facilitate intracellular growth, these parasites increase erythrocyte nutrient uptake through an unusual ion channel. The parasite CLAG3 protein is a key determinant of this channel, but its lack of homology to known ion channels has raised questions about possible mechanisms. Using a new method that allows simultaneous expression of two different CLAG3 proteins, we identify self-association of CLAG3. The two expressed isoforms faithfully traffic to and insert in the host membrane, while remaining associated with two unrelated parasite proteins. Both the channel phenotypes and molecular changes produced upon selections with a highly specific channel inhibitor are consistent with a

  10. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  11. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    PubMed

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  12. Light Is More Important Than Nutrient Ratios of Fertilization for Cymodocea nodosa Seedling Development.

    PubMed

    Alexandre, Ana; Silva, João; Santos, Rui

    2018-01-01

    Restoration of seagrass beds through seedlings is an alternative to the transplantation of adult plants that reduces the impact over donor areas and increases the genetic variability of restored meadows. To improve the use of Cymodocea nodosa seedlings, obtained from seeds germinated in vitro , in restoration programs, we investigated the ammonium and phosphate uptake rates of seedlings, and the synergistic effects of light levels (20 and 200 μmol quanta m -2 s -1 ) and different nitrogen to phosphorus molar ratios (40 μM N:10 μM P, 25 μM N:25 μM P, and 10 μM N:40 μM P) on the photosynthetic activity and growth of seedlings. The nutrient content of seedlings was also compared to the seed nutrient reserves to assess the relative importance of external nutrient uptake for seedling development. Eighty two percent of the seeds germinated after 48 days at a mean rate of 1.5 seeds per day. All seedlings under all treatments survived and grew during the 4 weeks of the experiment. Seedlings of C. nodosa acquired ammonium and phosphate from the incubation media while still attached to the seed, at rates of about twice of adult plants. The relevance of external nutrient uptake was further highlighted by the observation that seedlings' tissues were richer in nitrogen and phosphorus than non-germinated seeds. The uptake of ammonium followed saturation kinetics with a half saturation constant of 32 μM whereas the uptake of phosphate increased linearly with nutrient concentration within the range tested (5 - 100 μM). Light was more important than the nutrient ratio of fertilization for the successful development of the young seedlings. The seedlings' photosynthetic and growth rates were about 20% higher in the high light treatment, whereas different nitrogen to phosphorus ratios did not significantly affect growth. The photosynthetic responses of the seedlings to changes in the light level and their capacity to use external nutrient sources showed that seedlings of C

  13. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees. PMID:27764099

  14. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  15. Silver Uptake, Distribution, and Effect on Calcium, Phosphorus, and Sulfur Uptake 1

    PubMed Central

    Koontz, Harold V.; Berle, Karen L.

    1980-01-01

    Bean, corn, and tomato plants were grown in a nutrient solution labeled with 32P, 45Ca, or 35S and varying concentrations of AgNO3. Following a 6-hour treatment period, plants were harvested and analyzed. A low Ag+ concentration (50 nanomolar) inhibited the shoot uptake of the ions investigated. In the roots, Ca uptake increased whereas P and S uptake decreased. Autoradiograms of bean and corn plants, using 110mAg, showed that Ag+ was uniformly deposited in the bean shoot, but corn shoots had regions of high activity along the leaf margins and at the tips where guttation had occurred. Roots were heavily labeled and shoots (especially the new growth) continued to accumulate Ag+ even after the intact plant was returned to Ag-free solution. Silver was believed to be phloem-mobile since it was exported from a treated leaf. Bean plants removed one-half the Ag+ from 4 liters of nutrient solution containing 50 nanomolar AgNO3 within 1.5 hours, but took 16 hours for 20 liters of solution. Images PMID:16661185

  16. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    NASA Astrophysics Data System (ADS)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  17. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  18. Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Reisinger, Alexander J.; Tank, Jennifer L.; Baker, Michelle A.; Hall, Robert O.; Rosi, Emma J.; Sivapalan, Murugesu

    2017-11-01

    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.

  19. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.

    PubMed

    Gerber, Stefan; Brookshire, E N Jack

    2014-03-01

    Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.

  20. NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.

    2004-01-01

    Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.

  1. Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer

    NASA Astrophysics Data System (ADS)

    Snyder, L. E.; Herstand, M. R.; Bowden, W. B.

    2011-12-01

    Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.

  2. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake

    PubMed Central

    Sherling, Emma S; Knuepfer, Ellen; Brzostowski, Joseph A; Miller, Louis H; Blackman, Michael J; van Ooij, Christiaan

    2017-01-01

    Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes. DOI: http://dx.doi.org/10.7554/eLife.23239.001 PMID:28252384

  3. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.

    PubMed

    Tandy, Susan; Schulin, Rainer; Nowack, Bernd

    2006-03-01

    Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.

  4. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    PubMed Central

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  5. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.

    PubMed

    Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S

    1997-10-01

    Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is

  6. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    PubMed

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  7. Combating Human Micronutrient Deficiencies through Soil Management Practices that Enhance Bioavailability of Nutrients to Plants

    ERIC Educational Resources Information Center

    O'Meara, Mary

    2009-01-01

    Micronutrient malnutrition affects the health and well being of 3 billion people globally. Identifying means to improve the micronutrient density in the edible portions of crops is an important way to combat nutrient deficiencies. By studying how plants obtain micronutrients from the soil, we can develop methods to enhance uptake. Although more…

  8. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    NASA Astrophysics Data System (ADS)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  9. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.

    PubMed

    Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François

    2012-01-01

    Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.

  11. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  12. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  13. Uptake of dissolved inorganic and organic nitrogen by the benthic toxic dinoflagellate Ostreopsis cf. ovata.

    PubMed

    Jauzein, Cécile; Couet, Douglas; Blasco, Thierry; Lemée, Rodolphe

    2017-05-01

    Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15 N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH 4 + ), nitrate (NO 3 - ) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10μmolNL -1 , kinetic curves showed a clear preference pattern following the ranking NH 4 + >NO 3 - >N-urea, where the preferential uptake of NH 4 + relative to NO 3 - was accentuated by an inhibitory effect of NH 4 + concentration on NO 3 - uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH 4 + relative to NO 3 - was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO 3 - uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH 4 + was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading

  15. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China.

    PubMed

    Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua

    2013-04-15

    There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.)*

    PubMed Central

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-wei; Wang, Wen-ming; Zhang, Zhen-hua; Yang, Yong; Song, Hai-xing; Guan, Chun-yun

    2016-01-01

    Background: Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm2), SF2/CRF2 (3000 kg/hm2), SF3/CRF3 (2250 kg/hm2), SF4/CRF4 (1500 kg/hm2), SF5/CRF5 (750 kg/hm2), and also using no fertilizer (CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm2, respectively), followed by CRF3 (1929.97 kg/hm2) and SF4 (1839.40 kg/hm2). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points

  17. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.).

    PubMed

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-Wei; Wang, Wen-Ming; Zhang, Zhen-Hua; Yang, Yong; Song, Hai-Xing; Guan, Chun-Yun

    Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011-2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm 2 ), SF2/CRF2 (3000 kg/hm 2 ), SF3/CRF3 (2250 kg/hm 2 ), SF4/CRF4 (1500 kg/hm 2 ), SF5/CRF5 (750 kg/hm 2 ), and also using no fertilizer (CK). CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm 2 , respectively), followed by CRF3 (1929.97 kg/hm 2 ) and SF4 (1839.40 kg/hm 2 ). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm 2 ) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared

  18. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes.

    PubMed

    Garg, Neera; Pandey, Rekha

    2015-04-01

    Soil salinity is an increasing problem worldwide, restricting plant growth and production. Research findings show that arbuscular mycorrhizal (AM) fungi have the potential to reduce negative effects of salinity. However, plant growth responses to AM fungi vary as a result of genetic variation in mycorrhizal colonization and plant growth responsiveness. Thus, profitable use of AM requires selection of a suitable combination of host plant and fungal partner. A greenhouse experiment was conducted to compare effectiveness of a native AM fungal inoculum sourced from saline soil and two single exotic isolates, Funneliformis mossseae and Rhizophagus irregularis (single or dual mix), on Cajanus cajan (L.) Millsp. genotypes (Paras and Pusa 2002) under salt stress (0-100 mM NaCl). While salinity reduced plant biomass and disturbed ionic status in both genotypes, Pusa 2002 was more salt tolerant and ensured higher AM fungal colonization, plant biomass and nutrient content with favourable ion status under salinity. Although all AM fungi reduced negative effects of salt stress, R. irregularis (alone or in combination with F. mosseae) displayed highest efficiency under salinity, resulting in highest biomass, yield, nutrient uptake and improved membrane stability with favourable K(+)/Na(+) and Ca(2+)/Na(+) ratios in the host plant. Higher effectiveness of R. irregularis correlated with higher root colonization, indicating that the symbiosis formed by R. irregularis had more stable viability and efficiency under salt stress. These findings enhance understanding of the functional diversity of AM fungi in ameliorating plant salt stress tolerance and suggest the potential use of R. irregularis for increasing Cajanus cajan productivity in saline soils.

  19. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables

    PubMed Central

    Fiorentino, Nunzio; Ventorino, Valeria; Woo, Sheridan L.; Pepe, Olimpia; De Rosa, Armando; Gioia, Laura; Romano, Ida; Lombardi, Nadia; Napolitano, Mauro; Colla, Giuseppe; Rouphael, Youssef

    2018-01-01

    Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N) fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.). The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41) or T. harzianum (T22), and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eukaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favored the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different effects with low

  20. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  1. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    PubMed

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  2. Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties.

    PubMed

    Wang, Bing; Gao, Bin; Zimmerman, Andrew R; Zheng, Yulin; Lyu, Honghong

    2018-03-01

    Drought conditions and nutrients loss have serious impacts on soil quality as well as crop yields in agroecosystems. New techniques are needed to carry out effective soil water and nutrient conservation and fertilizer application tools. Here, calcium alginate (CA) beads impregnated with ball-milled biochar (BMB) were investigated as a new type of water/nutrients retention agent. Both CA and Ca-alginate/ball milled biochar composite (CA-BMB) beads showed high kinetic swelling ratios in KNO 3 solution and low kinetic swelling ratios in water, indicating that CA-BMB beads have the potential to retain mineral nitrogen and nutrients by ion exchange. Pseudo-second-order kinetic model well-described the swelling kinetics of both beads in KNO 3 solution. Over a range of temperatures, the characteristics of dehydration suggested that impregnation with BMB improved the water holding capacity and postponed the dehydration time of Ca-alginate. The cumulative swelling and release characteristics of water, K + , and NO 3 - indicated that CA-BMB beads have great potential as a soil amendment to improve its nutrient retention and water holding capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fertilizer and soil management practices for improving the efficiency of nutrient uptake and use in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Highbush blueberry is a long-lived perennial crop well-adapted to acidic soils. Plants acquire primarily NH4-N and tolerate relatively low concentrations of P and cations in the soil and high concentrations of plant available metals such as Al and Mn. Recently, we found that optimal leaf nutrient co...

  4. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  5. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    PubMed

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions.

    PubMed

    Noroozisharaf, Alireza; Kaviani, Maryam

    2018-05-01

    Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m -2 . Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m -2 ). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p -cymene (4.24%), borneol (3.42%), trans -caryophyllene (1.70%) and cis -sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m -2 humic acid. There was a linear relationship ( R 2  = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m -2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris .

  7. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH.

  8. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  9. The role of precision agriculture for improved nutrient management on farms.

    PubMed

    Hedley, Carolyn

    2015-01-01

    Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies. © 2014 Society of Chemical Industry.

  10. Direct uptake of soil nitrogen by mosses

    PubMed Central

    Ayres, Edward; van der Wal, René; Sommerkorn, Martin; Bardgett, Richard D

    2006-01-01

    Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated. PMID:17148384

  11. Direct uptake of soil nitrogen by mosses.

    PubMed

    Ayres, Edward; van der Wal, René; Sommerkorn, Martin; Bardgett, Richard D

    2006-06-22

    Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated.

  12. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  13. Growing duckweed in swine wastewater for nutrient recovery and biomass production.

    PubMed

    Xu, Jiele; Shen, Genxiang

    2011-01-01

    Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. [Response of fine roots to soil nutrient spatial heterogeneity].

    PubMed

    Wang, Qingcheng; Cheng, Yunhuan

    2004-06-01

    The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics

  15. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts

  16. In-stream biotic control on nutrient biogeochemistry in a forested sheadwater tream, West Fork of Walker Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brian J; Mulholland, Patrick J

    2007-01-01

    A growing body of evidence demonstrates the importance of in-stream processing in regulating nutrient export, yet the influence of temporal variability in stream metabolism on net nutrient uptake has not been explicitly addressed. Streamwater DIN and SRP concentrations in Walker Branch, a first-order deciduous forest stream in eastern Tennessee, show a repeated pattern of annual maxima in summer and biannual minima in spring and autumn. Temporal variations in catchment hydrologic flowpaths result in lower winter and higher summer nutrient concentrations, but do not explain the spring and autumn nutrient minima. Ambient nutrient uptake rates were measured 2-3 times per weekmore » over an 18-mo period and compared to daily rates of gross primary production (GPP) and ecosystem respiration (ER) to examine the influence of in-stream biotic activity on nutrient export. GPP and ER rates explained 85% of the variation in net DIN retention with high net NO3- uptake (and lower net NH4+ release) rates occurring during spring and autumn and net DIN release in summer. Diel nutrient concentration patterns were examined several times throughout the year to determine the relative importance of autotrophic and heterotrophic activity on net nutrient uptake. High spring GPP corresponded to daily decreases in NO3- over the illuminated hours resulting in high diel NO3- amplitude which dampened as the canopy closed. GPP explained 91% of the variance in diel NO3- amplitude. In contrast, the autumn nutrient minima was largely explained by heterotrophic respiration since GPP remained low and little diel NO3- variation was observed during the autumn.« less

  17. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters* #

    PubMed Central

    Waqas, Muhammad; Kim, Yoon-Ha; Khan, Abdul Latif; Shahzad, Raheem; Asaf, Sajjad; Hamayun, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Lee, In-Jung

    2017-01-01

    We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro-and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro-and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents. PMID:28124840

  18. Selective transport of nutrients via the rhizoids of the water mold Blastocladiella emersonii.

    PubMed Central

    Kropf, D L; Harold, F M

    1982-01-01

    Previous work in this laboratory demonstrated that the rhizoids of Blastocladiella emersonii grow chemotropically toward a source of Pi and thus provided preliminary evidence that, in addition to serving as a holdfast, the rhizoids absorb nutrients. To further examine the role of the rhizoids in nutrient uptake, we devised a technique to introduce a barrier between the rhizoids and the thallus to that these cell compartments could be studied independently. Cells were grown on polycarbonate membrane filters in such a way that all of the thalli were on one side of the filter and essentially all of the rhizoids were on the opposite side. Nutrient uptake into the rhizoids and the thallus was measured by floating the filters bearing cells on radioactive medium so that only one side of the filter contacted the label. Mineral oil was used to block the diffusion of the label through the unfilled pores in the filter. This technique permitted us to establish clearly that the rhizoids absorb all seven of the nutrients tested. In addition, we found that some nutrients, specifically Pi and amino acids, appeared to be preferentially taken up via the rhizoids, whereas K+, Rb+, and Ca2+ entered the thallus and rhizoids equally. Cells grown in the presence of the microtubule synthesis inhibitors nocodazole and carbendazim elaborated only a stunted rhizoid system, so we examined their ability to accumulate the two classes of compounds. As expected, these cells were severely inhibited in Pi and amino acid uptake but retained normal uptake of K+, Rb+, and Ca2+. Images PMID:7085568

  19. Selective transport of nutrients via the rhizoids of the water mold Blastocladiella emersonii.

    PubMed

    Kropf, D L; Harold, F M

    1982-07-01

    Previous work in this laboratory demonstrated that the rhizoids of Blastocladiella emersonii grow chemotropically toward a source of Pi and thus provided preliminary evidence that, in addition to serving as a holdfast, the rhizoids absorb nutrients. To further examine the role of the rhizoids in nutrient uptake, we devised a technique to introduce a barrier between the rhizoids and the thallus to that these cell compartments could be studied independently. Cells were grown on polycarbonate membrane filters in such a way that all of the thalli were on one side of the filter and essentially all of the rhizoids were on the opposite side. Nutrient uptake into the rhizoids and the thallus was measured by floating the filters bearing cells on radioactive medium so that only one side of the filter contacted the label. Mineral oil was used to block the diffusion of the label through the unfilled pores in the filter. This technique permitted us to establish clearly that the rhizoids absorb all seven of the nutrients tested. In addition, we found that some nutrients, specifically Pi and amino acids, appeared to be preferentially taken up via the rhizoids, whereas K+, Rb+, and Ca2+ entered the thallus and rhizoids equally. Cells grown in the presence of the microtubule synthesis inhibitors nocodazole and carbendazim elaborated only a stunted rhizoid system, so we examined their ability to accumulate the two classes of compounds. As expected, these cells were severely inhibited in Pi and amino acid uptake but retained normal uptake of K+, Rb+, and Ca2+.

  20. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  1. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Improving water management practices to reduce nutrient export from rice paddy fields.

    PubMed

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  3. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shaid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz

    2010-01-01

    As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation

  4. Plant Nutrient Testing and Analysis in Forest and Conservation Nurseries

    Treesearch

    Thomas D. Landis; Diane L. Haase; R. Kasten Dumroese

    2005-01-01

    Supplying mineral nutrients at the proper rate and in the proper balance has a major effect on seedling growth rate but, more importantly, on seedling quality. In addition, mounting concerns about fertilizer pollution are increasing awareness of the benefits of precision fertilization. Because they reflect actual mineral nutrient uptake, plant tissue tests are the best...

  5. Impact of simulated atmospheric nitrogen deposition on nutrient cycling and carbon sink via mycorrhizal fungi in two nutrient-poor peatlands

    NASA Astrophysics Data System (ADS)

    Larmola, Tuula; Kiheri, Heikki; Bubier, Jill L.; van Dijk, Netty; Dise, Nancy; Fritze, Hannu; Hobbie, Erik A.; Juutinen, Sari; Laiho, Raija; Moore, Tim R.; Pennanen, Taina

    2017-04-01

    Peatlands store one third of the global soil carbon (C) pool. Long-term fertilization experiments in nutrient-poor peatlands showed that simulated atmospheric nitrogen (N) deposition does not enhance ecosystem C uptake but reduces C sink potential. Recent studies have shown that a significant proportion of C input to soil in low-fertility forests entered the soil through mycorrhizal fungi, rather than as plant litter. Is atmospheric N deposition diminishing peatland C sink potential due to the suppression of ericoid mycorrhizal fungi? We studied how nutrient addition influences plant biomass allocation and the extent to which plants rely on mycorrhizal N uptake at two of the longest-running nutrient addition experiments on peatlands, Whim Bog, United Kingdom, and Mer Bleue Bog, Canada. We determined the peak growing season aboveground biomass production and coverage of vascular plants using the point intercept method. We also analyzed isotopic δ15N patterns and nutrient contents in leaves of dominant ericoid mycorrhizal shrubs as well as the non-mycorrhizal sedge Eriophorum vaginatum under different nutrient addition treatments. The treatments receive an additional load of 1.6-6.4 N g m-2 y-1 either as ammonium (NH4) nitrate (NO3) or NH4NO3 and with or without phosphorus (P) and potassium (K), alongside unfertilized controls. After 11-16 years of nutrient addition, the vegetation structure had changed remarkably. Ten of the eleven nutrient addition treatments showed an increase of up to 60% in total vascular plant abundance. Only three (NH4Cl, NH4ClPK, NaNO3PK) of the nutrient addition treatments showed a concurrent decrease of down to 50% in the relative proportion of ericoid mycorrhizal shrubs to total vascular plant abundance. The response to nutrient load may be explained by the water table depth, the form of N added and whether N was added with PK. Shrubs were strong competitors at the dry Mer Bleue bog while sedges gained in abundance at the wetter Whim bog

  6. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    PubMed

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many

  7. Nutrient uptake of NPK and result of some rice varieties in tidal land by using combination of organic and inorganic fertilizer

    NASA Astrophysics Data System (ADS)

    Marlina, Neni; Rompas, Joni Phillep; Marlina, Musbik

    2017-09-01

    Rice planting in tidal land has two main problems: iron (Fe) which has the potential to poison rice and low nutrient availability. Azospirillum enriched chicken manure and phosphate solvent bacteria (Biological Organic Fertilizer = BOF) is an option to overcome iron toxicity and as a source of nutrition. The objective of the study was to obtain a combination of biological organic fertilizers and balanced inorganic fertilizers in reducing doses of inorganic fertilizers, increasing NPK nutrient uptake and yield of several rice varieties in tidal land. This research used Factorial RAK with 25 treatment combinations that were repeated three times. Factor I is a combination of BOF and anorganic fertilizer with 5 levels of treatment (no inorganic fertilizers, BOF 400 kg / ha with inorganic fertilizer 25% NPK, BOF 400 kg / ha with inorganic fertilizer 50% NPK and BOF 400 kg / ha with fertilizer Inorganic 75% NPK). Factor II is several rice varieties (IPB 4S, Martapura, Margasari, Inpara 5, Inpara 7). The results showed that organic fertilizer 400 kg / ha can reduce the use of inorganic fertilizer by 75% of NPK fertilizer. The highest NPK nutrient absorption is in the treatment of organic fertilizer 400 kg / ha and inorganic fertilizer 25% of NPK fertilizer. Production of biological organic fertilizer 400 kg / ha with inorganic fertilizer 25% NPK and 4B IPB varieties 727.77% higher when compared with without the provision of organic fertilizer with Inpara 5 varieties.

  8. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Effects of Atrazine, Metolachlor, Carbaryl and Chlorothalonil on Benthic Microbes and Their Nutrient Dynamics

    PubMed Central

    Elias, Daniel; Bernot, Melody J.

    2014-01-01

    Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization

  10. The Thames Science Plan: Suggested Hydrologic Investigations to Support Nutrient-Related Water-Quality Improvements in the Thames River Basin, Connecticut

    DTIC Science & Technology

    2005-01-01

    Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut Open-File Report 2005-1208 U.S. Department of the Interior U.S...Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Suggested Hydrologic Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut By Elaine C. Todd

  11. On the brine drainage and algal uptake controls of the nutrient supply to the sea ice interior

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tison, J.-L.

    2009-04-01

    other important simulated processes are winter and spring surface flooding of seawater which supplies nutrients near the ice surface, and melt water percolation which - if present in reality - would tend to flush nutrients back to the ocean in summer. The physical background for sea ice tracers developed here is general and could be used to simulate other sea ice tracers (e.g., dissolved organic matter, isotopes, gases, radio-nuclides, ...), constituting an improved modelling strategy for sea ice brine and ecosystem dynamics.

  12. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  13. Stoichiometry and estimates of nutrient standing stocks of larval salamanders in Appalachian headwater streams

    Treesearch

    Joseph R. Milanovich; John C. Maerz; Amy D. Rosemond

    2015-01-01

    1.Because of their longevity and skeletal phosphorus demand, vertebrates can have distinct influences on the uptake, storage and recycling of nutrients in ecosystems. Quantification of body stoichiometry, combined with estimates of abundance or biomass, can provide insights into the effect of vertebrates on nutrient cycling. 2.We measured the nutrient content and...

  14. Functional traits and structural controls on the relationship between photosynthetic CO2 uptake and sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2016-04-01

    Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related

  15. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  16. Impact of climate change on crop nutrient and water use efficiencies.

    PubMed

    Brouder, Sylvie M; Volenec, Jeffrey J

    2008-08-01

    Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.

  17. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-11-01

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia-reperfusion (I/R) injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. We found that glucose uptake was remarkably diminished in the myocardium following reperfusion in Sprague-Dawley rats as detected by 18 F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by threefold and GLUT4 translocation remained unchanged compared with those of sham-treated rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated I/R injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, whereas its knockdown increased glucose uptake, suggesting that PDK4 has a role in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial I/R. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in the myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial I/R injury. Copyright © 2017 the American Physiological Society.

  18. The use of the brown macroalgae, Sargassum flavicans, as a potential bioindicator of industrial nutrient enrichment.

    PubMed

    Alquezar, Ralph; Glendenning, Lionel; Costanzo, Simon

    2013-12-15

    Nutrient bioindicators are increasingly being recognised as a diagnostic tool for nutrient enrichment of estuarine and marine ecosystems. Few studies, however, have focused on field translocation of bioindicator organisms to detect nutrient discharge from industrial waste. The brown macroalgae, Sargassum flavicans, was investigated as a potential bioindicator of nutrient-enriched industrial effluent originating from a nickel refinery in tropical north-eastern Australia. S. flavicans was translocated to a number of nutrient enriched creek and oceanic sites over two seasons and assessed for changes in stable isotope ratios of (15)N and (13)C within the plant tissue in comparison to reference sites. Nutrient uptake in macroalgae, translocated to the nutrient enriched sites adjacent to the refinery, increased 3-4-fold in δ(15)N, compared to reference sites. Using δ(15)N of translocated S. flavicans proved to be a successful method for monitoring time-integrated uptake of nitrogen, given the current lack of passive sampler technology for nutrient monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Uptake of Sulfate but Not Phosphate by Mycobacterium tuberculosis Is Slower than That for Mycobacterium smegmatis

    PubMed Central

    Song, Houhui

    2012-01-01

    Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452

  20. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.

    PubMed

    Wang, Xuelei; Wang, Qiao; Yang, Shengtian; Zheng, Donghai; Wu, Chuanqing; Mannaerts, C M

    2011-06-01

    Nitrogen (N) removal by vegetation uptake is one of the most important functions of riparian buffer zones in preventing non-point source pollution (NSP), and many studies about N uptake at the river reach scale have proven the effectiveness of plants in controlling nutrient pollution. However, at the watershed level, the riparian zones form dendritic networks and, as such, may be the predominant spatially structured feature in catchments and landscapes. Thus, assessing the functions of riparian system at the basin scale is important. In this study, a new method coupling remote sensing and ecological models was used to assess the N removal by riparian vegetation on a large spatial scale. The study site is located around the Guanting reservoir in Beijing, China, which was abandoned as the source water system for Beijing due to serious NSP in 1997. SPOT 5 data was used to map the land cover, and Landsat-5 TM time series images were used to retrieve land surface parameters. A modified forest nutrient cycling and biomass model (ForNBM) was used to simulate N removal, and the modified net primary productivity (NPP) module was driven by remote sensing image time series. Besides the remote sensing data, the necessary database included meteorological data, soil chemical and physical data and plant nutrient data. Pot and plot experiments were used to calibrate and validate the simulations. Our study has proven that, by coupling remote sensing data and parameters retrieval techniques to plant growth process models, catchment scale estimations of nitrogen uptake rates can be improved by spatial pixel-based modelling. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  2. Uptake of different species of iodine by water spinach and its effect to growth.

    PubMed

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  3. Nutrient Shielding in Clusters of Cells

    PubMed Central

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  4. Nutrient shielding in clusters of cells

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2013-06-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ.

  5. Recognizing critical mine spoil health characteristics to design biochars for site improvement to promote stabilizing plant growth

    EPA Science Inventory

    Biochar can be used as an amendment to remediate metal-contaminated mine spoils for improved site phytostabilization. For successful phytostabilization to occur, biochar amendments must improve mine spoil health with respect to plant rooting plus uptake of water and nutrients. ...

  6. Nutrient management effects on sweetpotato genotypes under controlled environment

    NASA Technical Reports Server (NTRS)

    David, P. P.; Bonsi, C. K.; Trotman, A. A.; Douglas, D. Z.

    1996-01-01

    those with the small containers. Although plants grown with the smaller containers showed greater water uptake, plant nutrient uptake was lower than with the larger container. All genotypes evaluated showed variation in their responses to all parameters measured.

  7. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be significantly smaller than previously predicted. However, models exhibit wide differences in their predictive accuracy and lead to widely diverging and inconsistent projections accounting for an uncertain Carbon sequestration decrease due to Nitrogen limitation ranging from 7 to 64%. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and

  8. Nutrient Retention in Restored Streams and Floodplains: A ...

    EPA Pesticide Factsheets

    Abstract: Excess nitrogen (N) and phosphorus (P) from human activities have contributed to degradation of coastal waters globally. A growing body of work suggests that hydrologically restoring streams and floodplains in agricultural and urban watersheds has potential to increase nitrogen and phosphorus retention, but rates and mechanisms have not yet been synthesized and compared across studies. We conducted a review of nutrient retention within hydrologically reconnected streams and floodplains including 79 studies. Overall, 62% of results were positive, 26% were neutral, and 12% were negative. The studies we reviewed used a variety of methods to analyze nutrients cycling. We did a further intensive meta-analysis on nutrient spiraling studies because this method was the most consistent and comparable between studies. A meta-analysis of 240 experimental additions of ammonium (NH4+), nitrate (NO3-), and soluble reactive phosphorus (SRP) was synthesized from 15 nutrient spiraling studies. Overall, we found that rates of uptake were variable along stream reaches over space and time. Our results indicate that the size of the stream restoration (total surface area) and hydrologic residence time can be key drivers in influencing N and P uptake at broader watershed scales or along the urban watershed continuum. Excess nitrogen and phosphorus from human activities contributes to the degradation of water quality in streams and coastal areas nationally and globally.

  9. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rhodophyte Gracilaria asiatica

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Liu, Liming; Wang, Aimin; Wang, Yongqiang

    2013-03-01

    Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4×2 factorial design experiment in water temperatures ( T) at 15°C and 25°C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 μmol/L and 60 μmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 μmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP ( P< 0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature ( P < 0.001); uptake rate was higher for the 25°C group than for the 15°C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups ( P< 0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.

  10. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  11. Cooking Schools Improve Nutrient Intake Patterns of People with Type 2 Diabetes

    ERIC Educational Resources Information Center

    Archuleta, Martha; VanLeeuwen, Dawn; Halderson, Karen; Jackson, K'Dawn; Bock, Margaret Ann; Eastman, Wanda; Powell, Jennifer; Titone, Michelle; Marr, Carol; Wells, Linda

    2012-01-01

    Objective: To determine whether cooking classes offered by the Cooperative Extension Service improved nutrient intake patterns in people with type 2 diabetes. Design: Quasi-experimental using pretest, posttest comparisons. Setting: Community locations including schools, churches, and senior centers. Participants: One hundred seventeen people with…

  12. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4 + > glycine > NO3 -. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand. ?? 2011 Inter-Research.

  13. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4+ > glycine > NO3–. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand.

  14. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    PubMed

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  16. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID

  17. Identifying challenges and opportunities for improved nutrient management through U.S.D.A's Dairy Agroecosystem Working Group

    USDA-ARS?s Scientific Manuscript database

    Nutrient management is a priority of U.S. dairy farms, although specific concerns vary across regions and management systems. To elucidate challenges and opportunities to improving nutrient use efficiencies, the USDA’s Dairy Agroecosystems Working Group investigated 10 case studies of confinement (i...

  18. Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes.

    PubMed

    Garg, Neera; Kashyap, Lakita

    2017-08-01

    Arsenic (As) gets accumulated in plants via phosphorous transporters and water channels and interferes with nutrient and water uptake, adversely affecting growth and productivity. Although, Si and AM have been reported to combat arsenic stress, their comparative and interactive roles in ameliorating As V and As III toxicities have not been reported. Study evaluated effects of Si and Rhizophagus irregularis on growth, As uptake and yield under arsenate and arsenite stress in two pigeonpea genotypes (metal tolerant-Pusa 2002 and metal sensitive-Pusa 991). Higher As accumulation and translocation was observed in As III treated roots of Pusa 991 than those of Pusa 2002 when compared with As V. Roots were more negatively affected than shoots which led to a significant decline in nutrient uptake, leaf chlorophylls, and yield, with As III inducing more negative effects. Pusa 2002 established more effective mycorrhizal symbiosis and had higher biomass than Pusa 991. Si was more effective in inducing shoot biomass while AM inoculation significantly improved root biomass. AM enhanced Si uptake in roots and leaves in a genotype dependent manner. Combined application of Si and AM were highly beneficial in improving leaf water status, chlorophyll pigments, biomass, and productivity. Complete amelioration of negative impacts of both concentrations of As V and lower concentration of As III were recorded under +Si +AM in Pusa 2002. Results highlighted great potential of Si in improving growth and productivity of pigeonpea through R. irregularis under As V and As III stresses.

  19. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  20. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  1. Real-time monitoring of nutrients in the Changjiang Estuary reveals short-term nutrient-algal bloom dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Chen, Jianfang; Ni, Xiaobo; Zeng, Dingyong; Li, Dewang; Jin, Haiyan; Glibert, Patricia M.; Qiu, Wenxian; Huang, Daji

    2017-07-01

    The Changjiang Estuary is a large-river estuary ecosystem in the East China Sea, and its plume, the Changjiang Diluted Water (CDW), transports a large mass of nutrients (NO3- + NO2-, PO43-, SiO32-) to the shelf sea, leading to substantial eutrophication; the CDW also supports high primary production. However, relationships between nutrient delivery and phytoplankton responses have been difficult to establish, as many nutrient delivery events and algal blooms are episodic, and the CDW may expand or become detached with changing winds. To study the relationship between nutrient delivery events, algal blooms and estuarine metabolism dynamics, a buoy system was deployed in the CDW from 9 September to 10 October 2013, with measurements of chlorophyll a and dissolved nutrients. Day-to-day nutrient increases covaried with salinity decreases, regulated by both the spring-neap tidal cycle and wind events. Several specific nutrient injection periods were detected, each followed by nutrient drawdown and chlorophyll a accumulation (algal blooms). Each algal bloom had its own unique pattern of nutrient uptake based on change in nutrient ratios (ΔN:ΔP; ΔN:ΔSi) and appeared to be dominated by different algal groups. These events occurred under weak wind and stable hydrodynamic conditions. Ecosystem metabolism based on net community production (NCP) showed that the upper estuarine ecosystem was autotrophic when chlorophyll a accumulated, but heterotrophic when wind-induced mixing strengthened, and upwelling brought organic-rich water to the near surface. In spite of several short-lived algal blooms, the average NCPdaily was negative during the observation period, indicating a net source of CO2 to the atmosphere.

  2. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.

    PubMed

    Liu, Jiankang

    2008-01-01

    We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.

  3. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    NASA Astrophysics Data System (ADS)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0

  4. The Coupling of Solution Chemistry to Plant Nutrient Demand in an on Demand Nutrient Delivery System

    NASA Technical Reports Server (NTRS)

    Savage, Wayne

    1998-01-01

    The goal of the proposal will be to determine the suitability of the DASI instrument in providing a signal that can be recognized and be utilized as an indicator of plant stress. The method to be utilized for evaluating stress is the presentation of an every increasing level of nutrient deficiency and salinity stress (addition of salt (NACl) or increasing concentration of balanced nutrient) while simultaneously recording spectral reflectance using the DASI instrument and monitoring the traditional processes of gas exchange and nutrient uptake parameters. In this manner, we will be able to directly compare the DASI measurements with known stresses as determined by the traditional gas exchange and nutrient uptake measures of stress. We anticipate that the DASI will provide a sensitive identifier of plant stress; recording signals of the resulting changes in plant metabolism in real time, far before any visible effects of stress could be observed. Thus, there is a potential for very early management intervention to correct a stress condition before damage could develop. The present response time for the observation of visual symptoms of plant stress is considerable and only provides an indication that a stress is present after it has been present for an extended period of time. Thus, the impact of a plant-based life support function will have already been significant. An additional benefit of this research to regenerative life support will be the characterization of a potential recovery scenario from various degrees of stress. The experimental approach to be employed includes the removal of the stress at various points in the stress gradient and the characterization of plant performance and reflectance spectra during recovery from various degrees of stress. Spectral reflectance imaging techniques have been developed and used to measure the biochemical composition of plants and relate these characteristics to the fluxes of biochemical elements within the ecosystem.

  5. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  6. Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Henley, Sian F.; Tuerena, Robyn E.; Annett, Amber L.; Fallick, Anthony E.; Meredith, Michael P.; Venables, Hugh J.; Clarke, Andrew; Ganeshram, Raja S.

    2017-05-01

    Nutrient supply, uptake and cycling underpin high primary productivity over the continental shelf of the west Antarctic Peninsula (WAP). Here we use a suite of biogeochemical and isotopic data collected over five years in northern Marguerite Bay to examine these macronutrient dynamics and their controlling biological and physical processes in the WAP coastal ocean. We show pronounced nutrient drawdown over the summer months by primary production which drives a net seasonal nitrate uptake of 1.83 mol N m-2 yr-1, equivalent to net carbon uptake of 146 g C m-2 yr-1. High primary production fuelled primarily by deep-sourced macronutrients is diatom-dominated, but non-siliceous phytoplankton also play a role. Strong nutrient drawdown in the uppermost surface ocean has the potential to cause transient nitrogen limitation before nutrient resupply and/or regeneration. Interannual variability in nutrient utilisation corresponds to winter sea ice duration and the degree of upper ocean mixing, implying susceptibility to physical climate change. The nitrogen isotope composition of nitrate (δ15NNO3) shows a utilisation signal during the growing seasons with a community-level net isotope effect of 4.19 ± 0.29‰. We also observe significant deviation of our data from modelled and observed utilisation trends, and argue that this is driven primarily by water column nitrification and meltwater dilution of surface nitrate. This study is important because it provides a detailed description of the nutrient biogeochemistry underlying high primary productivity at the WAP, and shows that surface ocean nutrient inventories in the Antarctic sea ice zone can be affected by intense recycling in the water column, meltwater dilution and sea ice processes, in addition to utilisation in the upper ocean.

  7. Biochar can be used to recapture essential nutrients from dairy wastewater and improve soil quality

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-04-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available waste biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20 to 43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 t of ammonium-N and 920-4600 t of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of waste biomass.

  8. A multi-agency nutrient dataset used to estimate loads, improve monitoring design, and calibrate regional nutrient SPARROW models

    USGS Publications Warehouse

    Saad, David A.; Schwarz, Gregory E.; Robertson, Dale M.; Booth, Nathaniel

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.

  9. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-01-01

    Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.

  10. Comparison of controlled release and soluble granular fertilizers on cranberry growth, yield, and soil nutrients

    USDA-ARS?s Scientific Manuscript database

    Cranberry growers are looking for ways to reduce off-site movement of nitrogen (N) and phosphorus (P). Controlled-release fertilizers (CRF) may increase nutrient uptake efficiency in cranberry and decrease potential for nutrient leaching or lateral movement into drainage. Data regarding N and P in...

  11. Food for thought: how nutrients regulate root system architecture.

    PubMed

    Shahzad, Zaigham; Amtmann, Anna

    2017-10-01

    The spatial arrangement of the plant root system (root system architecture, RSA) is very sensitive to edaphic and endogenous signals that report on the nutrient status of soil and plant. Signalling pathways underpinning RSA responses to individual nutrients, particularly nitrate and phosphate, have been unravelled. Researchers have now started to investigate interactive effects between two or more nutrients on RSA. Several proteins enabling crosstalk between signalling pathways have recently been identified. RSA is potentially an important trait for sustainable and/or marginal agriculture. It is generally assumed that RSA responses are adaptive and optimise nutrient uptake in a given environment, but hard evidence for this paradigm is still sparse. Here we summarize recent advances made in these areas of research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Oxyntomodulin stimulates intestinal glucose uptake in rats.

    PubMed

    Collie, N L; Zhu, Z; Jordan, S; Reeve, J R

    1997-06-01

    Enteroglucagon peptides have long been proposed as mediators of intestinal adaptation, including mucosal growth and nutrient absorptive capacity. The hypothesis that infusions of oxyntomodulin, a bioactive form of enteroglucagon, would stimulate glucose and amino acid uptake was tested and its effects were compared with those of glucagon. Rats were infused intravenously via minipumps with either saline, rat oxyntomodulin (0.47 nmol x kg(-1) x h[-1]), or glucagon (0.88 nmol x kg(-1) x h[-1]) for 7 days, and plasma hormone levels were measured. At death, intestinal dimensions and brush border uptake of D-glucose and L-proline were measured using an in vitro everted sleeve technique. Plasma enteroglucagon and glucagon levels were increased 4- and 12-fold, respectively, but there were no effects on food intake, body weight, or intestinal dimensions. In contrast, oxyntomodulin and glucagon significantly stimulated total intestinal glucose uptake capacity by 44% and 53%, respectively, over controls. Oxyntomodulin most potently enhanced glucose uptake in the ileum (215%), whereas glucagon's greatest effect was in the jejunum (63%-85%). However, neither peptide affected proline uptake. These results support a new, specific action for oxyntomodulin in intestinal adaptation as a glucose uptake stimulator and confirm glucagon's role as a regulator of glucose uptake.

  13. One way. Or another? Iron uptake in plants.

    PubMed

    Tsai, Huei-Hsuan; Schmidt, Wolfgang

    2017-04-01

    Iron (Fe) and phosphorus (P), the latter taken up by plants as phosphate (Pi), are two essential nutrients that determine species distribution and often limit crop yield as a result of their low availability in most soils. Pi-deficient plants improve the interception of Pi by increasing the density of root hairs, thereby expanding the volume of soil to be explored. The increase in root-hair frequency results mainly from attenuated primary root growth, a process that was shown to be dependent on the availability of external Fe. Recent data support a hypothesis in which cell elongation during Pi starvation is tuned by depositing Fe in the apoplast of cortical cells in the root elongation zone. Uptake of Fe under Pi starvation appears to proceed via an alternative, as yet unidentified, route that bypasses the default Fe transporter. Fe deposits acquired through this noncanonical Fe-uptake pathway compromises cell-to-cell communication that is critical for proper morphogenesis of epidermal cells and leads to shorter cells and higher root-hair density. An auxiliary Fe-uptake system might not only be crucial for recalibrating cell elongation in Pi-deficient plants but may also have general importance for growth on Pi- or Fe-poor soils by balancing the Pi and Fe supply. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    PubMed

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  15. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.

    PubMed

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Contrary seasonal changes of rates of nutrient uptake, organ mass, and voluntary food intake in red deer (Cervus elaphus)

    PubMed Central

    Beiglböck, Christoph; Burmester, Marion; Guschlbauer, Maria; Lengauer, Astrid; Schröder, Bernd; Wilkens, Mirja; Breves, Gerhard

    2015-01-01

    Northern ungulates acclimatize to winter conditions with restricted food supply and unfavorable weather conditions by reducing energy expenditure and voluntary food intake. We investigated in a study on red deer whether rates of peptide and glucose transport in the small intestines are also reduced during winter as part of the thrifty phenotype of winter-acclimatized animals, or whether transport rates are increased during winter in order to exploit poor forage more efficiently. Our results support the latter hypothesis. We found in a feeding experiment that total energy intake was considerably lower during winter despite ad libitum feeding. Together with reduced food intake, mass of visceral organs was significantly lower and body fat reserves were used as metabolic fuel in addition to food. However, efficacy of nutrient absorption seemed to be increased simultaneously. Extraction of crude protein from forage was higher in winter animals, at any level of crude protein intake, as indicated by the lower concentration of crude protein in feces. In line with these in vivo results, Ussing chamber experiments revealed greater electrogenic responses to both peptides and glucose in the small intestines of winter-acclimatized animals, and peptide uptake into jejunal brush-border membrane vesicles was increased. We conclude that reduced appetite of red deer during winter avoids energy expenditure for unproductive search of scarcely available food and further renders the energetically costly maintenance of a large gut and visceral organs unnecessary. Nevertheless, extraction of nutrients from forage is more efficient in the winter to attenuate an inevitably negative energy balance. PMID:26017492

  17. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on

  18. Poor Aeration Curtails Slash Pine Root Growth and Nutrient Uptake

    Treesearch

    Eugene Shoulders

    1976-01-01

    Slash pine may absorb nutrients and water best in spring and early summer because soil moisture, soil aeration, and temperature are apparently optimum at this time. One-year-old slash pine seedlings maintained at a high oxygen level grew about 1% times as many roots as were produced at a low oxygen level. No other environmental conditions significantly influenced root...

  19. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis.

    PubMed

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2017-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  20. The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria-phytoplankton dynamics in two Minnesota lakes

    USGS Publications Warehouse

    Stets, E.G.; Cotner, J.B.

    2008-01-01

    The balance of production in any ecosystem is dependent on the flow of limiting nutrients into either the autotrophic or heterotrophic components of the food web. To understand one of the important controls on the flow of inorganic nutrients between phytoplankton and bacterioplankton in lakes, we manipulated dissolved organic carbon (DOC) in two lakes of different trophic status. We hypothesized that labile DOC additions would increase bacterial phosphorus (P) uptake and decrease the response of phytoplankton to nutrient additions. Supplemental nutrients and carbon (C), nitrogen (N, 1.6 ??mol NH4Cl L-1 d-1), P (0.1 ??mol KH 2PO4 L-1 d-1), and DOC (glucose, 15 ??mol C L-1 d-1) were added twice daily to 8-liter experimental units. We tested the effect of added DOC on chlorophyll concentration, bacterial production, biomass, and P uptake using size-fractionated 33P-PO4 uptake. In the oligotrophic lake, DOC additions stimulated bacterial production and increased bacterial biomass-specific P uptake. Bacteria consumed added DOC, and chlorophyll concentrations were significantly lower in carboys receiving DOC additions. In the eutrophic lake, DOC additions had less of a stimulatory effect on bacterial production and biomass-specific P uptake. DOC accumulated over the time period, and there was little evidence for a DOC-induced decrease in phytoplankton biomass. Bacterial growth approached the calculated ??max and yet did not accumulate biomass, indicating significant biomass losses, which may have constrained bacterial DOC consumption. Excess bacterial DOC consumption in oligotrophic lakes may result in greater bacterial P affinity and enhanced nutrient uptake by the heterotrophic compartment of the food web. On the other hand, constraints on bacterial biomass accumulation in eutrophic lakes, from either viral lysis or bacterial grazing, can allow labile DOC to accumulate, thereby negating the effect of excess DOC on the planktonic food web. ?? 2008, by the American

  1. Interventions to improve the uptake of cervical cancer screening among lower socioeconomic groups: A systematic review.

    PubMed

    Rees, Imogen; Jones, Daniel; Chen, Hong; Macleod, Una

    2018-06-01

    Cervical cancer is the fourth most common cancer in women worldwide. Screening can reduce both the incidence and mortality of the disease but is often not utilized by lower socioeconomic groups. A systematic review, including studies of interventions to improve breast and cervical cancer screening uptake, up to 2006, found targeted interventions could be effective. A formal update has been conducted on the effectiveness of interventions to improve the uptake of cervical cancer screening among lower socioeconomic groups. A systematic computerized literature search was undertaken in June 2016 for relevant papers published since 2006. Data was extracted on study participants, setting, intervention and control using a predefined extraction tool and a full quality assessment was undertaken using the Cochrane risk of bias tool. This update yielded 16 studies of mixed quality, in addition to the 13 studies from the original review. The interventions were categorized into local interventions including HPV self-testing, lay health advisors, inreach, outreach and mixed, and strategies enhancing attendance within an organized program. This review has found two large, randomized controlled trials for the use of HPV self-testing to increase cervical screening uptake. Both reviews have found varying success using lay health advisors, with the majority of included papers reporting a statistically significant increase in screening uptake. HPV self-testing can improve uptake of cervical cancer screening among lower socioeconomic groups. This is a relatively new method of cervical screening that was not included in the earlier review. The findings of this updated review largely support that of the 2006 review for the use of lay health advisors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Improvements in recall and food choices using a graphical method to deliver information of select nutrients.

    PubMed

    Pratt, Nathan S; Ellison, Brenna D; Benjamin, Aaron S; Nakamura, Manabu T

    2016-01-01

    Consumers have difficulty using nutrition information. We hypothesized that graphically delivering information of select nutrients relative to a target would allow individuals to process information in time-constrained settings more effectively than numerical information. Objectives of the study were to determine the efficacy of the graphical method in (1) improving memory of nutrient information and (2) improving consumer purchasing behavior in a restaurant. Values of fiber and protein per calorie were 2-dimensionally plotted alongside a target box. First, a randomized cued recall experiment was conducted (n=63). Recall accuracy of nutrition information improved by up to 43% when shown graphically instead of numerically. Second, the impact of graphical nutrition signposting on diner choices was tested in a cafeteria. Saturated fat and sodium information was also presented using color coding. Nutrient content of meals (n=362) was compared between 3 signposting phases: graphical, nutrition facts panels (NFP), or no nutrition label. Graphical signposting improved nutrient content of purchases in the intended direction, whereas NFP had no effect compared with the baseline. Calories ordered from total meals, entrées, and sides were significantly less during graphical signposting than no-label and NFP periods. For total meal and entrées, protein per calorie purchased was significantly higher and saturated fat significantly lower during graphical signposting than the other phases. Graphical signposting remained a predictor of calories and protein per calorie purchased in regression modeling. These findings demonstrate that graphically presenting nutrition information makes that information more available for decision making and influences behavior change in a realistic setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.

    PubMed

    Liu, Min; Xu, Fanzhen; Xu, Xingliang; Wanek, Wolfgang; Yang, Xiaodong

    2018-04-05

    Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3- leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15N-labeled NH4+, NO3- or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4+ > glycine > NO3-. As age increased, NH4+ uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4+ concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3- uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4+ uptake. Young rubber trees (7 and 16 years) had higher NH4+ and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3- preference. The results from this study demonstrate that rubber trees do not change their preference for NH4+ but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.

  4. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    USDA-ARS?s Scientific Manuscript database

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  5. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz; Stehr, Jeff

    2011-01-01

    The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework.

  6. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    PubMed

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  7. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    NASA Astrophysics Data System (ADS)

    Marcé, R.; Armengol, J.

    2009-01-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a watershed-scale biogeochemical model. The rationale of this approach relies on the fact that the working unit for the nutrient in-stream processes of most watershed-scale models is the reach, the same unit used in field research based on the Nutrient Spiralling concept. Automatic calibration of the model using data from the study watershed confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Following calibration, the model was used as a heuristic tool in two ways. First, we compared the Nutrient Spiralling metrics obtained during calibration with results obtained during field-based research in the study watershed. The simulated and measured metrics were similar, suggesting that information collected at the reach scale during research based on the Nutrient Spiralling concept can be directly incorporated into models, without the problems associated with upscaling results from fine-scale studies. Second, we used results from our model to examine some patterns observed in several reports on Nutrient Spiralling metrics measured in impaired streams. Although these two exercises involve circular reasoning and, consequently, cannot validate any hypothesis, this

  8. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech.

    PubMed

    Köhler, Julia; Yang, Nan; Pena, Rodica; Raghavan, Venket; Polle, Andrea; Meier, Ina C

    2018-05-17

    Increases in summer droughts and nitrogen (N) deposition have raised concerns of widespread biodiversity loss and nutrient imbalances, but our understanding of the ecological role of ectomycorrhizal fungal (ECMF) diversity in mediating root functions remains a major knowledge gap. We used different global change scenarios to experimentally alter the composition of ECMF communities colonizing European beech saplings and examined the consequences for phosphorus (P) uptake (H 3 33 PO 4 feeding experiment) and use efficiencies of trees. Specifically, we simulated increases in temperature and N deposition and decreases in soil moisture and P availability in a factorial experiment. Here, we show that ECMF α diversity is a major factor contributing to root functioning under global change. P uptake efficiency of beech significantly increased with increasing ECMF species richness and diversity, as well as with decreasing P availability. As a consequence of decreases in ECMF diversity, P uptake efficiency decreased when soil moisture was limiting. By contrast, P use efficiencies were a direct (negative) function of P availability and not of ECMF diversity. We conclude that increasing summer droughts may reduce ECMF diversity and the complementarity of P uptake by ECMF species, which will add to negative growth effects expected from nutrient imbalances under global change. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell.

    PubMed

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R

    2015-10-01

    Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.

  10. Elevated tropospheric ozone affects the concentration and allocation of mineral nutrients of two bamboo species.

    PubMed

    Zhuang, Minghao; Lam, Shu Kee; Li, Yingchun; Chen, Shuanglin

    2017-01-15

    The increase in tropospheric ozone (O 3 ) affects plant physiology and ecosystem processes, and consequently the cycle of nutrients. While mineral nutrients are critical for plant growth, the effect of elevated tropospheric O 3 concentration on the uptake and allocation of mineral nutrients by plants is not well understood. Using open top chambers (OTCs), we investigated the effect of elevated O 3 on calcium (Ca), magnesium (Mg) and iron (Fe) in mature bamboo species Phyllostachys edulis and Oligostachyum lubricum. Our results showed that elevated O 3 decreased the leaf biomass of P. edulis and O. lubricum by 35.1% and 26.7%, respectively, but had no significant effect on the biomass of branches, stem or root. For P. edulis, elevated O 3 increased the nutrient (Ca, Mg and Fe) concentration and allocation in leaf but reduced the concentration in other organs. In contrast, elevated O 3 increased the nutrient concentration and allocation in the branch of O. lubricum but decreased that of other organs. We also found that that P. edulis and O. lubricum responded differently to elevated O 3 in terms of nutrient (Ca, Mg and Fe) uptake and allocation. This information is critical for nutrient management and adaptation strategies for sustainable growth of P. edulis and O. lubricum under global climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.). Copyright © 2016. Published by Elsevier B.V.

  12. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  13. Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus.

    PubMed

    Carvalho, Edgard B; Curtis, Wayne R

    2002-01-01

    The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.

  14. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  15. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  16. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Cox, Peter; Sitch, Stephen; Jones, Chris; Liddicoat, spencer

    2013-04-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares alternative models of plant N uptake as found in different terrestrial biogeochemical models against field measurements, and introduces a new N-uptake

  17. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    DOE PAGES

    Griffiths, Natalie A.; Hill, Walter

    2014-06-19

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less

  18. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Hill, Walter

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less

  19. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  20. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.

    PubMed

    Reznicek, O; Facey, S J; de Waal, P P; Teunissen, A W R H; de Bont, J A M; Nijland, J G; Driessen, A J M; Hauer, B

    2015-07-01

    Saccharomyces cerevisiae does not express any xylose-specific transporters. To enhance the xylose uptake of S. cerevisiae, directed evolution of the Gal2 transporter was performed. Three rounds of error-prone PCR were used to generate mutants with improved xylose-transport characteristics. After developing a fast and reliable high-throughput screening assay based on flow cytometry, eight mutants were obtained showing an improved uptake of xylose compared to wild-type Gal2 out of 41 200 single yeast cells. Gal2 variant 2·1 harbouring five amino acid substitutions showed an increased affinity towards xylose with a faster overall sugar metabolism of glucose and xylose. Another Gal2 variant 3·1 carrying an additional amino acid substitution revealed an impaired growth on glucose but not on xylose. Random mutagenesis of the S. cerevisiae Gal2 led to an increased xylose uptake capacity and decreased glucose affinity, allowing improved co-consumption. Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass. © 2015 The Society for Applied Microbiology.

  1. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  2. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  3. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    PubMed Central

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2018-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers. PMID:29375594

  4. Nutrient Limitation in Northern Gulf of Mexico (NGOM): Phytoplankton Communities and Photosynthesis Respond to Nutrient Pulse

    PubMed Central

    Zhao, Yan; Quigg, Antonietta

    2014-01-01

    Although the Mississippi-Atchafalaya River system exports large amounts of nutrients to the Northern Gulf of Mexico annually, nutrient limitation of primary productivity still occurs offshore, acting as one of the major factors controlling local phytoplankton biomass and community structure. Bioassays were conducted for 48 hrs at two stations adjacent to the river plumes in April and August 2012. High Performance of Liquid Chromatography (HPLC) combined with ChemTax and a Fluorescence Induction and Relaxation (FIRe) system were combined to observe changes in the phytoplankton community structure and photosynthetic activity. Major fluorescence parameters (Fo, Fv/Fm) performed well to reveal the stimulating effect of the treatments with nitrogen (N-nitrate) and with nitrogen plus phosphate (+NPi). HPLC/ChemTax results showed that phytoplankton community structure shifted with nitrate addition: we observed an increase in the proportion of diatoms and prasinophytes and a decrease in cyanobacteria and prymnesiophytes. These findings are consistent with predictions from trait-based analysis which predict that phytoplankton groups with high maximum growth rates (μmax) and high nutrient uptake rates (Vmax) readily take advantage of the addition of limiting nutrients. Changes in phytoplankton community structure, if persistent, could trigger changes of particular organic matter fluxes and alter the micro-food web cycles and bottom oxygen consumption. PMID:24551144

  5. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    PubMed

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to

  6. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport

    NASA Astrophysics Data System (ADS)

    Letscher, Robert T.; Primeau, François; Moore, J. Keith

    2016-11-01

    Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres. Lateral inputs help balance the North Atlantic nutrient budget, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24-36% of the nitrogen and 44-67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean's largest biome.

  7. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    PubMed

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  8. Breeding crops for improved mineral nutrition under climate change conditions.

    PubMed

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-09-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20-43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920-4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of excess biomass.

  10. Seedling tree responses to nutrient stress under atmospheric CO/sub 2/ enrichment. [Quercus alba; Liriodendron tulipifera; Pinus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Norby, R.J.; O'Neill, E.G.

    1986-01-01

    Three species of seedling trees were grown in pots containing low-nutrient soil for periods of up to 40 weeks under a range of atmospheric CO/sub 2/ concentrations. In all cases, total dry weight increased with CO/sub 2/ enrichment, with a greater relative increase in root weight than shoot weight. In an experiment with Pinus virginiana in open-top field chambers, phosphorus and potassium uptake did not increase with an increase in CO/sub 2/ from 365 to 690 ..mu..L/L, even though dry matter gain increased by 37% during the exposure period. In experiments with Quercus alba and Liriodendron tulipifera under controlled environmentmore » conditions there were obvious symptoms of nitrogen deficiency and total nitrogen uptake did not increase with CO/sub 2/ enrichment. However, dry weight gain was more than 90% higher at 690 ..mu..L/L CO/sub 2/. The three experiments with CO/sub 2/ enrichment treatments demonstrate that increases in plant dry weight can occur without increased uptake of some nutrients from the low-nutrient soil. A mechanism for these responses may involve increased mobilization of nutrients in association with increased sucrose transport under elevated CO/sub 2/ conditions.« less

  11. Effects of different nitrogen levels on the leaf chlorophyll content nutrient concentration and nutrient uptake pattern of blackgram.

    PubMed

    Kulsum, M U; Baque, M A; Karim, M A

    2007-01-15

    This study was conducted to evaluate the performance of blackgram (Vigna mungo L) under various levels of nitrogen at the Agronomy Research Site of Bangabandhu Sheikh Mujibur Rahman Agricultural University during March to June 2002. Two varieties of blackgram--BARI mash 3 and BINA mash 1 and six levels of nitrogen viz. 0, 20, 40, 60, 80 and 100 kg N ha(-1) were the treatment variables. The experiment was laid out in a RCB Design with three replications. A best-fit positive linear relationship existed between leaf chlorophyll and leaf nitrogen content with different nitrogen levels. Unexpectedly the N, P and K accumulation in the two varieties was not affected significantly. However, there was an increasing tendency of total uptake of these elements in both the varieties. N, P and K uptake increased up to 60 kg N ha(-1) then decreased with the increasing nitrogen levels. Among the varieties BARI mash 3 showed better performance than BINA mash 1 for most of the parameters.

  12. Using Mobile Phones to Improve Vaccination Uptake in 21 Low- and Middle-Income Countries: Systematic Review

    PubMed Central

    Brown, Elizabeth; Devereux, Sara; Fairhead, Cassandra; Holeman, Isaac

    2017-01-01

    Background The benefits of vaccination have been comprehensively proven; however, disparities in coverage persist because of poor health system management, limited resources, and parental knowledge and attitudes. Evidence suggests that health interventions that engage local parties in communication strategies improve vaccination uptake. As mobile technology is widely used to improve health communication, mobile health (mHealth) interventions might be used to increase coverage. Objective The aim of this study was to conduct a systematic review of the available literature on the use of mHealth to improve vaccination in low- and middle-income countries with large numbers of unvaccinated children. Methods In February 2017, MEDLINE (Medical Literature Analysis and Retrieval System Online), Scopus, and Web of Science, as well as three health organization websites—Communication Initiative Network, TechNet-21, and PATH—were searched to identify mHealth intervention studies on vaccination uptake in 21 countries. Results Ten peer-reviewed studies and 11 studies from white or gray literature were included. Nine took place in India, three in Pakistan, two each in Malawi and Nigeria, and one each in Bangladesh, Zambia, Zimbabwe, and Kenya. Ten peer-reviewed studies and 7 white or gray studies demonstrated improved vaccination uptake after interventions, including appointment reminders, mobile phone apps, and prerecorded messages. Conclusions Although the potential for mHealth interventions to improve vaccination coverage seems clear, the evidence for such interventions is not. The dearth of studies in countries facing the greatest barriers to immunization impedes the prospects for evidence-based policy and practice in these settings. PMID:28978495

  13. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants.

  14. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.

    PubMed

    Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2017-09-11

    The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.

  15. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Treesearch

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  16. Improving fermented quality of cider vinegar via rational nutrient feeding strategy.

    PubMed

    Qi, Zhengliang; Dong, Die; Yang, Hailin; Xia, Xiaole

    2017-06-01

    This work aimed to find a rational nutrient feeding strategy for cider vinegar fermentation based on adequate information on the nutritional requirement of acetic acid bacteria. Through single nutrient lack experiment assay, necessary nutrient recipe for Acetobacter pasteurianus CICIM B7003 in acetous fermentation was confirmed. Compounds from the essential nutrient recipe were tested further to find out the key substrates significantly influencing cider vinegar fermentation. The findings showed that aspartate, glutamate, proline and tryptophan should be considered in detail for optimizing nutritional composition of cider. Finally, a nutrient feeding strategy that simultaneously adds proline, glutamate, aspartate and tryptophan to form final concentrations of 0.02g/L, 0.03g/L, 0.01g/L and 0.005g/L in cider was achieved by orthogonal experiment design. Comparing to the original fermentation, the yield of acetic acid from alcohol reached 93.3% and the concentration of most volatile flavor compounds increased with the rational nutrient feeding strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq].

    PubMed

    Wei, G; Wang, H

    1991-03-01

    Inoculating Schizonepeta tenuifolia with VA mycorrhizal fungi can significantly improve the plant growth and uptake of P and S, and influence the absorption of K, Na, Fe, Mo, Mn, Zn, Co, Ba, Ni and Pb. It is interesting to note that VA mycorrhiza can also increase the synthesis of volatile oil in the shoots of S. tenuifolia. The efficiency of VA mycorrhiza varies with the fungal species.

  18. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko; Robinson, Donald L.

    1989-01-01

    Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars. PMID:16667193

  19. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  20. Tracking Se Assimilation and Speciation through the Rice Plant – Nutrient Competition, Toxicity and Distribution

    PubMed Central

    Eiche, Elisabeth; Riemann, Michael; Nick, Peter; Winkel, Lenny H. E.; Göttlicher, Jörg; Steininger, Ralph; Brendel, Rita; von Brasch, Matthias; Konrad, Gabriele; Neumann, Thomas

    2016-01-01

    Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0–2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2–16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice. PMID:27116220

  1. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil.

    PubMed

    Liu, Mohan; Sun, Jian; Li, Yang; Xiao, Yan

    2017-01-01

    This study aimed to explore whether nitrogen availability could influence mycorrhizal function and their associations with host plants in Cd-contaminated acidic soils or not. A greenhouse pot experiment was conducted to assess the effects of mycorrhizal inoculation (non-mycorrhizal inoculation (NM), Glomus aggregatum (Ga), G. tortuosum (Gt) and G. versiforme (Gv)) and inorganic N amendment on the growth, nutrient and Cd uptake of Medicago sativa grown in Cd-contaminated acidic soils (10 mg Cd kg -1 soil). AMF inoculations significantly increased the shoot and total biomass and decreased the shoot Cd concentration in comparison to plants uninoculated. N addition increased markedly concentration and content of N and decreased those of P in plants at all inoculation treatments. Shoot K, Na and Mg concentration in plants inoculated with Ga and Gv were decreased by N addition, whereas shoot K, Na, Ca and Mg concentration in plants inoculated with Gt were not negatively affected. It was observed that N addition only increased mycorrhizal colonization, shoot biomass, shoot K, Ca and Mg content of plants inoculated with Gt. Irrespective of N addition, plants with Gt inoculation got the maximum shoot and root P concentration and content, as well as P/Cd concentration molar ratio among all inoculation treatment. Neither AMF nor N fertilizer contributed to the decrease of soil exchangeable Cd and increase of soil pH. These results suggested that N fertilizer only elevated plant performance of alfalfa with Gt inoculation grown in acidic soil, by diluting Cd concentration and alleviating of nutrient deficiency, especially P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Corn grain and nutrient uptake response to different swine manure application methods

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  3. Nitrogen source and application method impact on corn yield and nutrient uptake

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  4. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems

    USGS Publications Warehouse

    Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.

    2007-01-01

    This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic

  6. Mechanisms of Nutrient Acquisition by Rock Eating Microbes Revealed by Proteomics

    NASA Astrophysics Data System (ADS)

    Bryce, C. C.; Martin, S.; LeBihan, T.; Cockell, C.

    2013-12-01

    In nutrient poor terrestrial environments such as fresh lava flows, bioessential elements contained within surrounding rocks can be an important source of nutrients for the microbial community. The role of microbes in the alteration of rock surfaces, driven by this nutrient requirement, is widely accepted and is known to play an important role in CO2 drawdown as well as influencing nutrient flux to the biosphere. There is, however, limited knowledge of the biological processes which facilitate the uptake of bioessential elements from rocks. Using a technique known as 'shotgun' proteomics we have investigated the cellular processes involved in the uptake of iron, calcium and magnesium from fresh basalt in the heavy metal resistant bacterium Cupriavidus metallidurans CH34. Quantitative proteomics allows us to obtain a detailed snapshot of the protein complement of cells. By comparing cultures grown under normal growth conditions to cultures grown with basalt as an alternative iron, calcium or magnesium source, we can highlight proteins which are differentially expressed and therefore important for life in a rocky environment. We observe that the use of rock-bound nutrients induces a complex metabolic response in C.metallidurans which is distinct from the effects observed in the presence of rocks in normal growth medium. This is evidenced, for example, by the upregulation of a number of proteins involved in alternative energy-producing processes such as chemolithotrophy, sulphur oxidation and hydrogen oxidation compared to control cultures. This work has implications for the understanding of how microbes forge a life for themselves from the Earth's crust and highlights the importance of the field of proteomics for the study of life in terrestrial environments.

  7. Mycorrhizal Controls on Nitrogen Uptake Drive Carbon Cycling at the Global Scale

    NASA Astrophysics Data System (ADS)

    Shi, M.; Fisher, J. B.; Brzostek, E. R.; Phillips, R.

    2015-12-01

    Nearly all plants form symbiotic relationships with one of two types of mycorrhizal fungi—arbuscular mycorrhizae (AM) and ectomycorrhizal (ECM) fungi, which are essential to global biogeochemical cycling of nutrient elements. In soils with higher rates of nitrogen and phosphorus mineralization from organic matter, AM-associated plants can be better adapted than ECM-associated plants. Importantly, the photosynthate costs of nutrient uptake for AM-associated plants are usually lower than that for ECM-associated plants. Thus, the global carbon cycle is closely coupled with mycorrhizal controls on N uptake. To investigate the potential climate dependence of terrestrial environments from AM- and ECM-associated plants, this study uses the Community Atmosphere Model (CAM) with a plant productivity-optimized N acquisition model—the Fixation and Uptake of Nitrogen (FUN) model—integrated into its land model—the Community Land Model (CLM). This latest version of CLM coupled with FUN allows for the assessment of mycorrhizal controls on global biogeochemical cycling. Here, we show how the historical evolution of AM- and ECM-associations altered regional and global biogeochemical cycling and climate, and future projections over the next century.

  8. Using Mobile Phones to Improve Vaccination Uptake in 21 Low- and Middle-Income Countries: Systematic Review.

    PubMed

    Oliver-Williams, Clare; Brown, Elizabeth; Devereux, Sara; Fairhead, Cassandra; Holeman, Isaac

    2017-10-04

    The benefits of vaccination have been comprehensively proven; however, disparities in coverage persist because of poor health system management, limited resources, and parental knowledge and attitudes. Evidence suggests that health interventions that engage local parties in communication strategies improve vaccination uptake. As mobile technology is widely used to improve health communication, mobile health (mHealth) interventions might be used to increase coverage. The aim of this study was to conduct a systematic review of the available literature on the use of mHealth to improve vaccination in low- and middle-income countries with large numbers of unvaccinated children. In February 2017, MEDLINE (Medical Literature Analysis and Retrieval System Online), Scopus, and Web of Science, as well as three health organization websites-Communication Initiative Network, TechNet-21, and PATH-were searched to identify mHealth intervention studies on vaccination uptake in 21 countries. Ten peer-reviewed studies and 11 studies from white or gray literature were included. Nine took place in India, three in Pakistan, two each in Malawi and Nigeria, and one each in Bangladesh, Zambia, Zimbabwe, and Kenya. Ten peer-reviewed studies and 7 white or gray studies demonstrated improved vaccination uptake after interventions, including appointment reminders, mobile phone apps, and prerecorded messages. Although the potential for mHealth interventions to improve vaccination coverage seems clear, the evidence for such interventions is not. The dearth of studies in countries facing the greatest barriers to immunization impedes the prospects for evidence-based policy and practice in these settings. ©Clare Oliver-Williams, Elizabeth Brown, Sara Devereux, Cassandra Fairhead, Isaac Holeman. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 04.10.2017.

  9. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

    PubMed

    Vinichuk, M; Mårtensson, A; Rosén, K

    2013-12-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Dissolved Nutrient Removal in River Networks: When and Where

    NASA Astrophysics Data System (ADS)

    Ye, S.; Ran, Q.

    2017-12-01

    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Due to increasing human activities such as urbanization, and fertilizer application associated with agricultural land use, nitrogen and phosphorus inputs to aquatic ecosystems have increased dramatically since the beginning of the 20th century. Meanwhile, our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is still limited due to a lack of empirical measurements, especially in large rivers. Here, based on the simulation of a coupled hydrological and biogeochemical process model, we track the nutrient uptake at the network scale. The model was parameterized with literature values from headwater streams and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics. We applied the coupled model to an agricultural catchment in the Midwest to estimate the residence time, reaction time and travel distance of the nutrient exported from different places across watershed. In this work, we explore how to use these temporal and spatial characteristics to quantify the nutrient removal across the river network. We then further investigate the impact of heterogeneous lateral input on network scale nutrient removal. Whether or not this would influence the overall nutrient removal in the watershed, if so, to what extent would this have significant impact?

  11. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    PubMed

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  12. Characterization of Mineral Nutrients in National Plant Germplasm System (NPGS) Tomato Varieties

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is...

  13. Inorganic phosphate uptake in unicellular eukaryotes.

    PubMed

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The significance of denitrifying polyphosphate accumulating organisms in biological nutrient removal activated sludge systems.

    PubMed

    Hu, Z R; Wentzel, M C; Ekama, G A

    2002-01-01

    In this paper the advantages and disadvantages of denitrifying PAOs (polyphosphate accumulating organisms) in conventional BNRAS (biological nutrient removal activated sludge) and external nitrification BNRAS (ENBNRAS) systems are evaluated, with experimental data exhibiting a range of anoxic P uptake from low (<10%) to very high (>60%). The results indicate that the specific denitrification rate of the PAOs on internally stored PHB COD is about 1/5th of that of the "ordinary" heterotrophic organisms on SBCOD, and the PAOs contribute little (maximum 20%) to the denitrification in BNRAS systems even when the anoxic P uptake is high (60% of the total P uptake). Considering the unpredictable nature of anoxic P uptake and the reduction in BEPR it causes compared with aerobic P uptake BEPR, it is concluded that anoxic P uptake does not add a significant advantage to the BNR system.

  15. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    PubMed

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of uptake kinetics during a wastewater diversion into nearshore coastal waters in southern California

    NASA Astrophysics Data System (ADS)

    Kudela, Raphael M.; Howard, Meredith D. A.; Hayashi, Kendra; Beck, Carly

    2017-02-01

    The global eutrophication of coastal ecosystems from anthropogenic nutrients is one of the most significant issues affecting changes to coastal oceans today. A three-week diversion of wastewater effluent from the normal offshore discharge pipe (7 km offshore, 56 m depth) to a shorter outfall located in 16 m water (2.2 km offshore) as part of the 2012 Orange County Sanitation District Diversion provided an opportunity to evaluate the impacts of anthropogenic nitrogen on phytoplankton community response. Nitrogen uptake kinetic parameters were used to evaluate the short-term physiological response of the phytoplankton community to the diverted wastewater and to determine if potential ammonium suppression of nitrate uptake was observed. Despite expectations, there was a muted response to the diversion in terms of biomass accumulation and ambient nutrients remained low. At ambient nitrogen concentrations, calculated uptake rates strongly favored ammonium. During the diversion based on the kinetic parameters determined during short-term experiments, the phytoplankton community was using all three N substrates at low concentrations, and had the capacity to use urea, then ammonium, and then nitrate at high concentrations. Ammonium suppression of nitrate uptake was evident throughout the experiment, with increasing suppression through time. Despite this interaction, there was evidence for simultaneous utilization of nitrate, ammonium, and urea during the experiment. The general lack of phytoplankton response as evidenced by low biomass during the diversion was therefore not obviously linked to changes in uptake rates, physiological capacity, or ammonium suppression of nitrate uptake.

  17. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    PubMed

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  18. A Data Base of Nutrient Use, Water Use, CO2 Exchange, and Ethylene Production by Soybeans in a Controlled Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.

    1998-01-01

    A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.

  19. Trace element uptake and distribution in plants.

    PubMed

    Graham, Robin D; Stangoulis, James C R

    2003-05-01

    There are similarities between mammals and plants in the absorption and transport of trace elements. The chemistry of trace element uptake from food sources in both cases is based on the thermodynamics of adsorption on charged solid surfaces embedded in a solution phase of charged ions and metal-binding ligands together with redox systems in the case of iron and some other elements. Constitutive absorption systems function in nutrient uptake during normal conditions, and inducible "turbo" systems increase the supply of a particular nutrient during deficiency. Iron uptake is the most studied of the micronutrients, and divides the plant kingdom into two groups: dicotyledonous plants have a turbo system that is an upregulated version of the constitutive system, which consists of a membrane-bound reductase and an ATP-driven hydrogen ion extrusion pump; and monocotyledonous plants have a constitutive system similar to that of the dicots, but with an inducible system remarkably different that uses the mugeneic acid class of phytosiderophores (PS). The PS system may in fact be an important port of entry for iron from an iron-rich but exceedingly iron-insoluble lithosphere into the iron-starved biosphere. Absorption of trace metals in these graminaceous plants is normally via divalent ion channels after reduction in the plasma membrane. Once absorbed, iron can be stored in plants as phytoferritin or transported to active sites by transport-specific ligands. The transport of iron and zinc into seeds is dominated by the phloem sap system, which has a high pH that requires chelation of heavy metals. Loading into grains involves three or four genes each that control chelation, membrane transport and deposition as phytate.

  20. Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-10-01

    We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method.

  1. Potassium Uptake Efficiency and Dynamics in the Rhizosphere of Maize, Wheat, and Sugar Beet Evaluated with a Mechanistic Model

    USDA-ARS?s Scientific Manuscript database

    Plant species differ in nutrient uptake efficiency. With a pot experiment, we evaluated potassium (K) uptake efficiency of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) grown on a low-K soil. Sugar beet and wheat maintained higher shoot K concentrations, indica...

  2. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  3. Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile.

    PubMed

    González, Angélica L; Fariña, José Miguel; Pinto, Raquel; Pérez, Cecilia; Weathers, Kathleen C; Armesto, Juan J; Marquet, Pablo A

    2011-11-01

    Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which

  4. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.)

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Li, Boqun; Yang, Yongping

    2018-03-01

    We administered foliar applications of 50, 100 and 200 mg L‑1 selenium (Se, selenite) on turnip (Brassica rapa var. rapa Linn.) and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (Ⅳ) significantly increased the Se content in turnip, and Se (Ⅳ) positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese and copper. Se (Ⅳ) treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (Ⅳ) could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L‑1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 µg person‑1 day‑1) and its favourable effects on the nutrient components of turnip.

  5. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings.

    PubMed

    Kasowska, Dorota; Gediga, Krzysztof; Spiak, Zofia

    2018-01-01

    Copper ore mining and processing release hazardous post-flotation wastes that are difficult for remediation. The studied tailings were extremely rich in Cu (1800 mg kg -1 ) and contaminated with Co and Mn, and contained very little available forms of P, Fe, and Zn. The plants growing in tailings were distinctly enriched in Cu, Cd, Co, Ni, and Pb, and the concentration of copper achived the critical toxicity level in shoots of Cerastium arvense and Polygonum aviculare. The redundancy analysis demonstrated significant relationship between the concentration of available forms of studied elements in substrate and the chemical composition of plant shoots. Results of the principal component analysis enabled to distinguish groups of plants which significantly differed in the pattern of element accumulation. The grass species Agrostis stolonifera and Calamagrostis epigejos growing in the tailings accumulated significantly lower amounts of Cu, but they also had the lowest levels of P, Fe, and Zn in comparison to dicotyledonous. A. stolonifera occurred to be the most suitable species for phytostabilization of the tailings with regard to its low shoot Cu content and more efficient acquisition of limiting nutrients in relation to C. epigejos. The amendments improving texture, phosphorus fertilization, and the introduction of native leguminous species were recommended for application in the phytoremediation process of the tailings.

  6. Modelling phosphorus uptake in microalgae.

    PubMed

    Singh, Dipali; Nedbal, Ladislav; Ebenhöh, Oliver

    2018-04-17

    Phosphorus (P) is an essential non-renewable nutrient that frequently limits plant growth. It is the foundation of modern agriculture and, to a large extent, demand for P is met from phosphate rock deposits which are limited and becoming increasingly scarce. Adding an extra stroke to this already desolate picture is the fact that a high percentage of P, through agricultural runoff and waste, makes its way into rivers and oceans leading to eutrophication and collapse of ecosystems. Therefore, there is a critical need to practise P recovery from waste and establish a circular economy applicable to P resources. The potential of microalgae to uptake large quantities of P and use of this P enriched algal biomass as biofertiliser has been regarded as a promising way to redirect P from wastewater to the field. This also makes the study of molecular mechanisms underlying P uptake and storage in microalgae of great interest. In the present paper, we review phosphate models, which express the growth rate as a function of intra- and extracellular phosphorus content for better understanding of phosphate uptake and dynamics of phosphate pools. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement

    DOE PAGES

    Trybula, Elizabeth M.; Cibin, Raj; Burks, Jennifer L.; ...

    2014-06-13

    The Soil and Water Assessment Tool (SWAT) is increasingly used to quantify hydrologic and water quality impacts of bioenergy production, but crop-growth parameters for candidate perennial rhizomatous grasses (PRG) Miscanthus × giganteus and upland ecotypes of Panicum virgatum (switchgrass) are limited by the availability of field data. Crop-growth parameter ranges and suggested values were developed in this study using agronomic and weather data collected at the Purdue University Water Quality Field Station in northwestern Indiana. During the process of parameterization, the comparison of measured data with conceptual representation of PRG growth in the model led to three changes in themore » SWAT 2009 code: the harvest algorithm was modified to maintain belowground biomass over winter, plant respiration was extended via modified-DLAI to better reflect maturity and leaf senescence, and nutrient uptake algorithms were revised to respond to temperature, water, and nutrient stress. Parameter values and changes to the model resulted in simulated biomass yield and leaf area index consistent with reported values for the region. Code changes in the SWAT model improved nutrient storage during dormancy period and nitrogen and phosphorus uptake by both switchgrass and Miscanthus.« less

  8. Divergent alfalfa root system architecture is maintained across environment and nutrient supply

    USDA-ARS?s Scientific Manuscript database

    Plant root system architecture can alter and be altered by soil fertility and other environmental conditions. In soils with suboptimal fertility, plant root length often is correlated with P and K uptake because these nutrients are supplied by diffusion. We developed alfalfa (Medicago sativa L.) pop...

  9. Improved sustainability of feedstock production with sludge and interacting mycorrhiza.

    PubMed

    Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2013-05-01

    Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less

  11. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    DOE PAGES

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...

    2016-05-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less

  12. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    NASA Astrophysics Data System (ADS)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  13. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    NASA Astrophysics Data System (ADS)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  14. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    PubMed

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Nitrogen uptake in a Tibetan grasland and implications for a vulnerable ecosystem

    NASA Astrophysics Data System (ADS)

    Schleuß, Per; Heitkamp, Felix; Sun, Yue; Kuzyakov, Yakov

    2016-04-01

    Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labelling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living root biomass (topsoil > subsoil). We assume that K. pygmaea develops a very dense root mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, we expect a higher N-investment into roots compared to shoots. The 15N recovery in the whole plants (~70%) indicated very efficient N-uptake from the upper injection depths. The highest 15N amounts were recovered in root biomass, whereby values strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific root activity for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods when resources are available. This implies high C costs to maintain root biomass (~6.0 kg DM m-2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m-2). It also suggests that Kobresia grasslands react extremely sensitively towards changes in climate and management that disrupt this above-/belowground trade-off mechanism.

  16. Improved Microautoradiographic Method to Determine Individual Microorganisms Active in Substrate Uptake in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with 3H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (3H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method. Images PMID:16346120

  17. Challenges to Improving the Uptake of Milk in a Nursery Class: A Case Study

    ERIC Educational Resources Information Center

    Albon, Deborah

    2009-01-01

    Purpose: The purpose of this paper is to examine why the uptake of free milk in a particular nursery class was low, to explore the meanings children attribute to drinks given to them in school and those brought from home, and make suggestions as to what might be done to improve children's intake of free school milk. Design/methodology/approach:…

  18. Isolation of syncytial microvillous membrane vesicles from human term placenta and their application in drug-nutrient interaction studies.

    PubMed

    van der Aa, E M; Copius Peereboom-Stegeman, J H; Russel, F G

    1995-09-01

    The initial step in placental uptake of nutrients occurs across the syncytial microvillous membrane of the trophoblast. This study was designed to isolate syncytial microvillous membrane vesicles (SMMV) of human term placenta, to validate their purity and viability, and to investigate the interaction of several commonly used drugs with the transport of two essential nutrients: alanine and choline. SMMV were isolated according to an established procedure, but instead of homogenization the initial preparation step was replaced by mincing of placental tissue followed by gently stirring to loosen the microvilli. These modifications doubled the protein recovery and increased the enrichment in alkaline phosphatase, whereas no substantial contamination with basal membranes nor interfering subcellular organelles was found. The functional viability of the vesicles was evaluated through the transport of alanine. In accordance with literature, uptake was sodium-dependent, inhibitable by structural analogues, and saturable. A number of cationic drugs were were able to able to inhibit choline uptake, whereas no effect on alanine transport was observed. Anionic drugs, drugs of abuse, and catecholamines did not interfere with alanine transport either. In conclusion, our isolated SMMV provide a suitable tool for screening drug-nutrient interactions at the level of membrane transport. In view of the very low susceptibility of the alanine transporter to drug inhibition and the relatively high drug concentrations necessary to inhibit choline transport, it seems unlikely that clinically important drug interactions may occur with these nutrients.

  19. Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume

    NASA Astrophysics Data System (ADS)

    Dugdale, R. C.; Wilkerson, F. P.; Hogue, V. E.; Marchi, A.

    2006-12-01

    A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May-June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis-Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low "realization" of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822-829].

  20. Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging

    DOE PAGES

    Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth; ...

    2017-03-06

    Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less

  1. Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth

    Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less

  2. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  3. Local food-based complementary feeding recommendations developed by the linear programming approach to improve the intake of problem nutrients among 12-23-month-old Myanmar children.

    PubMed

    Hlaing, Lwin Mar; Fahmida, Umi; Htet, Min Kyaw; Utomo, Budi; Firmansyah, Agus; Ferguson, Elaine L

    2016-07-01

    Poor feeding practices result in inadequate nutrient intakes in young children in developing countries. To improve practices, local food-based complementary feeding recommendations (CFR) are needed. This cross-sectional survey aimed to describe current food consumption patterns of 12-23-month-old Myanmar children (n 106) from Ayeyarwady region in order to identify nutrient requirements that are difficult to achieve using local foods and to formulate affordable and realistic CFR to improve dietary adequacy. Weekly food consumption patterns were assessed using a 12-h weighed dietary record, single 24-h recall and a 5-d food record. Food costs were estimated by market surveys. CFR were formulated by linear programming analysis using WHO Optifood software and evaluated among mothers (n 20) using trial of improved practices (TIP). Findings showed that Ca, Zn, niacin, folate and Fe were 'problem nutrients': nutrients that did not achieve 100 % recommended nutrient intake even when the diet was optimised. Chicken liver, anchovy and roselle leaves were locally available nutrient-dense foods that would fill these nutrient gaps. The final set of six CFR would ensure dietary adequacy for five of twelve nutrients at a minimal cost of 271 kyats/d (based on the exchange rate of 900 kyats/USD at the time of data collection: 3rd quarter of 2012), but inadequacies remained for niacin, folate, thiamin, Fe, Zn, Ca and vitamin B6. TIP showed that mothers believed liver and vegetables would cause worms and diarrhoea, but these beliefs could be overcome to successfully promote liver consumption. Therefore, an acceptable set of CFR were developed to improve the dietary practices of 12-23-month-old Myanmar children using locally available foods. Alternative interventions such as fortification, however, are still needed to ensure dietary adequacy of all nutrients.

  4. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  5. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.; Shroder, John F.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four-dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least-studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems

  6. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems

  7. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Philibert, R.; Waldron, H.; Clark, D.

    2015-03-01

    The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations

  8. Basalt Weathering, Nutrient Uptake, And Carbon Release By An Exotic And A Native Arizona Grass Species Under Different Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.

    2010-12-01

    basalt weathering. All of the leachate samples showed higher pH than the input water, and the pH was elevated in treatments that contained grass. This indicated that in the presence of vegetation there was more proton absorption. The trends in total nitrogen concentrations indicate a dependence on temperature; the same can be said of anion concentrations. Anion leaching is lower at higher temperatures possibly due to greater plant uptake. Both organic and inorganic carbon concentrations were found to be higher in grass treatments than in control treatments. Because both dissolved CO2 and soluble organic exudates encourage mineral dissolution, this could be causative of the weathering enhancements observed. Denudation of nutrient elements differed between plant species and between temperatures, possibly relating to plant uptake and secondary mineral formation. This study gives unique insight into plant-mineral interactions as a function of plant species and temperature that is essential for understanding Earth systems under changing climate.

  9. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat

    PubMed Central

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S.; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4+) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3- transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem. PMID:26483827

  10. Nutrients in the nexus

    USGS Publications Warehouse

    Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.

    2016-01-01

    Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.

  11. Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river

    NASA Astrophysics Data System (ADS)

    Schmidt, Calla M.; Kraus, Tamara E. C.; Young, Megan B.; Kendall, Carol

    2018-01-01

    Anthropogenic alteration of the form and concentration of nitrogen (N) in aquatic ecosystems is widespread. Understanding availability and uptake of different N sources at the base of aquatic food webs is critical to establishment of effective nutrient management programs. Stable isotopes of N (14N, 15N) are often used to trace the sources of N fueling aquatic primary production, but effective use of this approach requires obtaining a reliable isotopic ratio for phytoplankton. In this study, we tested the use of flow cytometry to isolate phytoplankton from bulk particulate organic matter (POM) in a portion of the Sacramento River, California, during river-scale nutrient manipulation experiments that involved halting wastewater discharges high in ammonium (NH4+). Field samples were collected using a Lagrangian approach, allowing us to measure changes in phytoplankton N source in the presence and absence of wastewater-derived NH4+. Comparison of δ15N-POM and δ15N-phytoplankton (δ15N-PHY) revealed that their δ15N values followed broadly similar trends. However, after 3 days of downstream travel in the presence of wastewater treatment plant (WWTP) effluent, δ15N-POM and δ15N-PHY in the Sacramento River differed by as much as 7 ‰. Using a stable isotope mixing model approach, we estimated that in the presence of effluent between 40 and 90 % of phytoplankton N was derived from NH4+ after 3 days of downstream transport. An apparent gradual increase over time in the proportion of NH4+ in the phytoplankton N pool suggests that either very low phytoplankton growth rates resulted in an N turnover time that exceeded the travel time sampled during this study, or a portion of the phytoplankton community continued to access nitrate even in the presence of elevated NH4+ concentrations.

  12. Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river

    USGS Publications Warehouse

    Schmidt, Calla M.; Kraus, Tamara; Young, Megan B.; Kendall, Carol

    2018-01-01

    Anthropogenic alteration of the form and concentration of nitrogen (N) in aquatic ecosystems is widespread. Understanding availability and uptake of different N sources at the base of aquatic food webs is critical to establishment of effective nutrient management programs. Stable isotopes of N (14N, 15N) are often used to trace the sources of N fueling aquatic primary production, but effective use of this approach requires obtaining a reliable isotopic ratio for phytoplankton. In this study, we tested the use of flow cytometry to isolate phytoplankton from bulk particulate organic matter (POM) in a portion of the Sacramento River, California, during river-scale nutrient manipulation experiments that involved halting wastewater discharges high in ammonium (NH4+). Field samples were collected using a Lagrangian approach, allowing us to measure changes in phytoplankton N source in the presence and absence of wastewater-derived NH4+. Comparison of δ15N-POM and δ15N-phytoplankton (δ15N-PHY) revealed that their δ15N values followed broadly similar trends. However, after 3 days of downstream travel in the presence of wastewater treatment plant (WWTP) effluent, δ15N-POM and δ15N-PHY in the Sacramento River differed by as much as 7 ‰. Using a stable isotope mixing model approach, we estimated that in the presence of effluent between 40 and 90 % of phytoplankton N was derived from NH4+ after 3 days of downstream transport. An apparent gradual increase over time in the proportion of NH4+ in the phytoplankton N pool suggests that either very low phytoplankton growth rates resulted in an N turnover time that exceeded the travel time sampled during this study, or a portion of the phytoplankton community continued to access nitrate even in the presence of elevated NH4+ concentrations.

  13. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  14. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  15. Nitrogen uptake of phytoplankton assemblages under contrasting upwelling and downwelling conditions: The Ría de Vigo, NW Iberia

    NASA Astrophysics Data System (ADS)

    Seeyave, Sophie; Probyn, Trevor; Álvarez-Salgado, Xosé Antón; Figueiras, Francisco G.; Purdie, Duncan A.; Barton, Eric D.; Lucas, Michael

    2013-06-01

    Regenerated production (including organic nitrogen) is shown here to be important in the Ría de Vigo (Galicia, NW Iberia) in supporting both harmful algal bloom communities during the downwelling season, but also (to a lesser extent) diatom communities during stratified periods of weak to moderate upwelling. The Galician Rías, situated in the Iberian upwelling system, are regularly affected by blooms of toxic dinoflagellates, which pose serious threats to the local mussel farming industry. These tend to occur towards the end of summer, during the transition from upwelling to downwelling favourable seasons, when cold bottom shelf waters in the rías are replaced by warm surface shelf waters. Nitrate, ammonium and urea uptake rates were measured in the Ría de Vigo during a downwelling event in September 2006 and during an upwelling event in June 2007. In September the ría was well mixed, with a downwelling front observed towards the middle of the ría and relatively high nutrient concentrations (1.0-2.6 μmol L-1 nitrate; 1.0-5.6 μmol L-1 ammonium; 0.1-0.8 μmol L-1 phosphate; 2.0-9.0 μmol L-1 silicic acid) were present throughout the water column. Ammonium represented more than 80% of the nitrogenous nutrients, and the phytoplankton assemblage was dominated by dinoflagellates and small flagellates. In June the water column was stratified, with nutrient-rich, upwelled water below the thermocline and warm, nutrient-depleted water in the surface. At this time, nitrate represented more than 80% of the nitrogenous nutrients, and a mixed diatom assemblage was present. Primary phytoplankton production during both events was mainly sustained by regenerated nitrogen, with ammonium uptake rates of 0.035-0.063 μmol N L-1 h-1 in September and 0.078-0.188 μmol N L-1 h-1 in June. Although f-ratios were generally low (<0.2) in both June and September, a maximum of 0.61 was reached in June due to higher nitrate uptake (0.225 μmol N L-1 h-1). Total nitrogen uptake was also

  16. Predator-Driven Nutrient Recycling in California Stream Ecosystems

    PubMed Central

    Munshaw, Robin G.; Palen, Wendy J.; Courcelles, Danielle M.; Finlay, Jacques C.

    2013-01-01

    Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation. PMID:23520520

  17. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  18. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops.

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; De Voogt, Pim

    2014-04-16

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and edible parts (tomatoes, cabbage head, zucchinis) were analyzed separately. Uptake and transfer factors were calculated for all plant parts to assess PFAA translocation and distribution within the plants. Root concentration factors were highest for long-chain PFAAs (>C11) in all three plant species, but these chemicals were not found in the edible parts. All other PFAAs were present in all above-ground plant parts, with transpiration stream concentration factors (TSCFs) of 0.05-0.25. These PFAAs are taken up with the transpiration stream and accumulate primarily in the leaves. Although some systematic differences were observed, overall their uptake from nutrient solution to roots and their further distribution within the plants were similar between plant species and among PFAAs.

  19. Membrane transporters for nitrogen, phosphate and potassium uptake in plants.

    PubMed

    Chen, Yi-Fang; Wang, Yi; Wu, Wei-Hua

    2008-07-01

    Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years. In fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels. In addition, the functions and regulation of some important transporters and channels are particularly emphasized.

  20. Need-based activation of ammonium uptake in Escherichia coli

    PubMed Central

    Kim, Minsu; Zhang, Zhongge; Okano, Hiroyuki; Yan, Dalai; Groisman, Alexander; Hwa, Terence

    2012-01-01

    The efficient sequestration of nutrients is vital for the growth and survival of microorganisms. Some nutrients, such as CO2 and NH3, are readily diffusible across the cell membrane. The large membrane permeability of these nutrients obviates the need of transporters when the ambient level is high. When the ambient level is low, however, maintaining a high intracellular nutrient level against passive back diffusion is both challenging and costly. Here, we study the delicate management of ammonium (NH4+/NH3) sequestration by E. coli cells using microfluidic chemostats. We find that as the ambient ammonium concentration is reduced, E. coli cells first maximize their ability to assimilate the gaseous NH3 diffusing into the cytoplasm and then abruptly activate ammonium transport. The onset of transport varies under different growth conditions, but always occurring just as needed to maintain growth. Quantitative modeling of known interactions reveals an integral feedback mechanism by which this need-based uptake strategy is implemented. This novel strategy ensures that the expensive cost of upholding the internal ammonium concentration against back diffusion is kept at a minimum. PMID:23010999

  1. Fall fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness, and morphological development

    Treesearch

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2009-01-01

    Fertilization is an integral component of nursery culture for production of high quality seedlings for afforestation and reforestation because it can enhance plant growth, nutrient storage reserves, and resistance to biotic and abiotic stresses (Landis, 1985). While fertilizer is conventionally applied during spring and summer in accordance with the...

  2. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.

    PubMed

    Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike

    2018-06-02

    Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.

  3. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    PubMed

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  4. Enabling nutrient security and sustainability through systems research.

    PubMed

    Kaput, Jim; Kussmann, Martin; Mendoza, Yery; Le Coutre, Ronit; Cooper, Karen; Roulin, Anne

    2015-05-01

    Human and companion animal health depends upon nutritional quality of foods. Seed varieties, seasonal and local growing conditions, transportation, food processing, and storage, and local food customs can influence the nutrient content of food. A new and intensive area of investigation is emerging that recognizes many factors in these agri-food systems that influence the maintenance of nutrient quality which is fundamental to ensure nutrient security for world populations. Modeling how these systems function requires data from different sectors including agricultural, environmental, social, and economic, but also must incorporate basic nutrition and other biomedical sciences. Improving the agri-food system through advances in pre- and post-harvest processing methods, biofortification, or fortifying processed foods will aid in targeting nutrition for populations and individuals. The challenge to maintain and improve nutrient quality is magnified by the need to produce food locally and globally in a sustainable and consumer-acceptable manner for current and future populations. An unmet requirement for assessing how to improve nutrient quality, however, is the basic knowledge of how to define health. That is, health cannot be maintained or improved by altering nutrient quality without an adequate definition of what health means for individuals and populations. Defining and measuring health therefore becomes a critical objective for basic nutritional and other biomedical sciences.

  5. Use of fluorescent nanoparticles to investigate nutrient acquisition by developing Eimeria maxima macrogametocytes.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2016-06-29

    The enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules. Cytochalasin D and nocodazole were used to inhibit, respectively, the polymerization of the actin and microtubules. The results indicated that NPs entered the parasite at all stages of macrogametocyte development and early oocyst maturation via an active energy dependent process. Interestingly, the smaller NPs were found throughout the parasite cytoplasm, while the larger NPs were mainly localised to the lumen of large type 1 wall forming body organelles. NP uptake was reduced after microfilament disruption and treatment with nocodazole. These observations suggest that E. maxima parasites utilize at least 2 or more uptake pathways to internalize exogenous material during the sexual stages of development.

  6. Improving fruit quality and phytochemical content through better nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  7. Water Quality Protection from Nutrient Pollution: Case ...

    EPA Pesticide Factsheets

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  8. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    PubMed Central

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce

  10. NO3- , PO43- and SO42- deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants.

    PubMed

    Ródenas, Reyes; García-Legaz, Manuel Francisco; López-Gómez, Elvira; Martínez, Vicente; Rubio, Francisco; Ángeles Botella, M

    2017-08-01

    Regulation of essential macronutrients acquisition by plants in response to their availability is a key process for plant adaptation to changing environments. Here we show in tomato and Arabidopsis plants that when they are subjected to NO 3 - , PO 4 3 - and SO 4 2 - deprivation, low-affinity K + uptake and K + translocation to the shoot are reduced. In parallel, these nutritional deficiencies produce reductions in the messenger levels of the genes encoding the main systems for low-affinity K + uptake and K + translocation, i.e. AKT1 and SKOR in Arabidopsis and LKT1 and the tomato homolog of SKOR, SlSKOR in tomato, respectively. The results suggest that the shortage of one nutrient produces a general downregulation of the acquisition of other nutrients. In the case of K + nutrient, one of the mechanisms for such a response resides in the transcriptional repression of the genes encoding the systems for K + uptake and translocation. © 2017 Scandinavian Plant Physiology Society.

  11. Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)

    USGS Publications Warehouse

    Grenz, C.; Cloern, J.E.; Hager, S.W.; Cole, B.E.

    2000-01-01

    Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from -40 to +200, 0 to 13 and from 30 to 400 ??mol m-2 h-1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m-2 h-1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and > 100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems.

  12. Harmonization of nutrient intake values.

    PubMed

    King, Janet C; Garza, Cutberto

    2007-03-01

    The conceptual framework for the various NIVs is depicted in figure 1 along with the methodological approaches and applications. The NIVs consist of two values derived from a statistical evaluation of data on nutrient requirements, the average nutrient requirement (ANR), or nutrient toxicities, the upper nutrient level (UNL). The individual nutrient levelx (INLx) is derived from the distribution of average nutrient requirements. The percentile chosen is often 98%, which is equivalent to 2 SD above the mean requirement. Concepts underlying the NIVs include criteria for establishing a nutrient requirement, e.g., ferritin stores, nitrogen balance, or serum vitamin C. Once the requirement for the absorbed nutrient is determined, it may be necessary to adjust the value for food sources, i.e., bioavailability, or host factors, such as the effect of infection on nutrient utilization. Other concepts that committees may want to consider when establishing NIVs include the effects of genetic variation on nutrient requirements and the role of the nutrient in preventing long-term disease. Two fundamental uses of NIVs are for assessing the adequacy of nutrient intakes and for planning diets for individuals and populations. Establishing the NIV using the statistical framework proposed in this report improves the efficacy of the values for identifying risks of nutrient deficiency or excess among individuals and populations. NIVs also are applied to a number of aspects of food and nutrition policy. Some examples include regulatory issues and trade, labeling, planning programs for alleviating public health nutrition problems, food fortification, and dietary guidance.

  13. Interactions between temperature and nutrients across levels of ecological organization.

    PubMed

    Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel

    2015-03-01

    Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and

  14. Ammonium and nitrate uptake by leaves of the seagrass Thalassia testudinum: impact of hydrodynamic regime and epiphyte cover on uptake rates

    NASA Astrophysics Data System (ADS)

    Cornelisen, Christopher D.; Thomas, Florence I. M.

    2004-08-01

    Seagrasses rely on the uptake of dissolved inorganic nitrogen (DIN) from both sediment pore water and the water column for metabolic processes. Rates at which their leaves remove nutrients from the water column may be influenced by physiological factors, such as enzyme kinetics, and physical factors, including water flow and the presence of epiphytes on the leaf surface. While there is some evidence of the individual effects of these factors on uptake rates for individual plants, there is little information on the effects of these factors on seagrasses that are situated in their natural environment. In order to isolate the combined effects of water flow and epiphyte cover on uptake rates for Thalassia testudinum leaves while they were situated in a natural canopy we applied 15N-labeled ammonium and 15N-labeled nitrate in a series of field flume experiments. Hydrodynamic parameters related to thickness of diffusive boundary layers, including bottom shear stress and the rate of turbulent energy dissipation, were estimated from velocity profiles collected with an acoustic Doppler velocimeter. Rates of NH 4+ uptake for leaves with and without epiphyte cover were proportional to bottom shear stress and energy dissipation rate, while rates of NO 3- uptake were not. For epiphytes, rates of both NH 4+ and NO 3- uptake were dependent on hydrodynamic parameters. Epiphytes covering the leaf surface reduced rates of NH 4+ uptake for seagrass leaves by an amount proportional to the spatial area covered by the epiphytes (˜90%) and although epiphytes reduced NO 3- uptake rates, the amount was not proportional to the extent of epiphyte cover. Results suggest that the rate at which seagrass leaves removed ammonium was limited by the rate of delivery to the surface of the leaves and was greatly reduced due to blockage of active uptake sites by epiphytes. Conversely, rates of nitrate uptake for the seagrass leaves were limited by the rate at which the leaves could process nitrate

  15. Preliminary Studies to Characterize the Temporal Variation of Micronutrient Composition of the Above Ground Organs of Maize and Correlated Uptake Rates

    PubMed Central

    Martins, Karla Vilaça; Dourado-Neto, Durval; Reichardt, Klaus; de Jong van Lier, Quirijn; Favarin, José Laércio; Sartori, Felipe Fadel; Felisberto, Guilherme; Mello, Simone da Costa

    2017-01-01

    The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that

  16. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients.

    PubMed

    Li, Fei; Peng, Yunfeng; Natali, Susan M; Chen, Kelong; Han, Tianfeng; Yang, Guibiao; Ding, Jinzhi; Zhang, Dianye; Wang, Guanqin; Wang, Jun; Yu, Jianchun; Liu, Futing; Yang, Yuanhe

    2017-11-01

    Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO 2 ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem. Although experimental warming initially enhanced ecosystem CO 2 uptake, the increased rate disappeared after the period of peak plant growth during the early growing season, even though soil moisture was not a limiting factor in this swamp meadow ecosystem. We observed that warming did not significantly affect soil extractable N or P during the period of peak growth, but decreased both N and P concentrations in the leaves of dominant plant species, likely caused by accelerated plant senescence in the warmed plots. The attenuated warming effect on CO 2 assimilation during the late growing season was associated with lowered leaf N and P concentrations. These findings suggest that warming-mediated nutrient changes may not always benefit ecosystem C uptake in permafrost regions, making our ability to predict the C balance in these warming-sensitive ecosystems more challenging than previously thought. © 2017 by the Ecological Society of America.

  17. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  18. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  19. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice.

    PubMed

    Ye, Xinxin; Li, Hongying; Wang, Qingyun; Chai, Rushan; Ma, Chao; Gao, Hongjian; Mao, Jingdong

    2018-02-01

    The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates. The presence of Asp or Lys influenced the uptake and distribution of GNPs in rice, which depended on the electrical interaction between the coated GNPs and each amino acid. When the electrical charge of the amino acid was the same as that of the surface ligand coated onto the GNPs, the GNPs could disperse well in nutrient solution, resulting in increased uptake of GNPs into rice tissue. The opposite was true where the charge on the surface ligand was different from that on the amino acid, resulting in agglomeration and reduced Au uptake into rice tissue. The behavior of GNPs in the hydroponic nutrient solution was monitored in terms of agglomeration, particle size distribution, and surface charge in the presence and absence of Asp or Lys, which depended strongly on the electrostatic interaction. Results from this study indicated that the species of root exudates must be taken into account in assessing the bioavailability of nanomaterials to plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nitrate losses, nutrients and heavy metal accumulation from substrates assembled for urban soils reconstruction.

    PubMed

    Civeira, G; Lavado, R S

    2008-09-01

    Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.

  1. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots.

    PubMed

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity

  2. Comparison between Arabidopsis and Rice for Main Pathways of K+ and Na+ Uptake by Roots

    PubMed Central

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K+ is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K+ in the soil solution are widely variable, K+ nutrition is secured by uptake systems that exhibit different affinities for K+. Two main systems have been described for root K+ uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K+ uptake, although they only seem to operate when K+ is not limiting. The use of knock-out lines has allowed demonstrating their role in root K+ uptake in Arabidopsis and rice. Plant adaptation to the different K+ supplies relies on the finely tuned regulation of these systems. Low K+-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant’s adaptation to low K+. Na+ is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na+ improves growth, especially under K+ deficiency. Thus, high-affinity Na+ uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na+ accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K+ deficiency. Data concerning pathways for Na+ uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na+ uptake in rice grown under salinity conditions, but in other plant species

  3. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  4. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    PubMed

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  5. Soluble soil aluminum alters the relative uptake of mineral nitrogen forms by six mature temperate broadleaf tree species: possible implications for watershed nitrate retention

    Treesearch

    Mark B. Burnham; Jonathan R. Cumming; Mary Beth Adams; William T. Peterjohn

    2017-01-01

    Increased availability of monomeric aluminum ( Al3+) in forest soils is an important adverse effect of acidic deposition that reduces root growth and inhibits nutrient uptake. There is evidence that Al3+ exposure interferes with NO3− uptake. If true for overstory trees, the...

  6. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees

    PubMed Central

    Chen, Weile; Koide, Roger T.; Adams, Thomas S.; DeForest, Jared L.; Cheng, Lei; Eissenstat, David M.

    2016-01-01

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986

  7. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    PubMed

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  8. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2018-01-09

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  9. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  10. Earthworms and nutrient availability: the ecosystem engineer as (bio)chemical engineer

    NASA Astrophysics Data System (ADS)

    van Groenigen, Jan Willem; Ros, Mart; Vos, Hannah; De Deyn, Gerlinde; Hiemstra, Tjisse; Oenema, Oene; Koopmans, Gerwin

    2017-04-01

    The ability of earthworms to increase plant production has long been recognized. However, the pathways through which they do so, and the magnitude of this effect, have not been conclusively addressed. In two studies we address these issues for nitrogen (N) and phosphorus (P) availability to plants. In the first study, a meta-analysis, we concluded that earthworm presence increases crop yield on average with 26% and aboveground biomass with 24%. The positive effects of earthworms increase when more residue is returned to the soil, but disappear when soil N availability is high. This suggests that earthworms stimulate plant growth predominantly through N mineralization from soil organic matter or crop residue. In a second study, we tested the effect of earthworms on plant P uptake from inorganic sources. In a greenhouse experiment on a soil with low P availability we showed that presence of the anecic earthworm Lumbricus terrestris resulted in increased aboveground biomass (from 164 to 188 g dry matter m-2) and P uptake (from 0.21 to 0.27 g m-2). Concentrations of total dissolved P and dissolved inorganic P in water extractions of earthworm casts were 7-9 times higher than in those of bulk soil. Using advanced surface complexation modelling, we showed that these effects were primarily related to desorption of inorganic P due to competition with organic carbon for binding sites. We conclude that earthworms can alter nutrient cycling and increase N and P uptake by plants through a combination of biochemical and chemical pathways. Earthworms are most likely to stimulate N uptake in organic farming systems and tropical subsistence farming, which largely rely on nutrient mineralization. Additional benefits of earthworms might be expected in conventional farming systems with low levels of available P.

  11. Molecular fundamentals of nitrogen uptake and transport in trees.

    PubMed

    Castro-Rodríguez, Vanessa; Cañas, Rafael A; de la Torre, Fernando N; Pascual, Ma Belén; Avila, Concepción; Cánovas, Francisco M

    2017-05-01

    Nitrogen (N) is frequently a limiting factor for tree growth and development. Because N availability is extremely low in forest soils, trees have evolved mechanisms to acquire and transport this essential nutrient along with biotic interactions to guarantee its strict economy. Here we review recent advances in the molecular basis of tree N nutrition. The molecular characteristics, regulation, and biological significance of membrane proteins involved in the uptake and transport of N are addressed. The regulation of N uptake and transport in mycorrhized roots and transcriptome-wide studies of N nutrition are also outlined. Finally, several areas of future research are suggested. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Tangeretin Improves Glucose Uptake in a Coculture of Hypertrophic Adipocytes and Macrophages by Attenuating Inflammatory Changes.

    PubMed

    Shin, Hye-Sun; Kang, Seong-Il; Ko, Hee-Chul; Park, Deok-Bae; Kim, Se-Jae

    2017-03-01

    Obesity is characterized by a state of chronic low-grade inflammation and insulin resistance, which are aggravated by the interaction between hypertrophic adipocytes and macrophages. In this study, we investigated the effects of tangeretin on inflammatory changes and glucose uptake in a coculture of hypertrophic adipocytes and macrophages. Tangeretin decreased nitric oxide production and the expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2 in a coculture of 3T3-L1 adipocytes and RAW 264.7 cells. Tangeretin also increased glucose uptake in the coculture system, but did not affect the phosphorylation of insulin receptor substrate (IRS) and Akt. These results suggest that tangeretin improves insulin resistance by attenuating obesity-induced inflammation in adipose tissue.

  13. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability.

    PubMed

    Sun, Jiabei; Bi, Chao; Chan, Hok Man; Sun, Shaoping; Zhang, Qingwen; Zheng, Ying

    2013-11-01

    The aim of the present study was to blend liquid lipids with solid lipids to encapsulate curcumin in solid lipid nanoparticles (SLNs), thereby improving the dispersibility and chemical stability of curcumin, prolonging its antitumour activity and cellular uptake and enhancing its bioavailability. Curcumin-loaded SLNs (C-SLNs) were prepared by high-pressure homogenisation with liquid lipid Sefsol-218(®). The morphology, stability and release of curcumin in the optimised formulation were investigated. The anti-cancer activity of the formulation was evaluated in MCF-7 cells. Fluorescence spectrophotometry was used to quantify cellular uptake of the drug. The pharmacokinetic profiles of curcumin in SLNs after intravenous administration were studied in rats. Blending Sefsol-218(®) into a lipid matrix reduced the particle size without improving drug loading. An optimised formulation consisting of Dynasan 114(®), Sefsol-218(®), and Pluronic F68(®) (630:70:300, w/w) loaded with 0.8% drug was prepared. This formulation could be dispersed in water with a mean particle size of 152.8 ± 4.7 nm and a 90% entrapment efficiency. Curcumin displayed a two-phase sustained release profile from C-SLNs with improved chemical stability. Compared to the solubilised solution, C-SLNs exhibited prolonged inhibitory activity in cancer cells, as well as time-dependent increases in intracellular uptake. After intravenous administration to rats, the bioavailability of curcumin was increased by 1.25-fold. C-SLNs with improved dispersibility and chemical stability in an aqueous system have been successfully developed. C-SLNs may represent a potentially useful cancer therapeutic curcumin delivery system. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus

    PubMed Central

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and

  15. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus.

    PubMed

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of "Xuegan" ( Citrus sinensis ) and "Sour pummelo" ( Citrus grandis ) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H 2 O 2 production and electrolyte leakage in roots and leaves. This was done ( a ) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and ( b ) to understand the mechanisms by which low pH may cause a decrease in leaf CO 2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H + -toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H + -toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO 2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO 2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO 2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP

  16. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  17. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  18. Corn yield and nutrient uptake response to subsurface-lateral bands application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is nutrient rich and traditionally land-applied by broadcast on the soil surface which can lead to potential environmental hazards. This application method leaves PL vulnerable to transport from the field to nearby water bodies and contributes significant amounts of greenhouse gases (...

  19. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    PubMed Central

    Kelly, Alan L.

    2017-01-01

    The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers. PMID:28930195

  20. Turning the Table: Plants Consume Microbes as a Source of Nutrients

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Rentsch, Doris; Robatzek, Silke; Webb, Richard I.; Sagulenko, Evgeny; Näsholm, Torgny

    2010-01-01

    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles. PMID:20689833

  1. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    PubMed

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  2. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    PubMed

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Seasonal variation in nutrient retention during inundation of a short-hydroperiod floodplain

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2007-01-01

    Floodplains are generally considered to be important locations for nutrient retention or inorganic-to-organic nutrient conversions in riverine ecosystems. However, little is known about nutrient processing in short-hydroperiod floodplains or seasonal variation in floodplain nutrient retention. Therefore, we quantified the net uptake, release or transformation of nitrogen (N), phosphorus (P) and suspended sediment species during brief periods (1-2 days) of overbank flooding through a 250-m floodplain flowpath on the fourth-order Mattawoman Creek, Maryland U.S.A. Sampling occurred during a winter, two spring and a summer flood in this largely forested watershed with low nutrient and sediment loading. Concentrations of NO3- increased significantly in surface water flowing over the floodplain in three of the four floods, suggesting the floodplain was a source of NO3-. The upper portion of the floodplain flowpath consistently exported NH4+, most likely due to the hyporheic: flushing of floodplain soil NH4+, which was then likely nitrified to NO3- in floodwaters. The floodplain was a sink for particulate organic P (POP) during two floods and particulate organic N and inorganic suspended sediment (ISS) during one flood. Large releases of all dissolved inorganic N and P species occurred following a snowmelt and subsequent cold winter flood. Although there was little consistency in most patterns of nutrient processing among the different floods, this floodplain, characterized by brief inundation, low residence time and low nutrient loading, behaved oppositely from the conceptual model for most floodplains in that it generally exported inorganic nutrients and imported organic nutrients.

  4. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate.

    PubMed

    Trinder, Clare J; Brooker, Rob W; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.

  5. A New Hammer to Crack an Old Nut: Interspecific Competitive Resource Capture by Plants Is Regulated by Nutrient Supply, Not Climate

    PubMed Central

    Trinder, Clare J.; Brooker, Rob W.; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of 15N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3 − or NH4 +). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition. PMID:22247775

  6. HYDRAULIC FRACTURING TO IMPROVE NUTRIENT AND OXYGEN DELIVERY FOR IN SITU BIORECLAMATION

    EPA Science Inventory

    The in situ delivery of nutrients and oxygen in soil is a serious problem in implementing in situ biodegradation. Current technology requires ideal site conditions to provide the remediating organisms with the nutrients and oxygen required for their metabolism, but...

  7. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    PubMed

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  8. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  9. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake.

    PubMed

    Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A

    2016-10-12

    Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates. © 2016 The Author(s).

  10. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  11. Growth of Coccolithophores Controlled by Internal Nutrient Stores in Light- and Nutrient-Limited Batch Reactors: Relevance for the BIOSOPE Deep Ecological Niche of Coccolithophores.

    NASA Astrophysics Data System (ADS)

    Laura, P.; Probert, I.; Langer, G.; Aloisi, G.

    2016-02-01

    Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.

  12. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy

    NASA Astrophysics Data System (ADS)

    Hoopes, P. Jack; Petryk, Alicia A.; Tate, Jennifer A.; Savellano, Mark S.; Strawbridge, Rendall R.; Giustini, Andrew J.; Stan, Radu V.; Gimi, Barjor; Garwood, Michael

    2013-02-01

    The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a

  13. Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO3-, NO2-, NH4+, and urea

    NASA Technical Reports Server (NTRS)

    Criddle, R. S.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The net influx (uptake) rates of NO3-, NH4+, NO2-, and urea into roots of wheat (Triticum aestivum cv Yecora Rojo) seedlings from complete nutrient solutions containing all four compounds were monitored simultaneously. Although urea uptake was too slow to monitor, its presence had major inhibitory effects on the uptake of each of the other compounds. Rates of NO3-, NH4+, and NO2- uptake depended in a complex fashion on the concentration of all four N compounds. Equations were developed which describe the uptake rates of each of the compounds, and of total N, as functions of concentrations of all N sources. Contour plots of the results show the interactions over the range of concentrations employed. The coefficients of these equations provide quantitative values for evaluating primary and interactive effects of each compound on N uptake.

  14. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny

    2009-01-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl−) and sodium (Na...

  15. Improving pneumococcal and herpes zoster vaccination uptake: expanding pharmacist privileges.

    PubMed

    Taitel, Michael S; Fensterheim, Leonard E; Cannon, Adam E; Cohen, Edward S

    2013-09-01

    To investigate how state-authorized pharmacist immunization privileges influence pharmacist intervention effectiveness in delivering pneumococcal and herpes zoster vaccinations and assess the implications these privileges have on vaccination rates. Cross-sectional study of Walgreens vaccination records from August 2011 to March 2012. A random sample of patients having a claim for influenza vaccination in the study period was selected. Vaccination uptake rates for pneumococcal disease and herpes zoster were calculated for previously unvaccinated patients at high risk for these conditions. Rates were examined by state-level pharmacist privileges. For states authorizing immunization by protocol or prescriptive authority, the 1-year pneumococcal vaccination uptake rate for previously unvaccinated, high-risk persons was 6.6%, compared with 2.5% for states requiring a prescription (P <.0001), and 2.8% for states with no authorization (P <.0001). For herpes zoster, the 1-year vaccination uptake rate was 3.3% for states authorizing per protocol/prescriptive authority, compared with 2.8% (not significant, P <.05) for states authorizing by prescription, and 1.0% for states with no authorization (P <.0001). A 148% increase of pneumococcal vaccination and a 77% increase of herpes zoster vaccination would result if all states granted pharmacists full immunization privileges. This analysis demonstrates that states that offer pharmacists full immunization privileges have higher vaccination uptake rates than states with restricted or no authorization. Considering the suboptimal vaccination rates of pneumonia and shingles and the public health goals of 2020, states with limited or no immunization authorization for pharmacists should consider expanding pharmacist privileges for these vaccinations.

  16. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays)

    USDA-ARS?s Scientific Manuscript database

    Microbial-based inoculants have been reported to stimulate plant growth and nutrient uptake. However, their effect may vary depending on the growth stage when evaluated and on the chemical fertilizer applied. Thus, the objective of this study was to test the hypothesis that microbial-based inoculant...

  17. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    USDA-ARS?s Scientific Manuscript database

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  18. Linking the brown and green: nutrient transformation and fate in the Sarracenia microecosystem.

    PubMed

    Butler, Jessica L; Gotelli, Nicholas J; Ellison, Aaron M

    2008-04-01

    Linkages between detritus-based ("brown") food webs and producer-based ("green") food webs are critical components of ecosystem functionality, but these linkages are hard to study because it is difficult to measure release of nutrients by brown food webs and their subsequent uptake by plants. In a three-month greenhouse experiment, we examined how the detritus-based food web inhabiting rain-filled leaves of the pitcher plant Sarracenia purpurea affects nitrogen transformation and its subsequent uptake by the plant itself. We used isotopically enriched prey (detritus) and soluble inorganic nitrogen, and manipulated food web structure to determine whether the presence of a complete brown web influences uptake efficiency of nitrogen by the plant. Uptake efficiency of soluble inorganic nitrogen was greater than that of nitrogen derived from mineralized prey. Contrary to expectation, there was no effect of the presence in the food web of macroinvertebrates on uptake efficiency of either form of nitrogen. Further, uptake efficiency of prey-derived nitrogen did not differ significantly among S. purpurea and two congeneric species (S. flava and S. alata) that lack associated food webs. Although upper trophic levels of this brown food web actively process detritus, it is the activity of the microbial component of this web that ultimately determines nitrogen availability for S. purpurea.

  19. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses.

    PubMed

    Wu, Weifang; Deng, Qin; Shi, Pibiao; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2016-01-01

    Watermelon (Citrullus lanatus) is a globally important crop belonging to the family Cucurbitaceae. The grafting technique is commonly used to improve its tolerance to stress, as well as to enhance its nutrient uptake and utilization. It is believed that miRNA is most likely involved in its nutrient-starvation response as a graft-transportable signal. The quantitative real-time reverse transcriptase polymerase chain reaction is the preferred method for miRNA functional analysis, in which reliable reference genes for normalization are crucial to ensure the accuracy. The purpose of this study was to select appropriate reference genes in scion (watermelon) and rootstocks (squash and bottle gourd) of grafted watermelon plants under normal growth conditions and nutrient stresses (nitrogen and phosphorus starvation). Under nutrient starvation, geNorm identified miR167c and miR167f as two most stable genes in both watermelon leaves and squash roots. miR166b was recommended by both geNorm and NormFinder as the best reference in bottle gourd roots under nutrient limitation. Expression of a new Cucurbitaceae miRNA, miR85, was used to validate the reliability of candidate reference genes under nutrient starvation. Moreover, by comparing several target genes expression in qRT-PCR analysis with those in RNA-seq data, miR166b and miR167c were proved to be the most suitable reference genes to normalize miRNA expression under normal growth condition in scion and rootstock tissues, respectively. This study represents the first comprehensive survey of the stability of miRNA reference genes in Cucurbitaceae and provides valuable information for investigating more accurate miRNA expression involving grafted watermelon plants.

  20. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate

    PubMed Central

    Etienne, Philippe; Diquélou, Sylvain; Koprivova, Anna; Kopriva, Stanislav; Arkoun, Mustapha; Gallardo, Karine; Turner, Marie; Cruz, Florence; Yvin, Jean-Claude

    2016-01-01

    Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management. PMID:27870884

  1. Iron Uptake in a Shelf Sea: Seasonality and Stoichiometry

    NASA Astrophysics Data System (ADS)

    Daniels, C. J.; Poulton, A. J.; Moore, M. M.; Birchill, A.; Mayers, K.; Lohan, M. C.

    2016-02-01

    Primary production by phytoplankton in shelf seas represents a significant contribution to global carbon cycling. Trace metals, such as Iron (Fe), are essential micronutrients for phytoplankton growth, and may ultimately limit primary production. The uptake of iron within natural phytoplankton communities is poorly understood. Using carrier free 55Fe, we are able to obtain novel estimates of biological uptake of Fe using trace level Fe additions that do not perturb the system. Here we present results from a study measuring the uptake of carrier free Iron (55Fe), in parallel with measurements of Carbon (14C) and Phosphorus (33P) uptake; samples were collected from the Celtic sea in spring (April 2015) and summer (July 2015), on-shelf and off-shelf, and in 2 size fractions (Total, >2µm), thus producing a novel dataset of the seasonality of macronutrient and micronutrient uptake by phytoplankton within a shelf sea. Primary production ranged from 1.0 - 2.2 mmol C m-3 d-1 in April and 0.2 - 1.5 mmol C m-3 d-1 in July, with a corresponding higher biomass in April (0.7 - 3.24 mg Chl m-3) than July (0.3 - 1.6 mg Chl m-3). Significant rates of Fe uptake were measured in all samples (e.g. 21 nmol m-3 d-1, on-shelf, April), with variable stoichiometry (e.g. Fe/C of 16 µmol/mol, and Fe/P of 0.4 mmol/mol, on-shelf, April). The results will be presented and examined in the context of the available nutrient pools, the phytoplankton community structure and the impact on biogeochemical cycling.

  2. Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer

    NASA Astrophysics Data System (ADS)

    Joubert, W. R.; Thomalla, S. J.; Waldron, H. N.; Lucas, M. I.; Boye, M.; Le Moigne, F. A. C.; Planchon, F.; Speich, S.

    2011-10-01

    As part of the Bonus-GoodHope (BGH) campaign, 15N-labelled nitrate, ammonium and urea uptake measurements were made along the BGH transect from Cape Town to ~60° S in late austral summer, 2008. Our results are categorised according to distinct hydrographic regions defined by oceanic fronts and open ocean zones. High regenerated nitrate uptake rate in the oligotrophic Subtropical Zone (STZ) resulted in low f-ratios (f = 0.2) with nitrogen uptake being dominated by ρurea, which contributed up to 70 % of total nitrogen uptake. Size fractionated chlorophyll data showed that the greatest contribution (>50 %) of picophytoplankton (<2 μm) were found in the STZ, consistent with a community based on regenerated production. The Subantarctic Zone (SAZ) showed the greatest total integrated nitrogen uptake (10.3 mmol m-2 d-1), mainly due to enhanced nutrient supply within an anticyclonic eddy observed in this region. A decrease in the contribution of smaller size classes to the phytoplankton community was observed with increasing latitude, concurrent with a decrease in the contribution of regenerated production. Higher f-ratios observed in the SAZ (f = 0.49), Polar Frontal Zone (f= 0.41) and Antarctic Zone (f = 0.45) relative to the STZ (f = 0.24), indicate a higher contribution of NO3--uptake relative to total nitrogen and potentially higher export production. High ambient regenerated nutrient concentrations are indicative of active regeneration processes throughout the transect and ascribed to late summer season sampling. Higher depth integrated uptake rates also correspond with higher surface iron concentrations. No clear correlation was observed between carbon export estimates derived from new production and 234Th flux. In addition, export derived from 15N estimates were 2-20 times greater than those based on 234Th flux. Variability in the magnitude of export is likely due to intrinsically different methods, compounded by differences in integration time scales for the

  3. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  4. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    PubMed

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  6. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    PubMed Central

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  7. Instant noodles made with fortified wheat flour to improve micronutrient intake in Asia: a review of simulation, nutrient retention and sensory studies.

    PubMed

    Bronder, Kayla L; Zimmerman, Sarah L; van den Wijngaart, Annoek; Codling, Karen; Johns, Kirsten Ag; Pachón, Helena

    2017-03-01

    Consumption of foods made with wheat flour, particularly instant noodles, is increasing in Asia. Given this trend, fortifying wheat flour with vitamins and minerals may improve micronutrient intake in the region. The objective of this review was to understand what is known about fortifying wheat flour used to make instant noodles. A literature review of seven databases was performed using the search terms "noodle" and ("Asian" or "instant"). Grey literature was requested through a food fortification listserv. Articles were title screened first for relevance and duplicity, with exclusion criteria applied during the second round of abstract-level screening. This review considered studies examining simulation, retention, sensory, bioavailability, efficacy, and effectiveness of instant noodles made with fortified wheat flour. Fourteen relevant documents were reviewed for simulation (n=1), retention (n=11), and sensory studies (n=3). The documents revealed that instant noodles produced from fortified wheat flour have potential to improve nutrient intakes, have high retention of most nutrients, and provoke no or minimal changes in sensory characteristics. The available literature indicates that using fortified wheat flour for instant noodle production results in retention of the added nutrients, except thiamin, with no significant sensory change to the final product. Given the rising consumption of instant noodles, production of this item with fortified wheat flour has potential to improve nutrient intakes in Asia. This review provides a resource for the design of a wheat flour fortification program in countries where a large proportion of wheat flour is consumed as instant noodles.

  8. Cyclic variations in nitrogen uptake rate of soybean plants: effects of pH and mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.; Chaillou, S.

    1991-01-01

    To determine if the daily pattern of NO3- and NH4+ uptake is affected by acidity or NO3- : NH4+ ratio of the nutrient solution, non-nodulated soybean plants (Glycine max) were exposed for 21 days to replenished, complete nutrient solutions at pH 6.0, 5.5, 5.0, and 4.5 which contained either 1.0 mM NH4+, 1.0 mM NO3- [correction of NO3+], 0.67 mM NH4+ plus 0.33 mM NO3- (2:1 NH4+ : NO3-) [correction of (2:1 NH3+ : NO4-)], or 0.33 mM NH4+ plus 0.67 mM NO3- (1:2 NH4+ : NO3-). Net uptake rates of NH4+ and NO3- were measured daily by ion chromatography as depletion from the replenished solutions. When NH4+ and NO3- were supplied together, cumulative uptake of total nitrogen was not affected by pH or solution NH4+ : NO3- ratio. The cumulative proportion of nitrogen absorbed as NH4+ decreased with increasing acidity; however, the proportional uptake of NH4+ and NO3- was not constant, but varied day-to-day. This day-to-day variation in relative proportions of NH4+ and NO3- absorbed when NH4+ : NO3- ratio and pH of solution were constant indicates that the regulatory mechanism is not directly competitive. Regardless of the effect of pH on cumulative uptake of NH4+, the specific nitrogen uptake rates from mixed and from individual NH4+ and NO3- sources oscillated between maxima and minima at each pH with average periodicities similar to the expected interval of leaf emergence.

  9. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  10. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  11. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review

    PubMed Central

    Debbi, Stanistreet; Elisa, Puzzolo; Nigel, Bruce; Dan, Pope; Eva, Rehfuess

    2014-01-01

    Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS) are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus. PMID:25123070

  12. Factors influencing household uptake of improved solid fuel stoves in low- and middle-income countries: a qualitative systematic review.

    PubMed

    Debbi, Stanistreet; Elisa, Puzzolo; Nigel, Bruce; Dan, Pope; Eva, Rehfuess

    2014-08-13

    Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS) are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus.

  13. Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta.

    PubMed

    Zotz, Gerhard; Richter, Andreas

    2006-05-01

    This study examined the physiological basis of the cost of reproduction in the epiphytic bromeliad Werauhia sanguinolenta, growing in situ in a tropical lowland forest in Panama. Entire mature plants were sampled repeatedly over the course of 2 years, which represents the common interval between reproductive events. Due to the uncertainty concerning the appropriate currency of resource allocation to reproduction, the temporal changes of the contents of total non-structural carbohydrates (TNC) and of all major nutrient elements in different plant parts were studied (stems, green leaves, non-green leaf bases, roots and reproductive structures when present). Although TNC varied with time in all compartments, this variation was more related to seasonal fluctuations than to reproductive status. The contents of the nutrient elements, N, P, K, Mg and S, on the other hand, showed significant differences between reproductive and non-reproductive individuals, while Ca did not change with reproductive status. Differences in nutrient contents were most pronounced in stems. Seeds were particularly enriched in P, much less so in N and the other nutrient elements. Model calculations of nutrient fluxes indicate that a plant needs about 2 years to accumulate the amount of P invested in a fruit crop, while the estimated uptake rates for N were much faster. Since most mature individuals of this species fruit every other year, it is hypothesized that P is the prime limiting factor for reproduction. These findings therefore add to an increasing body of evidence that P rather than N is limiting growth and reproduction in vascular epiphytes.

  14. New nitrogen uptake strategy: specialized snow roots.

    PubMed

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  15. Interactions among infections, nutrients and xenobiotics.

    PubMed

    Ilbäck, Nils-Gunnar; Friman, Göran

    2007-01-01

    During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.

  16. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis

    PubMed Central

    Fellbaum, Carl R.; Gachomo, Emma W.; Beesetty, Yugandhar; Choudhari, Sulbha; Strahan, Gary D.; Pfeffer, Philip E.; Kiers, E. Toby; Bücking, Heike

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a “fair trade” of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880–882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis. PMID:22308426

  17. Unprecedented Synergistic Effects of Nanoscale Nutrients on Growth, Productivity of Sweet Sorghum [Sorghum bicolor (L.) Moench], and Nutrient Biofortification.

    PubMed

    Naseeruddin, Ramapuram; Sumathi, Vupprucherla; Prasad, Tollamadugu N V K V; Sudhakar, Palagiri; Chandrika, Velaga; Ravindra Reddy, Balam

    2018-02-07

    Evidence-based synergistic effects of nanoscale materials (size of <100 nm in at least one dimension) were scantly documented in agriculture at field scale. Herein, we report for the first time on effects of nanoscale zinc oxide (n-ZnO), calcium oxide (n-CaO), and magnesium oxide (n-MgO) on growth and productivity of sweet sorghum [Sorghum bicolor (L.) Moench]. A modified sol-gel method was used to prepare nanoscale materials under study. Characterization was performed using transmission and scanning electron microscopies, X-ray diffraction, and dynamic light scattering. Average sizes (25, 53.7, and 53.5 nm) and ζ potentials (-10.9, -28.2, and -16.2 mV) of n-ZnO, n-CaO, and n-MgO were measured, respectively. The significant grain yield (17.8 and 14.2%), cane yield (7.2 and 8.0%), juice yield (10 and 12%), and higher sucrose yield (21.8 and 20.9%) were recorded with the application of nanoscale materials in the years 2014 and 2015, respectively. Nutrient uptake was significant with foliar application of nanoscale nutrients.

  18. Increased energy density of the home-delivered lunch meal improves 24-hour nutrient intakes in older adults.

    PubMed

    Silver, Heidi J; Dietrich, Mary S; Castellanos, Victoria H

    2008-12-01

    As food intake declines with aging, older adults develop energy and nutrient inadequacies. It is important to design practical approaches to combat insufficient dietary intakes to decrease risk for acute and chronic diseases, illness, and injury. Manipulating the energy density of meals has improved energy intakes in institutional settings, but the effects on community-residing older adults who are at nutrition risk have not been investigated. The aim of this study was to determine whether enhancing the energy density of food items regularly served in a home-delivered meals program would increase lunch and 24-hour energy and nutrient intakes. In a randomized crossover counterbalanced design, 45 older adult Older American Act Nutrition Program participants received a regular and enhanced version of a lunch meal on alternate weeks. The types of foods, portion sizes (gram weight), and appearance of the lunch meal was held constant. Consumption of the enhanced meal increased average lunch energy intakes by 86% (P<0.001) and 24-hour energy intakes by 453 kcal (from 1,423.1+/-62.2 to 1,876.2+/-78.3 kcal, P<0.001). The 24-hour intakes of several key macronutrients and micronutrients also improved. These data suggest that altering the energy density of regularly served menu items is an effective strategy to improve dietary intakes of free-living older adults.

  19. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when

  20. Removing Constraints on the Biomass Production of Freshwater Macroalgae by Manipulating Water Exchange to Manage Nutrient Flux

    PubMed Central

    Cole, Andrew J.; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1–1 vol.day−1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5–1 vol.day−1, where uptake rates peaked at 1.09 g.m−2.day−1 for nitrogen and 0.13 g.m−2.day−1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m−2.day−1 and a phosphorous flux of 0.6 g.m−2.day−1 was the minimum required to maintain the growth of Oedogonium at 16–17 g DW.m−2.day−1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m−2.day−1), Oedogonium requires 0.09 g.m−2.day−1 of nitrogen and 0.04 g.m−2.day−1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the

  1. Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.

    PubMed

    Cole, Andrew J; de Nys, Rocky; Paul, Nicholas A

    2014-01-01

    Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1-1 vol.day-1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5-1 vol.day-1, where uptake rates peaked at 1.09 g.m-2.day-1 for nitrogen and 0.13 g.m-2.day-1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m-2.day-1 and a phosphorous flux of 0.6 g.m-2.day-1 was the minimum required to maintain the growth of Oedogonium at 16-17 g DW.m-2.day-1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m-2.day-1), Oedogonium requires 0.09 g.m-2.day-1 of nitrogen and 0.04 g.m-2.day-1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the bioremediation of wastewater and the supply of a

  2. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize ( Zea mays) and implications for nanoagriculture

    NASA Astrophysics Data System (ADS)

    Tiwari, D. K.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L. M.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. E.

    2014-06-01

    The application of nano-biotechnology to crop-science/agriculture (`nanoagriculture') is a recent development. While carbon nanotubes (CNTs) have been shown to dramatically improve germination of some comestible plants, deficiencies in consistency of behavior and reproducibility arise, partially from the variability of the CNTs used. In this work, factory-synthesized multi-walled-CNTs (MWCNTs) of quality-controlled specifications were seen to enhance the germinative growth of maize seedlings at low concentrations but depress it at higher concentrations. Growth enhancement principally arose through improved water delivery by the MWCNT. Polarized EDXRF spectrometry showed that MWCNTs affect mineral nutrient supply to the seedling through the action of the mutually opposing forces of inflow with water and retention in the medium by the ion-CNT transient-dipole interaction. The effect varied with ion type and MWCNT concentration. The differences of the Fe tissue concentrations when relatively high equimolar Fe2+ or Fe3+ was introduced, implied that the ion-CNT interaction might induce redox changes to the ion. The tissue Ca2+ concentration manifested as the antipode of the Fe2+ concentration indicating a possible cationic exchange in the cell wall matrix. SEM images showed that MWCNTs perforated the black-layer seed-coat that could explain the enhanced water delivery. The absence of perforations with the introduction of FeCl2/FeCl3 reinforces the idea of the modification of MWCNT functionality by the ion-CNT interaction. Overall, in normal media, low dose MWCNTs were seen to be beneficial, improving water absorption, plant biomass and the concentrations of the essential Ca, Fe nutrients, opening a potential for possible future commercial agricultural applications.

  3. Ammonium and Nitrate Uptake by the Floating Plant Landoltia punctata

    PubMed Central

    Fang, Yun Ying; Babourina, Olga; Rengel, Zed; Yang, Xiao E.; Pu, Pei Min

    2007-01-01

    Background and Aims Plants from the family Lemnaceae are widely used in ecological engineering projects to purify wastewater and eutrophic water bodies. However, the biology of nutrient uptake mechanisms in plants of this family is still poorly understood. There is controversy over whether Lemnaceae roots are involved in nutrient uptake. No information is available on nitrogen (N) preferences and capacity of Landoltia punctata (dotted duckweed), one of the best prospective species in Lemnaceae for phytomelioration and biomass production. The aim of this study was to assess L. punctata plants for their ability to take up NH4+ and NO3− by both roots and fronds. Methods NO3− and NH4+ fluxes were estimated by a non-invasive ion-selective microelectrode technique. This technique allows direct measurements of ion fluxes across the root or frond surface of an intact plant. Key Results Landoltia punctata plants took up NH4+ and NO3− by both fronds and roots. Spatial distribution of NH4+ and NO3− fluxes demonstrated that, although ion fluxes at the most distal parts of the root were uneven, the mature part of the root was involved in N uptake. Despite the absolute flux values for NH4+ and NO3− being lower in roots than at the frond surface, the overall capacity of roots to take up ions was similar to that of fronds because the surface area of roots was larger. L. punctata plants preferred to take up NH4+ over NO3− when both N sources were available. Conclusions Landoltia punctata plants take up nitrogen by both roots and fronds. When both sources of N are available, plants prefer to take up NH4+, but will take up NO3− when it is the only N source. PMID:17204539

  4. Effectiveness in improving knowledge, practices, and intakes of "key problem nutrients" of a complementary feeding intervention developed by using linear programming: experience in Lombok, Indonesia.

    PubMed

    Fahmida, Umi; Kolopaking, Risatianti; Santika, Otte; Sriani, Sriani; Umar, Jahja; Htet, Min Kyaw; Ferguson, Elaine

    2015-03-01

    Complementary feeding recommendations (CFRs) with the use of locally available foods can be developed by using linear programming (LP). Although its potential has been shown for planning phases of food-based interventions, the effectiveness in the community setting has not been tested to our knowledge. We aimed to assess effectiveness of promoting optimized CFRs for improving maternal knowledge, feeding practices, and child intakes of key problem nutrients (calcium, iron, niacin, and zinc). A community-intervention trial with a quasi-experimental design was conducted in East Lombok, West Nusa Tenggara Province, Indonesia, on children aged 9-16 mo at baseline. A CFR group (n = 240) was compared with a non-CFR group (n = 215). The CFRs, which were developed using LP, were promoted in an intervention that included monthly cooking sessions and weekly home visits. The mother's nutrition knowledge and her child's feeding practices and the child's nutrient intakes were measured before and after the 6-mo intervention by using a structured interview, 24-h recall, and 1-wk food-frequency questionnaire. The CFR intervention improved mothers' knowledge and children's feeding practices and improved children's intakes of calcium, iron, and zinc. At the end line, median (IQR) nutrient densities were significantly higher in the CFR group than in the non-CFR group for iron [i.e., 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal) compared with 0.5 mg/100 kcal (0.4-0.7 mg/100 kcal)] and niacin [i.e., 0.8 mg/100 kcal (0.5-1.0 mg/100 kcal) compared with 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal)]. However, median nutrient densities for calcium, iron, niacin, and zinc in the CFR group (23, 0.6, 0.7, and 0.5 mg/100 kcal, respectively) were still below desired densities (63, 1.0, 0.9, and 0.6 mg/100 kcal, respectively). The CFRs significantly increased intakes of calcium, iron, niacin, and zinc, but nutrient densities were still below desired nutrient densities. When the adoption of optimized CFRs is

  5. Influence of elevated Fe, Zn, and Cd on uptake and translocation of mineral elements in common bean

    USDA-ARS?s Scientific Manuscript database

    Common bean is an important crop plant and source of human health related macro- and micronutrients. Common bean uptake these nutrients from the soil environment and transport them to various storage tissues using proteins and genes located in different tissues (Phan-Thein et al. 2010). However, alo...

  6. "Nutrient-sensing" and self-renewal: O-GlcNAc in a new role.

    PubMed

    Sharma, Nikita S; Saluja, Ashok K; Banerjee, Sulagna

    2018-06-01

    Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.

  7. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    PubMed

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  8. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    PubMed Central

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665

  9. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters.

    PubMed

    Zheng, Hongli; Liu, Mingzhi; Lu, Qian; Wu, Xiaodan; Ma, Yiwei; Cheng, Yanling; Addy, Min; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    To improve nutrients removal from wastewaters and enhance algal biomass production, piggery wastewater was mixed with brewery wastewaters. The results showed that it was a promising way to cultivate microalga in piggery and brewery wastewaters by balancing the carbon/nitrogen ratio. The optimal treatment condition for the mixed piggery-brewery wastewater using microalga was piggery wastewater mixed with brewery packaging wastewater by 1:5 at pH 7.0, resulting in carbon/nitrogen ratio of 7.9, with the biomass concentration of 2.85 g L -1 , and the removal of 100% ammonia, 96% of total nitrogen, 90% of total phosphorus, and 93% of chemical oxygen demand. The application of the established strategies can enhance nutrient removal efficiency of the wastewaters while reducing microalgal biomass production costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biomass production, anaerobic digestion, and nutrient recycling of small benthic or floating seaweeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryther, J.H.

    1982-02-01

    A number of experiments have been carried out supporting the development of a seaweed-based ocean energy farm. Beginning in 1976, forty-two species of seaweed indigenous to the coastal waters of Central Florida were screened for high biomass yields in intensive culture. Gracilaria tikvahiae achieved the highest annual yield of 34.8 g dry wt/m/sup 2/ day. Yield has been found to vary inversely with seawater exchange rate, apparently because of carbon dioxide limitation at low exchange rates. Gracilaria was anaerobically digested in 120 liter and 2 liter reactors. Gas yields in the large digesters averaged 0.4 1/g volatile solids (.24 1more » CH/sub 4//gv.s.) with a bioconversion efficiency of 48%. Studies of the suitability of digester residue as a nutrient source for growing Gracilaria have been conducted. Nitrogen recycling efficiency from harvested plant through liquid digestion residue to harvested plant approached 75%. Studies of nutrient uptake and storage by Gracilaria, Ascophyllum, and Sargassum showed that nutrient starved plants are capable of rapidly assimilating and storing inorganic nutrients which may be used later for growth when no nutrients are present in the medium. A shallow water seaweed farm was proposed which would produce methane from harvested seaweed and use digester residues as a concentrated source of nutrients for periodic fertilizations.« less

  11. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    PubMed

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients

    PubMed Central

    Golden, Christopher D.; Mozaffarian, Dariush

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model—the Global Expanded Nutrient Supply (GENuS) model—to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961–2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  13. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    PubMed

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  14. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site

  15. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    PubMed

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  16. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate.

    PubMed

    Zalesny, Jill A; Zalesny, Ronald S

    2009-07-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl-) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl- and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl- ha(-1) and 8 to 74 kg Na+ ha(-1), while annual uptake ranged from 8 to 54 kg Cl- ha(-1) yr(-1) and 3 to 23 kg Na+ ha(-1) yr(-1). Full-rotation uptake was greatest from 4 to 9 years (Cl-) and 4 to 8 years (Na+), with maximum levels of Cl- (32 kg ha(-1) yr(-1)) and Na+ (13 kg ha(-1) yr(-1)) occurring in year six. The relative uptake potential of Cl- and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.

  17. Nutrient cycle benchmarks for earth system land model

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  18. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  19. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    PubMed

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses

    PubMed Central

    Wu, Weifang; Deng, Qin; Shi, Pibiao; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2016-01-01

    Watermelon (Citrullus lanatus) is a globally important crop belonging to the family Cucurbitaceae. The grafting technique is commonly used to improve its tolerance to stress, as well as to enhance its nutrient uptake and utilization. It is believed that miRNA is most likely involved in its nutrient-starvation response as a graft-transportable signal. The quantitative real-time reverse transcriptase polymerase chain reaction is the preferred method for miRNA functional analysis, in which reliable reference genes for normalization are crucial to ensure the accuracy. The purpose of this study was to select appropriate reference genes in scion (watermelon) and rootstocks (squash and bottle gourd) of grafted watermelon plants under normal growth conditions and nutrient stresses (nitrogen and phosphorus starvation). Under nutrient starvation, geNorm identified miR167c and miR167f as two most stable genes in both watermelon leaves and squash roots. miR166b was recommended by both geNorm and NormFinder as the best reference in bottle gourd roots under nutrient limitation. Expression of a new Cucurbitaceae miRNA, miR85, was used to validate the reliability of candidate reference genes under nutrient starvation. Moreover, by comparing several target genes expression in qRT-PCR analysis with those in RNA-seq data, miR166b and miR167c were proved to be the most suitable reference genes to normalize miRNA expression under normal growth condition in scion and rootstock tissues, respectively. This study represents the first comprehensive survey of the stability of miRNA reference genes in Cucurbitaceae and provides valuable information for investigating more accurate miRNA expression involving grafted watermelon plants. PMID:27749935

  1. Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation

    Treesearch

    E. Medina; W. Fernandez; F. Barboza

    2015-01-01

    Element uptake from substrate and resorption capacity of nutrients before leaf shedding are frequently species-specific and difficult to determine in natural settings. We sampled populations of Rhizophora mangle (salt-excluding species) and Laguncularia racemosa (salt-secreting species) in a coastal lagoon in the upper section of the Maracaibo strait in western...

  2. Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils.

    PubMed

    Akhtar, Muhammad; Yaqub, Muhammad; Naeem, Asif; Ashraf, Muhammad; Hernandez, Vicente Espinosa

    2016-08-01

    Low phosphorus (P) efficiency from existing granular fertilisers necessitates searching for efficient alternatives to improve wheat productivity in calcareous soil. Multi-location trials have shown that phosphoric acid (PA) produced 16% higher wheat grain over commercial P fertilisers, i.e. diammonium phosphate (DAP) and triple superphosphate (TSP). Methods of P application significantly influenced grain yield and the efficiency of methods was observed in the order: PA placement below seed > PA, DAP or TSP fertigation > DAP or TSP broadcast. The sub-surface application of PA produced highest grain yields (mean of all rates), i.e. 4669, 4158 and 3910 kg ha(-1) in Bagh, Bhalwal and Shahpur soil series, respectively. Phosphoric acid at 66 kg P2 O5 ha(-1) was found more effective in increasing gain yield over that of control. Trend in grain P uptake was found similar to that observed for grain yield. Maximum P uptake by grain was recorded at the highest P rate and the lowest at zero P. The significant increase in P uptake with P rates was generally related to the increase in yield rather than its concentration in grain. Phosphorus agronomic efficiency (PAE) and phosphorus recovery efficiency (PRE) were found higher at lower P rate (44 kg P2 O5 ha(-1) ) and decreased with P application. However, PA applied by the either method resulted in higher PAE and PRE compared to DAP and TSP. Phosphoric acid is suggested as an efficient alternative to commercial granular P fertilisers for wheat production in alkaline calcareous soils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Identifying nutrient reference sites in nutrient-enriched regions-Using algal, invertebrate, and fish-community measures to identify stressor-breakpoint thresholds in Indiana rivers and streams, 2005-9

    USGS Publications Warehouse

    Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.

    2013-01-01

    found similar thresholds (TN of 0.656 mg/L, mean TP of 0.118 mg/L, and periphyton CHLa of 27.2 mg/m2) for some stressor variables as determined by the breakpoint analysis. The TN and TP concentrations in this study showed a nutrient gradient that spanned three orders of magnitude. Sites were divided into Low, Medium, and High nutrient groups based on the 10th and 75th percentiles. The invertebrate and fish communities were similar along the nutrient gradient, using an analysis of similarity, demonstrating there was not a species trophic gradient. Within all nutrient groups, invertebrate and fish communities were dominated by nutrient tolerant taxa (algivores, herbivores, and omnivores) that included invertebrates, such as Cheumatopsyche sp., Physella sp., and fish such as Stonerollers (Campostoma spp.) and Bluntnose Minnow (Pimephales notatus). To determine if low nutrient concentrations at some sites were caused by algal uptake and not oligotrophic conditions, sites with low nutrient concentrations (less than 10th percentile for TN or TP) were examined based on the Low (less than or equal to the 10th percentile) and High (greater than the 75th percentile) periphyton CHLa concentrations. Within low nutrient sites, the invertebrate and fish communities were statistically different between Low and High periphyton CHLa categories. The majority of variance between the Low and High periphyton CHLa categories was caused by Cheumatopsyche sp. (caddisfly), Physella sp. (pulmonate snail), and Caenis latipennis (a mayfly) in the invertebrate community; and caused by Stonerollers, Western Blacknose Dace (Rhinichthys atratulus meleagris), and Creek Chub (Semotilus atromaculatus) in the fish community. The dominance of tolerant herbivore and omnivore taxa in the High periphyton CHLa group indicates that low nutrient concentrations are a result of nutrient uptake and increased algal growth. This study highlights the importance of assessing multiple lines of evidence when attempting

  4. Ready-to-eat cereals improve nutrient, milk and fruit intake at breakfast in European adolescents.

    PubMed

    Michels, Nathalie; De Henauw, Stefaan; Beghin, Laurent; Cuenca-García, Magdalena; Gonzalez-Gross, Marcela; Hallstrom, Lena; Kafatos, Anthony; Kersting, Mathilde; Manios, Yannis; Marcos, Ascensión; Molnar, Denes; Roccaldo, Romana; Santaliestra-Pasías, Alba M; Sjostrom, Michael; Reye, Béatrice; Thielecke, Frank; Widhalm, Kurt; Claessens, Mandy

    2016-03-01

    Breakfast consumption has been recommended as part of a healthy diet. Recently, ready-to-eat cereals (RTEC) became more popular as a breakfast item. Our aim was to analyse the dietary characteristics of an RTEC breakfast in European adolescents and to compare them with other breakfast options. From the European multi-centre HELENA study, two 24-h dietary recalls of 3137 adolescents were available. Food items (RTEC or bread, milk/yoghurt, fruit) and macro- and micronutrient intakes at breakfast were calculated. Cross-sectional regression analyses were adjusted for gender, age, socio-economic status and city. Compared to bread breakfasts (39 %) and all other breakfasts (41.5 %), RTEC breakfast (19.5 %) was associated with improved nutrient intake (less fat and less sucrose; more fibre, protein and some micronutrients like vitamin B, calcium, magnesium and phosphorus) at the breakfast occasion. Exceptions were more simple sugars in RTEC breakfast consumers: more lactose and galactose due to increased milk consumption, but also higher glucose and fructose than bread consumers. RTEC consumers had a significantly higher frequency (92.5 vs. 50.4 and 60.2 %) and quantity of milk/yoghurt intake and a slightly higher frequency of fruit intake (13.4 vs. 10.9 and 8.0 %) at breakfast. Among European adolescents, RTEC consumers showed a more favourable nutrient intake than consumers of bread or other breakfasts, except for simple sugars. Therefore, RTEC may be regarded as a good breakfast option as part of a varied and balanced diet. Nevertheless, more research is warranted concerning the role of different RTEC types in nutrient intake, especially for simple sugars.

  5. Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.

    2015-08-06

    We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less

  6. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    NASA Astrophysics Data System (ADS)

    Inselsbacher, Erich; Schmidt, Susanne; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Brackin, Richard

    2016-04-01

    Nitrogen (N) uptake by agricultural crops is a key constituent of the global N cycle, as N captured by roots has a markedly different fate than N remaining in the soil. Global evidence indicates that only approximately 50% of applied N fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. This inefficiency is of global concern, and requires innovation based on improved understanding of which N forms are available for and ultimately taken up by crops. However, current soil analysis methods based on destructive soil sampling provide little insight into delivery and acquisition of N forms by roots. Here, we present the results of a study in sugarcane fields receiving different fertilizer regimes comparing soil N supply rates with potential root N uptake rates. We applied microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure flux rates of inorganic N and amino acid N, and analyzed N uptake capacities of sugarcane roots using 15N labelled tracers. We found that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and organic N may contribute more to crop N supply than is currently assumed. Overall, we show a new approach for examining in situ N relations in soil in context of crop N physiology, which provides a new avenue towards tailoring N fertilizer supply to match the specific uptake abilities and N demand of crops over the growth

  7. Effects of moisture and nitrogen stress on gas exchange and nutrient resorption in Quercus rubra seedlings

    Treesearch

    K. Francis Salifu; Douglass F. Jacobs

    2008-01-01

    The effects of simulated soil fertility at three levels (poor, medium, and rich soils) and moisture stress at two levels (well watered versus moisture stressed) on gas exchange and foliar nutrient resorption in 1+0 bareroot northern red oak (Quercus rubra) seedlings were evaluated. Current nitrogen (N) uptake was labeled with the stable isotope

  8. Factors influencing the uptake of a mass media intervention to improve child feeding in Bangladesh.

    PubMed

    Kim, Sunny S; Roopnaraine, Terry; Nguyen, Phuong H; Saha, Kuntal K; Bhuiyan, Mahbubul I; Menon, Purnima

    2018-04-11

    Mass media are increasingly used to deliver health messages to promote social and behaviour change, but there has been little evidence of mass media use for improving a set of child feeding practices, other than campaigns to promote breastfeeding. This study aimed to examine the factors influencing the uptake of infant and young child feeding messages promoted in TV spots that were launched and aired nationwide in Bangladesh. We conducted a mixed-methods study, using household surveys (n = 2,000) and semistructured interviews (n = 251) with mothers of children 0-23.9 months and other household members. Factors associated with TV spot viewing and comprehension were analysed using multivariable logistic regression models, and interview transcripts were analysed by systematic coding and iterative summaries. Exposure ranged from 36% to 62% across 6 TV spots, with comprehension ranging from 33% to 96% among those who viewed the spots. Factors associated with comprehension of TV spot messages included younger maternal age and receipt of home visits by frontline health workers. Three direct narrative spots showed correct message recall and strong believability, identification, and feasibility of practicing the recommended behaviours. Two spots that used a metaphorical and indirect narrative style were not well understood by respondents. Understanding the differences in the uptake factors may help to explain variability of impacts and ways to improve the design and implementation of mass media strategies. © 2018 The Authors. Maternal and Child Nutrition Published by John Wiley & Sons, Ltd.

  9. Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems.

    PubMed

    Mullen, R B; Schmidt, S K

    1993-05-01

    Phosphorus levels, phenology of roots and shoots, and development of vesicular arbuscular mycorrhizal (VAM) fungi were monitored for two years in natural populations of the perennial alpine herb, Ranunculus adoneus. The purpose of this study was to understand how phosphorus uptake relates to the phenology of R. adoneus and to ascertain whether arbusculus, fungal structures used for nutrient transfer, were present when maximum phosphorus accumulation was occurring. Arbuscules were only present for a few weeks during the growing season of R. adoneus and their presence corresponded with increased phosphorus accumulation in both the roots and shoots of R. adoneus. In addition, phosphorus accumulation and peaks in mycorrhizal development occurred well after plant reproduction and most plant growth had occurred. The late season accumulation of phosphorus by mycorrhizal roots of R. adoneus is stored for use during early season growth and flowering the following spring. In this way R. adoneus can flower before soils thaw and root or mycorrhizal nutrient uptake can occur.

  10. Nutrient enrichment and fish nutrient tolerance: Assessing biologically relevant nutrient criteria

    USGS Publications Warehouse

    Meador, Michael R.

    2013-01-01

    Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low-flow periods in 2003 and 2004 at stream sites along a nutrient-enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria.

  11. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease

    PubMed Central

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B.; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-01-01

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes. PMID:28498348

  12. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease.

    PubMed

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-05-12

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.

  13. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    PubMed

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  14. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  15. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    PubMed

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  17. [Mechanism of nutrient preservation and supply by soil and its regulation. IV. Fertility regulation and improvement of brown earth type vegetable garden soil and their essence].

    PubMed

    Chen, L; Zhou, L

    2000-08-01

    Pot experiment studies on the fertility regulation and improvement of fertile and infertile brown earth type vegetable garden soils and their functionary essence show that under conditions of taking different soil fertility improvement measures, the nutrient contents in fertile and infertile soils were not always higher than the controls, but the aggregation densities of soil microaggregates were increased, and the proportion of different microaggregates was more rational. There was no significant relationship between soil productivity and soil microaggregates proportion. It is proved that the essence of soil fertility improvement consists in the ultimate change of the preservation and supply capacities of soil nutrients, and the proportion of soil microaggregates could be an integrative index to evaluate the level of soil fertility and the efficiency of soil improvement.

  18. Evaluating Hyperspectral Imaging of Wetland Vegetation as a Tool for Detecting Estuarine Nutrient Enrichment

    DTIC Science & Technology

    2008-05-01

    the vegetation’s uptake of water column nutrients produces a spectral response; and 3) the spectral and spatial resolutions ...analysis. This allowed us to evaluate these assumptions at the landscape level, by using the high spectral and spatial resolution of the hyperspectral... spatial resolution (2.5 m pixels) HyMap hyperspectral imagery of the entire wetland. After using a hand-held spectrometer to characterize

  19. Enablers and barriers to large-scale uptake of improved solid fuel stoves: a systematic review.

    PubMed

    Rehfuess, Eva A; Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G

    2014-02-01

    Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as "factors" relating to one of seven domains-fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms-and also recorded issues that impacted equity. We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness.

  20. NUTRIENT UPTAKE AND COMMUNITY METABOLISM IN STREAMS DRAINING HARVESTED AND OLD GROWTH WATERSHEDS: A PRELIMINARY ASSESSMENT

    EPA Science Inventory

    The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient ad community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascad...

  1. Gallium-67 uptake in meningeal sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, J.G.; Hicks, B.H.; Maisey, M.N.

    1986-07-01

    A case of sarcoidosis limited to the central nervous system is described in which the diagnosis was suggested by high Ga-67 uptake in the cranial and spinal meninges. The diagnosis was confirmed by meningeal biopsy. Treatment with oral corticosteroids resulted in clinical improvement and marked reduction in Ga-67 uptake in the meninges. This is the first reported case of the central nervous system sarcoid diagnosed by Ga-67 imaging.

  2. Does journal club membership improve research evidence uptake in different allied health disciplines: a pre-post study.

    PubMed

    Lizarondo, Lucylynn M; Grimmer-Somers, Karen; Kumar, Saravana; Crockett, Alan

    2012-10-29

    Although allied health is considered to be one 'unit' of healthcare providers, it comprises a range of disciplines which have different training and ways of thinking, and different tasks and methods of patient care. Very few empirical studies on evidence-based practice (EBP) have directly compared allied health professionals. The objective of this study was to examine the impact of a structured model of journal club (JC), known as iCAHE (International Centre for Allied Health Evidence) JC, on the EBP knowledge, skills and behaviour of the different allied health disciplines. A pilot, pre-post study design using maximum variation sampling was undertaken. Recruitment was conducted in groups and practitioners such as physiotherapists, occupational therapists, speech pathologists, social workers, psychologists, nutritionists/dieticians and podiatrists were invited to participate. All participating groups received the iCAHE JC for six months. Quantitative data using the Adapted Fresno Test (McCluskey & Bishop) and Evidence-based Practice Questionnaire (Upton & Upton) were collected prior to the implementation of the JC, with follow-up measurements six months later. Mean percentage change and confidence intervals were calculated to compare baseline and post JC scores for all outcome measures. The results of this study demonstrate variability in EBP outcomes across disciplines after receiving the iCAHE JC. Only physiotherapists showed statistically significant improvements in all outcomes; speech pathologists and occupational therapists demonstrated a statistically significant increase in knowledge but not for attitude and evidence uptake; social workers and dieticians/nutritionists showed statistically significant positive changes in their knowledge, and evidence uptake but not for attitude. There is evidence to suggest that a JC such as the iCAHE model is an effective method for improving the EBP knowledge and skills of allied health practitioners. It may be used as a

  3. Does journal club membership improve research evidence uptake in different allied health disciplines: a pre-post study

    PubMed Central

    2012-01-01

    Background Although allied health is considered to be one 'unit' of healthcare providers, it comprises a range of disciplines which have different training and ways of thinking, and different tasks and methods of patient care. Very few empirical studies on evidence-based practice (EBP) have directly compared allied health professionals. The objective of this study was to examine the impact of a structured model of journal club (JC), known as iCAHE (International Centre for Allied Health Evidence) JC, on the EBP knowledge, skills and behaviour of the different allied health disciplines. Methods A pilot, pre-post study design using maximum variation sampling was undertaken. Recruitment was conducted in groups and practitioners such as physiotherapists, occupational therapists, speech pathologists, social workers, psychologists, nutritionists/dieticians and podiatrists were invited to participate. All participating groups received the iCAHE JC for six months. Quantitative data using the Adapted Fresno Test (McCluskey & Bishop) and Evidence-based Practice Questionnaire (Upton & Upton) were collected prior to the implementation of the JC, with follow-up measurements six months later. Mean percentage change and confidence intervals were calculated to compare baseline and post JC scores for all outcome measures. Results The results of this study demonstrate variability in EBP outcomes across disciplines after receiving the iCAHE JC. Only physiotherapists showed statistically significant improvements in all outcomes; speech pathologists and occupational therapists demonstrated a statistically significant increase in knowledge but not for attitude and evidence uptake; social workers and dieticians/nutritionists showed statistically significant positive changes in their knowledge, and evidence uptake but not for attitude. Conclusions There is evidence to suggest that a JC such as the iCAHE model is an effective method for improving the EBP knowledge and skills of allied

  4. IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS

    EPA Science Inventory

    The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...

  5. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  6. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    NASA Astrophysics Data System (ADS)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  7. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  8. LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE ...

    EPA Pesticide Factsheets

    This report estimates the natural background and ambient concentrations of primary producer abundance indicators in California wadeable streams, identifies thresholds of adverse effects of nutrient-stimulated primary producer abundance on benthic macroinvertebrate and algal community structure in CA wadeable streams, and evaluates existing nutrient-algal response models for CA wadeable streams (Tetra Tech 2006), with recommendations for improvements. This information will be included in an assessment of the science forming the basis of recommendations for stream nutrient criteria for the state of California. The objectives of the project are three-fold: 1. Estimate the natural background and ambient concentrations of nutrients and candidate indicators of primary producer abundance in California wadeable streams; 2. Explore relationships and identify thresholds of adverse effects of nutrient concentrations and primary producer abundance on indicators of aquatic life use in California wadeable streams; and 3. Evaluate the Benthic Biomass Spreadsheet Tool (BBST) for California wadeable streams using existing data sets, and recommend avenues for refinement. The intended outcome of this study is NOT final regulatory endpoints for nutrient and response indicators for California wadeable streams.

  9. A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling

    Treesearch

    Jacques R. Jorgensen; Carol G. Wells

    1986-01-01

    The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...

  10. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  11. Response of Sesbania grandiflora to Inoculation of Soil with Vesicular-Arbuscular Mycorrhizal Fungi.

    PubMed

    Habte, M; Aziz, T

    1985-09-01

    A greenhouse experiment was conducted to determine the influence of two tropical isolates of Glomus fasciculatum and Glomus mosseae on the nutrient uptake and growth of Sesbania grandiflora. Inoculation of sterile soil with the fungi significantly improved growth and nutrient uptake by S. grandiflora, but the response of the legume was markedly better when the soil was inoculated with G. fasciculatum than when it was inoculated with G. mosseae. Nutrient uptake and growth of S. grandiflora in nonsterile soil was also significantly stimulated by inoculation, but the legume did not respond differently to the two endophytes under this condition.

  12. MODEL SIMULATION STUDIES OF SCALE-DEPENDENT GAIN IN STREAM NUTRIENT ASSIMILATIVE CAPACITY RESULTING FROM IMPROVING NUTRIENT RETENTION METRICS

    EPA Science Inventory

    Considering the difficulty in measuring restoration success for nonpoint source pollutants, nutrient assimilative capacity (NAS) offers an attractive systems-based metric. Here NAS was defined using an impulse-response model of nitrate fate and transport. Eleven parameters were e...

  13. Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols.

    PubMed

    Qiao, Yunfa; Miao, Shujie; Han, Xiaozeng; Yue, Shuping; Tang, Caixian

    2017-12-15

    Rhizodeposited carbon (C) is an important source of soil organic C, and plays an important role in the C cycle in the soil-plant-atmosphere continuum. However, interactive effects of plant species and soil nutrient availability on C rhizodeposition remain unclear. This experiment examined the effect of soil nutrient availability on C rhizodeposition of C4 maize and C3 soybean with contrasting photosynthetic capacity. The soils (Mollisols) were collected from three treatments of no fertilizer (Control), inorganic fertilizer only (NPK), and NPK plus organic manure (NPKM) in a 24-year fertilization field trial. The plants were labelled with 13 C at the vegetative and reproductive stages. The 13 C abundance of shoots, roots and soil were quantified at 0, 7days after 13 C labelling, and at maturity. Increasing soil nutrient availability enhanced the C rhizodeposition due to the greater C fixation in shoots and distribution to roots and soil. The higher amount of averaged below-ground C allocated to soil resulted in greater specific rhizodeposited C from soybean than maize. Additional organic amendment further enhanced them. As a result, higher soil nutrient availability increased total soil organic C under both maize and soybean systems though there was no significant difference between the two crop systems. All these suggested that higher soil nutrient availability favors C rhizodeposition. Mean 80, 260 and 300kgfixedCha -1 were estimated to transfer into soil in the Control, NPK and NPKM treatments, respectively, during one growing season. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  15. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  16. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    PubMed

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  17. The Effect of Inflammatory Status on Butyrate and Folate Uptake by Tumoral (Caco-2) and Non-Tumoral (IEC-6) Intestinal Epithelial Cells

    PubMed Central

    Couto, Mafalda R.; Gonçalves, Pedro; Catarino, Telmo A.; Martel, Fátima

    2017-01-01

    Objective Colorectal cancer (CRC) is the second leading cause of cancer death in occidental countries. Chronic inflammatory bowel disease (crohn’s disease and ulcerative colitis) is associated with an increased risk for CRC development. The aim of this work was to investigate the relationship between inflammatory status and absorption of nutrients with a role in CRC pathogenesis. Materials and Methods In this experimental study, we evaluated the in vitro effect of tumour necrosis factor-alpha (TNF-α), interferon-γ (IF-γ), and acetylsalicylic acid on 14C-butyrate (14C- BT), 3H-folic acid (3H-FA) uptake, and on proliferation, viability and differentiation of Caco-2 and IEC-6 cells in culture. Results The proinflammatory cytokines TNF-α and INF-γ were found to decrease uptake of a low concentration of 14C-BT (10 µM) by Caco-2 (tumoral) and IEC-6 (normal) intestinal epithelial cell lines. However, the effect of TNF-α and INF-γ in IEC-6 cells is most probably related to a cytotoxic and antiproliferative impact. In contrast, INF-γ increases uptake of a high concentration (10 mM) of 14C-BT in Caco-2 cells. The anticarcinogenic effect of BT (10 mM) in these cells is not affected by the presence of this cytokine. On the other hand, acetylsalicylic acid stimulates 14C-BT uptake by Caco-2 cells and potentiates its antiproliferative effect. Finally, both TNF-α and INF-γ cause a significant decrease in 3H-FA uptake by Caco-2 cells. Conclusion The inflammatory status has an impact upon cellular uptake of BT and FA, two nutrients with a role in CRC pathogenesis. Moreover, the anti-inflammatory acetylsalicylic acid potentiates the anticarcinogenic effect of BT in Caco-2 cells by increasing its cellular uptake. PMID:28580313

  18. Nutrient Database improvement project: Separable components and proximate composition of retail cuts from the beef chuck

    USDA-ARS?s Scientific Manuscript database

    This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...

  19. Advances in the understanding of nutrient dynamics and management in UK agriculture.

    PubMed

    Dungait, Jennifer A J; Cardenas, Laura M; Blackwell, Martin S A; Wu, Lianhai; Withers, Paul J A; Chadwick, David R; Bol, Roland; Murray, Philip J; Macdonald, Andrew J; Whitmore, Andrew P; Goulding, Keith W T

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hardening fertilization and nutrient loading of conifer seedlings

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Continuing to fertilize bareroot and container seedlings during the hardening process (from cessation of height growth until lifting) can improve seedling viability. The process of fertilizing during hardening has many names, but in the last decade a new term, nutrient loading, has come into use. The process of nutrient loading seedlings leads to luxury consumption...

  1. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.

    PubMed

    Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E

    2016-05-01

    Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.

  2. Lack of Zn inhibition of Cd accumulation by rice (Oryza sativa L.) supports non-Zn transporter uptake of Cd

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) grown on Cd contaminated soils has been linked to health problems in subsistence rice farmers in Japan and China. For other crops, normal geogenic Zn inhibits the increased uptake of Cd on contaminated soils. A study was conducted using a multi-chelator buffered nutrient sol...

  3. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    PubMed

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Effect of residue combinations on plant uptake of nutrients and potentially toxic elements.

    PubMed

    Brännvall, Evelina; Nilsson, Malin; Sjöblom, Rolf; Skoglund, Nils; Kumpiene, Jurate

    2014-01-01

    The aim of the plant pot experiment was to evaluate potential environmental impacts of combined industrial residues to be used as soil fertilisers by analysing i) element availability in fly ash and biosolids mixed with soil both individual and in combination, ii) changes in element phytoavailability in soil fertilised with these materials and iii) impact of the fertilisers on plant growth and element uptake. Plant pot experiments were carried out, using soil to which fresh residue mixtures had been added. The results showed that element availability did not correlate with plant growth in the fertilised soil with. The largest concentrations of K (3534 mg/l), Mg (184 mg/l), P (1.8 mg/l), S (760 mg/l), Cu (0.39 mg/l) and Zn (0.58 mg/l) in soil pore water were found in the soil mixture with biosolids and MSWI fly ashes; however plants did not grow at all in mixtures containing the latter, most likely due to the high concentration of chlorides (82 g/kg in the leachate) in this ash. It is known that high salinity of soil can reduce germination by e.g. limiting water absorption by the seeds. The concentrations of As, Cd and Pb in grown plants were negligible in most of the soils and were below the instrument detection limit values. The proportions of biofuel fly ash and biosolids can be adjusted in order to balance the amount and availability of macronutrients, while the possible increase of potentially toxic elements in biomass is negligible seeing as the plant uptake of such elements was low. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Role of Strigolactones in Nutrient-Stress Responses in Plants

    PubMed Central

    Marzec, Marek; Muszynska, Aleksandra; Gruszka, Damian

    2013-01-01

    Strigolactones (SLs) are a new group of plant hormones, which have been intensively investigated during the last few years. The wide spectrum of SLs actions, including the regulation of shoot/root architecture, and the stimulation of the interactions between roots and fungi or bacteria, as well as the stimulation of germination of parasitic plants, indicates that this group of hormones may play an important role in the mechanisms that control soil exploration, and the root-mediated uptake of nutrients. Current studies have shown that SLs might be factors that have an influence on the plant response to a deficiency of macronutrients. Experimental data from the last four years have confirmed that the biosynthesis and exudation of SLs are increased under phosphorus and nitrogen deficiency. All these data suggest that SLs may regulate the complex response to nutrient stress, which include not only the modification of the plant developmental process, but also the cooperation with other organisms in order to minimize the effects of threats. In this paper the results of studies that indicate that SLs play an important role in the response to nutrient stress are reviewed and the consequences of the higher biosynthesis and exudation of SLs in response to phosphorus and nitrogen deficiency are discussed. PMID:23629665

  6. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    PubMed

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  7. Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River

    USGS Publications Warehouse

    Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.

    2005-01-01

    The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Final technical report DOE award DE-SC0007206 Improving CESM Efficiency to Study Variable C:N:P Stoichiometry in the Oceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primeau, Francois William

    2016-02-11

    This report lists the accomplishments of the project, which includes: (1) analysis of inorganic nutrient concentration data as well as suspended particulate organic matter data in the ocean to demonstrate that the carbon to nitrogen to phosphorus ratios (C:N:P) of biological uptake and export vary on large spatial scales, (2) the development of a new computationally efficient method for simulating biogeochemical tracers in earth system models, (3) the application of the method to help calibrate an improved representation of dissolved organic matter in the ocean that includes variable C:N:P stoichiometry. This research is important because biological uptake of carbon andmore » nutrients in the upper ocean and export by sinking particles and downward mixing of dissolved organic matter helps maintain a vertical gradient in the carbon dioxide concentration in the ocean. This gradient is key to understanding the partitioning of CO2 between the ocean and the atmosphere. The final report lists seven peer reviewed scientific publications, one Ph.D. thesis, one technical report and two papers in preparation.« less

  9. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability.

    PubMed

    Wang, Qian; Zhao, Yingyuan; Guan, Lei; Zhang, Yaping; Dang, Qifeng; Dong, Ping; Li, Jing; Liang, Xingguo

    2017-07-15

    DNA/chitosan co-assemblies were initially used as nanocarriers for efficient astaxanthin encapsulation and delivery. The obtained astaxanthin-loaded DNA/chitosan (ADC) colloidal system was transparent and homogenous, with astaxanthin content up to 65μg/ml. Compared to free astaxanthin, ADC nanoparticles with an astaxanthin concentration as low as 3.35nM still showed a more powerful cytoprotective effect on H 2 O 2 -induced oxidative cell damage, and improved cell viability from 49.9% to 61.9%. The ROS scavenging efficiency of ADC nanoparticles was as high as 54.3%, which was 2-fold higher than that of free astaxanthin. Besides this, ADC nanoparticles were easily engulfed by Caco-2 cells in a short time, indicating that the encapsulated astaxanthin could be absorbed through endocytosis by intestinal epithelial cells. The improved antioxidation capability and facilitated cellular uptake enabled the ADC nanoparticles to be good candidates for efficient delivery and absorption of astaxanthin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  11. Implementation of sediment dynamics in a global integrated assessment model for an improved simulation of nutrient retention and transfers in surface freshwaters

    NASA Astrophysics Data System (ADS)

    Vilmin, L.; Beusen, A.; Mogollón, J.; Bouwman, L.

    2017-12-01

    Sediment dynamics play a significant role in river biogeochemical functioning. They notably control the transfer of particle-bound nutrients, have a direct influence on light availability for primary production, and particle accumulation can affect oxic conditions of river beds. In the perspective of improving our current understanding of large scale nutrient fluxes in rivers, it is hence necessary to include these dynamics in global models. In this scope, we implement particle accumulation and remobilization in a coupled global hydrology-nutrient model (IMAGE-GNM), at a spatial resolution of 0.5°. The transfer of soil loss from natural and agricultural lands is simulated mechanistically, from headwater streams to estuaries. First tests of the model are performed in the Mississippi river basin. At a yearly time step for the period 1978-2000, the average difference between simulated and measured suspended sediment concentrations at the most downstream monitoring station is 25%. Sediment retention is estimated in the different Strahler stream orders, in lakes and reservoirs. We discuss: 1) the distribution of sediment loads to small streams, which has a significant effect on transfers through watersheds and larger scale river fluxes and 2) the potential effect of damming on the fate of particle-bound nutrients. These new developments are crucial for future assessments of large scale nutrient and carbon fluxes in river systems.

  12. Sewage-derived nutrient dynamics in highly urbanized coastal rivers, western Japan

    NASA Astrophysics Data System (ADS)

    Onodera, S. I.; Saito, M.; Jin, G.; Taniguchi, M.

    2016-12-01

    Water pollution by domestic sewage is one of the critical environmental problems in the early stage of urbanization with significant growth of population. In case of Osaka metropolitan area in Japan, the pollution was significant until 1970s, while it has been improved by the development of sewage treatment systems. However, removal of nitrogen needs the advanced process therefore relatively large part of dissolved inorganic nitrogen (DIN) is usually discharged by treated sewage effluent. Besides, increase of sewage-derived pollutant loads through the combined sewage systems during rainfall events is recognized as a new problem in recent years. However, the impacts of sewage-derived loads on the water environment of river and coastal area have not been fully evaluated in previous studies. In the present research, we aimed to examine the dynamics of sewage-derived nutrients in highly urbanized coastal rivers. Study area is located on the coastal area of Osaka bay in Seto Inland Sea, western Japan. Treated sewage effluent is discharged from three sewage treatment plants (KH, SU and SA) to a river and channels. Water and sediment samples were collected and electric conductivity (EC), chlorophyll-a (Chl.-a) and dissolved oxygen concentration (DO) were measured from the discharging points to few kilometers offshore at 100-300 m intervals. Nutrients (nitrogen, phosphorus and silica), nitrogen and carbon contents and stable isotope ratios (δ15N and δ13C) of particulate organic matter (POM) and sediment, nitrogen and oxygen stable isotope ratios (δ15N and δ18O) in nitrate (NO3-) were measured. Nitrate-nitrogen (NO3-N) concentration were significantly high near the discharging point then it decreased to offshore suggesting that impact zone of sewage effluent is about 1 km from the discharging point. Significant NO3-N uptake by phytoplankton as well as dilution process were suggested in the area. However, the impact zone expanded more than twofold during the rainfall

  13. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  14. Improving the Quality of Postabortion Care Services in Togo Increased Uptake of Contraception

    PubMed Central

    Mugore, Stembile; Kassouta, Ntapi Tchiguiri K; Sebikali, Boniface; Lundstrom, Laurel; Saad, Abdulmumin

    2016-01-01

    ABSTRACT High-quality postabortion care (PAC) services that include family planning counseling and a full range of contraceptives at point of treatment for abortion complications have great potential to break the cycle of repeat unintended pregnancies and demand for abortions. We describe the first application of a systematic approach to quality improvement of PAC services in a West African country. This approach—IntraHealth International’s Optimizing Performance and Quality (OPQ) approach—was applied at 5 health care facilities in Togo starting in November 2014. A baseline assessment identified the following needs: reorganizing services to ensure that contraceptives are provided at point of treatment for abortion complications, before PAC clients are discharged; improving provider competencies in family planning services, including in providing long-acting reversible contraceptive implants and intrauterine devices; ensuring that contraceptive methods are available to all PAC clients free of charge; standardizing PAC registers and enhancing data collection and reporting systems; enhancing internal supervision systems at facilities and teamwork among PAC providers; and engaging PAC providers in community talks. Solutions devised and applied at the facilities during OPQ resulted in significant increases in contraceptive counseling and uptake among PAC clients: During the 5-month baseline period, 31% of PAC clients were counseled, while during the 13-month intervention period, 91% were counseled. Of all PAC clients counseled during the baseline period, 37% accepted a contraceptive, compared with 60% of those counseled during the intervention period. Oral contraceptive pills remained the most popular method during both periods, yet uptake of implants increased significantly during the intervention period—from 4% to 27% of those accepting contraceptives. This result demonstrates that the solutions applied maintained method choice while expanding access to

  15. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  16. BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data

    NASA Technical Reports Server (NTRS)

    Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus.

    PubMed

    Lutzu, Giovanni Antonio; Zhang, Wei; Liu, Tianzhong

    2016-01-01

    This work investigates the potential use of a brewery wastewater as a medium for the cultivation of the oleaginous species Scenedesmus dimorphus with the double aim of removing nutrients and to produce biomass as feedstock for biodiesel. For this purpose, effects of nitrogen (61.8-247 mg L(-1)), phosphorous (1.4-5.5 mg L(-1)), and iron (1.5-6 mg L(-1)) concentrations on growth, nutrients uptake, lipid accumulation, and fatty acids profile of this microalga were investigated. Results showed that brewery wastewater can be used as a culture medium even if nitrogen and phosphorous concentrations should have been modified to improve both biomass (6.82 g L(-1)) and lipid accumulation (44.26%). The analysis revealed a C16-C18 composition of 93.47% fatty acids methyl esters with a relative high portion of unsaturated ones (67.24%). High removal efficiency (>99%) for total nitrogen and total phosphorous and a reduction of up to 65% in chemical oxygen demand were achieved, respectively. The final microalgae biomass, considering its high lipid content as well as its compliance with the standards for the quality of biodiesel, and considering also the high removal efficiencies obtained for macronutrients and organic carbon, makes the brewery wastewater a viable option as a priceless medium for the cultivation of microalgae.

  18. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    PubMed

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P < 0.001) in the absence of P. In the arsenate treatments, a Si/As ratio of 100:1 significantly decreased As(V) uptake and As(III) efflux compared with the control (Si/As at 0:1), accounting for decreases of 27.4% and 15.1% for -P treatment and 47.8% and 61.1% for + P treatment, respectively. As(III) is the predominant species of arsenic in rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    PubMed

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Does counselling improve uptake of long-term and permanent contraceptive methods in a high HIV-prevalence setting?

    PubMed

    Siveregi, Amon; Dudley, Lilian; Makumucha, Courage; Dlamini, Phatisizwe; Moyo, Sihle; Bhembe, Sibongiseni

    2015-11-06

    Studies have shown a reduced uptake of contraceptive methods in HIV-positive women of childbearing age, mainly because of unmet needs that may be a result of poor promotion of available methods of contraception, especially long-term and permanent methods (LTPM). To compare the uptake of contraceptive methods, and particularly LTPM, by HIV-positive and HIV negative post-partum mothers, and to assess the effects of counselling on contraceptive choices. Three government district hospitals in Swaziland. Interviews were conducted using a structured questionnaire, before and after counselling HIV negativeand HIV-positive post-partum women in LTPM use, unintended pregnancy rates, future fertility and reasons for contraceptive choices. A total of 711 women, of whom half were HIV-positive, participated in the study. Most (72.3% HIV-negative and 84% HIV-positive) were on modern methods of contraception, with the majority using 2-monthly and 3-monthly injectables. Intended use of any contraceptive increased to 99% after counselling. LTPM use was 7.0% in HIV-negative mothers and 15.3% in HIV-positive mothers before counselling, compared with 41.3% and 42.4% in HIV-negative and HIV-positive mothers, respectively, after counselling. Pregnancy intentions and counselling on future fertility were significantly associated with current use of contraception, whilst current LTPM use and level of education were significantly associated with LTPM post-counselling. Counselling on all methods including LTPM reduced unmet needs in contraception in HIV positive and HIV-negative mothers and could improve contraceptive uptake and reduce unintended pregnancies. Health workers do not always remember to include LTPM when they counsel clients, which could result in a low uptake of these methods. Further experimental studies should be conducted to validate these results.

  1. Does counselling improve uptake of long-term and permanent contraceptive methods in a high HIV-prevalence setting?

    PubMed Central

    Dudley, Lilian; Makumucha, Courage; Dlamini, Phatisizwe; Moyo, Sihle; Bhembe, Sibongiseni

    2015-01-01

    Abstract Background Studies have shown a reduced uptake of contraceptive methods in HIV-positive women of childbearing age, mainly because of unmet needs that may be a result of poor promotion of available methods of contraception, especially long-term and permanent methods (LTPM). Aim To compare the uptake of contraceptive methods, and particularly LTPM, by HIV-positive and HIV-negative post-partum mothers, and to assess the effects of counselling on contraceptive choices. Setting Three government district hospitals in Swaziland. Methods Interviews were conducted using a structured questionnaire, before and after counselling HIV-negative and HIV-positive post-partum women in LTPM use, unintended pregnancy rates, future fertility and reasons for contraceptive choices. Results A total of 711 women, of whom half were HIV-positive, participated in the study. Most (72.3% HIV-negative and 84% HIV-positive) were on modern methods of contraception, with the majority using 2-monthly and 3-monthly injectables. Intended use of any contraceptive increased to 99% after counselling. LTPM use was 7.0% in HIV-negative mothers and 15.3% in HIV-positive mothers before counselling, compared with 41.3% and 42.4% in HIV-negative and HIV-positive mothers, respectively, after counselling. Pregnancy intentions and counselling on future fertility were significantly associated with current use of contraception, whilst current LTPM use and level of education were significantly associated with LTPM post-counselling. Conclusion Counselling on all methods including LTPM reduced unmet needs in contraception in HIV-positive and HIV-negative mothers and could improve contraceptive uptake and reduce unintended pregnancies. Health workers do not always remember to include LTPM when they counsel clients, which could result in a low uptake of these methods. Further experimental studies should be conducted to validate these results. PMID:26842525

  2. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    NASA Astrophysics Data System (ADS)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  3. Uptake of pharmaceuticals by sorbent-amended struvite fertilisers recovered from human urine and their bioaccumulation in tomato fruit.

    PubMed

    de Boer, Marissa A; Hammerton, Michelle; Slootweg, J Chris

    2018-04-15

    Struvite precipitation is a well-documented method for recovering up to 98% of phosphorus from urine, which is one of the main nutrients in fertilizers besides nitrogen and potassium. Shortcomings of this process, however, are the low nitrogen recovery ratio and the possible uptake of pharmaceuticals from urine. In this work, the NH 4 + adsorbent materials biochar and zeolite are coupled with struvite precipitation to increase the N-recovery of struvite from 5.7% to 9.8%. Since nitrogen is one of the main nutrients in fertilisers, this increase is of significance for its potential commercial use. In addition, urine is spiked with pharmaceuticals to measure the consequential uptake in struvite-based fertilisers and crops afterwards. Five fertilisers are prepared by nutrient recovery from spiked urine using: (1) struvite crystallisation, (2) struvite crystallisation combined with N adsorption on zeolite, (3) struvite crystallisation combined with N adsorption on biochar, (4) N adsorption on zeolite without struvite crystallisation, and (5) N adsorption on biochar without struvite crystallisation. The fertiliser with the highest purity product and the lowest uptake of pharmaceuticals was struvite combined with zeolite. Next, the contaminated struvite-sorbent fertilisers are tested in a crop trial in which the bioaccumulation of pharmaceuticals in edible plant tissue (tomatoes) is measured. This bioaccumulation in tomato fruit biomass from each of the spiked fertilisers in the crop trial was found to be lower than 0.0003% in all cases, far below the acceptable daily intake (ADI) levels (750 kg of dry tomatoes should be consumed per day to reach the ADI limit). Consequently, the subsequent risk to human health from tomato fruit grown using urine derived struvite-sorbent fertilisers is found to be insignificant. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Integrating Prevention of Mother-to-Child HIV Transmission Programs to Improve Uptake: A Systematic Review

    PubMed Central

    Tudor Car, Lorainne; Van Velthoven, Michelle H. M. M. T.; Brusamento, Serena; Elmoniry, Hoda; Car, Josip; Majeed, Azeem; Tugwell, Peter; Welch, Vivian; Marusic, Ana; Atun, Rifat

    2012-01-01

    Background We performed a systematic review to assess the effect of integrated perinatal prevention of mother-to-child transmission of HIV interventions compared to non- or partially integrated services on the uptake in low- and middle-income countries. Methods We searched for experimental, quasi-experimental and controlled observational studies in any language from 21 databases and grey literature sources. Results Out of 28 654 citations retrieved, five studies met our inclusion criteria. A cluster randomized controlled trial reported higher probability of nevirapine uptake at the labor wards implementing HIV testing and structured nevirapine adherence assessment (RRR 1.37, bootstrapped 95% CI, 1.04–1.77). A stepped wedge design study showed marked improvement in antiretroviral therapy (ART) enrolment (44.4% versus 25.3%, p<0.001) and initiation (32.9% versus 14.4%, p<0.001) in integrated care, but the median gestational age of ART initiation (27.1 versus 27.7 weeks, p = 0.4), ART duration (10.8 versus 10.0 weeks, p = 0.3) or 90 days ART retention (87.8% versus 91.3%, p = 0.3) did not differ significantly. A cohort study reported no significant difference either in the ART coverage (55% versus 48% versus 47%, p = 0.29) or eight weeks of ART duration before the delivery (50% versus 42% versus 52%; p = 0.96) between integrated, proximal and distal partially integrated care. Two before and after studies assessed the impact of integration on HIV testing uptake in antenatal care. The first study reported that significantly more women received information on PMTCT (92% versus 77%, p<0.001), were tested (76% versus 62%, p<0.001) and learned their HIV status (66% versus 55%, p<0.001) after integration. The second study also reported significant increase in HIV testing uptake after integration (98.8% versus 52.6%, p<0.001). Conclusion Limited, non-generalizable evidence supports the effectiveness of integrated PMTCT programs. More research measuring

  5. Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil.

    PubMed

    Yang, Zhanbiao; Liu, Lixia; Lv, Yanfeng; Cheng, Zhang; Xu, Xiaoxun; Xian, Junren; Zhu, Xuemei; Yang, Yuanxiang

    2018-01-01

    The study investigated the effects of organic amendments: green tea amendment (GTA) and oil cake amendment (OCA) on Cd bioavailability, soil nutrients, and soil enzyme activity in Cd-contaminated soil. The amendments were added to the soil at the doses of 1, 3, and 5% and were incubated for 45 days. Then, pakchoi cabbage was planted to test the remediation effect of the above two organic amendments. The diethylenetriaminepentaacetic acid (DTPA)-extractable Cd in GTA and OCA treatments was reduced by 14.69-27.51 and 13.75-68.77%, respectively, compared to no amendment-applied treatment. The application of GTA and OCA notably decreased the proportion of exchangeable fraction of Cd, but increased the percentage of oxide and organic-bound fraction of Cd, thereby suppressing the uptake by pakchoi cabbage. Cd concentration of aboveground parts decreased by 8.21-18.05 and 7.77-35.89% in GTA and OCA treatments, respectively. Relative to the no amendment-applied treatment, both GTA and OCA had enhanced soil nutrients and enzyme activities largely. Redundancy analysis showed that organic matter, total P, available N, and DTPA-extractable Cd significantly affected the enzyme activities. Furthermore, the application of OCA at the dose of 5% was more effective in reducing bioavailable Cd, enhancing soil available nutrients and urease and catalase activities in contaminated soil. These results indicated that oil cake should be used to immobilize metal and improve fertility and quality of Cd-contaminated soil.

  6. An approach to evaluating drug-nutrient interactions.

    PubMed

    Santos, Cristina A; Boullata, Joseph I

    2005-12-01

    Although the significance of interactions between drugs is widely appreciated, little attention has been given to interactions between drugs and nutrients. Pharmacists are challenged to remember documented interactions involving available drugs, and they face the possibility that each newly approved therapeutic agent may be involved not only in unrecognized drug-drug interactions but in drug-nutrient interactions as well. A more consistent approach to evaluating drug-nutrient interactions is needed. The approach must be systematic in order to assess the influence of nutritional status, food, or specific nutrients on a drug's pharmacokinetics and pharmacodynamics, as well as the influence of a drug on overall nutritional status or on the status of a specific nutrient. We provide such a process, using several recently approved drugs as working examples. Risk factors and clinical relevance are described, with distinctions made between documented and potential interactions. Application of this process by the pharmacist to any drug will help increase their expertise. Furthermore, full consideration by pharmacists of all possible interactions of the drug regimens used in practice can allow for improved patient care.

  7. Nutrient uptake and community metabolism in streams draining harvested and old-growth watersheds: A preliminary assessment

    Treesearch

    Brian H. Hill; Frank H. McCormick

    2004-01-01

    The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient spiraling and community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascade Mountains of Oregon, and the redwood forests of northern California, in order to...

  8. Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland.

    PubMed

    Medlyn, Belinda E; De Kauwe, Martin G; Zaehle, Sönke; Walker, Anthony P; Duursma, Remko A; Luus, Kristina; Mishurov, Mikhail; Pak, Bernard; Smith, Benjamin; Wang, Ying-Ping; Yang, Xiaojuan; Crous, Kristine Y; Drake, John E; Gimeno, Teresa E; Macdonald, Catriona A; Norby, Richard J; Power, Sally A; Tjoelker, Mark G; Ellsworth, David S

    2016-08-01

    The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements. © 2016 John Wiley & Sons Ltd.

  9. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  10. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  11. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    PubMed Central

    2013-01-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity). PMID:23441028

  12. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal.

    PubMed

    Ramos Tercero, E A; Sforza, E; Morandini, M; Bertucco, A

    2014-02-01

    The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day(-1)), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO₂-air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH₄ and P-PO₄ removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.

  13. A shallow lake remediation regime with Phragmites australis: Incorporating nutrient removal and water evapotranspiration.

    PubMed

    Zhao, Ying; Yang, Zhifeng; Xia, Xinghui; Wang, Fei

    2012-11-01

    Shallow lake eutrophication has been an important issue of global water environment. Based on the simulation and field sampling experiments in Baiyangdian Lake, the largest shallow lake in North China, this study proposed a shallow lake remediation regime with Phragmites australis (reed) incorporating its opposite effects of nutrient removal and water evapotranspiration on water quality. The results of simulation experiments showed that both total nitrogen (TN) and phosphorus (TP) removal efficiencies increased with the increasing reed coverage. The TN removal efficiencies by reed aboveground uptake and rhizosphere denitrification were 11.2%, 13.8%, 22.6%, 28.4%, and 29.6% for the reed coverage of 20%, 40%, 60%, 80%, and 100%, respectively. Correspondingly, TP removal efficiencies by aboveground reed uptake were 1.4%, 2.5%, 4.4%, 7.4% and 7.9%, respectively. However, the water quality was best when the reed coverage was 60% (72 plants m(-2)). This was due to the fact that the concentration effect of reed evapotranspiration on nutrient increased with reed coverage. When the reed coverage was 100% (120 plants m(-2)), the evapotranspiration was approximately twice that without reeds. The field sampling results showed that the highest aboveground nutrient storages occurred in September. Thus, the proposed remediation regime for Baiyangdian Lake was that the reed coverage should be adjusted to 60%, and the aboveground biomass of reeds should be harvested in each September. With this remediation regime, TN and TP removal in Baiyangdian Lake were 117.8 and 4.0 g m(-2), respectively, and the corresponding removal efficiencies were estimated to be 49% and 8.5% after six years. This study suggests that reed is an effective plant for the remediation of shallow lake eutrophication, and its contrasting effects of nutrient removal and evapotranspiration on water quality should be considered for establishing the remediation regime in the future. Copyright © 2012 Elsevier

  14. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  15. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    NASA Astrophysics Data System (ADS)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  16. EFFECTS OF AMMONIUM AND NITRATE ON NUTRIENT UPTAKE AND ACTIVITY OF NITROGEN ASSIMILATING ENZYMES IN WESTERN HEMLOCK

    EPA Science Inventory

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...

  17. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: experimental data.

    PubMed

    Smith, Aaron Douglas; Lockman, Nur Ain; Holtzapple, Mark T

    2011-06-01

    Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon-nitrogen ratio.

  18. Nutrient Removal from Wastewater Using Microalgae: A Kinetic Evaluation and Lipid Analysis.

    PubMed

    Babu, Anjana; Katam, Keerthi; Gundupalli, Marttin Paulraj; Bhattacharyya, Debraj

    2018-06-01

      The objective of this study was to examine the performance of mixed microalgal bioreactors in treating three different types of wastewaters-kitchen wastewater (KWW), palm oil mill effluent (POME), and pharmaceutical wastewater (PWW) in semi-continuous mode and to analyze the lipid content in the harvested algal biomass. The reactors were monitored for total nitrogen and phosphate removal at eight solid retention times (SRTs): 2, 4, 6, 8, 10, 12, 14, and 16 days. The nutrient uptake kinetic parameters were quantified using linearized Michaelis-Menten and Monod models at steady-state conditions. The nutrient removal efficiency and lipid production were found to be higher in KWW when compared with the other wastewaters. Saturated fatty acids (C16:0, C18:0, and C18:1) accounted for more than 60% of the algal fatty acids for all the wastewaters. The lipid is, therefore, considered suitable for synthesizing biodiesel.

  19. The leaking soil nitrogen cycle and rising atmospheric N2O: Is there anything we can do to cap the well?

    USDA-ARS?s Scientific Manuscript database

    Nutrient management refers to the addition and management of synthetic or organic fertilizers to soils primarily for purposes of increasing the supply of nutrients and efficiency of crop nutrient uptake in order to improve yields while minimizing environmental impact. Nitrogen (N) is generally the m...

  20. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity*

    PubMed Central

    Ali, Essa; Hussain, Nazim; Shamsi, Imran Haider; Jabeen, Zahra; Siddiqui, Muzammil Hussain; Jiang, Li-xi

    2018-01-01

    The well-known detrimental effects of cadmium (Cd) on plants are chloroplast destruction, photosynthetic pigment inhibition, imbalance of essential plant nutrients, and membrane damage. Jasmonic acid (JA) is an alleviator against different stresses such as salinity and drought. However, the functional attributes of JA in plants such as the interactive effects of JA application and Cd on rapeseed in response to heavy metal stress remain unclear. JA at 50 μmol/L was observed in literature to have senescence effects in plants. In the present study, 25 μmol/L JA is observed to be a “stress ameliorating molecule” by improving the tolerance of rapeseed plants to Cd toxicity. JA reduces the Cd uptake in the leaves, thereby reducing membrane damage and malondialdehyde content and increasing the essential nutrient uptake. Furthermore, JA shields the chloroplast against the damaging effects of Cd, thereby increasing gas exchange and photosynthetic pigments. Moreover, JA modulates the antioxidant enzyme activity to strengthen the internal defense system. Our results demonstrate the function of JA in alleviating Cd toxicity and its underlying mechanism. Moreover, JA attenuates the damage of Cd to plants. This study enriches our knowledge regarding the use of and protection provided by JA in Cd stress. PMID:29405041