Science.gov

Sample records for improves oral glucose

  1. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  2. A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus.

    PubMed

    Cermak, Naomi M; Hansen, Dominique; Kouw, Imre W K; van Dijk, Jan-Willem; Blackwell, Jamie R; Jones, Andrew M; Gibala, Martin J; van Loon, Luc J C

    2015-08-01

    Dietary nitrate (NO3(-)) supplementation has been proposed as an emerging treatment strategy for type 2 diabetes. We hypothesized that ingestion of a single bolus of dietary NO3(-) ingestion improves oral glucose tolerance in patients with type 2 diabetes. Seventeen men with type 2 diabetes (glycated hemoglobin, 7.3% ± 0.2%) participated in a randomized crossover experiment. The subjects ingested a glucose beverage 2.5 hours after consumption of either sodium NO3(-) (0.15 mmol NaNO3(-) · kg(-1)) or a placebo solution. Venous blood samples were collected before ingestion of the glucose beverage and every 30 minutes thereafter during a 2-hour period to assess postprandial plasma glucose and insulin concentrations. The results show that plasma NO3(-) and nitrite levels were increased after NaNO3(-) as opposed to placebo ingestion (treatment-effect, P = .001). Despite the elevated plasma NO3(-) and nitrite levels, ingestion of NaNO3(-) did not attenuate the postprandial rise in plasma glucose and insulin concentrations (time × treatment interaction, P = .41 for glucose, P = .93 for insulin). Despite the lack of effect on oral glucose tolerance, basal plasma glucose concentrations measured 2.5 hours after NaNO3(-) ingestion were lower when compared with the placebo treatment (7.5 ± 0.4 vs 8.3 ± 0.4 mmol/L, respectively; P = .04). We conclude that ingestion of a single dose of dietary NO3(-) does not improve subsequent oral glucose tolerance in patients with type 2 diabetes. PMID:26092495

  3. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    PubMed

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P < 0.05 or 0.001). These results suggested that RRDY and yam dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models. PMID:27499387

  4. Metabolite profiles during oral glucose challenge.

    PubMed

    Ho, Jennifer E; Larson, Martin G; Vasan, Ramachandran S; Ghorbani, Anahita; Cheng, Susan; Rhee, Eugene P; Florez, Jose C; Clish, Clary B; Gerszten, Robert E; Wang, Thomas J

    2013-08-01

    To identify distinct biological pathways of glucose metabolism, we conducted a systematic evaluation of biochemical changes after an oral glucose tolerance test (OGTT) in a community-based population. Metabolic profiling was performed on 377 nondiabetic Framingham Offspring cohort participants (mean age 57 years, 42% women, BMI 30 kg/m(2)) before and after OGTT. Changes in metabolite levels were evaluated with paired Student t tests, cluster-based analyses, and multivariable linear regression to examine differences associated with insulin resistance. Of 110 metabolites tested, 91 significantly changed with OGTT (P ≤ 0.0005 for all). Amino acids, β-hydroxybutyrate, and tricarboxylic acid cycle intermediates decreased after OGTT, and glycolysis products increased, consistent with physiological insulin actions. Other pathways affected by OGTT included decreases in serotonin derivatives, urea cycle metabolites, and B vitamins. We also observed an increase in conjugated, and a decrease in unconjugated, bile acids. Changes in β-hydroxybutyrate, isoleucine, lactate, and pyridoxate were blunted in those with insulin resistance. Our findings demonstrate changes in 91 metabolites representing distinct biological pathways that are perturbed in response to an OGTT. We also identify metabolite responses that distinguish individuals with and without insulin resistance. These findings suggest that unique metabolic phenotypes can be unmasked by OGTT in the prediabetic state. PMID:23382451

  5. Oral therapy with glucose electrolyte solution.

    PubMed

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Nalin, D R; Pizarro, D; Hirschhorn, N

    1980-07-01

    Doctors Kahn and Blum based their views on oral rehydration on only 7 cases, and they fail to provide their methodological details. In their letter on oral rehydration with UNICEF/WHO (United Nations International Children's Emergency Fund/World Health Organization) glucose electrolyte solution (GES), they maintain that hyperkalemia is a danger of GES therapy, that hypernatremia will be aggravated, that therapy should not last for longer than 24 hours, that after 24 hours monitoring of plasma potassium will be needed, and that except for developing countries where material milk is used, no plan of treatment has been proposed after the first 24 hours of rehydration. The experience of Kahn and Blum is at variance with extensive data from many carefully monitored balanced studies in infants treated with GES. GES is a potent medication and needs to be used properly. Guidelines for use are listed. Kahn and Blum fail to indicate whether their 7 patients comprised their entire treatment group or only those with biochemical or clinical problems. They also fail to indicate the degree of dehydration of the infants at onset of therapy or the extent of ongoing diarrheal losses, and they do not describe the precise treatment regimen. Their mean time of treatment -- 41 hours -- was particularly long. The hyperkalemia reported by Kahn and Blum may have resulted from excessive GES administration, without a source of free water, to infants having few diarrheal stools. Proper use of GES formula rapidly rehydrates 95-98% of mildly to severely dehydrated infants, irrespective of etiology. PMID:6104241

  6. Oral glucose is the prime elicitor of preabsorptive insulin secretion.

    PubMed

    Grill, H J; Berridge, K C; Ganster, D J

    1984-01-01

    Seven sugars, two sugar alcohols, and a nonnutritive sweetener were orally administered to naive rats with and without gastric drainage fistulas. Although all taste solutions were ingested, only glucose evoked a statistically significant elevation of insulin levels. This rise was independent of a rise in glycemia. The preeminence of oral glucose as an elicitor of preabsorptive insulin secretion is especially striking, considering that glucose is neither the most intense (as measured electrophysiologically) nor the most palatable (as measured by behavioral preference tests) taste stimulus tested. These results suggest the existence of a gustatory and/or gastrointestinal chemoreceptor that is most responsive to glucose. PMID:6364839

  7. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    SciTech Connect

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation. That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.

  8. Prediabetes Phenotype Influences Improvements in Glucose Homeostasis with Resistance Training

    PubMed Central

    Eikenberg, Joshua D.; Savla, Jyoti; Marinik, Elaina L.; Davy, Kevin P.; Pownall, John; Baugh, Mary E.; Flack, Kyle D.; Boshra, Soheir; Winett, Richard A.; Davy, Brenda M.

    2016-01-01

    Purpose To determine if prediabetes phenotype influences improvements in glucose homeostasis with resistance training (RT). Methods Older, overweight individuals with prediabetes (n = 159; aged 60±5 yrs; BMI 33±4 kg/m2) completed a supervised RT program twice per week for 12 weeks. Body weight and composition, strength, fasting plasma glucose, 2-hr oral glucose tolerance, and Matsuda-Defronza estimated insulin sensitivity index (ISI) were assessed before and after the intervention. Participants were categorized according to their baseline prediabetes phenotype as impaired fasting glucose only (IFG) (n = 73), impaired glucose tolerance only (IGT) (n = 21), or combined IFG and IGT (IFG/IGT) (n = 65). Results Chest press and leg press strength increased 27% and 18%, respectively, following the 12-week RT program (both p<0.05). Waist circumference (-1.0%; pre 109.3±10.3 cm, post 108.2±10.6 cm) and body fat (-0.6%; pre 43.7±6.8%, post 43.1±6.8%) declined, and lean body mass (+1.3%; pre 52.0±10.4 kg, post 52.7±10.7 kg) increased following the intervention. Fasting glucose concentrations did not change (p>0.05) following the intervention. However, 2-hr oral glucose tolerance improved in those with IGT (pre 8.94±0.72 mmol/l, post 7.83±1.11 mmol/l, p<0.05) and IFG/IGT (pre 9.66±1.11mmol/l, post 8.60±2.00 mmol/l) but not in those with IFG (pre 6.27±1.28mmol/l, post 6.33± 1.55 mmol/l). There were no significant changes in ISI or glucose area under the curve following the RT program. Conclusions RT without dietary intervention improves 2-hr oral glucose tolerance in individuals with prediabetes. However, the improvements in glucose homeostasis with RT appear limited to those with IGT or combined IFG and IGT. Trial Registration ClinicalTrials.gov: NCT01112709 PMID:26840904

  9. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level

    PubMed Central

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-01-01

    Background/Aims: Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. Methods: A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Results: Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] − 149.6; R2 = 0.54, p < 0.001). Our linear regression equation was quite different from that of the Alc-Derived Average Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Conclusions: Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels. PMID:26898598

  10. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    PubMed

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine. PMID:27228466

  11. Effect of oral glucose on serum zinc in the elderly

    SciTech Connect

    Lopez, A.L.; Kohrs, M.B.; Horwitz, D.L.; Cyborski, C.K.; Czajka-Narins, D.M.; Kamath, S.

    1986-03-05

    To determine the effect of glucose loading on serum zinc concentrations, 34 elderly subjects aged 60-86 y were studied. Anthropometric data, medical and dietary histories were obtained. Serum zinc and glucose concentrations were obtained fasting and 1/2, 1, 1 1/2, 2 and 3 h after 75 g oral glucose load; glycohemoglobin and fasting serum lipids were also determined. For comparison, the subjects were categorized as: normal or low serum zinc concentrations; normal or high body mass index BMI; normal or high sum of skinfolds and normal or high serum cholesterol. Results showed that low serum zinc concentrations increased significantly over baseline values after the glucose load and did not return to fasting levels. On the other hand, mean serum zinc concentrations significantly declined without recovery for those with normal zinc values. For the total group, no significant differences were noted between fasting values and subsequent time periods. No correlations were noted between fasting serum zinc and area under the curve for zinc except in the high BMI group (positive correlation observed). For the high BMI group, fasting serum zinc differed significantly from the succeeding measurements except for 30 min. For the group as a whole, mean serum zinc concentration was within normal limits (76.9 +/- 2.8 mcg/ml): mean zinc intake was less than 2/3rds the RDA. They conclude that glucose ingestion may alter serum zinc and should be considered in interpreting these levels.

  12. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    PubMed Central

    Saxena, Richa; Hivert, Marie-France; Langenberg, Claudia; Tanaka, Toshiko; Pankow, James S; Vollenweider, Peter; Lyssenko, Valeriya; Bouatia-Naji, Nabila; Dupuis, Josée; Jackson, Anne U; Kao, W H Linda; Li, Man; Glazer, Nicole L; Manning, Alisa K; Luan, Jian’an; Stringham, Heather M; Prokopenko, Inga; Johnson, Toby; Grarup, Niels; Boesgaard, Trine W; Lecoeur, Cécile; Shrader, Peter; O’Connell, Jeffrey; Ingelsson, Erik; Couper, David J; Rice, Kenneth; Song, Kijoung; Andreasen, Camilla H; Dina, Christian; Köttgen, Anna; Le Bacquer, Olivier; Pattou, François; Taneera, Jalal; Steinthorsdottir, Valgerdur; Rybin, Denis; Ardlie, Kristin; Sampson, Michael; Qi, Lu; van Hoek, Mandy; Weedon, Michael N; Aulchenko, Yurii S; Voight, Benjamin F; Grallert, Harald; Balkau, Beverley; Bergman, Richard N; Bielinski, Suzette J; Bonnefond, Amelie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Buchanan, Thomas A; Bumpstead, Suzannah J; Cavalcanti-Proença, Christine; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter S; Collins, Francis S; Cornelis, Marilyn; Crawford, Gabriel J; Delplanque, Jerome; Doney, Alex; Egan, Josephine M; Erdos, Michael R; Firmann, Mathieu; Forouhi, Nita G; Fox, Caroline S; Goodarzi, Mark O; Graessler, Jürgen; Hingorani, Aroon; Isomaa, Bo; Jørgensen, Torben; Kivimaki, Mika; Kovacs, Peter; Krohn, Knut; Kumari, Meena; Lauritzen, Torsten; Lévy-Marchal, Claire; Mayor, Vladimir; McAteer, Jarred B; Meyre, David; Mitchell, Braxton D; Mohlke, Karen L; Morken, Mario A; Narisu, Narisu; Palmer, Colin N A; Pakyz, Ruth; Pascoe, Laura; Payne, Felicity; Pearson, Daniel; Rathmann, Wolfgang; Sandbaek, Annelli; Sayer, Avan Aihie; Scott, Laura J; Sharp, Stephen J; Sijbrands, Eric; Singleton, Andrew; Siscovick, David S; Smith, Nicholas L; Sparsø, Thomas; Swift, Amy J; Syddall, Holly; Thorleifsson, Gudmar; Tönjes, Anke; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Valle, Timo T; Waeber, Gérard; Walley, Andrew; Waterworth, Dawn M; Zeggini, Eleftheria; Zhao, Jing Hua; Illig, Thomas; Wichmann, H Erich; Wilson, James F; van Duijn, Cornelia; Hu, Frank B; Morris, Andrew D; Frayling, Timothy M; Hattersley, Andrew T; Thorsteinsdottir, Unnur; Stefansson, Kari; Nilsson, Peter; Syvänen, Ann-Christine; Shuldiner, Alan R; Walker, Mark; Bornstein, Stefan R; Schwarz, Peter; Williams, Gordon H; Nathan, David M; Kuusisto, Johanna; Laakso, Markku; Cooper, Cyrus; Marmot, Michael; Ferrucci, Luigi; Mooser, Vincent; Stumvoll, Michael; Loos, Ruth J F; Altshuler, David; Psaty, Bruce M; Rotter, Jerome I; Boerwinkle, Eric; Hansen, Torben; Pedersen, Oluf; Florez, Jose C; McCarthy, Mark I; Boehnke, Michael; Barroso, Inês; Sladek, Robert; Froguel, Philippe; Meigs, James B; Groop, Leif; Wareham, Nicholas J; Watanabe, Richard M

    2010-01-01

    Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18). PMID:20081857

  13. Ywhaz/14-3-3ζ Deletion Improves Glucose Tolerance Through a GLP-1-Dependent Mechanism.

    PubMed

    Lim, Gareth E; Piske, Micah; Lulo, James E; Ramshaw, Hayley S; Lopez, Angel F; Johnson, James D

    2016-07-01

    Multiple signaling pathways mediate the actions of metabolic hormones to control glucose homeostasis, but the proteins that coordinate such networks are poorly understood. We previously identified the molecular scaffold protein, 14-3-3ζ, as a critical regulator of in vitro β-cell survival and adipogenesis, but its metabolic roles in glucose homeostasis have not been studied in depth. Herein, we report that Ywhaz gene knockout mice (14-3-3ζKO) exhibited elevated fasting insulin levels while maintaining normal β-cell responsiveness to glucose when compared with wild-type littermate controls. In contrast with our observations after an ip glucose bolus, glucose tolerance was significantly improved in 14-3-3ζKO mice after an oral glucose gavage. This improvement in glucose tolerance was associated with significantly elevated fasting glucagon-like peptide-1 (GLP-1) levels. 14-3-3ζ knockdown in GLUTag L cells elevated GLP-1 synthesis and increased GLP-1 release. Systemic inhibition of the GLP-1 receptor attenuated the improvement in oral glucose tolerance that was seen in 14-3-3ζKO mice. When taken together these findings demonstrate novel roles of 14-3-3ζ in the regulation of glucose homeostasis and suggest that modulating 14-3-3ζ levels in intestinal L cells may have beneficial metabolic effects through GLP-1-dependent mechanisms. PMID:27167773

  14. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects. PMID:7587920

  15. Nanoemulsion: for improved oral delivery of repaglinide.

    PubMed

    Akhtar, Juber; Siddiqui, Hefazat Hussain; Fareed, Sheeba; Badruddeen; Khalid, Mohammad; Aqil, Mohammed

    2016-07-01

    Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic β-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months. PMID:27187792

  16. Effects of alpha and beta adrenergic blockade on hepatic glucose balance before and after oral glucose. Role of insulin and glucagon.

    PubMed Central

    Chap, Z; Ishida, T; Chou, J; Michael, L; Hartley, C; Entman, M; Field, J B

    1986-01-01

    In conscious dogs, phentolamine infusion significantly increased fasting portal vein insulin, glucagon, and decreased net hepatic glucose output and plasma glucose. Propranolol significantly decreased portal vein insulin, portal flow, and increased hepatic glucose production and plasma glucose. Phentolamine, propranolol, and combined blockade reduced glucose absorption after oral glucose. alpha, beta, and combined blockade abolished the augmented fractional hepatic insulin extraction after oral glucose. Despite different absolute amounts of glucose absorbed and different amounts of insulin reaching the liver, the percent of the absorbed glucose retained by the liver was similar for control and with alpha- or beta blockade, but markedly decreased with combined blockade. Our conclusions are: (a) phentolamine and propranolol effects on basal hepatic glucose production may predominantly reflect their action on insulin and glucagon secretion; (b) after oral glucose, alpha- and beta-blockers separately or combined decrease glucose release into the portal system; (c) net hepatic glucose uptake is predominantly determined by hyperglycemia but can be modulated by insulin and glucagon; (d) direct correlation does not exist between hepatic delivery and uptake of insulin and net hepatic glucose uptake; (e) alterations in oral glucose tolerance due to adrenergic blockers, beyond their effects on glucose absorption, can be, to a large extent, mediated by their effects on insulin and glucagon secretion reflecting both hepatic and peripheral glucose metabolism. PMID:2870078

  17. Quality Improvement Efforts in Pediatric Oral Health.

    PubMed

    Ng, Man Wai

    2016-04-01

    Quality improvement (QI) and measurement are increasingly used in health care to improve patient care and outcomes. Despite current barriers in oral health measurement, there are nascent QI and measurement efforts emerging. This paper describes the role that QI and measurement can play in improving oral health care delivery in clinical practice by presenting a QI initiative that aimed to test and implement a chronic disease management approach to address early childhood caries. PMID:27265978

  18. Even small interventions can improve oral health.

    PubMed

    Vega, Lina; Carberry, Frank J

    2013-01-01

    When resources are scarce, authors of articles appearing in health publications have questioned the effectiveness of traditional interventions as a means of improving oral health. The experience in Delicias, Honduras, indicates that the principles of BPOC (Basic Package of Oral Care) may provide quicker and better results. PMID:24027899

  19. A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin.

    PubMed

    Li, Lei; Jiang, Guohua; Yu, Weijiang; Liu, Depeng; Chen, Hua; Liu, Yongkun; Huang, Qin; Tong, Zaizai; Yao, Juming; Kong, Xiangdong

    2016-12-01

    Development of an oral delivery strategy for insulin therapeutics has drawn much attention in recent years. In this study, a glucose-responsive nanocarriers for loading of insulin has been prepared firstly. The resultant nanocarriers exhibited relative low cytotoxicity against Caco-2 cells and excellent stability against protein solution. The insulin release behaviors were evaluated triggered by pH and glucose in vitro. In order to enhance the oral bioavailability of insulin, the insulin-loaded glucose-responsive nanocarriers were further encapsulated into a three-dimensional (3D) hyaluronic acid (HA) hydrogel environment for overcoming multiple barriers and providing multi-protection for insulin during the transport process. The hypoglycemic effect for oral delivery of insulin was studied in vivo. After oral administration to the diabetic rats, the released insulin from hydrogel systems containing insulin-loaded glucose-responsive nanocarriers exhibited an effective hypoglycemic effect for longer time compared with insulin-loaded nanocarriers. PMID:27612686

  20. Serum progranulin concentrations are not responsive during oral lipid tolerance test and oral glucose tolerance test.

    PubMed

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2015-07-01

    The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. PMID:25565096

  1. [Role of classical oral glucose-lowering medications in current treatment].

    PubMed

    Carramiñana Barrera, F C

    2014-07-01

    Classical oral glucose were discovered in the mid twentieth century. Despite the time elapsed since then and the lack of large studies to support the use of some of these drugs, they continue to be employed, are indicated in all clinical practice guidelines and consensus documents and, overall, remain among the most widely prescribed drugs in the national health system. The main arguments for their continued use are their widespread and prolonged prescription, their effectiveness, and cost. Their main disadvantages have always been and continue to be their adverse gastrointestinal effects, weight gain, the risk of hypoglycemia and other adverse effects, which have encouraged the development of new glucose-lowering drugs with an improved pharmacological profile that would cover the various mechanisms of hyperglycemia. Currently, deep knowledge of glucose-lowering drugs is required in the patient-centered management of diabetes. Furthermore, this knowledge should be adapted to each individual patient to acquire the experience necessary to achieve effective metabolic control, delay the development of chronic complications, and improve the quality of life and life expectancy of patients with diabetes. PMID:25311715

  2. Improving Children’s Oral Health

    PubMed Central

    Casamassimo, P.S.; Lee, J.Y.; Marazita, M.L.; Milgrom, P.; Chi, D.L.; Divaris, K.

    2014-01-01

    Despite the concerted efforts of research and professional and advocacy stakeholders, recent evidence suggests that improvements in the oral health of young children in the United States has not followed the prevailing trend of oral health improvement in other age groups. In fact, oral health disparities in the youngest children may be widening, yet efforts to translate advances in science and technology into meaningful improvements in populations’ health have had limited success. Nevertheless, the great strides in genomics, biological, behavioral, social, and health services research in the past decade have strengthened the evidence base available to support initiatives and translational efforts. Concerted actions to accelerate this translation and implementation process are warranted; at the same time, policies that can help tackle the upstream determinants of oral health disparities are imperative. This article summarizes the proceedings from the symposium on the interdisciplinary continuum of pediatric oral health that was held during the 43rd annual meeting of the American Association for Dental Research, Charlotte, North Carolina, USA. This report showcases the latest contributions across the interdisciplinary continuum of pediatric oral health research and provides insights into future research priorities and necessary intersectoral synergies. Issues are discussed as related to the overwhelming dominance of social determinants on oral disease and the difficulty of translating science into action. PMID:25122218

  3. Response to fifty grams oral glucose challenge test and pattern of preceding fasting plasma glucose in normal pregnant Nigerians

    PubMed Central

    Ajayi, Godwin Olufemi

    2014-01-01

    Background: Diabetes mellitus in pregnancy has profound implications for the baby and mother and thus active screening for this is desirable. Method: Fifty grams oral glucose challenge test was administered after obtaining consent to 222 women in good health with singleton pregnancies without diabetes mellitus at 24 to 28 weeks gestation after an overnight fast. Venous blood sample was obtained before and 1 hour after the glucose load. A diagnostic 3-hour 100 g oral glucose tolerance test was subsequently performed in all. Results: Two hundred and ten women had a normal response to oral glucose tolerance test i.e. venous plasma glucose below these cut-off levels: fasting 95 mg/dl (5.3 mmol/l), 1 hour 180 mg/dl (10.0 mmol/l), 2 hours 155 mg/dl (8.6 mmol/l) and 3 hours 140 mg/dl (7.8 mmol/l), while 12 were found to have gestational diabetes mellitus and were subsequently excluded from the study. They were appropriately managed. The mean maternal age was 30.9 ± 4.1 years (range 19 to 45 years) and the mean parity was 1.2 ± 1.1 (range 0 to 5). The mean fasting plasma glucose was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl), while the mean plasma glucose 1 hour after 50 g glucose challenge test was 115.3 ± 19.1 mg/dl (range 56 to 180 mg/dl). Conclusions: The mean fasting plasma glucose in normal pregnant Nigerians was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl). There is a need to re-appraise and possibly review downwards the World Health Organization fasting plasma glucose diagnostic criteria in pregnant Nigerians for better detection of gestational diabetes mellitus. Pregnant women with venous plasma glucose greater than 153.5 mg/dl (8.5 mmol/l) 1 hour after 50 g glucose challenge test are strongly recommended for diagnostic test of gestational diabetes mellitus.

  4. Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle.

    PubMed

    Yamashita, Yoko; Okabe, Masaaki; Natsume, Midori; Ashida, Hitoshi

    2012-01-01

    Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle. PMID:25191549

  5. Improvement of glucose metabolism in patients with type II diabetes after treatment with a hemodialysate.

    PubMed

    Jacob, S; Dietze, G J; Machicao, F; Kuntz, G; Augustin, H J

    1996-03-01

    Insulin resistance of skeletal muscle glucose uptake is a prominent feature of Type II diabetes (NIDDM); therefore, pharmacological intervention should aim to improve insulin sensitivity. Previous studies have shown that Actovegin, a hemodialysate of calf blood, which has been used for treatment of circulatory disorders for many years, improves glucose tolerance in NIDDM without affecting insulin levels; in vitro studies found an improvement of insulin-stimulated glucose uptake in adipocytes. This pilot study was initiated to see whether this compound augments insulin sensitivity after repeated treatment. Ten patients with NIDDM received the hemodialysate (Actovegin 2.000 pro infusions, 500 ml as daily infusions) over a period of 10 days. A hyperinsulinaemic, isoglycaemic glucose-clamp was done on day 0 and day 11; oral glucose tolerance test (oGTT) was done on day -4 and day 12. Parenteral administration of the hemodialysate markedly augmented insulin stimulated glucose disposal (glucose infusion rate and metabolic clearance rate) by more than 80% (p < 0.003 day 11 vs. day 0). Although tested 44 h after the last infusion, oGTT also improved significantly, as documented by the diminished area under the curve (AUC) for glucose, whereas the AUC for insulin remained unchanged. This is the first clinical study to show that parenteral administration of the tested hemodialysate results in a significant increase of insulin-stimulated glucose disposal in NIDDM. The exact mode of action of the hemodialysate in improving insulin sensitivity is currently not known. The hemodialysate possibly acts via a supplementation of inositol-phosphate-oligosaccharides (IPO), as in experimental studies IPOs isolated from the hemodialysate improved glucose uptake in adipocytes in an insulin-independent manner. Further studies are needed to elucidate the underlying mechanisms. PMID:8901147

  6. Oral Motor Intervention Improved the Oral Feeding in Preterm Infants

    PubMed Central

    Tian, Xu; Yi, Li-Juan; Zhang, Lei; Zhou, Jian-Guo; Ma, Li; Ou, Yang-Xiang; Shuai, Ting; Zeng, Zi; Song, Guo-Min

    2015-01-01

    Abstract Oral feeding for preterm infants has been a thorny problem worldwide. To improve the efficacy of oral feeding in preterm infants, oral motor intervention (OMI), which consists of nonnutritive sucking, oral stimulation, and oral support, was developed. Published studies demonstrated that OMI may be as an alternative treatment to solve this problem; however, these results remain controversial. We conducted a meta-analysis with trial sequential analysis (TSA) to objectively evaluate the potential of OMI for improving the current status of oral feeding in preterm infants. A search of PubMed, EMBASE, Web of Science, the Cochrane Library, and China National Knowledge Infrastructure was performed to capture relevant citations until at the end of October, 2014. Lists of references of eligible studies and reviews were also hand-checked to include any latent studies. Two independent investigators screened literature, extracted data, and assessed the methodology, and then a meta-analysis and TSA was performed by using Reviewer Manager (RevMan) 5.3 and TSA 0.9 beta, respectively. A total of 11 randomized controlled trials (RCTs), which included 855 participants, were incorporated into our meta-analysis. The meta-analyses suggested that OMI is associated with the reduced transition time (ie, the time needed from tube feeding to totally oral feeding) (mean difference [MD], −4.03; 95% confidence interval [CI], −5.22 to −2.84), shorten hospital stays (MD, −3.64; 95% CI, −5.57 to −1.71), increased feeding efficiency (MD, 0.08; 95% CI, 0.36–1.27), and intake of milk (MD, 0.14; 95% CI, 0.06–0.21) rather than weight gain. Results of TSA for each outcomes of interest confirmed these pooled results. With present evidences, OMI can be as an alternative to improve the condition of transition time, length of hospital stays, feeding efficiency, and intake of milk in preterm infants. However, the pooled results may be impaired due to low quality included, and thus

  7. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  8. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose

    SciTech Connect

    Radziuk, J. )

    1989-08-01

    The amount of glycogen that is formed by gluconeogenetic pathways during glucose loading was quantitated in human subjects. Oral glucose loading was compared with its intravenous administration. Overnight-fasted subjects received a constant infusion or (3-{sup 3}H)glucose and a marker for gluconeogenesis, (U-{sup 14}C)lactate or sodium ({sup 14}C)bicarbonate ({sup 14}C)bicarbonate. An unlabeled glucose load was then administered. Postabsorptively, or after glucose infusion was terminated, a third tracer ((6-{sup 3}H)glucose) infusion was initiated along with a three-step glucagon infusion. Without correcting for background stimulation of ({sup 14}C)glucose production or for dilution of {sup 14}C with citric acid cycle carbon in the oxaloacetate pool, the amount of glycogen mobilized by the glucagon infusion that was produced by gluconeogenesis during oral glucose loading was 2.9 +/- 0.7 g calculated from (U-{sup 14}C)-lactate incorporation and 7.4 +/- 1.3 g calculated using ({sup 14}C)bicarbonate as a gluconeogenetic marker. During intravenous glucose administration the latter measurement also yielded 7.2 +/- 1.1 g. When the two corrections above are applied, the respective quantities became 5.3 +/- 1.7 g for (U-{sup 14}C)lactate as tracer and 14.7 +/- 4.3 and 13.9 +/- 3.6 g for oral and intravenous glucose with ({sup 14}C)bicarbonate as tracer (P less than 0.05, vs. ({sup 14}C)-lactate as tracer). When (2-{sup 14}C)acetate was infused, the same amount of label was incorporated into mobilized glycogen regardless of which route of glucose administration was used. Comparison with previous data also suggests that {sup 14}CO{sub 2} is a potentially useful marker for the gluconeogenetic process in vivo.

  9. Policies for Improving Oral Health in Europe

    ERIC Educational Resources Information Center

    Blinkhorn, Anthony S.; Downer, Martin C.; Drugan, Caroline S.

    2005-01-01

    Background and Objective: The main purpose of this review was to rehearse the available evidence of good practice in dental public health in order to define policies that could improve oral health in the enlarged European Union and associated countries. Secondary objectives were to describe the basic principles of health service organisation and…

  10. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. PMID:25481356

  11. Depressive symptoms linked to 1-h plasma glucose concentrations during the oral glucose tolerance test in men and women with the metabolic syndrome

    PubMed Central

    Birnbaum-Weitzman, O.; Goldberg, R.; Hurwitz, B. E.; Llabre, M. M.; Gellman, M. D.; Gutt, M.; McCalla, J. R.; Mendez, A. J.; Schneiderman, N.

    2014-01-01

    Aims The addition of the 1-h plasma glucose concentration measure from an oral glucose tolerance test to prediction models of future Type 2 diabetes has shown to significantly strengthen their predictive power. The present study examined the relationship between severity of depressive symptoms and hyperglycaemia, focusing on the 1-h glucose concentration vs. fasting and 2-h oral glucose tolerance test glucose measures. Methods Participants included 140 adults with the metabolic syndrome and without diabetes who completed a baseline psychobiological assessment and a 2-h oral glucose tolerance test, with measurements taken every 30 min. Depressive symptoms were assessed using the Beck Depression Inventory. Results Multivariate linear regression revealed that higher levels of depressive symptoms were associated with higher levels of 1-h plasma glucose concentrations after adjusting for age, gender, ethnicity, BMI, antidepressant use and high-sensitivity C-reactive protein. Results were maintained after controlling for fasting glucose as well as for indices of insulin resistance and secretion. Neither fasting nor 2-h plasma glucose concentrations were significantly associated with depressive symptoms. Conclusions Elevated depressive symptoms in persons with the metabolic syndrome were associated with greater glycaemic excursion 1-h following a glucose load that was not accounted for by differences in insulin secretory function or insulin sensitivity. Consistent with previous findings, this study highlights the value of the 1-h oral glucose tolerance test plasma glucose measurement in the relation between depressive symptoms and glucose metabolism as an indicator of metabolic abnormalities not visible when focusing on fasting and 2-h post-oral glucose tolerance test measurements alone. PMID:24344735

  12. Metabolic Profiling of the Response to an Oral Glucose Tolerance Test Detects Subtle Metabolic Changes

    PubMed Central

    Wopereis, Suzan; Rubingh, Carina M.; van Erk, Marjan J.; Verheij, Elwin R.; van Vliet, Trinette; Cnubben, Nicole H. P.; Smilde, Age K.; van der Greef, Jan; van Ommen, Ben; Hendriks, Henk F. J.

    2009-01-01

    Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men. PMID:19242536

  13. Correlation of salivary glucose, blood glucose and oral candidal carriage in the saliva of type 2 diabetics: A case-control study

    PubMed Central

    Kumar, Satish; Padmashree, S.; Jayalekshmi, Rema

    2014-01-01

    Objectives: To study the correlation between blood glucose levels and salivary glucose levels in type 2 diabetic patients, to study the relationship between salivary glucose levels and oral candidal carriage in type 2 diabetic patients and to determine whether salivary glucose levels could be used as a noninvasive tool for the measurement of glycemic control in type 2 diabetics. Study Design: The study population consisted of three groups: Group 1 consisted of 30 controlled diabetics and Group 2 consisted of 30 uncontrolled diabetics based on their random nonfasting plasma glucose levels. Group 3 consisted of 30 healthy controls. Two milliliters of peripheral blood was collected for the estimation of random nonfasting plasma glucose levels and glycosylated hemoglobin (HbA1c). Unstimulated saliva was collected for the estimation of salivary glucose. Saliva was collected by the oral rinse technique for the estimation of candidal counts. Results: The salivary glucose levels were significantly higher in controlled and uncontrolled diabetics when compared with controls. The salivary candidal carriage was also significantly higher in uncontrolled diabetics when compared with controlled diabetics and nondiabetic controls. The salivary glucose levels showed a significant correlation with blood glucose levels, suggesting that salivary glucose levels can be used as a monitoring tool for predicting glycemic control in diabetic patients. Conclusion: The present study found that estimation of salivary glucose levels can be used as a noninvasive, painless technique for the measurement of diabetic status of a patient in a dental set up. Increased salivary glucose levels leads to increased oral candidal carriage; therefore, oral diagnosticians are advised to screen the diabetic patients for any oral fungal infections and further management. PMID:25191065

  14. Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load

    PubMed Central

    Pepino, M. Yanina; Tiemann, Courtney D.; Patterson, Bruce W.; Wice, Burton M.; Klein, Samuel

    2013-01-01

    OBJECTIVE Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects. RESEARCH DESIGN AND METHODS Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m2) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of β-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics. RESULTS Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the β-cell response to glucose. CONCLUSIONS These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS. PMID:23633524

  15. Selenium-enriched exopolysaccharides improve skeletal muscle glucose uptake of diabetic KKAy mice via AMPK pathway.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Wang, Fengqin; Yang, Hangxian; Yang, Ren; Wang, Xinxia; Wang, Yizhen

    2014-06-01

    Selenium-enriched exopolysaccharides (EPS) produced by Enterobacter cloacae Z0206 have been proven to possess effect on reducing blood glucose level in diabetic mice. To investigate the specific mechanism, we studied the effects of oral supply with EPS on skeletal muscle glucose transportation and consumption in high-fat-diet-induced diabetic KKAy mice. We found that EPS supplementation increased expressions of glucose transporter 4 (Glut4), hexokinase 2 (hk2), phosphorylation of AMP-activated kinase subunit α2 (pAMPKα2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and increased expression of characteristic protein of oxidative fibers such as troponin I and cytochrome c (Cytc). Furthermore, we found that EPS increased glucose uptake and expressions of pAMPKα2 and PGC-1α in palmitic acid (PA)-induced C2C12 cells. However, while EPS inhibited AMPKα2 with interference RNA (iRNA), effects of EPS on the improvement of glucose uptake diminished. These results indicated that EPS may improve skeletal muscle glucose uptake of diabetic KKAy mice through AMPKα2-PGC-1α pathway. PMID:24729044

  16. Oral glucose tolerance test and determination of serum fructosamine level in beagle dogs.

    PubMed

    Watanabe, Dai; Nakara, Hiromi; Akagi, Keisuke; Ishii, Toshiya; Mizuguchi, Hiroyasu; Nagashima, Yoshikazu; Okaniwa, Azusa

    2004-02-01

    The present communication deals with information regarding the practice of the oral glucose tolerance test and determination of serum fructosamine in laboratory beagles. In the oral glucose tolerance test, a 180-min level was found to be crucial following a gavage administration of 50% glucose solution at 5 mL/kg per body weight under fasting conditions. Serum fructosamine concentration as 'determined by enzymatic assay ranged between 82 and 123 micromol/L (mean of 104 micromol/L), which was about 0.285 to 0.25 times the value obtained by the chemical method described by Johnson and colleagues. Reasons for differences are ascribed to the presence of substances with reducing potential other than fructosamine in the serum. PMID:15018152

  17. Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults.

    PubMed

    Wang, Bei; Kammer, Lynne M; Ding, Zhenping; Lassiter, David G; Hwang, Jungyun; Nelson, Jeffrey L; Ivy, John L

    2012-01-01

    Certain amino acids have been reported to influence carbohydrate metabolism and blood glucose clearance, as well as improve the glucose tolerance in animal models. We hypothesized that an amino acid mixture consisting of isoleucine and 4 additional amino acids would improve the glucose response of healthy overweight men and women to an oral glucose tolerance test (OGTT). Twenty-two overweight healthy subjects completed 2 OGTTs after consuming 2 different test beverages. The amino acid mixture beverage (CHO/AA) consisted of 0.088 g cystine 2HCl, 0.043 g methionine, 0.086 g valine, 12.094 g isoleucine, 0.084 g leucine, and 100 g dextrose. The control beverage (CHO) consisted of 100 g dextrose only. Venous blood samples were drawn 10 minutes before the start of ingesting the drinks and 15, 30, 60, 120, and 180 minutes after the completion of the drinks. During the OGTT, the plasma glucose response for the CHO/AA treatment was significantly lower than that of the CHO treatment (P < .01), as was the plasma glucose area under the curve (CHO/AA 806 ± 31 mmol/L·3 hours vs CHO 942 ± 40 mmol/L·3 hours). Differences in plasma glucose between treatments occurred at 30, 60, 120, and 180 minutes after supplement ingestion. Plasma glucagon during the CHO/AA treatment was significantly higher than during the CHO treatment. However, there were no significant differences in plasma insulin or C-peptide responses between treatments. These results suggest that the amino acid mixture lowers the glucose response to an OGTT in healthy overweight subjects in an insulin-independent manner. PMID:22260861

  18. The long term oral regulation of blood glucose in diabetic patients by using of Escherichia coli Nissle 1917 expressing CTB-IGF-1 hybrid protein.

    PubMed

    Bazi, Zahra; Jalili, Mahsa; Hekmatdoost, Azita

    2013-11-01

    Regarding to the high prevalence and comorbidities of chronic high blood glucose in diabetic patients and the limited efficacy and current painful treatments. It is necessary to improve new treatments that are non-invasive and long-term for controlling blood glucose. Recent studies have shown that the healthy microflora in different body organs can perform as the gene vectors for expressing different types of gene therapies in situ. We have proposed that by constructing a recombinant Escherichia coli Nissle 1917 that expresses CTB-IGF-1 hybrid gene under control of ompC glucose sensitive promoter, the intestinal glucose level can be regulated. This method in comparison with other methods is a non-invasive way to control the blood glucose orally and it can be used for all types of diabetes. PMID:24074833

  19. Conversion from Tacrolimus to Cyclosporine A Improves Glucose Tolerance in HCV-Positive Renal Transplant Recipients

    PubMed Central

    Handisurya, Ammon; Kerscher, Corinna; Tura, Andrea; Herkner, Harald; Payer, Berit Anna; Mandorfer, Mattias; Werzowa, Johannes; Winnicki, Wolfgang; Reiberger, Thomas; Kautzky-Willer, Alexandra; Pacini, Giovanni; Säemann, Marcus; Schmidt, Alice

    2016-01-01

    Background Calcineurin-inhibitors and hepatitis C virus (HCV) infection increase the risk of post-transplant diabetes mellitus. Chronic HCV infection promotes insulin resistance rather than beta-cell dysfunction. The objective was to elucidate whether a conversion from tacrolimus to cyclosporine A affects fasting and/or dynamic insulin sensitivity, insulin secretion or all in HCV-positive renal transplant recipients. Methods In this prospective, single-center study 10 HCV-positive renal transplant recipients underwent 2h-75g-oral glucose tolerance tests before and three months after the conversion of immunosuppression from tacrolimus to cyclosporine A. Established oral glucose tolerance test-based parameters of fasting and dynamic insulin sensitivity and insulin secretion were calculated. Data are expressed as median (IQR). Results After conversion, both fasting and challenged glucose levels decreased significantly. This was mainly attributable to a significant amelioration of post-prandial dynamic glucose sensitivity as measured by the oral glucose sensitivity-index OGIS [422.17 (370.82–441.92) vs. 468.80 (414.27–488.57) mL/min/m2, p = 0.005), which also resulted in significant improvements of the disposition index (p = 0.017) and adaptation index (p = 0.017) as markers of overall glucose tolerance and beta-cell function. Fasting insulin sensitivity (p = 0.721), insulinogenic index as marker of first-phase insulin secretion [0.064 (0.032–0.106) vs. 0.083 (0.054–0.144) nmol/mmol, p = 0.093) and hepatic insulin extraction (p = 0.646) remained unaltered. No changes of plasma HCV-RNA levels (p = 0.285) or liver stiffness (hepatic fibrosis and necroinflammation, p = 0.463) were observed after the conversion of immunosuppression. Conclusions HCV-positive renal transplant recipients show significantly improved glucose-stimulated insulin sensitivity and overall glucose tolerance after conversion from tacrolimus to cyclosporine A. Considering the HCV

  20. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis.

    PubMed

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine; Duchampt, Adeline; Bäckhed, Fredrik; Mithieux, Gilles

    2016-07-12

    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose homeostasis. Accordingly, dietary succinate improved glucose and insulin tolerance in wild-type mice, but those effects were absent in mice deficient in IGN. Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN. Thus, microbiota-produced succinate is a previously unsuspected bacterial metabolite improving glycemic control through activation of IGN. PMID:27411015

  1. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    PubMed

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract. PMID:24668608

  2. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. PMID:26117773

  3. SGLT1 sugar transporter/sensor is required for post-oral glucose appetition.

    PubMed

    Sclafani, Anthony; Koepsell, Hermann; Ackroff, Karen

    2016-04-01

    Recent findings suggest that the intestinal sodium-glucose transporter 1 (SGLT1) glucose transporter and sensor mediates, in part, the appetite-stimulation actions of intragastric (IG) glucose and nonmetabolizable α-methyl-d-glucopyranoside (MDG) infusions in mice. Here, we investigated the role of SGLT1 in sugar conditioning using SGLT1 knockout (KO) and C57BL/6J wild-type (WT) mice. An initial experiment revealed that both KO and WT mice maintained on a very low-carbohydrate diet display normal preferences for saccharin, which was used in the flavored conditioned stimulus (CS) solutions. In experiment 2, mice were trained to drink one flavored solution (CS+) paired with an IG MDG infusion and a different flavored solution (CS-) paired with IG water infusion. In contrast to WT mice, KO mice decreased rather than increased the intake of the CS+ during training and failed to prefer the CS+ over the CS- in a choice test. In experiment 3, the KO mice also decreased their intake of a CS+ paired with IG glucose and avoided the CS+ in a choice test, unlike WT mice, which preferred the CS+ to CS-. In experiment 4, KO mice, like WT mice preferred a glucose + saccharin solution to a saccharin solution. These findings support the involvement of SGLT1 in post-oral glucose and MDG conditioning. The results also indicate that sugar malabsorption in KO mice has inhibitory effects on sugar intake but does not block their natural preference for sweet taste. PMID:26791832

  4. Diurnal Variation in Oral Glucose Tolerance: Blood Sugar and Plasma Insulin Levels Morning, Afternoon, and Evening

    PubMed Central

    Jarrett, R. J.; Baker, I. A.; Keen, H.; Oakley, N. W.

    1972-01-01

    Twenty-four subjects received three oral glucose tolerance tests, in the morning, afternoon, and evening of separate days. The mean blood sugar levels in the afternoon and evening tests were similar, and they were both significantly higher than those in the morning test. Plasma immunoreactive insulin levels, however, were highest in the morning test. The pattern of insulin levels during the afternoon and evening tests resembled that described as typical of maturity-onset diabetes. PMID:5058728

  5. A Randomized Controlled Trial of the Use of Oral Glucose with or without Gentle Facilitated Tucking of Infants during Neonatal Echocardiography

    PubMed Central

    Lavoie, Pascal M.; Stritzke, Amelie; Ting, Joseph; Jabr, Mohammad; Jain, Amish; Kwan, Eddie; Chakkarapani, Ela; Brooks, Paul; Brant, Rollin; McNamara, Patrick J.; Holsti, Liisa

    2015-01-01

    Objective To compare the effect of oral glucose given with or without facilitated tucking (FT), versus placebo (water) to facilitate image acquisition during a targeted neonatal echocardiography (TNE). Design Factorial, double blind, randomized controlled trial. Setting Tertiary neonatal intensive care unit (NICU). Patients Infants born between 26 and 42 weeks of gestation (GA). Interventions One of four treatment groups: oral water (placebo), oral glucose (25%), facilitated tucking with oral water or facilitated tucking with oral glucose, during a single, structured TNE. All infants received a soother. Main Outcome Measure Change in Behavioral Indicators of Infant Pain (BIIP) scores. Results 104 preterm infants were randomized (mean ± SD GA: 33.4 ± 3.5 weeks). BIIP scores remained low during the echocardiography scan (median, [IQ range]: 0, [0 to 1]). There were no differences in the level of agitation of infants amongst the treatment groups, with estimated reductions in mean BIIP relative to control of 0.27 (95%CI -0.40 to 0.94) with use of oral glucose and .04 (-0.63 to 0.70) with facilitated tucking. There were also no differences between treatment groups in the quality and duration of the echocardiography scans. Conclusions In stable infants in the NICU, a TNE can be performed with minimal disruption in a majority of cases, simply by providing a soother. The use of 25% glucose water in this context did not provide further benefit in reducing agitation and improving image acquisition. Clinical Trial Registration Clinical Trials.gov: NCT01253889 PMID:26496361

  6. Improving Oral Cancer Survival: The Role of Dental Providers

    PubMed Central

    MESSADI, DIANA V.; WILDER-SMITH, PETRA; WOLINSKY, LAWRENCE

    2010-01-01

    Oral cancer accounts for 2 percent to 4 percent of all cancers diagnosed each year in the United States. In contrast to other cancers, the overall U.S. survival rate from oral cancer has not improved during the past 50 years, mostly due to late-stage diagnosis. Several noninvasive oral cancer detection techniques that emerged in the past decade will be discussed, with a brief overview of most common oral cancer chemopreventive agents. PMID:19998655

  7. An inhibitory antibody against dipeptidyl peptidase IV improves glucose tolerance in vivo.

    PubMed

    Tang, Jie; Majeti, Jiangwen; Sudom, Athena; Xiong, Yumei; Lu, Mei; Liu, Qiang; Higbee, Jared; Zhang, Yi; Wang, Yan; Wang, Wei; Cao, Ping; Xia, Zhen; Johnstone, Sheree; Min, Xiaoshan; Yang, Xiaoping; Shao, Hui; Yu, Timothy; Sharkov, Nik; Walker, Nigel; Tu, Hua; Shen, Wenyan; Wang, Zhulun

    2013-01-11

    Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model. PMID:23184939

  8. An Inhibitory Antibody against Dipeptidyl Peptidase IV Improves Glucose Tolerance in Vivo

    PubMed Central

    Tang, Jie; Majeti, Jiangwen; Sudom, Athena; Xiong, Yumei; Lu, Mei; Liu, Qiang; Higbee, Jared; Zhang, Yi; Wang, Yan; Wang, Wei; Cao, Ping; Xia, Zhen; Johnstone, Sheree; Min, Xiaoshan; Yang, Xiaoping; Shao, Hui; Yu, Timothy; Sharkov, Nik; Walker, Nigel; Tu, Hua; Shen, Wenyan; Wang, Zhulun

    2013-01-01

    Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model. PMID:23184939

  9. Flavor change and food deprivation are not critical for post-oral glucose appetition in mice

    PubMed Central

    Ackroff, Karen; Sclafani, Anthony

    2014-01-01

    When mice trained to consume a CS− flavored solution paired with intragastric (IG) water self-infusion are given a new CS+ flavor paired with IG glucose self-infusion, their intake is stimulated within minutes in the first CS+ test. They also display a preference for the CS+ over the CS− in two-bottle tests. These indicators of post-oral appetite stimulation (appetition) have been studied in food-restricted mice, with novel CS+ and CS− flavors. Two experiments tested whether deprivation and flavor novelty are needed for stimulation of intake. Exp. 1 compared food-restricted and ad libitum fed C57BL/6 mice trained for 1 h/day: 3 sessions with CS− flavor and IG water followed by 3 sessions with a novel CS+ flavor and IG 16% glucose. Ad libitum (AL) fed mice licked less overall, but like the food-restricted (FR) group they increased licking in the first session. In the choice test, FR mice displayed a significant CS+ preference (73%) whereas AL mice had a weaker preference (64%). In Exp. 2, food-restricted mice were trained with a flavor and IG water, and then the Same or a New flavor paired with IG 8% glucose. The glucose infusion rapidly stimulated intakes in the first and subsequent sessions and to the same degree in the two groups. Both groups also showed similar reductions in licking in extinction tests with IG water infusions. These data show that mice need not be explicitly food deprived or given a novel flavor cue to increase ongoing ingestion in response to post-oral glucose stimulation. PMID:25484359

  10. Effect of Human Saliva on Glucose Uptake by Streptococcus mutans and Other Oral Microorganisms

    PubMed Central

    Germaine, Greg R.; Tellefson, Lois M.

    1981-01-01

    of a transient, rapid burst of glucose uptake are unknown. The role of the salivary lactoperoxidase-SCN−-H2O2 system in the oral microbial ecosystem is discussed. PMID:7012014

  11. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms.

    PubMed

    Germaine, G R; Tellefson, L M

    1981-02-01

    uptake and the basis of promotion of a transient, rapid burst of glucose uptake are unknown. The role of the salivary lactoperoxidase-SCN(-)-H(2)O(2) system in the oral microbial ecosystem is discussed. PMID:7012014

  12. Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight.

    PubMed

    Sisley, Stephanie R; Arble, Deanna M; Chambers, Adam P; Gutierrez-Aguilar, Ruth; He, Yanlin; Xu, Yong; Gardner, David; Moore, David D; Seeley, Randy J; Sandoval, Darleen A

    2016-09-01

    Despite clear associations between vitamin D deficiency and obesity and/or type 2 diabetes, a causal relationship is not established. Vitamin D receptors (VDRs) are found within multiple tissues, including the brain. Given the importance of the brain in controlling both glucose levels and body weight, we hypothesized that activation of central VDR links vitamin D to the regulation of glucose and energy homeostasis. Indeed, we found that small doses of active vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3) (calcitriol), into the third ventricle of the brain improved glucose tolerance and markedly increased hepatic insulin sensitivity, an effect that is dependent upon VDR within the paraventricular nucleus of the hypothalamus. In addition, chronic central administration of 1,25D3 dramatically decreased body weight by lowering food intake in obese rodents. Our data indicate that 1,25D3-mediated changes in food intake occur through action within the arcuate nucleus. We found that VDR colocalized with and activated key appetite-regulating neurons in the arcuate, namely proopiomelanocortin neurons. Together, these findings define a novel pathway for vitamin D regulation of metabolism with unique and divergent roles for central nervous system VDR signaling. Specifically, our data suggest that vitamin D regulates glucose homeostasis via the paraventricular nuclei and energy homeostasis via the arcuate nuclei. PMID:27217488

  13. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice.

    PubMed

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-06-01

    Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice were anesthetized using the following commonly used regimens: (1) hypnorm/midazolam repetitive or single injection; (2) ketamine/xylazine; (3) isoflurane; (4) pentobarbital; and (5) A saline injected, nonanesthetized group. Oral glucose was administered at time 0 min and blood glucose measured in the time frame -15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine/xylazine lowered insulin responses and resulted in severe hyperglycemia throughout the experiment; (3) isoflurane did not only alter the insulin secretion but also resulted in severe hyperglycemia; (4) pentobarbital resulted in both increased insulin secretion and impaired glucose tolerance. All four anesthetic regimens altered the oral glucose tolerance, and we conclude that anesthesia should not be used when performing metabolic studies in mice. PMID:27255361

  14. Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.

    PubMed

    Bruttomesso, D; Pianta, A; Mari, A; Valerio, A; Marescotti, M C; Avogaro, A; Tiengo, A; Del Prato, S

    1999-01-01

    The loss of first-phase insulin secretion is a characteristic feature of type 2 diabetic patients. The fast-acting insulin analog lispro provides a therapeutic tool for assessing the metabolic outcome of restoration of an early rise in plasma insulin levels after the ingestion of an oral glucose load. We studied eight type 2 diabetic patients on two different occasions when they received an oral glucose load (50 g) preceded by either human regular insulin or insulin analog lispro (both 0.075 U/kg lean body mass). Tritiated glucose was infused throughout the studies, and the oral glucose was labeled with [13C6]glucose for monitoring systemic and oral glucose kinetics, respectively. Basal plasma glucose (8.2 +/- 0.9 vs. 7.5 +/- 0.8 mmol/l), insulin (224 +/- 21 vs. 203 +/- 21 pmol/l), and endogenous glucose production (10.4 +/- 1.0 vs. 11.1 +/- 1.1 micromol x kg(-1) x min(-1)) were similar on both occasions. In spite of comparable incremental areas under the curve, the time course of plasma insulin concentration was much different. After injection of regular insulin, plasma insulin peaked at 120 min (368 +/- 42 pmol/l), while with lispro, the peak occurred at 60 min (481 +/- 42 pmol/l). Plasma insulin concentration during the last 3 h of the study, however, was lower with lispro compared with regular insulin. The incremental area under the curve of plasma C-peptide was lower with lispro (0.05 +/- 0.01 vs. 0.13 +/- 0.04 micromol/300 min; P < 0.01). After the ingestion of the oral glucose load, plasma glucose concentration increased by 78% at 80-100 min with regular insulin and by 62% with lispro (P < 0.05) and remained lower for the ensuing 3 h. The incremental area under the curve was 46% lower with lispro (715 +/- 109 vs. 389 +/- 109 pmol/300 min; P < 0.01). There was no difference in the two studies in the rate of appearance of the ingested glucose and in the overall rate of glucose disposal. During the initial 90 min, however, the rate of endogenous glucose

  15. Central adiponectin acutely improves glucose tolerance in male mice.

    PubMed

    Koch, Christiane E; Lowe, Chrishanthi; Legler, Karen; Benzler, Jonas; Boucsein, Alisa; Böttiger, Gregor; Grattan, David R; Williams, Lynda M; Tups, Alexander

    2014-05-01

    Adiponectin, an adipocyte-derived hormone, regulates glucose and lipid metabolism. It is also antiinflammatory. During obesity, adiponectin levels and sensitivity are reduced. Whereas the action of adiponectin in the periphery is well established the neuroendocrine role of adiponectin is largely unknown. To address this we analyzed the expression of adiponectin and the 2 adiponectin receptors (AdipoR1 and AdipoR2) in response to fasting and to diet-induced and genetic obesity. We also investigated the acute impact of adiponectin on central regulation of glucose homeostasis. Adiponectin (1 μg) was injected intracerebroventricularly (ICV), and glucose tolerance tests were performed in dietary and genetic obese mice. Finally, the influence of ICV adiponectin administration on central signaling cascades regulating glucose homeostasis and on markers of hypothalamic inflammation was assessed. Gene expression of adiponectin was down-regulated whereas AdipoR1 was up-regulated in the arcuate nucleus of fasted mice. High-fat (HF) feeding increased AdipoR1 and AdipoR2 gene expression in this region. In mice on a HF diet and in leptin-deficient mice acute ICV adiponectin improved glucose tolerance 60 minutes after injection, whereas normoglycemia in control mice was unaffected. ICV adiponectin increased pAKT, decreased phospho-AMP-activated protein kinase, and did not change phospho-signal transducer and activator of transcription 3 immunoreactivity. In HF-fed mice, ICV adiponectin reversed parameters of hypothalamic inflammation and insulin resistance as determined by the number of phospho-glycogen synthase kinase 3 β(Ser9) and phospho-c-Jun N-terminal kinase (Thr183/Tyr185) immunoreactive cells in the arcuate nucleus and ventromedial hypothalamus. This study demonstrates that the insulin-sensitizing properties of adiponectin are at least partially based on a neuroendocrine mechanism that involves centrally synthesized adiponectin. PMID:24564394

  16. Strength training improves muscle aerobic capacity and glucose tolerance in elderly.

    PubMed

    Frank, P; Andersson, E; Pontén, M; Ekblom, B; Ekblom, M; Sahlin, K

    2016-07-01

    The primary aim of this study was to investigate the effect of short-term resistance training (RET) on mitochondrial protein content and glucose tolerance in elderly. Elderly women and men (age 71 ± 1, mean ± SEM) were assigned to a group performing 8 weeks of resistance training (RET, n = 12) or no training (CON, n = 9). The RET group increased in (i) knee extensor strength (concentric +11 ± 3%, eccentric +8 ± 3% and static +12 ± 3%), (ii) initial (0-30 ms) rate of force development (+52 ± 26%) and (iii) contents of proteins related to signaling of muscle protein synthesis (Akt +69 ± 20 and mammalian target of rapamycin +69 ± 32%). Muscle fiber type composition changed to a more oxidative profile in RET with increased amount of type IIa fibers (+26.9 ± 6.8%) and a trend for decreased amount of type IIx fibers (-16.4 ± 18.2%, P = 0.068). Mitochondrial proteins (OXPHOS complex II, IV, and citrate synthase) increased in RET by +30 ± 11%, +99 ± 31% and +29 ± 8%, respectively. RET resulted in improved oral glucose tolerance measured as reduced area under curve for glucose (-21 ± 26%) and reduced plasma glucose 2 h post-glucose intake (-14 ± 5%). In CON parameters were unchanged or impaired. In conclusion, short-term resistance training in elderly not only improves muscular strength, but results in robust increases in several parameters related to muscle aerobic capacity. PMID:26271931

  17. [Diabetes in the Belgian province of Luxembourg: frequency, importance of the oral glucose tolerance test and a modestly increased fasting blood glucose].

    PubMed

    Hortulanus-Beck, D; Lefebvre, P J; Jeanjean, M F

    1990-01-01

    A sample of 1949 subjects aged 35-64 years has been studied in the Belgian Province of Luxembourg according with the MONICA project (MONItoring of Trends and Determinants in CArdiovascular Diseases) elaborated by the World Health Organization. Among the data collected, were a fasting glycaemia and a glycaemia at the second hour of a 75 grams oral glucose load. Analysis of these two parameters has allowed to divide the individuals of the study into: 4.1% of diabetic subjects which half of them being unknown, 5.2% of subjects presenting an impaired glucose tolerance, 3.4% of subjects with an early reactive hypoglycaemia and 87.3% of normoglycaemic subjects. The measurement of the fasting glycaemia alone has allowed to display 15 glucidic abnormalities (that is to say 0.8%) whereas the complementary realization of the oral glucose tolerance test has disclosed about 10% of additional abnormalities. The fact to consider a borderline fasting glycaemia (included between 110 and 140 mg/dl on venous plasma) result in a greater probability to find an abnormal blood glucose value at the second hour of the oral glucose tolerance test. PMID:2265736

  18. Urinary N-acetyl-β-d-Glucosaminidase Levels are Positively Correlated With 2-Hr Plasma Glucose Levels During Oral Glucose Tolerance Testing in Prediabetes

    PubMed Central

    Ouchi, Motoshi; Suzuki, Tatsuya; Hashimoto, Masao; Motoyama, Masayuki; Ohara, Makoto; Suzuki, Kazunari; Igari, Yoshimasa; Watanabe, Kentaro; Nakano, Hiroshi; Oba, Kenzo

    2012-01-01

    Background Urinary N-acetyl-β-D-glucosaminidase (NAG) excretion is increased in patients with impaired glucose tolerance (IGT). This study investigated when during the oral glucose tolerance test (OGTT) the plasma glucose, urine glucose, and insulin levels correlate most strongly with urinary N-acetyl-β-d-glucosaminidase (NAG) levels in prediabetic subjects. Methods The OGTT was administered to 80 subjects who had not yet received a diagnosis of diabetes mellitus (DM) and in whom HbA1c levels were ≤6.8% and fasting plasma glucose levels were <7.0 mmol/l. Forty-two subjects had normal glucose tolerance (NGT), 31 had impaired glucose tolerance (IGT), and 7 had DM according to World Health Organization criteria. Serum levels of cystatin C, the estimated glomerular filtration rate, the urinary albumin-to-creatinine (Cr) ratio, urinary and serum β2-microglobulin, and urinary NAG were measured as markers of renal function. Results NAG levels were significantly higher in subjects with DM and in subjects with IGT than in subjects with NGT. No significant associations were observed between glycemic status and other markers of renal function. Multiple linear regression analysis showed that the NAG level was positively correlated with plasma glucose levels at 120 min of the OGTT and was associated with the glycemic status of prediabetic patients. Conclusion These results suggest that postprandial hyperglycemia is an independent factor that causes renal tubular damage in prediabetes patients. PMID:23143631

  19. BBT improves glucose homeostasis by ameliorating β-cell dysfunction in type 2 diabetic mice.

    PubMed

    Yao, Xin-gang; Xu, Xin; Wang, Gai-hong; Lei, Min; Quan, Ling-ling; Cheng, Yan-hua; Wan, Ping; Zhou, Jin-pei; Chen, Jing; Hu, Li-hong; Shen, Xu

    2015-03-01

    Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca(2) (+) channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research. PMID:25572265

  20. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), S I (Cau r = -0.51, P < 0.01; SA r = -0.41, P < 0.01), Φ dynamic (Cau r = -0.41, P < 0.01; SA r = -0.57, P < 0.01), and Φ oral (Cau r = -0.61, P < 0.01; SA r = -0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10-10.5 mmol L(-1) in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose

  1. Partnerships to Improve Oral Hygiene Practices: Two Complementary Approaches.

    PubMed

    Dale, Craig M; Wiechula, Rick; Lewis, Adrienne; McArthur, Alexa; Breen, Helen; Scarborough, Alan; Rose, Louise

    2016-01-01

    The omission of oral care is linked to increased nurse workload and may contribute to serious patient infection and growing healthcare costs. Therefore, ineffective oral care comprises a significant patient safety issue across healthcare settings internationally. As studies have demonstrated a positive relationship between Nurs Leadersh (Tor Ont) and improved patient outcomes, it is imperative that leaders seek effective approaches to facilitate contextual exploration of barriers and facilitators for resolution of oral care delivery problems. One approach to improved processes of oral care is the creative engagement of front-line clinicians in the problems they confront in everyday practice. By drawing upon the role and process of facilitation, we outline two projects, located in Australia and Canada, that engaged front-line nurses, health leaders, and researchers as partners to identify a path to improved oral care delivery. In this paper, we summarize key learnings for nursing leaders about strategies to facilitate delivery of fundamental oral care. We found that facilitation, contextual knowledge and academic-clinician partnerships were essential to the detection and evaluation of oral care delivery problems and the identification of priorities for practice improvement. As collaboration is imperative for sustainable innovation, we summarize strategies of effective leadership for improving oral care delivery. PMID:27309641

  2. Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2006-01-01

    An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so

  3. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  4. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice

    SciTech Connect

    Kang, Seong-Il; Jin, Young-Jun; Ko, Hee-Chul; Choi, Soo-Youn; Hwang, Joon-Ho; Whang, Ilson; Kim, Moo-Han; Shin, Hye-Sun; Jeong, Hyung-Bok; Kim, Se-Jae

    2008-08-22

    The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPAR{gamma} luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.

  5. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  6. Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation

    NASA Astrophysics Data System (ADS)

    Aquino Neto, Sidney; Milton, Ross D.; Crepaldi, Laís B.; Hickey, David P.; de Andrade, Adalgisa R.; Minteer, Shelley D.

    2015-07-01

    Recently, there has been much effort in developing metal nanoparticle catalysts for fuel oxidation, as well as the development of enzymatic bioelectrocatalysts for fuel oxidation. However, there has been little study of the synergy of hybrid electrocatalytic systems. We report the preparation of hybrid bioanodes based on Au nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) co-immobilized with glucose oxidase (GOx). Mediated electron transfer was achieved by two strategies: ferrocene entrapped within polypyrrole and a ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymer. Electrochemical characterization of the Au nanoparticles supported on MWCNTs indicate that this catalyst exhibits an electrocatalytic response for glucose even in acidic conditions. Using the redox polymer Fc-LPEI as the mediator, voltammetric and amperometric data demonstrated that these bioanodes can efficiently achieve mediated electron transfer and also indicated higher catalytic currents with the hybrid bioelectrode. From the amperometry, the maximum current density (Jmax) achieved with the hybrid bioelectrode was 615 ± 39 μA cm-2, whereas the bioanode employing GOx only achieved a Jmax of 409 ± 26 μA cm-2. Biofuel cell tests are consistent with the electrochemical characterization, thus confirming that the addition of the metallic species into the bioanode structure can improve fuel oxidation and consequently, improve the power generated by the system.

  7. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.

    PubMed

    de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I

    2013-12-11

    Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake. PMID:24261475

  8. Prodrugs of perzinfotel with improved oral bioavailability.

    PubMed

    Baudy, Reinhardt B; Butera, John A; Abou-Gharbia, Magid A; Chen, Hong; Harrison, Boyd; Jain, Uday; Magolda, Ronald; Sze, Jean Y; Brandt, Michael R; Cummons, Terri A; Kowal, Diane; Pangalos, Menelas N; Zupan, Bojana; Hoffmann, Matthew; May, Michael; Mugford, Cheryl; Kennedy, Jeffrey; Childers, Wayne E

    2009-02-12

    Previous studies with perzinfotel (1), a potent, selective, competitive NMDA receptor antagonist, showed it to be efficacious in inflammatory and neuropathic pain models. To increase the low oral bioavailability of 1 (3-5%), prodrug derivatives (3a-h) were synthesized and evaluated. The oxymethylene-spaced diphenyl analogue 3a demonstrated good stability at acidic and neutral pH, as well as in simulated gastric fluid. In rat plasma, 3a was rapidly converted to 1 via 2a. Pharmacokinetic studies indicated that the amount of systemic exposure of 1 produced by a 10 mg/kg oral dose of 3a was 2.5-fold greater than that produced by a 30 mg/kg oral dose of 1. Consistent with these results, 3a was significantly more potent and had a longer duration of activity than 1 following oral administration in a rodent model of inflammatory pain. Taken together, these results demonstrate that an oxymethylene-spaced prodrug approach increased the bioavailability of 1. PMID:19146418

  9. Oral Assessments: Improving Retention, Grades, and Understanding

    ERIC Educational Resources Information Center

    Nelson, Mary A.

    2011-01-01

    This article reports on an innovative approach to teaching Calculus I which was initiated in a two-semester course designed for students at risk of failing Calculus I. The treatment consisted of voluntary oral assessments offered before every written examination. Analyses showed that the treatment students did significantly better than the control…

  10. The effect of endurance training and subsequent physical inactivity on glycaemic control after oral glucose load and physical exercise in healthy men

    NASA Astrophysics Data System (ADS)

    Radikova, Zofia; Ksinantova, Lucia; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Vigas, Milan; Koska, Juraj

    2007-02-01

    Physical inactivity during space flight has a profound effect on glucose metabolism. The aim of this study was to test whether endurance training (ET) may improve a negative effect of subsequent -6∘ head-down bed rest (HDBR) on glucose metabolism. Fourteen healthy males completed the study consisting of 6 weeks lasting ET followed by 6 days HDBR. Treadmill exercise at 80% of pre-training VO2max and 75 g oral glucose tolerance test (OGTT) were performed before and after ET as well as after HDBR. ET increased VO2max by 11%. ET significantly lowered while HDBR had no effect on fasting and OGTT plasma glucose levels. ET had no effect while HDBR was followed by an augmentation of insulin and C-peptide response to OGTT. Insulin sensitivity tended to increase after ET and to decrease during HDBR, however, mostly without statistical significance. Plasma glucose, insulin and C-peptide response to exercise were elevated after HDBR only. Our study shows that antecedent physical training could ameliorate a negative effect of simulated microgravity on insulin-mediated glucose metabolism.

  11. Phospholipids from herring roe improve plasma lipids and glucose tolerance in healthy, young adults

    PubMed Central

    2014-01-01

    Background Herring roe is an underutilized source of n-3 polyunsaturated fatty acids (PUFAs) for human consumption with high phospholipid (PL) content. Studies have shown that PL may improve bioavailability of n-3 PUFAs. Arctic Nutrition’s herring roe product MOPL™30 is a PL: docosahexaenoic acid (DHA)-rich fish oil mixture, with a DHA:eicosapentaenoic acid (EPA) ratio of about 3:1, which is also rich in choline. In this pilot study, we determined if MOPL30 could favorably affect plasma lipid parameters and glucose tolerance in healthy young adults. Methods Twenty female and one male adults, between 22 and 26 years of age, participated in the study. Participants took encapsulated MOPL30, 2.4 g/d EPA + DHA, for 14 days, and completed a three-day weighed food record before and during the capsule intake. Plasma lipids and their fatty acid (FA) composition, plasma and red blood cell (RBC) phosphatidylcholine (PC) FA composition, acylcarnitines, choline, betaine and insulin were measured before and after supplementation (n = 21), and one and four weeks after discontinuation of supplementation (n = 14). An oral glucose tolerance test was performed before and after supplementation. Results Fasting plasma triacylglycerol and non-esterified fatty acids decreased and HDL-cholesterol increased after 14 days of MOPL30 intake (p < 0.05). The dietary records showed that PUFA intake prior to and during capsule intake was not different. Fasting plasma glucose was unchanged from before to after supplementation. However, during oral glucose tolerance testing, blood glucose at both 10 and 120 min was significantly lower after supplementation with MOPL30 compared to baseline measurements. Plasma free choline and betaine were increased, and the n-6/n-3 polyunsaturated (PUFA) ratio in plasma and RBC PC were decreased post-supplementation. Four weeks after discontinuation of MOPL30, most parameters had returned to baseline, but a delayed effect was observed on n-6

  12. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-01

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers. PMID:26669903

  13. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo.

    PubMed

    Shu, Gang; Lu, Nai-Sheng; Zhu, Xiao-Tong; Xu, Yong; Du, Min-Qing; Xie, Qiu-Ping; Zhu, Can-Jun; Xu, Qi; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2014-12-01

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases. PMID:25283330

  14. Improved glucose utilization rate calculation by a recursive technique

    SciTech Connect

    Finn, E.J.; Brooks, R.A.; Di Chiro, G.

    1984-01-01

    When scanning with deoxyglucose, the crucial step in quantitation is the determination of glucose utilization rate, R, from tissue uptake data. R is conventionally calculated using nominal rate constants k/sub 1/-k/sub 4/, which are needed to correct for free deoxyglucose in the tissue at the time of the scan. In general, the resulting R is not consistent with these nominal rate constants, so the answer is necessarily in error. By adjusting the rate constants for consistency and then recalculating R, and repeating as necessary, an accuracy improvement should be obtained. The method reported here interates through modification of the third rate constant, k/sub 3/, since its value is determined by the hexokinase reaction which is considered to be the rate-limiting step. Data have been analyzed, taken from a representative sampling of the more than 150 patients scanned during the past year. It is seen that as glucose utilization rate moves away from the nominal rate for a subject, the self-consistency process developed by the iterative technique modified the quoted rate by an extra 2% per 10% change in R. Further, the percentage change in k/sub 3/ varies approximately linearly, but at a rate roughly twice that of the change in R. This modification indeed corresponds to an improvement in accuracy insofar as the enzymatic reaction described by k/sub 3/ is the primary source of change in glucose kinetics for the tissue in question. The same iterative procedure could be used with other assumptions about the way the rate constants vary.

  15. Improving governance to improve oral health: addressing care delivery systems.

    PubMed

    Batchelor, Paul

    2012-09-01

    The evolving role of the state in the provision of health care has seen the adoption of new management philosophies to ensure that goals set for the system are reached. In particular, the term New Public Management (NPM) has tended to dominate reforms to help address perceived shortcomings in public sector services. NPM is based on the use of freemarket type arrangements as a mechanism to solve problems, the control of which provides new challenges. One particular challenge that has arisen from the combination of NPM with the large number of agencies involved in care provision is that of addressing the issues arising from the improved understanding of the determinants of health. This has led to the evolution of differing care arrangements across differing sectors at all levels. If resources are to be used as intended, the control of delivery systems to oversee their use must exist. The overarching term for such activity is â governance. This paper provides an overview of the issues that arise for addressing governance of oral health care and the subsequent challenges that face those responsible for ensuring compliance. PMID:22976573

  16. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery

    PubMed Central

    Song, Lei; Zhi, Zheng-liang; Pickup, John C

    2014-01-01

    Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901

  17. Changes in plasma glucose in Otsuka Long-Evans Tokushima Fatty rats after oral administration of maple syrup.

    PubMed

    Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi

    2015-01-01

    We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes. PMID:25757438

  18. Polymeric microcontainers improve oral bioavailability of furosemide.

    PubMed

    Nielsen, Line Hagner; Melero, Ana; Keller, Stephan Sylvest; Jacobsen, Jette; Garrigues, Teresa; Rades, Thomas; Müllertz, Anette; Boisen, Anja

    2016-05-17

    Microcontainers with an inner diameter of 223μm are fabricated using the polymer SU-8, and evaluated in vitro, in situ and in vivo for their application as an advanced oral drug delivery system for the poorly water soluble drug furosemide. An amorphous sodium salt of furosemide (ASSF) is filled into the microcontainers followed by applying a lid using Eudragit L100. It is possible to control the drug release in vitro, and in vitro absorption studies show that the microcontainers are not a hindrance for absorption of ASSF. In situ perfusion studies in rats are performed with ASSF-filled microcontainers coated with Eudragit and compared to a furosemide solution. The absorption rate constant of ASSF confined in microcontainers is found to be significantly different from the solution, and by light microscopy, it is observed that the microcontainers are engulfed by the intestinal mucus. An oral bioavailability study in rats is performed with ASSF confined in microcontainers coated with Eudragit and a control group with ASSF in Eudragit-coated capsules. A relative bioavailability of 220% for the ASSF in microcontainers compared to ASSF in capsules is found. These studies indicate that the microcontainers could serve as a promising oral drug delivery system. PMID:27033999

  19. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats.

    PubMed

    Prasath, Gopalan Sriram; Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai

    2014-10-01

    Liver plays a vital role in blood glucose homeostasis. Recent studies have provided considerable evidence that hepatic glucose production (HGP) plays an important role in the development of fasting hyperglycemia in diabetes. From this perspective, diminution of HGP has certainly been considered for the treatment of diabetes. In the present study, we have analyzed the modulatory effects of fisetin, a flavonoid of strawberries, on the expression of key enzymes of carbohydrate metabolism in STZ induced experimental diabetic rats. The physiological criterions such as food and fluid intake were regularly monitored. The levels of blood glucose, plasma insulin, hemoglobin and glycosylated hemoglobin were analyzed. The mRNA and protein expression levels of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were determined by immunoblot as well as PCR analysis. Diabetic group of rats showed significant increase in food and water intake when compared with control group of rats. Upon oral administration of fisetin as well as gliclazide to diabetic group of rats, the levels were found to be decreased. Oral administration of fisetin (10 mg/kg body weight) to diabetic rats for 30 days established a significant decline in blood glucose and glycosylated hemoglobin levels and a significant increase in plasma insulin level. The mRNA and protein expression levels of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), were decreased in liver tissues upon treatment with fisetin. The results of the present study suggest that fisetin improves glucose homeostasis by direct inhibition of gluconeogenesis in liver. PMID:25064342

  20. Improving children's oral health: an interdisciplinary research framework.

    PubMed

    Casamassimo, P S; Lee, J Y; Marazita, M L; Milgrom, P; Chi, D L; Divaris, K

    2014-10-01

    Despite the concerted efforts of research and professional and advocacy stakeholders, recent evidence suggests that improvements in the oral health of young children in the United States has not followed the prevailing trend of oral health improvement in other age groups. In fact, oral health disparities in the youngest children may be widening, yet efforts to translate advances in science and technology into meaningful improvements in populations' health have had limited success. Nevertheless, the great strides in genomics, biological, behavioral, social, and health services research in the past decade have strengthened the evidence base available to support initiatives and translational efforts. Concerted actions to accelerate this translation and implementation process are warranted; at the same time, policies that can help tackle the upstream determinants of oral health disparities are imperative. This article summarizes the proceedings from the symposium on the interdisciplinary continuum of pediatric oral health that was held during the 43rd annual meeting of the American Association for Dental Research, Charlotte, North Carolina, USA. This report showcases the latest contributions across the interdisciplinary continuum of pediatric oral health research and provides insights into future research priorities and necessary intersectoral synergies. Issues are discussed as related to the overwhelming dominance of social determinants on oral disease and the difficulty of translating science into action. PMID:25122218

  1. Effects of oral glucose on exercise thermoregulation in men after water immersion

    NASA Technical Reports Server (NTRS)

    Dearborn, Alan S.; Ertl, Andrew C.; Greenleaf, John E.; Barnes, Paul R.; Jackson, Catherine G. R.; Breckler, Jennifer L.

    1994-01-01

    To test the hypothesis elevated blood glucose would attenuate the rise in exercise rectal temperature, six men age 35 plus or minus S.D. 7 years participated in each of three trials by 4-hr water immersion to the neck: (1) 2.0 g/kg body wt of oral glucose (33.8 percent wt./vol.) was consumed followed by 80 min controlled rest (Glu/Rest), and 70 min horizontal supine cycle exercise at 62.8 percent plus or minus S.E. 0.5 percent (1.97 plus or minus 0.02 L/min) of peak O2 uptake followed by 10 min recovery (2) with (Glu/Ex) and (3) without prior flucose (No Glu/Ex). Blood samples were taken at -25, 0, 15, 45, and 68 min of exercise and after plus 10 min of recovery for measurement of hemoglobin, hematocrit, and blood glucose. Both mean skin (T sub sk) (from six sites) and rectal temperatures (T sub re) were monitored continuously. Sweat rate was measured by resistanc hygrometry. The mean of delta PV for the exercise trials was -12.2 plus or minus 2.1 percent. Mean blood glucose for the Glu/Ex trial was higher than that of the No Glu/Ex trial was (108.4 equal or minus 3.9 and 85.6 plus or minus 1.6 mg/dl, respectively, P less than 0.05. At the end of exercise T(sub sk) for the Glu/Ex trial was lower than for No Glu/Ex(32.0 plus or minus 0.3 and 32.4 equals or minus 0.2 C, respectively, P less than 0.05); T(sub re) for the Glu/Ex trial was lower than for No Glu/Es (38.22 plus or minus 0.17 and 38.60 plus or minus 0.11 C, respectively, P less than 0.05); and forearm sweat rate for the Glu/Ex trial (0.34 plus or minus 0.04 and 0.43 plus or minus g/sq cm, respectively, P less than 0.05). These data suggest that elevation of blood glucose prior to horizontal exercise following hypohydration attenuates the increase in body temperature without altering heat production or exercise hypovolemia.

  2. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGESBeta

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  3. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition.

    PubMed

    Sclafani, Anthony; Zukerman, Steven; Ackroff, Karen

    2014-12-15

    Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward. PMID:25320345

  4. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition

    PubMed Central

    Zukerman, Steven; Ackroff, Karen

    2014-01-01

    Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS−) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward. PMID:25320345

  5. Application of the Oral Minimal Model to Korean Subjects with Normal Glucose Tolerance and Type 2 Diabetes Mellitus

    PubMed Central

    Lim, Min Hyuk; Oh, Tae Jung; Choi, Karam; Lee, Jung Chan

    2016-01-01

    Background The oral minimal model is a simple, useful tool for the assessment of β-cell function and insulin sensitivity across the spectrum of glucose tolerance, including normal glucose tolerance (NGT), prediabetes, and type 2 diabetes mellitus (T2DM) in humans. Methods Plasma glucose, insulin, and C-peptide levels were measured during a 180-minute, 75-g oral glucose tolerance test in 24 Korean subjects with NGT (n=10) and T2DM (n=14). The parameters in the computational model were estimated, and the indexes for insulin sensitivity and β-cell function were compared between the NGT and T2DM groups. Results The insulin sensitivity index was lower in the T2DM group than the NGT group. The basal index of β-cell responsivity, basal hepatic insulin extraction ratio, and post-glucose challenge hepatic insulin extraction ratio were not different between the NGT and T2DM groups. The dynamic, static, and total β-cell responsivity indexes were significantly lower in the T2DM group than the NGT group. The dynamic, static, and total disposition indexes were also significantly lower in the T2DM group than the NGT group. Conclusion The oral minimal model can be reproducibly applied to evaluate β-cell function and insulin sensitivity in Koreans. PMID:27273909

  6. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    PubMed Central

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  7. Mandatory oral glucose tolerance tests identify more diabetics in stable patients with chronic heart failure: a prospective observational study

    PubMed Central

    2014-01-01

    Background Many patients with chronic heart failure (CHF) are believed to have unrecognized diabetes, which is associated with a worse prognosis. This study aimed to describe glucose tolerance in a general stable CHF population and to identify determinants of glucose tolerance focusing on body composition and skeletal muscle strength. Methods A prospective observational study was set up. Inclusion criteria were diagnosis of CHF, stable condition and absence of glucose-lowering medication. Patients underwent a 2 h oral glucose tolerance test (OGTT), isometric strength testing of the upper leg and dual energy x-ray absorptiometry. Health-related quality of life and physical activity level were assessed by questionnaire. Results Data of 56 participants were analyzed. Despite near-normal fasting glucose values, 55% was classified as prediabetic, 14% as diabetic, and 20% as normal glucose tolerant. Of all newly diagnosed diabetic patients, 79% were diagnosed because of 2 h glucose values only and none because of HbA1c. Univariate mixed model analysis revealed ischaemic aetiology, daily physical activity, E/E’, fat trunk/fat limbs and extension strength as possible explanatory variables for the glucose curve during the glucose tolerance test. When combined in one model, only fat trunk/fat limbs and E/E’ remained significant predictors. Furthermore, fasting insulin was correlated with fat mass/height2 (r = 0.51, p < 0.0001), extension strength (r = -0.33, p < 0.01) and triglycerides (r = 0.39, p < 0.01). Conclusions Our data confirm that a large majority of CHF patients have impaired glucose tolerance. This glucose intolerance is related to fat distribution and left ventricular end-diastolic pressure. PMID:24673860

  8. The Association between HbA1c, Fasting Glucose, 1-Hour Glucose and 2-Hour Glucose during an Oral Glucose Tolerance Test and Cardiovascular Disease in Individuals with Elevated Risk for Diabetes

    PubMed Central

    Lind, Marcus; Tuomilehto, Jaakko; Uusitupa, Matti; Nerman, Olle; Eriksson, Johan; Ilanne-Parikka, Pirjo; Keinänen-Kiukaanniemi, Sirkka; Peltonen, Markku; Pivodic, Aldina; Lindström, Jaana

    2014-01-01

    Objective To determine the association between HbA1c, fasting plasma glucose (FPG), 1-hour (1 hPG) and 2-hour (2 hPG) glucose after an oral glucose tolerance test (OGTT) and cardiovascular disease in individuals with elevated risk for diabetes. Design We studied the relationship between baseline, updated mean and updated (last) value of HbA1c, FPG, 1 hPG and 2 hPG after an oral 75 g glucose tolerance test (OGTT) and acute CVD events in 504 individuals with impaired glucose tolerance (IGT) at baseline enrolled in the Finnish Diabetes Prevention Study. Setting Follow-up of clinical trial. Participants 504 individuals with IGT were followed with yearly evaluations with OGTT, FPG and HbA1c. Main Outcome Measure Relative risk of CVD. Results Over a median follow-up of 9.0 years 34 (6.7%) participants had a CVD event, which increased to 52 (10.3%) over a median follow-up of 13.0 years when including events that occurred among participants following a diagnosis of diabetes. Updated mean HbA1c, 1 hPG and 2 hPG, HR per 1 unit SD of 1.57 (95% CI 1.16 to 2.11), p = 0.0032, 1.51 (1.03 to 2.23), p = 0.036 and 1.60 (1.10 to 2.34), p = 0.014, respectively, but not FPG (p = 0.11), were related to CVD. In analyses of the last value prior to the CVD event the same three glycaemic measurements were associated with the CVD events, with HRs per 1 unit SD of 1.45 (1.06 to 1.98), p = 0.020, 1.55 (1.04 to 2.29), p = 0.030 and 2.19 (1.51 to 3.18), p<0.0001, respectively but only 2 hPG remained significant in pairwise comparisons. Including the follow-up period after diabetes onset updated 2 hPG (p = 0.003) but not updated mean HbA1c (p = 0.08) was related to CVD. Conclusions and Relevance Current 2 hPG level in people with IGT is associated with increased risk of CVD. This supports its use in screening for prediabetes and monitoring glycaemic levels of people with prediabetes. PMID:25285769

  9. The relationship between glycated hemoglobin and blood glucose levels of 75 and 100 gram oral glucose tolerance test during gestational diabetes diagnosis

    PubMed Central

    Mert, Meral; Purcu, Serhat; Soyluk, Ozlem; Okuturlar, Yildiz; Karakaya, Pinar; Tamer, Gonca; Adas, Mine; Ekin, Murat; Hatipoglu, Sami; Ure, Oznur Sari; Harmankaya, Ozlem; Kumbasar, Abdulbaki

    2015-01-01

    Objective: The diagnosis of gestational diabetes mellitus (GDM) is an important issue in terms of prevention of maternal and fetal complications. In our study we aimed to evaluate the relation of HbA1c and blood glucose levels of 75 and 50-100 gram oral glucose tolerance test (OGTT) in pregnant patients who were screened for GDM. Materials and methods: The parameters of 913 pregnant women screened for GDM are evaluated retrospectively. The two steps screening with 50-100 gram OGTT were used in 576 patients. The remaining 337 patients were screened with 75 gram OGTT. Results: The HbA1c levels of patients having high blood glucose (≥153 mg/dl) levels at 2nd hour in 75 gram OGTT were significantly higher than patients having normal blood glucose levels at 2nd hour of 75 gram OGTT (P=0.038). Correlation analyses showed no significant relation between any blood glucose level of 100 gram OGTT and HbA1c level. Whereas in 75 gram OGTT 1st and 2nd hour blood glucose levels were found to have a significant relation with A1c levels (P=0.001, P=0.001 respectively). Conclusion: HbA1c may be used as an important tool in the diagnosis of GDM. But due to the variation of HbA1c in pregnant women and there is not an absolute cut-off level for A1c, it may be more reliable to evaluate HbA1c level together with the blood glucose levels in OGTT. PMID:26550262

  10. Effects of three day bed-rest on circulatory, metabolic and hormonal responses to oral glucose load in endurance trained athletes and untrained subjects

    NASA Technical Reports Server (NTRS)

    Smorawinski, J.; Kubala, P.; Kaciuba-Uociako, H.; Nazar, K.; Titow-Stupnicka, E.; Greenleaf, J. E.

    1996-01-01

    Endurance trained long distance runners and untrained individuals underwent three days of bed rest and oral glucose loading. Before and after bed rest, individuals were given glucose tolerance tests, and their heart rates, blood pressure, blood glucose levels, insulin levels, and catecholamine interactions were measured. Results indicated that glucose tolerance is more affected by bed rest-induced deconditioning in untrained individuals than in trained individuals.

  11. Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice.

    PubMed

    Gunnarsson, P Thomas; Winzell, Maria Sörhede; Deacon, Carolyn F; Larsen, Marianne O; Jelic, Katarina; Carr, Richard D; Ahrén, Bo

    2006-07-01

    Monounsaturated fatty acids, such as oleic acid (OA), and certain milk proteins, especially whey protein (WP), have insulinotropic effects and can reduce postprandial glycemia. This effect may involve the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). To explore this, we examined the release and inactivation of GIP and GLP-1 after administration of glucose with or without OA or WP through gastric gavage in anesthetized C57BL/6J mice. Insulin responses to glucose (75 mg) were 3-fold augmented by addition of WP (75 mg; P < 0.01), which was associated with enhanced oral glucose tolerance (P < 0.01). The insulin response to glucose was also augmented by addition of OA (34 mg; P < 0.05) although only 1.5-fold and with no associated increase in glucose elimination. The slope of the glucose-insulin curve was increased by OA (1.7-fold; P < 0.05) and by WP (4-fold; P < 0.01) compared with glucose alone, suggesting potentiation of glucose-stimulated insulin release. WP increased GLP-1 secretion (P < 0.01), whereas GIP secretion was unaffected. OA did not affect GIP or GLP-1 secretion. Nevertheless, WP increased the levels of both intact GIP and intact GLP-1 (both P < 0.01), and OA increased the levels of intact GLP-1 (P < 0.05). WP inhibited dipeptidyl peptidase IV activity in the proximal small intestine by 50% (P < 0.05), suggesting that luminal degradation of WP generates small fragments, which are substrates for dipeptidyl peptidase IV and act as competitive inhibitors. We therefore conclude that fat and protein may serve as exogenous regulators of secretion and inactivation of the incretin hormones with beneficial influences on glucose metabolism. PMID:16627575

  12. Pre-Type 1 Diabetes Dysmetabolism: Maximal sensitivity achieved with Both Oral and Intravenous Glucose Tolerance Testing

    PubMed Central

    Barker, Jennifer M.; McFann, Kim; Harrison, Leonard C.; Fourlanos, Spiros; Krischer, Jeffrey; Cuthbertson, David; Chase, H. Peter; Eisenbarth, George S.; Group, the DPT-1 Study

    2007-01-01

    Objective To determine the relationship of intravenous (IVGTT) and oral (OGTT) glucose tolerance tests abnormalities to diabetes development in a high-risk pre-diabetic cohort and identify an optimal testing strategy for detecting pre-clinical diabetes. Study design Diabetes Prevention Trial Type 1 randomized subjects to oral (n=372) and parenteral (n=339) insulin prevention trials. Subjects were followed with IVGTTs and OGTTs. Factors associated with progression to diabetes were evaluated. Results Survival analysis revealed that higher quartiles of 2-hour glucose and lower quartiles of FPIR at baseline were associated with decreased diabetes-free survival. Cox proportional hazards modeling showed that baseline BMI, FPIR and 2-hour glucose levels were significantly associated with an increased hazard for diabetes. On testing performed within 6 months of diabetes diagnosis, 3% (1/32) had normal first phase insulin response (FPIR) and normal 2-hour glucose on OGTT. The sensitivities for impaired glucose tolerance (IGT) and low FPIR performed within 6 months of diabetes diagnosis were equivalent (76% vs. 73%). Conclusions Most (97%) subjects had abnormal IVGTTs and/or OGTTs prior to the development of diabetes. The highest sensitivity is achieved using both tests. PMID:17188609

  13. Workforce strategies to improve children's oral health.

    PubMed

    Goodwin, Kristine

    2014-12-01

    (1) Tooth decay is the most common chronic disease for children. (2) As millions receive dental coverage under the Affordable Care Act, the demand for dental services is expected to strain the current workforce's ability to meet their needs. (3) States have adopted various workforce approaches to improve access to dental care for underserved populations. PMID:25556260

  14. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    PubMed Central

    Dabeka, Robert; Fouquet, Andre; Belisle, Stephane; Turcotte, Stephane

    2011-01-01

    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels averaged 0.23 and 1.18 ng g−1, respectively Average Al levels on an as-consumed basis were 440 ng g−1 (range 10–3400 ng g−1) in milk-based formulae and 730 ng g−1 (range 230–1100 ng g−1) in soy-based formulae. Al concentrations increased in the following order: plain formula < low-iron formula < iron-supplemented formula < casein hydrolysate formula ≈ premature formula ≤ soy formula. For example, in the powdered formulae, average Al concentrations were 18 ng g−1 for plain milk-based, 37 ng g−1 for low-iron, 128 ng g−1 for iron supplemented, 462 ng g−1 for lactose-free, 518 ng g−1 for hypoallergenic and 619 ng g−1 for soy-based formula. Al concentrations, as-consumed, increased with decreasing levels of concentration: powder < concentrated liquid < ready-to-use. Formulae stored in glass bottles contained between 100 and 300 ng g−1 more Al than the same formulae stored in cans. The source of the increased Al did not appear to be the glass itself, because most electrolytes and glucose solutions, also stored in glass, contained less than 8 ng g−1 Al. Corresponding differences in Pb and Cd levels were not observed. Al concentrations varied substantially among manufacturers; however, all manufacturers were able to produce plain milk-based formulae containing less than 50 ng g−1 Al, i.e. within the range of Al concentrations found in human milk. Next to soya-based and hypoallergenic formulae, premature formulae contained among the highest

  15. A novel EPO receptor agonist improves glucose tolerance via glucose uptake in skeletal muscle in a mouse model of diabetes.

    PubMed

    Scully, Michael S; Ort, Tatiana A; James, Ian E; Bugelski, Peter J; Makropoulos, Dorie A; Deutsch, Heather A; Pieterman, Elsbet J; van den Hoek, Anita M; Havekes, Louis M; Dubell, William H; Wertheimer, Joshua D; Picha, Kristen M

    2011-01-01

    Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of (14)C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude. PMID:21754921

  16. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice.

    PubMed

    Tsuneki, Hiroshi; Nagata, Takashi; Fujita, Mikio; Kon, Kanta; Wu, Naizhen; Takatsuki, Mayumi; Yamaguchi, Kaoru; Wada, Tsutomu; Nishijo, Hisao; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2016-01-01

    Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems. PMID:26492471

  17. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial.

    PubMed Central

    Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Holloszy, John O.

    2006-01-01

    Background Weight loss, through caloric restriction (CR) or increases in exercise energy expenditure (EX), improves glucose tolerance and insulin action. However, EX may further improve glucoregulation through weight-loss independent mechanisms. Objective To assess the hypothesis that weight loss through EX improves glucoregulation and circulating factors involved in insulin action, to a greater extent than does similar weight loss through CR. Design Sedentary 50- to 60-year-old men and women (body mass index=23.5–29.9 kg/m2) were randomized to 12-month EX (n=18) or CR (n=18) weight loss interventions or to a healthy lifestyle (HL) control group (n=10). Insulin sensitivity index (ISI) and the glucose and insulin areas under the curve (AUCs) were assessed by oral glucose tolerance test (OGTT). Adiponectin and tumor necrosis factor-α (TNFα) were assessed in fasting serum. Fat mass was determined by DXA. Results Yearlong energy deficits were not different between EX and CR as evidenced by body weight and fat mass changes. ISI increased, and the glucose and insulin AUCs decreased in the EX and CR groups and remained unchanged in the HL group but did not differ between EX and CR. Marginally significant increases in adiponectin, and decreases in the TNFα-to-adiponectin ratio, occurred in the EX and CR groups but not in the HL group. Conclusions EX- and CR-induced weight losses are both effective for improving glucose tolerance and insulin action in non-obese, healthy, middle-aged men and women; however, it does not appear that exercise training-induced weight loss results in greater improvements than those that result from CR. PMID:17093155

  18. Polyphenol-Rich Rutgers Scarlet Lettuce Improves Glucose Metabolism and Liver Lipid Accumulation in Diet Induced Obese C57BL/6 Mice

    PubMed Central

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Poulev, Alexander; Waterman, Carrie; Rojas-Silva, Patricio; Johnson, William D.

    2014-01-01

    Objective The aims of the following experiments were to characterize anti-diabetic in vitro and in vivo activity of the polyphenol-rich aqueous extract of Rutgers Scarlet Lettuce. Materials / Methods Rutgers Scarlet Lettuce (RSL) extract (RSLE) and isolated compounds were evaluated for inhibitory effects on glucose production as well as tumor necrosis factor alpha (TNFα)-dependent inhibition of insulin activity in H4IIE rat hepatoma cells. Additionally, high fat diet-induced obese mice were treated with RSLE (100 or 300 mg/kg), Metformin (250 mg/kg) or vehicle (water) for 28 days by oral administration and insulin and oral glucose tolerance tests were conducted. Tissues were harvested at the end of the study and evaluated for biochemical and physiological improvements in metabolic syndrome conditions. Results A polyphenol-rich RSLE, containing chlorogenic acid, cyanidin malonyl-glucoside and quercetin malonyl-glucoside, was produced by simple boiling water extraction at pH 2. In vitro, RSLE and chlorogenic acid demonstrated dose-dependent inhibition of glucose production. In vivo, RSLE treatment improved glucose metabolism measured by oral glucose tolerance tests, but not insulin tolerance tests. RSLE treated groups had a lower ratio of liver weight to body weight as well as decreased total liver lipids compared to control group after 28 days of treatment. No significant differences in plasma glucose, insulin, cholesterol, and triglycerides were observed with RSLE treated groups compared to vehicle control. Conclusion RSLE demonstrated anti-diabetic effects in vitro and in vivo and may improve metabolic syndrome conditions of fatty liver and glucose metabolism. PMID:24985107

  19. Detecting Prediabetes and Diabetes: Agreement between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults

    PubMed Central

    Aekplakorn, Wichai; Tantayotai, Valla; Numsangkul, Sakawduan; Sripho, Wilarwan; Tatsato, Nutchanat; Burapasiriwat, Tuanjai; Pipatsart, Rachada; Sansom, Premsuree; Luckanajantachote, Pranee; Chawarokorn, Pongpat; Thanonghan, Anek; Lakhamkaew, Watchira; Mungkung, Aungsumalin; Boonkean, Rungnapa; Chantapoon, Chanidsa; Kungsri, Mayuree; Luanseng, Kasetsak; Chaiyajit, Kornsinun

    2015-01-01

    Aim. To evaluate an agreement in identifying dysglycemia between fasting plasma glucose (FPG) and the 2 hr postprandial glucose tolerance test (OGTT) in a population with high risk of diabetes. Methods. A total of 6,884 individuals aged 35–65 years recruited for a community-based diabetes prevention program were tested for prediabetes including impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and diabetes. The agreement was assessed by Kappa statistics. Logistic regression was used to examine factors associated with missed prediabetes and diabetes by FPG. Results. A total of 2671 (38.8%) individuals with prediabetes were identified. The prevalence of prediabetes identified by FPG and OGTT was 32.2% and 22.3%, respectively. The proportions of diabetes classified by OGTT were two times higher than those identified by FPG (11.0% versus 5.4%, resp.). The Kappa statistics for agreement of both tests was 0.55. Overall, FPG missed 46.3% of all prediabetes and 54.7% of all diabetes cases. Prediabetes was more likely to be missed by FPG among female, people aged <45 yrs, and those without family history of diabetes. Conclusion. The detection of prediabetes and diabetes using FPG only may miss half of the cases. Benefit of adding OGTT to FPG in some specific groups should be confirmed. PMID:26347060

  20. Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status.

    PubMed

    Santos, J L; Yévenes, I; Cataldo, L R; Morales, M; Galgani, J; Arancibia, C; Vega, J; Olmos, P; Flores, M; Valderas, J P; Pollak, F

    2016-06-01

    Insulin secretion and insulin sensitivity indexes are related by hyperbolic functions, allowing the calculation of the disposition index (DI) as the product of the acute insulin response (AIR) and the insulin sensitivity index (Si) from intravenous glucose tolerance test (IVGTT). Our objective was to develop an oral-DI based on the oral glucose tolerance test (OGTT) and to assess its association with glucose tolerance status. This research is structured in three studies. Study 1: OGTT were performed in 833 non-diabetic Chilean women (18-60 years) without family history of diabetes mellitus. Study 2: an independent group of n = 57 non-diabetic (18-46 years) without family history of diabetes mellitus carried out an OGTT and an abbreviated IVGTT. Study 3: a sample of 1674 Chilean adults (18-60 years) with different glycaemic status performed an OGTT. An adequate statistical fit for a rectangular hyperbola was found between the area under the curve of insulin-to-glucose ratio (AUCI/G-R) and the Matsuda ISI-COMP index (study 1). The oral-DI derived as AUCI/G-R × ISI-COMP was previously termed insulin-secretion-sensitivity index-2 (ISSI-2). ISSI-2 significantly correlated with DI from IVGTT (rho = 0.34; p = 0.009) (study 2). ISSI-2 shows important differences across groups of subjects with different glycaemic status (study 3). We have confirmed that ISSI-2 replicates the mathematical properties of DI, showing significant correlations with DI from the abbreviated MM-IVGTT. These results indicate that ISSI-2 constitutes a surrogate measure of insulin secretion relative to insulin sensitivity and emphasizes the pivotal role of impaired insulin secretion in the development of glucose homeostasis dysregulation. PMID:26660757

  1. Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test.

    PubMed

    Schauder, P; Matthaei, D; Henning, H V; Scheler, F; Langenbeck, U

    1981-08-01

    The effect of an oral glucose tolerance test (oGTT) on serum levels of branched-chain keto acids (BCKA), i.e. alpha-keto-isocaproic acid (KICA), alpha-keto-isovaleric acid (KIVA) and alpha-keto-beta methyl-n-valeric acid (KMVA) as well as on serum insulin, C-peptide and blood glucose levels was determined in uremic patients and in healthy control subjects. In controls, blood levels of KICA, KMVA and KIVA declined significantly following oral administration of 100 glucose. In uremic patients no decline of KICA was observed. The fall of KMVA was diminished, while suppression of KIVA blood levels in response to the oGGT remained unimpaired. Although serum insulin and C-peptide levels in uremic patients were not significantly different from the controls before and throughout the oGTT, six out of eight displayed abnormal glucose tolerance. It is suggested that the response of blood BCKA levels to an oGTT is altered in uremia, an abnormality restricted primarily to KICA and possibly explained by insulin antagonism and/or by insufficient insulin secretion. PMID:7021997

  2. Periodontal Bacteria and Prediabetes Prevalence in ORIGINS: The Oral Infections, Glucose Intolerance, and Insulin Resistance Study.

    PubMed

    Demmer, R T; Jacobs, D R; Singh, R; Zuk, A; Rosenbaum, M; Papapanou, P N; Desvarieux, M

    2015-09-01

    Periodontitis and type 2 diabetes mellitus are known to be associated. The relationship between periodontal microbiota and early diabetes risk has not been studied. We investigated the association between periodontal bacteria and prediabetes prevalence among diabetes-free adults. ORIGINS (the Oral Infections, Glucose Intolerance and Insulin Resistance Study) cross sectionally enrolled 300 diabetes-free adults aged 20 to 55 y (mean ± SD, 34 ± 10 y; 77% female). Prediabetes was defined as follows: 1) hemoglobin A1c values ranging from 5.7% to 6.4% or 2) fasting plasma glucose ranging from 100 to 125 mg/dL. In 1,188 subgingival plaque samples, 11 bacterial species were assessed at baseline, including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Actinomyces naeslundii. Full-mouth clinical periodontal examinations were performed, and participants were defined as having no/mild periodontitis vs. moderate/severe periodontitis per the definition of the Centers for Disease Control and Prevention / American Academy of Periodontology. Modified Poisson regression evaluated prediabetes prevalence across bacterial tertiles. Prevalence ratios and 95% confidence intervals for third vs. first tertiles are presented. All analyses were adjusted for cardiometabolic risk factors. All results presented currently arise from the baseline cross section. Prediabetes prevalence was 18%, and 58% of participants had moderate/severe periodontitis. Prevalence ratios (95% confidence intervals) summarizing associations between bacterial levels and prediabetes were as follows: A. actinomycetemcomitans, 2.48 (1.34, 4.58), P = 0.004; P. gingivalis, 3.41 (1.78, 6.58), P = 0.0003; T. denticola, 1.99 (0.992, 4.00), P = 0.052; T. forsythia, 1.95 (1.0, 3.84), P = 0.05; A. naeslundii, 0.46 (0.25, 0.85), P = 0.01. The prevalence ratio for prediabetes among participants with moderate/severe vs. no/mild periodontitis was 1.47 (0.78, 2.74), P

  3. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria.

    PubMed

    Chhabra, Kavaljit H; Adams, Jessica M; Fagel, Brian; Lam, Daniel D; Qi, Nathan; Rubinstein, Marcelo; Low, Malcolm J

    2016-03-01

    Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes. PMID:26467632

  4. Assessment of incretins in oral glucose and lipid tolerance tests may be indicative in the diagnosis of metabolic syndrome aggravation.

    PubMed

    Kiec-Klimczak, M; Malczewska-Malec, M; Razny, U; Zdzienicka, A; Gruca, A; Goralska, J; Pach, D; Gilis-Januszewska, A; Dembinska-Kiec, A; Hubalewska-Dydejczyk, A

    2016-04-01

    Incretins stimulated by oral meals are claimed to be protective for the pancreatic beta cells, to increase insulin secretion, to inhibit glucagon release, slow gastric emptying (glucagon-like peptide-1) and suppress appetite. Recently it has however been suggested that glucagon-like peptide-1 (GLP-1) is putative early biomarker of metabolic consequences of the obesity associated proinflammatory state. The study was aimed to compare the release of incretins and some of early markers of inflammation at the fasting and postprandial period induced by functional oral glucose as well as lipid load in healthy controls and patients with metabolic syndrome (MS) to see if functional tests may be helpful in searching for the inflammatory status of patients. Fifty patients with MS and 20 healthy volunteers (C) participated in this study. The 3-hour oral glucose (OGTT) and the 8-hour oral lipid (OLTT) tolerance tests were performed. At fasting leptin and adiponectin, as well as every 30 minutes of OGTT and every 2 hours of OLTT blood concentration of GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, insulin, triglycerides, free fatty acids, glutathione peroxidase, interleukin-6, sE-selectin, monocyte chemoattractant protein-1 (MCP1) and visfatin were measured. At fasting and during both OGTT and OLTT the level of incretins did not differ between the MS and the C group. Both glucose and lipids reach food activated incretins secretion. Glucose was the main GLP-1 release activator, while the lipid load activated evidently GIP secretion. A significantly larger AUC-GIP after the lipid-rich meal over the carbohydrate meal was observed, while statistically bigger value of AUC-GLP-1 was noticed in OGTT than in OLTT (P < 0.001) within each of the investigated groups. In patients with the highest fasting plasma GIP concentration (3(rd) tertile), IL-6, MCP-1, sE-selectin and visfatin blood levels were increased and correlated with glutathione peroxydase, leptin

  5. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyceollins (glyceollin I, II, and III), isoflavone phytoalexins synthesized by soy in response to environmental stresses such as microbial infections. Glyceollins exhibited anti-cancer and anti-diabetes effects: previously we showed that glyceollins inhibited cancer cell growth in vitro and in viv...

  6. Peptide hormones in saliva. I. Insulin in saliva during the oral glucose tolerance test in female patients.

    PubMed

    Simionescu, L; Aman, E; Muşeţeanu, P; Dinulescu, E; Giurcăneanu, M

    1985-01-01

    The radioimmunoassay (RIA) of insulin was performed in the serum and saliva of 27 female patients during the oral glucose tolerance test (OGTT). The patients were divided into two groups: 19 non-diabetic patients and 8 patients diagnosed as impaired glucose tolerance (IGT) disease. In one patient in each group, the OGTT was performed twice at intervals of 3-5 days. The results show that immunoreactive insulin (IRI) is present in saliva and its concentration increases during the glucose stimulation test from 6.48 +/- 1.13 microU/ml (means +/- SEM) in basal conditions at peak values of 45.46 +/- 10.14 microU/ml at 2 hrs after glucose intake. In patients with IGT salivary IRI increases from 5.18 +/- 1.39 microU/ml in basal conditions to peak values of 83.34 +/- 25.85 microU/ml at 3 hrs after glucose administration. Great response variations were observed either inter-individual or intraindividual in both groups of patients. Some patients had unusual high salivary IRI concentration especially in those with gastrointestinal troubles. Further, some hypotheses and experimental models, are advanced, considered useful for the explanation of the physiologic significance of the salivary IRI or of the IRI-like material. PMID:3901231

  7. An Improved Method for Studying the Enzyme-Catalyzed Oxidation of Glucose Using Luminescent Probes

    ERIC Educational Resources Information Center

    Bare, William D.; Pham, Chi V.; Cuber, Matthew; Demas, J. N.

    2007-01-01

    A new method is presented for measuring the rate of the oxidation of glucose in the presence of glucose oxidase. The improved method employs luminescence measurements to directly determine the concentration of oxygen in real time, thus obviating complicated reaction schemes employed in previous methods. Our method has been used to determine…

  8. Improving oral reading fluency with a peer-mediated intervention.

    PubMed

    Hofstadter-Duke, Kristi L; Daly, Edward J

    2011-01-01

    This study examined the effects of an experimentally derived, peer-delivered reading intervention on the oral reading fluency of a first-grade student who had been referred for poor reading fluency. Same-grade peers were trained to lead the target student through a structured intervention protocol based on the results of a brief experimental analysis. Results indicated that reading improvements were obtained and are discussed in terms of selecting efficient interventions for use by peers. PMID:21941397

  9. How can we improve oral contraceptive success in obese women?

    PubMed Central

    Cherala, Ganesh; Edelman, Alison

    2015-01-01

    Summary A rapid increase in obesity rates worldwide further underscores the importance of better understanding the pharmacokinetic alterations in this sub-population and the subsequent effects on pharmaco-therapeutics. Pharmacokinetics of contraceptive steroids are altered in obese oral contraceptive users which may in turn impact efficacy. Our work has identified several dosing strategies that offset these pharmacokinetic changes and may improve effectiveness for obese OC users. PMID:25354219

  10. Short-Term Regulation of Lipocalin-2 but not RBP-4 During Oral Lipid Tolerance Test and Oral Glucose Tolerance Test.

    PubMed

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2016-02-01

    The postprandial regulation of lipocalin-2 and retinol binding protein-4 (RBP-4) by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of lipocalin-2 and RBP-4 in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn after 0, 2, 4, and 6 h in OLTT and after 0, 1, and 2 h in OGTT. In order to dissect carbohydrate-induced from lipid-induced effects, a novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of lipocalin-2 and RBP-4 were measured by enzyme-linked immunosorbent assay (ELISA). Whereas RBP-4 levels remained unchanged during OGTT, lipocalin-2 concentrations significantly decreased during OGTT. During OLTT, RBP-4 levels were not influenced, whereas lipocalin-2 levels decreased significantly and stepwise. Fasting concentrations of RBP-4 were negatively correlated with BMI and waist-hip ratio, whereas lipocalin-2 levels were positively associated with BMI and waist-hip ratio. Female users of hormonal contraception had higher RBP-4 levels than females not on contraceptives. There is no significant short-term regulation of RBP-4 by orally ingested lipids or carbohydrates. Lipocalin-2 is downregulated after lipid and carbohydrate ingestion and this kind of regulation was not predicted by age, sex, triglycerides, glucose, or insulin levels. PMID:26069091

  11. Evaluation of analgesic effect of skin-to-skin contact compared to oral glucose in preterm neonates.

    PubMed

    Freire, Nájala Borges de Sousa; Garcia, João Batista Santos; Lamy, Zeni Carvalho

    2008-09-30

    Nonpharmacological interventions are important alternatives for pain relief during minor procedures in preterm neonates. Skin-to-skin contact or kangaroo mother care is a human and efficient way of caring for low-weight preterm neonates. The aim of the present study was to assess the analgesic effect of kangaroo care compared to oral glucose on the response of healthy preterm neonates to a low-intensity acute painful stimulus. Ninety-five preterm neonates with a postmenstrual age of 28-36 weeks were randomly assigned to three groups in a single-blind manner. In group 1 (isolette, n=33), the neonate was in the prone position in the isolette during heel lancing and did not receive analgesia. In group 2 (kangaroo method, n=31), the neonate was held in skin-to-skin contact for 10 min before and during the heel-lancing procedure. In group 3 (glucose, n=31), the neonate was in the prone position in the isolette and received oral glucose (1 ml, 25%) 2 min before heel lancing. A smaller variation in heart rate (p=0.0001) and oxygen saturation (p=0.0012), a shorter duration of facial activity (brow bulge, eye squeeze and nasolabial furrowing) (p=0.0001), and a lower PIPP (Premature Infant Pain Profile) score (p=0.0001) were observed in group 2. In conclusion, skin-to-skin contact produced an analgesic effect in preterm newborns during heel lancing. PMID:18434021

  12. Oral glucose retention, saliva viscosity and flow rate in 5-year-old children.

    PubMed

    Negoro, M; Nakagaki, H; Tsuboi, S; Adachi, K; Hanaki, M; Tanaka, D; Takami, Y; Nakano, T; Kuwahara, M; Thuy, T T

    2000-11-01

    There are significant differences of glucose retention in site-specificity and individuals. Sixty-two 5-year-old nursery schoolchildren participated in this study on the relation between the viscosity of saliva and flow rate and glucose retention. Each child was instructed to rinse his/her mouth with a glucose solution (0.5 M, 5 ml) and then to spit out. Three minutes after rinsing, glucose retention was determined. Resting saliva was collected by a natural outflow method, then the flow rate was determined. A rotational viscometer was used to determine the viscosity. Glucose retention and flow rate were correlated at the left maxillary primary molars, and glucose retention and viscosity were correlated at the maxillary central primary incisors. It was concluded that glucose retention after glucose mouth rinsing was site-specific, and that glucose retention and the index of decayed, missing and filled primary teeth (dmft) were slightly correlated with the salivary viscosity and flow rate. PMID:11000387

  13. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.

    PubMed

    He, Haibing; Wang, Puxiu; Cai, Cuifang; Yang, Rui; Tang, Xing

    2015-09-30

    To improve the oral absorption of insulin, a novel carrier of Vitamin B12 (VB12) gel core solid lipid nanopaticles (Gel-Core-SLN, GCSLN) was designed with a gel core, lipid matrix and VB12-coated surface. VB12-stearate was synthesized and characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Sol-gel conversion following ultrasonic heating and double emulsion technology were combined to implant the insulin-containing gel into solid lipid nanoparticles (SLN). The influence of the mode of administration, food, the amount of VB12-stearate and the particle size on the oral absorption of insulin incorporated in the VB12-GCSLN was investigated. The determined partition coefficient (LogP) of VB12-stearate in a dichloromethane (DCM)-water system was 3.4. This new structure of VB12-GCSLN had higher insulin encapsulation efficiency (EE) of 55.9%, a lower burst release of less than 10% in the first 2h. In vivo studies demonstrated that stronger absorption of insulin with a relative pharmacological availability (PA) of 9.31% compared with the normal insulin-loaded SLN and GCSLN and fairly stable blood glucose levels up to 12h were maintained without any sharp fluctuations. This study suggests that VB12-GCSLN containing insulin appears to be a promising nano carrier for oral delivery of biomacromolecules with relatively high pharmacological availability. PMID:26253378

  14. Breed differences in insulin sensitivity and insulinemic responses to oral glucose in horses and ponies of moderate body condition score.

    PubMed

    Bamford, N J; Potter, S J; Harris, P A; Bailey, S R

    2014-04-01

    Breed-related differences may occur in the innate insulin sensitivity (SI) of horses and ponies, an important factor believed to be associated with the risk of laminitis. The aim of this study was to measure the glucose and insulin responses of different breeds of horses and ponies in moderate body condition to a glucose-containing meal and to compare these responses with the indices of SI as determined by a frequently sampled intravenous glucose tolerance test (FSIGT). Eight Standardbred horses, 8 mixed-breed ponies, and 7 Andalusian-cross horses with a mean ± SEM BCS 5.0 ± 0.3 of 9 were used in this study. Each animal underwent an oral glucose tolerance test (OGTT) in which they were fed a fiber-based ration (2.0 g/kg BW) containing 1.5 g/kg BW added glucose, as well as a standard FSIGT with minimal model analysis. The glucose response variables from the OGTT were similar between groups; however, the peak insulin concentration was higher in ponies (94.1 ± 29.1 μIU/mL; P = 0.003) and Andalusians (85.3 ± 18.6; P = 0.004) than in Standardbreds (21.2 ± 3.5). The insulin area under the curve was also higher in ponies (13.5 ± 3.6 IU · min · L(-1); P = 0.009) and Andalusians (15.0 ± 2.7; P = 0.004) than in Standardbreds (3.1 ± 0.6). Insulin sensitivity, as determined by the FSIGT, was lower in Andalusians (0.99 ± 0.18 × 10(-4)/[mIU · min]) than in Standardbreds (5.43 ± 0.94; P < 0.001) and in ponies (2.12 ± 0.44; P = 0.003) than in Standardbreds. Peak insulin concentrations from the OGTT were negatively correlated with SI (P < 0.001; rs = -0.75). These results indicate that there are clear breed-related differences in the insulin responses of horses and ponies to oral and intravenous glucose. All animals were in moderate body condition, indicating that breed-related differences in insulin dynamics occurred independent of obesity. PMID:24308928

  15. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique.

    PubMed

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box-Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  16. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique

    PubMed Central

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box–Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  17. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  18. Post-oral infusion sites that support glucose-conditioned flavor preferences in rats.

    PubMed

    Ackroff, Karen; Yiin, Yeh-Min; Sclafani, Anthony

    2010-03-01

    Rats learn to prefer a flavored solution (CS+) paired with a gastrointestinal glucose infusion over an alternate flavor (CS-) paired with a non-caloric infusion. Prior work implicates a post-gastric site of glucose action, which is the focus of this study. In Exp. 1, male rats (8-10/group) were infused in the duodenum (ID), mid-jejunum (IJ), or distal ileum (II) with 8% glucose or water as they drank saccharin-sweetened CS+ and CS- solutions, respectively, in one-bottle 30-min sessions. Two-bottle tests (no infusions) were followed by a second train-test cycle. By the second test, the ID and IJ groups preferred the CS+ (69%, 67%) to the CS- but the II group did not (48%). Satiation tests showed that ID and IJ infusions of glucose reduced intake of a palatable solution similarly, while II infusions were ineffective. In Exp. 2, rats (10/group) drank CS solutions in one-bottle, 30-min sessions and were given 2-h ID or hepatic portal vein (HP) infusions. The CS+ and CS- were paired with 10 ml infusions of 10% glucose and 0.9% saline, respectively. Following 8 training sessions, the ID group preferred the CS+ (67%) to the CS- but the HP group did not (47%) in a two-bottle test. The similar CS+ preferences displayed by ID and IJ, but not II groups implicate the jejunum as a critical site for glucose-conditioned preferences. A pre-absorptive glucose action is indicated by the CS+ preference displayed by ID but not HP rats in Exp. 2. Our data were obtained with non-nutritive CS solutions. HP glucose infusions are reported to condition preferences for a flavored food that itself has pre- and post-absorptive actions. Thus, there may be multiple sites for glucose conditioning with the upper or mid-intestines being the first site of action. PMID:20026145

  19. Effect of Miglitol (Bay m1099), a new alpha-glucosidase inhibitor, on glucose, insulin, C-peptide and GIP responses to an oral sucrose load in patients with post-prandial hypoglycaemic symptoms.

    PubMed

    Renard, E; Parer-Richard, C; Richard, J L; Jureidini, S; Orsetti, A; Mirouze, J

    1991-01-01

    Sixteen patients suffering from symptoms suggestive of idiopathic reactive hypoglycaemia and reproducible during an oral glucose tolerance test when plasma glucose was less than or equal to 2.8 mM, were included in an acute, double-blind and cross-over study to test the efficacy of Miglitol (Bay m1099), a new alpha-glucosidase inhibitor versus placebo. Patients were randomized to ingest 100 mg Miglitol or placebo together with a sucrose solution (45 g/m2 body surface), one week apart. During four hours, plasma glucose levels were continuously monitored and plasma insulin and gastric inhibitory polypeptide (GIP) levels were measured at 30-minute intervals; serum C-peptide concentration was determined at 0, 30, 60 minutes and then every hour. The post-load rise in plasma glucose was significantly blunted by Miglitol, as shown by the reduced plasma glucose peak, the diminished early (0-120 min) area under the glycaemic curve and the decreased rate of plasma glucose rise. Thereafter, plasma glucose nadir was significantly raised and rate of plasma glucose fall was slowed by Miglitol with a concomitant improvement in the hypoglycaemic index. Insulin secretion was dampened as indicated by parallel reduction of plasma insulin and serum C-peptide peaks; morever, early area under the insulin curve and total (0-240 min) area under the C-peptide curve were significantly reduced. Decrease of plasma GIP peak and total area under the GIP curve were also significant. During sucrose tolerance test with Miglitol, hypoglycaemic symptoms were significantly alleviated but intestinal side-effects were common. Blunting the insulin response to glucose directly by delaying glucose absorption and indirectly through reducing GIP secretion, may be a valuable therapeutic approach in reactive hypoglycemia; nevertheless, long-term study with Miglitol are needed, due to the poor intestinal tolerance of this drug in the present acute study. PMID:1884880

  20. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  1. Intake of St John's wort improves the glucose tolerance in healthy subjects who ingest metformin compared with metformin alone

    PubMed Central

    Stage, Tore Bjerregaard; Pedersen, Rasmus Steen; Damkier, Per; Christensen, Mette Marie Hougaard; Feddersen, Søren; Larsen, John Teilmann; Højlund, Kurt; Brøsen, Kim

    2015-01-01

    Aims Our objective was to investigate the steady-state pharmacokinetic and pharmacodynamic interaction between the antidepressive herbal medicine St John's wort and the antidiabetic drug metformin. Methods We performed an open cross-over study in 20 healthy male subjects, who received 1 g of metformin twice daily for 1 week with and without 21 days of preceding and concomitant treatment with St John's wort. The pharmacokinetics of metformin was determined, and a 2 h oral glucose tolerance test was performed. Results St John's wort decreased the renal clearance of metformin but did not affect any other metformin pharmacokinetic parameter. The addition of St John's wort decreased the area under the glucose concentration–time curve [702 (95% confidence interval, 643–761) vs. 629 min*mmol/L (95% confidence interval, 568–690), P = 0.003], and this effect was caused by a statistically significant increase in the acute insulin response. Conclusions St John's wort improves glucose tolerance by enhancing insulin secretion independently of insulin sensitivity in healthy male subjects taking metformin. PMID:25223504

  2. Mango Supplementation Improves Blood Glucose in Obese Individuals

    PubMed Central

    Evans, Shirley F; Meister, Maureen; Mahmood, Maryam; Eldoumi, Heba; Peterson, Sandra; Perkins-Veazie, Penelope; Clarke, Stephen L; Payton, Mark; Smith, Brenda J; Lucas, Edralin A

    2014-01-01

    This pilot study examined the effects of freeze-dried mango (Mangifera indica L.) supplementation on anthropometrics, body composition, and biochemical parameters in obese individuals. Twenty obese adults (11 males and 9 females) ages 20- to 50-years old, received 10 g/day of ground freeze-dried mango pulp for 12 weeks. Anthropometrics, biochemical parameters, and body composition were assessed at baseline and final visits of the study. After 12 weeks, mango supplementation significantly reduced blood glucose in both male (−4.45 mg/dL, P = 0.018) and female (−3.56 mg/dL, P = 0.003) participants. In addition, hip circumference was reduced in male (−3.3 cm, P = 0.048) but not in female participants. However, there were no significant changes in body weight or composition in either gender. Our findings indicate that regular consumption of freeze-dried mango by obese individuals does not negatively impact body weight but provides a positive effect on fasting blood glucose. PMID:25210462

  3. Electroacupuncture improves glucose tolerance through cholinergic nerve and nitric oxide synthase effects in rats.

    PubMed

    Lin, Rong-Tsung; Chen, Ching-Yuan; Tzeng, Chung-Yuh; Lee, Yu-Chen; Cheng, Yu-Wen; Chen, Ying-I; Ho, Wai-Jane; Cheng, Juei-Tang; Lin, Jaung-Geng; Chang, Shih-Liang

    2011-04-25

    The purpose of this investigation was to evaluate the effect and mechanisms of electroacupuncture (EA) at the bilateral Zusanli acupoints (ST-36) on glucose tolerance in normal rats. Intravenous glucose tolerance test (IVGTT) was performed to examine the effects of electroacupuncture (EA) on glucose tolerance in rats. The EA group underwent EA at the ST-36, with settings of 15 Hz, 10 mA, and 60 min; the control group underwent the same treatments, but without EA. Atropine, hemicholinium-3 (HC-3) or NG-nitro-L-arginine methyl ester (L-NAME) were injected into the rats alone or simultaneously and EA was performed to investigate differences in plasma glucose levels compared to the control group. Plasma samples were obtained for assaying plasma glucose and free fatty acid (FFA) levels. Western blot was done to determine the insulin signal protein and nNOS to exam the correlation between EA and improvement in glucose tolerance. The EA group had significantly lower plasma glucose levels compared to the control group. Plasma glucose levels differed significantly between the EA and control groups after the administration of L-NAME, atropine, or HC-3 treatments alone, but there were no significant differences in plasma glucose with combined treatment of L-NAME and atropine or L-NAME and HC-3. EA decreased FFA levels and enhanced insulin signal protein (IRS1) and nNOS activities in skeletal muscle during IVGTT. In summary, EA stimulated cholinergic nerves and nitric oxide synthase for lowering plasma FFA levels to improve glucose tolerance. PMID:21376780

  4. Improvement of the quantitative method for glucose determination using hexokinase and glucose 6-phosphate dehydrogenase.

    PubMed

    Ogawa, Z; Kanashima, M; Nishioka, H

    2001-05-01

    This paper has two aims. The first one is to point out the shortcomings of Food and Drug Administration's (FDA's) reference method for the measurement of glucose. We found that the quantity of enzyme used in the method recommended by the FDA was more than the exact quantity needed for accurate measurement. The use of exact quantity of enzyme is important to minimize the negative effects due to impurity and side reactions of enzymes. The second aim is to simulate the coupling enzyme reaction using computer. We have successfully established the exact quantity of enzyme needed in the assay through the computer simulation. The quantity of the enzyme was lesser than the that recommended by FDA, but the reaction ended at the same time as in the FDA method. In addition, optimum conditions and inhibitory effects of various reagents have also been successfully analyzed using computer. In conclusion, we suggest a reference method using computer simulation to determine the exact quantity of the coupling enzyme needed in the assay. PMID:11434388

  5. Berberine Improves Glucose Metabolism in Diabetic Rats by Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Xia, Xuan; Yan, Jinhua; Shen, Yunfeng; Tang, Kuanxiao; Yin, Jun; Zhang, Yanhua; Yang, Dongjie; Liang, Hua; Ye, Jianping; Weng, Jianping

    2011-01-01

    Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway. PMID:21304897

  6. Physicochemical characteristics of polysaccharide conjugates prepared from fresh tea leaves and their improving impaired glucose tolerance.

    PubMed

    Chen, Xiaoqiang; Fang, Yapeng; Nishinari, Katsuyoshi; We, Heng; Sun, Chaochao; Li, Jianrong; Jiang, Yongwen

    2014-11-01

    Hot-water extracts were prepared from fresh tea leaves and fractionated by DEAE-cellulose DE-52 column chromatography to yield one unexplored polysaccharide-conjugate fraction TPC-L (tea polysaccharide conjugates). Chemical components, molecular weight and its distribution, water vapor sorption properties, zeta potentials and optical characteristics of TPC-L were investigated. As compared with injured cell group, the two dosages of TPC-L (150 and 300 μg/mL) were discovered to possess remarkably protective effect on human umbilical vein endothelial cells against impairments induced by high glucose in a dose-dependent manner (p < 0.05, p < 0.001, respectively). Compared with group NC (normal control), the ingestion of 40 mg/kg of TPC-L could significantly reduce blood glucose levels of normal mice ingesting starch, and significant difference of AUC (area under the curve of blood glucose) and ΔAUC (p < 0.05, p < 0.01) at the postprandial time point of 0.5 and 1.0 h were observed. The three dosages of TPC-L (10, 40 and 160 mg/kg) did not significantly lower postprandial blood glucose levels of normal mice ingesting glucose. TPC-L could improve starch tolerance to prevent impaired glucose tolerance (IGT) from developing into diabetes as well as protective effects on HUVE cells against impairments induced by high glucose It was suggested that TPC-L improved IGT through its capability of inhibition on digestive enzymes. PMID:25129719

  7. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses

    PubMed Central

    Manell, Elin; Hedenqvist, Patricia; Svensson, Anna; Jensen-Waern, Marianne

    2016-01-01

    Diabetes mellitus is increasing worldwide and reliable animal models are important for progression of the research field. The pig is a commonly used large animal model in diabetes research and the present study aimed to refine a model for oral glucose tolerance test (OGTT) in young growing pigs, as well as describing intravenous glucose tolerance test (IVGTT) in the same age group. The refined porcine OGTT will reflect that used in children and adolescents. Eighteen pigs were obtained one week after weaning and trained for two weeks to bottle-feed glucose solution, mimicking the human OGTT. The pigs subsequently underwent OGTT (1.75 g/kg BW) and IVGTT (0.5 g/kg BW). Blood samples were collected from indwelling vein catheters for measurements of glucose and the diabetes related hormones insulin, glucagon and active glucagon-like peptide-1. The study confirmed that pigs can be trained to bottle-feed glucose dissolved in water and thereby undergo an OGTT more similar to the human standard OGTT than previously described methods in pigs. With the refined method for OGTT, oral intake only consists of glucose and water, which is an advantage over previously described methods in pigs where glucose is given together with feed which will affect glucose absorption. Patterns of hormonal secretion in response to oral and intravenous glucose were similar to those in humans; however, the pigs were more glucose tolerant with lower insulin levels than humans. In translational medicine, this refined OGTT and IVGTT methods provide important tools in diabetes research when pigs are used as models for children and adolescents in diabetes research. PMID:26859145

  8. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses.

    PubMed

    Manell, Elin; Hedenqvist, Patricia; Svensson, Anna; Jensen-Waern, Marianne

    2016-01-01

    Diabetes mellitus is increasing worldwide and reliable animal models are important for progression of the research field. The pig is a commonly used large animal model in diabetes research and the present study aimed to refine a model for oral glucose tolerance test (OGTT) in young growing pigs, as well as describing intravenous glucose tolerance test (IVGTT) in the same age group. The refined porcine OGTT will reflect that used in children and adolescents. Eighteen pigs were obtained one week after weaning and trained for two weeks to bottle-feed glucose solution, mimicking the human OGTT. The pigs subsequently underwent OGTT (1.75 g/kg BW) and IVGTT (0.5 g/kg BW). Blood samples were collected from indwelling vein catheters for measurements of glucose and the diabetes related hormones insulin, glucagon and active glucagon-like peptide-1. The study confirmed that pigs can be trained to bottle-feed glucose dissolved in water and thereby undergo an OGTT more similar to the human standard OGTT than previously described methods in pigs. With the refined method for OGTT, oral intake only consists of glucose and water, which is an advantage over previously described methods in pigs where glucose is given together with feed which will affect glucose absorption. Patterns of hormonal secretion in response to oral and intravenous glucose were similar to those in humans; however, the pigs were more glucose tolerant with lower insulin levels than humans. In translational medicine, this refined OGTT and IVGTT methods provide important tools in diabetes research when pigs are used as models for children and adolescents in diabetes research. PMID:26859145

  9. Clinical trials of improved oral rehydration salt formulations: a review.

    PubMed Central

    Bhan, M. K.; Mahalanabis, D.; Fontaine, O.; Pierce, N. F.

    1994-01-01

    Reviewed are all the published clinical trials of glycine-based oral rehydration salts (ORS), L-alanine-based ORS, L-glutamine-based ORS, maltodextrin-based ORS, and rice-based ORS, as well as the results of several recently completed, but unpublished, studies of these formulations that were supported by WHO. All experimental ORS formulations contained the same concentrations of salts as citrate-based WHO-ORS; all trials were randomized comparisons with WHO-ORS, and all except those with rice-based ORS were double-blind studies. The rate of stool loss and, less frequently, the duration of diarrhoea were used as indicators of clinical performance to compare ORS formulations. The following conclusions were reached concerning the efficacy and use of modified ORS formulations. Rice-based ORS (50 g/l) is superior to WHO-ORS for patients with cholera, and for such patients it can be recommended in any situation where its preparation and use are practical. Rice-based (50 g/l) and WHO-ORS solutions are equally effective for treating children with acute non-cholera diarrhoea, when feeding is resumed promptly following initial rehydration, as has been consistently recommended by WHO. Since rice-based ORS is not superior to WHO-ORS for such children, there is no apparent reason to advise a change from glucose to pre-cooked rice in the recommended formulation for WHO-ORS. Maltodextrin-based ORS formulations (50 g/l) and WHO-ORS appear to be equally effective for treating children with acute non-cholera diarrhoea; there is no reason to advise a change from glucose to maltodextrin in the recommended formulation for WHO-ORS. Amino-acid-containing ORS formulations are not recommended for either non-cholera or cholera diarrhoea, since they are more costly and have no clinical advantage over WHO-ORS for children with acute non-cholera diarrhoea or over rice-based ORS for persons with cholera. PMID:7867142

  10. Chromium Supplementation Improves Glucose Tolerance in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Abdourahman, Aicha; Edwards, John G.

    2016-01-01

    Summary Chromium supplementation (Cr) may be useful in the management of diabetes and appears to improve some aspects of glucose handling. However, several studies have used either high doses of Cr supplementation or have placed control animals on a Cr-deficient diet. We therefore wanted to test whether Cr dosages in the ranges that more closely approximate recommended levels of supplementation in humans are efficacious in glycemic control under normal dietary conditions. Euglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (a model of nonobese NIDDM) were assigned to water (control) or chromium picolinate (Cr-P) supplementation (1 or 10 mg/kg/day) groups for up to 32 weeks. Glucose tolerance was tested following an overnight fast by injecting sterile glucose (1.0 g/kg, i.p.) and then measuring blood glucose at select times to determine the sensitivity to glucose by calculation of the area under the curve. Cr-P did not significantly alter the growth of the animals. In the euglycemic Wistar rats, Cr-P supplementation did not alter the response to a glucose tolerance test. In the GK rats, Cr-P supplementation significantly improved glucose tolerance at both levels of Cr-P supplementation (1 mg/kg/day: H20; 100 ± 11%; Cr-P 70 6 8%; 10 mg/kg/day: H20; 100 ± 10%; Cr-P 66 ± 9 %). Cr-P supplementation produced a small improvement in some indices of glycemic control. There were no differences observed for the two levels of Cr-P supplementation suggested that we did not identify a threshold for Cr-P effects, and future studies may use lower doses to find a threshold effect for improving glucose tolerance in diabetics. PMID:18629917

  11. Glucose-regulated protein 78 and heparanase expression in oral squamous cell carcinoma: correlations and prognostic significance

    PubMed Central

    2014-01-01

    Background The aim of the present study was to investigate the expression of glucose-related protein 78 (GRP78) and heparanase (HPA) in oral squamous cell carcinoma (OSCC) and their relationship with clinicopathological parameters and potential implications for survival. Methods A total of 46 patients with OSCC and 10 normal individuals were recruited for the study. GRP78 and HPA expression were determined in the lesion tissues using immunohistochemical analysis. The correlation between GRP78 and HPA was assessed using the Spearman correlation analysis. The associations of GRP78 and HPA with clinicopathological characteristics and survival were examined using the x2-test, Kaplan–Meier, or Cox regression. Results Patients with OSCC showed a statistically significant higher prevalence of GRP78 and HPA expression than normal oral tissues. GRP78 and HPA expression was positively correlated with size, TNM stage, histological grade, lymphatic metastasis, and distant metastasis in OSCC patients. GRP78 expression was also positively correlated with HPA expression. Positive GRP78 and HPA expression was inversely correlated with survival in OSCC patients. Conclusions HPA expression was found to be positively correlated with GRP78 expression. GRP78 and HPA are biomarkers that may have the potential to guide the treatment of oral cancer patients. PMID:24766948

  12. Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review

    PubMed Central

    Ding, Sandrine; Schumacher, Michael

    2016-01-01

    Diabetic individuals need to tightly control their blood glucose concentration. Several methods have been developed for this purpose, such as the finger-prick or continuous glucose monitoring systems (CGMs). However, these methods present the disadvantage of being invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems with blood glucose regulation during and after exercise. In order to deal with these challenges, devices for monitoring patients’ physical activity are currently under development. This review focuses on non-invasive sensors using physiological parameters related to physical exercise that were used to improve glucose monitoring in type 1 diabetes (T1DM) patients. These devices are promising for diabetes management. Indeed they permit to estimate glucose concentration either based solely on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM) systems. In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and outlines directions for future technologic developments. PMID:27120602

  13. The performance of hemoglobin A1c against fasting plasma glucose and oral glucose tolerance test in detecting prediabetes and diabetes

    PubMed Central

    Karakaya, Jale; Akin, Safak; Karagaoglu, Ergun; Gurlek, Alper

    2014-01-01

    Background: In recent years, hemoglobin A1c (HbA1c) is accepted among the algorithms used for making diagnosis for diabetes and prediabetes since it does not require subjects to be prepared for giving a blood sample. The aim of this study is to assess the performance of HbA1c against fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT) in detecting prediabetes and diabetes. Materials and Methods: A total of 315 subjects were included in this study. The success of HbA1c in distinguishing the three diagnostic classes was examined by three-way receiver operating characteristic (ROC) analysis. The best cut-off points for HbA1c were found for discriminating the three disease status. Results: The performance of HbA1c, measured by the volume under the ROC surface (VUS), is found to be statistically significant (VUS = 0.535, P < 0.001). The best cut-off points for discriminating between normal and prediabetes groups and between prediabetes and diabetes groups are c1 = 5.2% and c2 = 6.4% respectively. Conclusion: The performance of HbA1c in distinguishing between the prediabetes and diabetes groups was higher than its ability in distinguishing between healthy and prediabetes groups. This study provides enough information to understand what proportion of diabetes patients were skipped with the HbA1c especially when the test result is healthy or prediabetes. If a subject was diagnosed as healthy or prediabetes by HbA1c, it would be beneficial to verify the status of that subject by the gold standard test (OGTT and FPG). PMID:25657750

  14. Efficacy of standard glucose-based and reduced-osmolarity maltodextrin-based oral rehydration solutions: effect of sugar malabsorption.

    PubMed Central

    el-Mougi, M.; Hendawi, A.; Koura, H.; Hegazi, E.; Fontaine, O.; Pierce, N. F.

    1996-01-01

    Previously we reported that standard oral rehydration salts (ORS) solution is not as effective as a reduced-osmolarity glucose-based ORS for the treatment of children with acute noncholera diarrhoea: with standard ORS the diarrhoea lasts longer, stool output is greater, serum sodium is higher, and there is more need for supplemental intravenous infusion. We studied a reduced-osmolarity maltodextrin (MD)-based ORS to determine whether it had similar benefits, and also the effect of sugar malabsorption on the efficacy of standard and MD-based ORS. A total of 90 boys aged 3-24 months with acute noncholera diarrhoea and moderate dehydration were randomly assigned to either standard ORS (glucose 20 g/l, osmolarity 311 mmol/l) or MD-ORS (MD 50 g/l, osmolarity 227 mmol/l). There were no differences in treatment results. Some 46% of subjects had a high total stool output (> 300 g/kg), which was unrelated to the type of ORS given. High stool output was significantly associated with a longer duration of diarrhoea (33 vs. 15 hours; P < 0.001), a persistently elevated serum sodium (149 vs. 144 mmol/l at 24 h; P < 0.02), the need for intravenous infusion (11/41 vs. 0/48; P < 0.002), and an increase in faecal reducing substances (10.8 vs. 3.4 g/l at 24 h; P < 0.001). We conclude that some children given standard ORS develop osmotic diarrhoea owing to the combined effect of transient sugar malabsorption and slight hypertonicity of the ORS. Earlier studies show that this adverse outcome can largely be avoided when extra water is given in reduced-osmolarity glucose-based ORS. Reduced osmolarity has no benefit, however, when glucose is replaced by maltodextrin, probably because the sugars released by hydrolysis of MD, when malabsorbed, raise the intraluminal osmolarity to equal or exceed that of standard ORS. Thus, reduced-osmolarity glucose-based ORS is superior to both standard ORS and reduced-osmolarity solutions based on maltodextrin and probably other complex carbohydrates

  15. Downregulation of CPPED1 expression improves glucose metabolism in vitro in adipocytes.

    PubMed

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-11-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  16. Downregulation of CPPED1 Expression Improves Glucose Metabolism In Vitro in Adipocytes

    PubMed Central

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-01-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  17. Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Dai, Weiwei; Panserat, Stéphane; Terrier, Frédéric; Seiliez, Iban; Skiba-Cassy, Sandrine

    2014-11-15

    Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout. PMID:25163922

  18. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet.

    PubMed

    Vickers, Steven P; Cheetham, Sharon C; Headland, Katie R; Dickinson, Keith; Grempler, Rolf; Mayoux, Eric; Mark, Michael; Klein, Thomas

    2014-01-01

    The present study assessed the potential of the sodium glucose-linked transporter (SGLT)-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg) for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg) with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes. PMID:25061325

  19. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet

    PubMed Central

    Vickers, Steven P; Cheetham, Sharon C; Headland, Katie R; Dickinson, Keith; Grempler, Rolf; Mayoux, Eric; Mark, Michael; Klein, Thomas

    2014-01-01

    The present study assessed the potential of the sodium glucose-linked transporter (SGLT)-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg) for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg) with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes. PMID:25061325

  20. Improving Oral Communication Skills of Students in Food Science Courses

    ERIC Educational Resources Information Center

    Reitmeier, C. A.; Svendsen, L. K.; Vrchota, D. A.

    2004-01-01

    Communication activities about food evaluation were incorporated into food preparation courses. Oral reports replaced quizzes and an oral presentation replaced the final exam. A rubric was developed to help students evaluate ingredient functions, procedures, techniques, temperatures, and sensory evaluation. Oral report scores, self-evaluations,…

  1. Maintaining and improving the oral health of young children.

    PubMed

    2014-12-01

    Oral health is an integral part of the overall health of children. Dental caries is a common and chronic disease process with significant short- and long-term consequences. The prevalence of dental caries for the youngest of children has not decreased over the past decade, despite improvements for older children. As health care professionals responsible for the overall health of children, pediatricians frequently confront morbidity associated with dental caries. Because the youngest children visit the pediatrician more often than they visit the dentist, it is important that pediatricians be knowledgeable about the disease process of dental caries, prevention of the disease, and interventions available to the pediatrician and the family to maintain and restore health. PMID:25422016

  2. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy. PMID:22935346

  3. A fermented soy permeate improves the skeletal muscle glucose level without restoring the glycogen content in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Vincent, Sophie; Lefeuvre-Orfila, Luz; Efstathiou, Théo; Groussard, Carole; Gratas-Delamarche, Arlette

    2013-02-01

    Exercise is essential into the therapeutic management of diabetic patients, but their level of exercise tolerance is lowered due to alterations of glucose metabolism. As soy isoflavones have been shown to improve glucose metabolism, this study aimed to assess the effects of a dietary supplement containing soy isoflavones and alpha-galactooligosaccharides on muscular glucose, glycogen synthase (GSase), and glycogen content in a type 1 diabetic animal model. The dietary supplement tested was a patented compound, Fermented Soy Permeate (FSP), developed by the French Company Sojasun Technologies. Forty male Wistar rats were randomly assigned to control or diabetic groups (streptozotocin, 45 mg/kg). Each group was then divided into placebo or FSP-supplemented groups. Both groups received by oral gavage, respectively, water or diluted FSP (0.1 g/day), daily for a period of 3 weeks. At the end of the protocol, glycemia was noticed after a 24-h fasting period. Glucose, total GSase, and the glycogen content were determined in the skeletal muscle (gastrocnemius). Diabetic animals showed a higher blood glucose concentration, but a lower glucose and glycogen muscle content than controls. Three weeks of FSP consumption allowed to restore the muscle glucose concentration, but failed to reduce glycemia and to normalize the glycogen content in diabetic rats. Furthermore, the glycogen content was increased in FSP-supplemented controls compared to placebo controls. Our results demonstrated that diabetic rats exhibited a depleted muscle glycogen content (-25%). FSP-supplementation normalized the muscle glucose level without restoring the glycogen content in diabetic rats. However, it succeeded to increase it in the control group (+20%). PMID:23356441

  4. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  5. Oral zinc supplementation may improve cognitive function in schoolchildren.

    PubMed

    de Moura, José Edson; de Moura, Edna Nubia Oliveira; Alves, Camila Xavier; Vale, Sancha Helena de Lima; Dantas, Márcia Marília Gomes; Silva, Alfredo de Araújo; Almeida, Maria das Graças; Leite, Lúcia Dantas; Brandão-Neto, José

    2013-10-01

    Zinc is an important micronutrient for humans, and zinc deficiency among schoolchildren is deleterious to growth and development, immune competence, and cognitive function. However, the effect of zinc supplementation on cognitive function remains poorly understood. The purpose of our study was to evaluate the effect of oral zinc supplementation (5 mg Zn/day for 3 months) on the Full Scale Intelligence Quotient (FSIQ), Verbal Intelligence Quotient (VIQ), and Performance Intelligence Quotient (PIQ) using a Wechsler Intelligence Scale for Children (WISC-III). We studied 36 schoolchildren aged 6 to 9 years (7.8 ± 1.1) using a nonprobability sampling method. The baseline serum zinc concentrations increased significantly after zinc supplementation (p < 0.0001), with no difference between sexes. Tests were administered under basal conditions before and after zinc supplementation, and there was no difference in FSIQ according to gender or age. The results demonstrated that zinc improved the VIQ only in the Information Subtest (p = 0.009), although the supplementation effects were more significant in relation to the PIQ, as these scores improved for the Picture Completion, Picture Arrangement, Block Design, and Object Assembly Subtests (p = 0.0001, for all subtests). In conclusion, zinc supplementation improved specific cognitive abilities, thereby positively influencing the academic performance of schoolchildren, even those without marginal zinc deficiency. PMID:23892699

  6. Randomized, controlled, clinical trial of rice versus glucose oral rehydration solutions in infants and young children with acute watery diarrhoea.

    PubMed

    Faruque, A S; Hoque, S S; Fuchs, G J; Mahalanabis, D

    1997-12-01

    A randomized clinical trial was carried out to compare a packaged ready-to-mix rice oral rehydration solution (ORS) to the standard glucose ORS for the treatment of childhood diarrhoea. Children were of either gender, aged 3-35 months, presenting with a history of watery diarrhoea for 72 h or less. The main outcomes examined were stool output, ORS intake, duration of diarrhoea and nutritional recovery during follow-up at 16 d of illness. Stool output in the first 24 h (106 vs 107 g kg(-1)), ORS intake in clinic (93 vs 102 ml per motion) and duration of diarrhoea (88 h vs 81 h) were similar in the two treatment groups. The few episodes that became persistent were similar (2%) in the two groups. The weight gain during follow-up was similar in the two ORS groups. PMID:9475306

  7. Glucose-Sensitive Nanofiber Scaffolds with Improved Sensing Design for Physiological Conditions

    PubMed Central

    Clark, Heather A.

    2015-01-01

    Continuous physiological monitoring of electrolytes and small molecules such as glucose, creatinine, and urea is currently unavailable but achieving such a capability would be a major milestone for personalized medicine. Optode-based nanosensors are an appealing analytical platform for designing in vivo monitoring systems. In addition to the necessary analytical performance, such nanosensors must also be biocompatibile and remain immobile at the implantation site. Blood glucose in particular remains a difficult but high-value analyte to continuously monitor. Previously, we developed glucose-sensitive nanosensors that measure glucose by a competitive binding mechanism between glucose and a fluorescent dye to 4-carboxy-3-fluorophenyl boronic acid. To improve the sensitivity and residency time of our reported sensors, we present here a series of new derivatives of 4-carboxy-3-fluorophenyl boronic acid that we screened in macrosensor format before translating into a nanofiber format with electrospinning. The lead candidate was then implanted subdermally and its residency time was compared to spherical nanosensor analogues. The nanofiber scaffolds were markedly more stable at the implantation site whereas spherical nanosensors diffused away within three hours. Based on the enhanced sensitivity of the new boronic acids and the residency time of nanofibers, this sensor configuration is an important step towards continuous monitoring for glucose and other analytes. PMID:25426497

  8. A low-carbohydrate high-fat diet increases weight gain and does not improve glucose tolerance, insulin secretion or β-cell mass in NZO mice

    PubMed Central

    Lamont, B J; Waters, M F; Andrikopoulos, S

    2016-01-01

    Background/Objectives: Dietary guidelines for the past 20 years have recommended that dietary fat should be minimized. In contrast, recent studies have suggested that there could be some potential benefits for reducing carbohydrate intake in favor of increased fat. It has also been suggested that low-carbohydrate diets be recommended for people with type 2 diabetes. However, whether such diets can improve glycemic control will likely depend on their ability to improve β-cell function, which has not been studied. The objective of the study was to assess whether a low-carbohydrate and therefore high-fat diet (LCHFD) is beneficial for improving the endogenous insulin secretory response to glucose in prediabetic New Zealand Obese (NZO) mice. Methods: NZO mice were maintained on either standard rodent chow or an LCHFD from 6 to 15 weeks of age. Body weight, food intake and blood glucose were assessed weekly. Blood glucose and insulin levels were also assessed after fasting and re-feeding and during an oral glucose tolerance test. The capacity of pancreatic β-cells to secrete insulin was assessed in vivo with an intravenous glucose tolerance test. β-Cell mass was assessed in histological sections of pancreata collected at the end of the study. Results: In NZO mice, an LCHFD reduced plasma triglycerides (P=0.001) but increased weight gain (P<0.0001), adipose tissue mass (P=0.0015), high-density lipoprotein cholesterol (P=0.044) and exacerbated glucose intolerance (P=0.013). Although fasting insulin levels tended to be higher (P=0.08), insulin secretory function in LCHFD-fed mice was not improved (P=0.93) nor was β-cell mass (P=0.75). Conclusions: An LCHFD is unlikely to be of benefit for preventing the decline in β-cell function associated with the progression of hyperglycemia in type 2 diabetes. PMID:26878317

  9. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism

    PubMed Central

    Efanov, Alexander M.; Fang, Xiankang; Beavers, Lisa S.; Wang, Xuesong; Wang, Jingru; Gonzalez Valcarcel, Isabel C.; Ma, Tianwei

    2016-01-01

    GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes. PMID:27322810

  10. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  11. Ethnic differences in cross-sectional associations between impaired glucose regulation, identified by oral glucose tolerance test or HbA1c values, and cardiovascular disease in a cohort of European and South Asian origin

    PubMed Central

    Eastwood, S. V.; Tillin, T.; Mayet, J.; Shibata, D. K.; Wright, A.; Heasman, J.; Beauchamp, N.; Forouhi, N. G.; Hughes, A. D.; Chaturvedi, N.

    2015-01-01

    Aims We contrasted impaired glucose regulation (prediabetes) prevalence, defined according to oral glucose tolerance test or HbA1c values, and studied cross-sectional associations between prediabetes and subclinical/clinical cardiovascular disease (CVD) in a cohort of European and South-Asian origin. Methods For 682 European and 520 South-Asian men and women, aged 58–85 years, glycaemic status was determined by oral glucose tolerance test or HbA1c thresholds. Questionnaires, record review, coronary artery calcification scores and cerebral magnetic resonance imaging established clinical plus subclinical coronary heart and cerebrovascular disease. Results Prediabetes was more prevalent in South Asian participants when defined by HbA1c rather than by oral glucose tolerance test criteria. Accounting for age, sex, smoking, systolic blood pressure, triglycerides and waist–hip ratio, prediabetes was associated with coronary heart disease and cerebrovascular disease in European participants, most obviously when defined by HbA1c rather than by oral glucose tolerance test [odds ratios for HbA1c-defined prediabetes 1.60 (95% CI 1.07, 2.39) for coronary heart disease and 1.57 (95% CI 1.00, 2.51) for cerebrovascular disease]. By contrast, non-significant associations were present between oral glucose tolerance test-defined prediabetes only and coronary heart disease [odds ratio 1.41 (95% CI 0.84, 2.36)] and HbA1c-defined prediabetes only and cerebrovascular disease [odds ratio 1.39 (95% CI 0.69, 2.78)] in South Asian participants. Prediabetes defined by HbA1c or oral glucose tolerance test criteria was associated with cardiovascular disease (defined as coronary heart and/or cerebrovascular disease) in Europeans [odds ratio 1.95 (95% CI 1.31, 2.91) for HbA1c prediabetes criteria] but not in South Asian participants [odds ratio 1.00 (95% CI 0.62, 2.66); ethnicity interaction P=0.04]. Conclusions Prediabetes appeared to be less associated with cardiovascular disease in the

  12. Improving the safety of oral immunotherapy for food allergy.

    PubMed

    Vazquez-Ortiz, Marta; Turner, Paul J

    2016-03-01

    Food allergy is a major public health problem in children, impacting upon the affected individual, their families and others charged with their care, for example educational establishments, and the food industry. In contrast to most other paediatric diseases, there is no established cure: current management is based upon dietary avoidance and the provision of rescue medication in the event of accidental reactions, which are common. This strategy has significant limitations and impacts adversely on health-related quality of life. In the last decade, research into disease-modifying treatments for food allergy has emerged, predominantly for peanut, egg and cow's milk. Most studies have used the oral route (oral immunotherapy, OIT), in which increasing amounts of allergen are given over weeks-months. OIT has proven effective to induce immune modulation and 'desensitization' - that is, an increase in the amount of food allergen that can be consumed, so long as regular (typically daily) doses are continued. However, its ability to induce permanent tolerance once ongoing exposure has stopped seems limited. Additionally, the short- and long-term safety of OIT is often poorly reported, raising concerns about its implementation in routine practice. Most patients experience allergic reactions and, although generally mild, severe reactions have occurred. Long-term adherence is unclear, which rises concerns given the low rates of long-term tolerance induction. Current research focuses on improving current limitations, especially safety. Strategies include alternative routes (sublingual, epicutaneous), modified hypoallergenic products and adjuvants (anti-IgE, pre-/probiotics). Biomarkers of safe/successful OIT are also under investigation. PMID:26593873

  13. Nrf2 Deficiency Improves Glucose Tolerance in Mice Fed a High-Fat Diet

    PubMed Central

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. PMID:23017736

  14. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice.

    PubMed

    Miranda, Cristobal L; Elias, Valerie D; Hay, Joshua J; Choi, Jaewoo; Reed, Ralph L; Stevens, Jan F

    2016-06-01

    Xanthohumol (XN) is a prenylated flavonoid found in hops (Humulus lupulus) and beer. The dose-dependent effects of XN on glucose and lipid metabolism in a preclinical model of metabolic syndrome were the focus of our study. Forty-eight male C57BL/6J mice, 9 weeks of age, were randomly divided into three XN dose groups of 16 animals. The mice were fed a high-fat diet (60% kcal as fat) supplemented with XN at dose levels of 0, 30, or 60 mg/kg body weight/day, for 12 weeks. Dietary XN caused a dose-dependent decrease in body weight gain. Plasma levels of glucose, total triglycerides, total cholesterol, and MCP-1 were significantly decreased in mice on the 60 mg/kg/day treatment regimen. Treatment with XN at 60 mg/kg/day resulted in reduced plasma LDL-cholesterol (LDL-C), IL-6, insulin and leptin levels by 80%, 78%, 42%, and 41%, respectively, compared to the vehicle control group. Proprotein Convertase Subtilisin Kexin 9 (PCSK-9) levels were 44% lower in the 60 mg/kg dose group compared to the vehicle control group (p ≤ 0.05) which may account for the LDL-C lowering activity of XN. Our results show that oral administration of XN improves markers of systemic inflammation and metabolic syndrome in diet-induced obese C57BL/6J mice. PMID:26976708

  15. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction.

    PubMed

    Rahtu-Korpela, Lea; Karsikas, Sara; Hörkkö, Sohvi; Blanco Sequeiros, Roberto; Lammentausta, Eveliina; Mäkelä, Kari A; Herzig, Karl-Heinz; Walkinshaw, Gail; Kivirikko, Kari I; Myllyharju, Johanna; Serpi, Raisa; Koivunen, Peppi

    2014-10-01

    Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions. PMID:24789921

  16. Ginger Orally Disintegrating Tablets to Improve Swallowing in Older People.

    PubMed

    Hirata, Ayumu; Funato, Hiroki; Nakai, Megumi; Iizuka, Michiro; Abe, Noriaki; Yagi, Yusuke; Shiraishi, Hisashi; Jobu, Kohei; Yokota, Junko; Hirose, Kahori; Hyodo, Masamitsu; Miyamura, Mitsuhiko

    2016-01-01

    We previously prepared and pharmaceutically evaluated ginger orally disintegrating (OD) tablets, optimized the base formulation, and carried out a clinical trial in healthy adults in their 20 s and 50s to measure their effect on salivary substance P (SP) level and improved swallowing function. In this study, we conducted clinical trials using the ginger OD tablets in older people to clinically evaluate the improvements in swallowing function resulting from the functional components of the tablet. The ginger OD tablets were prepared by mixing the excipients with the same amount of mannitol and sucrose to a concentration of 1% ginger. Eighteen healthy older adult volunteers aged 63 to 90 were included in the swallowing function test. Saliva was collected before and 15 min after administration of the placebo and ginger OD tablets. Swallowing endoscopy was performed by an otolaryngologist before administration and 15 min after administration of the ginger OD tablets. A scoring method was used to evaluate the endoscopic swallowing. Fifteen minutes after taking the ginger OD tablets, the salivary SP amount was significantly higher than prior to ingestion or after taking the placebo (p<0.05). Among 10 subjects, one scored 1-3 using the four evaluation criteria. Overall, no aspiration occurred and a significant improvement in the swallowing function score was observed (p<0.05) after taking the ginger OD tablets. Our findings showed that the ginger OD tablets increased the salivary SP amount and improved swallowing function in older people with appreciably reduced swallowing function. PMID:27374286

  17. A systematic approach to improve oral and maxillofacial surgery education.

    PubMed

    Rosén, A; Fors, U; Zary, N; Sejersen, R; Lund, B

    2011-11-01

    To improve teaching quality and student satisfaction, a new curriculum in Oral Surgery was implemented at Karolinska Institutet in 2007. This paper describes the curriculum change as well as the results regarding quality, satisfaction, cost-effectiveness and workload for teachers and staff. To design the new curriculum, all members of the teaching staff participated in a series of group discussions where problems with the previous curriculum were identified and ideas on how to improve the curriculum were discussed. Cost-effectiveness was evaluated by comparing the number of teaching sessions between the new and the old curriculum. A questionnaire was used to investigate the staffs' perceived change in workload and teaching quality. The students' satisfaction and attitudes to learning was screened for by on-line questionnaires. The large amount of passive observational teaching was considered as the main problem with the old curriculum. Half of these sessions were replaced by either clinical seminars or demonstrations performed in an interactive form. Students rated the new curriculum as a clear improvement. Analyses of time and cost-effectiveness showed a decrease in teaching sessions by almost 50%. Generally, the teachers were more positive towards the changes compared to the non-teaching staff. The students rated the new type of learning activities relatively high, whilst the traditional observational teaching was seen as less satisfactory. They preferred to learn in a practical way and few indicated analytic or emotional preferences. The majority of the students reported a good alignment between the new course curriculum and the final exam. PMID:21985206

  18. Pain Reduction and Financial Incentives to Improve Glucose Monitoring Adherence in a Community Health Center

    PubMed Central

    Huntsman, Mary Ann H.; Olivares, Faith J.; Tran, Christina P.; Billimek, John; Hui, Elliot E.

    2014-01-01

    Self-monitoring of blood glucose is a critical component of diabetes management. However, patients often do not maintain the testing schedule recommended by their healthcare provider. Many barriers to testing have been cited, including cost and pain. We present a small pilot study to explore whether the use of financial incentives and pain-free lancets could improve adherence to glucose testing in a community health center patient population consisting largely of non-English speaking ethnic minorities with low health literacy. The proportion of patients lost to follow-up was 17%, suggesting that a larger scale study is feasible in this type of setting, but we found no preliminary evidence suggesting a positive effect on adherence by either financial incentives or pain-free lancets. Results from this pilot study will guide the design of larger-scale studies to evaluate approaches to overcome the variety of barriers to glucose testing that are present in disadvantaged patient populations. PMID:25486531

  19. Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection

    PubMed Central

    Li, Xiaoli

    2016-01-01

    Diabetes is a serious threat to human health. Thus, research on noninvasive blood glucose detection has become crucial locally and abroad. Near-infrared transmission spectroscopy has important applications in noninvasive glucose detection. Extracting useful information and selecting appropriate modeling methods can improve the robustness and accuracy of models for predicting blood glucose concentrations. Therefore, an improved signal reconstruction and calibration modeling method is proposed in this study. On the basis of improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and correlative coefficient, the sensitive intrinsic mode functions are selected to reconstruct spectroscopy signals for developing the calibration model using the support vector regression (SVR) method. The radial basis function kernel is selected for SVR, and three parameters, namely, insensitive loss coefficient ε, penalty parameter C, and width coefficient γ, are identified beforehand for the corresponding model. Particle swarm optimization (PSO) is employed to optimize the simultaneous selection of the three parameters. Results of the comparison experiments using PSO-SVR and partial least squares show that the proposed signal reconstitution method is feasible and can eliminate noise in spectroscopy signals. The prediction accuracy of model using PSO-SVR method is also found to be better than that of other methods for near-infrared noninvasive glucose detection.

  20. Improving Students with Rubric-Based Self-Assessment and Oral Feedback

    ERIC Educational Resources Information Center

    Barney, S.; Khurum, M.; Petersen, K.; Unterkalmsteiner, M.; Jabangwe, R.

    2012-01-01

    Rubrics and oral feedback are approaches to help students improve performance and meet learning outcomes. However, their effect on the actual improvement achieved is inconclusive. This paper evaluates the effect of rubrics and oral feedback on student learning outcomes. An experiment was conducted in a software engineering course on requirements…

  1. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119

    PubMed Central

    Kim, Mi-Hwi; Choung, Jin-Seung; Oh, Yoon-Sin; Moon, Hong-Sub; Jun, Hee-Sook

    2016-01-01

    G protein-coupled receptor (GPR) 119 is expressed in pancreatic β-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes. PMID:27391814

  2. The sweet taste of success: the presence of glucose in the oral cavity moderates the depletion of self-control resources.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D

    2013-01-01

    According to the resource-depletion model, self-control is a limited resource that is depleted after a period of exertion. Evidence consistent with this model indicates that self-control relies on glucose metabolism and glucose supplementation to depleted individuals replenishes self-control resources. In five experiments, we tested an alternative hypothesis that glucose in the oral cavity counteracts the deleterious effects of self-control depletion. We predicted a glucose mouth rinse, as opposed to an artificially sweetened placebo rinse, would lead to better self-control after depletion. In Studies 1 to 3, participants engaging in a depleting task performed significantly better on a subsequent self-control task after receiving a glucose mouth rinse, as opposed to participants rinsing with a placebo. Studies 4 and 5 replicated these findings and demonstrated that the glucose mouth rinse had no effect on self-control in nondepleted participants. Results are consistent with a neural rather than metabolic mechanism for the effect of glucose supplementation on self-control. PMID:22995892

  3. Oral administration of SR-110, a peroxynitrite decomposing catalyst, enhances glucose homeostasis, insulin signaling, and islet architecture in B6D2F1 mice fed a high fat diet.

    PubMed

    Johns, Michael; Esmaeili Mohsen Abadi, Sakineh; Malik, Nehal; Lee, Joshua; Neumann, William L; Rausaria, Smita; Imani-Nejad, Maryam; McPherson, Timothy; Schober, Joseph; Kwon, Guim

    2016-04-15

    Peroxynitrite has been implicated in type 2 diabetes and diabetic complications. As a follow-up study to our previous work on SR-135 (Arch Biochem Biophys 577-578: 49-59, 2015), we provide evidence that this series of compounds are effective when administered orally, and their mechanisms of actions extend to the peripheral tissues. A more soluble analogue of SR-135, SR-110 (from a new class of Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes) was orally administered for 2 weeks to B6D2F1 mice fed a high fat-diet (HFD). Mice fed a HFD for 4 months gained significantly higher body weights compared to lean diet-fed mice (52 ± 1.5 g vs 34 ± 1.3 g). SR-110 (10 mg/kg daily) treatment significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control or vehicle (peanut butter) group. SR-110 treatment enhanced insulin signaling in the peripheral organs, liver, heart, and skeletal muscle, and reduced lipid accumulation in the liver. Furthermore, SR-110 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration. These results suggest that a peroxynitrite decomposing catalyst is effective in improving glucose homeostasis and restoring islet morphology and β-cell insulin content under nutrient overload. PMID:26970045

  4. Oral Glucose Tolerance Testing identifies HIV+ infected women with Diabetes Mellitus (DM) not captured by standard DM definition

    PubMed Central

    Tian, Fang; Anastos, Kathryn; Cohen, Mardge H; Tien, Phyllis C

    2016-01-01

    Objective HIV-infected (HIV+) individuals may have differential risk of diabetes mellitus (DM) compared to the general population, and the optimal diagnostic algorithm for DM in HIV+ persons remains unclear. We aimed to assess the utility of oral glucose tolerance testing (OGTT) for DM diagnosis in a cohort of women with or at risk for HIV infection. Methods Using American Diabetic Association DM definitions, DM prevalence and incidence were assessed among women enrolled in the Women’s Interagency HIV Study. DM was defined by 2-hour OGTT ≥ 200 mg/dL (DM_OGTT) or a clinical definition (DM_C) that included any of the following: (i) anti-diabetic medication use or self-reported DM confirmed by either fasting glucose (FG) ≥126 mg/dL or HbA1c ≥ 6.5%, (ii) FG ≥ 126 mg/dL confirmed by a second FG ≥ 126 mg/dL or HbA1c 6.5%, or (iii) HbA1c 6.5% confirmed by FG ≥ 126 mg/dL cohort. Results Overall, 390 women (285 HIV+, median age 43 years; 105 HIV−, median age 37 years) were enrolled between 2003-2006. Over half of all women were African American. Using DM_C, DM prevalence rates were 5.6% and 2.8% among HIV+ and HIV− women, respectively. Among HIV+ women, adding DM_OGTT to DM_C increased DM prevalence from 5.6% to 7.4%, a 31% increase in the number of diabetes cases diagnosed (p=0.02). In HIV− women, no additional cases were diagnosed by DM-OGTT. Conclusion In HIV+ women, OGTT identified DM cases that were not identified by a standardized clinical definition. Further investigation is needed to determine whether OGTT should be considered as an adjunctive tool for DM diagnosis in the setting of HIV infection. PMID:27066296

  5. The evaluation of a multi-level oral health intervention to improve oral health practices among caregivers of preschool children.

    PubMed

    Vichayanrat, Tippanart; Steckler, Allan; Tanasugarn, Chanuantong; Lexomboon, Duangjai

    2012-03-01

    Abstract. This study reports the effects of a pilot multi-level oral health intervention on caregivers' oral health practices and their determinants. Quasi-experimental, pretest-posttest evaluations using a comparison group design were employed to evaluate the effectiveness of a proposed intervention for promoting caregiver oral health behavior. The intervention consisted of three components: home visits by lay health workers (LHWs), enhancing oral health education and services at health centers, and community mobilization. These components were designed to target factors at intrapersonal, interpersonal, organizational and community levels based on a Social Ecological Model (SEM). Four oral health behaviors associated with early childhood caries (infant bottle feeding, tooth brushing, snack consumption and fluoride use), and multi-level determinants were assessed during pre- and post-tests. The one-year intervention demonstrated a positive effect on tooth brushing, using toothpaste, and fluoride supplements, but did not have a significant effect on bottle feeding and snack consumption among children. The intervention also had no effect on dental caries; in fact caries increased in both control and experimental groups. The caregiver knowledge, attitudes, outcome expectations, and self-efficacy towards these behaviors were significantly increased in the experimental group after intervention. Caregivers in the experimental group received greater social support by LHWs and health center staff than those in the control group (p < 0.001). The program had an impact on integrating oral health services at health centers and community participation in children's oral health. These findings confirm multi-level factors influence reported oral health behavior, but not outcomes in terms of caries. Process evaluation is needed to determine actual implementation levels, barriers and suggests for modification of the program in the future to improve outcomes in terms of caries. PMID

  6. Mechanisms of improved glucose handling after metabolic surgery: the big 6.

    PubMed

    Paszkiewicz, Rebecca L; Bergman, Richard N

    2016-07-01

    For some time, it has been clear that elevated glucose is detrimental to the organism. A plethora of medicines have been introduced to reduce the fasting and postprandial glucose levels (including insulin, glucagon-like peptide receptor 1 [GLP-1] agonists, and sodium-glucose co-transporter 2 [SGLT2] inhibitors, among others). Although these medications are useful to reduce tissue exposure to glucose, no single compound and no combination have been able to totally normalize the blood sugar. Thus, it was astonishing when it was reported that surgery of the gastrointestinal tract could not only reduce obesity but also normalize the blood sugar. These discoveries have transformed diabetes research. What is it about bariatric surgery that causes the remarkable amelioration of glucose homeostasis dysregulation? The answer to this million dollar question is a billion dollar answer. However, a new perspective could shed some light and help provide a clear path for investigation. Instead of asking what does bariatric surgery do to change the pathophysiology, we can ask what pathophysiology and risk factors confer a greater success with remission and improved disease state after surgery. Work from our laboratory and others can help to offer a physiologic basis for which mechanisms may be put into play when the anatomy is altered during surgery. Here, we do not offer an explanation of the mechanism of action of bariatric surgery, but rather provide a background on the regulation of blood glucose and how it is altered during both the diseased state and, as available, the remission state. PMID:27568470

  7. Cassia Cinnamon Supplementation Reduces Peak Blood Glucose Responses but Does Not Improve Insulin Resistance and Sensitivity in Young, Sedentary, Obese Women.

    PubMed

    Gutierrez, Jean L; Bowden, Rodney G; Willoughby, Darryn S

    2016-07-01

    Cassia cinnamon has been suggested to lower blood glucose (BG) and serum insulin (SI) due to an improvement in insulin resistance (IR) and sensitivity (IS). This study compared the effects Cassia cinnamon had on calculated IR and IS values and BG and SI in response to an oral glucose tolerance test (OGTT) in young, sedentary, and obese women. On three separate days, 10 women had a fasted venous blood sample obtained. Participants were given 5 g of encapsulated placebo (PLC) or 5 g of encapsulated Cassia cinnamon bark (CASS). Three hours after the initial blood sample, another blood sample was obtained to calculate values for IS and IR. The participants then completed an OGTT by consuming a 75 g glucose solution. Blood was obtained 30, 60, 90, and 120 min following glucose ingestion. IS and IR were not significantly different between placebo and Cassia (p > .05). The peak BG concentration in response to the OGTT was significantly lower at the 30 min time point for CASS, as compared to PLC (140 ± 5.8 and 156 ± 5.2 mg/dL, p = .025); however, there was no significant difference between treatments for SI (p > .05). The area-under-the-curve responses for BG and SI were not significantly different between PLC and CASS (p > .05). This study suggests that a 5 g dose of Cassia cinnamon may reduce the peak BG response and improve glucose tolerance following an OGTT, but with no improvement in IS and IR in young, sedentary, obese women. PMID:26716656

  8. Exercise training is an effective alternative to estrogen supplementation for improving glucose homeostasis in ovariectomized rats

    PubMed Central

    MacDonald, Tara L; Ritchie, Kerry L; Davies, Sarah; Hamilton, Melissa J; Cervone, Daniel T; Dyck, David J

    2015-01-01

    The irreversible loss of estrogen (specifically 17-β-estradiol; E2) compromises whole-body glucose tolerance in women. Hormone replacement therapy (HRT) is frequently prescribed to treat estrogen deficiency, but has several deleterious side effects. Exercise has been proposed as an HRT substitute, however, their relative abilities to treat glucose intolerance are unknown. Thirty ovariectomized (OVX) and 20 SHAM (control) rats underwent glucose tolerance tests (GTT) 10 weeks post surgery. Area under the curve (AUC) for OVX rats was 60% greater than SHAM controls (P = 0.0005). Rats were then randomly assigned to the following treatment groups: SHAM sedentary (sed) or exercise (ex; 60 min, 5×/weeks), OVX sed, ex, or E2 (28 μg/kg bw/day) for 4 weeks. OVX ex rats experienced a ∼45% improvement in AUC relative to OVX sed rats, whereas OVX E2 underwent a partial reduction (17%; P = 0.08). Maximal insulin-stimulated glucose uptake in soleus and EDL was not impaired in OVX rats, or augmented with exercise or E2. Akt phosphorylation did not differ in soleus, EDL, or liver of any group. However, OVX ex and OVX E2 experienced greater increases in p-Akt Ser473 in VAT and SQ tissues compared with SHAM and OVX sed groups. Mitochondrial markers CS, COXIV, and core1 were increased in soleus posttraining in OVX ex rats. The content of COXIV was reduced by 52% and 61% in SQ of OVX sed and E2 rats, compared to SHAM controls, but fully restored in OVX ex rats. In summary, exercise restores glucose tolerance in OVX rats more effectively than E2. This is not reflected by alterations in muscle maximal insulin response, but increased insulin signaling in adipose depots may underlie whole-body improvements. PMID:26603453

  9. Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats

    PubMed Central

    Niu, Ho-Shan; Liu, I-Min; Niu, Chiang-Shan; Ku, Po-Ming; Hsu, Chao-Tien; Cheng, Juei-Tang

    2016-01-01

    Background Eucommia bark, Eucommia ulmoides Oliver barks (Du-Zhong in Mandarin), is an herb used for renal dysfunction in Chinese traditional medicine. In an attempt to develop this herb as a treatment for diabetic nephropathy (DN), we investigated the effects of Du-Zhong on renal dysfunction in type 1-like diabetic rats. Methods Streptozotocin (STZ) was used to induce type 1-like diabetes in rats (STZ-diabetic rats). In addition to hyperglycemia, STZ-diabetic rats showed significant nephropathy, including higher plasma levels of blood urea nitrogen, creatinine, and renal fibrosis. Western blot analysis of renal cortical tissue was applied to characterize the changes in potential signals related to nephropathy. Results Oral administration of Du-Zhong (1 g/kg/day) to STZ-diabetic rats for 20 days not only decreased the plasma levels of blood urea nitrogen and creatinine but also improved renal fibrosis, whereas the plasma glucose level was not changed. The higher expressions of protein levels of transforming growth factor-beta (TGF-β) and connective tissue growth factor in diabetic rats were markedly attenuated by Du-Zhong. The increased phosphorylation of Smad2/3 in STZ-diabetic rats was also reduced by Du-Zhong. However, Du-Zhong cannot reverse the hyperglycemia-induced overproduction of signal transducers and activators of transcription 3 in the diabetic kidney. Conclusion Oral administration of Du-Zhong improves STZ-induced DN in rats by inhibiting TGF-β/Smad signaling and suppressing TGF-β/connective tissue growth factor expression. Therefore, active principle from Du-Zhong is suitable to develop as new agent for DN in the future. PMID:27041999

  10. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test.

    PubMed

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P; Luque, Raul M; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m(2)) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m(2)). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA-IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  11. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test

    PubMed Central

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E.; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P.; Luque, Raul M.; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E.

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m2) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m2). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA–IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  12. Improvement of the selectivity of an FIA amperometric biosensor system for glucose.

    PubMed

    Male, K B; Luong, J H

    1993-01-01

    A flow injection analysis (FIA) biosensor system has been developed for the determination of glucose from urine, blood plasma and foodstuffs. Glucose oxidase was immobilized onto porous aminopropyl glass beads via glutaraldehyde activation to form an enzyme column. The hydrogen peroxide released from the conversion of glucose to gluconic acid was monitored by a platinum electrode vs. silver/silver chloride poised at +700 mV. As a novel aspect to the improvement of the selectivity of the biosensor system, an anion exchange column was placed upstream to remove uric acid, ascorbic acid or acetaminophen, three major electroactive interfering substances which usually occur in urine and blood plasma. Among several resins tested, the effective adsorption of uric and ascorbic acids could be accomplished using an acetate anion exchanger, and the selectivity coefficient was pH dependent. The binding of acetaminophen to the resin was much less efficient and, in all cases, the selectivity coefficient was independent of the operating temperature up to 37 degrees C. When applied to real samples, the data obtained by the biosensor system compared well with those of the standard hexokinase assay. The immobilized glucose oxidase could be reused for at least 2000 repeated analyses without loss of its original activity. PMID:8398049

  13. What's ahead in glucose monitoring? New techniques hold promise for improved ease and accuracy.

    PubMed

    Bode, B W; Sabbah, H; Davidson, P C

    2001-04-01

    Advances in blood glucose monitoring have made it easier, more comfortable, and more practical for patients to monitor frequently. The new meters for intermittent monitoring are smaller and less dependent on technical aptitude than older models. They require less blood, and many provide downloadable information for glucose analysis. Data systems used with new meters provide valuable information that can dramatically improve glycemic control. Continuous glucose sensing (figure 4) is another major breakthrough in management of diabetes. Current systems allow only retrospective analyses, but real-time readings should be available in the near future. Such technological advances hold promise for preventing both hypoglycemia and hyperglycemia and for reducing the risk of long-term complications associated with diabetes. An artificial, mechanical islet cell may be the big next step toward bringing this disease under control. By combining continuous glucose monitoring data with continuous insulin delivery via an external or an implantable insulin pump, the outlook promises to be much brighter for patients with type 1 diabetes. PMID:11317468

  14. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats.

    PubMed

    Dela Cruz, J A D; Coke, T; Icaza-Cukali, D; Khalifa, N; Bodnar, R J

    2014-10-01

    Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was

  15. Global policy for improvement of oral health in the 21st century--implications to oral health research of World Health Assembly 2007, World Health Organization.

    PubMed

    Petersen, Poul Erik

    2009-02-01

    The World Health Organization (WHO) Global Oral Health Programme has worked hard over the past 5 years to increase the awareness of oral health worldwide as oral health is important component of general health and quality of life. Meanwhile, oral disease is still a major public health problem in high income countries and the burden of oral disease is growing in many low- and middle income countries. In the World Oral Health Report 2003, the WHO Global Oral Health Programme formulated the policies and necessary actions to the continuous improvement of oral health. The strategy is that oral disease prevention and the promotion of oral health needs to be integrated with chronic disease prevention and general health promotion as the risks to health are linked. The World Health Assembly (WHA) and the Executive Board (EB) are supreme governance bodies of WHO and for the first time in 25 years oral health was subject to discussion by those bodies in 2007. At the EB120 and WHA60, the Member States agreed on an action plan for oral health and integrated disease prevention, thereby confirming the approach of the Oral Health Programme. The policy forms the basis for future development or adjustment of oral health programmes at national level. Clinical and public health research has shown that a number of individual, professional and community preventive measures are effective in preventing most oral diseases. However, advances in oral health science have not yet benefited the poor and disadvantaged populations worldwide. The major challenges of the future will be to translate knowledge and experiences in oral disease prevention and health promotion into action programmes. The WHO Global Oral Health Programme invites the international oral health research community to engage further in research capacity building in developing countries, and in strengthening the work so that research is recognized as the foundation of oral heath policy at global level. PMID:19046331

  16. High expression levels of the "erythroid/brain" type glucose transporter (GLUT1) in the basal cells of human eye conjunctiva and oral mucosa reconstituted in culture.

    PubMed

    Gherzi, R; Melioli, G; De Luca, M; D'Agostino, A; Guastella, M; Traverso, C E; D'Anna, F; Franzi, A T; Cancedda, R

    1991-07-01

    The expression of the "erythroid/brain" type glucose transporter (GLUT1) seems to be a feature of "barrier" tissues, at least in humans. Recently, we reported that GLUT1 is highly expressed in the basal layers of either "authentic" human epidermis or human epidermis reconstituted in culture and that its expression seems to be related to keratinocyte differentiation. In this paper we demonstrate that GLUT1 is selectively expressed in the basal layers of either eye conjunctiva epithelia or oral mucosa, reconstituted in culture starting from 1-2 mm2 bioptic specimens of normal human tissue. GLUT1 mRNA and protein levels are very high in conjunctiva and oral mucosa, 2-3 times higher than in epidermis reconstituted in culture. Taking into account its localization at the border of tissues not directly vascularized, but metabolically active, GLUT1 could play an important role in controlling the entry of glucose into these firmly guarded tissues. PMID:2055270

  17. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay.

    PubMed

    Locke, Andrea K; Cummins, Brian M; Abraham, Alexander A; Coté, Gerard L

    2014-09-16

    Competitive binding assays utilizing concanavalin A (ConA) have the potential to be the basis of improved continuous glucose monitoring devices. However, the efficacy and lifetime of these assays have been limited, in part, by ConA's instability due to its thermal denaturation in the physiological environment (37 °C, pH 7.4, 0.15 M NaCl) and its electrostatic interaction with charged molecules or surfaces. These undesirable interactions change the constitution of the assay and the kinetics of its behavior over time, resulting in an unstable glucose response. In this work, poly(ethylene glycol) (PEG) chains are covalently attached to lysine groups on the surface of ConA (i.e., PEGylation) in an attempt to improve its stability in these environments. Dynamic light scattering measurements indicate that PEGylation significantly improved ConA's thermal stability at 37 °C, remaining stable for at least 30 days. Furthermore, after PEGylation, ConA's binding affinity to the fluorescent competing ligand previously designed for the assay was not significantly affected and remained at ~5.4 × 10(6) M(-1) even after incubation at 37 °C for 30 days. Moreover, PEGylated ConA maintained the ability to track glucose concentrations when implemented within a competitive binding assay system. Finally, PEGylation showed a reduction in electrostatic-induced aggregation of ConA with poly(allylamine), a positively charged polymer, by shielding ConA's charges. These results indicate that PEGylated ConA can overcome the instability issues from thermal denaturation and nonspecific electrostatic binding while maintaining the required sugar-binding characteristics. Therefore, the PEGylation of ConA can overcome major hurdles for ConA-based glucose sensing assays to be used for long-term continuous monitoring applications in vivo. PMID:25133655

  18. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Cholerton, Brenna A; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57-83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p=0.04), cardiorespiratory fitness (MANOVA, p=0.03), and insulin sensitivity (p=0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p=0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p=0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline. PMID:20847403

  19. The Resist Diabetes trial: Rationale, design, and methods of a hybrid efficacy/effectiveness intervention trial for resistance training maintenance to improve glucose homeostasis in older prediabetic adults

    PubMed Central

    Marinik, Elaina L.; Kelleher, Sarah; Savla, Jyoti; Winett, Richard A.; Davy, Brenda M.

    2014-01-01

    Advancing age is associated with reduced levels of physical activity, increased body weight and fat, decreased lean body mass, and a high prevalence of type 2 diabetes (T2D). Resistance training (RT) increases muscle strength and lean body mass, and reduces risk of T2D among older adults. The Resist Diabetes trial will determine if a social cognitive theory (SCT)-based intervention improves RT maintenance in older, prediabetic adults, using a hybrid efficacy/effectiveness approach. Sedentary, overweight/obese (BMI 25-39.9 kg/m2) adults aged 50-69 (N=170) with prediabetes (impaired fasting glucose and/or impaired glucose tolerance) completed a supervised 3-month RT (2x/wk) Initiation Phase and were then randomly assigned (n=159; 94% retention) to one of two 6-month maintenance conditions: SCT or Standard care. The SCT intervention consisted of faded contacts compared to Standard care. Participants continue RT at an approved, self-selected community facility during maintenance. A subsequent 6-month period involves no contact for both conditions. Assessments occur at baseline and months 3 (post-initiation), 9 (post-intervention), and 15 (six months after no contact). Primary outcomes are prediabetes indices (i.e., impaired fasting and 2-hour glucose concentration) and strength. Secondary measures include insulin sensitivity, beta-cell responsiveness, and disposition index (oral glucose and C-peptide minimal model); adherence; body composition; and SCT measures. Resist Diabetes is the first trial to examine the effectiveness of a high fidelity SCT-based intervention for maintaining RT in older adults with prediabetes to improve glucose homeostasis. Successful application of SCT constructs for RT maintenance may support translation of our RT program for diabetes prevention into community settings. PMID:24252311

  20. The resist diabetes trial: Rationale, design, and methods of a hybrid efficacy/effectiveness intervention trial for resistance training maintenance to improve glucose homeostasis in older prediabetic adults.

    PubMed

    Marinik, Elaina L; Kelleher, Sarah; Savla, Jyoti; Winett, Richard A; Davy, Brenda M

    2014-01-01

    Advancing age is associated with reduced levels of physical activity, increased body weight and fat, decreased lean body mass, and a high prevalence of type 2 diabetes (T2D). Resistance training (RT) increases muscle strength and lean body mass, and reduces risk of T2D among older adults. The Resist Diabetes trial will determine if a social cognitive theory (SCT)-based intervention improves RT maintenance in older, prediabetic adults, using a hybrid efficacy/effectiveness approach. Sedentary, overweight/obese (BMI: 25-39.9 kg/m(2)) adults aged 50-69 (N = 170) with prediabetes (impaired fasting glucose and/or impaired glucose tolerance) completed a supervised 3-month RT (2×/wk) initiation phase and were then randomly assigned (N = 159; 94% retention) to one of two 6-month maintenance conditions: SCT or standard care. The SCT intervention consisted of faded contacts compared to standard care. Participants continue RT at an approved, self-selected community facility during maintenance. A subsequent 6-month period involves no contact for both conditions. Assessments occur at baseline and months 3 (post-initiation), 9 (post-intervention), and 15 (six months after no contact). Primary outcomes are prediabetes indices (i.e., impaired fasting and 2-hour glucose concentration) and strength. Secondary measures include insulin sensitivity, beta-cell responsiveness, and disposition index (oral glucose and C-peptide minimal model); adherence; body composition; and SCT measures. Resist Diabetes is the first trial to examine the effectiveness of a high fidelity SCT-based intervention for maintaining RT in older adults with prediabetes to improve glucose homeostasis. Successful application of SCT constructs for RT maintenance may support translation of our RT program for diabetes prevention into community settings. PMID:24252311

  1. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    PubMed Central

    2011-01-01

    Background A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid β-oxidation. Chronic exposure to fatty acids due to an impaired β-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D. Methods The variants were genotyped using KASPar® PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (n ACADS = 4,324; n ACADM = 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (n ACADS = 8,313; n ACADM = 8,344). Results In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (β) = -3.8% (-6.3%;-1.3%), P = 0.003), reduced incremental area under the insulin curve (β = -3.6% (-6.3%;-0.9%), P = 0.009), reduced acute insulin response (β = -2.2% (-4.2%;0.2%), P = 0.03), and with increased insulin sensitivity ISIMatsuda (β = 2.9% (0.5%;5.2%), P = 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P = 0.21). rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D. Conclusions In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced measures of

  2. Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae

    PubMed Central

    Kühn, Juliane; Finger, Flavio; Bertuzzo, Enrico; Borgeaud, Sandrine; Gatto, Marino; Rinaldo, Andrea; Blokesch, Melanie

    2014-01-01

    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings. PMID:25474211

  3. Effectiveness of motivational interviewing at improving oral health: a systematic review

    PubMed Central

    Cascaes, Andreia Morales; Bielemann, Renata Moraes; Clark, Valerie Lyn; Barros, Aluísio J D

    2014-01-01

    OBJECTIVE To analyze the effectiveness of motivational interviewing (MI) at improving oral health behaviors (oral hygiene habits, sugar consumption, dental services utilization or use of fluoride) and dental clinical outcomes (dental plaque, dental caries and periodontal status). METHODS A systematic search of PubMed, LILACS, SciELO, PsyINFO, Cochrane and Google Scholar bibliographic databases was conducted looking for intervention studies that investigated MI as the main approach to improving the oral health outcomes investigated. RESULTS Of the 78 articles found, ten met the inclusion criteria, all based on randomized controlled trials. Most studies (n = 8) assessed multiple outcomes. Five interventions assessed the impact of MI on oral health behaviors and nine on clinical outcomes (three on dental caries, six on dental plaque, four on gingivitis and three on periodontal pockets). Better quality of evidence was provided by studies that investigated dental caries, which also had the largest population samples. The evidence of the effect of MI on improving oral health outcomes is conflicting. Four studies reported positive effects of MI on oral health outcomes whereas another four showed null effect. In two interventions, the actual difference between groups was not reported or able to be recalculated. CONCLUSIONS We found inconclusive effectiveness for most oral health outcomes. We need more and better designed and reported interventions to fully assess the impact of MI on oral health and understand the appropriate dosage for the counseling interventions. PMID:24789647

  4. Improved pretreatment process using an electron beam for optimization of glucose yield with high selectivity.

    PubMed

    Lee, Byoung-Min; Lee, Jin-Young; Kang, Phil-Hyun; Hong, Sung-Kwon; Jeun, Joon-Pyo

    2014-10-01

    In this study, electron beam irradiation (EBI) assisted by a dilute acid pretreatment process was investigated to improve the glucose yield and show high selectivity in the enzymatic hydrolysis of rice straw. In the first step, EBI of rice straw was performed at various doses ranging from 50 to 500 kGy. The electron beam-irradiated rice straw was then autoclaved with 3 % dilute acid at 120 °C for 1 h. The pretreated rice straw was finally subjected to enzymatic hydrolysis at 50 °C for 24, 48, and 72 h by 70 filter paper units (FPU)/mL cellulase and 40 cellobiose units (CbU)/mL glucosidase. Glucose was obtained with a very high selectivity of 92.7 % and a total sugar yield of 80 % from pretreated rice straw after 72 h of enzymatic hydrolysis. PMID:25123364

  5. The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes

    PubMed Central

    Wang, Yannian; Wei, Fenfen; Sun, Changqing; Li, Quanzhong

    2016-01-01

    Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People's Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction. PMID:27314034

  6. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 10(8) CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  7. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  8. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health.

    PubMed

    O'Keefe, James H; Gheewala, Neil M; O'Keefe, Joan O

    2008-01-22

    The highly processed, calorie-dense, nutrient-depleted diet favored in the current American culture frequently leads to exaggerated supraphysiological post-prandial spikes in blood glucose and lipids. This state, called post-prandial dysmetabolism, induces immediate oxidant stress, which increases in direct proportion to the increases in glucose and triglycerides after a meal. The transient increase in free radicals acutely triggers atherogenic changes including inflammation, endothelial dysfunction, hypercoagulability, and sympathetic hyperactivity. Post-prandial dysmetabolism is an independent predictor of future cardiovascular events even in nondiabetic individuals. Improvements in diet exert profound and immediate favorable changes in the post-prandial dysmetabolism. Specifically, a diet high in minimally processed, high-fiber, plant-based foods such as vegetables and fruits, whole grains, legumes, and nuts will markedly blunt the post-meal increase in glucose, triglycerides, and inflammation. Additionally, lean protein, vinegar, fish oil, tea, cinnamon, calorie restriction, weight loss, exercise, and low-dose to moderate-dose alcohol each positively impact post-prandial dysmetabolism. Experimental and epidemiological studies indicate that eating patterns, such as the traditional Mediterranean or Okinawan diets, that incorporate these types of foods and beverages reduce inflammation and cardiovascular risk. This anti-inflammatory diet should be considered for the primary and secondary prevention of coronary artery disease and diabetes. PMID:18206731

  9. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    PubMed Central

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  10. Metabolic and haemodynamic effects of oral glucose loading in young healthy men carrying the 825T-allele of the G protein β3 subunit

    PubMed Central

    Nürnberger, Jens; Dammer, Sandra; Philipp, Thomas; Wenzel, Rene R; Schäfers, Rafael F

    2003-01-01

    Background A C825T polymorphism was recently identified in the gene encoding the β3 subunit of heterotrimeric G-proteins (GNB3). The T-allele is significantly associated with essential hypertension and obesity. In order to further explore a possible pathogenetic link between the T-allele and impaired glucose tolerance we studied metabolic and haemodynamic responses to oral glucose loading in young, healthy subjects with and without the 825T-allele. Methods Twelve subjects with and 10 without the 825T-allele were investigated at rest and following glucose ingestion (75 g). Blood glucose, serum insulin and haemodynamics were determined prior to and over 2 hours following glucose ingestion. We non-invasively measured stroke volume (SV, by impedance-cardiography), blood pressure (BP), heart rate (HR), and systolic-time-intervals. Cardiac output (CO) was calculated from HR and SV. Total peripheral resistance was calculated from CO and BP. Metabolic and haemodynamic changes were quantified by maximal responses and by calculation of areas under the concentration time profile (AUC). Significances of differences between subjects with and without the T-allele were determined by unpaired two-tailed t-tests. A p < 0.05 was considered statistically significant. Results Metabolic and haemodynamic parameters at baseline were very similar between both groups. The presence of the T-allele did not alter the response of any metabolic or haemodynamic parameter to glucose loading. Conclusions In conclusion, this study does not support the hypothesis that the C825T polymorphism may serve as a genetic marker of early impaired glucose tolerance. PMID:12890290

  11. Neuregulin improves response to glucose tolerance test in control and diabetic rats.

    PubMed

    López-Soldado, Iliana; Niisuke, Katrin; Veiga, Catarina; Adrover, Anna; Manzano, Anna; Martínez-Redondo, Vicente; Camps, Marta; Bartrons, Ramon; Zorzano, Antonio; Gumà, Anna

    2016-03-15

    Neuregulin (NRG) is an EGF-related growth factor that binds to the tyrosine kinase receptors ErbB3 and ErbB4, thus inducing tissue development and muscle glucose utilization during contraction. Here, we analyzed whether NRG has systemic effects regulating glycemia in control and type 2 diabetic rats. To this end, recombinant NRG (rNRG) was injected into Zucker diabetic fatty (ZDF) rats and their respective lean littermates 15 min before a glucose tolerance test (GTT) was performed. rNRG enhanced glucose tolerance without promoting the activation of the insulin receptor (IR) or insulin receptor substrates (IRS) in muscle and liver. However, in control rats, rNRG induced the phosphorylation of protein kinase B (PKB) and glycogen synthase kinase-3 (GSK-3) in liver but not in muscle. In liver, rNRG increased ErbB3 tyrosine phosphorylation and its binding to phosphatidylinositol 3-kinase (PI3K), thus indicating that rNRG activates the ErbB3/PI3K/PKB signaling pathway. rNRG increased glycogen content in liver but not in muscle. rNRG also increased the content of fructose-2,6-bisphosphate (Fru-2,6-P2), an activator of hepatic glycolysis, and lactate in liver but not in muscle. Increases in lactate were abrogated by wortmannin, a PI3K inhibitor, in incubated hepatocytes. The liver of ZDF rats showed a reduced content of ErbB3 receptors, entailing a minor stimulation of the rNRG-induced PKB/GSK-3 cascade and resulting in unaltered hepatic glycogen content. Nonetheless, rNRG increased hepatic Fru-2,6-P2 and augmented lactate both in liver and in plasma of diabetic rats. As a whole, rNRG improved response to the GTT in both control and diabetic rats by enhancing hepatic glucose utilization. PMID:26714846

  12. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency.

    PubMed

    Yu, Fei; Li, Yang; Chen, Qin; He, Yuan; Wang, Huiyun; Yang, Liu; Guo, Shangjing; Meng, Zhaohui; Cui, Jinghao; Xue, Mei; Chen, Xiao Dong

    2016-06-01

    Berberine (BER), possessing a variety of pharmacological functions, has caused a growing interest in recent years. More importantly, BER is a potential natural alternative to other synthetic antidiabetic drugs. However, poor gastrointestinal absorption and low oral bioavailability have limited its development for further clinical application. In this study, for the first time, the phytosomes loaded with berberine-phospholipid complex (P-BER) were prepared by a rapid solvent evaporation method followed by a self-assembly technique for developing a more efficient BER drug delivery system. The P-BER showed a nanoscale particle size, a negative surface charge, and excellent drug entrapment efficiency (∼85%). Compared to the orally administrated BER in previous pharmacokinetic studies, the oral bioavailability of the P-BER was significantly improved by 3-fold. More importantly, the oral administration of P-BER could suppress the fasting glucose levels and improve the ability of systematic hyperlipidemia metabolism of db/db diabetic mice. All results have demonstrated that the P-BER could be a promising oral drug delivery system. PMID:27020531

  13. Rational Redesign of Glucose Oxidase for Improved Catalytic Function and Stability

    PubMed Central

    Holland, J. Todd; Harper, Jason C.; Dolan, Patricia L.; Manginell, Monica M.; Arango, Dulce C.; Rawlings, Julia A.; Apblett, Christopher A.; Brozik, Susan M.

    2012-01-01

    Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (KM) and nearly four-fold greater catalytic rate (kcat). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in kcat at the expense of a 3% loss of substrate affinity (increase in apparent KM for glucose) resulting in a specify constant (kcat/KM) of 23.8 (mM−1 · s−1) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM−1 · s−1

  14. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats.

    PubMed

    Musabayane, C T; Bwititi, P T; Ojewole, J A O

    2006-05-01

    Previous studies in our laboratories suggest that oral administration of some herbal extracts reduce blood glucose concentrations in rats, possibly by interfering with food consumption and/or gastrointestinal absorption of food. Accordingly, we monitored the amounts of food consumed and body weights in separate groups of nondiabetic and streptozotocin-treated diabetic rats, orally treated with some plant extracts (20 mg 100 g -1 body weight) daily for 5 weeks. Control animals were administered the vehicle, citrate buffer (0.1 ml 100 g -1 body weight). Separate groups of rats administered allopathic hypoglycemic drugs metformin (50 mg 100 g -1 body weight) or glibenclamide (5 microg 100 g -1 body weight) acted as positive control animals. After 5 weeks, blood glucose concentrations were reduced in all the groups. Tapinanthus nyasicus leaf, Ficus thoningii bark, Solanum incanum fruit, and Morus alba leaf extracts decreased weekly food consumption throughout the 5-week study period. Similar results were obtained for the groups treated with metformin or glibenclamide. However, food consumption was increased by S. incanum root, Aloe chabaudii leaf, or Allium sativum bulb extracts, and this was associated with high prevalence of diarrhea. The herbal extracts and metformin did not affect serum insulin concentration in nondiabetic rats, while glibenclamide increased serum insulin concentration. In conclusion, it may be inferred that the herbal extracts examined produced hypoglycemia, probably by interfering with either food intake or gastrointestinal glucose absorption (as reported for metformin). These findings merit long-term investigation. PMID:16801983

  15. Improving drug retention in liposomes by aging with the aid of glucose.

    PubMed

    Zhang, Wenli; Falconer, James R; Baguley, Bruce C; Shaw, John P; Kanamala, Manju; Xu, Hongtao; Wang, Guangji; Liu, Jianping; Wu, Zimei

    2016-05-30

    This paper describes a novel method to improve drug retention in liposomes for the poorly water-soluble (lipophilic) model drug asulacrine (ASL). ASL was loaded in the aqueous phase of liposomes and the effects of aging conditions and drug loading levels on drug retention were investigated using an in vitro bio-relevant drug release test established in this study. The status of intra-liposomal drug was investigated using differential scanning calorimetry (DSC) and cryo-transmission electron microscopy (cryo-TEM). Pharmacokinetics and venous tolerance of the formulations were simultaneously studied in rabbits following one-hour intravenous infusion via the ear vein. The presence of glucose during aging was found to be crucial to accelerate drug precipitation and to stabilize the liposomal membrane with high drug loading (8.9% over 4.5% w/w) as a prerequisite. Although no drug crystals were detected, DSC showed a lower phase-transition peak in the glucose-assisted aged ASL-liposomes, indicating interaction of phospholipids with the sugar. Cryo-TEM revealed more 'coffee bean' like drug precipitate in the ASL-liposomes aged in the glucose solution. In rabbits, these liposomes gave rise to a 1.9 times longer half-life than the fresh liposomes, with no venous irritation observed. Inducing and stabilizing drug precipitation in the liposome cores by aging in the presence of sugar provided an easy approach to improve drug retention in liposomes. The study also highlighted the importance of bio-relevance of in vitro release methods to predict in vivo drug release. PMID:27021465

  16. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice.

    PubMed

    Hall, Angela M; Soufi, Nisreen; Chambers, Kari T; Chen, Zhouji; Schweitzer, George G; McCommis, Kyle S; Erion, Derek M; Graham, Mark J; Su, Xiong; Finck, Brian N

    2014-07-01

    Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling. PMID:24595352

  17. Transplantation of betacellulin-transduced islets improves glucose intolerance in diabetic mice

    PubMed Central

    Song, Mi-Young; Bae, Ui-Jin; Jang, Kyu Yun; Park, Byung-Hyun

    2014-01-01

    Type 1 diabetes is an autoimmune disease caused by permanent destruction of insulin-producing pancreatic β cells and requires lifelong exogenous insulin therapy. Recently, islet transplantation has been developed, and although there have been significant advances, this approach is not widely used clinically due to the poor survival rate of the engrafted islets. We hypothesized that improving survival of engrafted islets through ex vivo genetic engineering could be a novel strategy for successful islet transplantation. We transduced islets with adenoviruses expressing betacellulin, an epidermal growth factor receptor ligand, which promotes β-cell growth and differentiation, and transplanted these islets under the renal capsule of streptozotocin-induced diabetic mice. Transplantation with betacellulin-transduced islets resulted in prolonged normoglycemia and improved glucose tolerance compared with those of control virus-transduced islets. In addition, increased microvascular density was evident in the implanted islets, concomitant with increased endothelial von Willebrand factor immunoreactivity. Finally, cultured islets transduced with betacellulin displayed increased proliferation, reduced apoptosis and enhanced glucose-stimulated insulin secretion in the presence of cytokines. These experiments suggest that transplantation with betacellulin-transduced islets extends islet survival and preserves functional islet mass, leading to a therapeutic benefit in type 1 diabetes. PMID:24875130

  18. Integrated insulin pump therapy with continuous glucose monitoring for improved adherence: technology update.

    PubMed

    Tumminia, Andrea; Sciacca, Laura; Frittitta, Lucia; Squatrito, Sebastiano; Vigneri, Riccardo; Le Moli, Rosario; Tomaselli, Letizia

    2015-01-01

    Insulin pump therapy combined with real-time continuous glucose monitoring, known as sensor-augmented pump (SAP) therapy, has been shown to improve metabolic control and to reduce the rate of hypoglycemia in adults with type 1 diabetes compared to multiple daily injections or standard continuous subcutaneous insulin infusion. Glycemic variability is also reduced in patients on SAP therapy. This approach allows patients to monitor their glucose levels being informed of glycemic concentration and trend. Trained diabetic patients, therefore, can appropriately modify insulin infusion and/or carbohydrate intake in order to prevent hypo- or hyperglycemia. For these reasons, SAP therapy is now considered the gold standard for type 1 diabetes treatment. To be clinically effective, however, devices and techniques using advanced technology should not only have the potential to theoretically ameliorate metabolic control, but also be well accepted by patients in terms of satisfaction and health-related quality of life, because these factors will improve treatment adherence and consequently overall outcome. SAP therapy is generally well tolerated by patients; however, many clinical trials have identified significant noncompliance in the use of this device, most notably in the pediatric and adolescent populations. In this review we aim to analyze the main reasons for good or poor adherence to SAP therapy and to provide useful tips in order to fully benefit from this kind of novel therapeutic approach. PMID:26379428

  19. Stearidonic and γ-linolenic acids in echium oil improves glucose disposal in insulin resistant monkeys.

    PubMed

    Kavanagh, K; Flynn, D M; Jenkins, K A; Wilson, M D; Chilton, F H

    2013-07-01

    Echium oil (EO) contains stearidonic acid (18:4), a n-3 polyunsaturated fatty acids (PUFAs), and gamma-linolenic acids (18:3), a n-6 PUFA that can be converted to long chain (LC)-PUFAs. We aimed to compare a safflower oil (SO)-enriched diet to EO- and fish oil (FO)-enriched diets on circulating and tissue PUFAs levels and glycemic, inflammatory, and cardiovascular health biomarkers in insulin resistant African green monkeys. In a Latin-square cross-over study, eight monkeys consumed matched diets for 6 weeks with 3-week washout periods. Monkeys consuming FO had significantly higher levels of n-3 LC-PUFAs and EO supplementation resulted in higher levels of circulating n-3 LC-PUFAs and a significant increase in dihomo-gamma linolenic acid (DGLA) in red blood cells and muscle. Glucose disposal was improved after EO consumption. These data suggest that PUFAs in EO supplementation have the capacity to alter circulating, RBC and muscle LC-PUFA levels and improve glucose tolerance in insulin-resistant monkeys. PMID:23664597

  20. Study on an improved wavelet shift-invariant threshold denoising for pulsed laser induced glucose photoacoustic signals

    NASA Astrophysics Data System (ADS)

    Wang, Zhengzi; Ren, Zhong; Liu, Guodong

    2015-10-01

    Noninvasive measurement of blood glucose concentration has become a hotspot research in the world due to its characteristic of convenient, rapid and non-destructive etc. The blood glucose concentration monitoring based on photoacoustic technique has attracted many attentions because the detected signal is ultrasonic signals rather than the photo signals. But during the acquisition of the photoacoustic signals of glucose, the photoacoustic signals are not avoid to be polluted by some factors, such as the pulsed laser, electronic noises and circumstance noises etc. These disturbances will impact the measurement accuracy of the glucose concentration, So, the denoising of the glucose photoacoustic signals is a key work. In this paper, a wavelet shift-invariant threshold denoising method is improved, and a novel wavelet threshold function is proposed. For the novel wavelet threshold function, two threshold values and two different factors are set, and the novel function is high order derivative and continuous, which can be looked as the compromise between the wavelet soft threshold denoising and hard threshold denoising. Simulation experimental results illustrate that, compared with other wavelet threshold denoising, this improved wavelet shift-invariant threshold denoising has higher signal-to-noise ratio(SNR) and smaller root mean-square error (RMSE) value. And this improved denoising also has better denoising effect than others. Therefore, this improved denoising has a certain of potential value in the denoising of glucose photoacoustic signals.

  1. Hypothermia improves oral and gastric mucosal microvascular oxygenation during hemorrhagic shock in dogs.

    PubMed

    Vollmer, Christian; Schwartges, Ingo; Swertz, Meike; Beck, Christopher; Bauer, Inge; Picker, Olaf

    2013-01-01

    Hypothermia is known to improve tissue function in different organs during physiological and pathological conditions. The aim of this study was to evaluate the effects of hypothermia on oral and gastric mucosal microvascular oxygenation (μHbO2) and perfusion (μflow) under physiological and hemorrhagic conditions. Five dogs were repeatedly anesthetized. All animals underwent each experimental protocol (randomized cross-over design): hypothermia (34°C), hypothermia during hemorrhage, normothermia, and normothermia during hemorrhage. Microcirculatory and hemodynamic variables were recorded. Systemic (DO2) and oral mucosal (μDO2) oxygen delivery were calculated. Hypothermia increased oral μ HbO2 with no effect on gastric μHbO2. Hemorrhage reduced oral and gastric μHbO2 during normothermia (-36 ± 4% and -27 ± 7%); however, this effect was attenuated during additional hypothermia (-15 ± 5% and -11 ± 5%). The improved μ HbO2 might be based on an attenuated reduction in μ flow during hemorrhage and additional hypothermia (-51 ± 21 aU) compared to hemorrhage and normothermia (-106 ± 19 aU). μDO2 was accordingly attenuated under hypothermia during hemorrhage whereas DO2 did not change. Thus, in this study hypothermia alone improves oral μHbO2 and attenuates the effects of hemorrhage on oral and gastric μ HbO2. This effect seems to be mediated by an increased μDO2 on the basis of increased μ flow. PMID:24327826

  2. Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties.

    PubMed

    Şen, Özlem; Culha, Mustafa

    2016-02-01

    Boron nitride nanotubes (BNNTs) are increasingly investigated for their medical and biomedical applications due to their unique properties such as resistance to oxidation, thermal and electrical insulation, and biocompatibility. BNNTs can be used to enhance mechanical strength of biomedical structures such as scaffolds in tissue engineering applications. In this study, we report the use of BNNTs and hydroxylated BNNTs (BNNT-OH) to improve the properties of gelatin-glucose scaffolds prepared with electrospinning technique. Human dermal fibroblast (HDF) cells are used for the toxicity assessment and cell seeding studies. It is found that the addition of BNNTs into the scaffold does not influence cell viability, decreases the scaffold degradation rate, and improves cell attachment and proliferation compared to only-gelatin scaffold. PMID:26642075

  3. Sodium-glucose cotransporter 2 inhibitor luseogliflozin improves glycaemic control, assessed by continuous glucose monitoring, even on a low-carbohydrate diet.

    PubMed

    Nishimura, R; Omiya, H; Sugio, K; Ubukata, M; Sakai, S; Samukawa, Y

    2016-07-01

    This randomized, double-blind, placebo-controlled, crossover study was the first to determine the effects of luseogliflozin in combination with a low-carbohydrate diet (LCD) on 24-h glucose variability, assessed by continuous glucose monitoring (CGM). A total of 18 Japanese patients with type 2 diabetes were randomized into two groups, in which patients first received luseogliflozin 2.5 mg once daily then placebo for 8 days each, or vice versa. Patients took luseogliflozin or placebo with a normal-carbohydrate diet (NCD) on day 7 and with the LCD on day 8. CGM was performed on both days. Luseogliflozin significantly reduced glucose exposure in terms of the area under the curve over the course of 24 h when administered with the NCD (difference vs placebo: -555.6 mg/dl·h [1 mg/dl = 0.0556 mmol/l]; p < 0.001) or with the LCD (-660.7 mg/dl·h; p < 0.001). No hypoglycaemia was observed over 24 h with either diet. Although glucose levels were lower with the LCD than with the NCD in the placebo treatment period, luseogliflozin with the LCD improved glycaemic control throughout the day to nearly the same extent as luseogliflozin with the NCD, without inducing hypoglycaemia. PMID:26639943

  4. γ-Tocopherol abolishes postprandial increases in plasma methylglyoxal following an oral dose of glucose in healthy, college-aged men.

    PubMed

    Masterjohn, Christopher; Mah, Eunice; Guo, Yi; Koo, Sung I; Bruno, Richard S

    2012-03-01

    Postprandial hyperglycemia contributes to the risk of cardiovascular disease in part by increasing concentrations of the reactive dicarbonyl methylglyoxal (MGO), a byproduct of glucose metabolism. Oxidative stress increases MGO formation from glucose in vitro and decreases its glutathione-dependent detoxification to lactate. We hypothesized that the antioxidant γ-tocopherol, a form of vitamin E, would decrease hyperglycemia-mediated postprandial increases in plasma MGO in healthy, normoglycemic, college-aged men. Participants (n=12 men; 22.3±1.0 years; 29.3±2.4 kg/m(2)) received an oral dose of glucose (75 g) in the fasted state prior to and following 5-day ingestion of a vitamin E supplement enriched in γ-tocopherol (500 mg/day). γ-Tocopherol supplementation increased (P<.0001) plasma γ-tocopherol from 2.22±0.32 to 7.06±0.71 μmol/l. Baseline MGO concentrations and postprandial hyperglycemic responses were unaffected by γ-tocopherol supplementation (P>.05). Postprandial MGO concentrations increased in the absence of supplemental γ-tocopherol (P<.05), but not following γ-tocopherol supplementation (P>.05). Area under the curve for plasma MGO was significantly (P<.05) smaller with the supplementation of γ-tocopherol than without (area under the curve (0-180 min), -778±1010 vs. 2277±705). Plasma concentrations of γ-carboxyethyl-hydroxychroman, reduced glutathione and markers of total antioxidant capacity increased after supplementation, and these markers and plasma γ-tocopherol were inversely correlated with plasma MGO (r=-0.48 to -0.67, P<.05). These data suggest that short-term supplementation of γ-tocopherol abolishes the oral glucose-mediated increases in postprandial MGO through its direct and indirect antioxidant properties and may reduce hyperglycemia-mediated cardiovascular disease risk. PMID:21543210

  5. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  6. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice.

    PubMed

    Liu, Qingpu; Li, Xuan; Li, Cunyu; Zheng, Yunfeng; Wang, Fang; Li, Hongyang; Peng, Guoping

    2016-01-01

    The present study investigated the effect of 1-Deoxynojirimycin (DNJ) on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg(-1)·day(-1)), DNJ-40 (DNJ 40 mg·kg(-1)·day(-1)) and DNJ-80 (DNJ 80 mg·kg(-1)·day(-1)). All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and liver TG, as well as activities of serum alanine aminotransferase (ALT), and aspartate transaminase (AST); DNJ also alleviated macrovesicular steatosis and decreased tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) levels in liver tissue. Furthermore, DNJ treatment significantly increased hepatic glycogen content, the activities of hexokinase (HK), pyruvate kinase (PK) in liver tissue, and decreased the activities of glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, DNJ increased the phosphorylation of phosphatidylinositol 3 kinase (PI3K) on p85, protein kinase B (PKB) on Ser473, glycogen synthase kinase 3β (GSK-3β) on Ser9, and inhibited phosphorylation of glycogen synthase (GS) on Ser645 in liver tissue of db/db mice. These results demonstrate that DNJ can increase hepatic insulin sensitivity via strengthening of the insulin-stimulated PKB/GSK-3β signal pathway and by modulating glucose metabolic enzymes in db/db mice. Moreover, DNJ also can improve lipid homeostasis and attenuate hepatic steatosis in db/db mice. PMID:26927057

  7. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan.

    PubMed

    Madgulkar, Ashwini; Bhalekar, Mangesh R; Dikpati, Amrita A

    2016-08-01

    Acyclovir a BCS class III drug exhibits poor bioavailability due to limited permeability. The intention of this research work was to formulate and characterize thiolated xyloglucan polysaccharide nanoparticles (TH-NPs) of acyclovir with the purpose of increasing its oral bioavailability. Acyclovir-loaded TH-NPs were prepared using a cross-linking agent. Interactions of formulation excipients were reconnoitered using Fourier transform infrared spectroscopy (FT-IR). The formulated nanoparticles were lyophilised by the addition of a cryoprotectant and characterized for its particle size, morphology and stability and optimized using Box Behnken Design.The optimized TH-NP formulation exhibited particle size of 474.4±2.01 and an entrapment efficiency of 81.57%. A marked enhancement in the mucoadhesion was also observed. In-vivo study in a rat model proved that relative bioavailability of acyclovir TH-NPs is ∼2.575 fold greater than that of the marketed acyclovir drug suspension. PMID:27026342

  8. Site-specific mouth rinsing can improve oral odor by altering bacterial counts

    PubMed Central

    Alqumber, Mohammed A.; Arafa, Khaled A.

    2014-01-01

    Objectives: To determine whether site-specific mouth rinsing with oral disinfectants can improve oral odor beyond the traditional panoral mouth disinfection with mouth rinses by targeting specifically oral malodor implicated anaerobic bacteria Methods: Twenty healthy fasting subjects volunteered for a blinded prospective, descriptive correlational crossover cross-section clinical trial conducted during the month of Ramadan between July and August 2013 in Albaha province in Saudi Arabia involving the application of Listerine® Cool Mint® mouth rinse by either the traditional panoral rinsing method, or a site-specific disinfection method targeting the subgingival and supragingival plaque and the posterior third of the tongue dorsum, while avoiding the remaining locations within the oral cavity. The viable anaerobic and aerobic bacterial counts, volatile sulfur compounds (VSCs) levels, organoleptic assessment of oral odor, and the tongue-coating index were compared at baseline, one, 5, and 9 hours after the treatment. Results: The site-specific disinfection method reduced the VSCs and anaerobic bacterial loads while keeping the aerobic bacterial numbers higher than the traditional panoral rinsing method. Conclusion: Site-specific disinfection can more effectively maintain a healthy oral cavity by predominantly disinfecting the niches of anaerobic bacteria within the oral cavity. PMID:25399224

  9. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  10. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice.

    PubMed

    Meng, Ran; Zhu, Dalong; Bi, Yan; Yang, Donghui; Wang, Yaping

    2013-01-01

    Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice. PMID:23326455

  11. Development of an Online Education Program for Midwives in Australia to Improve Perinatal Oral Health

    PubMed Central

    George, Ajesh; Duff, Margaret; Ajwani, Shilpi; Johnson, Maree; Dahlen, Hannah; Blinkhorn, Anthony; Ellis, Sharon; Bhole, Sameer

    2012-01-01

    It is recommended that all pregnant women should receive a comprehensive oral health evaluation because poor maternal oral health may affect pregnancy outcomes and the general health of the woman and her baby. Midwives are well placed to provide dental health advice and referral. However, in Australia, little emphasis has been placed on the educational needs of midwives to undertake this role. This article outlines the development of an online education program designed to improve midwives’ dental health knowledge, prepare them to assess the oral health of women, refer when required, and provide appropriate dental education to women and their families. The program consists of reading and visual material to assist with the oral health assessment process and includes competency testing. PMID:23449750

  12. Brief Report: Remotely Delivered Video Modeling for Improving Oral Hygiene in Children with ASD: A Pilot Study

    ERIC Educational Resources Information Center

    Popple, Ben; Wall, Carla; Flink, Lilli; Powell, Kelly; Discepolo, Keri; Keck, Douglas; Mademtzi, Marilena; Volkmar, Fred; Shic, Frederick

    2016-01-01

    Children with autism have heightened risk of developing oral health problems. Interventions targeting at-home oral hygiene habits may be the most effective means of improving oral hygiene outcomes in this population. This randomized control trial examined the effectiveness of a 3-week video-modeling brushing intervention delivered to patients over…

  13. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  14. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes.

    PubMed

    Wijesekara, N; Ahrens, R; Wu, L; Ha, K; Liu, Y; Wheeler, M B; Fraser, P E

    2015-10-01

    Increasing evidence points to the cytotoxicity of islet amyloid polypeptide (IAPP) aggregates as a major contributor to the loss of β-cell mass in type 2 diabetes. Prevention of IAPP formation represents a potential treatment to increase β-cell survival and function. The IAPP inhibitory peptide, D-ANFLVH, has been previously shown to prevent islet amyloid accumulation in cultured human islets. To assess its activity in vivo, D-ANFLVH was administered by intraperitoneal injection into a human IAPP transgenic mouse model, which replicates type 2 diabetes islet amyloid pathology. The peptide was a potent inhibitor of islet amyloid deposition, resulting in reduced islet cell apoptosis and preservation of β-cell area leading to improved glucose tolerance. These findings provide support for a key role of islet amyloid in β-cell survival and validate the application of anti-amyloid compounds as therapeutic strategies to maintain normal insulin secretion in patients with type 2 diabetes. PMID:26095311

  15. Effects of Oral Administration of Moringa oleifera Lam on Glucose Tolerance in Goto-Kakizaki and Wistar Rats.

    PubMed

    Ndong, Moussa; Uehara, Mariko; Katsumata, Shin-Ichi; Suzuki, Kazuharu

    2007-05-01

    Medicinal plants constitute an important source of potential therapeutic agents for diabetes. In the present study, we investigated the effects of Moringa oleifera (MO) Lam, Moringacea, on glucose tolerance in Wistar rats and Goto-Kakizaki (GK) rats, modeled type 2 diabetes. Major polyphenols in MO powder were quercetin glucosides, rutin, kaempferol glycosides and chlorogenic acids by HPLC analysis. As the results of glucose tolerance test, MO significantly decreased the blood glucose at 20, 30, 45and 60 min for GK rats and at 10, 30 and 45 min for Wistar rats (p<0.05) compared to the both controls after glucose administration. The area under the curve of changes in the blood glucose was significantly higher in the GK control group than in the GK plus MO group (p<0.05) in the periods 30-60 min and 60-120 min. Furthermore, MO significantly decreased stomach emptying in GK rats (p<0.05). The results indicated that MO has an ameliorating effect for glucose intolerance, and the effect might be mediated by quercetin-3-glucoside and fiber contents in MO leaf powder. The action of MO was greater in GK rats than in Wistar rats. PMID:18398501

  16. Use of hydrogel coating to improve the performance of implanted glucose sensors.

    PubMed

    Yu, Bazhang; Wang, Chunyan; Ju, Young Min; West, Leigh; Harmon, Julie; Moussy, Yvonne; Moussy, Francis

    2008-03-14

    In order to protect implanted glucose sensors from biofouling, novel hydrogels (146-217% water by mass) were developed based on a copolymer of hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA). The porosity and mechanical properties of the hydrogels were improved using N-vinyl-2-pyrrolidinone (VP) and ethyleneglycol dimethacrylate (EGDMA). The results of SEM and DSC FT-IT analyses showed that the hydrogel (VP30) produced from a monomeric mixture of 34.5% HEMA, 34.5% DHPMA, 30% VP and 1% EDGMA (mol%) had an excellent pore structure, high water content at swelling equilibrium (W eq=166% by mass) and acceptable mechanical properties. Two kinds of VP30-coated sensors, Pt/GOx/VP30 and Pt/GOx/epoxy-polyurethane (EPU)/VP30 sensors were examined in glucose solutions during a period of 4 weeks. The Pt/GOx/VP30 sensors produced large response currents but the response linearity was poor. Therefore, further studies were focused on the Pt/GOx/EPU/VP30 sensors. With a diffusion-limiting epoxy-polyurethane membrane, the linearity was improved (2-30 mM) and the response time was within 5 min. Eight Pt/GOx/EPU/VP30 sensors were subcutaneously implanted in rats and tested once per week over 4 weeks. All of the implanted sensors kept functioning for at least 21 days and 3 out of 8 sensors still functioned at day 28. Histology revealed that the fibrous capsules surrounding hydrogel-coated sensors were thinner than those surrounding Pt/GOx/EPU sensors after 28 days of implantation. PMID:18182283

  17. Improving Patient Outcomes With Oral Heart Failure Medications.

    PubMed

    Sherrod, Melissa M; Cheek, Dennis J; Seale, Ashlie

    2016-05-01

    Hospitals are under immense pressure to reduce heart failure readmissions that occur within 30 days of discharge, and to improve the quality of care for these patients. Penalties mandated by the Affordable Care Act decrease hospital reimbursement and ultimately the overall cost of caring for these patients increases if they are not well managed. Approximately 25% of patients hospitalized for heart failure are at high risk for readmission and these rates have not changed over the past decade. As a result of an aging population, the incidence of heart failure is expected to increase to one in five Americans over the age of 65. Pharmacologic management can reduce the risk of death and help prevent unnecessary hospitalizations. Healthcare providers who have knowledge of heart failure medications and drug interactions and share this information with their patients contribute to improved long-term survival and physical functioning as well as fewer hospitalizations and a delay of progressive worsening of heart failure. PMID:27145405

  18. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals.

    PubMed

    McClements, David Julian; Xiao, Hang

    2014-07-25

    The oral bioavailability of many lipophilic bioactive agents (pharmaceuticals and nutraceuticals) is limited due to various physicochemical and physiological processes: poor release from food or drug matrices; low solubility in gastrointestinal fluids; metabolism or chemical transformation within the gastrointestinal tract; low epithelium cell permeability. The bioavailability of these agents can be improved by specifically designing food matrices that control their release, solubilization, transport, metabolism, and absorption within the gastrointestinal tract. This article discusses the impact of food composition and structure on oral bioavailability, and how this knowledge can be used to design excipient foods for improving the oral bioavailability of lipophilic bioactives. Excipient foods contain ingredients or structures that may have no bioactivity themselves, but that are able to promote the bioactivity of co-ingested bioactives. These bioactives may be lipophilic drugs in pharmaceutical preparations (such as capsules, pills, or syrups) or nutraceuticals present within food matrices (such as natural or processed foods and beverages). PMID:24760211

  19. [Clinical research on improvement of glucose metabolic marker level by coffee drinking-validity of saliva caffeine concentration measurement].

    PubMed

    Okada, Tomoko; Kobayashi, Daisuke; Kono, Suminori; Shimazoe, Takao

    2010-05-01

    We measured both serum and saliva caffeine concentration using HPLC and assessed the correlation between them in volunteers with mild obesity. Significant correlation was shown between saliva and serum caffeine concentration. It may be necessary to measure caffeine metabolite concentration because its metabolites may also have an improving effect of glucose metabolism. In summary, we found that saliva caffeine concentration measurement was useful to assess caffeine intake level. Moreover, it will be helpful to know whether caffeine has an improving effect of glucose metabolism. PMID:20460869

  20. Effect of Oral Glucose Administration on Rebound Growth Hormone Release in Normal and Obese Women: The Role of Adiposity, Insulin Sensitivity and Ghrelin

    PubMed Central

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Context Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. Objective The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. Participants and Methods We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. Results The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH. PMID:25782001

  1. Adherence to oral glucose lowering therapies and associations with one year HbA1c: a retrospective cohort analysis in a large primary care database

    PubMed Central

    Shields, Beverley; Weedon, Michael N.; Donnelly, Louise; Holman, Rury R.; Pearson, Ewan R.; Hattersley, Andrew T

    2016-01-01

    Objectives The impact of taking oral glucose-lowering medicines intermittently, rather than as recommended, is unclear. We conducted a retrospective cohort study using community-acquired United Kingdom clinical data (CPRD and GoDARTS databases) to examine the prevalence of non-adherence to treatment for type 2 diabetes, and investigate its potential impact on HbA1c reduction stratified by type of glucose-lowering medication. Research design and methods Data for patients treated between 2004 and 2014 were extracted for those newly-prescribed metformin, sulfonylurea, thiazolidinedione or dipeptidyl peptidase-4 inhibitors who continued to obtain prescriptions over one year, were extracted. Cohorts were defined by prescribed medication type, and good adherence as a medication possession ratio ≥0.8. Linear regression was used to determine potential associations between adherence and one-year baseline-adjusted HbA1c reduction. Results In CPRD and GoDARTS, 13% and 15% of patients respectively were non-adherent. Proportions of non-adherent patients varied by the oral glucose-lowering treatment prescribed (range 8.6% (thiazolidinedione) to 18.8% (metformin)). Non-adherent, compared with adherent, patients had a smaller HbA1c reduction (0.4%[4.4mmmol/mol] and 0.46%[5.0mmol/mol] for CPRD and GoDARTs respectively). Difference in HbA1c response for adherent compared with non-adherent patients varied by drug (range: 0.38%[4.1mmol/mol] to 0.75%[8.2mmol/mol] lower in adherent group). Decreasing levels of adherence were consistently associated with a smaller reduction in HbA1c. Conclusions Reduced medication adherence for commonly used glucose lowering therapies among patients persisting with treatment is associated with smaller HbA1c reductions, compared with those taking treatment as recommended. Differences observed in HbA1c responses to glucose lowering-treatments may be explained in part by their intermittent use. PMID:26681714

  2. Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons.

    PubMed

    Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2014-05-01

    In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. PMID:24632065

  3. Improving the Awareness of Personal and Oral Hygiene in Second Graders.

    ERIC Educational Resources Information Center

    Meleskie-Lippert, Kathleen

    The practicum reported here involved the design of a hygiene awareness unit to help 30 second-grade students in an inner-city school become aware of and improve their personal and oral hygiene, and to provide necessary knowledge concerning pediculosis. Surveys of students and faculty prior to the program demonstrated the need for such a program as…

  4. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  5. Dyrk1A induces pancreatic β cell mass expansion and improves glucose tolerance

    PubMed Central

    Rachdi, Latif; Kariyawasam, Dulanjalee; Aïello, Virginie; Herault, Yann; Janel, Nathalie; Delabar, Jean-Maurice; Polak, Michel; Scharfmann, Raphaël

    2014-01-01

    Type 2 diabetes is caused by a limited capacity of insulin-producing pancreatic β cells to increase their mass and function in response to insulin resistance. The signaling pathways that positively regulate functional β cell mass have not been fully elucidated. DYRK1A (also called minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. A significant amount of data implicates DYRK1A in brain growth and Down syndrome, and recent data indicate that Dyrk1A haploinsufficient mice have a low functional β cell mass. Here we ask whether Dyrk1A upregulation could be a way to increase functional β cell mass.     We used mice overexpressing Dyrk1A under the control of its own regulatory sequences (mBACTgDyrk1A). These mice exhibit decreased glucose levels and hyperinsulinemia in the fasting state. Improved glucose tolerance is observed in these mice as early as 4 weeks of age. Upregulation of Dyrk1A in β cells induces expansion of β cell mass through increased proliferation and cell size. Importantly, mBACTgDyrk1A mice are protected against high-fat-diet-induced β cell failure through increase in β cell mass and insulin sensitivity. These studies show the crucial role of the DYRK1A pathway in the regulation of β cell mass and carbohydrate metabolism in vivo. Activating the DYRK1A pathway could thus represent an innovative way to increase functional β cell mass. PMID:24870561

  6. The Uptake of Screening for Type 2 Diabetes and Prediabetes by Means of Glycated Hemoglobin versus the Oral Glucose Tolerance Test among 18 to 60-Year-Old People of South Asian Origin: A Comparative Study

    PubMed Central

    van Valkengoed, Irene G. M.; Vlaar, Everlina M. A.; Nierkens, Vera; Middelkoop, Barend J. C.; Stronks, Karien

    2015-01-01

    Background Direct comparisons of the effect of a glycated haemoglobin measurement or an oral glucose tolerance test on the uptake and yield of screening in people of South Asian origin have not been made. We evaluated this in 18 to 60-year-old South Asian Surinamese. Materials and Methods We invited 3173 South Asian Surinamese for an oral glucose tolerance test between June 18th 2009- December 31st 2009 and 2012 for a glycated hemoglobin measurement between April 19th 2010-November 11th, 2010. Participants were selected from 48 general practices in The Hague, The Netherlands. We used mixed models regression to analyse differences in response and participation between the groups. We described differences in characteristics of participants and calculated the yield as the percentage of all cases identified, if all invitees had been offered screening with the specified method. Results The response and participation in the glycated hemoglobin group was higher than in the group offered an oral glucose tolerance test (participation 23.9 vs. 19.3; OR: 1.30, 95%-confidence interval1.01–1.69). After adjustment for age and sex, characteristics of participants were similar for both groups. Overall, glycated hemoglobin identified a similar percentage of type 2 diabetes cases but a higher percentage of prediabetes cases, in the population than the oral glucose tolerance test. Conclusion We found that glycated hemoglobin and the oral glucose tolerance test may be equally efficient for identification of type 2 diabetes in populations of South Asian origin. However, for programs aimed at identifying people at high risk of type 2 diabetes (i.e. with prediabetes), the oral glucose tolerance test may be a less efficient choice than glycated hemoglobin. PMID:26317417

  7. Display of Glucose Distributions by Date, Time of Day, and Day of Week: New and Improved Methods

    PubMed Central

    Rodbard, David

    2009-01-01

    Objective There is a need for improved methods for display of glucose distributions to facilitate comparisons by date, time of day, day of the week, and other variables for data obtained using self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM). Method Stacked bar charts are utilized for multiple ranges of glucose values, e.g., very low, low, borderline low, target range, borderline high, high, and very high. Glucose ranges for these categories can be defined by the user, e.g., <40, 40–70, 71–80, 81–140, 141–180, 181–250, and 251–400 mg/dl. Glucose distributions can be displayed by time of day, in relation to meals, by date, or by day of week. The graphic display can be generated using general purpose spreadsheet software such as Microsoft Excel or with special purpose software. Result Stacked bar charts are extremely compact and effective. They facilitate comparison of multiple days, multiple time segments within a day, preprandial and postprandial glucose levels, days of the week, treatment periods, patients, and groups of patients. They are superior to use of pie charts in terms of compactness and in their ability to facilitate comparisons using multiple criteria and multiple subsets of the data. One can identify episodes of hypoglycemia and hyperglycemia and can display standard errors of estimates of percentages. Interpretation of these graphs is readily learned and requires minimal training. Conclusion Use of stacked bar charts is generally superior to use of pie charts for display of glucose distributions and can potentially facilitate the analysis and interpretation of SMBG and CGM data. PMID:20144393

  8. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus.

    PubMed

    Wang, Meihong; Luo, Lan; Yao, Lili; Wang, Caiping; Jiang, Ketao; Liu, Xiaoyu; Xu, Muchen; Shen, Ningmei; Guo, Shaodong; Sun, Cheng; Yang, Yumin

    2016-01-01

    Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50 mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (eWAT). In addition, salidroside markedly ameliorated hyperglycemia in treated mice, which is likely due to the suppression of gluconeogenesis by salidroside as the protein levels of a gluconeogenic enzyme G6Pase and a co-activator PGC-1α were all markedly decreased. Further analysis revealed that adipogenesis in eWAT was significantly decreased in salidroside treated mice. The infiltration of macrophages in eWAT and the productions of pro-inflammatory cytokines were also markedly suppressed by salidroside. Furthermore, the leptin signal transduction in hypothalamus was improved by salidroside. Taken together, these euglycemic effects of salidroside may due to repression of adipogenesis and inflammation in eWAT and stimulation of leptin signal transduction in hypothalamus. Thus, salidroside might be used as an effective anti-diabetic agent. PMID:27145908

  9. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus

    PubMed Central

    Wang, Meihong; Luo, Lan; Yao, Lili; Wang, Caiping; Jiang, Ketao; Liu, Xiaoyu; Xu, Muchen; Shen, Ningmei; Guo, Shaodong; Sun, Cheng; Yang, Yumin

    2016-01-01

    Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50 mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (eWAT). In addition, salidroside markedly ameliorated hyperglycemia in treated mice, which is likely due to the suppression of gluconeogenesis by salidroside as the protein levels of a gluconeogenic enzyme G6Pase and a co-activator PGC-1α were all markedly decreased. Further analysis revealed that adipogenesis in eWAT was significantly decreased in salidroside treated mice. The infiltration of macrophages in eWAT and the productions of pro-inflammatory cytokines were also markedly suppressed by salidroside. Furthermore, the leptin signal transduction in hypothalamus was improved by salidroside. Taken together, these euglycemic effects of salidroside may due to repression of adipogenesis and inflammation in eWAT and stimulation of leptin signal transduction in hypothalamus. Thus, salidroside might be used as an effective anti-diabetic agent. PMID:27145908

  10. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  11. Effectiveness of an educational video in improving oral health knowledge in a hospital setting

    PubMed Central

    Shah, Naseem; Mathur, Vijay Prakash; Kathuria, Vartika; Gupta, Tanupriya

    2016-01-01

    Introduction: Prevention of oral diseases can be achieved by preventive measures. There is an educational component associated to the preventive aspect. Health education is a cornerstone to the success of a preventive programme. Health education has always been regarded as a primary tool in imparting awareness, bringing changes in healthy behaviors and improved life. Aim: To assess the effectiveness of an Educational Video in improving oral health knowledge of subjects in a hospital setting. Methodology: The study was conducted in Outpatient Department, CDER, AIIMS. This was a cross sectional interventional study. In the present study a total of 109 subjects were considered those who completed pre and post intervention questionnaire. In order to assess baseline oral health knowledge, a-14 itemed questionnaire was specially designed, based on the contents of video and was pre-tested on 10 patients. Pre-intervention knowledge was assessed and then the 30-minute video was shown. Following this, post-exposure knowledge was assessed using the same questionnaire. Change in the knowledge score amongst the subjects was assessed pre and post-intervention (showing the video film). Results: Paired t- test was used to analyze the data. Pre-intervention mean knowledge score was 9.49±2.09 which increased to 11.55±1.60 post-intervention; the difference was statistically significant (P < 0.001). Conclusions: It was found that increase in knowledge score was statistically significant after exposure to an educational video film in a hospital setting. Incorporation of video in imparting oral health education can be an effective tool in improving oral health knowledge, which can impact the oral health behavior of people and community. PMID:27433049

  12. Salacia chinensis L. extract ameliorates abnormal glucose metabolism and improves the bone strength and accumulation of AGEs in type 1 diabetic rats.

    PubMed

    Shirakawa, Jun-Ichi; Arakawa, Shoutaro; Tagawa, Tomoya; Gotoh, Kentaroh; Oikawa, Norihisa; Ohno, Rei-Ichi; Shinagawa, Masatoshi; Hatano, Kota; Sugawa, Hikari; Ichimaru, Kenta; Kinoshita, Sho; Furusawa, Chisato; Yamanaka, Mikihiro; Kobayashi, Masakazu; Masuda, Shuichi; Nagai, Mime; Nagai, Ryoji

    2016-06-15

    Although extracts of the roots and stems of Salacia chinensis have been used in folk medicines for chronic diseases such as rheumatism, irregular menstruation, asthma and diabetes mellitus, little is known about the mechanism by which Salacia chinensis extract (SCE) ameliorates these diseases. To clarify whether SCE ameliorates the progression of lifestyle-related diseases, the inhibitory effect of SCE on the formation of advanced glycation end products (AGEs) was analyzed in a rat model of streptozotocin-induced diabetes. Although the oral administration of SCE did not ameliorate the diabetes-induced decrease in body weight, it ameliorated the increase in glycoalbumin levels in diabetic rats. An analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) demonstrated that the levels of N(ε)-(carboxymethyl)lysine (CML) were highest in the femurs and that they increased by the induction of diabetes. The administration of SCE also ameliorated the decreased femur strength and the accumulation of CML. Furthermore, when all of the carbohydrates in the chow of diabetic rats were replaced with free glucose, the administration of SCE significantly ameliorated a diabetes-induced increase in glycoalbumin and decrease in serum creatinine level and body weight. This study provides evidence to support that SCE ameliorates diabetes-induced abnormalities by improving the uptake of glucose by various organs. PMID:27121272

  13. Improved functional properties of glycosylated soy protein isolate using D-glucose and xanthan gum.

    PubMed

    Li, Ruiqi; Hettiarachchy, Navam; Rayaprolu, Srinivas; Davis, Mike; Eswaranandam, Satchithanandam; Jha, Alok; Chen, Pengyin

    2015-09-01

    Functional properties of the soy protein need to improve to have better applications in food industry. Alkali extracted and acid precipitated soy protein isolate (SPI) was glycosylated using D-glucose (G) and Xanthan gum (X) via Maillard reaction to improve solubility. The effects of SPI to G and SPI to X ratios (SPI:G = 2:1, 1:1, and 1:2; SPI:X = 100:1 and 10:1) and incubation time (0, 6, 12, and 24 h) on the solubility and functional properties of glycosylated SPI were evaluated. The SPI:G ratio of 1:2 yielded a maximum degree of glycosylation of 71.1 %. The solubility of SPI after glycosylation significantly increased (P < 0.05) at pH 4.0-8.0 compared to SPI alone. Although the emulsion stability of glycosylated SPIs has not significantly increased (P > 0.05), the emulsifying activity improved significantly (P < 0.05). Glycosylation with SPI-X at a ratio of 10: 1 showed maximum emulsifying activity of 191.6 m(2)/g (SPI alone: 66.3 m(2)/g). Moreover, the SPI:X (ratio of 100:1) showed the maximum foaming activity (205 mL) compared to SPI alone (155 mL). The foaming stability of SPI (2.6 %) increased to 5.5 and 8.2 % when using xanthan gum at the ratio of 100:1 and 10:1, respectively. Glycosylated SPI with enhanced emulsifying and foaming properties has potential to improve the functional quality of the food products. PMID:26345030

  14. A 12 week aerobic exercise program improves fitness, hepatic insulin sensitivity and glucose metabolism in obese Hispanic adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rise in obesity related morbidity in children and adolescents requires urgent prevention and treatment strategies. Strictly controlled exercise programs might be useful tools to improve insulin sensitivity and glucose kinetics. Our objective was to test the hypothesis that a 12-wk aerobic exerci...

  15. Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization

    PubMed Central

    Ha, Eun-Sol; Baek, In-hwan; Yoo, Jin-Wook; Jung, Yunjin; Kim, Min-Soo

    2015-01-01

    The present study was carried out to develop an oral formulation of pranlukast hemihydrate with improved dissolution and oral bioavailability using a surface-modified microparticle. Based on solubility measurements, surface-modified pranlukast hemihydrate microparticles were manufactured using the spray-drying method with hydroxypropylmethyl cellulose, sucrose laurate, and water and without the use of an organic solvent. The hydrophilicity of the surface-modified pranlukast hemihydrate microparticle increased, leading to enhanced dissolution and oral bioavailability of pranlukast hemihydrate without a change in crystallinity. The surface-modified microparticles with an hydroxypropylmethyl cellulose/sucrose laurate ratio of 1:2 showed rapid dissolution of up to 85% within 30 minutes in dissolution medium (pH 6.8) and oral bioavailability higher than that of the commercial product, with approximately 2.5-fold and 3.9-fold increases in area under the curve (AUC0→12 h) and peak plasma concentration, respectively. Therefore, the surface-modified microparticle is an effective oral drug delivery system for the poorly water-soluble therapeutic pranlukast hemihydrate. PMID:26150699

  16. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. PMID:27377011

  17. Evaluation of Fasting State-/Oral Glucose Tolerance Test-Derived Measures of Insulin Release for the Detection of Genetically Impaired β-Cell Function

    PubMed Central

    Heni, Martin; Ketterer, Caroline; Guthoff, Martina; Kantartzis, Konstantinos; Machicao, Fausto; Stefan, Norbert; Häring, Hans-Ulrich; Fritsche, Andreas

    2010-01-01

    Background To date, fasting state- and different oral glucose tolerance test (OGTT)-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced) fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction. Methodology/Principal Findings A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs) known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05). The indices were ranked according to their associations' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset) were summed up resulting in a final ranking. This approach revealed area under the curve (AUC)Insulin(0-30)/AUCGlucose(0-30) as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUCInsulin(0-30)/AUCGlucose(0-30), corrected insulin response (CIR), AUCC-Peptide(0-30)/AUCGlucose(0-30), AUCC-Peptide(0-120)/AUCGlucose(0-120), two different formulas for the incremental insulin response from 0–30 min, i.e., the insulinogenic indices (IGI)2 and IGI1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05). AUCC-Peptide(0-120)/AUCGlucose(0-120) was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last. Conclusions/Significance With AUCInsulin(0-30)/AUCGlucose(0

  18. Glucose screening and tolerance tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy (OGTT); Glucose challenge test - pregnancy ... For the glucose screening test: You do not need to prepare or change your diet in any way. You will be asked to drink a ...

  19. Simulated Physician Learning Program Improves Glucose Control in Adults With Diabetes

    PubMed Central

    Sperl-Hillen, JoAnn M.; O'Connor, Patrick J.; Rush, William A.; Johnson, Paul E.; Gilmer, Todd; Biltz, George; Asche, Stephen E.; Ekstrom, Heidi L.

    2010-01-01

    OBJECTIVE Inexpensive and standardized methods to deliver medical education to primary care physicians (PCPs) are desirable. Our objective was to assess the impact of an individualized simulated learning intervention on diabetes care provided by PCPs. RESEARCH DESIGN AND METHODS Eleven clinics with 41 consenting PCPs in a Minnesota medical group were randomized to receive or not receive the learning intervention. Each intervention PCP was assigned 12 simulated type 2 diabetes cases that took about 15 min each to complete. Cases were designed to remedy specific physician deficits found in their electronic medical record observed practice patterns. General linear mixed models that accommodated the cluster randomized study design were used to assess patient-level change from preintervention to 12-month postintervention of A1C, blood pressure, and LDL cholesterol. The relationship between the study arm and the total of intervention and patient health care costs was also analyzed. RESULTS Intervention clinic patients with baseline A1C ≥7% significantly improved glycemic control at the last postintervention A1C measurement, intervention effect of −0.19% mean A1C (P = 0.034) and +6.7% in A1C <7% goal achievement (P = 0.0099). Costs trended lower, with the cost per patient −$71 (SE = 142, P = 0.63) relative to nonintervention clinic patients. The intervention did not significantly improve blood pressure or LDL control. Models adjusting for age, sex, and comorbidity showed similar results. PCPs reported high satisfaction. CONCLUSIONS A brief individualized case-based simulated learning intervention for PCPs led to modest but significant glucose control improvement in adults with type 2 diabetes without increasing costs. PMID:20668151

  20. Short-term impact of oral hygiene training package to Anganwadi workers on improving oral hygiene of preschool children in North Indian City

    PubMed Central

    2013-01-01

    Background Globally, dental caries is categorized in the list of public health problems in preschool children. In India, lack of availability and affordability of oral health enhances the cost of treatment and care. Empowering community workers like anganwadi workers (AWWs) in oral health, and providing basic oral health awareness to the mothers through them can be feasible model. So, the present study was conducted to evaluate the short-term impact of Oral Hygiene Training Package (OHTP) to AWWs on improving oral hygiene of preschool children. Methods This before and after comparison field trial was done in Anganwadi centres (AWCs) of Chandigarh city, India. 534 children aged 36-72 months attending 21 AWCs were examined before and after imparting trainings to AWWs. OHTP was administered to AWWs, which consisted of power-point presentation and demonstrated the skills like proper brushing technique, plaque disclosure, flossing technique, gum massaging etc. The AWWs later imparted training to mothers in their respective AWCs. Post intervention data was collected after three months. Outcome measures were improvement in oral health status (plaque, debris, gingival health), oral habits (brushing, rinsing) and decrease in caries activity (Snyder test). Results Prevalence of dental caries was found to be 48.3%. Only 4.1% of the population reported brushing twice which increased significantly to 9.9% post-intervention (p = 0.000). There was a significant decrease in debris (78.3% to 54.1%), and stage-1 plaque (75.5 to 66.5%) in the oral cavity. Caries activity by Snyder’s test decreased from 48.2% to 31.2% (p = 0.01) post-intervention. Conclusions Controlled trials of using AWWs to improve oral hygiene appear to be justified. Trial registration CTRI/2012/07/002786 PMID:24279468

  1. Glucose tolerance test - non-pregnant

    MedlinePlus

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test ... The most common glucose tolerance test is the oral glucose tolerance test (OGTT). Before the test begins, a sample of blood will be taken. You will then ...

  2. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine

    PubMed Central

    Luo, Jing-Wen; Zhang, Zhi-Rong; Gong, Tao; Fu, Yao

    2016-01-01

    Our study aimed to develop a self-assembled nanomicelle for oral administration of nimodipine (NIM) with poor water solubility. Using Solutol® HS15, the NIM-loaded self-assembled nanomicelles displayed a near-spherical morphology with a narrow size distribution of 12.57±0.21 nm (polydispersity index =0.071±0.011). Compared with Nimotop® (NIM tablets), the intestinal absorption of NIM from NIM nanomicelle in rats was improved by 3.13- and 2.25-fold in duodenum and jejunum at 1 hour after oral administration. The cellular transport of NIM nanomicelle in Caco-2 cell monolayers was significantly enhanced compared to that of Nimotop®. Regarding the transport pathways, clathrin, lipid raft/caveolae, and macropinocytosis mediated the cell uptake of NIM nanomicelles, while P-glycoprotein and endoplasmic reticulum/Golgi complex (ER/Golgi) pathways were involved in exocytosis. Pharmacokinetic studies in our research laboratory have showed that the area under the plasma concentration–time curve (AUC0–∞) of NIM nanomicelles was 3.72-fold that of Nimotop® via oral administration in rats. Moreover, the NIM concentration in the brain from NIM nanomicelles was dramatically improved. Therefore, Solutol® HS15-based self-assembled nanomicelles represent a promising delivery system to enhance the oral bioavailability of NIM. PMID:27042060

  3. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice.

    PubMed

    Wang, Qian; Guo, Tingqing; Portas, Jennifer; McPherron, Alexandra C

    2015-01-01

    Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM. PMID:25561902

  4. Natural supplements for improving insulin sensitivity and glucose uptake in skeletal muscle.

    PubMed

    Kouzi, Samir A; Yang, Sendra; Nuzum, Donald S; Dirks-Naylor, Amie J

    2015-01-01

    Type 2 diabetes is a common metabolic disorder characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. In light of the staggering financial/human cost of type 2 diabetes, there is considerable need for safe and effective agents that can be used to prevent and/or adjunctively treat the disease. Available evidence suggests that a number of natural supplements, including cinnamon, biotin, fenugreek, ginseng, banaba, and alpha-lipoic acid, have the potential to reduce the risk for type 2 diabetes in the large at-risk population. The evidence also suggests that, when used adjunctively, these natural products are likely to help clinicians achieve optimal glycemic control, improve long-term prognosis, and/or minimize the need for insulin therapy in type 2 diabetics. More research, particularly well-designed, long-term human clinical trials, is certainly needed to accurately define the value and place of these supplements in diabetes prevention and management. PMID:25553366

  5. A Soluble Activin Receptor Type IIB Does Not Improve Blood Glucose in Streptozotocin-Treated Mice

    PubMed Central

    Wang, Qian; Guo, Tingqing; Portas, Jennifer; McPherron, Alexandra C.

    2015-01-01

    Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM. PMID:25561902

  6. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism.

    PubMed

    Marcelin, Geneviève; Jo, Young-Hwan; Li, Xiaosong; Schwartz, Gary J; Zhang, Ying; Dun, Nae J; Lyu, Rong-Ming; Blouet, Clémence; Chang, Jaw K; Chua, Streamson

    2014-02-01

    Tight control of glucose excursions has been a long-standing goal of treatment for patients with type 2 diabetes mellitus in order to ameliorate the morbidity and mortality associated with hyperglycemia. Fibroblast growth factor (FGF) 19 is a hormone-like enterokine released postprandially that emerged as a potential therapeutic agent for metabolic disorders, including diabetes and obesity. Remarkably, FGF19 treatment has hypoglycemic actions that remain potent in models of genetic and acquired insulin resistance. Here, we provided evidence that the central nervous system responds to FGF19 administered in the periphery. Then, in two mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding, third intra-cerebro-ventricular infusions of FGF19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, our study highlights a new mechanism of central FGF19 action, involving the suppression of AGRP/NPY neuronal activity. Overall, our work unveils novel regulatory pathways induced by FGF19 that will be useful in the design of novel strategies to control diabetes in obesity. PMID:24567901

  7. Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability.

    PubMed

    Desai, Samixa; Poddar, Aditi; Sawant, Krutika

    2016-01-01

    The present investigation was aimed towards developing a beta-cyclodextrin (β-CD) solid dispersion (SD) based orally disintegrating tablet (ODT) of eslicarbazepine acetate (ESL), for improving the dissolution and providing fast onset of anti-epileptic action. Optimum ratio of ESL and β-CD was determined by Job's plot. Thereafter, solid dispersions were prepared by solvent evaporation method and evaluated for yield, assay, Differential scanning calorimetry (DSC), Fourier transform infra red spectroscopy (FTIR), X-ray diffraction (XRD), and in vitro dissolution. Optimized SD was compressed into ODT by direct compression using super disintegrants and evaluated for wetting time, drug content, in vitro drug release and in vivo studies. The results of DSC, FTIR and XRD analysis supported the formation of inclusion complex. An improved dissolution with 99.95 ± 2.80% drug release in 60 min was observed in comparison to 24.85 ± 2.96% release from a plain drug suspension. Tablets with crosspovidone as a super disintegrant showed the least disintegration time of 24.66 ± 1.52 s and higher in vitro drug release against marketed tablets. In vivo studies indicated that the formulated tablets had 2 times higher bioavailability than marketed tablets. Thus, the developed β-CD-ESL SD-ODT could provide faster onset of action and higher bioavailability, which would be beneficial in case of epileptic seizures. PMID:26478377

  8. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli

    PubMed Central

    Balderas-Hernández, Víctor E; Sabido-Ramos, Andrea; Silva, Patricia; Cabrera-Valladares, Natividad; Hernández-Chávez, Georgina; Báez-Viveros, José L; Martínez, Alfredo; Bolívar, Francisco; Gosset, Guillermo

    2009-01-01

    Background Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED) and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies. Results Sequencing of the trpED genes from E. coli W3110 trpD9923 revealed a nonsense mutation in the trpD gene, causing the loss of anthranilate phosphoribosyl transferase activity, but maintaining anthranilate synthase activity, thus causing anthranilate accumulation. The effects of expressing genes encoding a feedback inhibition resistant version of the enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (aroGfbr), transketolase (tktA), glucokinase (glk) and galactose permease (galP), as well as phosphoenolpyruvate:sugar phosphotransferase system (PTS) inactivation on anthranilate production capacity, were evaluated. In shake flask experiments with minimal medium, strains W3110 trpD9923 PTS- and W3110 trpD9923/pJLBaroGfbrtktA displayed the best production parameters, accumulating 0.70–0.75 g/L of anthranilate, with glucose-yields corresponding to 28–46% of the theoretical maximum. To study the effects of extending the growth phase on anthranilate production a fed-batch fermentation process was developed using complex medium, where strain W3110 trpD9923/pJLBaroGfbrtktA produced 14 g/L of anthranilate in 34 hours. Conclusion This work constitutes

  9. Unsaturated Oral Fat Load Test Improves Glycemia, Insulinemia and Oxidative Stress Status in Nondiabetic Subjects with Abdominal Obesity

    PubMed Central

    Martinez-Hervas, Sergio; Navarro, Inmaculada; Real, Jose T.; Artero, Ana; Peiro, Marta; Gonzalez-Navarro, Herminia; Carmena, Rafael; Ascaso, Juan F.

    2016-01-01

    Aims To evaluate the changes in glycemia, insulinemia, and oxidative stress markers during an oral fat load test in nondiabetic subjects with abdominal obesity and to analyze the association between postprandial oxidative stress markers and postprandial glucose and insulin responses. Methods We included 20 subjects with abdominal obesity (waist circumference > 102 cm for men and > 88 cm for women) and 20 healthy lean controls (waist circumference < 102 cm for men and < 88 cm for women). After 12 hours of fasting we performed a standardized fat load test (0–8 hours) with supracal® (50 g/m2). We determined metabolic parameters, oxidized and reduced glutathione, and malondialdehyde. Results In both groups, insulin, HOMA, oxidized/reduced glutathione ratio, and malondialdehyde significantly decreased in the postprandial state after the OFLT. All these parameters were significantly higher in the abdominal obesity group at baseline and during all the postprandial points, but the reduction from the baseline levels was significantly higher in the abdominal obesity group. Conclusion Unsaturated fat improves insulin resistance and oxidative stress status. It is possible that a consumption of unsaturated fat could be beneficial even in subjects with abdominal obesity in postprandial state. PMID:27537847

  10. Nao-Xue-Shu Oral Liquid Improves Aphasia of Mixed Stroke.

    PubMed

    Yan, Yuping; Wang, Mingzhe; Zhang, Liang; Qiu, Zhenwei; Jiang, Wenfei; Xu, Men; Pan, Weidong; Chen, Xiangjun

    2015-01-01

    Objective. The objective is to observe whether the traditional Chinese medicine (TCM) Nao-Xue-Shu oral liquid improves aphasia of mixed stroke. Methods. A total of 102 patients with aphasia of mixed stroke were divided into two groups by a single blind random method. The patients treated by standard Western medicine plus Nao-Xue-Shu oral liquid (n = 58) were assigned to the treatment group while the remaining patients treated only by standard Western medicine (n = 58) constituted the control group. Changes in the Western Aphasia Battery (WAB), Modified Rankin Scale (mRS), National Institutes of Health Stroke Scale (NIHSS), and hemorheology parameters were assessed to evaluate the effects of the treatments. Results. Excluding the patients who dropped out, 54 patients in the treatment group and 51 patients in the control group were used to evaluate the effects. Significant and persistent improvements in the WAB score, specifically comprehension, repetition, naming, and calculating, were found in the treatment group when the effects were evaluated at the end of week 2 and week 4, respectively, compared with baseline. The naming and writing scores were also improved at the end of week 4 in this group. The comprehension and reading scores were improved at the end of week 4 in the control group compared with the baseline, but the improvements were smaller than those in the treatment group. The percentages of patients at the 0-1 range of mRS were increased at the end of week 2 and week 4 in both groups, but the improvements in the treatment group were much larger than those in the control group. Greater improvements in the NIHSS scores and the hemorheology parameters in the treatment group were also observed compared with the control group at the end of week 2 and week 4. Conclusion. Nao-Xue-Shu oral liquid formulation improved aphasia in mixed stroke patients and thus might be a potentially effective drug for treating stroke aphasia. PMID:26557863

  11. Nao-Xue-Shu Oral Liquid Improves Aphasia of Mixed Stroke

    PubMed Central

    Yan, Yuping; Wang, Mingzhe; Zhang, Liang; Qiu, Zhenwei; Jiang, Wenfei; Xu, Men; Pan, Weidong; Chen, Xiangjun

    2015-01-01

    Objective. The objective is to observe whether the traditional Chinese medicine (TCM) Nao-Xue-Shu oral liquid improves aphasia of mixed stroke. Methods. A total of 102 patients with aphasia of mixed stroke were divided into two groups by a single blind random method. The patients treated by standard Western medicine plus Nao-Xue-Shu oral liquid (n = 58) were assigned to the treatment group while the remaining patients treated only by standard Western medicine (n = 58) constituted the control group. Changes in the Western Aphasia Battery (WAB), Modified Rankin Scale (mRS), National Institutes of Health Stroke Scale (NIHSS), and hemorheology parameters were assessed to evaluate the effects of the treatments. Results. Excluding the patients who dropped out, 54 patients in the treatment group and 51 patients in the control group were used to evaluate the effects. Significant and persistent improvements in the WAB score, specifically comprehension, repetition, naming, and calculating, were found in the treatment group when the effects were evaluated at the end of week 2 and week 4, respectively, compared with baseline. The naming and writing scores were also improved at the end of week 4 in this group. The comprehension and reading scores were improved at the end of week 4 in the control group compared with the baseline, but the improvements were smaller than those in the treatment group. The percentages of patients at the 0-1 range of mRS were increased at the end of week 2 and week 4 in both groups, but the improvements in the treatment group were much larger than those in the control group. Greater improvements in the NIHSS scores and the hemorheology parameters in the treatment group were also observed compared with the control group at the end of week 2 and week 4. Conclusion. Nao-Xue-Shu oral liquid formulation improved aphasia in mixed stroke patients and thus might be a potentially effective drug for treating stroke aphasia. PMID:26557863

  12. Prehepatic secretion and disposal of insulin in obese adolescents as estimated by three-hour, eight-sample oral glucose tolerance tests.

    PubMed

    Vogt, Josef A; Domzig, Christian; Wabitsch, Martin; Denzer, Christian

    2016-07-01

    The body compensates for early-stage insulin resistance by increasing insulin secretion. A reliable and easy-to-use mathematical assessment of insulin secretion and disposal could be a valuable tool for identifying patients at risk for the development of type 2 diabetes. Because the pathophysiology of insulin resistance is incompletely understood, assessing insulin metabolism with minimal assumptions regarding its metabolic regulation is a major challenge. To assess insulin secretion and indexes of insulin disposal, our marginalized and regularized absorption approach (MRA) was applied to a sparse sampling oral glucose tolerance test (OGTT) protocol measuring the insulin and C-peptide concentrations. Identifiability and potential bias of metabolic parameters were estimated from published data with dense sampling. The MRA was applied to OGTT data from 135 obese adolescents to demonstrate its clinical applicability. Individual prehepatic basal and dynamic insulin secretion and clearance levels were determined with a precision and accuracy greater than 10% of the nominal value. The intersubject variability in these parameters was approximately four times higher than the intrasubject variability, and there was a strong negative correlation between prehepatic secretion and plasma clearance of insulin. MRA-based analysis provides reliable estimates of insulin secretion and clearance, thereby enabling detailed glucose homeostasis characterization based on restricted datasets that are obtainable during routine patient care. PMID:27143555

  13. Improving the oral bioavailability of sulpiride by sodium oleate in rabbits.

    PubMed

    Naasani, I; Kohri, N; Iseki, K; Miyazaki, K

    1995-06-01

    To improve the limited oral bioavailability of sulpiride, a dosage form containing sodium oleate as an absorption enhancer was developed and evaluated using gastric-emptying-controlled rabbits in a cross-over manner. In addition to the known properties of sodium oleate with respect to modifying the permeability of biomembranes, it was found to be capable of improving the physicochemical properties of sulpiride toward a higher lipophilicity (by ion-pair association) and a higher solubility (by micellar solubilization). Nonetheless, the incorporation of sodium oleate with sulpiride as a mixture filled in hard gelatin capsules failed to increase intestinal absorption, whereas the use of enteric capsules, instead of the hard gelatin capsules resulted in a significant increase (P < 0.05) in the oral bioavailability. PMID:7674129

  14. Influence of Oral Antidiabetic Drugs on Hyperglycemic Response to Foods in Persons with Type 2 Diabetes Mellitus as Assessed by Continuous Glucose Monitoring System: A Pilot Study

    PubMed Central

    Karolina, Peterson; Chlup, Rudolf; Jana, Zapletalova; Kohnert, Klaus Dieter; Kudlova, Pavla; Bartek, Josef; Nakladalova, Marie; Doubravova, Blanka; Seckar, Pavel

    2010-01-01

    Background The purpose of this prospective open-label trial was (1) to assess the influence of oral antidiabetic drugs (OAD) on the glycemic index (GI), glucose response curves (GRCs), daily mean plasma glucose (MPG) and (2) to compare the GI of foods in persons with OAD-treated type 2 diabetes mellitus (T2DM) with the respective GI in healthy persons (HP). Methods Tested foods containing 50 g of carbohydrates were eaten for breakfast and dinner after 10 and 4 h of fasting, respectively. Glycemic index, GRC, and MPG were obtained using the CGMS®System Gold™ (CGMS). In T2DM patients [n = 16; age (mean ± standard error) 56.0 ± 2.25 years], foods were tested four times: tests 1, 2, and 3 were performed within one week in which placebo was introduced on day 2, and test 4 was carried out five weeks after reintroduction of OAD. Glycemic indexes, GRC, and MPG from tests 1, 2, 3, and 4 were compared. In a control group of 20 HP (age 24.4 ± 0.71 years), the mean GIs were calculated as the mean from 20 subject-related GIs. Results In T2DM patients, subject-related assessment of GIs, GRC, and MPG distinguished persons with and without OAD effect. Nevertheless, the group-related GIs and the MPG on days 2, 8, and 39 showed no significant difference. There was no significant difference between the GIs in OAD-treated T2DM patients (test 4) versus HP (except in apple baby food). Glucose response curves were significantly larger in T2DM patients (test 4) versus HP. Conclusions Determination of GRC and subject-related GI using the CGMS appears to be a potential means for the evaluation of efficacy of OAD treatment. Further studies are underway. PMID:20663465

  15. Chewing xylitol gum improves self-rated and objective indicators of oral health status under conditions interrupting regular oral hygiene.

    PubMed

    Hashiba, Takafumi; Takeuchi, Kenji; Shimazaki, Yoshihiro; Takeshita, Toru; Yamashita, Yoshihisa

    2015-01-01

    Chewing xylitol gum provides oral health benefits including inhibiting Streptococcus mutans plaque. It is thought to be especially effective in conditions where it is difficult to perform daily oral cleaning. Our study aim was to determine the effects of chewing xylitol gum on self-rated and objective oral health status under a condition interfering with oral hygiene maintenance. A randomized controlled intervention trial was conducted on 55 healthy ≥ 20-year-old men recruited from the Japan Ground Self Defense Force who were undergoing field training. Participants were randomly assigned to a test group (chewing gum; n = 27) or a control group (no gum; n = 28) and the researchers were blinded to the group assignments. The Visual Analog Scale (VAS) scores of oral conditions subjectively evaluated oral health, and the stimulated salivary bacteria quantity objectively evaluated oral health 1 day before field training (baseline) and 4 days after the beginning of field training (follow-up). VAS scores of all three oral conditions significantly increased in the control group (malodor: p < 0.001; discomfort: p < 0.001; dryness: p < 0.001), but only two VAS scores increased in the test group (malodor: p = 0.021; discomfort: p = 0.002). The number of salivary total bacteria significantly increased in the control group (p < 0.01), while no significant change was observed in the test group (p = 0.668). Chewing xylitol gum positively affects self-rated and objective oral health status by controlling oral hygiene under conditions that interfere with oral hygiene maintenance. PMID:25744362

  16. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes.

    PubMed

    Lu, Ting; Sheng, Hongguang; Wu, Johnna; Cheng, Yuan; Zhu, Jianming; Chen, Yan

    2012-06-01

    For thousands of years, cinnamon has been used as a traditional treatment in China. However, there are no studies to date that investigate whether cinnamon supplements are able to aid in the treatment of type 2 diabetes in Chinese subjects. We hypothesized cinnamon should be effective in improving blood glucose control in Chinese patients with type 2 diabetes. To address this hypothesis, we performed a randomized, double-blinded clinical study to analyze the effect of cinnamon extract on glycosylated hemoglobin A(1c) and fasting blood glucose levels in Chinese patients with type 2 diabetes. A total of 66 patients with type 2 diabetes were recruited and randomly divided into 3 groups: placebo and low-dose and high-dose supplementation with cinnamon extract at 120 and 360 mg/d, respectively. Patients in all 3 groups took gliclazide during the entire 3 months of the study. Both hemoglobin A(1c) and fasting blood glucose levels were significantly reduced in patients in the low- and high-dose groups, whereas they were not changed in the placebo group. The blood triglyceride levels were also significantly reduced in the low-dose group. The blood levels of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and liver transaminase remained unchanged in the 3 groups. In conclusion, our study indicates that cinnamon supplementation is able to significantly improve blood glucose control in Chinese patients with type 2 diabetes. PMID:22749176

  17. Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake.

    PubMed

    Chen, H; Simar, D; Ting, J H Y; Erkelens, J R S; Morris, M J

    2012-10-01

    Previously, we showed that offspring from obese rat dams were hyperphagic, with increased adiposity, hyperlipidaemia and glucose intolerance associated with increased orexigenic neuropeptide expression after fasting. Mammalian target of rapamycin (mTOR) can inhibit food intake through a hypothalamic action. As we previously showed that maternal obesity down-regulated hypothalamic mTOR, in the present study, we hypothesised that dietary leucine supplementation would activate hypothalamic mTOR to reduce food intake, thus limiting metabolic disorders in offspring from obese dams, regardless of postweaning diet. Obesity was induced in Sprague-Dawley females by high-fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. Male pups from HFD-fed mothers were weaned onto chow or HFD; within each dietary group, half were supplied with leucine via drinking water (1.5%) versus water control for 10 weeks. Those from chow-fed mothers were fed chow and water. Maternal obesity led to increased adiposity in chow-fed offspring. Postweaning HFD consumption exaggerated adiposity, hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Supplementation with leucine doubled leucine intake and increased hypothalamic mTOR activation; however, appetite regulation was not affected. A reduction in blood lipid levels was observed in offspring regardless of diet, as well as improved glucose tolerance in HFD-fed rats. In HFD-fed rats, up-regulated carnitine palmitoyl-transferase-1 and peroxisome-proliferator-activated receptor-γ coactivator-1α in muscle and glucose transporter 4 in fat suggested that leucine improved peripheral fat oxidation and glucose transport. Leucine is able to improve peripheral glucose and lipid metabolism independent of appetite and weight regulation, suggesting its potential application in the management of metabolic disorders. PMID:22612562

  18. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes.

    PubMed

    Tang, Cong; Ahmed, Kashan; Gille, Andreas; Lu, Shun; Gröne, Hermann-Josef; Tunaru, Sorin; Offermanns, Stefan

    2015-02-01

    Type 2 diabetes is a major health problem worldwide, and one of its key features is the inability of elevated glucose to stimulate the release of sufficient amounts of insulin from pancreatic beta cells to maintain normal blood glucose levels. New therapeutic strategies to improve beta cell function are therefore believed to be beneficial. Here we demonstrate that the short-chain fatty acid receptors FFA2 (encoded by FFAR2) and FFA3 (encoded by FFAR3) are expressed in mouse and human pancreatic beta cells and mediate an inhibition of insulin secretion by coupling to Gi-type G proteins. We also provide evidence that mice with dietary-induced obesity and type 2 diabetes, as compared to non-obese control mice, have increased local formation by pancreatic islets of acetate, an endogenous agonist of FFA2 and FFA3, as well as increased systemic levels. This elevation may contribute to the insufficient capacity of beta cells to respond to hyperglycemia in obese states. Indeed, we found that genetic deletion of both receptors, either on the whole-body level or specifically in pancreatic beta cells, leads to greater insulin secretion and a profound improvement of glucose tolerance when mice are on a high-fat diet compared to controls. On the other hand, deletion of Ffar2 and Ffar3 in intestinal cells did not alter glucose tolerance in diabetic animals, suggesting these receptors act in a cell-autonomous manner in beta cells to regulate insulin secretion. In summary, under diabetic conditions elevated acetate acts on FFA2 and FFA3 to inhibit proper glucose-stimulated insulin secretion, and we expect antagonists of FFA2 and FFA3 to improve insulin secretion in type 2 diabetes. PMID:25581519

  19. ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production

    PubMed Central

    Zhang, Fengyu; Li, Jiaojiao; Liu, Huaiwei; Liang, Quanfeng; Qi, Qingsheng

    2016-01-01

    We previously engineered E. coli YL104H to efficiently produce succinate from glucose. Furthermore, the present study proved that YL104H could also co-utilize xylose and glucose for succinate production. However, anaerobic succinate accumulation using xylose as the sole carbon source failed, probably because of an insufficient supply of energy. By analyzing the ATP generation under anaerobic conditions in the presence of glucose or xylose, we indicated that succinate production was affected by the intracellular ATP level, which can be simply regulated by the substrate ratio of xylose to glucose. This finding was confirmed by succinate production using an artificial mixture containing different xylose to glucose ratios. Using xylose mother liquor, a waste containing both glucose and xylose derived from xylitol production, a final succinate titer of 61.66 g/L with an overall productivity of 0.95 g/L/h was achieved, indicating that the regulation of the intracellular ATP level may be a useful and efficient strategy for succinate production and can be extended to other anaerobic processes. PMID:27315279

  20. ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production.

    PubMed

    Zhang, Fengyu; Li, Jiaojiao; Liu, Huaiwei; Liang, Quanfeng; Qi, Qingsheng

    2016-01-01

    We previously engineered E. coli YL104H to efficiently produce succinate from glucose. Furthermore, the present study proved that YL104H could also co-utilize xylose and glucose for succinate production. However, anaerobic succinate accumulation using xylose as the sole carbon source failed, probably because of an insufficient supply of energy. By analyzing the ATP generation under anaerobic conditions in the presence of glucose or xylose, we indicated that succinate production was affected by the intracellular ATP level, which can be simply regulated by the substrate ratio of xylose to glucose. This finding was confirmed by succinate production using an artificial mixture containing different xylose to glucose ratios. Using xylose mother liquor, a waste containing both glucose and xylose derived from xylitol production, a final succinate titer of 61.66 g/L with an overall productivity of 0.95 g/L/h was achieved, indicating that the regulation of the intracellular ATP level may be a useful and efficient strategy for succinate production and can be extended to other anaerobic processes. PMID:27315279

  1. Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy.

    PubMed

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-11-01

    In this investigation, chitosan-histidine-cysteine (CHC) was engineered for oral delivery of Survivin short hairpin RNA (shRNA)-expressing plasmid DNA (shSur-pDNA) to promote hepatoma regression through integrating the advantages of histidine and cysteine to conquer serial cellular and systemic barriers. CHC could effectively encapsulate shSur-pDNA to form compact nanocomplexes (NC) at adequate weight ratios. Sequential modification with histidine and cysteine conferred CHC NC with the beneficial attributes for shRNA delivery including improved stability, facilitated internalization, promoted endosomal escape, increased nuclear localization, and GSH-responsive release, which contributed to their superior performance in terms of apoptosis promotion, proliferation inhibition, and Survivin down-regulation of tumor cells. More importantly, in hepatoma-bearing mice, orally delivered CHC NC overweighed chitosan counterparts with respect to suppressed Survivin expression, retarded tumor growth, and prolonged surviving time, owing to their above-mentioned merits in combination with enhanced intestinal permeation. Especially, rapid intracellular release of CHC NC with lower molecular weight of 30 kDa (CHC30 NC) might be responsible for the most satisfactory antitumor efficacy with tumor inhibition ratio (TIR) of 92.5%, which rendered CHC30 NC a promising vehicle for oral delivery of shRNA. This investigation would shed light on the deliberate design of oral shRNA delivery vehicles to mediate effective antitumor efficacy. PMID:26310108

  2. Blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in patients with symptoms suggesting reactive hypoglycemia

    PubMed Central

    Eik, W.; Marcon, S.S.; Krupek, T.; Previdelli, I.T.S.; Pereira, O.C.N.; Silva, M.A.R.C.P.; Bazotte, R.B.

    2016-01-01

    We evaluated the impact of postprandial glycemia on blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in non-diabetic patients with symptoms suggesting reactive hypoglycemia. Eleven patients with clinical symptoms suggesting reactive hypoglycemia received an oral glucose solution (75 g) Blood was collected at 0 (baseline), 30, 60, 120 and 180 min after glucose ingestion and the plasma concentrations of interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-1 receptor antagonist (IL-1RA), interleukin 2 (IL-2), interleukin-2 receptor (IL-2R), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin-12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), IFN-γ inducible protein 10 (IP-10), monocyte chemotactic protein 1 (MCP1), monokine induced by IFN-γ (MIG), macrophage inflammatory protein-1α (MIP-1α), interleukin-1β (IL-1β), colony stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), basic fibroblast growth factor (FGF-basic), eotaxin, tumor necrosis factor α (TNFα), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) were evaluated. Overall, glycemic levels increased, reached its maximum at 30 min (phase 1), returned to baseline levels at 120 min (phase 2), followed by a mild hypoglycemia at 180 min (phase 3). During phase 1, cytokine blood levels were maintained. However, we observed a synchronous fall (P<0.05) in the concentrations of pro-inflammatory (IL-15, IL-17, MCP-1) and anti-inflammatory cytokines (FGF-basic, IL-13, IL-1RA) during phase 2. Furthermore, a simultaneous rise (P<0.05) of pro-inflammatory (IL-2, IL-5, IL-17) and anti-inflammatory cytokines (IL-4, IL-1RA, IL-2R, IL-13, FGF-basic) occurred during phase 3. Thus, mild acute hypoglycemia but not a physiological increase of glycemia

  3. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals.

    PubMed

    Kameswara Rao, B; Giri, R; Kesavulu, M M; Apparao, C

    2001-01-01

    The effect of administration of different doses of Pterocarpus santalinus L. bark extracts in normal and diabetic rats, on blood glucose levels was evaluated in this study. Among the three fractions (aqueous, ethanol and hexane), ethanolic fraction at the dose of 0.25 g/kg body weight showed maximum antihyperglycemic activity. The same dose did not cause any hypoglycemic activity in normal rats. The results were compared with the diabetic rats treated with glibenclamide and the antihyperglycemic activity of ethanolic extract of PS bark at the dose of 0.25 g/kg b.w. was found to be more effective than that of glibenclamide. PMID:11137350

  4. Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion

    PubMed Central

    2016-01-01

    Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281). PMID:26839476

  5. Insulin improves β-cell function in glucose-intolerant rat models induced by feeding a high-fat diet.

    PubMed

    Li, Hui-qing; Wang, Bao-ping; Deng, Xiu-Ling; Zhang, Jiao-yue; Wang, Yong-bo; Zheng, Juan; Xia, Wen-fang; Zeng, Tian-shu; Chen, Lu-lu

    2011-11-01

    Insulin therapy has been shown to contribute to extended glycemia remission in newly diagnosed patients with type 2 diabetes mellitus. This study investigated the effects of insulin treatment on pancreatic lipid content, and β-cell apoptosis and proliferation in glucose-intolerant rats to explore the protective role of insulin on β-cell function. A rat glucose-intolerant model was induced by streptozotocin and a high-fat diet. Plasma and pancreatic triglycerides, free fatty acids, and insulin were measured; and pancreatic β-cell cell apoptosis and proliferation were detected by a propidium iodide cell death assay and immunofluorescence for proliferating cell nuclear antigen. Relative β-cell area was determined by immunohistochemistry for insulin, whereas insulin production in pancreas was assessed by reverse transcriptase polymerase chain reaction. Islet β-cell secreting function was assessed by the index ΔI30/ΔG30. Glucose-intolerant rats had higher pancreatic lipid content, more islet β-cell apoptosis, lower β-cell proliferation, and reduced β-cell area in pancreas when compared with controls. Insulin therapy reduced blood glucose, inhibited pancreatic lipid accumulation and islet β-cell apoptosis, and increased β-cell proliferation and β-cell area in glucose-intolerant rats. Furthermore, impaired insulin secretion and insulin production in glucose-intolerant rats were improved by insulin therapy. Insulin can preserve β-cell function by protecting islets from glucotoxicity and lipotoxicity. It can also ameliorate β-cell area by enhancing β-cell proliferation and reducing β-cell apoptosis. PMID:21550078

  6. Brief Report: Remotely Delivered Video Modeling for Improving Oral Hygiene in Children with ASD: A Pilot Study.

    PubMed

    Popple, Ben; Wall, Carla; Flink, Lilli; Powell, Kelly; Discepolo, Keri; Keck, Douglas; Mademtzi, Marilena; Volkmar, Fred; Shic, Frederick

    2016-08-01

    Children with autism have heightened risk of developing oral health problems. Interventions targeting at-home oral hygiene habits may be the most effective means of improving oral hygiene outcomes in this population. This randomized control trial examined the effectiveness of a 3-week video-modeling brushing intervention delivered to patients over the internet. Eighteen children with autism were assigned to an Intervention or Control video condition. Links to videos were delivered via email twice daily. Blind clinical examiners provided plaque index ratings at baseline, midpoint, and endpoint. Results show oral hygiene improvements in both groups, with larger effect sizes in the Intervention condition. The findings provide preliminary support for the use of internet-based interventions to improve oral hygiene for children with autism. PMID:27106570

  7. Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Tolerance and Fasting Glucose Levels

    PubMed Central

    Burton, Jeffrey H.; Johnson, Matthew; Johnson, Jolene; Hsia, Daniel S.; Greenway, Frank L.; Heiman, Mark L.

    2015-01-01

    Background: Adverse effects of metformin are primarily related to gastrointestinal (GI) intolerance that could limit titration to an efficacious dose or cause discontinuation of the medication. Because some metformin side effects may be attributable to shifts in the GI microbiome, we tested whether a GI microbiome modulator (GIMM) used in combination with metformin would ameliorate the GI symptoms. Methods: A 2-period crossover study design was used with 2 treatment sequences, either placebo in period 1 followed by GIMM in period 2 or vice versa. Study periods lasted for 2 weeks, with a 2-week washout period between. During the first week, type 2 diabetes patients (T2D) who experienced metformin GI intolerance took 500 mg metformin along with their assigned NM504 (GIMM) or placebo treatment with breakfast and with dinner. In the second week, the 10 subjects took 500 mg metformin (t.i.d.), with GIMM or placebo consumed with the first and third daily metformin doses. Subjects were permitted to discontinue metformin dosing if it became intolerable. Results: The combination of metformin and GIMM treatment produced a significantly better tolerance score to metformin than the placebo combination (6.78 ± 0.65 [mean ± SEM] versus 4.45 ± 0.69, P = .0006). Mean fasting glucose levels were significantly (P < .02) lower with the metformin–GIMM combination (121.3 ± 7.8 mg/dl) than with metformin-placebo (151.9 ± 7.8 mg/dl). Conclusion: Combining a GI microbiome modulator with metformin might allow the greater use of metformin in T2D patients and improve treatment of the disease. PMID:25802471

  8. Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass

    PubMed Central

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  9. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass.

    PubMed

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  10. A Comparison of Case Study and Traditional Teaching Methods for Improvement of Oral Communication and Critical-Thinking Skills

    ERIC Educational Resources Information Center

    Noblitt, Lynnette; Vance, Diane E.; Smith, Michelle L. DePoy

    2010-01-01

    This study compares a traditional paper presentation approach and a case study method for the development and improvement of oral communication skills and critical-thinking skills in a class of junior forensic science majors. A rubric for rating performance in these skills was designed on the basis of the oral communication competencies developed…

  11. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway.

    PubMed

    Hao, Jie; Chen, Cheng; Huang, Kaipeng; Huang, Junying; Li, Jie; Liu, Peiqing; Huang, Heqing

    2014-12-15

    Recently, the effect of polydatin on lipid regulation has gained considerable attention. And previous study has demonstrated that polydatin has hypoglycemic effect on experimental diabetic rats. Repressed Akt pathway contributes to glucose and lipid disorders in diabetes. Thus, whether polydatin regulates glucose and lipid metabolism in experimental diabetic models through the Akt pathway arouses interest. The purpose was to explore the regulatory mechanism of polydain on glucose and lipid through Akt pathway. We used a diabetic rat model induced by high-fat and -sugar diet with low-dose of streptozocin and an insulin resistant HepG2 cell model induced by palmitic acid to clarify the role of polydatin on glucose and lipid metabolism. Here, we found that polydatin significantly attenuated fasting blood–glucose, glycosylated hemoglobin, glycosylated serum protein, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in diabetic rats. Furthermore, polydatin significantly increased glucose uptake and consumption and decreased lipid accumulation in insulin resistant HepG2 cells. Polydatin markedly increased serum insulin levels in diabetic rats, and obviously activated the Akt signaling pathway in diabetic rat livers and insulin resistant HepG2 cells. Polydatin markedly increased phosphorylated GSK-3β, decreased the protein levels of G6Pase and SREBP-1c, and increased protein levels of GCK, LDLR, and phosphorylated IRS in livers and HepG2 cells. Overall, the results indicate that polydatin regulates glucose and lipid metabolism in experimental diabetic models, the underlying mechanism is probably associated with regulating the Akt pathway. The effect of polydatin on increased Akt phosphorylation is independent of prompting insulin secretion, but dependent of increasing IRS phosphorylation. PMID:25310908

  12. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Ojo, Opeolu O.; Srinivasan, Dinesh K.; Owolabi, Bosede O.; Vasu, Srividya; Conlon, J. Michael; Flatt, Peter R.; Abdel-Wahab, Yasser H. A.

    2015-01-01

    The frog skin host-defense peptide esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30CKISKQC) displays antimicrobial, antitumor, and immunomodulatory properties. This study investigated the antidiabetic actions of the peptide and selected analogues. Esculentin-2CHa stimulated insulin secretion from rat BRIN-BD11 clonal pancreatic β-cells at concentrations greater than 0.3 nM without cytotoxicity by a mechanism involving membrane depolarization and increase of intracellular Ca2+. Insulinotropic activity was attenuated by activation of KATP channels, inhibition of voltage-dependent Ca2+ channels and chelation of extracellular Ca2+. The [L21K], [L24K], [D20K, D27K] and [C31S,C37S] analogues were more potent but less effective than esculentin-2CHa whereas the [L28K] and [C31K] analogues were both more potent and produced a significantly (P < 0.001) greater maximum response. Acute administration of [L28K]esculentin-2CHa (75 nmol/kg body weight) to high fat fed mice with obesity and insulin resistance enhanced glucose tolerance and insulin secretion. Twice-daily administration of this dose of [L28K]esculentin-2CHa for 28 days had no significant effect on body weight, food intake, indirect calorimetry or body composition. However, mice exhibited decreased non-fasting plasma glucose (P < 0.05), increased non-fasting plasma insulin (P < 0.05) as well as improved glucose tolerance and insulin secretion (P < 0.01) following both oral and intraperitoneal glucose loads. Impaired responses of isolated islets from high fat fed mice to established insulin secretagogues were restored by [L28K]esculentin-2CHa treatment. Peptide treatment was accompanied by significantly lower plasma and pancreatic glucagon levels and normalization of α-cell mass. Circulating triglyceride concentrations were decreased but plasma cholesterol and LDL concentrations were not significantly affected. The data encourage further investigation of the potential of esculentin-2CHa related peptides for

  13. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    SciTech Connect

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  14. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet.

    PubMed

    Belobrajdic, Damien P; Jobling, Stephen A; Morell, Matthew K; Taketa, Shin; Bird, Anthony R

    2015-02-01

    Fermentation of oat and barley β-glucans is believed to mediate in part their metabolic health benefits, but the exact mechanisms remain unclear. In this study, we sought to test the hypothesis that barley β-glucan fermentation raises circulating incretin hormone levels and improves glucose control, independent of other grain components. Male Sprague-Dawley rats (n = 30) were fed a high-fat diet for 6 weeks and then randomly allocated to 1 of 3 dietary treatments for 2 weeks. The low- (LBG, 0% β-glucan) and high- (HBG, 3% β-glucan) β-glucan diets contained 25% wholegrain barley and similar levels of insoluble dietary fiber, available carbohydrate, and energy. A low-fiber diet (basal) was included for comparison. Immediately prior to the dietary intervention, gastric emptying rate (using the (13)C-octanoic breath test) and postprandial glycemic response of each diet were determined. At the end of the study, circulating gut hormone levels were determined; and a glucose tolerance test was performed. The rats were then killed, and indices of cecal fermentation were assessed. Diet did not affect live weight; however, the HBG diet, compared to basal and LBG, reduced food intake, tended to slow gastric emptying, increased cecal digesta mass and individual and total short-chain fatty acid pools, and lowered digesta pH. In contrast, circulating levels of glucose, insulin, gastric-inhibitory peptide, and glucagon-like peptide-1, and glucose tolerance were unaffected by diet. In conclusion, wholegrain barley β-glucan suppressed feed intake and increased cecal fermentation but did not improve postprandial glucose control or insulin sensitivity. PMID:25622537

  15. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus.

    PubMed

    Yu, Qin; Hu, Xiongwei; Ma, Yuhua; Xie, Yunchang; Lu, Yi; Qi, Jianping; Xiang, Li; Li, Fengqian; Wu, Wei

    2016-05-01

    The main purpose of this study was to improve the oral bioavailability of sirolimus (SRL), a poorly water-soluble immunosuppressant, by encapsulating into lipids-based nanostructured lipid carriers (NLCs). SRL-loaded NLCs (SRL-NLCs) were prepared by a high-pressure homogenization method with glycerol distearates (PRECIROL ATO-5) as the solid lipid, oleic acid as the liquid lipids, and Tween 80 as the emulsifier. The SRL-NLCs prepared under optimum conditions was spherical in shape with a mean particle size of about 108.3 nm and an entrapment efficiency of 99.81%. In vitro release of SRL-NLCs was very slow, about 2.15% at 12 h, while in vitro lipolysis test showed fast digestion of the NLCs within 1 h. Relative oral bioavailability of SRL-NLCs in Beagle dogs was 1.81-folds that of the commercial nanocrystalline sirolimus tablets Rapamune®. In conclusion, the NLCs show potential to improve the oral bioavailability of SRL. PMID:27187522

  16. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery.

    PubMed

    Chen, Chen; Wang, Lisha; Cao, Fangrui; Miao, Xiaoqing; Chen, Tongkai; Chang, Qi; Zheng, Ying

    2016-01-30

    The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future. PMID:26680316

  17. Caffeic acid phenethyl amide improves glucose homeostasis and attenuates the progression of vascular dysfunction in Streptozotocin-induced diabetic rats

    PubMed Central

    2013-01-01

    Background Glucose intolerance and cardiovascular complications are major symptoms in patients with diabetes. Many therapies have proven beneficial in treating diabetes in animals by protecting the cardiovascular system and increasing glucose utilization. In this study, we evaluated the effects of caffeic acid phenethyl amide (CAPA) on glucose homeostasis and vascular function in streptozotocin (STZ)-induced type 1 diabetic rats. Methods Diabetes (blood glucose levels > 350 mg/dL), was induced in Wistar rats by a single intravenous injection of 60 mg/kg STZ. Hypoglycemic effects were then assessed in normal and type 1 diabetic rats. In addition, coronary blood flow in Langendorff-perfused hearts was evaluated in the presence or absence of nitric oxide synthase (NOS) inhibitor. The thoracic aorta was used to measure vascular response to phenylephrine. Finally, the effect of chronic treatment of CAPA and insulin on coronary artery flow and vascular response to phenylephrine were analyzed in diabetic rats. Results Oral administration of 0.1 mg/kg CAPA decreased plasma glucose in normal (32.9 ± 2.3% decrease, P < 0.05) and diabetic rats (11.8 ± 5.5% decrease, P < 0.05). In normal and diabetic rat hearts, 1–10 μM CAPA increased coronary flow rate, and this increase was abolished by 10 μM NOS inhibitor. In the thoracic aorta, the concentration/response curve of phenylephrine was right-shifted by administration of 100 μM CAPA. Coronary flow rate was reduced to 7.2 ± 0.2 mL/min at 8 weeks after STZ-induction. However, 4 weeks of treatment with CAPA (3 mg/kg, intraperitoneal, twice daily) started at 4 weeks after STZ induction increased flow rate to 11.2 ± 0.5 mL/min (P < 0.05). In addition, the contractile response induced by 1 μM phenylephrine increased from 6.8 ± 0.6 mN to 11.4 ± 0.4 mN (P < 0.05) and 14.9 ± 1.4 mN (P < 0.05) by insulin (1 IU/kg, intraperitoneal) or CAPA treatment, respectively. Conclusions CAPA induced hypoglycemic activity, increased

  18. A novel extract of Gymnema sylvestre improves glucose tolerance in vivo and stimulates insulin secretion and synthesis in vitro.

    PubMed

    Al-Romaiyan, A; King, A J; Persaud, S J; Jones, P M

    2013-07-01

    Herbal medicines, especially plant-derived extracts, have been used to treat Type 2 diabetes mellitus (T2DM) for many centuries, and offer the potential of cheap and readily available alternatives to conventional pharmaceuticals in developing countries. Extracts of Gymnema sylvestre (GS) have anti-diabetic activities and have been used as a folk medicine in India for centuries. We have investigated the effects of a novel high molecular weight GS extract termed OSA® on glucose tolerance in insulin-resistant ob/ob mice, and on insulin secretion and synthesis by isolated mouse islets. Single administration of OSA® (500 mg/kg) to ob/ob mice 30 min before an intraperitoneal glucose load improved their abnormal glucose tolerance. In vitro studies indicated that OSA® (0.25 mg/ml) initiated rapid and reversible increases in insulin secretion from isolated mouse islets at substimulatory (2 mM) and stimulatory (20 mM) glucose concentrations. In addition, prolonged treatment (24-48 h) of mouse islets with OSA® elevated the expression of preproinsulin mRNA and maintained the total insulin content of mouse islets in the presence of stimulated insulin secretion. These effects of OSA® are consistent with its potential use as a therapy for the hyperglycemia associated with obesity-related T2DM. PMID:22911568

  19. Improving the Glucose Meter Error Grid With the Taguchi Loss Function.

    PubMed

    Krouwer, Jan S

    2016-07-01

    Glucose meters often have similar performance when compared by error grid analysis. This is one reason that other statistics such as mean absolute relative deviation (MARD) are used to further differentiate performance. The problem with MARD is that too much information is lost. But additional information is available within the A zone of an error grid by using the Taguchi loss function. Applying the Taguchi loss function gives each glucose meter difference from reference a value ranging from 0 (no error) to 1 (error reaches the A zone limit). Values are averaged over all data which provides an indication of risk of an incorrect medical decision. This allows one to differentiate glucose meter performance for the common case where meters have a high percentage of values in the A zone and no values beyond the B zone. Examples are provided using simulated data. PMID:26719136

  20. DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose uptake in vitro through JNK repression

    PubMed Central

    Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Tiss, Ali; Khadir, Abdelkrim; Kavalakatt, Sina; Warsame, Samia; Dehbi, Mohammed; Behbehani, Kazem; Abubaker, Jehad

    2015-01-01

    Heat shock response (HSR) is an essential host-defense mechanism that is dysregulated in obesity-induced insulin resistance and type 2 diabetes (T2D). Our recent data demonstrated that DNAJB3 was downregulated in obese human subjects and showed negative correlation with inflammatory markers. Nevertheless, DNAJB3 expression pattern in diabetic subjects and its mode of action are not yet known. In this study, we showed reduction in DNAJB3 transcript and protein levels in PBMC and subcutaneous adipose tissue of obese T2D compared to obese non-diabetic subjects. Overexpression of DNAJB3 in HEK293 and 3T3-L1 cells reduced JNK, IRS-1 Ser-307 phosphorylation and enhanced Tyr-612 phosphorylation suggesting an improvement in IRS-1 signaling. Furthermore, DNAJB3 mediated the PI3K/AKT pathway activation through increasing AKT and AS160 phosphorylation. AS160 mediates the mobilization of GLUT4 transporter to the cell membrane and thereby improves glucose uptake. Using pre-adipocytes cells we showed that DNAJB3 overexpression caused a significant increase in the glucose uptake, possibly through its phosphorylation of AS160. In summary, our results shed the light on the possible role of DNAJB3 in improving insulin sensitivity and glucose uptake through JNK repression and suggest that DNAJB3 could be a potential target for therapeutic treatment of obesity-induced insulin resistance. PMID:26400768

  1. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice.

    PubMed

    Elayan, Hamzeh; Milic, Milos; Sun, Ping; Gharaibeh, Munir; Ziegler, Michael G

    2012-07-01

    Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake. PMID:22422105

  2. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Kundu, Amit; Sarkar, Lipi; Karmakar, Sanmoy; Jaisankar, P; Pal, Tapan Kumar

    2014-03-01

    Olmesartan medoxomil (OM) is hydrolyzed to its active metabolite olmesartan by the action of aryl esterase to exert its antihypertensive actions by selectively blocking angiotensin II-AT1 receptor. Poor aqueous solubility and uncontrolled enzymatic conversion of OM to its poorly permeable olmesartan limits its oral bioavailability. The aim of the current study was to formulate a novel nanoemulsion of OM to improve its pharmacokinetics and therapeutic efficacy. The oil-in-water (o/w) nanoemulsion of OM was developed using lipoid purified soybean oil 700, sefsol 218 and solutol HS 15. We have characterized the nanoemulsions by considering their thermodynamic stability, morphology, droplet size, zeta potential and viscosity and in vitro drug release characteristics in fasting state simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.5). The thermodynamically stable nanoemulsions comprises of spherical nanometer sized droplets (<50 nm) with low polydispersity index showed enhanced permeability through the Caco-2 cell monolayer. The concentration of active olmesartan in rat plasma following oral absorption study was determined by our validated LC-MS/MS method. The result of the pharmacokinetic study showed 2.8-fold increased in area under the curve (AUC0-27) of olmesartan upon oral administration of OM nanoemulsion and sustained release profile. Subsequent, in vivo studies with nanoemulsion demonstrated better and prolonged control of experimentally induced hypertension with 3-fold reduction in conventional dose. By analysing the findings of the present investigations based on stability study, Caco-2 permeability, pharmacokinetic profile and pharmacodynamic evaluation indicated that the nanoemulsion of OM (OMF6) could significantly enhance the oral bioavailability of relatively insoluble OM contributing to improved clinical application. PMID:24388859

  3. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.

    PubMed

    Tran, Thanh Huyen; Guo, Yi; Song, Donghui; Bruno, Richard S; Lu, Xiuling

    2014-03-01

    Quercetin is a dietary flavonoid with potential chemoprotective effects, but has low bioavailability because of poor aqueous solubility and low intestinal absorption. A quercetin-containing self-nanoemulsifying drug delivery system (Q-SNEDDS) was developed to form oil-in-water nanoemulsions in situ for improving quercetin oral bioavailability. On the basis of the quercetin solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal SNEDDS consisting of castor oil, Tween® 80, Cremophor® RH 40, and PEG 400 (20:16:34:30, w/w) was identified. Upon mixing with water, Q-SNEDDS formed a nanoemulsion having a droplet size of 208.8 ± 4.5 nm and zeta potential of -26.3 ± 1.2 mV. The presence of Tween® 80 and PEG 400 increased quercetin solubility and maintained supersaturated quercetin concentrations (5 mg/mL) for >1 month. The optimized Q-SNEDDS significantly improved quercetin transport across a human colon carcinoma (Caco-2) cell monolayer. Fluorescence imaging demonstrated rapid absorption of the Q-SNEDDS within 40 min of oral ingestion. Following oral administration of Q-SNEDDS in rats (15 mg/kg), the area under the concentration curve and maximum concentration of plasma quercetin after 24 h increased by approximately twofold and threefold compared with the quercetin control suspension. These data suggest that this Q-SNEDDS formulation can enhance the solubility and oral bioavailability of quercetin for appropriate clinical application. PMID:24464737

  4. Inhibition of 11β-HSD1 by LG13 improves glucose metabolism in type 2 diabetic mice.

    PubMed

    Zhao, Leping; Pan, Yong; Peng, Kesong; Wang, Zhe; Li, Jieli; Li, Dan; Tong, Chao; Wang, Yi; Liang, Guang

    2015-10-01

    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) controls the production of active glucocorticoid (GC) and has been proposed as a new target for the treatment of type 2 diabetes. We have previously reported that a natural product, curcumin, exhibited moderate inhibition and selectivity on 11β-HSD1. By analyzing the models of protein, microsome, cells and GCs-induced mice in vitro and in vivo, this study presented a novel curcumin analog, LG13, as a potent selective 11β-HSD1 inhibitor. In vivo, Type 2 diabetic mice were treated with LG13 for 42 days to assess the pharmacological benefits of 11β-HSD1 inhibitor on hepatic glucose metabolism. In vitro studies revealed that LG13 selectively inhibited 11β-HSD1 with IC50 values at nanomolar level and high selectivity over 11β-HSD2. Targeting 11β-HSD1, LG13 could inhibit prednisone-induced adverse changes in mice, but had no effects on dexamethasone-induced ones. Further, the 11β-HSD1 inhibitors also suppressed 11β-HSD1 and GR expression, indicating a possible positive feedback system in the 11β-HSD1/GR cycle. In type 2 diabetic mice induced by high fat diet plus low-dosage STZ injection, oral administration with LG13 for 6 weeks significantly decreased fasting blood glucose, hepatic glucose metabolism, structural disorders, and lipid deposits. LG13 exhibited better pharmacological effects in vivo than insulin sensitizer pioglitazone and potential 11β-HSD1 inhibitor PF-915275. These pharmacological and mechanistic insights on LG13 also provide us novel agents, leading structures, and strategy for the development of 11β-HSD1 inhibitors treating metabolic syndromes. PMID:26220348

  5. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles.

    PubMed

    Udompataikul, M; Sripiroj, P; Palungwachira, P

    2009-12-01

    Various nutraceuticals (dietary supplements) are claimed to have cutaneous antiageing properties, however, there are a limited number of research studies supporting these claims. The objective of this research was to study the effectiveness of an oral nutraceutical containing antioxidants, minerals and glycosaminoglycans on cutaneous ageing. In this double-blind, placebo-controlled trial, 60 women aged 35-60 years were randomized to receive oral dietary supplement (n = 30) or placebo (n = 30), once daily for 12 weeks. The depth of skin roughness and fine wrinkles were measured using surface evaluation of skin parameters for living skin (Visioscan) at baseline, and at the 4, 8 and 12 weeks of treatment. Surface evaluation using a replica film (Visiometer) at baseline and at the 12th week of treatment was also carried out. Statistical differences in objective skin improvement were assessed by the independent t-test. The volunteers' satisfaction was tested using the chi-squared test. The baseline depth of skin roughness and fine wrinkles in the treatment group and the placebo group were 100.5 and 100 mum, respectively. At the end of the study, the depth of skin roughness and fine wrinkles in the treatment group showed a 21.2% improvement, whereas improvement in the control group was 1.7%. This difference was statistically significant (P < 0.001). With regard to the volunteers' satisfaction, there was no statistically significant decrease in the homogenization of skin colour, however, a statistically significant reduction in pore size and depth of skin roughness and fine wrinkles were observed (P < 0.05). No side effects were noted throughout the study. The oral dietary supplement containing antioxidants, minerals and glycosaminoglycans improved skin roughness and fine wrinkles but did not affect skin colour change in female volunteers. PMID:19570098

  6. Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage.

    PubMed

    Foster, Michelle T; Shi, Haifei; Seeley, Randy J; Woods, Stephen C

    2011-10-24

    Epidemiological studies have demonstrated a strong link between increased visceral fat and metabolic syndrome. In rodents, removal of intra-abdominal but non-visceral fat improves insulin sensitivity and glucose homeostasis, though previous studies make an imprecise comparison to human physiology because actual visceral fat was not removed. We hypothesize that nutrient release from visceral adipose tissue may have greater consequences on metabolic regulation than nutrient release from non-visceral adipose depots since the latter drains into systemic but not portal circulation. To assess this we surgically decreased visceral white adipose tissue (~0.5 g VWATx) and compared the effects to removal of non-visceral epididymal fat (~4 g; EWATx), combination removal of visceral and non-visceral fat (~4.5 g; EWATx/VWATx) and sham-operated controls, in chow-fed rats. At 8 weeks after surgery, only the groups with visceral fat removed had a significantly improved glucose tolerance, although 8 times more fat was removed in EWATx compared with VWATx. This suggests that mechanisms controlling glucose metabolism are relatively more sensitive to reductions in visceral adipose tissue mass. Groups with visceral fat removed also had significantly decreased hepatic lipoprotein lipase (LPL) and triglyceride content compared with controls, while carnitine palmitoyltransferase (CPT-1A) was decreased in all fat-removal groups. In a preliminary experiment, we assessed the opposite hypothesis; i.e., we transplanted excess visceral fat from a donor rat to the visceral cavity (omentum and mesentery), which drains into the hepatic portal vein, of a recipient rat but observed no major metabolic effect. Overall, our results indicate surgical removal of intra-abdominal fat improves glucose tolerance through mechanism that may be mediated by reductions in liver triglyceride. PMID:21683727

  7. Aerobic Exercise Improves Cognition for Older Adults with Glucose Intolerance, A Risk Factor for Alzheimer’s Disease

    PubMed Central

    Baker, Laura D.; Frank, Laura L.; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W.; McTiernan, Anne; Cholerton, Brenna A.; Plymate, Stephen R.; Fishel, Mark A.; Watson, G. Stennis; Duncan, Glen E.; Mehta, Pankaj D.; Craft, Suzanne

    2011-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57–83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p = 0.04), cardiorespiratory fitness (MANOVA, p = 0.03), and insulin sensitivity (p = 0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p = 0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p = 0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline. PMID:20847403

  8. Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats.

    PubMed

    Yang, Kaiyuan; Hashemi, Zohre; Han, Wei; Jin, Alena; Yang, Han; Ozga, Jocelyn; Li, Liang; Chan, Catherine B

    2015-08-01

    Proanthocyanidins (PAC) are a highly consumed class of flavonoids and their consumption has been linked to beneficial effects in type 2 diabetes. However, limited gastrointestinal absorption occurs due to the polymeric structure of PAC. We hypothesized that hydrolysis of the PAC polymer would increase bioavailability, thus leading to enhanced beneficial effects on glucose homeostasis and pancreatic β-cell function. PAC-rich pea seed coats (PSC) were supplemented to a high-fat diet (HFD) either in native (PAC) or hydrolyzed (HPAC) form fed to rats for 4 weeks. HFD or low-fat diet groups were controls. PAC-derived compounds were characterized in both PSC and serum. Glucose and insulin tolerance tests were conducted. Pancreatic α-cell and β-cell areas and glucose-stimulated insulin secretion (GSIS) from isolated islets were measured. Increased PAC-derived metabolites were detected in the serum of HPAC-fed rats compared to PAC-fed rats, suggesting hydrolysis of PSC-enhanced PAC bioavailability. This was associated with ~18% less (P<.05) weight gain compared to HFD without affecting food intake, as well as improvement in glucose disposal in vivo. There was a 2-fold decrease of α/β-cell area ratio and a 2.5-fold increase in GSIS from isolated islets of HPAC-fed rats. These results demonstrate that hydrolysis of PSC-derived PAC increased the bioavailability of PAC-derived products, which is critical for enhancing beneficial effects on glucose homeostasis and pancreatic β-cell function. PMID:25987165

  9. Oolong tea does not improve glucose metabolism in non-diabetic adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of the influence of tea on glucose metabolism have produced inconsistent results, possibly due to lack of dietary control and/or unclear characterization of tea products. Therefore, a double-blind crossover study was conducted in which healthy males (n=19) consumed each of three oolong tea ...

  10. Addition of glucose oxidase for the improvement of refrigerated dough quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Refrigerated dough encompasses a wide range of products and is a very popular choice for consumers. Two of the largest problems that occur during refrigerated dough storage are dough syruping and loss of dough strength. The goal of this study was to evaluate glucose oxidase as an additive to refri...

  11. CNS Vitamin D improves glucose tolerance, hepatic insulin sensitivity, and reverses diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low vitamin D levels have been correlated to both obesity and the development of type 2 diabetes (T2DM) although no causative mechanisms have been established. Vitamin D receptors are present in the hypothalamus, a region important in both weight and glucose regulation. The role of these receptors, ...

  12. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin.

    PubMed

    Chaurasia, Sundeep; Patel, Ravi R; Chaubey, Pramila; Kumar, Nagendra; Khan, Gayasuddin; Mishra, Brahmeshwar

    2015-10-01

    Soluthin MD(®), a unique phosphatidylcholine-maltodextrin based hydrophilic lipopolysaccharide, which exhibits superior biocompatibility and bioavailability enhancer properties for poorly water soluble drug(s). Curcumin (CUR) is a potential natural anticancer drug with low bioavailability due to poor aqueous solubility. The study aims at formulation and optimization of CUR loaded lipopolysaccharide nanocarriers (C-LPNCs) to enhance oral bioavailability and anticancer efficacy in colon-26 tumor-bearing mice in vitro and in vivo. The Optimized C-LPNCs demonstrated favorable mean particle size (108 ± 3.4 nm) and percent entrapment efficiency (65.29 ± 1.0%). Pharmacokinetic parameters revealed ∼130-fold increase in oral bioavailability and cytotoxicity studies demonstrated ∼23-fold reduction in 50% cell growth inhibition when treated with optimized C-LPNCs as compared to pure CUR. In vivo anticancer study performed with optimized C-LPNCs showed significant increase in efficacy compared with pure CUR. Thus, lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of CUR in the treatment of colorectal cancer. PMID:26076595

  13. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions.

    PubMed

    Ge, Hongfei; Zhang, Jun; Gong, Yan; Gupte, Jamila; Ye, Jay; Weiszmann, Jennifer; Samayoa, Kim; Coberly, Suzanne; Gardner, Jonitha; Wang, Huilan; Corbin, Tim; Chui, Danny; Baribault, Helene; Li, Yang

    2014-10-31

    The role of fibroblast growth factor receptor 4 (FGFR4) in regulating bile acid synthesis has been well defined; however, its reported role on glucose and energy metabolism remains unresolved. Here, we show that FGFR4 deficiency in mice leads to improvement in glucose metabolism, insulin sensitivity, and reduction in body weight under high fat conditions. Mechanism of action studies in FGFR4-deficient mice suggest that the effects are mediated in part by increased plasma levels of adiponectin and the endocrine FGF factors FGF21 and FGF15, the latter of which increase in response to an elevated bile acid pool. Direct actions of increased bile acids on bile acid receptors, and other potential indirect mechanisms, may also contribute to the observed metabolic changes. The results described herein suggest that FGFR4 antagonists alone, or in combination with other agents, could serve as a novel treatment for diabetes. PMID:25204652

  14. Acute effects of guar gum on glucose tolerance and intestinal absorption of nutrients in rats.

    PubMed

    Daumerie, C; Henquin, J C

    1982-03-01

    The mechanism by which non-digestible fibres improve oral glucose tolerance is still unclear. We have studied the effects of guar gum on oral carbohydrate tolerance and intestinal absorption of nutrients in anaesthetized rats. Addition of guar to an intragastric glucose load (1 g/kg) markedly delayed the rise in plasma glucose levels when the concentration of the gum was adequate (10 mg/ml). The insulin response was somewhat less marked, but the differences were not significant. When glucose was introduced directly into the duodenum, the gum only slightly reduced the rise in glucose levels, during the first 15 min. If sucrose (1 g/kg) was infused in the duodenum, acarboseR, an alpha-glucosidase inhibitor, but not guar, slowed the rise in plasma glucose and insulin levels. Intestinal absorption was measured in a tied duodenojejunal loop. Guar decreased active transport of glucose (4 mmol/l) by approximately 20%, but had no significant effect on the passive transport of glucose (100 mmol/l), nor on the absorption of sucrose (40 mmol/l) or leucine (4 mmol/l). At the concentration which improved glucose tolerance (10 mg/ml), but not at lower concentrations, guar gum markedly slowed gastric emptying. These results suggest that guar gum improves tolerance to oral carbohydrates mainly by decreasing the rate of gastric emptying, but inhibition of intestinal absorption may also be involved in the presence of low concentrations of the sugars. PMID:6284563

  15. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate

    PubMed Central

    Seo, Jae Hong; Park, Jung Bae; Choi, Woong-Kee; Park, Sunhwa; Sung, Yun Jin; Oh, Euichaul; Bae, Soo Kyung

    2015-01-01

    Objective Cilostazol is a Biopharmaceutical Classification System class II drug with low solubility and high permeability, so its oral absorption is variable and incomplete. The aim of this study was to prepare two sulfonate salts of cilostazol to increase the dissolution and hence the oral bioavailability of cilostazol. Methods Cilostazol mesylate and cilostazol besylate were synthesized from cilostazol by acid addition reaction with methane sulfonic acid and benzene sulfonic acid, respectively. The salt preparations were characterized by nuclear magnetic resonance spectroscopy. The water contents, hygroscopicity, stress stability, and photostability of the two cilostazol salts were also determined. The dissolution profiles in various pH conditions and pharmacokinetic studies in rats were compared with those of cilostazol-free base. Results The two cilostazol salts exhibited good physicochemical properties, such as nonhygroscopicity, stress stability, and photostability, which make it suitable for the preparation of pharmaceutical formulations. Both cilostazol mesylate and cilostazol besylate showed significantly improved dissolution rate and extent of drug release in the pH range 1.2–6.8 compared to the cilostazol-free base. In addition, after oral administration to rats, cilostazol mesylate and cilostazol besylate showed increases in Cmax and AUCt of approximately 3.65- and 2.87-fold and 3.88- and 2.94-fold, respectively, compared to cilostazol-free base. Conclusion This study showed that two novel salts of cilostazol, such as cilostazol mesylate and cilostazol besylate, could be used to enhance its oral absorption. The findings warrant further preclinical and clinical studies on cilostazol mesylate and cilostazol besylate at doses lower than the usually recommended dosage, so that it can be established as an alternative to the marketed cilostazol tablet. PMID:26251575

  16. [Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on metabolic syndrome treatment. V--Mechanisms on improving glucose metabolic disorders].

    PubMed

    Wang, Li; Zhang, Xiao-Lin; Li, Mo-Han; Tian, Jin-Ying; Zhang, Pei-Cheng; Ye, Fei

    2013-06-01

    To investigate the mechanisms of a compound (FF16), compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on glucose metabolic disorders, the IRF mice charactered with insulin resistance and glucose metabolic disorders induced by high-fat diet in C57BL/6J mice were randomly divided into 3 groups; IRF, rosiglitazone (Rosi) and FF16. The glucose metabolism was evaluated by fasting blood glucose (FBG) levels and intraperitoneal glucose tolerance test (IPGTT). The insulin sensitivity was estimated by insulin tolerance test (ITT), fasting serum insulin levels and the index of HOMA-IR. The expressions of Akt and its phosphorylation levels, GSK3beta and its phosphorylation levels in liver were detected by Western Blot. The results showed that FF16 significantly improved the glucose metabolic disorders through reducing FBG by 15.1%, decreasing AUC values in glucose tolerance tests by 22.3%. FF16 significantly improved the insulin sensitivity through decreasing AUC values in insulin tolerance tests by 22.1%, reducing the levels of serum insulin by 42.9% and of HOMA-IR by 49.5%, comparing with model control, respectively. After the treatment with FF16, the levels of p-Akt and p-GSK3beta were increased by 116.4% and 24.9%, respectively, in the liver of IRF mice. In conclusion, compound FF16 could improve glucose metabolic disorders in IRF mice through enhancing the glyconeogenesis. PMID:24066594

  17. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  18. Okara ameliorates glucose tolerance in GK rats

    PubMed Central

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-01-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  19. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  20. Improving Oral Hygiene in Institutionalised Elderly by Educating Their Caretakers in Bangalore City, India: a Randomised Control Trial

    PubMed Central

    Khanagar, Sanjeev; Naganandini, S.; Tuteja, Jaspreet Singh; Naik, Sachin; Satish, G.; Divya, K.T.

    2015-01-01

    Background The population of older people, as well as the number of dependent older people, is steadily increasing; those unable to live independently at home are being cared for in a range of settings. Practical training for nurses and auxiliary care staff has frequently been recommended as a way of improving oral health care for functionally dependent elderly. The aim was improve oral hygiene in institutionalized elderly in Bangalore city by educating their caregivers. Methods The study is a cluster randomized intervention trial with an elderly home as unit of randomization in which 7 out of 65 elderly homes were selected. Oral health knowledge of caregivers was assessed using a pre-tested pro forma and later oral-health education was provided to the caregivers of the study group. Oral hygiene status of elderly residents was assessed by levels of debris, plaque of dentate and denture plaque, and denture stomatitis of denture wearing residents, respectively. Oral-health education to the caregivers of control group was given at the end of six months Results There was significant improvement in oral-health knowledge of caregivers from the baseline and also a significant reduction of plaque score from baseline score of 3.17 ± 0.40 to 1.57 ± 0.35 post-intervention (p < .001), debris score 2.87 ± 0.22 to 1.49 ± 0.34 (p < .001), denture plaque score 3.15 ± 0.47 to 1.21 ± 0.27 (p < .001), and denture stomatitis score 1.43 ± 0.68 to 0.29 ± 0.53 (p < .001). Conclusions The result of the present study showed that there was a significant improvement in the oral-health knowledge among the caregivers and oral-hygiene status of the elderly residents. PMID:26495047

  1. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to -cell proliferation

    NASA Astrophysics Data System (ADS)

    Picard, Frédéric; Wanatabe, Mitsuhiro; Schoonjans, Kristina; Lydon, John; O'Malley, Bert W.; Auwerx, Johan

    2002-11-01

    Gestational diabetes coincides with elevated circulating progesterone levels. We show that progesterone accelerates the progression of diabetes in female db/db mice. In contrast, RU486, an antagonist of the progesterone receptor (PR), reduces blood glucose levels in both female WT and db/db mice. Furthermore, female, but not male, PR-/- mice had lower fasting glycemia than PR+/+ mice and showed higher insulin levels on glucose injection. Pancreatic islets from female PR-/- mice were larger and secreted more insulin consequent to an increase in -cell mass due to an increase in -cell proliferation. These findings demonstrate an important role of progesterone signaling in insulin release and pancreatic function and suggest that it affects the susceptibility to diabetes.

  2. Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level

    PubMed Central

    Ozana, Nisan; Arbel, Nadav; Beiderman, Yevgeny; Mico, Vicente; Sanz, Martin; Garcia, Javier; Anand, Arun; Javidi, Baharam; Epstein, Yoram; Zalevsky, Zeev

    2014-01-01

    The ability to extract different bio-medical parameters from one single wristwatch device can be very applicable. The wearable device that is presented in this paper is based on two optical approaches. The first is the extraction and separation of remote vibration sources and the second is the rotation of linearly polarized light by certain materials exposed to magnetic fields. The technique is based on tracking of temporal changes of reflected secondary speckles produced in the wrist when being illuminated by a laser beam. Change in skin’s temporal vibration profile together with change in the magnetic medium that is generated by time varied glucose concentration caused these temporal changes. In this paper we present experimental tests which are the first step towards an in vivo noncontact device for detection of glucose concentration in blood. The paper also shows very preliminary results for qualitative capability for indication of dehydration. PMID:24940550

  3. Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies

    PubMed Central

    You, Hong; Stephenson, Rachel J.; Gobert, Geoffrey N.; McManus, Donald P.

    2014-01-01

    A better understanding of the molecular mechanisms required for schistosomes to take up glucose, the major nutritional source exploited by these blood flukes from their mammalian hosts and the subsequent metabolism required to fuel growth and fecundity, can provide new avenues for developing novel interventions for the control of schistosomiasis. This aspect of parasitism is particularly important to paired adult schistosomes, due to their considerable requirements for the energy needed to produce the extensive numbers of eggs laid daily by the female worm. This review describes recent advances in characterizing glucose metabolism in adult schistosomes. Potential intervention targets are discussed within the insulin signaling and glycolysis pathways, both of which play critical roles in the carbohydrate and energy requirements of schistosomes. PMID:24966871

  4. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  5. Value of Self-Monitoring Blood Glucose Pattern Analysis in Improving Diabetes Outcomes

    PubMed Central

    Parkin, Christopher G.; Davidson, Jaime A.

    2009-01-01

    Self-monitoring of blood glucose (SMBG) is an important adjunct to hemoglobin A1c (HbA1c) testing. This action can distinguish between fasting, preprandial, and postprandial hyperglycemia; detect glycemic excursions; identify and monitor resolution of hypoglycemia; and provide immediate feedback to patients about the effect of food choices, activity, and medication on glycemic control. Pattern analysis is a systematic approach to identifying glycemic patterns within SMBG data and then taking appropriate action based upon those results. The use of pattern analysis involves: (1) establishing pre- and postprandial glucose targets; (2) obtaining data on glucose levels, carbohydrate intake, medication administration (type, dosages, timing), activity levels and physical/emotional stress; (3) analyzing data to identify patterns of glycemic excursions, assessing any influential factors, and implementing appropriate action(s); and (4) performing ongoing SMBG to assess the impact of any therapeutic changes made. Computer-based and paper-based data collection and management tools can be developed to perform pattern analysis for identifying patterns in SMBG data. This approach to interpreting SMBG data facilitates rational therapeutic adjustments in response to this information. Pattern analysis of SMBG data can be of equal or greater value than measurement of HbA1c levels. PMID:20144288

  6. Blueberries improve glucose tolerance and lipid handling without altering body composition in obese postmenopausal mice

    PubMed Central

    Elks, Carrie M.; Terrebonne, Jennifer D.; Ingram, Donald K.; Stephens, Jacqueline M.

    2014-01-01

    Objective Metabolic syndrome (MetS) risk increases significantly during menopause and remains elevated post-menopause. Several botanicals, including blueberries (BB), have been shown to delay MetS progression, but few studies have been conducted in postmenopausal animal models. Here, we examined the effects of BB supplementation on obese postmenopausal mice using a chemically-induced menopause model. Design and Methods After induction of menopause, mice were fed a high-fat diet or the same diet supplemented with 4% BB powder for 12 weeks. Body weight and body composition were measured, and mice were subjected to glucose and insulin tolerance tests. Serum triglycerides and adiponectin were measured, and liver histology and hepatic gene expression were assessed. Results: Menopausal and BB-supplemented mice had significantly higher body weights and fat mass than control mice, while menopausal mice had impaired glucose tolerance and higher serum triglycerides when compared with control and BB-supplemented mice. Menopausal mice also had hepatic steatosis that was prevented by BB supplementation and correlated with expression of genes involved in hepatic fatty acid oxidation. Conclusions We conclude that BB supplementation prevents the glucose intolerance and hepatic steatosis that occur in obese postmenopausal mice, and that these effects are independent of body weight. PMID:25611327

  7. Jiang Tang Xiao Ke Granule, a Classic Chinese Herbal Formula, Improves the Effect of Metformin on Lipid and Glucose Metabolism in Diabetic Mice

    PubMed Central

    Zhang, Yi; An, Hong; Pan, Si-Yuan; Zhao, Dan-Dan; Zuo, Jia-Cheng; Li, Xiao-Ke; Gao, Ya; Mu, Qian-Qian; Yu, Na; Ma, Yue; Mo, Fang-Fang; Gao, Si-Hua

    2016-01-01

    In the present study, the hypoglycemic, hypolipidemic, and antioxidative effects of metformin (MET) combined with Jiang Tang Xiao Ke (JTXK) granule derived from the “Di Huang Tang” were evaluated in mice with type 2 diabetes mellitus (DM) induced by high-fat diet/streptozotocin. DM mice were orally treated with MET (0.19 g/kg) either alone or combined with different doses (1.75, 3.5, or 7 g/kg) of JTXK for 4 weeks. Results showed that the serum and hepatic glucose, lipids, and oxidative stress levels were elevated in DM mice, when compared with the normal mice. MET treatment decreased FBG and serum glucagon levels of DM mice. Combination treatment with MET and JTXK 3.5 g/kg increased the hypoglycemia and insulin sensitivity at 4 weeks when compared with the DM mice treated with MET alone. However, neither MET nor MET/JTXK treatment could completely reverse the hyperglycemia in DM mice. JTXK enhanced the serum triglyceride (TG) and hepatic lipid-lowering effect of MET in a dose-dependent manner in DM mice. JTXK 1.75 and 3.5 g/kg improved the hepatoprotective effect of MET in DM mice. Synergistic effect of combination treatment with MET and JTXK on antioxidant stress was also found in DM mice compared with MET alone. PMID:27418937

  8. Jiang Tang Xiao Ke Granule, a Classic Chinese Herbal Formula, Improves the Effect of Metformin on Lipid and Glucose Metabolism in Diabetic Mice.

    PubMed

    Zhang, Yi; An, Hong; Pan, Si-Yuan; Zhao, Dan-Dan; Zuo, Jia-Cheng; Li, Xiao-Ke; Gao, Ya; Mu, Qian-Qian; Yu, Na; Ma, Yue; Mo, Fang-Fang; Gao, Si-Hua

    2016-01-01

    In the present study, the hypoglycemic, hypolipidemic, and antioxidative effects of metformin (MET) combined with Jiang Tang Xiao Ke (JTXK) granule derived from the "Di Huang Tang" were evaluated in mice with type 2 diabetes mellitus (DM) induced by high-fat diet/streptozotocin. DM mice were orally treated with MET (0.19 g/kg) either alone or combined with different doses (1.75, 3.5, or 7 g/kg) of JTXK for 4 weeks. Results showed that the serum and hepatic glucose, lipids, and oxidative stress levels were elevated in DM mice, when compared with the normal mice. MET treatment decreased FBG and serum glucagon levels of DM mice. Combination treatment with MET and JTXK 3.5 g/kg increased the hypoglycemia and insulin sensitivity at 4 weeks when compared with the DM mice treated with MET alone. However, neither MET nor MET/JTXK treatment could completely reverse the hyperglycemia in DM mice. JTXK enhanced the serum triglyceride (TG) and hepatic lipid-lowering effect of MET in a dose-dependent manner in DM mice. JTXK 1.75 and 3.5 g/kg improved the hepatoprotective effect of MET in DM mice. Synergistic effect of combination treatment with MET and JTXK on antioxidant stress was also found in DM mice compared with MET alone. PMID:27418937

  9. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma

    PubMed Central

    Godugu, Chandraiah; Doddapaneni, Ravi; Patel, Apurva R; Singh, Rakesh; Mercer, Roger; Singh, Mandip

    2016-01-01

    Purpose Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anti-cancer drugs have poor water solubility leading to low bioavailability. Methods Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. Results In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. Conclusion Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models. PMID:26286185

  10. Nao-Xue-Shu Oral Liquid Protects and Improves Secondary Brain Insults of Hypertensive Cerebral Hemorrhage

    PubMed Central

    Jiang, Hongning; Qin, Ying; Liu, Te; Zhang, Liang; Wang, Mingzhe; Qin, Baofeng; Jiang, Wenfei; Liao, Weilong; Pan, Weidong

    2016-01-01

    Aim. To determine one traditional Chinese medicine (TCM) Nao-Xue-Shu oral liquid which protects and improves secondary brain insults (SBI) in hypertensive cerebral hemorrhage (HCH). Methods. 158 patients with HCH were divided into routine clinical medicine plus Nao-Xue-Shu oral liquid (n = 78) as treatment group, and routine clinical medicine (n = 80) only served as the control group. The incidence of SBI and the classification of a favorable prognosis and a bad prognosis using the Glasgow outcome scale (GOS) were assessed to evaluate the clinical effects. The changes of IL-6 and TNF-α levels were determined to study the mechanism of the effects for the TCM. Results. The incidence of SBI at the end of week 2 was 8.97% in the treatment group and 23.75% in the control group, and the difference was significant (P < 0.001). The incidence of a favorable prognosis was 48.72% in the treatment group and 32.72% in the control group, and the difference was significant (P < 0.01) at the end of week 2. These findings indicate clear differences for IL-6 and TNF-α at the end of week 1 and week 2 compared with before treatment for the treatment group and a marked difference at the end of week 2 between the two groups. It also shows a significant difference between the end of week 2 and before treatment for IL-6 and TNF-α for the control group, although the difference was much smaller than the treatment group. Conclusion. Nao-Xue-Shu oral liquid could protect against the occurrence of SBI and improve HCH and SBI patients. It may also decrease the damage and the mass effects of the hematoma by reducing IL-6 and TNF-α to obtain the effects, and thus it is a potentially suitable drug for HCH and SBI. PMID:27110267

  11. Group-based activities with on-site childcare and online support improve glucose tolerance in women within 5 years of gestational diabetes pregnancy

    PubMed Central

    2014-01-01

    Background Women with gestational diabetes history are at increased risk for type 2 diabetes. They face specific challenges for behavioural changes, including childcare responsibilities. The aim of this study is to test a tailored type 2 diabetes prevention intervention in women within 5 years of a pregnancy with gestational diabetes, in terms of effects on weight and cardiometabolic risk factors. Methods The 13-week intervention, designed based on focus group discussions, included four group sessions, two with spousal participation and all with on-site childcare. Web/telephone-based support was provided between sessions. We computed mean percentage change from baseline (95% confidence intervals, CI) for anthropometric measures, glucose tolerance (75 g Oral glucose tolerance test), insulin resistance/sensitivity, blood pressure, physical activity, dietary intake, and other cardiometabolic risk factors. Results Among the 36 enrolled, 27 completed final evaluations. Most attended ≥ 3 sessions (74%), used on-site childcare (88%), and logged onto the website (85%). Steps/day (733 steps, 95% CI 85, 1391) and fruit/vegetable intake (1.5 servings/day, 95% CI 0.3, 2.8) increased. Proportions decreased for convenience meal consumption (−30%, 95% CI −50, −9) and eating out (−22%, 95% CI −44, −0) ≥ 3 times/month. Body mass index and body composition were unchanged. Fasting (−4.9%, 95% CI −9.5, −0.3) and 2-hour postchallenge (−8.0%, 95% CI −15.6, −0.5) glucose declined. Insulin sensitivity increased (ISI 0,120 23.7%, 95% CI 9.1, 38.4; Matsuda index 37.5%, 95% CI 3.5, 72.4). Insulin resistance (HOMA-IR −9.4%, 95% CI −18.6, −0.1) and systolic blood pressure (−3.3%, 95% CI −5.8, −0.8) decreased. Conclusions A tailored group intervention appears to lead to improvements in health behaviours and cardiometabolic risk factors despite unchanged body mass index and body composition. This approach merits further study. Clinical trial

  12. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide.

    PubMed

    Gonçalves, L M D; Maestrelli, F; Di Cesare Manelli, L; Ghelardini, C; Almeida, A J; Mura, P

    2016-05-01

    A solid lipid nanoparticle (SLN) formulation was developed with the aim of improving the oral bioavailability and the therapeutic effectiveness of glibenclamide (GLI), a poorly water-soluble drug used in the treatment of type 2 diabetes. The SLN was prepared using different lipid components (Precirol® and Compritol®) and preparation procedures. Precirol-based SLN, obtained with the emulsion of solvent evaporation technique gave the best results and was selected for drug loading. Addition of lecithin to the SLN core or PEG coating was effective in increasing the nanoparticles stability in simulated gastric solution. Both such formulations were stable after one month storage at 5±3°C, exhibited the absence of in vitro cytotoxicity, and presented a similar in vitro prolonged-release, reaching 100% release after 24h. The lecithin-containing GLI-loaded SLN formulation, selected for in vivo studies in virtue of its higher EE% than the PEG-coated formulation (70.3% vs 19.6%), showed a significantly stronger hypoglycemic effect with respect to the drug alone, in terms of both shorter onset time and longer duration of the effect. These positive results indicated that the proposed SLN approach was successful in improving GLI oral bioavailability, confirming its potential as an effective delivery system for a suitable therapy of diabetes. PMID:26925503

  13. Hyperbaric Oxygen Therapy Improves Glucose Homeostasis in Type 2 Diabetes Patients: A Likely Involvement of the Carotid Bodies.

    PubMed

    Vera-Cruz, P; Guerreiro, F; Ribeiro, M J; Guarino, M P; Conde, S V

    2015-01-01

    The carotid bodies (CBs) are peripheral chemoreceptors that respond to hypoxia increasing minute ventilation and activating the sympathetic nervous system. Besides its role in ventilation we recently described that CB regulate peripheral insulin sensitivity. Knowing that the CB is functionally blocked by hyperoxia and that hyperbaric oxygen therapy (HBOT) improves fasting blood glucose in diabetes patients, we have investigated the effect of HBOT on glucose tolerance in type 2 diabetes patients. Volunteers with indication for HBOT were recruited at the Subaquatic and Hyperbaric Medicine Center of Portuguese Navy and divided into two groups: type 2 diabetes patients and controls. Groups were submitted to 20 sessions of HBOT. OGTT were done before the first and after the last HBOT session. Sixteen diabetic patients and 16 control individual were included. Fasting glycemia was143.5 ± 12.62 mg/dl in diabetic patients and 92.06 ± 2.99 mg/dl in controls. In diabetic patients glycemia post-OGTT was 280.25 ± 22.29 mg/dl before the first HBOT session. After 20 sessions, fasting and 2 h post-OGTT glycemia decreased significantly. In control group HBOT did not modify fasting glycemia and post-OGTT glycemia. Our results showed that HBOT ameliorates glucose tolerance in diabetic patients and suggest that HBOT could be used as a therapeutic intervention for type 2 diabetes. PMID:26303484

  14. Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure.

    PubMed

    Shirouchi, Bungo; Nagao, Koji; Umegatani, Minami; Shiraishi, Aya; Morita, Yukiko; Kai, Shunichi; Yanagita, Teruyoshi; Ogawa, Akihiro; Kadooka, Yukio; Sato, Masao

    2016-08-01

    Probiotic Lactobacillus gasseri SBT2055 (LG2055) reduces postprandial TAG absorption and exerts anti-obesity effects in rats and humans; however, the underlying mechanisms are not fully understood. In the present study, we addressed the mechanistic insights of the anti-obesity activity of LG2055 by feeding Sprague-Dawley rats diets containing skimmed milk fermented or not by LG2055 for 4 weeks and by analysing energy expenditure, glucose tolerance, the levels of SCFA in the caecum and serum inflammatory markers. Rats fed the LG2055-containing diet demonstrated significantly higher carbohydrate oxidation in the dark cycle (active phase for rats) compared with the control group, which resulted in a significant increase in energy expenditure. LG2055 significantly reduced cumulative blood glucose levels (AUC) compared with the control diet after 3 weeks and increased the molar ratio of butyrate:total SCFA in the caecum after 4 weeks. Furthermore, the LG2055-supplemented diet significantly reduced the levels of serum amyloid P component - an indicator of the inflammatory process. In conclusion, our results demonstrate that, in addition to the inhibition of dietary TAG absorption reported previously, the intake of probiotic LG2055 enhanced energy expenditure via carbohydrate oxidation, improved glucose tolerance and attenuated inflammation, suggesting multiple additive and/or synergistic actions underlying the anti-obesity effects exerted by LG2055. PMID:27267802

  15. Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts.

    PubMed

    Kim, Seung-Hun; Choi, Kwang-Hwan; Lee, Dong-Kyung; Oh, Jong-Nam; Hwang, Jae Yeon; Park, Chi-Hun; Lee, Chang-Kyu

    2016-08-01

    Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 (20 μg/mL) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions. PMID:26954154

  16. Plants and other natural products used in the management of oral infections and improvement of oral health.

    PubMed

    Chinsembu, Kazhila C

    2016-02-01

    Challenges of resistance to synthetic antimicrobials have opened new vistas in the search for natural products. This article rigorously reviews plants and other natural products used in oral health: Punica granatum L. (pomegranate), Matricaria recutita L. (chamomile), Camellia sinensis (L.) Kuntze (green tea), chewing sticks made from Diospyros mespiliformis Hochst. ex A.D.C., Diospyros lycioides Desf., and Salvadora persica L. (miswak), honey and propolis from the manuka tree (Leptospermum scoparium J.R. Forst. & G. Forst.), rhein from Rheum rhabarbarum L. (rhubarb), dried fruits of Vitis vinifera L. (raisins), essential oils, probiotics and mushrooms. Further, the review highlights plants from Africa, Asia, Brazil, Mexico, Europe, and the Middle East. Some of the plants' antimicrobial properties and chemical principles have been elucidated. While the use of natural products for oral health is prominent in resource-poor settings, antimicrobial testing is mainly conducted in the following countries (in decreasing order of magnitude): India, South Africa, Brazil, Japan, France, Egypt, Iran, Mexico, Kenya, Switzerland, Nigeria, Australia, Uganda, and the United Kingdom. While the review exposes a dire gap for more studies on clinical efficacy and toxicity, the following emerging trend was noted: basic research on plants for oral health is mainly done in Brazil, Europe and Australia. Brazil, China, India and New Zealand generally conduct value addition of natural products for fortification of toothpastes. African countries focus on bioprospecting and primary production of raw plants and other natural products with antimicrobial efficacies. The Middle East and Egypt predominantly research on plants used as chewing sticks. More research and funding are needed in the field of natural products for oral health, especially in Africa where oral diseases are fuelled by human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). PMID:26522671

  17. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation.

    PubMed

    Manconi, Maria; Nácher, Amparo; Merino, Virginia; Merino-Sanjuan, Matilde; Manca, Maria Letizia; Mura, Carla; Mura, Simona; Fadda, Anna Maria; Diez-Sales, Octavio

    2013-06-01

    The purpose of this study was to develop a new delivery system capable of improving bioavailability and controlling release of hydrophilic drugs. Metformin-loaded liposomes were prepared and to improve their stability surface was coated with chitosan cross-linked with the biocompatible β-glycerolphosphate. X-ray diffraction, differential scanning calorimetry, as well as rheological analysis were performed to investigate interactions between chitosan and β-glycerolphosphate molecules. The entrapment of liposomes into the chitosan-β-glycerolphosphate network was assessed by scanning electron microscopy and transmission electron microscopy. Swelling and mucoadhesive properties as well as drug release were evaluated in vitro while the drug oral bioavailability was evaluated in vivo on Wistar rats. Results clearly showed that, compared to control, the proposed microcomplexes led to a 2.5-fold increase of metformin T(max) with a 40% augmentation of the AUC/D value. PMID:23471836

  18. Toward improving the oral health of Americans: an overview of oral health status, resources, and care delivery. Oral Health Coordinating Committee, Public Health Service.

    PubMed Central

    1993-01-01

    Dental and oral diseases may well be the most prevalent and preventable conditions affecting Americans. More than 50 percent of U.S. children, 96 percent of employed U.S. adults, and 99.5 percent of Americans 65 years and older have experienced dental caries (also called cavities). Millions of Americans suffer from periodontal diseases and other oral conditions, and more than 17 million Americans, including 10 million Americans 65 years or older, have lost all of their teeth. Preventive dental services are known to be effective in preventing and controlling dental diseases. Unfortunately, groups at highest risk for disease--the poor and minorities--have lower rates of using dental care than the U.S. average. Cost is the principal barrier to dental care for many Americans. Of the $38.7 billion spent for dental services in 1992, public programs, including Medicaid, paid for less than 4 percent of dental expenditures. More than 90 percent of care was paid for either out-of-pocket by dental consumers or through private dental insurance. Americans are at risk for other oral health problems as well. Oropharyngeal cancer strikes approximately 30,000 Americans each year and results in an estimated 8,000 deaths annually. Underlying medical or handicapping conditions, ranging from rare genetic diseases to more common chronic diseases, affect millions of Americans and can lead to oral health problems. Among persons with compromised immune systems, oral diseases and conditions can have a significant impact on health. Oral diseases and conditions, though nearly universal, can be prevented easily and controlled at reasonable cost.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8265750

  19. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups

  20. Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation.

    PubMed

    Janthanomsuk, Panyawut; Verduyn, Cornelis; Chauvatcharin, Somchai

    2015-11-01

    Fed-batch, pH auxostat cultivation of the docosahexaenoic acid (DHA)-producing microorganism Aurantiochytrium B072 was performed to obtain high cell density and record high productivity of both total fatty acid (TFA) and DHA. Using glucose feeding by carbon excess (C-excess) and by C-limitation at various feeding rates (70%, 50% or 20% of C-excess), high biomass density was obtained and DHA/TFA content (w/w) was improved from 30% to 37% with a 50% glucose feed rate when compared with C-excess. To understand the biochemistry behind these improvements, lipogenic enzyme assays and in silico metabolic flux calculations were used and revealed that enzyme activity and C-fluxes to TFA were reduced with C-limited feeding but that the carbon flux to the polyketide synthase pathway increased relative to the fatty acid synthase pathway. As a result, a new strategy to improve the DHA to TFA content while maintaining relatively high DHA productivity is proposed. PMID:26298403

  1. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes

    PubMed Central

    Hu, Ruiqiang; Li, Chengwei

    2015-01-01

    Automated closed-loop insulin infusion therapy has been studied for many years. In closed-loop system, the control algorithm is the key technique of precise insulin infusion. The control algorithm needs to be designed and validated. In this paper, an improved PID algorithm based on insulin-on-board estimate is proposed and computer simulations are done using a combinational mathematical model of the dynamics of blood glucose-insulin regulation in the blood system. The simulation results demonstrate that the improved PID algorithm can perform well in different carbohydrate ingestion and different insulin sensitivity situations. Compared with the traditional PID algorithm, the control performance is improved obviously and hypoglycemia can be avoided. To verify the effectiveness of the proposed control algorithm, in silico testing is done using the UVa/Padova virtual patient software. PMID:26550021

  2. Rural and remote oral health, problems and models for improvement: a Western Australian perspective.

    PubMed

    Steele, L; Pacza, T; Tennant, M

    2000-02-01

    Oral healthcare in rural communities shares many of the dilemmas faced by medicine in providing services to large geographical areas with dispersed populations. This study examined the population data and service provision data relevant to the geographical distribution of oral health care in Western Australia (WA). Of the 1.7 million people resident in WA, 72% were resident in the five major urban centres with only 13% in rural and remote regions. Of the 320 postcode regions, 186 had a population of less than 2500, 31 had a population from 2500 to 5000, 42 from 5000 to 10,000, 37 from 10,000 to 20,000, and 24 had a population greater that 20,000. Almost 80% of postcode regions with a population less than 2500 are in non-urban regions. Of the total of 690 dentists who were analysed in this study, it was found that the vast majority (greater than 85%) worked in practices in postcode regions within metropolitan Perth or the major urban centres. A total of 43 postcode regions did not have a dental practice within their bounds. In order to address this disparity in service availability, strategies including the development of training for medical practitioners and auxiliaries, the use of modern technology, school-based programs and the development of interdisciplinary links should be implemented. These strategies would also facilitate the development of closer links between medical and dental practitioners and the development of skills within the medical fraternity that would facilitate improved oral health in rural and remote communities. PMID:11040576

  3. [Improvement of oral health care in geriatric care by training of nurses and nursing assistants for the elderly].

    PubMed

    Jordan, R; Sirsch, E; Gesch, D; Zimmer, S; Bartholomeyczik, S

    2012-04-01

    Because oral health among residents of German nursing homes is inadequate, this intervention study evaluated the effects of dental training for nurses and nursing assistants (RN and RA) in homes for the elderly on their assessment of oral health in residents and, as a consequence, on the status of residents' oral health. 53 residents and the RNs and RAs from three homes for the elderly participated in this study. The nursing staff received training in dental health care. As primary outcome, the competence in performing the Brief Oral Health Examination (BOHSE) was measured at baseline date and four months after training. Additional outcome measures were dental and denture hygiene in residents, functional status of dentures, and treatment needs. Dental training was shown to improve the nursing staff's competences in oral health assessment in tendency. Residents' oral hygiene improved significantly, whereas no relevant effects on hygiene and functional status of dentures were registered. The need for dental treatment turned out to be considerable at both measurements. Modifications in test tools with identification of dental treatment needs seem to be indicated in order to improve cooperation between nursing staff and dentists in homes for the elderly. PMID:22473733

  4. Improving the Oral Health of Residents with Intellectual and Developmental Disabilities: An Oral Health Strategy and Pilot Study

    PubMed Central

    Binkley, Catherine J.; Johnson, Knowlton W.; Abadi, Melissa; Thompson, Kirsten; Shamblen, Stephen R.; Young, Linda; Zaksek, Brigit

    2014-01-01

    This article presents an oral health (OH) strategy and pilot study focusing on individuals with intellectual and/or developmental disabilities (IDD) living in group homes. The strategy consists of four components: (1) planned action in the form of the behavioral contract and caregiver OH action planning; (2) capacity building through didactic and observation learning training; (3) environmental adaptations consisting of additional oral heath devices and strategies to create a calm atmosphere; and (4) reinforcement by post-training coaching. A pilot study was conducted consisting of pre- and post-assessment data collected one week before and one week after implementing a one-month OH strategy. The study sample comprised 11 group homes with 21 caregivers and 25 residents with IDD from one service organization in a Midwestern city. A process evaluation found high-quality implementation of the OH strategy as measured by dosage, fidelity, and caregiver reactions to implementing the strategy. Using repeated cross-sectional and repeated measures analyses, we found statistically significant positive changes in OH status and oral hygiene practices of residents. Caregiver self-efficacy as a mechanism of change was not adequately evaluated; however, positive change was found in some but not all types of caregiver OH support that were assessed. Lessons learned from implementing the pilot study intervention and evaluation are discussed, as are the next steps in conducting an efficacy study of the OH strategy. PMID:25137553

  5. Improving the oral health of residents with intellectual and developmental disabilities: an oral health strategy and pilot study.

    PubMed

    Binkley, Catherine J; Johnson, Knowlton W; Abadi, Melissa; Thompson, Kirsten; Shamblen, Stephen R; Young, Linda; Zaksek, Brigit

    2014-12-01

    This article presents an oral health (OH) strategy and pilot study focusing on individuals with intellectual and/or developmental disabilities (IDD) living in group homes. The strategy consists of four components: (1) planned action in the form of the behavioral contract and caregiver OH action planning; (2) capacity building through didactic and observation learning training; (3) environmental adaptations consisting of additional oral heath devices and strategies to create a calm atmosphere; and (4) reinforcement by post-training coaching. A pilot study was conducted consisting of pre- and post-assessment data collected 1 week before and 1 week after implementing a 1-month OH strategy. The study sample comprised 11 group homes with 21 caregivers and 25 residents with IDD from one service organization in a Midwestern city. A process evaluation found high-quality implementation of the OH strategy as measured by dosage, fidelity, and caregiver reactions to implementing the strategy. Using repeated cross-sectional and repeated measures analyses, we found statistically significant positive changes in OH status and oral hygiene practices of residents. Caregiver self-efficacy as a mechanism of change was not adequately evaluated; however, positive change was found in some but not all types of caregiver OH support that were assessed. Lessons learned from implementing the pilot study intervention and evaluation are discussed, as are the next steps in conducting an efficacy study of the OH strategy. PMID:25137553

  6. Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Huang, Yan; Gao, Fang; Bu, Huihui; Gu, Wangwen; Li, Yaping

    2011-04-01

    A nano-based delivery system was developed to improve the oral absorption of daidzein, which has poor hydrophilicity and lipophilicity. A daidzein-phospholipid complex (DPC) was firstly prepared to improve its lipophilicity, and then encapsulated into lipid nanocarriers (DLNs) to verify the effectiveness of the strategy in enhancing the oral delivery of daidzein. DLNs were spherical nanosized particles with evidently increased dissolution. DLNs were mainly distributed in stomach and proximal intestine of mice after oral administration, and the intestinal permeability of DLNs in rats was significantly improved when compared with that of daidzein solution. The peak concentration of daidzein in rats after oral administration of DPC and DLNs was 6833 +/- 1112 ng mL-1 and 14 512 +/- 2390 ng mL-1, respectively, which was improved over 10-fold and 21-fold than that of free daidzein. Moreover, the areas under the concentration-time curve (AUC0-t) of DPC and DLNs were enhanced by 3.62-fold and 6.87-fold compared with that of free daidzein. These results suggested that DLNs could be an effective strategy to improve the oral absorption of poor hydrophilic and lipophilic drugs like daidzein.

  7. Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability.

    PubMed

    Onoue, Satomi; Suzuki, Hiroki; Kojo, Yoshiki; Matsunaga, Saori; Sato, Hideyuki; Mizumoto, Takahiro; Yuminoki, Kayo; Hashimoto, Naofumi; Yamada, Shizuo

    2014-10-01

    The present study aimed to develop a self-micellizing solid dispersion (SMSD) of cyclosporine A (CsA) using an amphiphilic block copolymer, poly[MPC-co-BMA], to improve the biopharmaceutical properties of CsA. The cytotoxicity of poly[MPC-co-BMA] was assessed in rat intestinal IEC-6 cells, and the pMB was less cytotoxic than polysorbate 80, a non-ionic surfactant with a wide safety margin. SMSD/CsA was prepared using a wet-milling system, and its physicochemical properties were characterized in terms of morphology, crystallinity, dissolution, particle size distribution, and stability. The SMSD/CsA exhibited immediate formation of fine micelles with a mean diameter of ca. 180 nm when introduced into aqueous media. There was marked improvement in the dissolution behavior of the SMSD/CsA compared with amorphous CsA. Even after storage at 40°C/75% relative humidity, the dissolution behavior of aged SMSD/CsA seemed to be almost identical to that of its freshly prepared equivalent, and CsA in aged SMSD/CsA was still in amorphous form. After oral administration of SMSD/CsA (10 mg CsA/kg) in rats, enhanced CsA exposure was observed with increases of Cmax and BA by ca. 11- and 42-fold, respectively, compared with those of amorphous CsA. The poly[MPC-co-BMA]-based SMSD formulation system might be an efficacious dosage option for CsA to achieve improvements in oral bioavailability. PMID:24836392

  8. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria.

    PubMed Central

    Pelletier, M; Frenette, M; Vadeboncoeur, C

    1995-01-01

    In Streptococcus salivarius, the phosphoenolpyruvate (PEP):mannose-glucose phosphotransferase system, which concomitantly transports and phosphorylates mannose, glucose, fructose, and 2-deoxyglucose, is composed of the general energy-coupling proteins EI and HPr, the specific membrane-bound IIIMan, and two forms of a protein called IIIMan, with molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), that are found in the cytoplasm as well as associated with the membrane. Several lines of evidence suggest that IIIManH and/or IIIManL are involved in the control of sugar metabolism. To determine whether other bacteria possess these proteins, we tested for their presence in 28 oral streptococcus strains, 3 nonoral streptococcus strains, 2 lactococcus strains, 2 enterococcus strains, 2 bacillus strains, 1 lactobacillus strain, Staphylococcus aureus, and Escherichia coli. Three approaches were used to determine whether the IIIMan proteins were present in these bacteria: (i) Western blot (immunoblot) analysis of cytoplasmic and membrane proteins, using anti-IIIManH and anti-IIIManH rabbit polyclonal antibodies; (ii) analysis of PEP-dependent phosphoproteins by polyacrylamide gel electrophoresis; and (iii) inhibition by anti-IIIMan antibodies of the PEP-dependent phosphorylation of 2-deoxyglucose (a mannose analog) by crude cellular extracts. Only the species S. salivarius and Streptococcus vestibularis possessed the two forms of IIIMan. Fifteen other streptococcal species possessed one protein with a molecular weight between 35,200 and 38,900 that cross-reacted with both antibodies. In the case of 9 species, a protein possessing the same electrophoretic mobility was phosphorylated at the expense of PEP. No such phosphoprotein, however, could be detected in the other six species. A III(Man)-like protein with a molecular weight of 35,500 was also detected in Lactobacillus casei by Western blot experiments as well as by PEP-dependent phosphoprotein analysis, and a

  9. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss.

    PubMed

    Badman, Michael K; Kennedy, Adam R; Adams, Andrew C; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2009-11-01

    In mice of normal weight and with diet-induced obesity, a high-fat, low-carbohydrate ketogenic diet (KD) causes weight loss, reduced circulating glucose and lipids, and dramatic changes in hepatic gene expression. Many of the effects of KD are mediated by fibroblast growth factor 21 (FGF21). We tested the effects of KD feeding on ob/ob mice to determine if metabolic effects would occur in obesity secondarily to leptin deficiency. We evaluated the effect of prolonged KD feeding on weight, energy homeostasis, circulating metabolites, glucose homeostasis, and gene expression. Subsequently, we evaluated the effects of leptin and fasting on FGF21 expression in ob/ob mice. KD feeding of ob/ob mice normalized fasting glycemia and substantially reduced insulin and lipid levels in the absence of weight loss. KD feeding was associated with significant increases in lipid oxidative genes and reduced expression of lipid synthetic genes, including stearoyl-coenzyme A desaturase 1, but no change in expression of inflammatory markers. In chow-fed ob/ob mice, FGF21 mRNA was elevated 10-fold compared with wild-type animals, and no increase from this elevated baseline was seen with KD feeding. Administration of leptin to chow-fed ob/ob mice led to a 24-fold induction of FGF21. Fasting also induced hepatic FGF21 in ob/ob mice. Thus, KD feeding improved ob/ob mouse glucose homeostasis without weight loss or altered caloric intake. These data demonstrate that manipulation of dietary macronutrient composition can lead to marked improvements in metabolic profile of leptin-deficient obese mice in the absence of weight loss. PMID:19738035

  10. Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib.

    PubMed

    Truong, Duy Hieu; Tran, Tuan Hiep; Ramasamy, Thiruganesh; Choi, Ju Yeon; Lee, Hee Hyun; Moon, Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-01

    To improve the solubility and oral bioavailability of erlotinib, a poorly water-soluble anticancer drug, solid self-emulsifying drug delivery system (SEDDS) was developed using solid inert carriers such as dextran 40 and Aerosil® 200 (colloidal silica). The preliminary solubility of erlotinib in various oils, surfactants, and co-surfactants was determined. Labrafil M2125CS, Labrasol, and Transcutol HP were chosen as the oil, surfactant, and co-surfactant, respectively, for preparation of the SEDDS formulations. The ternary phase diagram was evaluated to show the self-emulsifying area. The formulations were optimized using the droplet size and polydispersity index (PDI) of the resultant emulsions. Then, the optimized formulation containing 5% Labrafil M2125CS, 65% Labrasol, and 30% Transcutol was spray dried with dextran or Aerosil® and characterized for surface morphology, crystallinity, and pharmacokinetics in rats. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) exhibited the amorphous form or molecular dispersion of erlotinib in the formulations. The pharmacokinetic parameters of the optimized formulations showed that the maximum concentration (C max) and area under the curve (AUC) of erlotinib were significantly increased, compared to erlotinib powder (p < 0.05). Thus, this SEDDS could be a promising method for enhancing the oral bioavailability of erlotinib. PMID:26238806

  11. Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability.

    PubMed

    Hu, Liandong; Yang, Jianxue; Liu, Wei; Li, Li

    2011-01-01

    The purpose of the current study was to improve the solubility of ibuprofen, a poorly water-soluble drug, in a microemulsion system that is suitable for oral administration. Microemulsion was prepared using different sorts of oils, surfactants, and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The formulations were characterized by solubility of the drug in the vehicle, droplet size, and drug release. The optimal formulation consists of 17% Labrafil M 1944CS, 28% Cremophor RH40/Transcutol P (3:1, w/w), and 55% water, with a maximum solubility of ibuprofen up to 60.3 mg/ml. The mean droplet size of microemulsion was 57 nm. The pharmacokinetic study of microemulsion was performed in rats and compared with granule formulation. The microemulsion has significantly increased the C(max) and area under the curve (AUC) compared to that of the granule (p < 0.05). The relative bioavailability of ibuprofen in microemulsions was 1.9-fold higher than that of the granule. These results indicated that this novel microemulsion is a useful formulation for enhancing the oral bioavailability of ibuprofen. PMID:20942639

  12. Improving the prediction of the brain disposition for orally administered drugs using BDDCS

    PubMed Central

    Broccatelli, Fabio; Larregieu, Caroline A.; Cruciani, Gabriele; Oprea, Tudor I.; Benet, Leslie Z.

    2012-01-01

    In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists. PMID:22261306

  13. Improving oral implant osseointegration in a murine model via Wnt signal amplification

    PubMed Central

    Mouraret, Sylvain; Hunter, Daniel J.; Bardet, Claire; Popelut, Antoine; Brunski, John B.; Chaussain, Catherine; Bouchard, Philippe; Helms, Jill A.

    2016-01-01

    Aim To determine the key biological events occurring during implant failure and then we use this knowledge to develop new biology-based strategies that improve osseointegration. Materials and Methods Wild-type and Axin2LacZ/LacZ adult male mice underwent oral implant placement, with and without primary stability. Peri-implant tissues were evaluated using histology, alkaline phosphatase (ALP) activity, tartrate resistant acid phosphatase (TRAP) activity and TUNEL staining. In addition, mineralization sites, collagenous matrix organization and the expression of bone markers in the peri-implant tissues were assessed. Results Maxillary implants lacking primary stability show histological evidence of persistent fibrous encapsulation and mobility, which recapitulates the clinical problems of implant failure. Despite histological and molecular evidence of fibrous encapsulation, osteoblasts in the gap interface exhibit robust ALP activity. This mineralization activity is counteracted by osteoclast activity that resorbs any new bony matrix and consequently, the fibrous encapsulation remains. Using a genetic mouse model, we show that implants lacking primary stability undergo osseointegration, provided that Wnt signalling is amplified. Conclusions In a mouse model of oral implant failure caused by a lack of primary stability, we find evidence of active mineralization. This mineralization, however, is outpaced by robust bone resorption, which culminates in persistent fibrous encapsulation of the implant. Fibrous encapsulation can be prevented and osseointegration assured if Wnt signalling is elevated at the time of implant placement. PMID:24164629

  14. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    PubMed

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the

  15. Improving the Safety of Oral Chemotherapy at an Academic Medical Center

    PubMed Central

    Casella, Erica; Capozzi, Donna; McGettigan, Suzanne; Gangadhar, Tara C.; Schuchter, Lynn; Myers, Jennifer S.

    2016-01-01

    Purpose: Over the last decade, the use of oral chemotherapy (OC) for the treatment of cancer has dramatically increased. Despite their route of administration, OCs pose many of the same risks as intravenous agents. In this quality improvement project, we sought to examine our current process for the prescription of OC at the Abramson Cancer Center of the University of Pennsylvania and to improve on its safety. Methods: A multidisciplinary team that included oncologists, advanced-practice providers, and pharmacists was formed to analyze the current state of our OC practice. Using Lean Six Sigma quality improvement tools, we identified a lack of pharmacist review of the OC prescription as an area for improvement. To address these deficiencies, we used our electronic medical system to route OC orders placed by treating providers to an oncology-specific outpatient pharmacist at the Abramson Cancer Center for review. Results: Over 7 months, 63 orders for OC were placed for 45 individual patients. Of the 63 orders, all were reviewed by pharmacists, and, as a result, 22 interventions were made (35%). Types of interventions included dosage adjustment (one of 22), identification of an interacting drug (nine of 22), and recommendations for additional drug monitoring (12 of 22). Conclusion: OC poses many of the same risks as intravenous chemotherapy and should be prescribed and reviewed with the same oversight. At our institution, involvement of an oncology-trained pharmacist in the review of OC led to meaningful interventions in one third of the orders. PMID:26733627

  16. EGFR Tyrosine Kinase Inhibitor (PD153035) Improves Glucose Tolerance and Insulin Action in High-Fat Diet–Fed Mice

    PubMed Central

    Prada, Patricia O.; Ropelle, Eduardo R.; Mourão, Rosa H.; de Souza, Claudio T.; Pauli, Jose R.; Cintra, Dennys E.; Schenka, André; Rocco, Silvana A.; Rittner, Roberto; Franchini, Kleber G.; Vassallo, José; Velloso, Lício A.; Carvalheira, José B.; Saad, Mario J.A.

    2009-01-01

    OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-α and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-α, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser307 phosphorylation in JNK and inhibitor of NF-κB kinase (IKKβ) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice. PMID:19696185

  17. Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice.

    PubMed

    Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M; Li, Elizabeth; Dreyfuss, Jonathan M; Gall, Walt; Kim, Jason K; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E; Patti, Mary-Elizabeth; Lerin, Carles

    2016-04-01

    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21(-/-) mice, demonstrating that Fgf21 is necessary for betaine's beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359

  18. The Importance of Oral Communication Skills and a Graduate Course to Help Improve These Skills

    ERIC Educational Resources Information Center

    Wilkes, Garth L.

    2012-01-01

    This article addresses the importance of oral communication and many of its fundamental underlying principles. Emphasis is placed on oral presentations, particularly those used in science and engineering. Following this, the author provides a brief outline of an elective graduate level oral communications course that was developed and utilized to…

  19. North Carolina physician-based preventive oral health services improve access and use among young Medicaid enrollees.

    PubMed

    Kranz, Ashley M; Lee, Jessica; Divaris, Kimon; Baker, A Diane; Vann, William

    2014-12-01

    To combat disparities in oral health and access to dental care among infants and toddlers, most state Medicaid programs now reimburse physician-based preventive oral health services such as fluoride varnish applications. We used geospatial data to examine the distribution of dental and medical Medicaid providers of pediatric oral health services throughout North Carolina to determine if these services have improved access to care for Medicaid enrollees younger than age three. We then used claims data to examine the association between distance from these practices and use of dental services for a cohort of approximately 1,000 young children. Among one hundred counties, four counties had no physician-based preventive oral health services, and nine counties had no dental practice. While children who lived farther from the nearest dental practice were less likely to make dental visits, distance from physician-based preventive oral health services did not predict utilization. For young Medicaid enrollees, oral health services provided in medical offices can improve access and increase utilization. PMID:25489032

  20. North Carolina Physician-Based Preventive Oral Health Services Improve Access And Use Among Young Medicaid Enrollees

    PubMed Central

    Kranz, Ashley; Lee, Jessica; Divaris, Kimon; Baker, Diane; Vann, William Felix

    2015-01-01

    To combat disparities in oral health and access to dental care among infants and toddlers, most state Medicaid programs now reimburse physician-based preventive oral health services, such as fluoride varnish applications. We used geospatial data to examine the distribution of dental and medical Medicaid providers of pediatric oral health services throughout North Carolina to determine if these services have improved access to care for Medicaid enrollees younger than three years old. We then used claims data to examine the association between distance from these practices and use of dental services for a cohort of approximately 1,000 young children. Among 100 counties, four counties had no physician-based preventive oral health services and nine counties had no dental practice. While children who lived further from the nearest dental practice were less likely to make dental visits, distance from physician-based preventive oral health services did not predict use. For young Medicaid enrollees, oral health services provided in medical offices can improve access and increase use. PMID:25489032

  1. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis.

    PubMed

    Moran, Brian M; Flatt, Peter R; McKillop, Aine M

    2016-04-01

    G protein-coupled receptors (GPCRs) play a pivotal role in cell signalling, controlling many processes such as immunity, growth, cellular differentiation, neurological pathways and hormone secretions. Fatty acid agonists are increasingly recognised as having a key role in the regulation of glucose homoeostasis via stimulation of islet and gastrointestinal GPCRs. Downstream cell signalling results in modulation of the biosynthesis, secretion, proliferation and anti-apoptotic pathways of islet and enteroendocrine cells. GPR40 and GPR120 are activated by long-chain fatty acids (>C12) with both receptors coupling to the Gαq subunit that activates the Ca(2+)-dependent pathway. GPR41 and GPR43 are stimulated by short-chain fatty acids (C2-C5), and activation results in binding to Gαi that inhibits the adenylyl cyclase pathway attenuating cAMP production. In addition, GPR43 also couples to the Gαq subunit augmenting intracellular Ca(2+) and activating phospholipase C. GPR55 is specific for cannabinoid endogenous agonists (endocannabinoids) and non-cannabinoid fatty acids, which couples to Gα12/13 and Gαq proteins, leading to enhancing intracellular Ca(2+), extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and Rho kinase. GPR119 is activated by fatty acid ethanolamides and binds to Gαs utilising the adenylate cyclase pathway, which is dependent upon protein kinase A. Current research indicates that GPCR therapies may be approved for clinical use in the near future. This review focuses on the recent advances in preclinical diabetes research in the signalling and regulation of GPCRs on islet and enteroendocrine cells involved in glucose homoeostasis. PMID:26739335

  2. Improved myocardial contractility with glucose-insulin-potassium infusion during pacing in coronary artery disease.

    PubMed

    McDaniel, H G; Rogers, W J; Russell, R O; Rackley, C E

    1985-04-01

    The metabolic and mechanical effects of a solution of glucose-insulin-potassium (G-I-K) were investigated in 18 patients who underwent diagnostic cardiac catheterization for coronary artery disease. All patients were paced at a rate of approximately 140 beats/min before and after infusion of G-I-K. Basal and paced left ventricular (LV) end-diastolic pressure, dP/dt, arterial substrate levels and osmolarity were measured in all 18 patients. In 13 patients cardiac index was also measured. In 5 patients arterial-coronary sinus measurements of oxygen, carbon dioxide, glucose, free fatty acids, lactate, alanine, glutamate, glutamine, ammonia and urea were made, in addition to coronary sinus blood flow. G-I-K increased the blood sugar level to approximately 200 mg/dl and raised the serum osmolarity 9 mosmol. Pacing alone raised the cardiac index 4% and pacing with G-I-K increased the cardiac index 6% (p less than 0.05). Pacing before G-I-K augmented dP/dt (21%) and pacing with G-I-K increased it (30%) (p less than 0.01). The metabolic changes noted included a shift in the respiratory quotient from 0.77 to 0.96 with G-I-K infusion (p less than 0.05). During G-I-K infusion the myocardial oxygen consumption at rest increased from 17.1 to 21.8 ml/min (23%, p less than 0.05). Myocardial oxygen consumption during pacing was similar before and after G-I-K infusion. Before G-I-K infusion nitrogen balance was slightly positive; after G-I-K infusion it was negative with regard to the nitrogen-containing compounds measured.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3885708

  3. Amino Acid and Biogenic Amine Profile Deviations in an Oral Glucose Tolerance Test: A Comparison between Healthy and Hyperlipidaemia Individuals Based on Targeted Metabolomics.

    PubMed

    Li, Qi; Gu, Wenbo; Ma, Xuan; Liu, Yuxin; Jiang, Lidan; Feng, Rennan; Liu, Liyan

    2016-01-01

    Hyperlipidemia (HLP) is characterized by a disturbance in lipid metabolism and is a primary risk factor for the development of insulin resistance (IR) and a well-established risk factor for cardiovascular disease and atherosclerosis. The aim of this work was to investigate the changes in postprandial amino acid and biogenic amine profiles provoked by an oral glucose tolerance test (OGTT) in HLP patients using targeted metabolomics. We used ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry to analyze the serum amino acid and biogenic amine profiles of 35 control and 35 HLP subjects during an OGTT. The amino acid and biogenic amine profiles from 30 HLP subjects were detected as independent samples to validate the changes in the metabolites. There were differences in the amino acid and biogenic amine profiles between the HLP individuals and the healthy controls at baseline and after the OGTT. The per cent changes of 13 metabolites from fasting to the 2 h samples during the OGTT in the HLP patients were significantly different from those of the healthy controls. The lipid parameters were associated with the changes in valine, isoleucine, creatine, creatinine, dimethylglycine, asparagine, serine, and tyrosine (all p < 0.05) during the OGTT in the HLP group. The postprandial changes in isoleucine and γ-aminobutyric acid (GABA) during the OGTT were positively associated with the homeostasis model assessment of insulin resistance (HOMA-IR; all p < 0.05) in the HLP group. Elevated oxidative stress and disordered energy metabolism during OGTTs are important characteristics of metabolic perturbations in HLP. Our findings offer new insights into the complex physiological regulation of metabolism during the OGTT in HLP. PMID:27338465

  4. Amino Acid and Biogenic Amine Profile Deviations in an Oral Glucose Tolerance Test: A Comparison between Healthy and Hyperlipidaemia Individuals Based on Targeted Metabolomics

    PubMed Central

    Li, Qi; Gu, Wenbo; Ma, Xuan; Liu, Yuxin; Jiang, Lidan; Feng, Rennan; Liu, Liyan

    2016-01-01

    Hyperlipidemia (HLP) is characterized by a disturbance in lipid metabolism and is a primary risk factor for the development of insulin resistance (IR) and a well-established risk factor for cardiovascular disease and atherosclerosis. The aim of this work was to investigate the changes in postprandial amino acid and biogenic amine profiles provoked by an oral glucose tolerance test (OGTT) in HLP patients using targeted metabolomics. We used ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry to analyze the serum amino acid and biogenic amine profiles of 35 control and 35 HLP subjects during an OGTT. The amino acid and biogenic amine profiles from 30 HLP subjects were detected as independent samples to validate the changes in the metabolites. There were differences in the amino acid and biogenic amine profiles between the HLP individuals and the healthy controls at baseline and after the OGTT. The per cent changes of 13 metabolites from fasting to the 2 h samples during the OGTT in the HLP patients were significantly different from those of the healthy controls. The lipid parameters were associated with the changes in valine, isoleucine, creatine, creatinine, dimethylglycine, asparagine, serine, and tyrosine (all p < 0.05) during the OGTT in the HLP group. The postprandial changes in isoleucine and γ-aminobutyric acid (GABA) during the OGTT were positively associated with the homeostasis model assessment of insulin resistance (HOMA-IR; all p < 0.05) in the HLP group. Elevated oxidative stress and disordered energy metabolism during OGTTs are important characteristics of metabolic perturbations in HLP. Our findings offer new insights into the complex physiological regulation of metabolism during the OGTT in HLP. PMID:27338465

  5. [Application of diversified teaching methods to improve the teaching effects in the course of oral histology and pathology].

    PubMed

    Tian, Zhen; Li, Lei; Wang, Li-zhen; Hu, Yu-hua; Zhang, Chun-ye; Li, Jiang

    2016-02-01

    Oral histology and pathology is one of the most important courses in stomatological education which works as a bridge between basic medical courses and clinical courses of oral science. The knowledge of oral histopathology may help the students to correctly understand the histogenesis and development of oral diseases and provide the information for correct treatment and prevention. In order to make the students grasp the necessary basic theories, increase the interest in learning, and improve the teaching effect, we explored a diversified teaching system which included diverse teaching modes, online courses and courseware construction. The application of this system offered the interaction between students and teachers and combination of classes with the internet, and made the boring pathological knowledge be associated with clinical practice. These diversified teaching methods had been used in practice and obtained good teaching results. PMID:27063324

  6. GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance.

    PubMed

    Wang, Jinghong; Pan, Zheng; Baribault, Helene; Chui, Danny; Gundel, Caroline; Véniant, Murielle

    2016-01-01

    Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been modified. To assess this hypothesis a new Gpr21 KO mouse line using TALENS technology was generated. Gpr21 gene deletion was confirmed by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a normal or high fat diet chow did not maintain their improved metabolic phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels may have contributed to the phenotype of the originally designed Gpr21 KO mice. PMID:27081476

  7. GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance

    PubMed Central

    Wang, Jinghong; Pan, Zheng; Baribault, Helene; Chui, Danny; Gundel, Caroline; Véniant, Murielle

    2016-01-01

    Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been modified. To assess this hypothesis a new Gpr21 KO mouse line using TALENS technology was generated. Gpr21 gene deletion was confirmed by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a normal or high fat diet chow did not maintain their improved metabolic phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels may have contributed to the phenotype of the originally designed Gpr21 KO mice. PMID:27081476

  8. [Orally administered polaprezinc significantly improves taste disorders in ovarian cancer patient undergoing chemotherapy].

    PubMed

    Nishijima, Shota; Yanase, Toru; Hata, Yuki; Tamura, Ryo; Tsuneki, Ikunosuke; Tamura, Masaki; Kurabayashi, Takumi

    2011-04-01

    The subject was a 75-year-old female who was receiving paclitaxel and carboplatin(TC)chemotherapy every other week after surgery for ovarian cancer. She greatly complained of taste disorders after four cycles(of every other week administration) of TC chemotherapy. To understand how the taste disorder was caused by chemotherapy objectively, taste examinations were conducted for the patient in our department. These examinations were conducted after receiving the informed consent from the patient. The authors conducted taste examinations for the patient using serum zinc measurement, tongue cell culture, electrogustometry, and filter paper disc tests(before and after starting chemotherapy), and found that her serum zinc level fell significantly after four cycles of chemotherapy. Orally disintegrating tablets of polaprezinc were then administered to the patient, after which the subjective symptom of taste disorder improved. Her serum zinc level increased, and the electrogustometric threshold rapidly fell(an improvement). The filter paper disc test showed some improvement, particularly in the glossopharyngeal nerve and the greater petrosal nerve field. PMID:21499007

  9. Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement.

    PubMed

    Patil-Gadhe, Arpana; Pokharkar, Varsha

    2014-09-01

    The purpose of the study was to formulate montelukast-loaded nanostructured lipid carrier (MNLC) to improve its systemic bioavailability, avoid hepatic metabolism and reduce hepatic cellular toxicity due to metabolites. MNLC was prepared using melt-emulsification-homogenization method. Preformulation study was carried out to evaluate drug-excipient compatibility. MNLCs were prepared using spatially different solid and liquid lipid triglycerides. CAE (DL-Pyrrolidonecarboxylic acid salt of L-cocyl arginine ethyl ester), a cationic, biodegradable, biocompatible surfactant was used to stabilize the system. MNLCs were characterized by FTIR, XRPD and DSC to evaluate physicochemical properties. MNLCs having a particle size of 181.4 ± 6.5 nm with encapsulation efficiency of 96.13 ± 0.98% were prepared. FTIR findings demonstrated no interaction between the drug and excipients of the formulation which could lead to asymmetric vibrations. DSC and XRPD study confirmed stable amorphous form of the montelukast in lipid matrix. In vitro release study revealed sustained release over a period of 24 h. In vivo single dose oral pharmacokinetic study demonstrated 143-fold improvement in bioavailability as compared to montelukast-aqueous solution. Thus, the result of this study implies that developed MNLC formulation be suitable to sustain the drug release with improvement in the bioavailability. PMID:24878424

  10. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae.

    PubMed

    Kim, Daehee; Song, Ji-Yoon; Hahn, Ji-Sook

    2015-12-01

    Metabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate in Saccharomyces cerevisiae by overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion of STD1 and MTH1, encoding corepressors of HXT genes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression of GCR1, which led to increased transcription levels of HXT1 and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-type S. cerevisiae. Furthermore, the growth-promoting effect of GCR1 overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions. PMID:26431967

  11. [Preoperative oral hydration for pregnant women].

    PubMed

    Okutomi, Toshiyuki; Kato, Rie

    2011-07-01

    Preoperative oral hydration is an important component of "enhanced recovery after surgery" strategies. This was originally developed for patients undergoing colon surgery. The Obstetric Anesthesia Practice Guideline issued by American Society of Anesthesiologists states that intake of minimum amount of clear fluid 2 hours prior to surgery may be safe. However, anesthesiologists have to consider physiological changes that parturients undergo during pregnancy, such as increased risk of aspiration and impaired glucose tolerance. We also have to consider the potential effect of glucose loading on neonates. Mothers are more likely to develop ketosis by glucose loading. It also stimulates insulin release in the fetus, which can result in neonatal hypoglycemia. In addition, sodium overloading may deteriorate intra-vascular dehydration and cause lung edema to mothers. On the other hand, oral hydration can alleviate a sense of thirst and increase maternal satisfaction. Our data showed that maternal urinal ketone body at delivery tended to decrease with oral hydration during labor. Moreover, some articles suggest that oral hydration may improve utero-placental perfusion. Therefore, we have to balance risks and benefits of oral hydration in parturients. Further investigations are needed among this specific subgroup of patients in order to establish the safe application of preoperative oral hydration. PMID:21800658

  12. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917

    PubMed Central

    Manzhalii, Elina; Hornuss, Daniel; Stremmel, Wolfgang

    2016-01-01

    AIM: To evaluate the effect of oral Escherichia coli (E. coli) Nissle application on the outcome of intestinal-borne dermatoses. METHODS: In a randomized, controlled, non-blinded prospective clinical trial 82 patients with intestinal-borne facial dermatoses characterized by an erythematous papular-pustular rash were screened. At the initiation visit 37 patients entered the experimental arm and 20 patients constituted the control arm. All 57 patients were treated with a vegetarian diet and conventional topical therapy of the dermatoses with ointments containing tetracycline, steroids and retinoids. In the experimental arm patients received a one month therapy with oral E. coli Nissle at a maintenance dose of 2 capsules daily. The experimental group was compared to a non-treatment group only receiving the diet and topical therapy. The primary outcome parameter was improvement of the dermatoses, secondary parameters included life quality and adverse events. In addition the immunological reaction profile (IgA, interleucin-8 and interferon-α) was determined. Furthermore the changes of stool consistency and the microbiota composition over the time of intervention were recorded. RESULTS: Eighty-nine percent of the patients with acne, papular-pustular rosacea and seborrhoic dermatitis responded to E. coli Nissle therapy with significant amelioration or complete recovery in contrast to 56% in the control arm (P < 0.01). Accordingly, in the E. coli Nissle treated patients life quality improved significantly (P < 0.01), and adverse events were not recorded. The clinical improvement was associated with a significant increase of IgA levels to normal values in serum as well as suppression of the proinflammatory cytokine IL-8 (P < 0.01 for both parameters). In the E. coli Nissle treated group a shift towards a protective microbiota with predominance of bifidobacteria and lactobacteria (> 107 CFU/g stool) was observed in 79% and 63% of the patients, respectively (P < 0

  13. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway.

    PubMed

    Wang, M-D; Huang, Y; Zhang, G-P; Mao, L; Xia, Y-P; Mei, Y-W; Hu, B

    2012-12-13

    Previous studies demonstrated that exendin-4 (Ex-4) may possess neurotrophic and neuroprotective functions in ischemia insults, but its mechanism remained unknown. Here, by using real-time PCR and ELISA, we identified the distribution of active GLP-1Rs in the rat primary cortical neurons. After establishment of an in vitro ischemia model by oxygen/glucose deprivation (OGD), neurons were treated with various dosages of Ex-4. The MTT assay showed that the relative survival rate increased with the dosage of Ex-4 ranging from 0.2 to 0.8 μg/ml (P<0.001, vs. OGD group). The apoptosis rate was reduced from (49.47±2.70)% to (14.61±0.81)% after Ex-4 treatment (0.4 μg/ml) 12h after OGD (P<0.001). Moreover, immunofluorescence staining indicated that Ex-4 increased glucose-regulated proteins 78 (GRP78) and reduced C/EBP-homologous protein (CHOP). Western blot analysis demonstrated that, after neurons were treated with Ex-4, GRP78 was up-regulated over time (P<0.01, vs. OGD group), while CHOP levels rose to a peak 8h after OGD and then decreased (P<0.05, vs. OGD group). This effect was changed by both the protein kinase A (PKA) inhibitor H89 (P<0.01, P<0.05, respectively, vs. Ex-4 group) and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (P<0.01, P<0.01, respectively, vs. Ex-4 group) but not by the mitogen-activated protein kinase (MAPK) inhibitor U0126. Our study also revealed that, compared with the Ex-4 group, inhibition of the PKA signaling pathway significantly decreased the survival rate of neurons, down-regulated the expression of B-cell lymphoma 2 (Bcl-2) and up-regulated the Bax expression 3h after ODG (P<0.05, P<0.01, respectively), while neither PI3K nor MAPK inhibition exerted such effects. Furthermore, Western blotting exhibited that PKA expression was elevated in the presence or absence of OGD insults (P<0.05). This study indicated that Ex-4 protected neurons against OGD by modulating the unfolded protein response (UPR) through the PKA pathway and

  14. Non-dental primary care providers’ views on challenges in providing oral health services and strategies to improve oral health in Australian rural and remote communities: a qualitative study

    PubMed Central

    Barnett, Tony; Hoang, Ha; Stuart, Jackie; Crocombe, Len

    2015-01-01

    Objectives To investigate the challenges of providing oral health advice/treatment as experienced by non-dental primary care providers in rural and remote areas with no resident dentist, and their views on ways in which oral health and oral health services could be improved for their communities. Design Qualitative study with semistructured interviews and thematic analysis. Setting Four remote communities in outback Queensland, Australia. Participants 35 primary care providers who had experience in providing oral health advice to patients and four dental care providers who had provided oral health services to patients from the four communities. Results In the absence of a resident dentist, rural and remote residents did present to non-dental primary care providers with oral health problems such as toothache, abscess, oral/gum infection and sore mouth for treatment and advice. Themes emerged from the interview data around communication challenges and strategies to improve oral health. Although, non-dental care providers commonly advised patients to see a dentist, they rarely communicated with the dentist in the nearest regional town. Participants proposed that oral health could be improved by: enabling access to dental practitioners, educating communities on preventive oral healthcare, and building the skills and knowledge base of non-dental primary care providers in the field of oral health. Conclusions Prevention is a cornerstone to better oral health in rural and remote communities as well as in more urbanised communities. Strategies to improve the provision of dental services by either visiting or resident dental practitioners should include scope to provide community-based oral health promotion activities, and to engage more closely with other primary care service providers in these small communities. PMID:26515687

  15. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    SciTech Connect

    Wright, Catherine S.; Berends, Rebecca F.; Flint, David J.; Martin, Patricia E.M.

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.

  16. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    PubMed

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238

  17. Nerium oleander Distillate Improves Fat and Glucose Metabolism in High-Fat Diet-Fed Streptozotocin-Induced Diabetic Rats.

    PubMed

    Bas, Ahmet Levent; Demirci, Sule; Yazihan, Nuray; Uney, Kamil; Ermis Kaya, Ezgi

    2012-01-01

    Diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg bw) in all rats of five groups after being fed for 2 weeks high-fat diet. Type 2 diabetic Nerium-oleander- (NO-) administered groups received the NO distillate at a dose of 3.75, 37.5, and 375 μg/0.5 mL of distilled water (NO-0.1, NO-1, NO-10, resp.); positive control group had 0.6 mg glibenclamide/kg bw/d by gavage daily for 12 weeks. Type 2 diabetic negative control group had no treatment. NO distillate administration reduced fasting blood glucose, HbA1c, insulin resistance, total cholesterol, low density lipoprotein, atherogenic index, triglyceride-HDL ratio, insulin, and leptin levels. Improved beta cell function and HDL concentration were observed by NO usage. HDL percentage in total cholesterol of all NO groups was similar to healthy control. NO-10 distillate enhanced mRNA expressions of peroxisome proliferator-activated-receptor- (PPAR-) α, β, and γ in adipose tissue and PPAR-α-γ in liver. The findings from both in vivo and in vitro studies suggest that the considerable beneficial effect of NO distillate administration at a dose of 375 μg/0.5 mL of distilled water may offer new approaches to treatment strategies that target both fat and glucose metabolism in type 2 diabetes. PMID:23251156

  18. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight.

    PubMed

    Li, Yong-Qi; Shrestha, Yogendra B; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S

    2016-01-12

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  19. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice.

    PubMed

    DiSilvestro, David J; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L James; Kalyanasundaram, Anuradha; Gilor, Chen L; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  20. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice

    PubMed Central

    DiSilvestro, David J.; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L. James; Kalyanasundaram, Anuradha; Gilor, Chen L.; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  1. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.

    PubMed

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C; Bernier, Raquel; Larsen, P Reed; Holst, Jens J; Badman, Michael K; Maratos-Flier, Eleftheria; Mun, Edward C; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B

    2009-09-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2-h post-meal glucose (r = -0.59, P < 0.003) and fasting triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = -0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  2. Innovative oral spray-dried Idebenone systems to improve patient compliance.

    PubMed

    Lauro, M R; Carbone, C; Sansone, F; Ruozi, B; Chillemi, R; Sciuto, S; Aquino, R P; Puglisi, G

    2016-07-01

    Idebenone is a high permeable drug with very slight water solubility that affects the dissolution rate in the biological fluids, causing an irregular and limited in vivo absorption after oral administration. Moreover, it is marketed in Europe as tablets equivalent to 150 mg, with the consequent administration of multiple dose of solid unit to obtain the correct dose, a deterrent for the patients' compliance. According to these considerations, our goal was to develop spray-dried microparticles using a soluble β-cyclodextrin (CD) polymer and an enhancer of dissolution rate, such as carboxymethyl cellulose, to obtain a formulation easily dosable and soluble in water. The complex in solution was evaluated by phase solubility studies and the Idebenone/CD molar ratio selected was 1:1. According to Higuchi and Connors, adding carboxymethyl cellulose, a Bs-type profile was obtained. This result was due to the presence of carboxymethyl cellulose that competes with the CD in forming Idebenone microsystems, reducing of 10-fold the formulation bulk. UV-Vis absorption, (1)H nuclear magnetic resonance and circular dichroism showed the formation of the CD/Idebenone inclusion complex confirmed also by differential scanning calorimetry, Fourier transform infrared spectroscopy and fluorescence microscope (FM). The water solubility data and the in vitro dissolution tests performed in simulated gastric fluid, showed an increase of the drug water interaction due to the presence of the CD and carboxymethyl cellulose, both able to improve drug wettability, water solubility and dissolution rate. This approach seems to be suitable to produce microsystems which are able to enhance the in vivo absorption of Idebenone after oral administration and to increase the patient compliance. PMID:26556126

  3. Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System.

    PubMed

    Nekkanti, Vijaykumar; Wang, Zhijun; Betageri, Guru V

    2016-08-01

    The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan. PMID:26381913

  4. Internet-Based Contingency Management to Improve Adherence with Blood Glucose Testing Recommendations for Teens with Type 1 Diabetes

    ERIC Educational Resources Information Center

    Raiff, Bethany R.; Dallery, Jesse

    2010-01-01

    The current study used Internet-based contingency management (CM) to increase adherence with blood glucose testing to at least 4 times daily. Four teens diagnosed with Type 1 diabetes earned vouchers for submitting blood glucose testing videos over a Web site. Participants submitted a mean of 1.7 and 3.1 blood glucose tests per day during the 2…

  5. Oral Administration of Fermented Probiotics Improves the Condition of Feces in Adult Horses

    PubMed Central

    ISHIZAKA, Saori; MATSUDA, Akira; AMAGAI, Yosuke; OIDA, Kumiko; JANG, Hyosun; UEDA, Yuko; TAKAI, Masaki; TANAKA, Akane; MATSUDA, Hiroshi

    2014-01-01

    ABSTRACT The effects of probiotics on horses are still controversial. The present study was a randomized, double-blinded, placebo-controlled crossover study designed to evaluate the ability of probiotics to improve intestinal conditions in adult horses. Fermented probiotics were administered to 10 healthy adult geldings for 28 days. The clinical condition of the horses was monitored daily, and the blood and feces were biochemically analyzed every 14 days. In the probiotic-treated group, the concentration of carboxylic acids in the feces was increased at days 14 and 28. In contrast to the fecal pH in the control group, which increased at days 14 and 28, the fecal pH in the probiotic-treated group did not increase. Additionally, the relative amounts of enteropathogenic bacterial DNA were diminished in the probiotic-treated group. These results suggest that probiotic bacteria proliferated in the equine intestine. No instances of abnormal clinical conditions or abnormal values in blood tests were observed throughout the study. Oral administration of fermented probiotics may have the ability to improve the intestinal environment biochemically and microbiologically without the risk of adverse effects. PMID:25558179

  6. Oral Dalfampridine Improves Standing Balance Detected at Static Posturography in Multiple Sclerosis

    PubMed Central

    Prosperini, Luca; Fortuna, Deborah; Marchetti, Maria Rita

    2014-01-01

    We report a 14-week post-marketing experience on 20 patients with multiple sclerosis (MS) who started prolonged-release (PR) oral dalfampridine 10 mg twice daily according to European Medicine Agency criteria. They underwent serial static posturography assessments and the dizziness handicap inventory (DHI) to investigate whether PR dalfampridine could impact standing balance and self-reported perception of balance. The incidence of accidental falls per person per month was also recorded throughout the study. Eight (40%) patients, who had a relevant improvement in walking speed, were defined as treatment responders. They showed a significant improvement of standing balance (with respect to pretreatment assessment) when contrasted with 12 (60%) nonresponders (F[4,15] = 3.959, P = 0.027). No significant changes in DHI score, as well as in its functional, physical, and emotional subscales, were found in both responders and nonresponders at the end of study (all P values are ≥0.2). Treatment response did not affect the incidence of accidental falls. Future studies based on larger sample sizes, and with longer followup, are required to confirm the beneficial effect of PR dalfampridine on standing balance. PMID:24800078

  7. A Pacifier-Activated Music Player With Mother’s Voice Improves Oral Feeding in Preterm Infants

    PubMed Central

    Chorna, Olena D.; Slaughter, James C.; Wang, Lulu; Stark, Ann R.

    2014-01-01

    OBJECTIVES: We conducted a randomized trial to test the hypothesis that mother’s voice played through a pacifier-activated music player (PAM) during nonnutritive sucking would improve the development of sucking ability and promote more effective oral feeding in preterm infants. METHODS: Preterm infants between 34 0/7 and 35 6/7 weeks’ postmenstrual age, including those with brain injury, who were taking at least half their feedings enterally and less than half orally, were randomly assigned to receive 5 daily 15-minute sessions of either PAM with mother’s recorded voice or no PAM, along with routine nonnutritive sucking and maternal care in both groups. Assignment was masked to the clinical team. RESULTS: Ninety-four infants (46 and 48 in the PAM intervention and control groups, respectively) completed the study. The intervention group had significantly increased oral feeding rate (2.0 vs 0.9 mL/min, P < .001), oral volume intake (91.1 vs 48.1 mL/kg/d, P = .001), oral feeds/day (6.5 vs 4.0, P < .001), and faster time-to-full oral feedings (31 vs 38 d, P = .04) compared with controls. Weight gain and cortisol levels during the 5-day protocol were not different between groups. Average hospital stays were 20% shorter in the PAM group, but the difference was not significant (P = .07). CONCLUSIONS: A PAM using mother’s voice improves oral feeding skills in preterm infants without adverse effects on hormonal stress or growth. PMID:24534413

  8. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.

    PubMed

    Trevaskis, James L; Mack, Christine M; Sun, Chengzao; Soares, Christopher J; D'Souza, Lawrence J; Levy, Odile E; Lewis, Diane Y; Jodka, Carolyn M; Tatarkiewicz, Krystyna; Gedulin, Bronislava; Gupta, Swati; Wittmer, Carrie; Hanley, Michael; Forood, Bruce; Parkes, David G; Ghosh, Soumitra S

    2013-01-01

    Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lep(ob)/Lep (ob) mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. PMID:24167604

  9. Improved Glucose Control and Reduced Body Weight in Rodents with Dual Mechanism of Action Peptide Hybrids

    PubMed Central

    Trevaskis, James L.; Mack, Christine M.; Sun, Chengzao; Soares, Christopher J.; D’Souza, Lawrence J.; Levy, Odile E.; Lewis, Diane Y.; Jodka, Carolyn M.; Tatarkiewicz, Krystyna; Gedulin, Bronislava; Gupta, Swati; Wittmer, Carrie; Hanley, Michael; Forood, Bruce; Parkes, David G.; Ghosh, Soumitra S.

    2013-01-01

    Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lepob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. PMID:24167604

  10. VISP 2.0: Methodological Considerations for the Design and Implementation of an Audiodescription Based App to Improve Oral Skills

    ERIC Educational Resources Information Center

    Ibáñez Moreno, Ana; Vermeulen, Anna

    2015-01-01

    In this paper the methodological steps taken in the conception of a new mobile application (app) are introduced. This app, called VISP (Videos for Speaking), is easily accessible and manageable, and is aimed at helping students of English as a Foreign Language (EFL) to improve their idiomaticity in their oral production. In order to do so, the app…

  11. Comparison of Two Oral Reading Feedback Strategies in Improving Reading Comprehension of School-Age Children with Low Reading Ability

    ERIC Educational Resources Information Center

    Crowe, Linda K.

    2005-01-01

    This study compared the effects of two oral reading feedback strategies in improving the reading comprehension of eight school-age children with low reading ability. Participants were assigned to one of two intervention groups matched on age, grade, gender, and general reading performance. Intervention 1 (I1) used traditional decoding-based…

  12. Can school-based oral health education and a sugar-free chewing gum program improve oral health? Results from a two-year study in PR China.

    PubMed

    Peng, Bin; Petersen, Poul Erik; Bian, Zhuan; Tai, Baojun; Jiang, Han

    2004-12-01

    The purpose of the study was to assess the outcome of school-based oral health education (OHE) and a sugar-free chewing gum program on the oral health status of children in terms of reduced caries increment and gingival bleeding over a period of 2 years. Nine primary schools randomly chosen from one district were divided into three groups: OHE group (Group E), sugar-free chewing gum in addition to OHE group (Group G), and the control group (Group C). All children of grade 1 (aged 6-7 years) were recruited (n = 1342). After 2 years, 1143 children remained in the study group at follow-up. The overall drop-out rate was about 15%. Data on dental caries and gingival bleeding were collected by clinical examination. The results showed that the mean increment of DMFS in Group G was 42% lower than in groups E and C (P < 0.05). The mean increments in F-S were higher in Groups G and E than in Group C (P < 0.01). The gingival bleeding scores were statistically significant among the three groups. Compared to Group C, the mean increment in bleeding scores of Group G was 71% lower (P < 0.01) and in Group E 42% lower (P < 0.05). The school-based OHE programs had some positive effect improving children's oral hygiene; in certain circumstances children may benefit from using polyol-containing chewing gum in terms of reduced dental caries. PMID:15848976

  13. Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors.

    PubMed

    Frangioudakis, G; Garrard, J; Raddatz, K; Nadler, J L; Mitchell, T W; Schmitz-Peiffer, C

    2010-09-01

    Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, would protect against glucose intolerance in saturated fat-fed mice, while lisofylline (LSF), a functional inhibitor of PA synthesis, would protect unsaturated fat-fed mice. Mice were fed diets enriched in saturated fat, n-6 polyunsaturated fat, or chow for 6 wk. Saline, LSF (25 mg/kg x d), or MYR (0.3 mg/kg x d) were administered by mini-pumps in the final 4 wk. Glucose homeostasis was examined by glucose tolerance test. Muscle ceramide and PA were analyzed by mass spectrometry. Expression of LASS isoforms (ceramide synthases) was evaluated by immunoblotting. Both saturated and polyunsaturated fat diets increased muscle ceramide and induced glucose intolerance. MYR and LSF reduced ceramide levels in saturated and unsaturated fat-fed mice. Both inhibitors also improved glucose tolerance in unsaturated fat-fed mice, but only LSF was effective in saturated fat-fed mice. The discrepancy between ceramide and glucose tolerance suggests these improvements may not be related directly to changes in muscle ceramide and may involve other insulin-responsive tissues. Changes in the expression of LASS1 were, however, inversely correlated with alterations in glucose tolerance. The demonstration that LSF can ameliorate glucose intolerance in vivo independent of the dietary FA type indicates it may be a novel intervention for the treatment of insulin resistance. PMID:20660065

  14. Deficiency of FcϵR1 Increases Body Weight Gain but Improves Glucose Tolerance in Diet-Induced Obese Mice.

    PubMed

    Lee, Yun-Jung; Liu, Conglin; Liao, Mengyang; Sukhova, Galina K; Shirakawa, Jun; Abdennour, Meriem; Iamarene, Karine; Andre, Sebastien; Inouye, Karen; Clement, Karine; Kulkarni, Rohit N; Banks, Alexander S; Libby, Peter; Shi, Guo-Ping

    2015-11-01

    Prior studies demonstrated increased plasma IgE in diabetic patients, but the direct participation of IgE in diabetes or obesity remains unknown. This study found that plasma IgE levels correlated inversely with body weight, body mass index, and body fat mass among a population of randomly selected obese women. IgE receptor FcϵR1-deficient (Fcer1a(-/-)) mice and diet-induced obesity (DIO) mice demonstrated that FcϵR1 deficiency in DIO mice increased food intake, reduced energy expenditure, and increased body weight gain but improved glucose tolerance and glucose-induced insulin secretion. White adipose tissue from Fcer1a(-/-) mice showed an increased expression of phospho-AKT, CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor-γ, glucose transporter-4 (Glut4), and B-cell lymphoma 2 (Bcl2) but reduced uncoupling protein 1 (UCP1) and phosphorylated c-Jun N-terminal kinase (JNK) expression, tissue macrophage accumulation, and apoptosis, suggesting that IgE reduces adipogenesis and glucose uptake but induces energy expenditure, adipocyte apoptosis, and white adipose tissue inflammation. In 3T3-L1 cells, IgE inhibited the expression of CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ, and preadipocyte adipogenesis and induced adipocyte apoptosis. IgE reduced the 3T3-L1 cell expression of Glut4, phospho-AKT, and glucose uptake, which concurred with improved glucose tolerance in Fcer1a(-/-) mice. This study established two novel pathways of IgE in reducing body weight gain in DIO mice by suppressing adipogenesis and inducing adipocyte apoptosis while worsening glucose tolerance by reducing Glut4 expression, glucose uptake, and insulin secretion. PMID:26295369

  15. Improved Safety, Bioavailability and Pharmacokinetics of Zidovudine through Lactoferrin Nanoparticles during Oral Administration in Rats

    PubMed Central

    C., Bhaskar; Golla, Kishore; Kondapi, Anand K.

    2015-01-01

    Zidovudine (AZT) is one of the most referred antiretroviral drug. In spite of its higher bioavailability (50–75%) the most important reason of its cessation are bone marrow suppression, anemia, neutropenia and various organs related toxicities. This study aims at the improvement of oral delivery of AZT through its encapsulation in lactoferrin nanoparticles (AZT-lactonano). The nanoparticles (NPs) are of 50–60 nm in size and exhibit 67% encapsulation of the AZT. They are stable in simulated gastric and intestinal fluids. Anti-HIV-1 activity of AZT remains unaltered in nanoformulation in acute infection. The bioavailability and tissue distribution of AZT is higher in blood followed by liver and kidney. AZT-lactonano causes the improvement of pharmacokinetic profile as compared to soluble AZT; a more than 4 fold increase in AUC and AUMC in male and female rats. The serum Cmax for AZT-lactonano was increased by 30%. Similarly there was nearly 2-fold increase in Tmax and t1/2. Our in vitro study confirms that, the endosomal pH is ideal for drug release from NPs and shows constant release from up to 96h. Bone marrow micronucleus assay show that nanoformulation exhibits approximately 2fold lower toxicity than soluble form. Histopathological and biochemical analysis further confirms that less or no significant organ toxicities when nanoparticles were used. AZT-lactonano has shown its higher efficacy, low organs related toxicities, improved pharmacokinetics parameter while keeping the antiviral activity intact. Thus, the nanoformulation are safe for the target specific drug delivery. PMID:26461917

  16. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults.

    PubMed

    Kaplon, Rachelle E; Hill, Sierra D; Bispham, Nina Z; Santos-Parker, Jessica R; Nowlan, Molly J; Snyder, Laura L; Chonchol, Michel; LaRocca, Thomas J; McQueen, Matthew B; Seals, Douglas R

    2016-06-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO. PMID:27208415

  17. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Choi, Ju Yeon; Choi, Im Soon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-04-01

    The purpose of this study was to improve the gastric solubility and bioavailability of rebamipide (RBM) by preparing the RBM solid dispersion tablet (RBM-SDT) from solid dispersion powder prepared by spray-drying technique. For preparation of rebamipide solid dispersions (RBM-SDs), solubility study was performed in various hydrophilic carriers and alkalizers, among which sodium alginate and sodium carbonate were selected as the hydrophilic polymer and alkalizer, respectively. Different combinations of drug-polymer-alkalizer were dissolved in aqueous solution and spray-dried in order to obtain solid dispersions. Noticeable improvement in aqueous solubility (approximately 200 times) and in vitro dissolution rate was observed by RBM-SDs, compared to RBM powder. The optimized formulation of RBM-SD powder consisted of RBM powder/sodium alginate/sodium carbonate at the weight ratio of 1/2/2. The transformation of crystalline RBM to amorphous RBM-SD powder was clearly demonstrated by powder X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy. The optimized RBM-SD was formulated in tablet dosage form, containing approximately 2 % sodium lauryl sulphate and poloxamer F68 as wetting agents. The RBM-SDT exhibited enhanced dissolution in hydrochloric acid buffer (pH 1.2) and distilled water. Moreover, pharmacokinetic study in rats showed higher AUC and Cmax for RBM-SDT than those for RBM powder and commercial product. Thus, the developed RBM-SDT formulation can be more efficacious for improving oral bioavailability of RBM. PMID:24895145

  18. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults

    PubMed Central

    Kaplon, Rachelle E.; Hill, Sierra D.; Bispham, Nina Z.; Santos-Parker, Jessica R.; Nowlan, Molly J.; Snyder, Laura L.; Chonchol, Michel; LaRocca, Thomas J.; McQueen, Matthew B.; Seals, Douglas R.

    2016-01-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass<2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ∼30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ∼30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass≥2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO. PMID:27208415

  19. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    SciTech Connect

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  20. Evidence-Based Health Promotion in Nursing Homes: A Pilot Intervention to Improve Oral Health

    ERIC Educational Resources Information Center

    Cadet, Tamara J.; Berrett-Abebe, Julie; Burke, Shanna L.; Bakk, Louanne; Kalenderian, Elsbeth; Maramaldi, Peter

    2016-01-01

    Nursing home residents over the age of 65 years are at high risk for poor oral health and related complications such as pneumonia and adverse diabetes outcomes. A preliminary study found that Massachusetts' nursing homes generally lack the training and resources needed to provide adequate oral health care to residents. In this study, an…

  1. Improving Professionalism in the Engineering Curriculum through a Novel Use of Oral Presentations

    ERIC Educational Resources Information Center

    Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert

    2013-01-01

    This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork,…

  2. Potential of Text-Based Internet Chats for Improving Oral Fluency in a Second Language

    ERIC Educational Resources Information Center

    Blake, Christopher

    2009-01-01

    Although a number of studies have reported on the positive effects of Internet chats in the second language classroom, to the best of my knowledge no studies to date have examined the effect of text-based chats on oral fluency development. This exploratory study addressed the above question by examining the oral fluency development of 34 English…

  3. Motivational Interviewing Delivered by Diabetes Educators: Does It Improve Blood Glucose Control Among Poorly Controlled Type 2 Diabetes Patients?

    PubMed Central

    Zagarins, Sofija E.; Feinberg, Rebecca G.; Garb, Jane L.

    2010-01-01

    Aims To determine whether glycemic control is improved when Motivational Interviewing (MI), a patient-centered behavior change strategy, is used with Diabetes Self Management Education (DSME) as compared to DSME alone. Methods Poorly controlled type 2 diabetes (T2DM) patients (n=234) were randomized into 4 groups: MI+DSME or DSME alone, with or without use of a computerized summary of patient self management barriers. We compared HbA1c changes between groups at 6 months and investigated mediators of HbA1c change. Results Study patients attended the majority of intervention visits (mean 3.4/4), but drop-out rate was high at follow-up research visits (35%). Multiple regression showed that groups receiving MI had a mean change in HbA1c that was significantly lower (less improved) than those not receiving MI (t=2.10; p=0.037). Mediators of HbA1c change for the total group were diabetes self-care behaviors and diabetes distress; no between-group differences were found. Conclusions DSME improved blood glucose control, underlining its benefit for T2DM management. However, MI+DSME was less effective than DSME alone. Overall, weak support was found for the clinical utility of MI in the management of T2DM delivered by diabetes educators. PMID:21074887

  4. The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose.

    PubMed

    Salheen, S M; Panchapakesan, U; Pollock, C A; Woodman, O L

    2015-04-01

    The aim of the study was to investigate the effects of the DPP-4 inhibitors and GLP-1R agonist, exendin-4 on the mechanism(s) of endothelium-dependent relaxation in rat mesenteric arteries exposed to high glucose concentration (40 mM). Organ bath techniques were employed to investigate vascular endothelial function in rat mesenteric arteries in the presence of normal (11 mM) or high (40 mM) glucose concentrations. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM l-NNA, 10 μM ODQ) were used to distinguish between NO and EDHF-mediated relaxation. Superoxide anion levels were assessed by L-012 and lucigenin enhanced-chemiluminescence techniques. Incubation of mesenteric rings with high glucose for 2 h caused a significant increase in superoxide anion generation and a significant impairment of endothelium-dependent relaxation. Exendin-4 and DPP-4 inhibitor linagliptin, but not sitagliptin or vildagliptin, significantly reduced vascular superoxide and improved endothelium-dependent relaxation in the presence of high glucose. The beneficial actions of exendin-4, but not linagliptin, were attenuated by the GLP-1R antagonist exendin fragment (9-39). Further experiments demonstrated that the presence of high glucose impaired the contribution of both nitric oxide and endothelium-dependent hyperpolarisation to relaxation and that linagliptin improved both mechanisms involved in endothelium-dependent relaxation. These findings demonstrate that high glucose impaired endothelium-dependent relaxation can be improved by exendin-4 and linagliptin, likely due to their antioxidant activity and independently of any glucose lowering effect. PMID:25697548

  5. Bay Leaves Improve Glucose and Lipid Profile of People with Type 2 Diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bay leaves (Laurus nobilis) have been shown to improve insulin function in vitro but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 2 diabetes. Forty people with type 2 diabet...

  6. Bay leaves improve glucose and lipid profile of people with type 2 diabetes mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bay Leaves (Laurus nobilis) have been shown to improve insulin function, in vitro, but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 2 diabetes mellitus (DM). Forty people wit...

  7. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs

    PubMed Central

    Khan, Saba; Baboota, Sanjula; Ali, Javed; Khan, Sana; Narang, Ramandeep Singh; Narang, Jasjeet Kaur

    2015-01-01

    Nowadays exploration of novel lipid-based formulations is akin to a magnet for researchers worldwide for improving the in vivo performance of highly lipophilic drugs. Over the last few years, new compositions of lipids have been developed, and the probable bioavailability enhancement has been investigated. We reviewed the most recent data dealing with backlogs of conventional lipid-based formulations such as physical instability, limited drug loading capacities, drug expulsion during storage along with all the possible hindrances resulting in poor absorption of highly lipophilic drugs such as P-glycoprotein efflux, extensive metabolism by cytochrome P450 etc. In tandem with these aspects, an exclusive formulation approach has been discussed in detail in this paper. Therefore, this review focuses on resolving the concerned ambiguity with successful oral administration of highly lipophilic drugs through designing novel lipidic formulations (nanostructured lipid carriers [NLC]) that constitute a blend of solid and liquid lipids. The article highlights the potential role of such formulation in normalizing the in vivo fate of poorly soluble drugs. Finally, the present manuscript discusses the dominance of NLC over other lipid-based formulations and provides a perspective of how they defeat and overcome the barriers that lead to the poor bioavailability of hydrophobic drugs. PMID:26682188

  8. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs.

    PubMed

    Khan, Saba; Baboota, Sanjula; Ali, Javed; Khan, Sana; Narang, Ramandeep Singh; Narang, Jasjeet Kaur

    2015-01-01

    Nowadays exploration of novel lipid-based formulations is akin to a magnet for researchers worldwide for improving the in vivo performance of highly lipophilic drugs. Over the last few years, new compositions of lipids have been developed, and the probable bioavailability enhancement has been investigated. We reviewed the most recent data dealing with backlogs of conventional lipid-based formulations such as physical instability, limited drug loading capacities, drug expulsion during storage along with all the possible hindrances resulting in poor absorption of highly lipophilic drugs such as P-glycoprotein efflux, extensive metabolism by cytochrome P450 etc. In tandem with these aspects, an exclusive formulation approach has been discussed in detail in this paper. Therefore, this review focuses on resolving the concerned ambiguity with successful oral administration of highly lipophilic drugs through designing novel lipidic formulations (nanostructured lipid carriers [NLC]) that constitute a blend of solid and liquid lipids. The article highlights the potential role of such formulation in normalizing the in vivo fate of poorly soluble drugs. Finally, the present manuscript discusses the dominance of NLC over other lipid-based formulations and provides a perspective of how they defeat and overcome the barriers that lead to the poor bioavailability of hydrophobic drugs. PMID:26682188

  9. Combination therapy of orally administered glycyrrhizin and UVB improved active-stage generalized vitiligo

    PubMed Central

    Mou, K.H.; Han, D.; Liu, W.L.; Li, P.

    2016-01-01

    Glycyrrhizin has been used clinically for several years due to its beneficial effect on immunoglobulin E (IgE)-induced allergic diseases, alopecia areata and psoriasis. In this study, glycyrrhizin, ultraviolet B light (UVB) or a combination of both were used to treat active-stage generalized vitiligo. One hundred and forty-four patients between the ages of 3 and 48 years were divided into three groups: group A received oral compound glycyrrhizin (OCG); group B received UVB applications twice weekly, and group C received OCG+UVB. Follow-ups were performed at 2, 4, and 6 months after the treatment was initiated. The Vitiligo Area Scoring Index (VASI) and the Vitiligo Disease Activity (VIDA) instrument were used to assess the affected body surface, at each follow-up. Results showed that 77.1, 75.0 and 87.5% in groups A, B and C, respectively, presented repigmentation of lesions. Responsiveness to therapy seemed to be associated with lesion location and patient compliance. Adverse events were limited and transient. This study showed that, although the three treatment protocols had positive results, OCG and UVB combination therapy was the most effective and led to improvement in disease stage from active to stable. PMID:27464024

  10. Evaluation of Three Amorphous Drug Delivery Technologies to Improve the Oral Absorption of Flubendazole.

    PubMed

    Vialpando, Monica; Smulders, Stefanie; Bone, Scott; Jager, Casey; Vodak, David; Van Speybroeck, Michiel; Verheyen, Loes; Backx, Katrien; Boeykens, Peter; Brewster, Marcus E; Ceulemans, Jens; Novoa de Armas, Hector; Van Geel, Katrien; Kesselaers, Emma; Hillewaert, Vera; Lachau-Durand, Sophie; Meurs, Greet; Psathas, Petros; Van Hove, Ben; Verreck, Geert; Voets, Marieke; Weuts, Ilse; Mackie, Claire

    2016-09-01

    This study investigates 3 amorphous technologies to improve the dissolution rate and oral bioavailability of flubendazole (FLU). The selected approaches are (1) a standard spray-dried dispersion with hydroxypropylmethylcellulose (HPMC) E5 or polyvinylpyrrolidone-vinyl acetate 64, both with Vitamin E d-α-tocopheryl polyethylene glycol succinate; (2) a modified process spray-dried dispersion (MPSDD) with either HPMC E3 or hydroxypropylmethylcellulose acetate succinate (HPMCAS-M); and (3) confining FLU in ordered mesoporous silica (OMS). The physicochemical stability and in vitro release of optimized formulations were evaluated following 2 weeks of open conditions at 25°C/60% relative humidity (RH) and 40°C/75% RH. All formulations remained amorphous at 25°C/60% RH. Only the MPSDD formulation containing HPMCAS-M and 3/7 (wt./wt.) FLU/OMS did not crystallize following 40°C/75% RH exposure. The OMS and MPSDD formulations contained the lowest and highest amount of hydrolyzed degradant, respectively. All formulations were dosed to rats at 20 mg/kg in suspension. One FLU/OMS formulation was also dosed as a capsule blend. Plasma concentration profiles were determined following a single dose. In vivo findings show that the OMS capsule and suspension resulted in the overall highest area under the curve and Cmax values, respectively. These results cross-evaluate various amorphous formulations and provide a link to enhanced biopharmaceutical performance. PMID:27113473

  11. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers

    PubMed Central

    Zhou, Jun; Zhou, Daxin

    2015-01-01

    Nanostructured lipid carriers (NLCs) have been one of the systems of choice for improving the oral bioavailability of drugs with poor water solubility. In the present study, lovastatin (LVT)-loaded NLCs (LVT-NLCs) were successfully prepared by hot high-pressure homogenization method with high entrapment efficiency, drug loading, and satisfactory particle size distribution. The particles had almost spherical and uniform shapes and were well dispersed with a particle size of <50 nm (23.5±1.6 nm) and a low polydispersity index (0.17±0.05 mV). The result of stability showed that the LVT-NLCs dispersion maintained excellent stability without exhibiting any aggregation, precipitation, or phase separation at 4°C for 6 months of storage. The LVT release data from all developed solid lipid nanoparticles (SLNs) and NLCs were best fitted to a Ritger–Peppas kinetic model (0.9832 and 0.9783 for NLCs and SLNs, respectively). This indicated that the release of LVT from the SLNs and NLCs was due to a combination of drug diffusion and erosion from the lipid matrix. The pharmacokinetic and pharmacodynamic results show that LVT-NLCs were better compared to free drug, which could be attributed to an increase in bioavailability. PMID:26425076

  12. Combination therapy of orally administered glycyrrhizin and UVB improved active-stage generalized vitiligo.

    PubMed

    Mou, K H; Han, D; Liu, W L; Li, P

    2016-07-25

    Glycyrrhizin has been used clinically for several years due to its beneficial effect on immunoglobulin E (IgE)-induced allergic diseases, alopecia areata and psoriasis. In this study, glycyrrhizin, ultraviolet B light (UVB) or a combination of both were used to treat active-stage generalized vitiligo. One hundred and forty-four patients between the ages of 3 and 48 years were divided into three groups: group A received oral compound glycyrrhizin (OCG); group B received UVB applications twice weekly, and group C received OCG+UVB. Follow-ups were performed at 2, 4, and 6 months after the treatment was initiated. The Vitiligo Area Scoring Index (VASI) and the Vitiligo Disease Activity (VIDA) instrument were used to assess the affected body surface, at each follow-up. Results showed that 77.1, 75.0 and 87.5% in groups A, B and C, respectively, presented repigmentation of lesions. Responsiveness to therapy seemed to be associated with lesion location and patient compliance. Adverse events were limited and transient. This study showed that, although the three treatment protocols had positive results, OCG and UVB combination therapy was the most effective and led to improvement in disease stage from active to stable. PMID:27464024

  13. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients.

    PubMed

    Gual-Frau, Josep; Abad, Carlos; Amengual, María J; Hannaoui, Naim; Checa, Miguel A; Ribas-Maynou, Jordi; Lozano, Iris; Nikolaou, Alexandros; Benet, Jordi; García-Peiró, Agustín; Prats, Juan

    2015-09-01

    Infertile males with varicocele have the highest percentage of sperm cells with damaged DNA, compared to other infertile groups. Antioxidant treatment is known to enhance the integrity of sperm DNA; however, there are no data on the effects in varicocele patients. We thus investigated the potential benefits of antioxidant treatment specifically in grade I varicocele males. Twenty infertile patients with grade I varicocele were given multivitamins (1500 mg L-Carnitine, 60 mg vitamin C, 20 mg coenzyme Q10, 10 mg vitamin E, 200 μg vitamin B9, 1 μg vitamin B12, 10 mg zinc, 50 μg selenium) daily for three months. Semen parameters including total sperm count, concentration, progressive motility, vitality, and morphology were determined before and after treatment. In addition, sperm DNA fragmentation and the amount of highly degraded sperm cells were analyzed by Sperm Chromatin Dispersion. After treatment, patients showed an average relative reduction of 22.1% in sperm DNA fragmentation (p = 0.02) and had 31.3% fewer highly degraded sperm cells (p = 0.07). Total numbers of sperm cells were increased (p = 0.04), but other semen parameters were unaffected. These data suggest that sperm DNA integrity in grade I varicocele patients may be improved by oral antioxidant treatment. PMID:26090928

  14. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. PMID:27430421

  15. Black Adzuki Bean (Vigna angularis) Extract Protects Pancreatic β Cells and Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet.

    PubMed

    Kim, Mina; Kim, Dae Keun; Cha, Youn-Soo

    2016-05-01

    Adzuki beans have long been cultivated as a food and folk medicine in East Asia. In this study, we investigated the effect of black adzuki bean (BAB) extract on pancreatic cells and determined their mechanism of action in impaired glucose tolerance in an animal model of type 2 diabetes. In addition, we performed functional gene annotation analysis to identify genes related to the regulation of glucose metabolism and insulin response. Treatment of pancreatic β cells with BAB extract (0.2 mg/mL) led to tolerance of the high glucose-induced glucotoxicity, resulting in a similar viability as cells maintained in normal glucose media. In addition, dietary supplementation with BAB extract significantly (P < .05) improved hyperglycemia and homeostasis model assessment of insulin resistance index (HOMA-IR) in high-fat diet-induced glucose-intolerant obese C57BL/6J mice. Our results suggest that BAB extract ameliorates hyperglycemia and glucose intolerance, and lowers HOMA-IR by regulating insulin secretion and response, and by maintaining the integrity of pancreatic β cells exposed to hyperglycemic conditions. PMID:27070495

  16. A Spoonful of Sugar Helps the Medicine Go Down: A Novel Technique to Improve Oral Gavage in Mice

    PubMed Central

    Hoggatt, Amber F; Hoggatt, Jonathan; Honerlaw, Meghan; Pelus, Louis M

    2010-01-01

    Oral gavage is a common route of precise oral dosing for studies in rodents. Complications including tracheal administration, esophageal trauma, and aspiration are common and usually related to animal resistance to the procedure, and the stress induced by oral gavage can be a confounding variable in many studies. The taste of sucrose conveys a pacifying and analgesic effect in newborns, whereas sour solutions can induce the swallow reflex in humans that are dysphagic. We hypothesized that precoating a gavage needle with sucrose or citrate (or both) would pacify mice and induce them to swallow, reducing the stress and complications associated with the technique. To validate this hypothesis, we quantitated time to passage, stress-related behavioral reactions to the procedure, and plasma corticosterone levels in mice after precoating gavage needles with water, sucrose, citrate, sucrose and citrate, or sodium chloride prior to oral gavage. Precoating needles with sucrose reduced the time to passage, decreased observable stress-related reactions to the procedure, and maintained plasma corticosterone levels similar to those in ungavaged control mice. Coating needles with water, sucrose and citrate, or citrate had no beneficial effects on these parameters. Our findings describe a novel, validated technique that measurably decreases signs of stress and thereby improves animal welfare during oral gavage. Furthermore, the use of sucrose may be a valuable tool to refine other minor or nonsurgical procedures in the field of laboratory animal research. PMID:20587165

  17. Nanosuspensions Containing Oridonin/HP-β-Cyclodextrin Inclusion Complexes for Oral Bioavailability Enhancement via Improved Dissolution and Permeability.

    PubMed

    Zhang, Xingwang; Zhang, Tianpeng; Lan, Yali; Wu, Baojian; Shi, Zhihai

    2016-04-01

    Chemotherapy via oral route of anticancer drugs offers much convenience and compliance to patients. However, oral chemotherapy has been challenged by limited absorption due to poor drug solubility and intestinal efflux. In this study, we aimed to develop a nanosuspension formulation of oridonin (Odn) using its cyclodextrin inclusion complexes to enhance oral bioavailability. Nanosuspensions containing Odn/2 hydroxypropyl-β-cyclodextrin inclusion complexes (Odn-CICs) were prepared by a solvent evaporation followed by wet media milling technique. The nanosuspensions were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and dissolution. The resulting nanosuspensions were approximately 313.8 nm in particle size and presented a microcrystal morphology. Nanosuspensions loading Odn-CICs dramatically enhanced the dissolution of Odn. Further, the intestinal effective permeability of Odn was markedly enhanced in the presence of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and poloxamer. Bioavailability studies showed that nanosuspensions with Odn-CICs can significantly promote the oral absorption of Odn with a relative bioavailability of 213.99% (Odn suspensions as reference). Odn itself possesses a moderate permeability and marginal intestinal metabolism. Thus, the enhanced bioavailability for Odn-CIC nanosuspensions can be attributed to improved dissolution and permeability by interaction with absorptive epithelia and anti-drug efflux. Nanosuspensions prepared from inclusion complexes may be a promising approach for the oral delivery of anticancer agents. PMID:26187778

  18. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats.

    PubMed

    Zhu, Yuan; Wang, Miaomiao; Zhang, Jiajia; Peng, Wei; Firempong, Caleb Kesse; Deng, Wenwen; Wang, Qilong; Wang, Shicheng; Shi, Feng; Yu, Jiangnan; Xu, Ximing; Zhang, Weiming

    2015-04-01

    This study innovatively prepared an effective capsaicin-loaded liposome, a nanoformulation with fewer irritants, for oral administration. The in vitro and in vivo properties of the liposomal encapsulation were investigated and the potential possibility of oral administration evaluated. The liposomal agent composed of phospholipid, cholesterol, sodium cholate and isopropyl myristate was prepared using film-dispersion method. A level A in vitro-in vivo correlation (IVIVC) was established for the first time, which demonstrated an excellent IVIVC of both formulated and free capsaicin in oral administration. Physicochemical characterizations including mean particle size, zeta (ζ) potential and average encapsulation efficiency of capsaicin-loaded liposome were found to be 52.2 ± 1.3 nm, -41.5 ± 2.71 mv and 81.9 ± 2.43 %, respectively. In vivo, liposomal encapsulation allowed a 3.34-fold increase in relative bioavailability compared to free capsaicin. The gastric mucosa irritation studies indicated that the liposomal system was a safe carrier for oral administration. These results support the fact that capsaicin, an effective drug for the treatment of neuropathic pain, could be encapsulated in liposome for improved oral bioavailability. The excellent IVIVC of capsaicin-loaded liposome could also be a promising tool in liposomal formulation development with an added advantage of reduced animal testing. PMID:25231341

  19. Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice.

    PubMed

    Rune, Ida; Rolin, Bidda; Larsen, Christian; Nielsen, Dennis Sandris; Kanter, Jenny E; Bornfeldt, Karin E; Lykkesfeldt, Jens; Buschard, Karsten; Kirk, Rikke Kaae; Christoffersen, Berit; Fels, Johannes Josef; Josefsen, Knud; Kihl, Pernille; Hansen, Axel Kornerup

    2016-01-01

    The importance of the gut microbiota (GM) in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets were treated with ampicillin, a broad-spectrum antibiotic known to affect GM composition. Ampicillin-treatment had a marked and sustained effect on GM composition, as expected. Furthermore, although ampicillin-treated mice were slightly heavier than controls, ampicillin-treatment transiently improved glucose tolerance both in the absence or presence of gliadin, reduced plasma LDL and VLDL cholesterol levels, and reduced aortic atherosclerotic lesion area. These results demonstrate that a gluten-free diet does not seem to have beneficial effects on atherosclerosis or several CVD risk factors in this mouse model, but that sustained alteration of GM composition with a broad-spectrum antibiotic has beneficial effects on CVD risk factors and atherosclerosis. These findings

  20. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway.

    PubMed

    Li, Jinmei; Ding, Lili; Song, Baoliang; Xiao, Xu; Qi, Meng; Yang, Qiaoling; Yang, Qiming; Tang, Xiaowen; Wang, Zhengtao; Yang, Li

    2016-01-01

    Currently, obesity has become a worldwide epidemic associated with Type 2 diabetes, dyslipidemia, cardiovascular disease and chronic metabolic diseases. Emodin is one of the active anthraquinone derivatives from Rheum palmatum and some other Chinese herbs with anti-inflammatory, anticancer and hepatoprotective properties. In the present study, we investigated the anti-obesity effects of emodin in obese mice and explore its potential pharmacological mechanisms. Male C57BL/6 mice were fed with high-fat diet for 12 weeks to induce obesity. Then the obese mice were divided into four groups randomly, HFD or emodin (40mg/kg/day and 80mg/kg/day) or lovastatin (30mg/kg/ day) for another 6 weeks. Body weight and food intake were recorded every week. At the end of the treatment, the fasting blood glucose, glucose and insulin tolerance test, serum and hepatic lipid levels were assayed. The gene expressions of liver and adipose tissues were analyzed with a quantitative PCR assay. Here, we found that emodin inhibited sterol regulatory element-binding proteins (SREBPs) transactivity in huh7 cell line. Furthermore, emodin (80mg/kg/day) treatment blocked body weight gain, decreased blood lipids, hepatic cholesterol and triglyceride content, ameliorated insulin sensitivity, and reduced the size of white and brown adipocytes. Consistently, SREBP-1 and SREBP-2 mRNA levels were significantly reduced in the liver and adipose tissue after emodin treatment. These data demonstrated that emodin could improve high-fat diet-induced obesity and associated metabolic disturbances. The underlying mechanism is probably associated with regulating SREBP pathway. PMID:26626587

  1. Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice

    PubMed Central

    Rune, Ida; Rolin, Bidda; Larsen, Christian; Nielsen, Dennis Sandris; Kanter, Jenny E.; Bornfeldt, Karin E.; Lykkesfeldt, Jens; Buschard, Karsten; Kirk, Rikke Kaae; Christoffersen, Berit; Fels, Johannes Josef; Josefsen, Knud; Kihl, Pernille; Hansen, Axel Kornerup

    2016-01-01

    The importance of the gut microbiota (GM) in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets were treated with ampicillin, a broad-spectrum antibiotic known to affect GM composition. Ampicillin-treatment had a marked and sustained effect on GM composition, as expected. Furthermore, although ampicillin-treated mice were slightly heavier than controls, ampicillin-treatment transiently improved glucose tolerance both in the absence or presence of gliadin, reduced plasma LDL and VLDL cholesterol levels, and reduced aortic atherosclerotic lesion area. These results demonstrate that a gluten-free diet does not seem to have beneficial effects on atherosclerosis or several CVD risk factors in this mouse model, but that sustained alteration of GM composition with a broad-spectrum antibiotic has beneficial effects on CVD risk factors and atherosclerosis. These findings

  2. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza.

    PubMed

    Bi, Xiaolin; Liu, Xuan; Di, Liuqing; Zu, Qiang

    2016-01-01

    The active ingredients of salvia (dried root of Salvia miltiorrhiza) include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I) and hydrophilic (e.g., danshensu and salvianolic acid B) constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS) was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%-80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route. PMID:27070565

  3. Evaluation of Intestinal Phosphate Binding to Improve the Safety Profile of Oral Sodium Phosphate Bowel Cleansing

    PubMed Central

    Robijn, Stef; Vervaet, Benjamin A.; D’Haese, Patrick C.; Verhulst, Anja

    2015-01-01

    Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP) is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI) referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis) are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage) with a 12h time interval induced bowel cleansing (severe diarrhea) and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline). Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline) and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections). Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide) was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders. PMID:25790436

  4. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate

    PubMed Central

    Hao, Fei; He, Yanxi; Sun, Yating; Zheng, Bin; Liu, Yan; Wang, Xinmei; Zhang, Yongkai; Lee, Robert J.; Teng, Lirong; Xie, Jing

    2015-01-01

    Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0−∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0−∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and

  5. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate.

    PubMed

    Hao, Fei; He, Yanxi; Sun, Yating; Zheng, Bin; Liu, Yan; Wang, Xinmei; Zhang, Yongkai; Lee, Robert J; Teng, Lirong; Xie, Jing

    2016-01-01

    Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0-∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0-∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and AUC

  6. Improving oral health status of preschool children using motivational interviewing method

    PubMed Central

    Mohammadi, Tayebeh Malek; Hajizamani, Abolghasem; Bozorgmehr, Elham

    2015-01-01

    Background: Oral diseases are common chronic diseases that are affected by human health behavior. One-way to promote health behaviors can be achieved through education. The present study aims to assess the effect of an oral health education program using motivational interviewing (MI) method on oral health status of preschool children. Materials and Methods: This study recruited 222 volunteer children and their parents from 10 elementary schools into a community trial. At baseline, plaque, gingival and decayed, missing, and filled teeth indexes were measured in the children. They were randomly allocated into test groups where they and their parents received oral health education using MI and the control group received traditional oral health education. The test group had recall and postal reminder during 6 months of the study, but there was no reminder for the control group. After 6 months, the same oral health indexes were measured. Data were analyzed using SPSS version 20 (SPSS Inc., Chicago, IL, USA) by t-test, Mann-Whitney and Wilcoxon signed ranks test. P < 0.05 was considered as significant. Results: The results showed that after both oral health education programs, differences of plaque index (PI) (P = 0.000) and gingival index (P = 0.000) were significant between the two groups. The number of children with healthy gingiva and low PI were more frequent in the test group after intervention. Conclusion: Considering the limitations of this study, oral health status of children after education of parents using MI was observed, and it should be considered in oral health education programs. PMID:26604963

  7. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: In vitro and in vivo.

    PubMed

    Wang, Jinling; Ma, Wenzhuan; Tu, Pengfei

    2015-09-01

    Curcumin-loaded self-assembled polymeric micelles (Cur-PMs) were designed to increase oral bioavailability of curcumin and investigate the oral absorption mechanism in vitro and in vivo. The Cur-PMs were spherical nano-size particles 17.82±0.33nm in size, with a drug loading of 3.52±0.18%, and encapsulation efficiency as high as 93.08±2.23%. The intestinal absorption of Cur-PMs in the duodenum, jejunum, and ileum was 3.09-, 6.48-, and 1.78-fold greater than that of curcumin solution (Cur-Sol) at 0.5h. The cellular uptake of Cur-PMs in Caco-2 cells was significantly enhanced in comparison with Cur-Sol by caveolae-mediated and clathrin-mediated endocytosis. Moreover, the apparent permeability coefficient (Papp) of Cur-PMs was 3.50-fold higher than that of Cur-Sol in Caco-2 transport studies. The transport mechanism of Cur-PMs into the system circulation was not paracellular transport through opening the tight junctions, but was by energy-dependent, macropinocytic transcytosis and lymphatic transport pathways. Furthermore, the AUC(0-t) value of Cur-PMs was improved 2.87-fold compared with that of Cur-Sol after oral administration in rats. Therefore, self-assembled polymeric micelles could be a promising vehicle to efficiently improve the oral absorption of curcumin. PMID:26094144

  8. Novel oral formulation safely improving intestinal absorption of poorly absorbable drugs: utilization of polyamines and bile acids.

    PubMed

    Miyake, Masateru; Minami, Takanori; Hirota, Masao; Toguchi, Hajime; Odomi, Masaaki; Ogawara, Ken-ichi; Higaki, Kazutaka; Kimura, Toshikiro

    2006-03-10

    In order to develop a novel oral formulation that can safely improve the intestinal absorption of poorly absorbable drugs, polyamines such as spermine (SPM) and spermidine (SPD) was examined as an absorption enhancing adjuvant in rats. The absorption of rebamipide, classified into BCS Class IV, from colon was significantly improved by SPM or SPD, and the enhancing ability of SPM was larger than that of SPD. As a possible mixing and/or interaction of polyamines with bile acids were expected, the combinatorial use of sodium taurocholate (STC) with polyamines was also examined. The absorption of rebamipide was drastically improved by the combinatorial use of SPM or SPD with STC. As STC itself did not enhance the absorption of rebamipide so much, it was considered that polyamines and STC had a synergistic enhancing effect. In-vivo oral absorption study was also performed to investigate the effectiveness and safety of polyamines and their combinatorial use with STC in rats. Although the enhancing effect slightly attenuated comparing with the in-situ loop study, the absorption of rebamipide was significantly improved and the combinatorial use of 10 mM SPM with 25 mM STC showed the largest enhancing effect. Histopathological studies clearly showed that any significant change in stomach and duodenum was not caused by SPM (10 mM), SPD (10 mM) or their combinatorial use with STC (25 mM) at 1.5 or 8.0 h after oral administration. Taken all together, polyamines, especially SPM, and its combinatorial use with STC could improve the absorption of poorly absorbable drugs without any significant changes in gastrointestinal tract after oral administration in rats. PMID:16410031

  9. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients☆

    PubMed Central

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    Objectives To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. Methods The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2–3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Results Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Conclusion Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects. PMID:26844086

  10. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease.

    PubMed

    Rossman, Matthew J; Trinity, Joel D; Garten, Ryan S; Ives, Stephen J; Conklin, Jamie D; Barrett-O'Keefe, Zachary; Witman, Melissa A H; Bledsoe, Amber D; Morgan, David E; Runnels, Sean; Reese, Van R; Zhao, Jia; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2015-09-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P < 0.05, control vs. AOC, respectively), leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. PMID:26188020

  11. A Review of Clinical Trials Conducted With Oral, Multicomponent Dietary Supplements for Improving Photoaged Skin.

    PubMed

    Birnbaum, Jay; Le Moigne, Anne; Dispensa, Lisa; Buchner, Larry

    2015-12-01

    Although the FDA does not require documentation of efficacy of dietary supplements, prospective clinical studies, including randomized controlled trials, have been conducted with individual micronutrients alone and in combination with other ingredients for promoting skin health. Proposed mechanisms include antioxidation, anti-inflammation, photoprotection, collagen formation, reductions in matrix metalloproteinases, and other effects on photoaging. Literature searches were conducted to identify clinical trials assessing multicomponent dietary supplement formulations on photoaging outcomes. Sixteen studies of various nutrient and non-nutrient ingredients, including essential micronutrients (vitamins, minerals), plant extracts (polyphenols, carotenoids), and marine- or animal-derived ingredients, were identified. Studies were single center, 2-12 months in duration, primarily enrolled women, and evaluated numerous outcomes, including investigator/subject assessments and instrumental/objective measures. Methods to control for potential confounders were implemented in some studies, including limiting sun exposure, cosmetic procedures, and changes in dietary habits/body weight. Given the range of different products, clinical/methodologic heterogeneity, insufficient detail in reporting, and lack of comparable outcome measures, quantitative analysis of results was not possible. Results of individual studies revealed significant improvements from baseline for the dietary supplement group(s) on ≥ 1 endpoint across all studies; significant differences from placebo were observed in 7 of 12 controlled studies (although only 1 study designated a prospectively defined primary endpoint). Most products had only been tested in 1 study; confirmatory studies were rarely conducted per the publicly available literature. Meaningful assessment of dietary supplements, which typically contain nutrients found in the diet, requires unique methodologic considerations and endpoints

  12. Improvement of dumping syndrome and oversecretion of glucose-dependent insulinotropic polypeptide following a switch from olanzapine to quetiapine in a patient with schizophrenia.

    PubMed

    Watanabe, Aiko; Fukui, Naoki; Suzuki, Yutaro; Motegi, Takaharu; Igeta, Hirofumi; Tsuneyama, Nobuto; Someya, Toshiyuki

    2015-01-01

    Among the most important adverse effects of antipsychotics is abnormal glucose metabolism, which includes not only hyperglycemia but hyperinsulinemia and hypoglycemia. We have previously described five patients who experienced hypoglycemia during treatment with antipsychotics. Thus, an anamnesis of gastric surgery, which often causes dumping syndrome, and treatment with antipsychotics may synergistically induce hypoglycemia. We describe here a patient with schizophrenia under treatment of olanzapine and an anamnesis of gastric surgery, who experienced late dumping syndrome, hyperinsulinemia and overactivation of glucose-dependent insulinotropic polypeptide. Dumping syndrome, however, was improved after the patient was switched from olanzapine to quetiapine. PMID:25835510

  13. Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice.

    PubMed

    Carmody, Jill S; Muñoz, Rodrigo; Yin, Huali; Kaplan, Lee M

    2016-05-15

    Roux-en-Y gastric bypass (RYGB) causes profound weight loss and remission of diabetes by influencing metabolic physiology, yet the mechanisms behind these clinical improvements remain undefined. After RYGB, levels of glucagon-like peptide-1 (GLP-1), a hormone that enhances insulin secretion and promotes satiation, are substantially elevated. Because GLP-1 signals in both the periphery and the brain to influence energy balance and glucose regulation, we aimed to determine the relative requirements of these systems to weight loss and improved glucose tolerance following RYGB surgery in mice. By pharmacologically blocking peripheral or central GLP-1R signaling, we examined whether GLP-1 action is necessary for the metabolic improvements observed after RYGB. Diet-induced obese mice underwent RYGB or sham operation and were implanted with osmotic pumps delivering the GLP-1R antagonist exendin-(9-39) (2 pmol·kg(-1)·min(-1) peripherally; 0.5 pmol·kg(-1)·min(-1) centrally) for up to 10 wk. Blockade of peripheral GLP-1R signaling partially reversed the improvement in glucose tolerance after RYGB. In contrast, fasting glucose and insulin sensitivity, as well as body weight, were unaffected by GLP-1R antagonism. Central GLP-1R signaling did not appear to be required for any of the metabolic improvements seen after this operation. Collectively, these results suggest a detectable but only modest role for GLP-1 in mediating the effects of RYGB and that this role is limited to its well-described action on glucose regulation. PMID:27026085

  14. [Improving oral contraception compliance. The "ringing card": memory aid or new ritual?].

    PubMed

    Lachowsky, M; Levy-Toledano, R

    2000-04-01

    compliance card is an easy and reliable device that improves the compliance of women using oral contraceptives by helping them to establish a ritual. PMID:10859894

  15. Oral Cancer

    MedlinePlus

    ... Main Content National Institute of Dental and Craniofacial Research (NIDCR) Improving the Nation's Oral Health National Institutes of Health Español Staff Directory A–Z Index Search Text size: Website Contents NIDCR Home Oral Health Diseases and Conditions Gum ...

  16. Oral Herpes

    MedlinePlus

    ... Main Content National Institute of Dental and Craniofacial Research (NIDCR) Improving the Nation's Oral Health National Institutes of Health Español Staff Directory A–Z Index Search Text size: Website Contents NIDCR Home Oral Health Diseases and Conditions Gum ...

  17. Hypoglycemic effect of Hibiscus rosa sinensis L. leaf extract in glucose and streptozotocin induced hyperglycemic rats.

    PubMed

    Sachdewa, A; Nigam, R; Khemani, L D

    2001-03-01

    Investigations were carried out to evaluate the effect of aqueous extract of H. rosa sinensis leaves on blood glucose level and glucose tolerance using Wistar rats. Repeated administration of the extract (once a day for seven consecutive days), at an oral dose equivalent to 250 mg kg(-1), significantly improved glucose tolerance in rats. The peak blood glucose level was obtained at 30 min of glucose load (2 g kg(-1)), thereafter a decreasing trend was recorded up to 120 min. The data exhibit that repeated ingestion of the reference drug tolbutamide, a sulphonylurea and the extract brings about 2-3 fold decrease in blood glucose concentration as compared to single oral treatment. The results clearly indicate that tolbutamide improves the glucose tolerance by 91% and extract does so only by 47%. At 250 mg kg(-1), the efficacy of the extract was 51.5% of tolbutamide (100mg kg(-1)). In streptozotocin diabetic rats, no significant effect was observed with the extract, while glibenclamide significantly lowered the glucose level up to 7 hr. These data suggest that hypoglycemic activity of H. rosa sinensis leaf extract is comparable to tolbutamide and not to glibenclamide treatment. PMID:11495291

  18. Does an L-glutamine-containing, Glucose-free, Oral Rehydration Solution Reduce Stool Output and Time to Rehydrate in Children with Acute Diarrhoea? A Double-blind Randomized Clinical Trial

    PubMed Central

    Gutiérrez, Claudia; Villa, Sofía; Mota, Felipe R.; Calva, Juan J.

    2007-01-01

    This study assessed whether an oral rehydration solution (ORS) in which glucose is replaced by L-glutamine (L-glutamine ORS) is more effective than the standard glucose-based rehydration solution recommended by the World Health Organization (WHO-ORS) in reducing the stool volume and time to rehydrate in acute diarrhoea. In a double-blind, randomized controlled trial in a Mexican hospital, 147 dehydrated children, aged 1–60 month(s), were assigned either to the WHO-ORS (74 children), or to the L-glutamine ORS (73 children) and followed until successful rehydration. There were no significant differences between the groups in stool output during the first four hours, time to successful rehydration, volume of ORS required for rehydration, urinary output, and vomiting. This was independent of rotavirus-associated infection. An L-glutamine-containing glucose-free ORS seems not to offer greater clinical benefit than the standard WHO-ORS in mildly-to-moderately-dehydrated children with acute non-cholera diarrhoea. PMID:18330060

  19. Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity

    PubMed Central

    Cunningham, Peter S.; Ahern, Siobhán A.; Smith, Laura C.; da Silva Santos, Carla S.; Wager, Travis T.; Bechtold, David A.

    2016-01-01

    Growing evidence indicates that disruption of our internal timing system contributes to the incidence and severity of metabolic diseases, including obesity and type 2 diabetes. This is perhaps not surprising since components of the circadian clockwork are tightly coupled to metabolic processes across the body. In the current study, we assessed the impact of obesity on the circadian system in mice at a behavioural and molecular level, and determined whether pharmacological targeting of casein kinase 1δ and ε (CK1δ/ε), key regulators of the circadian clock, can confer metabolic benefit. We demonstrate that although behavioural rhythmicity was maintained in diet-induced obesity (DIO), gene expression profiling revealed tissue-specific alteration to the phase and amplitude of the molecular clockwork. Clock function was most significantly attenuated in visceral white adipose tissue (WAT) of DIO mice, and was coincident with elevated tissue inflammation, and dysregulation of clock-coupled metabolic regulators PPARα/γ. Further, we show that daily administration of a CK1δ/ε inhibitor (PF-5006739) improved glucose tolerance in both DIO and genetic (ob/ob) models of obesity. These data further implicate circadian clock disruption in obesity and associated metabolic disturbance, and suggest that targeting of the clock represents a therapeutic avenue for the treatment of metabolic disorders. PMID:27439882

  20. Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity.

    PubMed

    Cunningham, Peter S; Ahern, Siobhán A; Smith, Laura C; da Silva Santos, Carla S; Wager, Travis T; Bechtold, David A

    2016-01-01

    Growing evidence indicates that disruption of our internal timing system contributes to the incidence and severity of metabolic diseases, including obesity and type 2 diabetes. This is perhaps not surprising since components of the circadian clockwork are tightly coupled to metabolic processes across the body. In the current study, we assessed the impact of obesity on the circadian system in mice at a behavioural and molecular level, and determined whether pharmacological targeting of casein kinase 1δ and ε (CK1δ/ε), key regulators of the circadian clock, can confer metabolic benefit. We demonstrate that although behavioural rhythmicity was maintained in diet-induced obesity (DIO), gene expression profiling revealed tissue-specific alteration to the phase and amplitude of the molecular clockwork. Clock function was most significantly attenuated in visceral white adipose tissue (WAT) of DIO mice, and was coincident with elevated tissue inflammation, and dysregulation of clock-coupled metabolic regulators PPARα/γ. Further, we show that daily administration of a CK1δ/ε inhibitor (PF-5006739) improved glucose tolerance in both DIO and genetic (ob/ob) models of obesity. These data further implicate circadian clock disruption in obesity and associated metabolic disturbance, and suggest that targeting of the clock represents a therapeutic avenue for the treatment of metabolic disorders. PMID:27439882

  1. Trefoil Factor 3 (TFF3) Is Regulated by Food Intake, Improves Glucose Tolerance and Induces Mucinous Metaplasia.

    PubMed

    Ge, Hongfei; Gardner, Jonitha; Wu, Xiaosu; Rulifson, Ingrid; Wang, Jinghong; Xiong, Yumei; Ye, Jingjing; Belouski, Edward; Cao, Ping; Tang, Jie; Lee, Ki Jeong; Coberly, Suzanne; Wu, Xinle; Gupte, Jamila; Miao, Lynn; Yang, Li; Nguyen, Natalie; Shan, Bei; Yeh, Wen-Chen; Véniant, Murielle M; Li, Yang; Baribault, Helene

    2015-01-01

    Trefoil factor 3 (TFF3), also called intestinal trefoil factor or Itf, is a 59 amino acid peptide found as a homodimer predominantly along the gastrointestinal tract and in serum. TFF3 expression is elevated during gastrointestinal adenoma progression and has been shown to promote mucosal wound healing. Here we show that in contrast to other trefoil factor family members, TFF1 and TFF2, TFF3 is highly expressed in mouse duodenum, jejunum and ileum and that its expression is regulated by food intake. Overexpression of TFF3 using a recombinant adeno-associated virus (AAV) vector, or daily administration of recombinant TFF3 protein in vivo improved glucose tolerance in a diet-induced obesity mouse model. Body weight, fasting insulin, triglyceride, cholesterol and leptin levels were not affected by TFF3 treatment. Induction of mucinous metaplasia was observed in mice with AAV-mediated TFF3 overexpression, however, no such adverse histological effect was seen after the administration of recombinant TFF3 protein. Altogether these results suggest that the therapeutic potential of targeting TFF3 to treat T2D may be limited. PMID:26083576

  2. Improved production of live cells of Lactobacillus rhamnosus by continuous cultivation using glucose-yeast extract medium.

    PubMed

    Ling, Liew Siew; Mohamad, Rosfarizan; Rahim, Raha Abdul; Wan, Ho Yin; Ariff, Arbakariya Bin

    2006-08-01

    In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation. PMID:16953180

  3. CD47 Deficiency Protects Mice From Diet-induced Obesity and Improves Whole Body Glucose Tolerance and Insulin Sensitivity

    PubMed Central

    Maimaitiyiming, Hasiyeti; Norman, Heather; Zhou, Qi; Wang, Shuxia

    2015-01-01

    CD47 is a transmembrane protein with several functions including self-recognition, immune cell communication, and cell signaling. Although it has been extensively studied in cancer and ischemia, CD47 function in obesity has never been explored. In this study, we utilized CD47 deficient mice in a high-fat diet induced obesity model to study for the first time whether CD47 plays a role in the development of obesity and metabolic complications. Male CD47 deficient and wild type (WT) control mice were fed with either low fat (LF) or high fat (HF) diets for 16 weeks. Interestingly, we found that CD47 deficient mice were protected from HF diet-induced obesity displaying decreased weight gain and reduced adiposity. This led to decreased MCP1/CCR2 dependent macrophage infiltration into adipose tissue and reduced inflammation, resulting in improved glucose tolerance and insulin sensitivity. In addition, CD47 deficiency stimulated the expression of UCP1 and carnitine palmitoyltransferase 1b (CPT1b) levels in brown adipose tissue, leading to increased lipid utilization and heat production. This contributes to the increased energy utilization and reduced adiposity observed in these mice. Taken together, these data revealed a novel role for CD47 in the development of obesity and its related metabolic complications. PMID:25747123

  4. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism.

    PubMed

    Ahrén, Bo; Foley, James E

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP-4) is an established glucose-lowering strategy for the management of type 2 diabetes mellitus. DPP-4 inhibitors reduce both fasting and postprandial plasma glucose levels, resulting in reduced HbA1c with low risk for hypoglycaemia and weight gain. They act primarily by preventing inactivation of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, thereby prolonging the enhanced endogenous levels of these hormones after meal ingestion. This in turn causes islet and extrapancreatic effects, including increased glucose sensing in islet alpha and beta cells. These effects result in increased insulin secretion and decreased glucagon secretion being more effective in hyperglycaemic states and reduced insulin secretion and increased glucagon secretion being more effective during hypoglycaemia. Other secondary pharmacological actions of DPP-4 inhibitors include mobilisation and burning of fat during meals, decrease in fat extraction from the gut, reduction of fasting lipolysis and liver fat and increase in LDL particle size. These actions contribute to the clinical effects of DPP-4 inhibition, and the reduced demand for insulin could also lead to a durability benefit. This review summarises the current knowledge of the secondary pharmacological actions of DPP-4 inhibitors that lead to improved glucose regulation in patients with type 2 diabetes, focusing on alpha and beta cell function and lipid metabolism. PMID:26894277

  5. Oral Liquid Formulation of Levothyroxine Is Stable in Breakfast Beverages and May Improve Thyroid Patient Compliance

    PubMed Central

    Bernareggi, Alberto; Grata, Elia; Pinorini, Maria Teresa; Conti, Ario

    2013-01-01

    Patients on treatment with levothyroxine (T4) are informed to take this drug in the morning, at least 30 min before having breakfast. A significant decrease of T4 absorption was reported, in fact, when T4 solid formulations are taken with food or coffee. According to preliminary clinical study reports, administration of T4 oral solution appears to be less sensitive to the effect of breakfast beverages on oral bioavailability. In the present study, stability of T4 oral solution added to breakfast beverages was investigated. A 1 mL ampoule of single-dose Tirosint® oral solution (IBSA Farmaceutici Italia, Lodi, Italy) was poured into defined volumes of milk, tea, coffee, and coffee with milk warmed at 50 °C, as well as in orange juice at room temperature. Samples were sequentially collected up to 20 min and analyzed by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The results of the study demonstrated that T4 is stable in all beverages after 20 min incubation. Demonstration of T4 stability is a prerequisite for a thorough evaluation of the effect of breakfast beverages on the bioavailability of T4 given as oral solution and for a better understanding of the reasons underlying a decreased T4 bioavailability administered as solid formulations. PMID:24351573

  6. Oral liquid formulation of levothyroxine is stable in breakfast beverages and may improve thyroid patient compliance.

    PubMed

    Bernareggi, Alberto; Grata, Elia; Pinorini, Maria Teresa; Conti, Ario

    2013-01-01

    Patients on treatment with levothyroxine (T4) are informed to take this drug in the morning, at least 30 min before having breakfast. A significant decrease of T4 absorption was reported, in fact, when T4 solid formulations are taken with food or coffee. According to preliminary clinical study reports, administration of T4 oral solution appears to be less sensitive to the effect of breakfast beverages on oral bioavailability. In the present study, stability of T4 oral solution added to breakfast beverages was investigated. A 1 mL ampoule of single-dose Tirosint® oral solution (IBSA Farmaceutici Italia, Lodi, Italy) was poured into defined volumes of milk, tea, coffee, and coffee with milk warmed at 50 °C, as well as in orange juice at room temperature. Samples were sequentially collected up to 20 min and analyzed by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The results of the study demonstrated that T4 is stable in all beverages after 20 min incubation. Demonstration of T4 stability is a prerequisite for a thorough evaluation of the effect of breakfast beverages on the bioavailability of T4 given as oral solution and for a better understanding of the reasons underlying a decreased T4 bioavailability administered as solid formulations. PMID:24351573

  7. Diabetic neuropathy and plasma glucose control.

    PubMed

    Porte, D; Graf, R J; Halter, J B; Pfeifer, M A; Halar, E

    1981-01-01

    Diabetic neuropathy is defined, and theories of its pathogenesis are reviewed. Recent studies designed to investigate the influence of plasma glucose on nerve function in noninsulin-dependent diabetic patients are summarized. Motor nerve conduction velocities in the median and peroneal nerves were measured using a double-stimulus technique, and sensory conduction velocity was measured by conventional methods before and after therapy with oral agents or insulin. The degree of hyperglycemia was assessed by measurement of fasting plasma glucose and glycosylated hemoglobin concentrations. The degree of slowing in motor nerve conduction velocity in untreated patients was found to correlate with the fasting plasma glucose and glycosylated hemoglobin concentrations, but sensory nerve function, although abnormal, did not show such correlation. Reduction of hyperglycemia was associated with improvement in motor nerve conduction velocity in the peroneal and median motor nerves of these patients, but sensory nerve conduction velocity showed no such improvement. Improvement in median motor nerve conduction velocity was directly related to the degree of reduction in fasting plasma glucose concentration. These findings suggest that metabolic factors related to hyperglycemia are important in the impaired motor nerve function seen in noninsulin-dependent patients with maturity-onset diabetes. PMID:7457487

  8. Nanomemulsion of megestrol acetate for improved oral bioavailability and reduced food effect.

    PubMed

    Li, Yixian; Song, Chung Kil; Kim, Min-Kyoung; Lim, Hyosang; Shen, Qingbo; Lee, Don Haeng; Yang, Su-Geun

    2015-10-01

    Megestrol acetate (MGA) belongs to the BCS class II drugs with low solubility and high permeability, and its oral absorption in conventional dosage form MGA microcrystal suspension (MGA MS) is very limited and greatly affected by food. In this study, MGA nanoemulsion (MGA NE) was formulated based on solubility, phase-diagram and release studies. Then oral bioavailability of MGA NE and MGA MS was evaluated. A randomized two-way crossover trial was conducted on six male dogs under fed and fasting conditions. Blood concentrations of MGA were analyzed using LC-MS/MS. MGA NE yielded 5.00-fold higher oral bioavailability in fasting conditions and displayed more stable absorption profiles after food intake compared with MGA MS. PMID:25893430

  9. Improving (18)F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies.

    PubMed

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-(18)F-fluoro-D-glucose ((18)F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  10. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  11. Improving professionalism in the engineering curriculum through a novel use of oral presentations

    NASA Astrophysics Data System (ADS)

    Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert

    2013-05-01

    This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork, assertiveness, listening skills and constructive criticism. Second, the preliminary results from two pilot groups of students during two academic years are analysed. Finally, the paper reflects on the possibilities of expanding this method to pre-university studies.

  12. Comparison of Vaginal versus Oral Estradiol Administration in Improving the Visualization of Transformation Zone (TZ) during Colposcopy

    PubMed Central

    Makkar, Binni; Batra, Swaraj; Gandhi, Gauri; Goswami, Deepti; Zutshi, Vijay

    2016-01-01

    Introduction Colposcopy is an important diagnostic tool in the evaluation of patients with abnormal pap smears. However, in 10-20% transformation zone (TZ)/squamo-columnar junction is not completely visualized and these patients are deemed to have an incomplete colposcopy examination. Such patients usually require conization, a procedure associated with significant morbidity. Various agents like misoprostol, estrogens and laminaria tents have been used in the past to overcome the non-visualization of TZ. Aim The present study was conducted with the aim to compare the efficacy of vaginal versus oral estradiol administration in overcoming incomplete colposcopy. Materials and Methods Forty patients with non/partially visualized TZ during colposcopy were recruited for the study. These patients were randomly distributed into two groups: In Group I, 25μg estradiol was administered intravaginally daily for seven consecutive days followed by a repeat colposcopy on day 8. In Group II, a seven day course of 25μg oral estradiol was followed by a repeat colposcopy on day 8. The efficacy of the two regimens in improving visualization of the TZ on colposcopy and their adverse effect profile was compared. Results Vaginal estradiol had an overall efficacy of 70% in improving visualization of the TZ as compared to oral estradiol which was effective in 50% of patients (p-value-0.19). Major adverse effects in both the group of patients were nausea and vaginal discharge with no significant differences among the two groups. Conclusion Both vaginal and oral estrogens had comparable efficacy and similar adverse effect profile in improving visualization of the TZ.

  13. Development of isradipine loaded self-nano emulsifying powders for improved oral delivery: in vitro and in vivo evaluation.

    PubMed

    Ramasahayam, Bindu; Eedara, Basanth Babu; Kandadi, Prabhakar; Jukanti, Raju; Bandari, Suresh

    2015-05-01

    Isradipine (ISR) is a potent calcium channel blocker with low oral bioavailability due to low aqueous solubility, extensive first-pass metabolism and P-glycoprotein (P-gp)-mediated efflux transport. In the present investigation, an attempt was made to develop isradipine-loaded self-nano emulsifying powders (SNEP) for improved oral delivery. The liquid self-nano emulsifying formulations (L-SNEF/SNEF) of isradipine were developed using vehicles with highest drug solubility, i.e. Labrafil® M 2125 CS as oil phase, Capmul® MCM L8 and Cremophor® EL as surfactant/co-surfactant mixture. The developed formulations revealed desirable characteristics of self-emulsifying system such as nano-size globules ranging from 32.7 to 40.2 nm, rapid emulsification (around 60 s), thermodynamic stability and robustness to dilution. The optimized stable self-nano emulsifying formulation (SNEF2) was transformed into SNEP using Neusilin US2 (SNEP(N)) as adsorbent inert carrier, which exhibited similar characteristics of liquid SNEF. The solid state characterization of SNEP(N) by Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopic studies shown transformation of crystalline drug into amorphous form or molecular state without any chemical interaction. The in vitro dissolution of SNEP(N) compared to pure drug was indicated by 18-fold increased drug release within 5 min. In vivo pharmacokinetic studies in Wistar rats showed significant improvement of oral bioavailability of isradipine from SNEP(N) with 3- and 2.5-fold increments in peak drug concentration (C(max)), area under curve (AUC(0-∞)) compared to pure isradipine. In conclusion, these results signify the improved oral delivery of isradipine from developed SNEP. PMID:24641324

  14. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women

    PubMed Central

    Matuszek, Maria A.; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J.

    2015-01-01

    Aim To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Method Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. Results There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15–120 min), in South East/East Asians (60–120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Conclusions Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of

  15. Preparation and Characterization of Microemulsions of Myricetin for Improving Its Antiproliferative and Antioxidative Activities and Oral Bioavailability.

    PubMed

    Guo, Rui Xue; Fu, Xiong; Chen, Jian; Zhou, Lin; Chen, Gu

    2016-08-17

    To improve the bioactivity and oral bioavailability of myricetin, a microemulsion formulation was successfully developed, which consisted of Cremophor RH40 (12%), Tween 80 (6%), Transcutol HP (9%), WL 1349 (18%), and distilled water (55%). With lower content of surfactants and higher stability after dilution and storage for 6 months, the optimized myricetin microemulsion (MYR-ME) could dramatically enhance the solubility of myricetin 1225 times that in water. MYR-ME significantly increased antiproliferative activity against human cancer cell HepG2 without influence on normal cell LO2. It also notably improved the cellular antioxidative activity of myricetin. Furthermore, the oral bioavailability of myricetin was remarkably enhanced by MYR-ME in Sprague-Dawley rats after oral administration, which was 14.43-fold that with myricetin suspension. Therefore, the MYR-ME developed here could be used as a potential carrier for myricetin with substantially enhanced bioactivities and bioavailability and might promote myricetin's future utilization in functional foods and cosmetics. PMID:27455843

  16. A Virtual Environment to Improve the Detection of Oral-Facial Malfunction in Children with Cerebral Palsy.

    PubMed

    Martín-Ruiz, María-Luisa; Máximo-Bocanegra, Nuria; Luna-Oliva, Laura

    2016-01-01

    The importance of an early rehabilitation process in children with cerebral palsy (CP) is widely recognized. On the one hand, new and useful treatment tools such as rehabilitation systems based on interactive technologies have appeared for rehabilitation of gross motor movements. On the other hand, from the therapeutic point of view, performing rehabilitation exercises with the facial muscles can improve the swallowing process, the facial expression through the management of muscles in the face, and even the speech of children with cerebral palsy. However, it is difficult to find interactive games to improve the detection and evaluation of oral-facial musculature dysfunctions in children with CP. This paper describes a framework based on strategies developed for interactive serious games that is created both for typically developed children and children with disabilities. Four interactive games are the core of a Virtual Environment called SONRIE. This paper demonstrates the benefits of SONRIE to monitor children's oral-facial difficulties. The next steps will focus on the validation of SONRIE to carry out the rehabilitation process of oral-facial musculature in children with cerebral palsy. PMID:27023561

  17. A Virtual Environment to Improve the Detection of Oral-Facial Malfunction in Children with Cerebral Palsy

    PubMed Central

    Martín-Ruiz, María-Luisa; Máximo-Bocanegra, Nuria; Luna-Oliva, Laura

    2016-01-01

    The importance of an early rehabilitation process in children with cerebral palsy (CP) is widely recognized. On the one hand, new and useful treatment tools such as rehabilitation systems based on interactive technologies have appeared for rehabilitation of gross motor movements. On the other hand, from the therapeutic point of view, performing rehabilitation exercises with the facial muscles can improve the swallowing process, the facial expression through the management of muscles in the face, and even the speech of children with cerebral palsy. However, it is difficult to find interactive games to improve the detection and evaluation of oral-facial musculature dysfunctions in children with CP. This paper describes a framework based on strategies developed for interactive serious games that is created both for typically developed children and children with disabilities. Four interactive games are the core of a Virtual Environment called SONRIE. This paper demonstrates the benefits of SONRIE to monitor children’s oral-facial difficulties. The next steps will focus on the validation of SONRIE to carry out the rehabilitation process of oral-facial musculature in children with cerebral palsy. PMID:27023561

  18. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: design and evaluation

    PubMed Central

    Yang, Rui; Huang, Xin; Dou, Jinfeng; Zhai, Guangxi; Su, Lequn

    2013-01-01

    Oleanolic acid is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS) has been developed to enhance the solubility and oral bioavailability of oleanolic acid. The formulation design was optimized by solubility assay, compatibility tests, and pseudoternary phase diagrams. The morphology, droplet size distribution, zeta potential, viscosity, electrical conductivity, and refractive index of a SMEDDS loaded with oleanolic acid were studied in detail. Compared with oleanolic acid solution, the in vitro release of oleanolic acid from SMEDDS showed that the drug could be released in a sustained manner. A highly selective and sensitive high-performance liquid chromatographymass spectrometry method was developed for determination of oleanolic acid in rat plasma. This method was used for a pharmacokinetic study of an oleanolic acid-loaded SMEDDS compared with the conventional tablet in rats. Promisingly, a 5.07-fold increase in oral bioavailability of oleanolic acid was achieved for the SMEDDS compared with the marketed product in tablet form. Our studies illustrate the potential use of a SMEDDS for delivery of oleanolic acid via the oral route. PMID:23966781

  19. Discussing Stories: On How a Dialogic Reading Intervention Improves Kindergartners' Oral Narrative Construction

    ERIC Educational Resources Information Center

    Lever, Rosemary; Senechal, Monique

    2011-01-01

    Oral narrative skills are assumed to develop through parent-child interactive routines. One such routine is shared reading. A causal link between shared reading and narrative knowledge, however, has not been clearly established. The current research tested whether an 8-week shared reading intervention enhanced the fictional narrative skills of…

  20. Improving Reading Rate Activities for EFL Students: Timed Reading and Repeated Oral Reading

    ERIC Educational Resources Information Center

    Chang, Anna C. -S.

    2012-01-01

    This study investigates the effect of timed reading (TR) and repeated oral reading (RR) on 35 adult students of English as a foreign language. Students in the TR (n =18) and RR (n =17) groups read 52 and 26 passages respectively over a 13-week period. Reading rates and comprehension levels were measured at three occasions: pre-intervention,…

  1. Improving Undergraduate Nursing Research Education: The Effectiveness of Collecting and Analyzing Oral Histories.

    ERIC Educational Resources Information Center

    Duggleby, Wendy

    1998-01-01

    Nine oral histories of retired nurses were collected by 18 nursing students, whose attitudes toward nursing research were significantly more positive compared to 20 nonparticipants. Themes elicited from the histories showed the influence of World War II, technology, and intensive care on nursing practice in this century. (SK)

  2. Using Audio Description to Improve FLL Students' Oral Competence in MALL: Methodological Preliminaries

    ERIC Educational Resources Information Center

    Ibáñez Moreno, Ana; Vermeulen, Anna; Jordano, Maria

    2016-01-01

    During the last decades of the 20th century, audiovisual products began to be audio described in order to make them accessible to blind and visually impaired people (Benecke, 2004). This means that visual information is orally described in the gaps between dialogues. In order to meet the wishes of the so-called On Demand (OD) generation that wants…

  3. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. PMID:26624805

  4. Addition of sitagliptin or metformin to insulin monotherapy improves blood glucose control via different effects on insulin and glucagon secretion in hyperglycemic Japanese patients with type 2 diabetes.

    PubMed

    Otsuka, Yuichiro; Yamaguchi, Suguru; Furukawa, Asami; Kosuda, Minami; Nakazaki, Mitsuhiro; Ishihara, Hisamitsu

    2015-01-01

    This study aimed to explore the effects of the dipeptidyl peptidase-4 inhibitor sitagliptin and the biguanide metformin on the secretion of insulin and glucagon, as well as incretin levels, in Japanese subjects with type 2 diabetes mellitus poorly controlled with insulin monotherapy. This was a single-center, randomized, open-label, parallel group study, enrolling 25 subjects. Eleven patients (hemoglobin A1c [HbA1c] 8.40 ± 0.96%) and 10 patients (8.10 ± 0.54%) on insulin monotherapy completed 12-week treatment with sitagliptin (50 mg) and metformin (750 mg), respectively. Before and after treatment, each subject underwent a meal tolerance test. The plasma glucose, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), C-peptide, and glucagon responses to a meal challenge were measured. HbA1c reductions were similar in patients treated with sitagliptin (0.76 ± 0.18%) and metformin (0.77 ± 0.17%). In the sitagliptin group, glucose excursion during a meal tolerance test was reduced and accompanied by elevations in active GLP-1 and active GIP concentrations. C-peptide levels were unaltered despite reduced glucose responses, while glucagon responses were significantly suppressed (-7.93 ± 1.95% of baseline). In the metformin group, glucose excursion and incretin responses were unaltered. C-peptide levels were slightly increased but glucagon responses were unchanged. Our data indicate that sitagliptin and metformin exert different effects on islet hormone secretion in Japanese type 2 diabetic patients on insulin monotherapy. A glucagon suppressing effect of sitagliptin could be one of the factors improving blood glucose control in patients inadequately controlled with insulin therapy. PMID:25328079

  5. Improved glycemic control in mice lacking Sglt1 and Sglt2.

    PubMed

    Powell, David R; DaCosta, Christopher M; Gay, Jason; Ding, Zhi-Ming; Smith, Melinda; Greer, Jennifer; Doree, Deon; Jeter-Jones, Sabrina; Mseeh, Faika; Rodriguez, Lawrence A; Harris, Angela; Buhring, Lindsey; Platt, Kenneth A; Vogel, Peter; Brommage, Robert; Shadoan, Melanie K; Sands, Arthur T; Zambrowicz, Brian

    2013-01-15

    Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone. PMID:23149623

  6. Self-microemulsifying Drug Delivery System Improved Oral Bioavailability of 20(S)-Protopanaxadiol: From Preparation to Evaluation.

    PubMed

    Wang, Bing; Pu, Yiqiong; Xu, Benliang; Tao, Jiansheng; Wang, Yuqin; Zhang, Tong; Wu, Peiying

    2015-01-01

    20(S)-Protopanaxadiol (20(S)-PPD) is one type of sapogenin of protopanaxadiols and has a variety of pharmacological activities. In order to improve the dissolution of 20(S)-PPD as well as its oral bioavailability, a self-microemulsifying drug delivery system (SMEDDS) was utilized for 20(S)-PPD preparation. Following the preparation of the 20(S)-PPD SMEDDS, its dissolution, stability, and intestinal absorption in rats were studied, and the pharmacokinetics and optimal dosage after oral administration were evaluated. The dissolution tendency of the SMEDDS in phosphate buffered saline (PBS), 0.1 M HCl and distilled water was consistent. SMEDDS was stable under a condition of high temperature (40°C), high humidity or with strong light irradiation, or within 6 h in artificial digestive tracts. 20(S)-PPD SMEDDS was well-absorbed in all intestinal segments in rats. When the drug concentration was higher than 200 µg/mL or the perfusion flow was faster than 0.5 mL/min, passive diffusion of drug in the duodenum reached a saturated level. In addition, P-glycoprotein inhibitor did not affect the intestinal absorption of 20(S)-PPD SMEDDS. Pharmacokinetic study showed that Tmax in male rats was shortened significantly, while Cmax and area under the curve (AUC(0-t)) were remarkably increased. The relative oral bioavailability of 20(S)-PPD SMEDDS was increased approximately three fold compared with the 20(S)-PPD carboxy methyl cellulose (CMC). 20(S)-PPD SMEDDS (100 mg/mL) was administered by gastric infusion to both mice and rats for 14 d. SMEDDS improved the oral bioavailability of 20(S)-PPD and reduced the necessary drug dosage. 20(S)-PPD SMEDDS could become a promising clinical alternative as an anti-tumor or antidepressant drug. PMID:26084568

  7. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver

    PubMed Central

    Peleli, Maria; Hezel, Michael; Zollbrecht, Christa; Persson, A. Erik G.; Lundberg, Jon O.; Weitzberg, Eddie; Fredholm, Bertil B.; Carlström, Mattias

    2015-01-01

    Rationale: Accumulating studies suggest that nitric oxide (NO) deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes (T2D). Recent findings demonstrate therapeutic effects by boosting the nitrate-nitrite-NO pathway, which is an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A−/−2B), a genetic mouse model of impaired metabolic regulation. Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT) and A−/−2B mice. One hour after injection with nitrate (0.1 mmol/kg, i.p.) or placebo, metabolic regulation was evaluated by intraperitoneal glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR) and NO signaling. Results: A−/−2B displayed increased body weight, reduced glucose clearance, and attenuated overall insulin responses compared with age-matched WT mice. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in the A−/−2B, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in the A−/−2B, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A−/−2B, but not WT mice, was reduced by nitrate treatment. Livers from A−/−2B displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Finally, injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A−/−2B as observed with nitrate. Conclusion: The A−/−2B mouse is a genetic mouse model of metabolic syndrome. Acute treatment

  8. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats

    PubMed Central

    Burnett, A; McKoy, M-L; Singh, P

    2015-01-01

    ABSTRACT The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  9. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats.

    PubMed

    Burnett, A; McKoy, M L; Singh, P

    2015-09-01

    The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  10. Sardine peptide with angiotensin I-converting enzyme inhibitory activity improves glucose tolerance in stroke-prone spontaneously hypertensive rats.

    PubMed

    Otani, Lila; Ninomiya, Toshio; Murakami, Megumi; Osajima, Katsuhiro; Kato, Hisanori; Murakami, Tetsuo

    2009-10-01

    An enzymatic hydrolysate of sardine protein (sardine peptide, SP) derived from sardine muscle possesses angiotensin I-converting enzyme (ACE) inhibitory activity. In the present study, we investigated the effect of SP on the blood glucose levels in stroke-prone spontaneously hypertensive rats (SHRSPs). Ten-week-old SHRSPs were assigned to three groups. The control group was given tap water for 4 weeks, while the experimental groups were given water containing SP (1 g/kg/d) or an ACE inhibitor, captopril (8 mg/kg/d). Treatment with SP and captopril decreased ACE activity in the kidney, aorta, and mesentery. There were no differences in fasting blood glucose levels among the three groups, whereas SP and captopril administration significantly suppressed the increase in blood glucose after glucose loading in the control SHRSPs. No difference was observed in plasma insulin levels among the three groups. Thus treatment with captopril and ACE-inhibitory sardine peptides ameliorated the glucose tolerance of this rat strain. PMID:19809178

  11. Consortium for Oral Health-Related Informatics: Improving Dental Research, Education, and Treatment

    PubMed Central

    Stark, Paul C.; Kalenderian, Elsbeth; White, Joel M.; Walji, Muhammad F.; Stewart, Denice C.L.; Kimmes, Nicole; Meng, Thomas R.; Willis, George P.; DeVries, Ted; Chapman, Robert J.

    2011-01-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come. PMID:20930236