Science.gov

Sample records for improving plant availability

  1. Improved outage management techniques for better plant availability

    SciTech Connect

    Bemer, J.P.

    1989-01-01

    To maintain high availability of nuclear generating units is one of the most important management objectives. The duration of outages-whether planned or unplanned-is the main parameter impacting on plant availability, but the planned outages, and essentially the refueling outages, are the most important in this respect, and they also have a heavy impact on the economics of plant operation. The following factors influence the duration of the outages: (1) modifications; (2) preventive maintenance operations; and (3) corrective maintenance operations of generic faults. In this paper, the authors examine how the outage management organization of Electricite de France (EdF) plants is tending to optimize the solutions to the above-mentioned points.

  2. Nitric Oxide Improves Internal Iron Availability in Plants1

    PubMed Central

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  3. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    SciTech Connect

    Not Available

    1981-09-15

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

  4. Soil management systems to improve water availability for plants

    NASA Astrophysics Data System (ADS)

    Klik, A.; Rosner, J.

    2009-04-01

    Due to climate change it is expected that the air temperature will increase and the amount as well as the variability of rainfall will change drastically within this century. Higher temperatures and fewer rainy days with more extreme events will increase the risk of surface runoff and erosion. This will lead to reduced soil water storage and therefore to a lower water use efficiency of plants. Soil and land management systems need to be applied and adapted to improve the amount of water stored in the soil and to ensure crop productivity functions of soils under changing climatic conditions. In a 14-yr. long field experiment, the effects of three soil management systems have been studied at three sites in Austria with respect to surface runoff, soil erosion, losses of nutrients and pesticides. Eight years after beginning of the project soil samples have been taken from different depth throughout the root zone to investigate the effects on soil properties. The results show that soil management systems with reduced tillage intensity are able to improve infiltration and soil water storage. More soil water enables plant development during longer dry periods and decreases amounts of irrigation. Overall, the higher water retention in the landscape improves the regional water balance and reduces environmental problems like soil erosion and nutrient and pesticide losses

  5. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  6. Geocomposite with Superabsorbent as an Element Improving Water Availability for Plants on Slopes

    NASA Astrophysics Data System (ADS)

    Pawlowski, A.; Lejcus, K.; Garlikowski, D.; Orzeszyna, H.

    2009-04-01

    Water availability for plants on a slope is usually worse, then on a plane surface. Exposure on sun radiation makes these conditions even more difficult. The key problem is how to supply plants with water. Frequently watering is good but expensive solution. To avoid often repeating of such action and/or to use as much as possible water from precipitation, it has to be retained in soil. One of the ways to increase soil water retention is superabsorbents (SAP), called often hydrogel addition to the soil. They can absorb 300 - 1000 times more water, then theirs own weight. This water can be later taken by roots system. Addition to the soil small amount of dry superabsorbent, which, after absorbing water, forms gel can affect stability of the slope top layer, diminishing soil strength parameters. Part of the strength lose can be recompensed by reinforcing action of better developed roots system, which, according to the tests are increasing soil shear strength. However because it is a living system still rest some uncertainty about its functioning over many vegetation seasons. From engineering point of view, these strength parameters are very difficult for precise calculation, control and determination of long term behaviour. Important factor of superabsorbent influence on soil shear parameters is its dosage and, as a result, final volume and properties after water absorption. If the volume of superabsorbent is not greater then available pore volume of soil, this influence is not decisive. By bigger dosage, when volume of superabsorbent with retained water is much greater then pore space volume. The soil form a suspension in hydrogel and in laboratory condition one can observe sedimentation of soil fraction at the early stage of saturation. After longer time gel's density is already high enough to support grains of soils and stop sedimentation process. By highly permeable soils, which are sometimes used in embankment construction, eg. for buttress, gel, just after

  7. The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants.

    PubMed

    Han, Yang-yang; Zhou, Shan; Chen, Yan-hui; Kong, Xiangzhu; Xu, Ying; Wang, Wei

    2014-05-01

    Phosphorus (P) is a critical macronutrient required for numerous functions in plants and is one of the limiting factors for plant growth. Phosphate availability has a strong effect on root system architecture. Expansins are encoded by a superfamily of genes that are organized into four families, and growing evidence has demonstrated that expansins are involved in almost all aspects of plant development, especially root development. In the current study, we demonstrate that expansins may be involved in increasing phosphorus availability by regulating the growth and development of plant roots. Multiple expansins (five α- and nine β-expansin genes) were up- or down-regulated in response to phosphorus and showed different expression patterns in wheat. Meanwhile, the expression level of TaEXPB23 was up-regulated at excess-P condition, suggesting the involvement of TaEXPB23 in phosphorus adaptability. Overexpression of the TaEXPB23 resulted in improved phenotypes, particularly improved root system architecture, as indicated by the increased number of lateral roots in transgenic tobacco plants under excess-P and low-P conditions. Thus, these transgenic plants maintained better photosynthetic gas exchange ability than the control under both P-sufficient and P-deficient conditions. PMID:24636907

  8. Genomic DNA extraction from medicinal plants available in Malaysia using a TriOmic(TM) improved extraction kit.

    PubMed

    Mohd-Hairul, A R; Sade, A B; Yiap, B C; Raha, A R

    2011-01-01

    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete. PMID:22095601

  9. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  10. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  11. Characterisation of European varieties of triticale with special emphasis on the ability of plant phytase to improve phytate phosphorus availability to chickens.

    PubMed

    Jondreville, C; Genthon, C; Bouguennec, A; Carre, B; Nys, Y

    2007-12-01

    1. A total of 30 varieties and selection lines of triticale grown under similar conditions were characterised. Thousand grain weight, specific weight, Hagberg falling number and N were 50.2 +/- 5.0 g, 72.4 +/- 2.1 kg/hl, 96 +/- 48 s and 16.1 +/- 0.11 g/kg, respectively. 2. Mean phosphorus (P) concentration was 2.86 +/- 0.31 g/kg, of which 77% was of phytic origin. Mean phytase activity was 1018 +/- 319 phytase units (PU)/kg. A genotypic effect on phytase activity was detected amongst 5 varieties studied out of 30. Potential and real applied viscosities were positively correlated and mean values were 3.53 +/- 0.66 and 2.15 +/- 0.31 ml/g, respectively. 3. The efficacy of plant phytase in improving P availability was assessed in chickens up to 3 weeks of age. Growth performance and bone ash concentration were compared in birds given either a maize (450 g/kg) and soybean meal (230 g/kg) phosphorus deficient diet containing 3.5 g P/kg, this basal diet supplemented with 1 or 2 g P/kg as monocalcium phosphate (MCP) or triticale (450 g/kg) and soybean meal (230 g/kg) diets containing 3.2 to 3.8 g P/kg with no MCP. To achieve graded levels of phytase activity, 4 varieties of triticale, intact or in which phytase was denaturated by heat treatment, were used. Estimated metabolisable energy, protein, amino acids and calcium concentrations were similar in all diets. 4. Phytase activity in the triticale-based diets ranged between 135 and 1390 PU/kg. Growth performance and bone ash were responsive to plant phytase and to MCP. Non-linear models of these responses were adjusted with the best fit for bone ash parameters. The values of 250, 500 and 1000 PU of plant phytase were estimated to be equivalent to 0.46, 0.67 and 0.81 g P as MCP, respectively. PMID:18085450

  12. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91.

    PubMed

    Campestre, María Paula; Castagno, Luis Nazareno; Estrella, María Julia; Ruiz, Oscar Adolfo

    2016-03-15

    Inoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P. eucalypti M91, a plant growth-promoting bacterial strain capable of producing pyoverdine-like and pyochelin-like siderophores under alkaline growth conditions, alters the root, resulting in a herringbone pattern of root branching. Additional features include improvement in Fe(2+) transport to the shoots, acidification of the hydroponic solution of the plant cultures, and an accompanying increase in the efficiency of the PSII parameters. In addition, there was an increase in the expression of the FRO1 and IRT1 genes, accompanied by a significant increase in FRO activity. Results showed that P. eucalypti M91 has a beneficial effect on the Fe acquisition machinery of Strategy I, as described for non-graminaceous monocots and dicots, suggesting its potential as an inoculant for legume crops cultivated in alkaline soils. PMID:26815729

  13. Role of ethylene in responses of plants to nitrogen availability

    PubMed Central

    Khan, M. I. R.; Trivellini, Alice; Fatma, Mehar; Masood, Asim; Francini, Alessandra; Iqbal, Noushina; Ferrante, Antonio; Khan, Nafees A.

    2015-01-01

    Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest. PMID:26579172

  14. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  15. Increased Availability From Improved Condenser Design

    SciTech Connect

    Harpster, Joseph W.

    2002-07-01

    Performance parameters and flow characteristics on the shell side of surface condensers are becoming better understood. Contributing to this knowledge base is the recent ability to measure the physical properties as well as the quantity of gases being removed from the condenser by air removal equipment. Reviewed here are the commonality of these data from many operating condensers obtained over the past six years and other known condenser measurements, theory and laboratory experiments. These are combined to formulate global theoretical description of condenser dynamics describing the mechanism responsible for aeration and de-aeration, excess back pressure buildup due to air ingress or generation of other noncondensable gases, and the dissolubility of corrosive gases in condensate. The theoretical description supports a dynamic model useful for deciding condenser configuration design and design improvements. Features of design found in many operating condensers that promote aeration and resulting corrosion are presented. The benefits of the model and engineering design modifications to plant life cycle management, improved condenser performance, outage reduction and reliability improvements, lost load recovery and fuel savings are discussed. (author)

  16. Maintenance strategies to improve sootblower availability

    SciTech Connect

    Walther, J.M.; Whitehead, B.K.

    1996-07-01

    Sootblowers are electromechanical devices used for removal of ash and slag deposits from boiler tube surfaces. By directing steam, air, or water cleaning medium through a nozzle to remove deposits from boiler tubes, boilers are kept on-line for longer periods of time reducing the need for outages to clean the boiler by mechanical means. Fuel must be burned efficiently to minimize stagging and fouling of the heat transfer surfaces. Tuning the boiler to maximize combustion efficiency should not be limited to optimizing fuel conditions, air-fuel ratios, firing rates, excess air, and over-fire air, but should also include the use of sootblowers. The goal is to know when to clean, and if the cleaning cycle has effectively removed the deposit and increased heat transfer. Today, boiler cleaning technology not only focuses on the impact of the sootblowing system on overall boiler performance, but it also focuses on design improvements that impact an individual sootblower`s performance. Proper sootblower maintenance is an integral part of making existing designs and new designs work. Existing computer technologies provide a viable means of documenting and trending sootblower performance data and maintenance history. The personal computer and the availability of spreadsheet and database software make the task of quantifying sootblower performance data and maintenance history easier to achieve. The difficult task is gathering the proper data to make decisions about sootblowing operations and maintenance. The balance of this paper will discuss typical maintenance practices, and improvements that can be achieved by documenting sootblowing system inspections and maintenance activity using a personal computer database.

  17. Improved modeling of GPS selective availability

    NASA Technical Reports Server (NTRS)

    Braasch, Michael S.; Fink, Annmarie; Duffus, Keith

    1994-01-01

    Selective Availability (SA) represents the dominant error source for stand-alone users of the Global Positioning System (GPS). Even for DGPS, SA mandates the update rate required for a desired level of accuracy in realtime applications. As was witnessed in the recent literature, the ability to model this error source is crucial to the proper evaluation of GPS-based systems. A variety of SA models were proposed to date; however, each has its own shortcomings. Most of these models were based on limited data sets or data which were corrupted by additional error sources. A comprehensive treatment of the problem is presented. The phenomenon of SA is discussed and a technique is presented whereby both clock and orbit components of SA are identifiable. Extensive SA data sets collected from Block 2 satellites are presented. System Identification theory then is used to derive a robust model of SA from the data. This theory also allows for the statistical analysis of SA. The stationarity of SA over time and across different satellites is analyzed and its impact on the modeling problem is discussed.

  18. Synergy Between Pathogen Release and Resource Availability in Plant Invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available ...

  19. Plant nutrient availability from mixtures of fly ashes and biosolids

    SciTech Connect

    Schumann, A.W.; Summer, M.E.

    1999-10-01

    Nutrient imbalances, both deficiencies and excesses, are one reason for the poor acceptance of waste materials as fertilizer substitutes. Two greenhouse experiments were established using 24 different fly ashes with sewage sludge and poultry manure to estimate nutrient availability and imbalances to maize (Zea mays L.). The maximum maize growth attained with fly ash amendment of 80 Mg ha{sup {minus}1} was significantly less (50%) than a fertilized control treatment. The additional growth improvements obtained from mixtures with sewage sludge or poultry manure ranged from 30 to 49% and 30 to 71%, respectively. Organic materials applied alone achieved only 54 and 62% of the maximum potential, while growth on poultry manure mixtures was up to 94% of the best performing fertilized treatment. Results of foliage and soil analyses suggest that P and K were the main nutrient deficiencies, while B phytotoxicity and an imbalance in the K/Ca/Mg ratio also were likely causes of plant growth reduction. Fly ashes did not contribute significant P or K to correct soil and plant deficiencies, but more often exacerbated the imbalances by precipitation or adsorption of soil P. Sewage sludge mixed at 26% and poultry manure at 13% (DM) with fly ash had negligible effect on availability of phytotoxic fly ash B, but were good sources of P (both) and K (poultry manure). Good agreement between plant nutrition in pot experiments and previous laboratory extraction studies implies that chemical analysis, efficient formulation and optimized application rates may overcome nutrient limitations for use of wastes as fertilizer substitutes.

  20. Synergy between pathogen release and resource availability in plant invasion

    PubMed Central

    Blumenthal, Dana; Mitchell, Charles E.; Pyšek, Petr; Jarošík, Vojtěch

    2009-01-01

    Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available resources in their native range are particularly susceptible to enemies, and therefore benefit most from a paucity of enemies in their new range. We tested this possibility by examining how resource adaptations influence pathogen richness and release among 243 European plant species naturalized in the United States. Plant species adapted to higher resource availability hosted more pathogen species in their native range. Plants from mesic environments hosted more fungi than plants from xeric environments, and plants from nitrogen-rich environments hosted more viruses than plants from nitrogen-poor environments. Furthermore, plants classified as competitors hosted more than 4 times as many fungi and viruses as did stress tolerators. Patterns of enemy release mirrored those of pathogen richness: competitors and species from mesic and nitrogen-rich environments were released from many pathogen species, while stress tolerators and species from xeric and nitrogen-poor environments were released from relatively few pathogen species. These results suggest that enemy release contributes most to invasion by fast-growing species adapted to resource-rich environments. Consequently, enemy release and increases in resource availability may act synergistically to favor exotic over native species. PMID:19416888

  1. Improvements in plant performance [Sequoyah Nuclear Plant

    SciTech Connect

    Lorek, M.J.

    1999-11-01

    The improvements in plant reliability and performance at Sequoyah in the last two years can be directly attributed to ten key ingredients; teamwork, management stability, a management team that believes in teamwork, clear direction from the top, a strong focus on human performance, the company wide STAR 7 initiative, strong succession planning, a very seasoned and effective outage management organization, an infrastructure that ensures that the station is focused on the right hardware priorities, and a very strong line organization owned self-assessment program. Continued focus on these key ingredients and realization on a daily basis that good performance can lead to complacency will ensure that performance at Sequoyah will remain at a very high level well into the 21st century.

  2. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  3. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole-plant

  4. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes.

    PubMed

    Li, Xiaoxi; Rubæk, Gitte H; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300-500kgPha(-1) application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25Mgha(-1) straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. PMID:27082447

  5. Molecular mechanisms involved in plant adaptation to low K(+) availability.

    PubMed

    Chérel, Isabelle; Lefoulon, Cécile; Boeglin, Martin; Sentenac, Hervé

    2014-03-01

    Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling. PMID:24293613

  6. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  7. Effects of resource availability on plant reflectance and physiology

    NASA Astrophysics Data System (ADS)

    Stylinski, Cathlyn Davis

    Remote sensing is an important means of examining net CO2 exchange between terrestrial ecosystems and the atmosphere and the effects of elevated [CO2] on plant productivity at multiple spatial and temporal scales. In particular, indices derived from narrow-waveband reflectance that are sensitive to dynamic physiological attributes may reveal periods of photosynthetic downregulation and may improve plant productivity models. Here we examined the relationship between photosynthesis, photoprotective xanthophyll cycle pigments, and the Photochemical Reflectance Index (PRI) for mature woody Mediterranean plants under two conditions: natural drought and exposure to atmospheric CO2 enrichment. We also examined plants under severe water stress to test and compare the effects of physiology and structure on PRI, the Normalized Difference Vegetation Index (NDVI), and the Water Band Index (WBI). PRI varied primarily with leaf physiology, and NDVI primarily with stand structure. WBI was affected by both attributes and, unlike PRI, did not scale well from leaves to whole stands. PRI was well linked to photoprotective xanthophyll cycle pigments and electron transport. Both PRI and these pigments varied with seasonal changes in midday photosynthesis, demonstrating that the xanthophyll cycle is an important form of photoprotection for evergreen Mediterranean species undergoing photosynthetic downregulation. By contrast, NDVI was not sensitive to physiological changes but was well correlated with green canopy cover. These results suggest that the "big-leaf hypothesis" (which states that canopies can be characterized by a single reference leaf) cannot be applied to all physiological indices. Furthermore, in agreement with the "functional convergence hypothesis" (which states that plant physiology and structure change to match CO2 fixation capacity), our results indicate a coordinated regulation of photosystem two activity and carbon uptake. However, they also demonstrate that this

  8. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants.

    PubMed

    Pii, Youry; Penn, Alexander; Terzano, Roberto; Crecchio, Carmine; Mimmo, Tanja; Cesco, Stefano

    2015-02-01

    Iron (Fe) is a very important element for plants, since it is involved in many biochemical processes and, often, for the low solubility of the natural Fe sources in soil, plants suffer from Fe - deficiency, especially when grown on calcareous soils. Among the numerous plant growth-promoting rhizobacteria (PGPR) that colonize the rhizosphere of agronomically important crops, Azospirillum brasilense has been shown to exert strong stimulating activities on plants, by inducing alterations of the root architecture and an improvement of mineral nutrition, which could result from an enhancement of ion uptake mechanisms as well as by increased bioavailability of nutrients. Some studies have also established that A. brasilense can act as biocontrol agent, by preventing the growth and/or virulence of phytopathogens, most likely through the production of microbial siderophores that sequester Fe from the soil. Despite microbial siderophores complexed with Fe could be an easily accessible Fe source for plants, the possible involvement of A. brasilense in improving Fe nutrition in plants suffering from the micronutrient deficiency has not been investigated yet. Within the present research, the characterization of the physiological and biochemical effects induced by Fe starvation and PGPR inoculation in cucumber plants (Cucumis sativus L. cv. Chinese Long) was carried out. The analyses of root exudates released by hydroponically grown plants highlighted that cucumber plants respond differently depending on the nutritional status. In addition, following the cultivation period on calcareous soil, also the root exudates found in the extracts suggested a peculiar behaviour of plants as a function of the treatment. Interestingly, the presence of the inoculum in soil allowed a faster recovery of cucumber plants from Fe-deficiency symptoms, i.e. increase in the chlorophyll content, in the biomass and in the Fe content of leaves. These observations might suggest a feasible application of

  9. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  10. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    PubMed Central

    Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context. PMID:25400642

  11. Improving antivenom availability and accessibility: science, technology, and beyond.

    PubMed

    Gutiérrez, José María

    2012-09-15

    Snakebite envenomings constitute a serious and neglected public health problem. Despite the fact that effective treatment exists, i.e. administration of animal-derived antivenoms, the availability and accessibility of these life-saving immunobiologicals is deficitary in various parts of the world, particularly in sub-Saharan Africa and some regions of Asia. This article discusses some of the problems that need to be circumvented in order to improve the availability and accessibility of antivenoms. The conglomerate of antivenom manufacturers is highly heterogeneous in terms of technological base, qualification of staff, implementation of Good Manufacturing Practices (GMPs), and volume of production. Therefore, improvements in antivenom quality and availability should be based on strategies tailored to the situation of each region or country; in this context, three different scenarios are discussed. Accessibility of antivenoms demands concerted efforts at multiple levels, including raising the awareness of public health authorities on the relevance of the problem, implementing innovative antivenom purchasing schemes, strengthening national distribution channels on the basis of robust epidemiological information, improving the cold chain and the provision of health services in remote rural settings, supporting the correct use of antivenoms, and promoting the involvement of local community organizations in various aspects of prevention and management. These tasks should be envisaged in terms of synergistic, interprogrammatic and intersectorial interventions, with the participation of many players. PMID:22781134

  12. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  13. Reliability and availability assessments of selected domestic combined-cycle power-generating plants

    NASA Astrophysics Data System (ADS)

    Brown, H. W.; Gardner, N. J.

    1982-08-01

    This report presents the results of reliability and availability assessment performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined cycle plant designs were developed and validated.

  14. Reliability and availability assessments of selected domestic combined-cycle power-generating plants. Final report

    SciTech Connect

    Brown, H.W.; Gardner, N.J.

    1982-08-01

    This report presents the results of reliability and availability assessments performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined-cycle plant designs were developed and validated.

  15. Predicting plant available nitrogen in land-applied biosolids

    SciTech Connect

    Gilmour, J.T.; Skinner, V.

    1999-08-01

    The rate at which biosolids (municipal sewage sludge) may be applied to land is dependent on factors including concentrations of metals, pathogens, toxic organic compounds, and nutrients. Where other properties are not limiting, land application rates are often based on matching crop N needs with the plant available N (PAN). The objectives of this study were to quantify biosolids PAN under field conditions and to propose methods including computer simulation to estimate biosolids PAN in a land application program. Six biosolids were evaluated over a 2-yr period. Laboratory incubations were used to obtain decomposition kinetics. Field studies provided a relationship between inorganic fertilizer N rate and sorghum sudangrass [Sorghum bicolor (L.) Moench] tissue N concentration, which was used to determine biosolids PAN in a Captina silt loam soil. Biosolids PAN released during the field experiment was linearly related to biosolids C/N ratio, organic N, or total N. Computer model predictions of PAN in the field were also linearly related to field estimates of biosolids PAN. Decay series obtained using the computer model, average biosolids decomposition kinetics, and average application site weather were very similar to decay series obtained using the computer model, actual weather, and kinetic data. Either decay series and routine analytical data for biosolids are proposed to estimate PAN for a given situation. Use of the computer model and weather data makes the approach site-specific, while analytical data for a specific biosolids makes the approach biosolids-specific.

  16. Improving stroke outcome: the benefits of increasing availability of technology.

    PubMed Central

    Heller, R. F.; Langhorne, P.; James, E.

    2000-01-01

    INTRODUCTION: A decision analysis was performed to explore the potential benefits of interventions to improve the outcome of patients admitted to hospital with a stroke, in the context of the technology available in different parts of the world. METHODS: The outcome of death or dependency was used with a six-month end-point. RESULTS: Four settings were identified that would depend on the resources available. The proportion of stroke patients who were dead or dependent at six months was 61.5% with no intervention at all. Setting 4, with the only intervention being the delayed introduction of aspirin, produced a 0.5% absolute improvement in outcome (death or dependency), and the addition of an organized stroke unit (Setting 3) produced the largest incremental improvement, of 2.7%. Extra interventions associated with non-urgent computed tomography and thus the ability to avoid anticoagulation or aspirin for those with a haemorrhagic stroke (Setting 2), and immediate computed tomography scanning to allow the use of thrombolytics in non-haemorrhagic stroke (Setting 1), produced only small incremental benefits of 0.4% in each case. DISCUSSION: To reduce the burden of illness due to stroke, efforts at primary prevention are essential and likely to have a greater impact than even the best interventions after the event. In the absence of good primary prevention, whatever is possible must be done to reduce the sequelae of stroke. This analysis provides a rational basis for beginning the development of clinical guidelines applicable to the economic setting of the patient. PMID:11143194

  17. How better availability of materials improved hand-hygiene compliance.

    PubMed

    Azlz, Ann-Marie

    Hand hygiene is one of the most effective measures for preventing infections. The annual NHS staff survey in England provides national and local data on how staff feel about working in the NHS. It also provides staff with the opportunity to give their views on the availability of hand-washing materials. The infection prevention and control team at an NHS trust decided a review was required on this issue. This review assessed the availability of hand-washing materials and alcohol handrub on wards and at ward entrances. Three community buildings and 31 wards were reviewed. The audit results showed the availability of hand-washing materials was good in 30 out of 34 areas. Staff on both wards and in the community buildings highlighted what other materials were required for hand hygiene, and steps were made to provide these. The audit allowed hand-hygiene practices to be benchmarked across the trust and increased staff awareness of improving hand hygiene. As a result of this audit, the hand-hygiene compliance score increased from 80% to 95%. PMID:23905226

  18. Strategies for Improving Potassium Use Efficiency in Plants

    PubMed Central

    Shin, Ryoung

    2014-01-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  19. Strategies for improving potassium use efficiency in plants.

    PubMed

    Shin, Ryoung

    2014-08-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  20. Estimating plant available water content from remotely sensed evapotranspiration

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Warren, G.; Doody, T.

    2012-04-01

    Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.

  1. Kriging as a Means of Improving WAAS Availability

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Blanch, Juan; Pandya, Nitin

    2010-01-01

    The Wide Area Augmentation System (WAAS), an augmentation of the Global Positioning System (GPS), provides safe and reliable use of GPS signals for airline navigation over much of North America. Currently the largest source of positioning error in the system is signal delay caused by the ionosphere. To allow the user to take account of such error, WAAS computes and broadcasts ionospheric vertical delays at a set of regularly-spaced grid points. In addition, WAAS computes and broadcasts a safety-critical integrity bound at each ionospheric grid point (IGP) called the Grid Ionospheric Vertical Error (GIVE). GIVEs are constructed to be sufficiently large to protect the user against positioning error due to the presence of ionospheric irregularity. In the initial operating capability (IOC) of WAAS, the vertical delay estimate at each IGP is determined from a planar fit of neighboring slant delay measurements, projected to vertical using an obliquity factor specified by the standard thin-shell model of the ionosphere. In WAAS Follow-On (WFO) Release 3, however, the vertical delay will be estimated by an established, geo-statistical technique known as kriging. Compared to the planar fit model, the kriging model is found, in general, to match better the observed random structure of the vertical delay. This paper presents the kriging methodology that will be used to estimate the vertical delay and its uncertainty at each IGP, and it assesses the subsequent improvement in WAAS availability enabled by kriging.

  2. NREL Bioprocessing Pilot Plant: Available for Industrial Use

    SciTech Connect

    Not Available

    2003-10-01

    Microbial bioprocessing can produce a myriad of valuable products. If you are an industry needing small- or large-scale trials to test or advance a bioprocessing technology, National Bioenergy Center (NBC) facilities at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, may allow you to use world-class systems and expertise without the expense of building your own pilot plant.

  3. Power plant productivity improvement in New York

    SciTech Connect

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  4. Testing the resource - enemy release hypothesis: Pathogen release and N availability in plant invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resource availability, while clearly important to plant colonization, does not appear to explain the exceptional success of exotic plants. Here, we discuss the possibility that high resource availability may aid exotic plants more than natives, by increasing enemy release. Plant species adapted...

  5. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  6. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  7. Spectral responses to plant available soil moisture in a Californian grassland

    NASA Astrophysics Data System (ADS)

    Liu, Shishi; Roberts, Dar A.; Chadwick, Oliver A.; Still, Chris J.

    2012-10-01

    This study established relationships among plant available soil moisture and reflectance and vegetation indices (VIs) derived from AVIRIS and MODIS data in grassland ecosystem in California. Strong correlations were observed between soil moisture and different forms of reflectance in the red-edge, near infrared and shortwave infrared bands. Both greenness-based and canopy-water-based indices were linearly related with soil moisture during the growing season, the wet and the dry season. The relationship was stronger with antecedent soil moisture, particularly in the dry season. Using plant available soil moisture, which is the difference between measured soil moisture and the wilting point, improved the relationship by reducing the soil property effect. Furthermore, results suggested that the difference in sensors had little impact on the relationships in grassland, but the parameters of relationships were influenced by the spatial resolution of sensors.

  8. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  9. Condom availability in schools: the need for improved program evaluations.

    PubMed Central

    Stryker, J; Samuels, S E; Smith, M D

    1994-01-01

    OBJECTIVES. This article examines the impact of contentious local debates on the design and implementation of school-based condom availability programs. METHODS. Information about condom availability in schools was reviewed by 50 leading educators and health officials at a 1992 forum held in Menlo Park, Calif. RESULTS. Few existing condom availability programs were designed to yield definitive data on sexual risk-taking behavior or other measures of program effectiveness. CONCLUSIONS. In the debate over school-based condom availability programs, as in many aspects of human immunodeficiency virus (HIV) prevention programs, scientific, moral, and political concerns overlap. Behavioral research into the potential effectiveness of such programs can help inform debates about fundamental values concerning sexual decision making and privacy, family integrity and parental autonomy, and public health. PMID:7998627

  10. Improving plant transformation using Agrobacterium tumefaciens.

    PubMed

    Ribeiro Neto, L V; Oliveira, A P; Lourenço, M V; Bertoni, B W; França, S C; Rosa-Santos, T M; Zingaretti, S M

    2015-01-01

    Here, we report a quick and low-cost method to improve plant transformation using Agrobacterium tumefaciens. This method involves the use of physical wounding, ultrasound, and an increase in exposure time to the bacteria. We show how the transformation rate increased from 0 to 14% when an ultrasound pulse of 10 s was used in conjunction with 96 h of bacterial exposure in Eclipta alba explants. PMID:26125878

  11. Effects of permafrost thaw on nitrogen availability and plant nitrogen acquisition in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Finger, R.; Euskirchen, E. S.; Turetsky, M.

    2013-12-01

    progressive N limitations, resulting in the dominance of plants with higher NUE. This likely has implications for plant litter quality, and could inhibit decomposition processes. We are collecting additional data to compare species-level NUE and nutrient resorption efficiency. We also will measure δ15N of aboveground plant organs, roots, soil, and pore water to explore sources of plant N, which we expect will influenced rooting depth as permafrost thaws as well as differences in mycorrhizal associations along our thaw gradient. Because thawing permafrost soils are anticipated to mobilize large amounts of N from soils, our results will improve our understanding of how permafrost thaw influences vegetation and soil N pools, soil N availability, and plant nutrition.

  12. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  13. PG&E`s Geysers` Power Plant improvements - past, present, and future

    SciTech Connect

    Louden, P.; Southall, W.; Paquin, C.

    1996-04-10

    Geothermal power plant retrofits can improve plant efficiency, reduce operations and maintenance costs, as well as increase plant availability. All geothermal power producers must find new ways to become more competitive as the electric power industry becomes deregulated. To survive and thrive in the competitive power generation market, geothermal plant operators must continually look for economic power plant upgrades that reduce the cost of production and improve availability. This paper describes past and present power plant retrofits as well as shows how further research can help future plant improvements. Past power plant retrofits at Pacific Gas and Electric Company`s Geysers Power Plants include innovative H{sub 2}S burners that reduced chemical costs and a turbine jack-shaft that improved unit efficiency. Other important retrofits that dramatically reduced turbine forced outage and repair costs were turbine blade and nozzle changes, turbine weld repairs, and steam desuperheating.

  14. Does Accelerated Soil Organic Matter Decomposition in the Presence of Plants Increase Plant N Availability?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whe...

  15. 78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ..., ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or... produced through genetic engineering that are plant pests or that there is reason to believe are plant... complete. In a notice \\2\\ published in ] the Federal Register on July 13, 2012, (77 FR 41363-41364,...

  16. 76 FR 44891 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... time to prepare and submit comments on the Monsanto petition, our plant pest risk assessment, and our... assessment, and plant pest risk assessment are also available on the APHIS Web site at http://www.aphis.usda... petition, draft environmental assessment, or plant pest risk assessment, contact Ms. Cindy Eck at (301)...

  17. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.).

    PubMed

    Tato, Liliana; De Nisi, Patrizia; Donnini, Silvia; Zocchi, Graziano

    2013-11-01

    Plant phenolics encompass a wide range of aromatic compounds and functions mainly related to abiotic and biotic environmental responses. In calcareous soils, the presence of bicarbonate and a high pH cause a decrease in iron (Fe) bioavailability leading to crop yield losses both qualitatively and quantitatively. High increases in phenolics were reported in roots and root exudates as a consequence of decreased Fe bioavailability suggesting their role in chelation and reduction of inorganic Fe(III) contributing to the mobilization of Fe oxides in soil and plant apoplast. Shikimate pathway represents the main pathway to provide aromatic precursors for the synthesis of phenylpropanoids and constitutes a link between primary and secondary metabolism. Thus the increased level of phenolics suggests a metabolic shift of carbon skeletons from primary to secondary metabolism. Parietaria judaica, a spontaneous plant well adapted to calcareous environments, demonstrates a high metabolic flexibility in response to Fe starvation. Plants grown under low Fe availability conditions showed a strong accumulation of phenolics in roots as well as an improved secretion of root exudates. P. judaica exhibits enhanced enzymatic activities of the shikimate pathway. Furthermore, the non-oxidative pentose phosphate pathway, through the transketolase activity supplies erythrose-4-phosphate, is strongly activated. These data may indicate a metabolic rearrangement modifying the allocation of carbon skeletons between primary and secondary metabolism and the activation of a nonoxidative way to overcome a mitochondrial impairment. We suggest that high content of phenolics in P. judaica play a crucial role in its adaptive strategy to cope with low Fe availability. PMID:23769379

  18. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method. PMID:17434170

  19. Improving information availability in vascular surgical clinics. A service evaluation and improvement project.

    PubMed

    Hurst, Katherine; Kreckler, Simon; Handa, Ashok; Handa, Ashok

    2016-01-01

    This prospective service evaluation was designed to assess the availability of critical information required in vascular surgical clinics. All the data was collected via a repeated questionnaire, and the outcomes from each cycle were used to highlight where intervention was required to improve the surgical clinic experience. The first audit identified outpatient clinic deficiencies and allowed for problem analysis. Two Plan-Do-Check-Act (PDCA) cycles then were undertaken. Interventions following each cycle included consultant access to online duplex scans and secretarial access to referral letters. Results from the first cycle showed that approximately 20% of clinic appointments were missing information and only 30% of these issues were resolved during the clinic using a work around. Following the first intervention; the numbers of missing patient notes reduced to 4.3% (10.5%), and referral letters to 3.6% (4.6%). Although the numbers of missing duplex scan results increased to 6.5% (3.3%), the new system of online scan results allowed for all scans to be accessed during the clinic. Following results of a second PDCA cycle, vascular surgical secretaries were given access to 'choose and book', a database of GP referral letters. Post intervention, all missing referral letters (2%) could be accessed immediately within the clinic setting. Data driven interventions and repeated PDCA cycles can improve hospital systems for minimal cost. With an annual clinic turnaround of 2500 patients, these interventions can reduce clinic delays and potential harm caused by unavailable records for up to 500 patients a year. PMID:26893887

  20. Improving information availability in vascular surgical clinics. A service evaluation and improvement project

    PubMed Central

    Hurst, Katherine; Kreckler, Simon; Handa, Ashok; Handa, Ashok

    2016-01-01

    This prospective service evaluation was designed to assess the availability of critical information required in vascular surgical clinics. All the data was collected via a repeated questionnaire, and the outcomes from each cycle were used to highlight where intervention was required to improve the surgical clinic experience. The first audit identified outpatient clinic deficiencies and allowed for problem analysis. Two Plan-Do-Check-Act (PDCA) cycles then were undertaken. Interventions following each cycle included consultant access to online duplex scans and secretarial access to referral letters. Results from the first cycle showed that approximately 20% of clinic appointments were missing information and only 30% of these issues were resolved during the clinic using a work around. Following the first intervention; the numbers of missing patient notes reduced to 4.3% (10.5%), and referral letters to 3.6% (4.6%). Although the numbers of missing duplex scan results increased to 6.5% (3.3%), the new system of online scan results allowed for all scans to be accessed during the clinic. Following results of a second PDCA cycle, vascular surgical secretaries were given access to ‘choose and book’, a database of GP referral letters. Post intervention, all missing referral letters (2%) could be accessed immediately within the clinic setting. Data driven interventions and repeated PDCA cycles can improve hospital systems for minimal cost. With an annual clinic turnaround of 2500 patients, these interventions can reduce clinic delays and potential harm caused by unavailable records for up to 500 patients a year. PMID:26893887

  1. Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants.

    PubMed

    Fiasconaro, M Laura; Gogorcena, Yolanda; Muñoz, Fernando; Andueza, Donato; Sánchez-Díaz, Manuel; Antolín, M Carmen

    2012-08-01

    Symbiotic association of legumes with rhizobia frequently results in higher photosynthesis and soluble carbohydrates in comparison with nitrate-fed plants, which might improve its potential for biomass conversion into bioethanol. A greenhouse experiment was conducted to examine the effects of nitrogen source and water availability on stem characteristics and on relationships between carbohydrates, phenolic metabolism activity and cell wall composition in alfalfa (Medicago sativa L. cv. Aragón). The experiment included three treatments: (1) plants fed with ammonium nitrate (AN); (2) plants inoculated with rhizobia (R); and (3) plants inoculated with rhizobia and amended with sewage sludge (RS). Two levels of irrigation were imposed: (1) well-watered and (2) drought stress. Under well-watered conditions, nitrogen-fixing plants have increased photosynthesis and stem fermentable carbohydrate concentrations, which result in higher potential for biomass conversion to bioethanol than in AN plants. The latter had higher lignin due to enhanced activities of phenolic metabolism-related enzymes. Under drought conditions, the potential for bioethanol conversion decreased to a similar level in all treatments. Drought-stressed nitrogen-fixing plants have high concentrations of fermentable carbohydrates and cell wall cellulose, but ammonium nitrate-fed plants produced higher plant and stem biomass, which might compensate the decreasing stem carbohydrates and cellulose concentrations. PMID:22682561

  2. Method to improve drought tolerance in plants

    DOEpatents

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  3. The strategy of the wheat plant in acclimating growth and grain production to nitrogen availability.

    PubMed

    Oscarson, P

    2000-11-01

    Two cultivars of spring wheat (Triticum aestivum L.) were grown to maturity in hydroponic cultures. Nitrogen accumulation was controlled by daily growth-limiting additions of nitrate together with all other nutrients in excess. Six different curves of N accumulation were used, with the same relative changes from day to day, but with different amplitudes. These curves were obtained by using the same mathematic formula of the N accumulation curves but varying the value of initial N content. The total amount of nitrogen added varied from 20 mg plant(-1) to 65 mg plant(-1). Plant bioproductivity showed a linear response to accumulated N. The number of grains per plant increased linearly with increased N availability whereas grain weights were essentially unaffected. Grain N concentrations and N content varied slightly, with highest values generally at the lower N availability levels. The quantitatively most important response to increased N availability was an increased number of earbearing tillers per plant. This varied from 0.1 tiller plant(-1) at maturity when given 20 mg N plant(-1), up to about 2 tillers plant(-1) when given 65 mg N plant(-1). Not all tillers that were initiated developed ears. The reduction of tillers seems to be one important mechanism in adapting plant productivity to N availability. Other individual characters influenced by N availability were straw height and the number of spikelets per spike. The two cultivars behaved in a qualitatively similar manner over the range of N availability even though they quantitatively differed in grain size, N concentrations and yield. PMID:11113170

  4. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability of Draft Supplement 44 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License...

  5. ADSORPTION, DEGRADATION, AND PLANT AVAILABILITY OF 2,4-DINITROPHENOL IN SLUDGE-AMENDED CALCAREOUS SOILS

    EPA Science Inventory

    Dinitrophenol (DNP) is a moderately weak acid that is expected to be highly labile (leachable and plant available) in high-pH soils. The adsorption and degradation behavior of DNP in two sludge-amended, calcareous soils was determined and used to explain DNP uptake by plants grow...

  6. Plant-hummingbird interactions and temporal nectar availability in a restinga from Brazil.

    PubMed

    Fonseca, Lorena C N; Vizentin-Bugoni, Jeferson; Rech, André R; Alves, Maria Alice S

    2015-01-01

    Hummingbirds are the most important and specialized group of pollinating birds in the Neotropics and their interactions with plants are key components to many communities. In the present study we identified the assemblage of plants visited by hummingbirds and investigated the temporal availability of floral resources in an area of restinga, sandy plain coastal vegetation associated with the Atlantic forest, in Southeastern Brazil. We recorded flower and nectar features, flowering phenology and interactions between plants and hummingbirds and estimated the amount of calories produced per hectare from June 2005 to August 2006. Ten plant species were visited by two hummingbirds, Amazilia fimbriata and Eupetomena macroura. Resource availability was highly variable among plant species and over time. Nectar volume and concentration per flower were similar to other Neotropical hummingbird-visited plant assemblages. The estimated nectar resource availability between months varied from 0.85 to 5.97 Kcal per hectare/day, demanding an area between one and 6.8 ha to support a single hummingbird. Our study reports an unusual tropical setting where almost all interactions between hummingbirds and plants were performed by a single hummingbird species, A. fimbriata. Hence, the variable nectar availability is probably influencing hummingbird movements, its foraging area, and consequently plant pollination. PMID:26628024

  7. Limitations to postfire seedling establishment: the role of seeding technology, water availability, and invasive plant abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abund...

  8. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  9. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  10. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  11. Biotechnological interventions to improve plant developmental traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental traits are coordinated at various levels in a plant and involve organ to organ communications via long distance signaling processes that integrate transcription, hormonal action and environmental cues. Thus, plant architecture, root-soil-microbe interactions, flowering, fruit (and seed...

  12. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering.

    PubMed

    Le, Dung Tien; Chu, Ha Duc; Le, Ngoc Quynh

    2016-06-01

    Humans and animals are unable to synthesize essential amino acids such as branch chain amino acids methionine (Met), lysine (Lys) and tryptophan (Trp). Therefore, these amino acids need to be supplied through the diets. Several essential amino acids are deficient or completely lacking among crops used for human food and animal feed. For example, soybean is deficient in Met; Lys and Trp are lacking in maize. In this mini review, we will first summarize the roles of essential amino acids in animal nutrition. Next, we will address the question: "What are the amino acids deficient in various plants and their biosynthesis pathways?" And: "What approaches are being used to improve the availability of essential amino acids in plants?" The potential targets for metabolic engineering will also be discussed, including what has already been done and what remains to be tested. PMID:27252589

  13. Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits.

    PubMed

    Quirino, Z G M; Machado, I C

    2014-02-01

    To describe plant phenological patterns and correlate functioning for the quantity and quality of resources available for the pollinator, it is crucial to understand the temporal dynamics of biological communities. In this way, the pollination syndromes of 46 species with different growth habits (trees, shrubs, herbs, and vines) were examined in an area of Caatinga vegetation, northeastern Brazil (7° 28' 45″ S and 36° 54' 18″ W), during two years. Flowering was monitored monthly in all the species, over two years (from January 2003 to December 2004). Pollination syndromes were characterised based on floral traits such as size, colour, morphology, symmetry, floral resources, as well as on direct visual observation of floral visitors on focal plants and published information. We observed differences among the plant growth habits with respect to floral traits, types of resources offered, and floral syndromes. The flowering periods of the species varied among floral syndrome groups. The majority of the melittophilous species flowered during the rainy season in the two study years, while the species of the other pollination syndroms flowered at the end of the dry season. An asynchrony of flowering was noted among the chiropterophilous species, while the phalenophilous group concentrated during the rainy season. The overall availability of floral resources was different during the rainy and the dry seasons, and also it varied among plants with different growth habits. The availability of oil-flowers coincided with the period of low nectar availability. We observed a relationship between the temporal distribution of the pollination syndromes and the availability of floral resources among each growth habits in this tropical ecosystem. Resource allocation in seasonal environments, such as the Caatinga, can function as a strategy for maintaining pollinators, facilitating therefore the reproductive success of plant species. The availability of floral resources during

  14. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  15. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  16. Adsorption, degradation, and plant availability of 2,4-dinitrophenol in sludge-amended calcareous soils

    SciTech Connect

    O'Connor, G.A.; Lujan, J.R.; Jin, Y.

    1990-01-01

    2,4-Dinitrophenol (DNP) is a moderately weak acid that is expected to be highly labile (leachable and plant available) in high-pH soils. The adsorption and degradation behavior of DNP in two sludge-amended, calcareous soils was determined and used to explain DNP uptake by plants grown in the soils in the greenhouse. The DNP adsorption was minor in both soils and was only slightly affected by sludge. The DNP degradation was rapid in both soils and was unaffected by sludge. Thus, despite limited soil adsorption, plant uptake of DNP was minor in all crops and plant parts owing to rapid soil DNP degradation. Even if a municipal sludge highly contaminated with DNP was identified (an unlikely occurrence), concerns over possible plant contamination should not limit sludge applications to calcareous soils or leaching of DNP to groundwater, given careful water management.

  17. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  18. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  19. 78 FR 24714 - Notice of Funds Availability Inviting Applications for the Federal-State Marketing Improvement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Agricultural Marketing Service Notice of Funds Availability Inviting Applications for the Federal-State Marketing Improvement Program (FSMIP) AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice. SUMMARY: The Agricultural Marketing Service (AMS) announces the availability of approximately $1 million...

  20. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  1. Compositions and methods for improved plant feedstock

    DOEpatents

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  2. Improved Economics of Nuclear Plant Life Management

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Jarrell, Donald B.; Bond, Joseph W D.

    2007-07-31

    The adoption of new on-line monitoring, diagnostic and eventually prognostics technologies has the potential to impact the economics of the existing nuclear power plant fleet, new plants and future advanced designs. To move from periodic inspection to on-line monitoring for condition based maintenance and eventually prognostics will require advances in sensors, better understanding of what and how to measure within the plant; enhanced data interrogation, communication and integration; new predictive models for damage/aging evolution; system integration for real world deployments; quantification of uncertainties in what are inherently ill-posed problems and integration of enhanced condition based maintenance/prognostics philosophies into new plant designs, operation and O&M approaches. The move to digital systems in petrochemical, process and fossil fuel power plants is enabling major advances to occur in the instrumentation, controls and monitoring systems and approaches employed. The adoption within the nuclear power community of advanced on-line monitoring and advanced diagnostics has the potential for the reduction in costly periodic surveillance that requires plant shut-down , more accurate cost-benefit analysis, “just-in-time” maintenance, pre-staging of maintenance tasks, move towards true “operation without failures” and a jump start on advanced technologies for new plant concepts, such as those under the International Gen IV Program. There are significant opportunities to adopt condition-based maintenance when upgrades are implemented at existing facilities. The economic benefit from a predictive maintenance program based upon advanced on-line monitoring and advanced diagnostics can be demonstrated from a cost/benefit analysis. An analysis of the 104 US legacy systems has indicated potential savings at over $1B per year when applied to all key equipment; a summary of the supporting analysis is provided in this paper.

  3. Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils

    SciTech Connect

    Haq, A.U.; Bates, T.E.; Soon, Y.K.

    1980-07-01

    The objective of this study was to find a suitable extractant(s) for plant-available metals in metal contaminated soils. Swiss chard (Beta vulgaris L. Fordhook Giant) was grown in greenhouse pots on 46 Ontario soils varying in degree of contamination with metals. The soils had been contaminated with metals to varying degrees over a period of years. After 40 days, the plants were harvested and Zn, Cd, Ni, and Cu concentrations were measured. Each soil was extracted with nine different extractants: aqua regia, 0.01M EDTA, 0.005M DTPA, 0.02M NTA, 0.5N CH/sub 3/COOH, 1N CH/sub 3/COONH/sub 4/, 0.6N HCl + 0.05N AlCl/sub 3/, (COOH)/sub 2/ + (COONH/sub 4/)/sub 2/, and H/sub 2/O. Zinc, cadmium, nickel, and copper concentrations in Swiss chard were correlated with the amounts of soil Zn, Cd, Ni, and Cu removed by each extractant. Of the nine soil extractants, CH/sub 3/COONH/sub 4/ was the best predictor of plant-available Zn if only extractable Zn and soil pH were included as independent variables in a regression equation. Acetic acid was the best extractant for prediction of both plant-available Cd and Ni when soil pH was included in the equation. Attempts to find a suitable soil extractant for plant-available Cu were unsuccessful.

  4. The functional role of carbonate-cemented soil horizons in desert ecosystems: Spatial and temporal dynamics of plant water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water limited ecosystems, soil profile characteristics can control plant community composition and production through their effects on spatial and temporal patterns of plant available water. Little is known, however, about water availability in soil horizons cemented with carbonates (petrocalcic ...

  5. Role of soil adsorption and microbial degradation on dissipation of mesotrione in plant available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and post emergent weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant available water (PAW) is important for both the environmental fat...

  6. ESTIMATING PLANT-AVAILABLE WATER USING THE SIMPLE INVERSE YIELD MODEL FOR CLAYPAN LANDSCAPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-available water (PAW) capacity (PAWc) is one of the fundamental soil properties affecting crop yield, yet quantitative determination of PAWc at a field scale has been challenging. A Simple Inverse Yield Model (SIYM) has been devised and shown to be successful in estimating spatially-variable ...

  7. ESTIMATES OF PLANT-AVAILABLE WATER CAPACITY FOR CLAYPAN LANDSCAPES USING SOIL ELECTRICAL CONDUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape variability of plant available water (PAW) capacity is useful information for site-specific management, but is expensive to assess using traditional measurements. In this study, we hypothesized that for claypan soils, profile PAW capacity can be approximated by assuming a two-layer soil bo...

  8. ESTIMATING PLANT-AVAILABLE WATER CAPACITY FOR CLAYPAN LANDSCAPES USING APPARENT ELECTRICAL CONDUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within-field variability of plant available water (PAW) capacity is useful information for site-specific management, but is expensive to assess using traditional measurements. For Missouri claypan soils, relationships between soil apparent electrical conductivity (ECa) and topsoil thickness have bee...

  9. Estimating Plant-Available Water Using a Simple Inverse Yield Model for Claypan-Soil Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-available water (PAW) capacity is one of the fundamental soil properties affecting crop yield. For claypan soils in Central Missouri, the topsoil thickness above the claypan layer is highly related to profile PAW, and in turn greatly influences crop yield. Quantitative determination of PAW cap...

  10. 78 FR 32231 - Pioneer Hi-Bred International, Inc.; Availability of Plant Pest Risk Assessment, Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...We are advising the public that the Animal and Plant Health Inspection Service has prepared a preliminary determination regarding a request from Pioneer Hi-Bred International, Inc., seeking a determination of nonregulated status of canola designated as DP-073496- 4, which has been genetically engineered for resistance to the herbicide glyphosate. We are also making available for public review......

  11. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    NASA Astrophysics Data System (ADS)

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil

  12. Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes.

    PubMed

    Bagchi, Sumanta; Ritchie, Mark E

    2010-12-01

    Large mammalian herbivores may have positive, neutral, or negative effects on annual net aboveground plant production (NAP) in different ecosystems, depending on their indirect effects on availability of key nutrients such as soil N. In comparison, less is known about the corresponding influence of grazers, and nutrient dynamics, over annual net belowground plant production (NBP). In natural multi-species plant communities, it remains uncertain how grazing influences relative allocation in the above- and belowground compartments in relation to its effects on plant nutrients. We evaluated grazer impacts on NAP, NBP, and relative investment in the above- and belowground compartments, alongside their indirect effects on soil N availability in the multiple-use Trans-Himalayan grazing ecosystem with native grazers and livestock. Data show that a prevailing grazing intensity of 51% increases NAP (+61%), but reduces NBP (-35%). Grazing also reduced C:N ratio in shoots (-16%) and litter (-50%), but not in roots, and these changes coincided with increased plant-available inorganic soil N (+23%). Areas used by livestock and native grazers showed qualitatively similar responses since NAP was promoted, and NBP was reduced, in both cases. The preferential investment in the aboveground fraction, at the expense of the belowground fraction, was correlated positively with grazing intensity and with improvement in litter quality. These results are consistent with hypothesized herbivore-mediated positive feedbacks between soil nutrients and relative investment in above- and belowground compartments. Since potentially overlapping mechanisms, such as N mineralization rate, plant N uptake, compositional turnover, and soil microbial activity, may contribute towards these feedbacks, further studies may be able to discern their respective contributions. PMID:20585808

  13. Effect of commercially available plant-derived essential oil products on arthropod pests.

    PubMed

    Cloyd, Raymond A; Galle, Cindy L; Keith, Stephen R; Kalscheur, Nanette A; Kemp, Kenneth E

    2009-08-01

    Plant-derived essential oil products, in general, are considered minimum-risk pesticides and are exempt from Environmental Protection Agency registration under section 25(b) of the Federal Insecticide Fungicide and Rodenticide Act. However, many of the plant-derived essential products available to consumers (homeowners) have not been judiciously evaluated for both efficacy and plant safety. In fact, numerous plant-derived essential oil products labeled for control of arthropod pests have not been subject to rigorous evaluation, and there is minimal scientific information or supporting data associated with efficacy against arthropod pests. We conducted a series of greenhouse experiments to determine the efficacy and phytotoxicity of an array of plant-derived essential oil products available to consumers on arthropod pests including the citrus mealybug, Planococcus citri (Risso); western flower thrips, Frankliniella occidentalis (Pergande); twospotted spider mite, Tetranychus urticae Koch; sweetpotato whitefly B-biotype, Bemisia tabaci (Gennadius); and green peach aphid, Myzus persicae (Sulzer). Although the products Flower Pharm (cottonseed, cinnamon, and rosemary oil) and Indoor Pharm (soybean, rosemary, and lavender oil) provided > 90% mortality of citrus mealybug, they were also the most phytotoxic to the coleus, Solenostemon scutellarioides (L.) Codd, plants. Both GC-Mite (cottonseed, clove, and garlic oil) and Bugzyme (citric acid) were most effective against the twospotted spider mite (> or = 90% mortality). However, SMC (canola, coriander oil, and triethanolamine), neem (clarified hydrophobic extract of neem oil), and Bug Assassin (eugenol, sodium lauryl sulfate, peppermint, and citronella oil) provided > 80% mortality. Monterey Garden Insect Spray, which contained 0.5% spinosad, was most effective against western flower thrips with 100% mortality. All the other products evaluated failed to provide sufficient control of western flower thrips with < 30

  14. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B; Pastor, John

    2008-03-01

    A greenhouse mesocosm experiment, representing earthworm-free North American Acer-dominated forest floor and soil conditions, was used to examine the individual and combined effects of initial invasion by three European earthworm species (Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris) on the forest floor and upper soil horizons, N and P availability, and the mortality and biomass of four native understory plant species (Acer saccharum, Aquilegia canadensis, Aralia racemosa, and Carex pensylvanica). All the three earthworm species combined caused larger impacts on most variables measured than any single earthworm species. These included loss of O horizon mass, decreased thickness of the O horizon and increased thickness of the A horizon, and higher availability of N and P. The latter finding differs from field reports where nutrients were less available after invasion, and probably represents an initial transient increase in nutrient supply as earthworms consume and incorporate the O horizon into the A horizon. Earthworms also increased mortality of plants and decreased total mesocosm plant biomass, but here the impact of all the three earthworm species was no greater than that of L. terrestris and/or L. rubellus alone. This study corroborates field studies that European earthworm invasions alter North American forest ecosystem processes by initiating a cascade of impacts on plant community composition and soil properties. PMID:18066602

  15. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    PubMed Central

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  16. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  17. Improved plant performance through evaporative steam condensing

    SciTech Connect

    Hutton, D.

    1998-07-01

    Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

  18. Nutritional improvements in plants: Time to bite on biofortified foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern breeding, molecular genetic and biotechnology studies frequently describe changes in plant metabolism to improve nutritional content; however, this is often where the process of assessing biofortification ends. Ideally, these modified plants need to be used in controlled animal and human feed...

  19. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species. PMID:24944109

  20. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  1. Impact of hydrochar application on soil nutrient dynamics and plant availability

    NASA Astrophysics Data System (ADS)

    Bargmann, I.; Greef, J. M.; Kücke, M.

    2012-04-01

    In order to investigate potentials for the use of HTC-products (hydrochar) in agriculture, the influence of soil application of different hydrochars on soil nutrient dynamics as well as on plant growth and plant nutrient uptake was determined. Hydrochars were produced from sugar beet pulps and brewer's grains by carbonization at 190°C for 4 respectively 12 hours each. Incubation experiments with two soil types showed an increase of soil pH by 0.5 to 2.5 pH units, depending on the amount of hydrochar added and the process conditions (i.e. addition of calcium carbonate during production). The application of HTC to soil decreased the plant available nitrogen to almost zero in the first week after HTC-addition, followed by a slow re-release of nitrate in the following weeks. A similar immobilization of soluble phosphate was observed for one soil type, although to a lower extent. The plant availability of phosphorus in hydrochars and biochars is subject of current trials. Furthermore it is actually investigated to what extend the N immobilization is related to soil microbial activity. Germination tests with barley showed toxic effects of hydrochar application on germination, both by direct contact of grains with HTC as well as by release of gaseous compounds from HTC. Effects differ significantly for different parent materials and pretreatments (washing, drying, storage). The influence of HTC-addition to soil on plant growth and nutrient uptake was investigated in pot experiments with various crop species (barley, phaseolus bean, leek), comparing HTC from different parent materials and process parameters such as carbonization time. With increasing addition of HTC, the N availability was decreased and N contents in the plant were significantly lower compared with the untreated control. The plant growth response was different for each tested crop. On barley, leaf tip necroses were observed, but not on phaseolus. Biomass yield of barley and beans was generally increased

  2. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine.

    PubMed

    Boojar, Massod Mashhadi Akbar; Goodarzi, Faranak

    2008-11-01

    This study pioneered an approach that determined the effects of excess manganese (Mn) on three species; Datura stramonium, Alhagi camelthorn and Chenopodium ambrosioides. We investigated their levels of Mn, antioxidative enzymes and oxidative damage biomarkers in plants (zone 1) in and outside (zone 2) the Mn mine. The results showed that total and available Mn were at toxic levels for plants growing on zone 1. The Mn levels in each plant species were higher in leaves, stems and roots. Mn was only accumulated significantly in leaf vacuoles of A. camelthorn. Antioxidative enzyme activities of C. ambrosioides and/or D. stramonium in zone 1 were higher in leaves, stems and then in their roots. Malondialdehyde (MDA) and dityrosine levels were insignificantly higher in tissues of the studied plants in zone 1 with respect to zone 2. The roots of studied plants showed significantly higher levels of these biomarkers in comparison with their leaves in zone 1. Accordingly, antioxidative enzymatic response to Mn-stress in D. stramonium and C. ambrosioides and possibly accumulation of Mn in leaf vacuoles of A. camelthorn, protected them from oxidative damages and involved in their tolerance in Mn mine. PMID:18068229

  3. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    PubMed Central

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  4. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability

    PubMed Central

    He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-01-01

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739

  5. The influence of earthworms on the mobility of microelements in soil and their availability for plants

    NASA Astrophysics Data System (ADS)

    Bityutskii, N. P.; Kaidun, P. I.

    2008-12-01

    The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.

  6. Quantification of risks from technology for improved plant reliability

    SciTech Connect

    Rode, D.M.

    1996-12-31

    One of the least understood and therefore appreciated threats to profitability are risks from power plant technologies such as steam generators, turbines, and electrical systems. To effectively manage technological risks, business decisions need to be based on knowledge. The scope of the paper describes a quantification or risk process that combines technical knowledge and judgments with commercial consequences. The three principle alternatives to manage risks as well as risk mitigation techniques for significant equipment within a power plant are reported. The result is to equip the decision maker with a comprehensive picture of the risk exposures enabling cost effective activities to be undertaken to improve a plant`s reliability.

  7. Specialist Insect Herbivore and Light Availability Do Not Interact in the Evolution of an Invasive Plant.

    PubMed

    Zhang, Zhijie; Pan, Xiaoyun; Zhang, Ziyan; He, Kate S; Li, Bo

    2015-01-01

    Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176

  8. Specialist Insect Herbivore and Light Availability Do Not Interact in the Evolution of an Invasive Plant

    PubMed Central

    Zhang, Ziyan; He, Kate S.; Li, Bo

    2015-01-01

    Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176

  9. Is plant migration restrained by available nitrogen supply in high latitudes?

    NASA Astrophysics Data System (ADS)

    Lee, E.; Schlosser, C. A.; Felzer, B.; Kicklighter, D.; Cronin, T.; Melillo, J.; Prinn, R. G.

    2008-12-01

    Recent studies suggest that growth and distribution of natural vegetation in high latitudes may be controlled by the amount of available nitrogen. Yet few studies have examined the role of available nitrogen on plant migration in response to anticipated climate change. We use a modeling approach to explore this issue. With a projected climate dataset (GFDL CM 2.0) from the IPCC AR4 archive, we first estimate net nitrogen mineralization values for natural plant functional types in high latitudes (north of 52N), using the Terrestrial Ecosystem Model (TEM). Previous work with TEM indicates that warming increases the rates of net nitrogen mineralization in high latitudes (e.g. 10 percent increase in boreal forests), which may help support a pattern of increased woodiness in northern systems such as boreal woodlands filling in with trees and tundra becoming more shrubby. Constrained with the available nitrogen for each vegetation type, a simple rule- based model, which describes the migration process and adopts processes of climatic tolerances of trees from the BIOME biogeography model, is used to generate a newly projected vegetation map for high latitudes. Our study emphasizes the significance of the role of nitrogen in the high latitude plant distribution. We also investigate the climatic consequences of the changing albedo, resulting from shifts in the vegetation distribution.

  10. Reliability and availability analysis for robot subsystem in automotive assembly plant: a case study

    NASA Astrophysics Data System (ADS)

    Fudzin, A. F.; Majid, M. A. A.

    2015-12-01

    The automotive assembly plant in a manufacturing environment consists of conveying systems and robots. Robots with high reliability will ensure no interruption during production. This study is to analyze the individual robot reliability compared to reliability of robots subsystem in series configuration. Availability was computed based on individual robots breakdown data. Failures due to robots breakdown often occurred during the operations. Actual maintenance data for a period of seven years were used for the analysis. Incorporation of failures rate and mean time between failures yield the reliability computation with the assumption of constant failure rate. Result from the analysis based on 5000 operating hours indicated reliability of series configuration of robots in a subsystem decreased to 2.8% in comparison to 38% reliability of the individual robot with the lowest reliability. The calculated lowest availability of the robots is 99.41%. The robot with the lowest reliability and availability should be considered for replacement.

  11. Use of plants to evaluate the difference in available cadmium between soils

    SciTech Connect

    Kuboi, T.; Noguchi, A.

    1987-01-01

    A new method was proposed for assessing the difference in the capacity of soils to supply Cd to plants. The relation of tissue (tc) to soil (sc) Cd concentrations can be expressed as; log(tc) = ..cap alpha.. + ..beta.. log(sc), where ..cap alpha.. and ..beta.. are the regression coefficients. When the same plant is grown on another soil, the equation will change to; log(tc) = ..cap alpha..' + ..beta..' log(sc). Based on both equations, the relationship between sc' and sc becomes; log(sc') = (..cap alpha..-..cap alpha..)/..beta..' + (..beta../..beta..') log(sc). Set p = (..cap alpha..-..cap alpha..')/..beta..' and q = ..beta../..beta..', then the difference of Cd availability between two soils can be evaluated according to the values of p and q. The p and q values were determined among four treatments in which radish was grown on a sand soil and a silty loam soil at two pH levels. The values showed that the Cd present in the sand soil (pH 5.6) and the metal in the silty loam soil (pH 7.5) were the most and least available, respectively. It was therefore considered that the parameters p and q could be used as criteria for selecting an ideal extractant capable of removing the actually available Cd from soils.

  12. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  13. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  14. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    PubMed

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  15. A Hybrid Quorum Protocol for Improved Availability, Capacity, Load and Reduced Overhead

    NASA Astrophysics Data System (ADS)

    Pandey, Parul; Tripathi, Maheshwari

    2016-06-01

    Data replication is playing a vital role in the design of distributed information systems. This paper presents a novel and efficient distributed algorithm for managing replicated data and for better performance and availability. This paper presents an extension to existing wheel protocol for improved performance. Wheel protocol imposes a logical wheel structure on the set of copies of an object and gives smallest read quorum. In addition to small read quorum size for read intensive applications, it is necessary to have good write availability as well. This paper proposes two hybrid wheel protocols, which superimpose logarithmic and ring protocols on top of the wheel protocol. It shows that, both protocols help in improving write availability, read capacity, load and message overhead and also compare their performances with wheel and other protocols. Hybrid protocols expand usage of wheel protocol to different type of applications.

  16. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  17. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants

    PubMed Central

    Al-Wabel, Mohammad I.; Usman, Adel R.A.; El-Naggar, Ahmed H.; Aly, Anwar A.; Ibrahim, Hesham M.; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2014-01-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5–102% at 75% FC and 133–266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity. PMID:26150758

  18. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants.

    PubMed

    Al-Wabel, Mohammad I; Usman, Adel R A; El-Naggar, Ahmed H; Aly, Anwar A; Ibrahim, Hesham M; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2015-07-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5-102% at 75% FC and 133-266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity. PMID:26150758

  19. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  20. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea.

    PubMed

    Ellison, Aaron M; Gotelli, Nicholas J

    2002-04-01

    Atmospheric transport and deposition of nutrients, especially nitrogen, is a global environmental problem with well-documented consequences for ecosystem dynamics. However, monitoring nitrogen deposition is relatively expensive, monitoring stations are widely spaced, and estimates and predicted impacts of nitrogen deposition are currently derived from spatial modeling and interpolation of limited data. Ombrotrophic ("rain-fed") bogs are nutrient-poor ecosystems that are especially sensitive to increasing nutrient input, and carnivorous plants, which are characteristic of these widespread ecosystem types, may be especially sensitive indicators of N deposition. Botanical carnivory is thought to have evolved in nutrient-poor and well-lit habitats such as bogs because the marginal benefits accruing from carnivory exceed the marginal photosynthetic costs associated with the maintenance of carnivorous organs. However, the production of carnivorous organs can be a phenotypically plastic trait. The northern pitcher plant, Sarracenia purpurea, produces leaves specialized for prey capture and nutrient uptake (pitchers) and leaves that are more efficient at photosynthesis (phyllodia). We hypothesized that relative allocation to these two types of leaves reflects ambient nitrogen availability. We manipulated nutrient availability to plants with leaf enrichment and whole-plot fertilization experiments. Increased nitrogen, but not phosphorus, reduced production of pitchers relative to phyllodia; this result provided empirical support for the cost-benefit model of the evolution of botanical carnivory. Because this phenotypic shift in leaf production occurs in ecological time, our results suggest that S. purpurea could be a reliable and inexpensive biological indicator of nitrogen deposition rates. This suggestion is supported by field observations across a geographic gradient of nitrogen deposition. PMID:11904363

  1. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea

    PubMed Central

    Ellison, Aaron M.; Gotelli, Nicholas J.

    2002-01-01

    Atmospheric transport and deposition of nutrients, especially nitrogen, is a global environmental problem with well-documented consequences for ecosystem dynamics. However, monitoring nitrogen deposition is relatively expensive, monitoring stations are widely spaced, and estimates and predicted impacts of nitrogen deposition are currently derived from spatial modeling and interpolation of limited data. Ombrotrophic (“rain-fed”) bogs are nutrient-poor ecosystems that are especially sensitive to increasing nutrient input, and carnivorous plants, which are characteristic of these widespread ecosystem types, may be especially sensitive indicators of N deposition. Botanical carnivory is thought to have evolved in nutrient-poor and well-lit habitats such as bogs because the marginal benefits accruing from carnivory exceed the marginal photosynthetic costs associated with the maintenance of carnivorous organs. However, the production of carnivorous organs can be a phenotypically plastic trait. The northern pitcher plant, Sarracenia purpurea, produces leaves specialized for prey capture and nutrient uptake (pitchers) and leaves that are more efficient at photosynthesis (phyllodia). We hypothesized that relative allocation to these two types of leaves reflects ambient nitrogen availability. We manipulated nutrient availability to plants with leaf enrichment and whole-plot fertilization experiments. Increased nitrogen, but not phosphorus, reduced production of pitchers relative to phyllodia; this result provided empirical support for the cost–benefit model of the evolution of botanical carnivory. Because this phenotypic shift in leaf production occurs in ecological time, our results suggest that S. purpurea could be a reliable and inexpensive biological indicator of nitrogen deposition rates. This suggestion is supported by field observations across a geographic gradient of nitrogen deposition. PMID:11904363

  2. 76 FR 27301 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There... genetic engineering that are plant pests or that there is reason to believe are plant pests....

  3. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There... genetic engineering that are plant pests or that there is reason to believe are plant pests....

  4. Soil Nitrogen Availability and Plant Genotype Modify the Nutrition Strategies of M. truncatula and the Associated Rhizosphere Microbial Communities

    PubMed Central

    Zancarini, Anouk; Mougel, Christophe; Voisin, Anne-Sophie; Prudent, Marion; Salon, Christophe; Munier-Jolain, Nathalie

    2012-01-01

    Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability. PMID:23077550

  5. Improving the safety of LWR power plants. Final report

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  6. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming

    PubMed Central

    Burnouf, Thierry; Harrison, Robert A; Calvete, Juan J; Kuch, Ulrich; Warrell, David A; Williams,, David J

    2014-01-01

    Abstract Snakebite envenoming is a common but neglected public health problem, particularly in impoverished rural regions of sub-Saharan Africa, Asia and Latin America. The only validated treatment for this condition is passive immunotherapy with safe and effective animal-derived antivenoms. However, there is a long-lasting crisis in the availability of these life-saving medications, particularly in sub-Saharan Africa and parts of Asia. We herein advocate a multicomponent strategy to substantially improve the availability of safe and effective antivenoms at the global level. This strategy is based on: (i) preparing validated collections of representative venom pools from the most medically dangerous snakes in high-risk regions of the world; (ii) strengthening the capacity of national antivenom manufacturing and quality control laboratories and their regulatory authorities and establishing new facilities in developing countries through technology transfer, as an integral part of efforts to develop their biological products industry; (iii) getting established laboratories to generate antivenoms for various regions of the world; and (iv) getting governments and relevant organizations to give snakebite envenoming due recognition within national and international public health policy frameworks. These ways of making antivenom available should be complemented by actions to improve health information systems, the accessibility of antivenoms, the training of medical and nursing staff, and community-based education. Such a multicomponent strategy involving stakeholders on many levels could help consolidate sustainable improvements in antivenom availability worldwide. PMID:25110378

  7. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming.

    PubMed

    Gutiérrez, José María; Burnouf, Thierry; Harrison, Robert A; Calvete, Juan J; Kuch, Ulrich; Warrell, David A; Williams, David J

    2014-07-01

    Snakebite envenoming is a common but neglected public health problem, particularly in impoverished rural regions of sub-Saharan Africa, Asia and Latin America. The only validated treatment for this condition is passive immunotherapy with safe and effective animal-derived antivenoms. However, there is a long-lasting crisis in the availability of these life-saving medications, particularly in sub-Saharan Africa and parts of Asia. We herein advocate a multicomponent strategy to substantially improve the availability of safe and effective antivenoms at the global level. This strategy is based on: (i) preparing validated collections of representative venom pools from the most medically dangerous snakes in high-risk regions of the world; (ii) strengthening the capacity of national antivenom manufacturing and quality control laboratories and their regulatory authorities and establishing new facilities in developing countries through technology transfer, as an integral part of efforts to develop their biological products industry; (iii) getting established laboratories to generate antivenoms for various regions of the world; and (iv) getting governments and relevant organizations to give snakebite envenoming due recognition within national and international public health policy frameworks. These ways of making antivenom available should be complemented by actions to improve health information systems, the accessibility of antivenoms, the training of medical and nursing staff, and community-based education. Such a multicomponent strategy involving stakeholders on many levels could help consolidate sustainable improvements in antivenom availability worldwide. PMID:25110378

  8. Integrating New Technology Solutions to Improve Plant Operations

    SciTech Connect

    HEAVIN, ERIC

    2004-06-29

    Continuing advancements in software and hardware technology are providing facilities the opportunity for improvements in the areas of safety, regulatory compliance, administrative control, data collection, and reporting. Implementing these changes to improve plant operating efficiency can also create many challenges which include but are not limited to: justifying cost, planning for scalability, implementing applications across varied platforms, integrating multitudes of proprietary vendor applications, and creating a common vision for diverse process improvement projects. The Defense Programs (DP) facility at the Savannah River Site meets these challenges on a daily basis. Like many other plants, DP, has room for improvement when it comes to effective and clear communication, data entry, data storage, and system integration. Specific examples of areas targeted for improvement include: shift turnover meetings using system status data one to two hours old, lockouts and alarm inhibits performed on points on the Distributed Control System (DCS) and tracked in a paper logbook, disconnected systems preventing preemptive correction of regulatory compliance issues, and countless examples of additional task and data duplication on independent systems. Investment of time, money, and careful planning addressing these issues are already providing returns in the form of increased efficiency, improved plant tracking and reduced cost of implementing the next process improvement. Specific examples of improving plant operations through thoroughly planned Rapid Application Development of new applications are discussed. Integration of dissimilar and independent data sources (NovaTech D/3 DCS, SQL Server, Access, Filemaker Pro, etc.) is also explored. The tangible benefits of the implementation of the different programs to solve the operational problems previously described are analyzed in an in-depth and comparative manner.

  9. Luminant's Big Brown Plant wins for continuous improvement and safety programs

    SciTech Connect

    Peltier, R.

    2008-07-15

    Staff from Luminant's Big Brown Plant accepted the PRB Coal Users' Group's top honour for innovative improvements to coal-handling systems and a sterling safety record. The numbers reveal their accomplishments: an average EFOR less than 4%, an availability factor averaging 90% for a plant that burns a lignite/PRB mix, and staff who worked more than 2.6 million man-hours since March 2000 without a lost-time injury. 13 photos., 1 tab.

  10. New catalyst improves sulfur recovery at Canadian plant

    SciTech Connect

    Nasato, E. ); MacDougall, R.S. ); Lagas, J.A. )

    1994-02-28

    Installation at Mobil Oil Canada Ltd.'s Lone Pine Creek, Alta., gas plant of a second-generation Superclaus catalyst has, combined with the first-generation catalyst, resulted in higher overall sulfur recovery at lower reactor temperatures. Superclaus reactor inlet temperatures have been reduced from 255 to 200 C. and as a result have saved on utility costs and reduced tail-gas flow and CO[sub 2] emissions. Initial results indicate overall plant sulfur recovery has improved to the 98.7--98.9% range, up from the 98.0--98.3% first-generation catalyst performance level. The enhanced second-generation catalyst has also proven more operationally flexible than the first-generation catalyst. The paper describes the improved catalyst, the Superclaus process, catalyst performance, catalyst loading, equipment modifications, and performance of the plant.

  11. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants.

    PubMed

    Nongpiur, Ramsong Chantre; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2016-08-01

    Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops. PMID:27499683

  12. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability.

    PubMed

    Lind, Kara R; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar; Cademartiri, Ludovico

    2016-01-01

    We describe the design, characterization, and use of "programmable", sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology-the size distribution of the areas encircled by roots-appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  13. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    PubMed Central

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  14. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides

    PubMed Central

    Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  15. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria.

    PubMed

    Bardají, D K R; Reis, E B; Medeiros, T C T; Lucarini, R; Crotti, A E M; Martins, C H G

    2016-01-01

    This work investigated the antibacterial activity of 15 commercially available plant-derived essential oils (EOs) against a panel of oral pathogens. The broth microdilution method afforded the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the assayed EOs. The EO obtained from Cinnamomum zeylanicum (Lauraceae) (CZ-EO) displayed moderate activity against Fusobacterium nucleatum (MIC and MBC = 125 μg/mL), Actinomyces naeslundii (MIC and MBC = 125 μg/mL), Prevotella nigrescens (MIC and MBC = 125 μg/mL) and Streptococcus mutans (MIC = 200 μg/mL; MBC = 400 μg/mL). (Z)-isosafrole (85.3%) was the main chemical component of this oil. We did not detect cinnamaldehyde, previously described as the major constituent of CZ-EO, in specimens collected in other countries. PMID:26165725

  16. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?

    PubMed

    Bouis, Howarth E

    2003-05-01

    Can commonly-eaten food staple crops be developed that fortify their seeds with essential minerals and vitamins? Can farmers be induced to grow such varieties? If so, would this result in a marked improvement in human nutrition at a lower cost than existing nutrition interventions? An interdisciplinary international effort is underway to breed for mineral- and vitamin-dense varieties of rice, wheat, maize, beans and cassava for release to farmers in developing countries. The biofortification strategy seeks to take advantage of the consistent daily consumption of large amounts of food staples by all family members, including women and children as they are most at risk for micronutrient malnutrition. As a consequence of the predominance of food staples in the diets of the poor, this strategy implicitly targets low-income households. After the one-time investment is made to develop seeds that fortify themselves, recurrent costs are low and germplasm may be shared internationally. It is this multiplier aspect of plant breeding across time and distance that makes it so cost-effective. Once in place, the biofortified crop system is highly sustainable. Nutritionally-improved varieties will continue to be grown and consumed year after year, even if government attention and international funding for micronutrient issues fades. Biofortification provides a truly feasible means of reaching malnourished populations in relatively remote rural areas, delivering naturally-fortified foods to population groups with limited access to commercially-marketed fortified foods that are more readily available in urban areas. Biofortification and commercial fortification are, therefore, highly complementary. Breeding for higher trace mineral density in seeds will not incur a yield penalty. Mineral-packed seeds sell themselves to farmers because, as recent research has shown, these trace minerals are essential in helping plants resist disease and other environmental stresses. More seedlings

  17. Effects of plant availability on population size and dynamics of an insect community: diamondback moth and two of its parasitoids.

    PubMed

    Soufbaf, M; Fathipour, Y; Karimzadeh, J; Zalucki, M P

    2014-08-01

    To understand the effect of plant availability/structure on the population size and dynamics of insects, a specialist herbivore in the presence of two of its parasitoids was studied in four replicated time-series experiments with high and low plant availabilities; under the latter condition, the herbivore suffered from some periods of resource limitation (starvation) and little plant-related structural refuges. Population dynamics of the parasitoid Cotesia vestalis was governed mainly by the delayed density-dependent process under both plant setups. The parasitoid, Diadegma semiclausum, under different plant availabilities and different coexistence situations (either +competitor or -competitor) showed dynamics patterns that were governed mainly by the delayed density process (significant lags at weeks 2-4). Both the competing parasitoids did not experience beneficial or costly interferences from each other in terms of their own population size when the plant resource was limited. Variation in the Plutella xylostella population under limited plant availability is higher than that under the other plant setup. For both parasitoids, under limited plant setup, the extinction risk was lower when parasitoids were engaged in competition, while under the unlimited plant setup, the mentioned risk was higher when parasitoids competed. In this situation, parasitoids suffered from two forces, competition and higher escaped hosts. PMID:24521693

  18. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  19. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  20. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  1. Chromium fractionation and plant availability in tannery-sludge amended soil

    NASA Astrophysics Data System (ADS)

    Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte

    2013-04-01

    The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the

  2. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    NASA Astrophysics Data System (ADS)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  3. Engineering performance monitoring: Sustained contributions to plant performance improvement

    SciTech Connect

    Bebko, J.J. )

    1992-01-01

    With the aim of achieving excellence in an engineering department that makes both individual project-by-project contributions to plant performance improvement and sustained overall contributions to plant performance, the Niagara Mohawk Nuclear Engineering Department went back to the basics of running a business and established an Engineering Performance Monitoring System. This system focused on the unique products and services of the department and their cost, schedule, and quality parameters. The goals were to provide the best possible service to customers and the generation department and to be one of the best engineering departments in the industry.

  4. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  5. Physiologically available cyanide (PAC) in manufactured gas plant waste and soil samples

    SciTech Connect

    Magee, B.; Taft, A.; Ratliff, W.; Kelley, J.; Sullivan, J.; Pancorbo, O.

    1995-12-31

    Iron-complexed cyanide compounds, such as ferri-ferrocyanide (Prussian Blue), are wastes associated with former manufactured gas plant (MGP) facilities. When tested for total cyanide, these wastes often show a high total cyanide content. Because simple cyanide salts are acutely toxic, cyanide compounds can be the subject of concern. However, Prussian Blue and related species are known to have a low order of human and animal toxicity. Toxicology data on complexed cyanides will be presented. Another issue regarding Prussian Blue and related species is that the total cyanide method does not accurately represent the amount of free cyanide released from these cyanide species. The method involves boiling the sample in an acidic solution under vacuum to force the formation of HCN gas. Thus, Prussian Blue, which is known to be low in toxicity, cannot be properly evaluated with current methods. The Massachusetts Natural Gas Council initiated a program with the Massachusetts Department of Environmental Protection to develop a method that would define the amount of cyanide that is able to be converted into hydrogen cyanide under the pH conditions of the stomach. It is demonstrated that less than 1% of the cyanide present in Prussian Blue samples and soils from MGP sites can be converted to HCN under the conditions of the human stomach. The physiologically available cyanide method has been designed to be executed at a higher temperature for one hour. It is shown that physiologically available cyanide in MGP samples is < 5--15% of total cyanide.

  6. Therapeutic Education in Improving Cancer Pain Management: A Synthesis of Available Studies.

    PubMed

    Prevost, Virginie; Delorme, Claire; Grach, Marie-Christine; Chvetzoff, Gisèle; Hureau, Magalie

    2016-07-01

    This literature review aims to synthesize available studies and to update findings in order to obtain a current, comprehensive estimate of the benefits of pain education. Forty-four original articles obtained from the PubMed database were analyzed to investigate which protocols could be most effective in improving pain management. Recent studies indicate a growing interest in evaluating patients' skills and attitudes; these include satisfaction with cancer pain treatment, patient-reported improvement, and patient participation-all of which could be dependable benchmarks for evaluating the effectiveness of educational programs. Besides pain measurement, recent studies advance support for the importance of assessing newly developed outcome criteria. In this sense, patients' active participation and decision making in their pain management are probably the most relevant goals of pain education. PMID:25991567

  7. Experimental Investigation of climate change effects on plant available water on rocky desert slopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Hikel, H.; Schwanghart, W.; Yair, Aaron

    2010-05-01

    Deserts and semi-deserts cover more than one-third of the global land surface, affecting about 49 million km2 with aridity. In many arid regions, slopes are characterized by sparse and patchy soil and vegetation cover, forming so called 'fertility islands'. The mosaic of soil and vegetation is dynamically interdependent, controlled by adaption of the ecosystem to limited and spatially as well as temporarily variable precipitation. Commonly, the role of the pattern of rocks and soil is considered to act as a natural water harvesting system. In an ideal system, the rocky area supplying water matches the soil's infiltration capacity for the given rainfall magnitude. This approach limits the assessment of plant water supply to the amount and intensity of rainfall events, i.e. the supply of water. In reality, the demand of water by the plants also requires consideration. Therefore, the volume of soil storing water is equally important to the ration of soil to rock. Soil volume determines the absolute amount of water stored in the soil and is thus indicative of the time period during which plants do not experience drought related stress between rainfall events. With climate change likely affecting the temporal pattern of rainfall events, a detailed understanding of soil-water interaction, including the storage capacity of patchy soils on rocky slopes, is required. The aim of the study is to examine the relationship between climate change and plant available water on patchy soils in the Negev desert. Thirteen micro-catchments near Sede Boqer were examined. For each micro-catchment, soil volume and distribution was estimated by laser scanning before and after soil excavation. Porosity was estimated by weighing the excavated soil. Before excavation, sprinkling experiments were conducted. Rainfall of 18mm/h was applied to an area of 1m2 each. The experiments lasted 25 to 40 minutes, until equilibrium runoff rates were achieved. Based on these data, rainfall required for soil

  8. 78 FR 67100 - Okanagan Specialty Fruits, Inc.; Availability of Plant Pest Risk Assessment and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    .... In a notice \\2\\ published in ] the Federal Register on July 13, 2012, (77 FR 41362-41363, Docket No... (77 FR 13258-13260, Docket No. APHIS-2011-0129) a notice describing our public review process for... in any plant or plant product: A protozoan, a nonhuman animal, a parasitic plant, a bacterium,...

  9. 76 FR 37770 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason To... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  10. 77 FR 41363 - BASF Plant Science, LP; Availability of Petition for Determination of Nonregulated Status of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ..., ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or... produced through genetic engineering that are plant pests or that there is reason to believe are plant... status. On March 6, 2012, we published in the Federal Register (77 FR 13258-13260, Docket No....

  11. 76 FR 27303 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  12. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus

    PubMed Central

    Rineau, F; Shah, F; Smits, M M; Persson, P; Johansson, T; Carleer, R; Troein, C; Tunlid, A

    2013-01-01

    The majority of nitrogen in forest soils is found in organic matter–protein complexes. Ectomycorrhizal fungi (EMF) are thought to have a key role in decomposing and mobilizing nitrogen from such complexes. However, little is known about the mechanisms governing these processes, how they are regulated by the carbon in the host plant and the availability of more easily available forms of nitrogen sources. Here we used spectroscopic analyses and transcriptome profiling to examine how the presence or absence of glucose and/or ammonium regulates decomposition of litter material and nitrogen mobilization by the ectomycorrhizal fungus Paxillus involutus. We found that the assimilation of nitrogen and the decomposition of the litter material are triggered by the addition of glucose. Glucose addition also resulted in upregulation of the expression of genes encoding enzymes involved in oxidative degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism. In contrast, the addition of ammonium to organic matter had relatively minor effects on the expression of transcripts and the decomposition of litter material, occurring only when glucose was present. On the basis of spectroscopic analyses, three major types of chemical modifications of the litter material were observed, each correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggest that the expression of the decomposition and nitrogen assimilation processes of EMF can be tightly regulated by the host carbon supply and that the availability of inorganic nitrogen as such has limited effects on saprotrophic activities. PMID:23788332

  13. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  14. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  15. MAPK transgenic circuit to improve plant stress-tolerance?

    PubMed Central

    Moustafa, Khaled

    2014-01-01

    Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call “MAPK transgenic circuits” to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical industry. PMID:25482799

  16. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  17. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  18. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  19. Management Systems, Patient Quality Improvement, Resource Availability, and Substance Abuse Treatment Quality

    PubMed Central

    Fields, Dail; Roman, Paul M; Blum, Terry C

    2012-01-01

    Objective To examine the relationships among general management systems, patient-focused quality management/continuous process improvement (TQM/CPI) processes, resource availability, and multiple dimensions of substance use disorder (SUD) treatment. Data Sources/Study Setting Data are from a nationally representative sample of 221 SUD treatment centers through the National Treatment Center Study (NTCS). Study Design The design was a cross-sectional field study using latent variable structural equation models. The key variables are management practices, TQM/continuous quality improvement (CQI) practices, resource availability, and treatment center performance. Data Collection Interviews and questionnaires provided data from treatment center administrative directors and clinical directors in 2007–2008. Principal Findings Patient-focused TQM/CQI practices fully mediated the relationship between internal management practices and performance. The effects of TQM/CQI on performance are significantly larger for treatment centers with higher levels of staff per patient. Conclusions Internal management practices may create a setting that supports implementation of specific patient-focused practices and protocols inherent to TQM/CQI processes. However, the positive effects of internal management practices on treatment center performance occur through use of specific patient-focused TQM/CPI practices and have more impact when greater amounts of supporting resources are present. PMID:22098342

  20. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

    PubMed Central

    Wijnands, Karolina A.P.; Meesters, Dennis M.; van Barneveld, Kevin W.Y.; Visschers, Ruben G.J.; Briedé, Jacob J.; Vandendriessche, Benjamin; van Eijk, Hans M.H.; Bessems, Babs A.F.M.; van den Hoven, Nadine; von Wintersdorff, Christian J.H.; Brouckaert, Peter; Bouvy, Nicole D.; Lamers, Wouter H.; Cauwels, Anje; Poeze, Martijn

    2015-01-01

    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues. PMID:26132994

  1. 77 FR 10472 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment for Determination of Nonregulated Status... INFORMATION: On December 27, 2011, we published in the Federal Register (76 FR 80872-80873, Docket No....

  2. Can measures of prey availability improve our ability to predict the abundance of large marine predators?

    PubMed

    Wirsing, Aaron J; Heithaus, Michael R; Dill, Lawrence M

    2007-09-01

    Apex marine predators can structure marine communities, so factors underlying their abundance are of broad interest. However, such data are almost completely lacking for large sharks. We assessed the relationship between tiger shark abundance, water temperature, and the availability of a variety of known prey over 5 years in Western Australia. Abundance of sharks in four size categories and the density of prey (cormorants, dugongs, sea snakes, sea turtles) were indexed using daily catch rates and transects, respectively. Across all sizes, thermal conditions were a determinant of abundance, with numerical peaks coinciding with periods of high water temperature. However, for sharks exceeding 300 cm total length, the inclusion of dugong density significantly improved temperature-based models, suggesting that use of particular areas by large tiger sharks is influenced by availability of this sirenian. We conclude that large marine predator population models may benefit from the inclusion of measures of prey availability, but only if such measures consider prey types separately and account for ontogenetic shifts in the diet of the predator in question. PMID:17549522

  3. Improving Data Availability for Better Access Performance: A Study on Caching Scientific Data on Distributed Workstations

    SciTech Connect

    Ma, Xiaosong; Zhang, Zhe; Vazhkudai, Sudharshan S

    2009-01-01

    Client-side data caching serves as an excellent mechanism to store and analyze the rapidly growing amount of scientific data. In our previous work, we built a distributed local cache on unreliable desktop storage contributions. This offers several desirable properties, such as performance impedance matching, improved space utilization, and high parallel I/O bandwidth. Such a low-cost, best-effort cache, however, is faced with the vagaries of storage node availability: these donated machines may be significantly less reliable than dedicated systems and cannot be controlled centrally. In this paper, we address %the tradeoffs between techniques that favor %availability or performance when it comes to cache management. the performance impact of data availability in the distributed scientific data cache setting. We then present a novel approach to storage cache management, {\\em remote partial data recovery (RPDR)}. We compare our approach to two standard techniques, namely replication and erasure coding, both extended to the target caching environment. Our evaluation uses a trace-driven simulation parameterized with benchmarking results from our distributed cache prototype. The results with multiple real-world traces indicate that RPDR significantly outperforms both replication and erasure coding in many cases and overall the combination of RPDR and erasure coding yields the best performance.

  4. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  5. Availability Of Deep Groundwater-Derived CO2 For Plant Uptake In A Costa Rican Rainforest

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Genereux, D. P.; Osburn, C. L.; Dierick, D.; Oviedo Vargas, D.

    2014-12-01

    isotopically-heavy CO2 from the Arboleda stream. Keeling plots of samples taken at the Arboleda and Sura deviated from those over the Taconazo and indicated a source of 13C other than atmospheric air and respired CO2. Our data suggest that CO2 from regional groundwater has the potential to be available to riparian plants, but primarily at areas of turbulent water flow.

  6. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  7. Estimating plant available water for general crop simulations in ALMANAC/APEX/EPIC/SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based simulation models ALMANAC/APEX/EPIC/SWAT contain generalized plant growth subroutines to predict biomass and crop yield. Environmental constraints typically restrict plant growth and yield. Water stress is often an important limiting factor; it is calculated as the sum of water use f...

  8. Availability Improvement of Layer 2 Seamless Networks Using OpenFlow

    PubMed Central

    Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando

    2015-01-01

    The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861

  9. Availability improvement of layer 2 seamless networks using OpenFlow.

    PubMed

    Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando

    2015-01-01

    The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861

  10. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    PubMed

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. PMID:21764102

  11. Caching-Based Multi-Swarm Collaboration for Improving Content Availability in BitTorrent

    NASA Astrophysics Data System (ADS)

    Lee, Hyunyong; Yoshida, Masahiro; Nakao, Akihiro

    Despite its great success, BitTorrent suffers from the content unavailability problem where peers cannot complete their content downloads due to some missing chunks, which is caused by a shortage of seeders who hold the content in its entirety. The multi-swarm collaboration approach is a natural choice for improving content availability, since content unavailability cannot be overcome by one swarm easily. Most existing multi-swarm collaboration approaches, however, suffer from content-related limitations, which limit their application scopes. In this paper, we introduce a new kind of multi-swarm collaboration utilizing a swarm as temporal storage. In a nutshell, the collaborating swarms cache some chunks of each other that are likely to be unavailable before the content unavailability happens and share the cached chunks when the content unavailability happens. Our approach enables any swarms to collaborate with each other without the content-related limitations. Simulation results show that our approach increases the number of download completions by over 50% (26%) compared to normal BitTorrent (existing bundling approach) with low overhead. In addition, our approach shows around 30% improved download completion time compared to the existing bundling approach. The results also show that our approach enables the peers participating in our approach to enjoy better performance than other peers, which can be a peer incentive.

  12. Plant exomics: Concepts, applications and methodologies in crop improvement

    PubMed Central

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  13. Structure determination and improved model of plant photosystem I.

    PubMed

    Amunts, Alexey; Toporik, Hila; Borovikova, Anna; Nelson, Nathan

    2010-01-29

    Photosystem I functions as a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae, and higher plants. Functionally, Photosystem I captures sunlight and transfers the excitation energy through an intricate and precisely organized antenna system, consisting of a pigment network, to the center of the molecule, where it is used in the transmembrane electron transfer reaction. Our current understanding of the sophisticated mechanisms underlying these processes has profited greatly from elucidation of the crystal structures of the Photosystem I complex. In this report, we describe the developments that ultimately led to enhanced structural information of plant Photosystem I. In addition, we report an improved crystallographic model at 3.3-A resolution, which allows analysis of the structure in more detail. An improved electron density map yielded identification and tracing of subunit PsaK. The location of an additional ten beta-carotenes as well as five chlorophylls and several loop regions, which were previously uninterpretable, are now modeled. This represents the most complete plant Photosystem I structure obtained thus far, revealing the locations of and interactions among 17 protein subunits and 193 non-covalently bound photochemical cofactors. Using the new crystal structure, we examine the network of contacts among the protein subunits from the structural perspective, which provide the basis for elucidating the functional organization of the complex. PMID:19923216

  14. Plant exomics: concepts, applications and methodologies in crop improvement.

    PubMed

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  15. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. PMID:27372277

  16. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  17. Solid Dose Form of Metformin with Ethyl Eicosapentaenoic Acid Does Not Improve Metformin Plasma Availability

    PubMed Central

    Burton, Jeffrey H.; Johnson, William D.; Greenway, Frank L.

    2016-01-01

    Background The purpose of the study was to investigate effects of ethyl eicosapentaenoic acid on pharmacokinetics of metformin. Pharmacokinetic profiles of metformin and ethyl eicosapentaenoic acid when delivered separately or together in solid dose form were investigated and compared to determine whether the solid dose resulted in an altered metforminpharmacokinetics when given with or without food. Methods A single-center, open-label, repeated dose study investigated the pharmacokinetic (PK) profile of metformin when administered in solid dose form with ethyl eicosapentaenoic acid compared to co-administration with icosapent ethyl, an ester of eicosapentaenoic acid and ethyl alcohol used to treat severe hypertriglyceridemia with metformin hydrochloride. Non-compartmental PK methods were used to compare area under the plasma concentration curve (AUC) and maximum plasma concentration (Cmax) between patients randomized to either the ester or separate medications group under both fasting and fed conditions. Results Using these two PK parameters, results showed that metformin availability was higher under fasting conditions when delivered separately from icosapent ethyl. There were no group differences in the fed condition. Conclusions The solid dose form of metformin and ethyl eicosapentaenoic acid did not improve the pharmacokinetics of metformin in terms of plasma availability, suggesting that little is to be gained over the separate administration of ethyl eicosapentaenoic acid and metformin hydrochloride. PMID:26893954

  18. Improved food availability for food security in Asia-Pacific region.

    PubMed

    Yang, Ray-Yu; Hanson, Peter M

    2009-01-01

    Food security requires that all people can access sufficient food for a healthy life. Enough food is produced to feed the global population, but more than 1.02 billion people are malnourished. Malnutrition and chronic food insecurity are widespread in some countries of the Asia-Pacific region; as much as 20 to 60 percent of the region's population lacks sufficient food to meet their minimum energy requirement. Food security greatly depends on food availability, although this alone is not sufficient to secure satisfactory nutritional status. Food security at the national level requires an effective framework of food, health, and economic systems coupled with awareness and consideration of environmental conditions. To improve food availability and security in the short term, lower income countries should focus on increasing productivity in the food system to generate higher incomes for workers on-farm and off-farm in the food chain. Over the long term, sustainable and small-scale farming based on ecologically viable systems should be the emphasis for agricultural development. Nutrition and health sectors should help promote food-based approaches that lead to diversification of crops, balanced diets, and ultimately better health. PMID:19965357

  19. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role. PMID:27209244

  20. Optimizing available water capacity using microwave satellite data for improving irrigation management

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  1. 77 FR 41366 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Federal Register (77 FR 13258-13260, Docket No. APHIS-2011-0129) a notice \\1\\ describing our updated..., a parasitic plant, a bacterium, a fungus, a virus or viroid, an infectious agent or other...

  2. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods.

    PubMed

    Goodman, Richard E; Tetteh, Afua O

    2011-08-01

    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety. PMID:21487714

  3. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  4. Decomposition and plant-available nitrogen in biosolids: laboratory studies, field studies, and computer simulation.

    PubMed

    Gilmour, John T; Cogger, Craig G; Jacobs, Lee W; Evanylo, Gregory K; Sullivan, Dan M

    2003-01-01

    This research combines laboratory and field studies with computer simulation to characterize the amount of plant-available nitrogen (PAN) released when municipal biosolids are land-applied to agronomic crops. In the laboratory studies, biosolids were incubated in or on soil from the land application sites. Mean biosolids total C, organic N, and C to N ratio were 292 g kg(-1), 41.7 g kg(-1), and 7.5, respectively. Based on CO2 evolution at 25 degrees C and optimum soil moisture, 27 of the 37 biosolids-soil combinations had two decomposition phases. The mean rapid and slow fraction rate constants were 0.021 and 0.0015 d(-1), respectively, and the rapid fraction contained 23% of the total C assuming sequential decomposition. Where only one decomposition phase existed, the mean first order rate constant was 0.0046 d(-1). The mean rate constant for biosolids stored in lagoons for an extended time was 0.00097 d(-1). The only treatment process that was related to biosolids treatment was stabilization by storage in a lagoon. Biosolids addition rates (dry basis) ranged from 1.3 to 33.8 Mg ha(-1) with a mean value of 10.6 Mg ha(-1). A relationship between fertilizer N rate and crop response was used to estimate observed PAN at each site. Mean observed PAN during the growing season was 18.9 kg N Mg(-1) or 37% of the biosolids total N. Observed PAN was linearly related to biosolids total N. Predicted PAN using the computer model Decomposition, actual growing-season weather, actual analytical data, and laboratory decomposition kinetics compared well with observed PAN. The mean computer model prediction of growing-season PAN was 19.2 kg N Mg(-1) and the slope of the regression between predicted and observed PAN was not significantly different from unity. Predicted PAN obtained using mean decomposition kinetics was related to predicted PAN using actual decomposition kinetics suggesting that mean rate constants, actual weather, and actual analytical data could be used in

  5. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.

    2014-03-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  6. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  7. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  8. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  9. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    SciTech Connect

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  10. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession.

    PubMed

    Cline, Lauren C; Zak, Donald R

    2015-12-01

    Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultural abandonment, as well as three forests representing potential late-successional ecosystems. Fungal and bacterial community composition was quantified from ribosomal DNA, and insight into the functional potential of the microbial community to decay plant litter was gained from shotgun metagenomics and extracellular enzyme assays. Accumulation of soil organic matter across the chronosequence exerted a positive and significant effect on fungal phylogenetic β-diversity and the activity of extracellular enzymes with lignocellulolytic activity. In addition, the increasing abundance of lignin-rich C4 grasses was positively related to the composition of fungal genes with lignocellulolytic function, thereby linking plant community composition, litter biochemistry, and microbial community function. However, edaphic properties were the primary agent shaping bacterial communities, as bacterial β-diversity and variation in functional gene composition displayed a significant and positive relationship to soil pH across the chronosequence. The late-successional forests were compositionally distinct from the oldest old fields, indicating that substantial changes occur in soil microbial communities as old fields give way to forests. Taken together, our observations demonstrate that plants govern the turnover of soil fungal communities and functional characteristics during secondary succession, due to the continual input of detritus and differences in litter biochemistry among plant species. PMID:26909442

  11. Larval food plants of Australian Larentiinae (Lepidoptera: Geometridae) - a review of available data

    PubMed Central

    2016-01-01

    Abstract Background In Australia, the subfamily Larentiinae (Lepidoptera: Geometridae) comprises over 45 genera with about 270 species described so far. However, life histories of the Australian larentiine moths have barely been studied. New information The current paper presents a list of larval food plants of 51 Australian larentiine species based on literature references, data from specimen labels and own observations. Some Australian habitats are shown. Possible relationships among the taxa based on food preference of the larvae are discussed. Additionally, a list of Australasian larentiine species from the genera occurring in Australia and their food plants is presented. PMID:27099558

  12. Power plant performance monitoring and improvement. Volume 1. Boiler optimization

    SciTech Connect

    Crim, H.G.

    1986-02-01

    The boiler portion of RP1681/2153 deals with the development of procedures for determining the optimum fireside operating conditions in a coal fired power plant and the development of instrumentation and monitoring systems for achieving the resulting improvements in heat rate. This annual report describes the rsults of the project for the period beginning in October, 1982. A computer code was developed which takes information on the plant and calculates heat rate as a function of parameters such as excess air and steam flow rate. Computational results obtained to date for Potomac Electric Power Company's Morgantown Unit No. 2 show that the net unit heat rate is a very sensitive function of grind size of the coal, level of excess air and exit gas temperature. The theoretical calculations suggest that by optimizing these three parameters, improvements in net unit heat rate of the order of 100 Btu/Kwh may be possible at Morgantown. An intrumentation assessment was carried out. Preparations are underway for boiler tests.

  13. Soil Phosphatase Activity and Plant-available Phosphorus Increase Following Grassland Invasion by N-fixing Tree Legumes

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Kantola, I. B.; Stott, D. E.; Balthrop, S. L.; Tribble, J. E.; Filley, T. R.

    2009-12-01

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. These woodlands are dominated by N-fixing tree legumes which are more productive above- and belowground, and store 2-3X more C and N than remnant grasslands. In tropical savannas and forests, it has been demonstrated that N-fixing plants are able to invest additional N in the acquisition of soil P. Accordingly, we hypothesized that soil acid phosphatase (AP) enzyme activity and concentrations of plant-available soil P (largely HPO4-2 and H2PO4-) would be greater in wooded areas dominated by N-fixing trees than in remnant grasslands where N-fixers are absent. We collected soils (0-7.5 cm) in remnant grasslands and in each of 4 different woodland types (clusters, groves, drainage woodlands, and playas) in a savanna parkland landscape in southern Texas. Plant-available soil P was determined by sorption onto anion exchange resin membranes placed in soil-water mixtures and shaken for 16 hr. P was desorbed from resin membranes using 0.5 N HCl and quantified colorimetrically using the Murphy-Riley technique. AP activity was determined using para-nitrophenyl phosphate as an analogue orthophosphate substrate, and then quantifying the p-nitrophenol (pNP) reaction product. AP activity was 250 µg pNP/g soil/hr in grasslands, and increased linearly with time following woody plant invasion to 1400 µg pNP/g soil/hr in the oldest woody plant assemblages (90 yrs). Plant available P was 3 mg P/kg soil in grasslands, and ranged from 10 to 45 mg P/kg soil in wooded areas. Within each of the wooded landscape types, plant-available P increased linearly with time following woody invasion and was correlated with soil AP activity. Results are consistent with prior studies showing that AP and plant-available P are elevated under canopies of N-fixing plants

  14. Diversity of wild Malus germplasm available in the USDA-ARS National Plant Germplasm System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant explorers have visited Russia, Turkey, Kazakhstan, and China over the past twenty years to find populations of the wild relatives of apple (Malus). Seeds from wild populations of M. sieversii, M. orientalis, M. hupehensis, M. kansuensis, M. toringo, M. bhutanica, M. transitoria, and M. zhaojia...

  15. Elevated CO2 effects on semiarid grassland plant in relation to water availability and competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. It has been suggested that much of the elevated CO2 effect on plant productivity and N cycling in semiarid grasslands is related to a CO2-induced increase in soil moisture, but the relative importance of moisture-mediated and direct effects of CO2 remain unclear. 2. We grew five grassland species...

  16. Effect of Nitrogen Availability on Mineral Nutrient Uptake and Plant Growth of Container-Grown Hydrangeas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rooted liners of Hydrangea macrophylla 'Red Star' were fertigated with one of three nitrogen (N) concentrations (0, 140, or 280 ppm) in a modified Hoagland’s solution from June to November. Every 3 weeks starting in June, plants in each N treatment (0N, 140N, 280N) were destructively harvested to de...

  17. 78 FR 13303 - Stine Seed Farm, Inc.; Availability of Plant Pest Risk Assessment, Environmental Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... Register on December 5, 1997 (62 FR 64350-64351, Docket No. 97-052-2), APHIS announced our determination of... movement, or release into the environment) of organisms and products altered or produced through...

  18. 78 FR 44924 - Monsanto Co.; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ...We are advising the public that the Animal and Plant Health Inspection Service has prepared a preliminary determination regarding a request from the Monsanto Company seeking a determination of nonregulated status of canola designated as MON 88302, which has been genetically engineered for resistance to the herbicide glyphosate with more flexibility in the timing of herbicide application. We......

  19. 78 FR 45169 - GENECTIVE SA; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... and products altered or produced through genetic engineering that are plant pests or that there is... notice \\2\\ published in the Federal Register on July 13, 2012, (77 FR 41353-41354, Docket No. APHIS-2012... (77 FR 13258-13260, Docket No. APHIS-2011-0129) a notice describing our process for soliciting...

  20. 76 FR 80871 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ...We are advising the public that the Animal and Plant Health Inspection Service has received a petition from the Monsanto Company seeking a determination of nonregulated status of soybean designated as MON 87769, which has been genetically engineered to produce stearidonic acid, an omega-3 fatty acid not found in conventional soybean. The petition has been submitted in accordance with our......

  1. 78 FR 44926 - Monsanto Co.; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ...We are advising the public that the Animal and Plant Health Inspection Service has prepared a preliminary determination regarding a request from the Monsanto Company seeking a determination of nonregulated status of maize designated as MON 87427, which has been genetically engineered with tissue-selective resistance to glyphosate in order to facilitate the production of hybrid maize seed. We......

  2. 78 FR 47272 - Monsanto Co.; Availability of Plant Pest Risk Assessment and Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... and products altered or produced through genetic engineering that are plant pests or that there is...\\ published in the Federal Register on July 13, 2012, ] (77 FR 41354-41355, Docket No. APHIS-2012-0020), APHIS... petition. \\1\\ On March 6, 2012, APHIS published in the Federal Register (77 FR 13258-13260, Docket...

  3. Plant Community Responses to Simultaneous Changes in Temperature, Nitrogen Availability, and Invasion

    PubMed Central

    Gornish, Elise S.; Miller, Thomas E.

    2015-01-01

    Background Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. Methods and Results In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. Conclusions and Significance This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment. PMID:25879440

  4. Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume.

    PubMed

    Rogers, Alistair; Gibon, Yves; Stitt, Mark; Morgan, Patrick B; Bernacchi, Carl J; Ort, Donald R; Long, Stephen P

    2006-08-01

    Plant growth is typically stimulated at elevated carbon dioxide concentration ([CO2]), but a sustained and maximal stimulation of growth requires acquisition of additional N in proportion to the additional C fixed at elevated [CO2]. We hypothesized that legumes would be able to avoid N limitation at elevated [CO2]. Soybean was grown without N fertilizer from germination to final senescence at elevated [CO2] over two growing seasons under fully open-air conditions, providing a model legume system. Measurements of photosynthesis and foliar carbohydrate content showed that plants growing at elevated [CO2] had a c. 25% increase in the daily integral of photosynthesis and c. 58% increase in foliar carbohydrate content, suggesting that plants at elevated [CO2] had a surplus of photosynthate. Soybeans had a low leaf N content at the beginning of the season, which was a further c. 17% lower at elevated [CO2]. In the middle of the season, ureide, total amino acid and N content increased markedly, and the effect of elevated [CO2] on leaf N content disappeared. Analysis of individual amino acid levels supported the conclusion that plants at elevated [CO2] overcame an early-season N limitation. These soybean plants showed a c. 16% increase in dry mass at final harvest and showed no significant effect of elevated [CO2] on leaf N, protein or total amino acid content in the latter part of the season. One possible explanation for these findings is that N fixation had increased, and that these plants had acclimated to the increased N demand at elevated [CO2]. PMID:16898025

  5. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil.

    PubMed

    Xu, Gang; Zhang, You; Sun, Junna; Shao, Hongbo

    2016-10-15

    Little is known about the interactive effects between biochar application and phosphorus (P) fertilization on plant growth and P uptake. For this purpose, five wheat straw biochars (produced at 25°C, 300°C, 400°C, 500°C and 600°C for 4h) with equal P (36mgkg(-1)) amount, with and without additional P fertilization (100mgkg(-1)) were applied in a pot experiment to investigate the growth of Suaeda salsa and their uptake of P from biochar and P fertilization amended saline sodic soil. Soil P fractions, dry matter yield, and plant P concentrations were determined after harvesting 90days. Our results confirmed that relatively lower pyrolysis temperature (<400°C) biochar retained P availability and increased plant growth. The plant P concentration was significantly correlated with NaHCO3-Pi (P<0.05), and NaOH-Pi (P<0.1) during early incubation time (4days) for biochar amended soil. As revealed by statistical analysis, a significant (P<0.05) negative (antagonistic) interaction occurred between biochar and P fertilization on the biomass production and plant P concentration. For plant biomass, the effects size of biochar (B), P, and their interaction followed the order of B×P (0.819)>B (0.569)≈P (0.568) based on the partial Eta squared values whereas the order changed as P (0.782)>B (0.562)>B×P (0.515) for plant P concentration. When biochar and P fertilization applied together, phosphate precipitation/sorption reaction occurred in saline sodic soil which explained the decreased plant P availability and plant yield in saline sodic soil. The negative interaction effects between biochar and P fertilization indicated limited utility value of biochar application in saline sodic soil. PMID:27328879

  6. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  7. In vitro thrombolytic potential of root extracts of four medicinal plants available in Bangladesh

    PubMed Central

    Hussain, Fahad; Islam, Ariful; Bulbul, Latifa; Moghal, Mizanur Rahman; Hossain, Mohammad Salim

    2014-01-01

    Context: Thrombus formation inside the blood vessels obstructs blood flow through the circulatory system leading hypertension, stroke to the heart, anoxia, and so on. Thrombolytic drugs are widely used for the management of cerebral venous sinus thrombosis patients, but they have certain limitations. Medicinal plants and their components possessing antithrombotic activity have been reported before. However, plants that could be used for thrombolysis has not been reported so far. Aims: This study's aim was to evaluate the thrombolytic potential of selected plants’ root extracts. Settings and Design: Plants were collected, dried, powdered and extracted by methanol and then fractionated by n-hexane for getting the sample root extracts. Venous blood samples were drawn from 10 healthy volunteers for the purposes of investigation. Subjects and Methods: An in vitro thrombolytic model was used to check the clot lysis potential of four n-hexane soluble roots extracts viz., Acacia nilotica, Justicia adhatoda, Azadirachta indica, and Lagerstroemia speciosa along with streptokinase as a positive control and saline water as a negative control. Statistical Analysis Used: Dunnett t-test analysis was performed using SPSS is a statistical analysis program developed by IBM Corporation, USA. on Windows. Results: Using an in vitro thrombolytic model, A. nilotica, L. speciosa, A. indica, and J. adhatoda at 5 mg extract/ml NaCl solution concentration showed 15.1%, 15.49%, 21.26%, and 19.63% clot lysis activity respectively. The reference streptokinase showed 47.21%, and 24.73% clot lysis for 30,000 IU and 15,000 IU concentrations, respectively whereas 0.9% normal saline showed 5.35% clot lysis. Conclusions: The selected extracts of the plant roots possess marked thrombolytic properties that could lyse blood clots in vitro; however, in vivo clot dissolving properties and active components responsible for clot lysis are yet to be discovered. PMID:25538351

  8. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  9. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  10. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2002-06-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's fourth quarterly technical progress report. It covers the period performance from January 1, 2002 through March 31, 2002.

  11. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  12. A Review on Plants Used for Improvement of Sexual Performance and Virility

    PubMed Central

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V. K.; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  13. A review on plants used for improvement of sexual performance and virility.

    PubMed

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V K; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  14. Effects of climate change on water demand and water availability for power plants - examples for the German capital Berlin

    NASA Astrophysics Data System (ADS)

    Voegele, Stefan; Koch, Hagen; Grünewald, Uwe

    2010-05-01

    Effects of climate change on water demand and water availability for power plants - examples for the German capital Berlin Stefan Vögelea, Hagen Kochb&c, Uwe Grünewaldb a Forschungszentrum Jülich, Institute of Energy Research - Systems Analysis and Technology Evaluation, D-52425 Jülich, Germany b Brandenburg University of Technology Cottbus, Chair Hydrology and Water Resources Management, P.O. Box. 101 344, D-03013 Cottbus, Germany c Potsdam Institute for Climate Impact Research, Research Domain Climate Impacts and Vulnerabilities, P.O. Box 601203, D-14412 Potsdam, Germany Numerous power plants in Europe had to be throttled in the summer months of the years 2003 and 2006 due to water shortages and high water temperatures. Therefore, the effects of climate change on water availability and water temperature, and their effects on electric power generation in power plants have received much attention in the last years. The water demand of a power plant for cooling depends on the temperature of the surface waters from which the cooling water is withdrawn. Furthermore, air temperature and air humidity influence the water demand if a cooling tower is used. Beside climatic parameters, the demand for water depends on economic and technological factors as well as on the electricity demand and the socio-political framework. Since the different systems are connected with certain levels of uncertainty, scenarios of socio-economic development and climate change should be used in analyses of climate change on power plants and to identify adaptation measures. In this presentation the effects of global change, comprising technological, socio-economic and climate change, and adaptation options to water shortages for power plants in the German capital Berlin in the short- and long-term are analysed. The interconnection between power plants, i.e. water demand, and water resources management, i.e. water availability, is described in detail. By changing the cooling system of power

  15. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    PubMed Central

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  16. Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants.

    PubMed

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  17. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils. PMID:24727792

  18. Ethylene resistance in flowering ornamental plantsimprovements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  19. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities. PMID:27056098

  20. Soil respiration responses to variation in temperature and moisture availability under woody plants and grasses

    NASA Astrophysics Data System (ADS)

    Pravalprukskul, P.; Pavao-Zuckerman, M.; Barron-Gafford, G. A.

    2011-12-01

    Woody plant encroachment into grasslands, such as in the southwestern US, is thought to have altered regional carbon fluxes due to the differences in structure and function between grasses and woody plants. It is unknown how climate change predictions for such areas, particularly warmer temperatures and fewer but larger precipitation events, might further acerbate our ability to estimate flux dynamics. Soil respiration, a key flux affecting ecosystem carbon balance, has been increasingly studied, but the exact effects of temperature and precipitation changes on flux rates have not been fully determined, particularly their interactive effects. The goal of this study was to compare soil respiration responses to different temperatures in soils under native southwestern mesquites and grasses undergoing a precipitation pulse, whilst removing other confounding factors, such as soil history, through the controlled environments within Biosphere 2. Mesquites and grasses were transplanted into ground basalt within two environments maintained at a 4°C temperature difference, the projected temperature increase from climate change. Post-transplant soil samples were incubated between 10 and 40°C to determine the temperature sensitivities of soils from each microhabitat within a month of this transplant. A single-peak, best-fit model for grass soils suggested a weak temperature sensitivity, while mesquite soils showed little to no sensitivity. Additionally, all plants underwent a drought treatment prior to the precipitation event, and soil respiration rates were tracked over several days using the collar technique. This portion of the study allowed for an estimation of the sensitivity of soil respiration to precipitation pulses under a variety of antecedent moisture conditions. Initial results illustrate that soils under mesquites tend to respire significantly more than soil under grasses or in bare soils over the course of a precipitation event. Together, these results suggest

  1. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    John W. Rich

    2003-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting

  2. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    PubMed

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health. PMID:27485228

  3. Influence of nitrate availability in production of plant carbon-based chemical defenses

    SciTech Connect

    Mihaliak, C.A.

    1987-01-01

    Rosettes of Heterotheca subaxillaris (Asteraceae) allocate greater quantities of carbon to root growth and leaf mono- and sesqui-terpenes as nitrate availability declines. Greater genetic variation and phenotypic plasticity of leaf volatile terpene accumulation occur in a population where nitrate availability is variable, relative to beetles occurring under consistently low nitrate availability conditions. Differences between beetle populations in volatile leaf terpene content appear to be primarily environmental in origin rather than genetic. Time-course /sup 14/CO/sub 2/ tracer studies suggest that the higher leaf volatile terpene content observed under nitrate-limitation may result from increased synthesis of a long-term volatile terpene pool. Accumulation of volatile terpenes under nitrate-limitation may reflect an increased pool of carbon and energy maintained at the sites of volatile terpenoid synthesis.

  4. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    ERIC Educational Resources Information Center

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  5. Elevated CO2 affects plant responses to variation in boron availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: geranium (Pelargonium x hortorum), barley (Hordeum vulga...

  6. Randomized Trial of the Availability, Responsiveness and Continuity (ARC) Organizational Intervention for Improving Youth Outcomes in Community Mental Health Programs

    ERIC Educational Resources Information Center

    Glisson, Charles; Hemmelgarn, Anthony; Green, Philip; Williams, Nathaniel J.

    2013-01-01

    Objectives: The primary objective of the study was to assess whether the Availability, Responsiveness and Continuity (ARC) organizational intervention improved youth outcomes in community based mental health programs. The second objective was to assess whether programs with more improved organizational social contexts following the 18-month ARC…

  7. 25 CFR 30.121 - What funds are available to assist schools identified for school improvement, corrective action...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carry out those schools' responsibilities under 20 U.S.C. 6316(b). With the approval of the school board... school improvement, corrective action, or restructuring? 30.121 Section 30.121 Indians BUREAU OF INDIAN... Progress § 30.121 What funds are available to assist schools identified for school improvement,...

  8. 25 CFR 30.121 - What funds are available to assist schools identified for school improvement, corrective action...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carry out those schools' responsibilities under 20 U.S.C. 6316(b). With the approval of the school board... school improvement, corrective action, or restructuring? 30.121 Section 30.121 Indians BUREAU OF INDIAN... Progress § 30.121 What funds are available to assist schools identified for school improvement,...

  9. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. PMID:25707745

  10. Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus

    PubMed Central

    Slavov, Gancho; Allison, Gordon; Bosch, Maurice

    2013-01-01

    Tropical C4 grasses from the genus Miscanthus are believed to have great potential as biomass crops. However, Miscanthus species are essentially undomesticated, and genetic, molecular and bioinformatics tools are in very early stages of development. Furthermore, similar to other crops targeted as lignocellulosic feedstocks, the efficient utilization of biomass is hampered by our limited knowledge of the structural organization of the plant cell wall and the underlying genetic components that control this organization. The Institute of Biological, Environmental and Rural Sciences (IBERS) has assembled an extensive collection of germplasm for several species of Miscanthus. In addition, an integrated, multidisciplinary research programme at IBERS aims to inform accelerated breeding for biomass productivity and composition, while also generating fundamental knowledge. Here we review recent advances with respect to the genetic characterization of the cell wall in Miscanthus. First, we present a summary of recent and on-going biochemical studies, including prospects and limitations for the development of powerful phenotyping approaches. Second, we review current knowledge about genetic variation for cell wall characteristics of Miscanthus and illustrate how phenotypic data, combined with high-density arrays of single-nucleotide polymorphisms, are being used in genome-wide association studies to generate testable hypotheses and guide biological discovery. Finally, we provide an overview of the current knowledge about the molecular biology of cell wall biosynthesis in Miscanthus and closely related grasses, discuss the key conceptual and technological bottlenecks, and outline the short-term prospects for progress in this field. PMID:23847628

  11. Cyanogenic glycosides in plant-based foods available in New Zealand.

    PubMed

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread.  PMID:23984870

  12. Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities.

    PubMed

    Wright, Alexandra J; Ebeling, Anne; de Kroon, Hans; Roscher, Christiane; Weigelt, Alexandra; Buchmann, Nina; Buchmann, Tina; Fischer, Christine; Hacker, Nina; Hildebrandt, Anke; Leimer, Sophia; Mommer, Liesje; Oelmann, Yvonne; Scheu, Stefan; Steinauer, Katja; Strecker, Tanja; Weisser, Wolfgang; Wilcke, Wolfgang; Eisenhauer, Nico

    2015-01-01

    The natural world is increasingly defined by change. Within the next 100 years, rising atmospheric CO₂ concentrations will continue to increase the frequency and magnitude of extreme weather events. Simultaneously, human activities are reducing global biodiversity, with current extinction rates at ~1,000 × what they were before human domination of Earth's ecosystems. The co-occurrence of these trends may be of particular concern, as greater biological diversity could help ecosystems resist change during large perturbations. We use data from a 200-year flood event to show that when a disturbance is associated with an increase in resource availability, the opposite may occur. Flooding was associated with increases in productivity and decreases in stability, particularly in the highest diversity communities. Our results undermine the utility of the biodiversity-stability hypothesis during a large number of disturbances where resource availability increases. We propose a conceptual framework that can be widely applied during natural disturbances. PMID:25600177

  13. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  14. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  15. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  16. Collect Data, Tell Stories: Utilizing Available Data to Improve Wound Product Selection, Reduce Costs, and Improve Outcomes

    PubMed Central

    Mostow, Eliot; Montemayor, Jon D.; Pittinger, Sean; Miller, Stephannie; Blasiole, Kimberly N.; Fulton, Judith

    2014-01-01

    Objective: To develop a tool to assist in the evaluation of treatment options based on clinically relevant parameters, thus enabling clinicians to heal patients more efficiently. Approach: Outlined here is the prototypic model of a comprehensive analysis tool to compare products by category, accounting for product characteristics, effectiveness data from literature, costs, and patient needs or clinician preferences. Results: The tool is demonstrated with a venous leg ulcer example, and ideas for expanding the tool in the future are provided. Innovation: Although this is a simple model, the authors believe that it provides a valid and useful platform for comparing similar products of a given type using available information and reflecting real-world use to give a practical approach to clinical decision-making. Conclusion: Future funding for comprehensive, comparative effectiveness studies should provide clarity on which products to choose for specific applications. Meanwhile, tools like this can provide guidance, and can be modified to accommodate varying circumstances. PMID:25126475

  17. Collect Data, Tell Stories: Utilizing Available Data to Improve Wound Product Selection, Reduce Costs, and Improve Outcomes.

    PubMed

    Mostow, Eliot; Montemayor, Jon D; Pittinger, Sean; Miller, Stephannie; Blasiole, Kimberly N; Fulton, Judith

    2014-08-01

    Objective: To develop a tool to assist in the evaluation of treatment options based on clinically relevant parameters, thus enabling clinicians to heal patients more efficiently. Approach: Outlined here is the prototypic model of a comprehensive analysis tool to compare products by category, accounting for product characteristics, effectiveness data from literature, costs, and patient needs or clinician preferences. Results: The tool is demonstrated with a venous leg ulcer example, and ideas for expanding the tool in the future are provided. Innovation: Although this is a simple model, the authors believe that it provides a valid and useful platform for comparing similar products of a given type using available information and reflecting real-world use to give a practical approach to clinical decision-making. Conclusion: Future funding for comprehensive, comparative effectiveness studies should provide clarity on which products to choose for specific applications. Meanwhile, tools like this can provide guidance, and can be modified to accommodate varying circumstances. PMID:25126475

  18. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  19. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  20. Advanced control strategy for plant heat rate improvement

    SciTech Connect

    Schultz, P.; Frerichs, D.K.; Kyr, D.

    1995-12-31

    Florida Power & Light Company (FPL) supplies electricity to about half of the population of Florida, roughly 6.5 million people. The load base is largely residential/business with the obvious seasonal extremes due to the climate. FPL`s generating capacity is 16,320 MW composed of 70% traditional fossil cycle, 18% nuclear, and 12% gas turbine. The system load profile coupled with bulk power purchases is such that the 400 MW class units (9 Foster Wheeler drum type units comprising 24% of total capacity) are now forced to cycle daily all year, and to come off line on weekends during the winter months. The current economic realities of power generation force utility companies to seek methods to improve plant heat rate, and FPL is no exception. FPL believed it possible to achieve the goal of lower heat rate and follow the required load demand with the 400 MW class units through the use of an advanced control strategy implemented totally within the unit`s Distributed Control System (DCS). As of the writing of this paper, the project is still ongoing. This paper will present the theory and methodology of the advanced control strategy along with the current design and implementation status and results obtained to date.

  1. Drivers of Plant-Availability of Phosphorus from Thermally Conditioned Sewage Sludge as Assessed by Isotopic Labeling

    PubMed Central

    Andriamananjara, Andry; Rabeharisoa, Lilia; Prud’homme, Loïc; Morel, Christian

    2016-01-01

    Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using 32P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg−1.We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery. PMID:27379240

  2. Drivers of Plant-Availability of Phosphorus from Thermally Conditioned Sewage Sludge as Assessed by Isotopic Labeling.

    PubMed

    Andriamananjara, Andry; Rabeharisoa, Lilia; Prud'homme, Loïc; Morel, Christian

    2016-01-01

    Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using (32)P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg(-1).We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery. PMID:27379240

  3. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  4. Improving Agricultural Productivity in Tonga through Ensuring Data Availability and Enhancing Agro-meteorological Services

    NASA Astrophysics Data System (ADS)

    Kim, K. H.

    2015-12-01

    The project was first conceived in the Global Framework for Climate Services Regional Consultation in the Cook Islands in March 2014. In this meeting, key officials from the Ministry of Agriculture and Food, Forests, and Fisheries and the Tonga Meteorological Services had a meeting with the APEC Climate Center scientists with the idea to collaborate on a joint project. The project evolved to include the following components: assessment of users' needs and capacities, development of an agricultural database, research on the core relationships between agriculture and climate through modeling and field trials, and the development and delivery of agro-meteorological services. Envisioned outputs include a 2-7 day warning for pests and diseases, a suite of tools supporting decisions on planting dates and crop varieties, and other advisory services derived from seasonal climate forecasts. As one of the climate adaptation projects under its Pacific Island portfolio, the project will deliver urgent information services for Tongan agricultural growers and exporters. The project comes into greater importance and urgency, as the 2014 drought event resulted in the destruction of 80% of squash in Tonga, a main export crop from which the country derives foreign exchange earnings. Since 2014, some of the project achievements include the first agro-met data collection in Tonga, the development of an agricultural DB management system that houses archived agriculture data, and key meetings with stakeholders to ensure alignment of the project objectives and design with the interests of the Tongan government and other stakeholders. In addition, rigorous scientific research through modeling and field trials has been conducted to address the twin goals of supporting Tonga's economy as well as food security. Based on the findings from the research, tools will be developed to translate the science into knowledge that supports decisions on the farm scale.

  5. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  6. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO₂.

    PubMed

    Morfopoulos, Catherine; Sperlich, Dominik; Peñuelas, Josep; Filella, Iolanda; Llusià, Joan; Medlyn, Belinda E; Niinemets, Ülo; Possell, Malcolm; Sun, Zhihong; Prentice, Iain Colin

    2014-07-01

    We present a unifying model for isoprene emission by photosynthesizing leaves based on the hypothesis that isoprene biosynthesis depends on a balance between the supply of photosynthetic reducing power and the demands of carbon fixation. We compared the predictions from our model, as well as from two other widely used models, with measurements of isoprene emission from leaves of Populus nigra and hybrid aspen (Populus tremula × P. tremuloides) in response to changes in leaf internal CO2 concentration (C(i)) and photosynthetic photon flux density (PPFD) under diverse ambient CO2 concentrations (C(a)). Our model reproduces the observed changes in isoprene emissions with C(i) and PPFD, and also reproduces the tendency for the fraction of fixed carbon allocated to isoprene to increase with increasing PPFD. It also provides a simple mechanism for the previously unexplained decrease in the quantum efficiency of isoprene emission with increasing C(a). Experimental and modelled results support our hypothesis. Our model can reproduce the key features of the observations and has the potential to improve process-based modelling of isoprene emissions by land vegetation at the ecosystem and global scales. PMID:24661143

  7. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  8. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  9. Leveraging Cloud Computing to Improve Storage Durability, Availability, and Cost for MER Maestro

    NASA Technical Reports Server (NTRS)

    Chang, George W.; Powell, Mark W.; Callas, John L.; Torres, Recaredo J.; Shams, Khawaja S.

    2012-01-01

    The Maestro for MER (Mars Exploration Rover) software is the premiere operation and activity planning software for the Mars rovers, and it is required to deliver all of the processed image products to scientists on demand. These data span multiple storage arrays sized at 2 TB, and a backup scheme ensures data is not lost. In a catastrophe, these data would currently recover at 20 GB/hour, taking several days for a restoration. A seamless solution provides access to highly durable, highly available, scalable, and cost-effective storage capabilities. This approach also employs a novel technique that enables storage of the majority of data on the cloud and some data locally. This feature is used to store the most recent data locally in order to guarantee utmost reliability in case of an outage or disconnect from the Internet. This also obviates any changes to the software that generates the most recent data set as it still has the same interface to the file system as it did before updates

  10. Analysis of plant available water in the context of climate change using Thornthwaite type monthly water balance model

    NASA Astrophysics Data System (ADS)

    Herceg, Andras; Gribovszki, Zoltan; Kalicz, Peter

    2016-04-01

    The hydrological impact of climate change can be dramatic. The primary objective of this paper was to analyze plant available water in the context of climate change using Thornthwaite type monthly water balance calibrated by remote sensing based ET maps. The calibrated model was used for projection on the basis of 4 climate model datasets. The 3 periods of projection were: 2010-2040, 2040-2070, and 2070-2100. The benefit of this method is its robust build up, which can be applied if temperature and precipitation time series are accessible. The key parameter is the water storage capacity of the soil (SOILMAX), which can be calibrated using the actual available evapotranspiration data. If the soil's physical properties are available, the maximal rooting depth is also projectable. Plant available water was evaluated for future scenarios focusing water stress periods. For testing the model, a dataset of an agricultural parcel next to Mosonmagyaróvár and a dataset of a small forest covered catchment next to Sopron were successfully used. Each of the models projected slightly ascending evapotranspiration values (+7 percent), but strongly decreasing soil moisture values (-15 percent) for the 21st century. The soil moisture minimum values (generally appeared at the end of the summer) reduced more than 50 percent which indicate almost critical water stress for vegetation. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project.

  11. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  12. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  13. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  14. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate

    PubMed Central

    Hao, Fei; He, Yanxi; Sun, Yating; Zheng, Bin; Liu, Yan; Wang, Xinmei; Zhang, Yongkai; Lee, Robert J.; Teng, Lirong; Xie, Jing

    2015-01-01

    Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0−∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0−∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and

  15. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate.

    PubMed

    Hao, Fei; He, Yanxi; Sun, Yating; Zheng, Bin; Liu, Yan; Wang, Xinmei; Zhang, Yongkai; Lee, Robert J; Teng, Lirong; Xie, Jing

    2016-01-01

    Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0-∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0-∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and AUC

  16. Effect of enhanced reactive nitrogen availability on plant-sediment mediated degradation of polycyclic aromatic hydrocarbons in contaminated mangrove sediment.

    PubMed

    Jiang, Shan; Lu, Haoliang; Zhang, Qiong; Liu, JingChun; Yan, Chongling

    2016-02-15

    As land-ocean interaction zones, mangrove systems receive substantial polycyclic aromatic hydrocarbons (PAHs) from sewage and combustion of fossil fuel. In this study, we investigated the relationship between dissolved inorganic nitrogen (DIN) availability and degradation rate of phenanthrene, a typical PAH compound, in mangrove plant-sediment systems, using Avicennia marina as a model plant. After 50day incubation, phenanthrene removal ratios in sediments ranged from 53.8% to 97.2%. In non-rhizosphere sediment, increasing DIN accessibility increased microbial biomass and total microbial activity, while enhancements in population size of phenanthrene degradation bacteria (PDB) and phenanthrene degradation rates were insignificant. In contrast, the presence of excessive DIN in rhizosphere sediment resulted in a significantly large number of PDB, leading to a rapid dissipation rate of phenanthrene. The differences in degradation rates and abundances of degrader in sediment may be explained by the enhanced root activity due to the elevation in DIN accessibility. PMID:26749225

  17. Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria.

    PubMed

    van der Wal, Annemieke; Leveau, Johan H J

    2011-03-01

    We present a continuous model for the diffusion of sugars across intact plant leaf cuticles. It is based on the flow of sugars from a source, representing the leaf apoplast, to a sink, in the shape of a hemispherical drop of water on the outside of the cuticle. Flow is a function of the difference between sugar concentrations C(Source) and C(Sink) , permeability P of the cuticle, volume V(Sink) of the water drop, as well as its contact angle α with the cuticle surface. Using a bacterial bioreporter for fructose, and a two-compartment experimental set-up consisting of isolated cuticles of walnut (Juglans regia) carrying water droplets while floating on solutions with increasing concentrations of fructose, we determined a value of 1 × 10⁻⁶ m h⁻¹ for P. Using this value, we explored different scenarios for the leaching of sugars across plant leaf cuticles to reveal in quantitative terms how diffusion takes longer when V(Sink) increases, P decreases or α increases. Bacterial growth was modelled as a function of changes in P, α and V(Sink) and was consistent with observations or suggestions from the literature in relation to the availability of free water on leaves. These results are discussed in the light of bacteria as ecosystem engineers, i.e. with the ability to modify the plant leaf surface environment in favour of their own survival, e.g. by increasing cuticle leakage or leaf wetness. Our model represents a first step towards a more comprehensive model which will enhance our quantitative understanding of the factors that play a role in nutrient availability to bacterial colonizers of the phyllosphere, or plant leaf surface. PMID:21091864

  18. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Beesley, L

    2015-08-15

    Heavy metals in soil are naturally occurring but may be enhanced by anthropogenic activities such as mining. Bio-accumulation of heavy metals in the food chain, following their uptake to plants can increase the ecotoxicological risks associated with remediation of contaminated soils using plants. In the current experiment sugar cane straw-derived biochar (BC), produced at 700 °C, was applied to a heavy metal contaminated mine soil at 1.5%, 3.0% and 5.0% (w/w). Jack bean (Canavalia ensiformis) and Mucuna aterrima were grown in pots containing soil and biochar mixtures, and control pots without biochar. Pore water was sampled from each pot to confirm the effects of biochar on metal solubility, whilst soils were analyzed by DTPA extraction to confirm available metal concentrations. Leaves were sampled for SEM analysis to detect possible morphological and anatomical changes. The application of BC decreased the available concentrations of Cd, Pb and Zn in 56, 50 and 54% respectively, in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water (1st collect: 99 to 39 μg L(-1), 2nd: 97 to 57 μg L(-1) and 3rd: 71 to 12 μg L(-1)). The application of BC reduced the uptake of Cd, Pb and Zn by plants with the jack bean translocating high proportions of metals (especially Cd) to shoots. Metals were also taken up by Mucuna aterrima but translocation to shoot was more limited than for jack bean. There were no differences in the internal structures of leaves observed by scanning electron microscopy. This study indicates that biochar application during mine soil remediation reduce plant concentrations of potential toxic metals. PMID:26048395

  19. Crop Improvement through Modification of the Plant's Own Genome

    PubMed Central

    Rommens, Caius M.; Humara, Jaime M.; Ye, Jingsong; Yan, Hua; Richael, Craig; Zhang, Lynda; Perry, Rachel; Swords, Kathleen

    2004-01-01

    Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Ω-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA. PMID:15133156

  20. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?

    PubMed

    Ahmad, Rashid; Waraich, Ejaz Ahmad; Nawaz, Fahim; Ashraf, Muhammad Y; Khalid, Muhammad

    2016-01-30

    Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper. PMID:25906838

  1. Process energy efficiency improvement in Wisconsin cheese plants

    SciTech Connect

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-07-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually.

  2. Bromeliad-living spiders improve host plant nutrition and growth.

    PubMed

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought. PMID:16676522

  3. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  4. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed. PMID:23322250

  5. Comparison of toxic heavy metals concentration in medicinal plants and their respective branded herbal formulations commonly available in Khyber Pakhtunkhwa.

    PubMed

    Shah, Waheed Ali; Zakiullah; Khuda, Fazli; Khan, Faridullah; Saeed, Muhammad

    2016-07-01

    The present study was conducted on fifteen medicinal plants and their respective branded formulations, commonly used in Khyber Pakhtunkhwa, for the evaluation of toxic heavy metals. The purpose of the study was to assess the toxic profile of the crude medicinal plants with respect to the worldwide permissible limits of metal concentrations and to correlate it with their respective herbal formulations available on the market. Chromium (Cr), Copper (Cu), Lead (Pb), Manganese (Mn) and Nickel (Ni) content were evaluated using wet digestion and Atomic Absorption Spectrophotometry technique. The results exhibited that in 100% of the analyzed medicinal plants Cr and Ni are present in excess of the maximum limits, Cu and Pb in 73% and 60% respectively, while Mn is in the normal range. Likewise in the respective branded formulations Cr and Ni exceed the normal limit in 100% of the products, Cu and Pb in 27% and 20% of the products respectively, while Mn is in the normal range. It indicates that majority of people in Pakistan who frequently use herbal drugs in various forms are exposed to the hazardous elements, which may pose serious health effects. Regulatory measures should therefore be taken to protect the general public from their hazardous health effects. PMID:27393438

  6. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  7. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  8. Millwater Pumping System Optimization Improves Efficiency and Saves Energy at an Automotive Glass Plant

    SciTech Connect

    2003-03-01

    In 2001, the Visteon automotive glass plant in Nashville, Tennessee renovated its millwater pumping system. This improvement saved the plant $280,000 annually in energy and operating costs, reduced annual energy consumption by 3.2 million kilowatt-hours, reduced water consumption, improved system performance, and reduced use of water treatment chemicals.

  9. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our

  10. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. PMID:26336230

  11. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture. PMID:23271460

  12. PHYTOCHEMICALS IN PLANTS: GENOMICS-ASSISTED PLANT IMPROVEMENT FOR NUTRITIONAL AND HEALTH BENEFITS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are an important source of essential nutrients and health-beneficial components that are crucial for human life. Because the intake of these phytochemicals is not always adequate, the resources of plant biotechnology are being used to enhance the nutritional quality of our plant-based food s...

  13. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. PMID:26473512

  14. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    PubMed Central

    Ricalde, M. Fernanda; Durán, Rafael; Dupuy, Juan Manuel; Simá, J. Luis; Us-Santamaría, Roberth; Santiago, Louis S.

    2010-01-01

    Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ13C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year−1) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ13C less negative than −20‰, indicating strong CAM activity. The bulk tissue δ13C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ13C values and annual rainfall, consistent with greater CO2 assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune. PMID:20652592

  15. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient.

    PubMed

    Ricalde, M Fernanda; Andrade, José Luis; Durán, Rafael; Dupuy, Juan Manuel; Simá, J Luis; Us-Santamaría, Roberth; Santiago, Louis S

    2010-12-01

    Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ(13)C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year(-1)) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ(13)C less negative than -20‰, indicating strong CAM activity. The bulk tissue δ(13)C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ(13)C values and annual rainfall, consistent with greater CO(2) assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune. PMID:20652592

  16. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.

    PubMed

    Cavalli, G; Baattrup-Pedersen, A; Riis, T

    2016-03-01

    The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land-water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land-water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land-water ecotone, e.g. Ranunculus and Callitriche. PMID:26414531

  17. Non-linear feedbacks between climate change, hydrologic partitioning, plant available water, and carbon cycling in montane forests

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Litvak, M. E.; Harpold, A. A.; Molotch, N. P.; McIntosh, J. C.; Troch, P. A.; Zapata, X.

    2011-12-01

    Changes in both temperature and the amount and timing of precipitation have the potential to profoundly impact water balance in mountain ecosystems. Although changes in the amount of precipitation and potential evapotranspiration are widely considered in climate change scenarios, less attention has been given to how changes in climate or land cover may affect hydrologic partitioning and plant available water. The focus of this presentation is on how spatial transitions in ecosystem structure and temporal transitions in climate affect the fraction of precipitation potentially available to vegetation. In most temperate mountain environments winter snows are a significant fraction of annual precipitation and understanding the partitioning of snow and snow melt is critical for predicting both ecosystem water availability and stream flow under future climate scenarios. Spatial variability in net snow water input is a function of the interaction of snowfall, wind, and solar radiation with topography and vegetation structure. Integrated over larger scales these interactions may result in between 0% and 40% sublimation of winter snowfall before melt, effectively excluding this water from growing season water balance. Once melt begins, variability in the partitioning of snowmelt is driven by the rate of melt, and somewhat less intuitively, by the timing of snow accumulation the previous fall. Early accumulating snowpacks insulate soils and minimize soil frost increasing infiltration of melt the following spring. In contrast, later snowfall results in colder soils, more soil frost, reduced infiltration, increased runoff during melt, and reduced plant available water during the following growing season. This change in hydrologic partitioning, mediated by the timing of snowpack accumulation, results in lower evapotranspiration (ET) and net ecosystem exchange (NEE) the following spring. These findings suggest that abiotic controls on the partitioning of precipitation may

  18. 77 FR 41367 - Dow AgroSciences LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... determination of nonregulated status. On March 6, 2012, we published in the Federal Register (77 FR 13258-13260... disease in any plant or plant product: A protozoan, a nonhuman animal, a parasitic plant, a bacterium,...

  19. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  20. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  1. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. We developed a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which we used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods We mapped snow cover at 15 m resolution using Landsat imagery for five recent years and fitted a generalized additive model (GAM) for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots (including species richness, community weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content). Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared to without led to an average gain in R2 of 0.26 and also reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions We show that in alpine environments, high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. Our results further indicate that studies seeking to predict the response

  2. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  3. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION NORTHERN STATES POWER COMPANY Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of... Nuclear Plants Regarding the License Renewal of Prairie Island Nuclear Generating Plants, Units 1 and 2... years of operation for Prairie Island Nuclear Generating Plant, Units 1 and Unit 2 (PINGP 1 and 2)....

  4. Effects of altered carbohydrate availability on whole-plant assimilation of sup 15 NO sub 3 sup minus 1

    SciTech Connect

    Rufty, T.W. Jr.; Volk, R.J. ); MacKown, C.T. )

    1989-02-01

    An experiment was conducted to investigate the relative changes in NO{sub 3}{sup {minus}} assimilatory processes which occurred in response to decreasing carbohydrate availability. Young tobacco plants (Nicotiana tabacum (L.), cv NC 2326) growing in solution culture were exposed to 1.0 millimolar {sup 15}NO{sub 3}{sup {minus}} for 6 hour intervals during a normal 12 hour light period and a subsequent period of darkness lasting 42 hours. Uptake of {sup 15}NO{sub 3}{sup {minus}} decreased to 71 to 83% of the uptake rate in the light during the initial 18 hours of darkness; uptake then decreased sharply over the next 12 hours of darkness to 11 to 17% of the light rate, coincident with depletion of tissue carbohydrate reserves and a marked decline in root respiration. Changes also occurred in endogenous {sup 15}NO{sub 3}{sup {minus}} assimilation processes, which were distinctly different than those in {sup 15}NO{sub 3}{sup {minus}} uptake. During the extended dark period, translocation of absorbed {sup 15}N out of the root to the shoot varied rhythmically. The adjustments were independent of {sup 15}NO{sub 3}{sup {minus}} uptake rate and carbohydrate status, but were reciprocally related to rhythmic adjustments in stomatal resistance and, presumably, water movement through the root system. Whole plant reduction of {sup 15}NO{sub 3}{sup {minus}} always was limited more than uptake. The assimilation of {sup 15}N into insoluble reduced-N in roots remained a constant proportion of uptake throughout, while assimilation in the shoot declined markedly in the first 18 hours of darkness before stabilizing at a low level. The plants clearly retained a capacity for {sup 15}NO{sub 3}{sup {minus}} reduction and synthesis of insoluble reduced-{sup 15}N even when {sup 15}NO{sub 3}{sup {minus}} uptake was severely restricted and minimal carbohydrate reserves remained in the tissue.

  5. AN INDEX OF THE AVAILABLE MEDICINAL PLANTS, USED IN INDIAN SYSTEM OF MEDICINE FROM JAMMU AND KASHMIR STATE

    PubMed Central

    Srivastava, T. N.; Rajasekharan, S.; Badola, D. P.; Shah, D. C.

    1986-01-01

    The medicinal plants used in Indian system of medicine and its distribution in Jammu and Kashmir has been categorized systematically here. The paper deals with 246 medicinal plants and has to off-set an index which is not there so far. Out of 246 medicinal plants 12 plants are considered to be controversial. Substitutes, Adulterants of these plants which are being used in various parts of India were also recorded separately in this study. PMID:22557549

  6. An Improved Quantitative Analysis Method for Plant Cortical Microtubules

    PubMed Central

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies. PMID:24744684

  7. Compressed Air System Optimization Project Saves Energy and Improves Production at a Citation Forging Plant

    SciTech Connect

    2003-05-01

    In the 1990s, a subsidiary of the Citation Corporation, Interstate Forging, implemented a compressed air system improvement project at its Milwaukee, Wisconsin, forging plant. This improvement enabled the plant to maintain an adequate and stable pressure level using fewer compressors, which led to improved product quality and lower production downtime. The project also yielded annual energy savings of 820,000 kWh and $45,000. With a total project cost of $67,000, the plant achieved a simple payback of just 1.5 years.

  8. Citation Corporation: Compressed Air System Optimization Project Saves Energy and Improves Production at Forging Plant

    SciTech Connect

    Not Available

    2003-05-01

    In the 1990s, a subsidiary of the Citation Corporation, Interstate Forging, implemented a compressed air system improvement project at its Milwaukee, Wisconsin, forging plant. This improvement enabled the plant to maintain an adequate and stable pressure level using fewer compressors, which led to improved product quality and lower production downtime. The project also yielded annual energy savings of 820,000 kWh and$45,000. With a total project cost of$67,000, the plant achieved a simple payback of just 1.5 years.

  9. Potential of hypocotyl diameter in family selection aiming at plant architecture improvement of common bean.

    PubMed

    Oliveira, A M C; Batista, R O; Carneiro, P C S; Carneiro, J E S; Cruz, C D

    2015-01-01

    Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis. PMID:26436392

  10. Improved tritium monitoring at the Pantex Nuclear Weapons Plant

    SciTech Connect

    Brain, W.F.; Click, C.N.; Griffis, D.W.

    1995-12-31

    This paper describes the development of a system capable of sampling ambient levels of both elemental and oxidized tritium in ambient air at the US Department of Energy`s Pantex Nuclear Weapons Plant. The system of monitors uses a combination of commercial laboratory equipment and custom fabricated components. Problems inherent in tritium sampling, and those specific to weather extremes in Texas, were identified and researched. Experience with the sampling network is still limited, but concentrations of oxidized tritium are presently comparable to the original sampling network.

  11. 77 FR 41358 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... published in the Federal Register (77 FR 13258-13260, Docket No. APHIS-2011-0129) a notice \\1\\ describing... or plant product: A protozoan, a nonhuman animal, a parasitic plant, a bacterium, a fungus, a...

  12. 76 FR 37769 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant... into the environment) of organisms and products altered or produced through genetic engineering...

  13. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments. PMID:23479083

  14. 78 FR 13312 - Pioneer Hi-Bred International, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... and products altered or produced through genetic engineering that are plant pests or that there is... 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among...

  15. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original

  16. Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings.

    PubMed

    Rodríguez, Luis; Gómez, Rocío; Sánchez, Virtudes; Alonso-Azcárate, Jacinto

    2016-04-01

    The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named 'sugar foam', SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p < 0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21-100, 25-100 and 2-100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71%) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer. PMID:25772873

  17. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops. PMID:12058820

  18. Limited mate availability decreases reproductive success of fragmented populations of Linnaea borealis, a rare, clonal self-incompatible plant

    PubMed Central

    Scobie, A. R.; Wilcock, C. C.

    2009-01-01

    Background and Aims Small populations of rare plant species are increasingly reported to have high levels of reproductive failure. The objective of this study was to understand the principal constraints on sexual reproduction in small fragmented populations of a rare clonal self-incompatible plant. Methods The pollinator spectrum, diversity of flower colour, natural pollination and fruit-set levels of L. borealis were examined in Scotland. Artificially crossed seed production was compared within and between different flower colour types and patches. Key Results Linnaea borealis was pollinated by a diverse spectrum of insect species and the principal pollinators were muscid, syrphid and empid flies which mostly moved only small distances (<0·25 m) between flowers when foraging. Natural pollination levels were high, indicating high pollinator effectiveness, but fruit set was very low in most patches. Flower colour diversity was low in most patches and only those with a diversity of flower colour types had high fruiting success. Pollination experiments showed L. borealis to be highly self-incompatible and artificial crosses within and between patches and flower colour types confirmed that low fruit success was the result of a lack of compatible mates and limited pollen movement between them. Evidence of isolation from pollen exchange was apparent at as little as 6 m and severe at 30 m and beyond. Conclusions Limited mate availability and isolation from pollen exchange compromise the reproductive success of fragmented populations of L. borealis in Scotland. A diversity of compatible mates situated within close proximity (<6 m) is the key requirement to ensure high natural fruiting success. This study emphasizes that an understanding of the breeding system, pollinator spectrum and potential for interconnectivity via pollinator movement are fundamental to identify isolation distances and to establish when conservation intervention is necessary for rare species. PMID

  19. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  20. Predicted Efficiency of Spaced Plant Selection to Indirectly Improve Tall Fescue Sward Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The validity of spaced plant evaluation to determine sward performance of forage grasses has oft been questioned. This experiment studied the efficiency of spaced plant evaluation to indirectly improve sward yield and nutritional quality in tall fescue (Festuca arundinacea Schreb.). A tall fescue ...

  1. Application of microbial inoculants promote plant growth, increased nutrient uptake and improve root morphology of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing fertilizers impacts from agriculture is a world-wide concern, both from an environmental and human health perspective. One way to reduce impacts of fertilizers is by enhancing plant uptake which improves nutrient use efficiency and also potentially reduce the amounts of fertilizer needed. ...

  2. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    SciTech Connect

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency between the two units, to the extent practicable.

  3. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  4. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  5. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. PMID:24699436

  6. Improved conversion of herbaceous biomass to biofuels: Potential for modification of key plant characteristics

    SciTech Connect

    Sladden, S.E.; Bransby, D.I. . Dept. of Agronomy and Soils)

    1989-10-01

    Biomass crops are converted to fuels via biochemical and thermochemical processes. The process preferred depends on properties and cost of available feedstocks, and on the specific products desired. Since most mature biomass crops are composed of up to 80% cell wall fibers, the properties of these fibers determine, to a large degree, the conversion potential of the crop. However, biomass crops also contain small amounts of proteins, soluble carbohydrates and interfering materials (e.g., tannins and silica) which also influence the desirability of the feedstock in specific conversion processes. Fortunately, wide variation exists in the chemical composition of potential biomass crops. Although the chemical composition of feedstocks can be influenced significantly with judicious management has species selection, some traits are sufficiently heritable to permit breeding for improved feedstock composition. In addition to breeding for specific compositional traits directly, selection for in vitro digestibility or for easily-measured canopy or physiological traits may lead to more rapid and efficient progress in feedstock improvement, provided those measurements are highly-correlated with desirable feedstock composition. At the same time breeders must improve, or at least avoid damaging, stand longevity, tendency of plants to lodge, and establishment traits (e.g., disease resistance and seedling vigor). 46 refs., 8 tabs.

  7. Availability of polycyclic aromatic hydrocarbons from lampblack-impacted soils at former oil-gas plant sites in California, USA.

    PubMed

    Hong, Lei; Luthy, Richard G

    2007-03-01

    Lampblack-impacted soils at former oil-gas plant sites in California, USA, were characterized to assess the sorption of polycyclic aromatic hydrocarbons (PAHs) and the concentration-dependent effects of a residual oil tar phase on sorption mechanism and availability of PAHs. Nuclear magnetic resonance spectroscopy demonstrated similar aromaticity for both lampblack carbon and the oil tar phase, with pronounced resonance signals in the range of 100 to 150 ppm. Scanning-electron microscopic images revealed a physically distinct oil tar phase, especially at high concentrations in lampblack, which resulted in an organic-like film structure when lampblack particles became saturated with the oil tar. Sorption experiments were conducted on a series of laboratory-prepared lampblack samples to systematically evaluate influences of an oil tar phase on PAH sorption to lampblack. Results indicate that the sorption of PAHs to lampblack exhibits a competition among sorption phases at low oil tar contents when micro- and mesopores are accessible. When the oil tar content increases to more than 5 to 10% by weight, this tar phase fills small pores, reduces surface area, and dominates PAH sorption on lampblack surface. A new PAH partitioning model, Kd = KLB-C(1 - ftar)alpha + ftarKtar (alpha = empirical exponent), incorporates these effects in which the control of PAH partitioning transits from being dominated by sorption in lampblack (KLB-C) to absorption in oil tar (Ktar), depending on the fraction of tar (ftar). This study illustrates the importance of understanding interactions among PAHs, oil tar, and lampblack for explaining the differences in availability of PAHs among site soils and, consequently, for refining site-specific risk assessment and establishing soil cleanup levels. PMID:17373502

  8. Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water.

    PubMed

    Shaner, Dale; Brunk, Galen; Nissen, Scott; Westra, Phil; Chen, Wenlin

    2012-01-01

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions. PMID:22218185

  9. Availability and distribution of heavy metals, nitrogen, and phosphorus from sewage sludge in the plant-soil-water continuum

    SciTech Connect

    Rappaport, B.D.; Scott, J.D.; Martens, D.C.; Reneau, R.B.; Simpson, T.W.

    1987-01-01

    Research was conducted during 1984 and 1985 to determine Cd, Cu, N, Ni, P, and Zn availabilities to barley (Hordeum vulgare) and corn (Zea mays) grown on four sludge-amended soils. An aerobically digested sewage sludge, which was dewatered for approximately 2 years on sandbeds, was obtained from a sewage-treatment plant with major industrial inputs. A 14-day anaerobic N incubation study indicated that mineralization of sludge organic N varied from 9.2% at the 42 Mg ha(-1) sludge rate to 4.2% at the 210 Mg ha(-1) rate. This relatively low percentage of N mineralized from the sludge may reflect the inhibitory effects of the high sludge-metal levels on N transformations and the changes in sludge composition during long-term dewatering on sandbeds. Sludge application increased crop yields, except where the amounts of N mineralized from the sludge was inadequate to supply the N requirement of the crop. Crop yields were not decreased by either metal phytotoxity or P deficiency on the four sludge-amended soils.

  10. Contamination Time Effect on Plant Available Fractions of Cadmium and Zinc in a Mexican Clay Loam Soil

    NASA Astrophysics Data System (ADS)

    Ehsan, Muhammad; Augustine Molumeli, Polile; Espinosa Hernandez, Vicente; Baeza Reyes, Alejandro; Perez Moreno, Jesus; Hernandez, Marcos Soto; Ojeda Trejo, Enrique; Jaen Contreras, David; Ruiz Bello, Alejandrina; Robledo Santoyo, Edmundo

    Knowledge of plant available fractions of heavy metals in soil can assist directing phytoremediation efforts for contaminated soils. For this reason different doses of ZnCl2 (0, 200, 400 and 600 mg kg-1) and CdCl2, 2½ H2O (0, 9, 18 and 27 mg kg-1) were applied to an uncontaminated slightly acidic clay loam soil from Sate of Mexico, Mexico incubated under ambient temperature and humidity for 90 days. Both the metals were extracted with a DTPA-TEA-CaCl2 mixture after 1, 5, 15, 25, 60 and 90 days and analyzed using atomic absorption spectroscopy. The results showed that DTPA extractable contents of Zn and Cd followed a decreasing trend with increase in incubation time. Maximum contents were found at day 01 in all the treatments. After 15 days of incubation, the variation in extractable contents was non-significant. The rapid adsorption of the metals might be due to elevated clay content (34%) of the incubated soil.

  11. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    NASA Technical Reports Server (NTRS)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  12. Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress.

    PubMed

    Tian, Fengxia; Gong, Jiangfeng; Zhang, Jin; Feng, Yanan; Wang, Guokun; Guo, Qifang; Wang, Wei

    2014-09-01

    The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance. PMID:25113454

  13. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  14. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency. PMID:26423283

  15. 76 FR 16439 - Endangered and Threatened Wildlife and Plants; Notice of Availability of a Technical/Agency Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... 26, 1990 (55 FR 49046). A plant, S. gentianoides, comprises two varieties: Var. gentianoides is..., presence of pollinators, and whether seedling recruitment is occurring have been conducted across...

  16. Ongoing Control System Modernization Project at a Steel Plant Improves Operations (Weirton Plant)

    SciTech Connect

    2000-12-01

    Weirton Steel Corporation is the eighth largest steel producer in the U.S. and its main manufacturing facility is located in Weirton, West Virginia. In 1998 Weirton Steel successfully implemented a project at its Weirton plant in which it modernized the control systems on its utilities and built a control center in a central location from which those utilities could be monitored.

  17. Application of plant genomics for improved symbiotic nitrogen fixation in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because genome sequencing, transcript profiling, proteome analysis, metabolite profiling, mutant analysis, and comparative genomics have progressed at a logarithmic pace, we know more about the plant genes involved in symbiotic nitrogen fixation (SNF) than could have been imagined a decade ago. Howe...

  18. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  19. BOOK REVIEW OF "IMPROVEMENT OF CROP PLANTS FOR INDUSTRIAL END USE"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial crops are acquiring greater importance as countries seek to reduce their dependence on raw materials and energy derived from fossil sources. Thus, a thorough assessment of the prospects for improving industrial crops is timely. The book Improvement of Crop Plants for Industrial End Use, r...

  20. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream

    SciTech Connect

    Maston, V.A.

    1997-12-01

    International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

  1. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-01

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants. PMID:27164447

  2. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    PubMed Central

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth. PMID:24575180

  3. Using remote sensing to calculate plant available nitrogen needed by crops on swine factory farm sprayfields in North Carolina

    NASA Astrophysics Data System (ADS)

    Christenson, Elizabeth; Serre, Marc

    2015-10-01

    North Carolina (NC) is the second largest producer of hogs in the United States with Duplin county, NC having the densest population of hogs in the world. In NC, liquid swine manure is generally stored in open-air lagoons and sprayed onto sprayfields with sprinkler systems to be used as fertilizer for crops. Swine factory farms, termed concentrated animal feeding operations (CAFOs), are regulated by the Department of Environment and Natural Resources (DENR) based on nutrient management plans (NMPs) having balanced plant available nitrogen (PAN). The estimated PAN in liquid manure being sprayed must be less than the estimated PAN needed crops during irrigation. Estimates for PAN needed by crops are dependent on crop and soil types. Objectives of this research were to develop a new, time-efficient method to identify PAN needed by crops on Duplin county sprayfields for years 2010-2014. Using remote sensing data instead of NMP data to identify PAN needed by crops allowed calendar year identification of which crops were grown on sprayfields instead of a five-year range of values. Although permitted data have more detailed crop information than remotely sensed data, identification of PAN needed by crops using remotely sensed data is more time efficient, internally consistent, easily publically accessible, and has the ability to identify annual changes in PAN on sprayfields. Once PAN needed by crops is known, remote sensing can be used to quantify PAN at other spatial scales, such as sub-watershed levels, and can be used to inform targeted water quality monitoring of swine CAFOs.

  4. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGESBeta

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  5. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    SciTech Connect

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

  6. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  7. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  8. Availability of Structured and Unstructured Clinical Data for Comparative Effectiveness Research and Quality Improvement: A Multisite Assessment

    PubMed Central

    Capurro, Daniel; PhD, Meliha Yetisgen; van Eaton, Erik; Black, Robert; Tarczy-Hornoch, Peter

    2014-01-01

    Introduction: A key attribute of a learning health care system is the ability to collect and analyze routinely collected clinical data in order to quickly generate new clinical evidence, and to monitor the quality of the care provided. To achieve this vision, clinical data must be easy to extract and stored in computer readable formats. We conducted this study across multiple organizations to assess the availability of such data specifically for comparative effectiveness research (CER) and quality improvement (QI) on surgical procedures. Setting: This study was conducted in the context of the data needed for the already established Surgical Care and Outcomes Assessment Program (SCOAP), a clinician-led, performance benchmarking, and QI registry for surgical and interventional procedures in Washington State. Methods: We selected six hospitals, managed by two Health Information Technology (HIT) groups, and assessed the ease of automated extraction of the data required to complete the SCOAP data collection forms. Each data element was classified as easy, moderate, or complex to extract. Results: Overall, a significant proportion of the data required to automatically complete the SCOAP forms was not stored in structured computer-readable formats, with more than 75 percent of all data elements being classified as moderately complex or complex to extract. The distribution differed significantly between the health care systems studied. Conclusions: Although highly desirable, a learning health care system does not automatically emerge from the implementation of electronic health records (EHRs). Innovative methods to improve the structured capture of clinical data are needed to facilitate the use of routinely collected clinical data for patient phenotyping. PMID:25848594

  9. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations.

    PubMed

    García-Gómez, Concepción; Esteban, Elvira; Sánchez-Pardo, Beatriz; Fernández, María Dolores

    2014-09-01

    The interactions and relevance of the soil (total and available) concentrations, accumulation, and acute toxicity of several essential and non-essential trace elements were investigated to determine their importance in environmental soil assessment. Three plant species (T. aestivum, R. sativum, and V. sativa) and E. fetida were simultaneously exposed for 21 days to long-term contaminated soils collected from the surroundings of an abandoned pyrite mine. The soils presented different levels of As and metals, mainly Zn and Cu, and were tested at different soil concentrations [12.5, 25, 50, and 100% of contaminated soil/soil (w/w)] to increase the range of total and available soil concentrations necessary for the study. The total concentrations in the soils (of both As and metals) were better predictors of earthworm uptake than were the available concentrations. In plants, the accumulation of metals was related to the available concentrations of Zn and Cu, which could indicate that plants and earthworms accumulate elements from different pools of soil contaminants. Moreover, Zn and Cu, which are essential elements, showed controlled uptake at low concentrations. The external metal concentrations predicted earthworm mortality, whereas in plants, the effects on growth were correlated to the As and metal contents in the plants. In general, the bioaccumulation factors were lower at higher exposure levels, which implies the existence of auto-regulation in the uptake of both essential and non-essential elements by plants and earthworms. PMID:24875255

  10. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance.

    PubMed

    Caldeira, Cecilio F; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  11. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance

    PubMed Central

    Caldeira, Cecilio F.; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  12. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  13. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for

  14. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.

    2014-09-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  15. Quality of information available via the internet for patients with head and neck cancer: are we improving?

    PubMed

    Best, James; Muzaffar, Jameel; Mitchell-Innes, Alistair

    2015-11-01

    This study aimed to evaluate the type, content, accessibility and quality of information available via the internet for patients with head and neck cancer. The Google search engine was used to generate lists of the first 100 websites for general head and neck cancer and the first ten for head and neck cancers by anatomical location (160 total). Websites were evaluated with the validated DISCERN and LIDA instruments, the SMOG (Simple measure of gobbledygook) readability score and against the JAMA (Journal of the American Medical Association) criteria. 40 of the 160 websites ranked by Google were suitable for analysis. Seven websites (17.5%) partially or fully achieved all four JAMA benchmarks and only one (2.5%) site achieved none. 28 (70%) included reference to quality of life factors. Correlations were identified between Google site rank and all four of our appraisal tools; LIDA (-0.966, p = 0.006), JAMA (-5.93, p = 0.028), DISCERN (-0.568, p = 0.037) and SMOG (4.678, p = 0.04). Google site rank and both government run sites (-35.38, p = 0.034) and sites run by universities or hospitals (-27.32, p = 0.016) also showed an association. Comparing our observations with those of Riordain in 2008, there has been little improvement in the quality of head and neck cancer information available online over this time. Given the variability in quality of information online, patients would benefit from being directed to reliable websites by clinicians. PMID:25370600

  16. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    PubMed Central

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  17. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  18. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.; Vasconcelos, M. Teresa S. D.

    2005-10-01

    The aim of this work was to identify a variety of low molecular weight organic acids exuded by the sea rush Juncus maritimus collected at two locations with different sediment characteristics (sandy and muddy) and to examine whether specific differences in physico-chemical sediment characteristics influenced plant exudation. Just after collection, plant roots were rinsed and put in contact with deionised water for 2 h. In the obtained solution the organic acids, exuded by the plants, were determined by high performance liquid chromatography. Juncus maritimus was shown to be capable of releasing malonate and oxalate. Sediments and rhizosediments (sediment in contact with the plant roots and rhizomes, corresponding to the area of higher belowground biomass) from the areas where the plants had been collected were characterised in terms of physical and chemical composition, including acid volatile sulphide and total-recoverable metals (Pb, Cr, Cu, Zn, Ni and Cd). It was found that the extent of exudation varied markedly between sites. The identified organic acids were used as extractants of metals from sediments and rhizosediments and the results were compared with those provided by a very commonly used sequential extraction approach, which was carried out in parallel. This work demonstrates that J. maritimus can release organic compounds that can act as complexing agents of trace metal and therefore organic exudates should be accounted for when dealing with estuarine environment quality.

  19. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Zhou, Gang

    2016-04-01

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  20. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  1. Lathyrus diversity: available resources with relevance to crop improvement – L. sativus and L. cicera as case studies

    PubMed Central

    Vaz Patto, M. C.; Rubiales, D.

    2014-01-01

    Background The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion. Scope In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera. Conclusions Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species. PMID:24623333

  2. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  3. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study.

    PubMed

    Zhang, Libo; Zhou, Gang

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs. PMID:27083744

  4. Making products available among community health workers: Evidence for improving community health supply chains from Ethiopia, Malawi, and Rwanda

    PubMed Central

    Chandani, Yasmin; Andersson, Sarah; Heaton, Alexis; Noel, Megan; Shieshia, Mildred; Mwirotsi, Amanda; Krudwig, Kirstin; Nsona, Humphreys; Felling, Barbara

    2014-01-01

    best when three key elements (product flow, data flow, and effective people) are deliberately included as an integral part of the system design. Although these elements may be designed differently in different settings, streamlining and synchronizing them while ensuring inclusion of all components for each element improves supply chain performance and promotes product availability at the community level. PMID:25520795

  5. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  6. Water stress preconditioning to improve drought resistance in young apricot plants.

    PubMed

    Ruiz-Sánchez; Domingo; Torrecillas; Pérez-Pastor

    2000-07-28

    The effect of water stress preconditioning was studied in 1-year-old apricot plants (Prunus armeniaca L., cv. Búlida). Plants were submitted to different treatments, T-0 (control treatment) and T-1, drip irrigated daily; T-2 and T-3, irrigated daily at 50% and 25% of T-0, respectively; T-4 and T-5, irrigated to field capacity every 3 and 6 days, respectively. After 30 days, irrigation was withheld for 10 days, maintaining the T-0 treatment irrigated daily. After this period, the plants were re-irrigated to run-off and treated as control treatment. The stomatal closure and epinasty observed in response to water stress represented adaptive mechanisms to drought, allowing the plants to regulate water loss more effectively and prevent leaf heating. A substantial reduction in the irrigation water supplied combined with a high frequency of application (T-3 treatment) promoted plant hardening; the plants enduring drought better, due to their greater osmotic adjustment (0.77 MPa), which prevented severe plant dehydration and leaf abscission. Such a preconditioning treatment may be valuable for young apricot plants in the nursery stage in order to improve their subsequent resistance to drought. A 50% reduction in daily irrigation (T-2 treatment) did not significantly affect either gas exchange rates or leaf turgor, which suggests that water should be applied frequently if deficit irrigation is to be implemented. PMID:10936532

  7. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis.

    PubMed

    Li, Zhijian T; Kim, Kyung-Hee; Dhekney, Sadanand A; Jasinski, Jonathan R; Creech, Matthew R; Gray, Dennis J

    2014-01-01

    Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo-plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% 'Del-HS' and 'TS' SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of 'Del-HS' were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 'TS' plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits. PMID:26504540

  8. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis

    PubMed Central

    Li, Zhijian T; Kim, Kyung-Hee; Dhekney, Sadanand A; Jasinski, Jonathan R; Creech, Matthew R; Gray, Dennis J

    2014-01-01

    Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo–plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% ‘Del-HS’ and ‘TS’ SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of ‘Del-HS’ were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 ‘TS’ plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits. PMID:26504540

  9. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Science and Technology Software Center (ESTSC)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  10. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  11. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  12. Warming does not stimulate mitochondrial respiration and it responds to leaf carbohydrates availability in soybean plants grown under elevated CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Gomez-Casanovas, N.; Bernacchi, C.; Ort, D. R.; Siebers, M.

    2015-12-01

    There is a lack of understanding on the mechanism underlying the response of mitochondrial respiration (Rs) to the single and combined effects of increasing CO2 concentration ([CO2]) and warming. We investigated the response of Rs to the single and combined effects of elevated [CO2] and warming in soybean plants over a complete growing season using Temperature by Free Air CO2 enrichment technology under field conditions. The treatments were: control, elevated [CO2] (eC), high temperature (eT), and elevated [CO2]+high temperature (eT+eC). Given that photosynthetic rates in eT+eC grown plants were not higher than in plants grown under eC, we hypothesized that Rs would increase only slightly in plants grown under eT+eC compared to eC plants, due to the increase of temperature. Contrary to our prediction, our preliminary results showed that plants grown under the warming treatments had low Rs, thus eT+eC had lower Rs than eC. The response of Rs to these factors was consistent at two different plant high levels (canopy and five nodes down the canopy). Changes in Rs were explained by variations in the carbohydrate content. Our results indicate that the response of Rs to changes in [CO2] and temperature will depend on the carbohydrate availability of plant tissues and thus on how photosynthesis is affected by this environmental factors.

  13. REASONABLY AVAILABLE CONTROL TECHNOLOGY (RACT) DETERMINATIONS FOR EMISSIONS OF PRIMARY PARTICULATE FROM AN ELEMENTAL PHOSPHORUS PRODUCTION PLANT IN POCATELLO, IDAHO.

    EPA Science Inventory

    Region 10 conducted a RACT determination of primary particulate emission sources at the Astaris elemental phosphorus plant located on the Fort Hall Indian reservation in southeastern Idaho. This analysis was conducted as part of the Federal Implementation Plan to attain the PM-...

  14. Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial decomposer C metabolism is considered a factor controlling soil C stability, a key regulator of global climate. The plant rhizosphere is now recognized as a crucial driver of soil C dynamics but specific mechanisms are unclear. Climate change could affect microbial C metabolism via impacts...

  15. Soil Phosphatase Activity and Plant-available Phosphorus Increase Following Grassland Invasion by N-fixing Tree Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. These woodlands are dominated by N-fixing tree legumes which are...

  16. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds

    PubMed Central

    Ramjan, Ali; Hossain, Marjan; Runa, Jannatul Ferdous; Md, Hasanuzzaman; Mahmodul, Islam

    2014-01-01

    Objective: The present study is aimed to investigate in vitro thrombolytic activity of three Bangladeshi medicinal plants Averrhoa bilimbi (Oxalidiaceae), Clerodendrum viscosum (Verbanaceae) and Drynaria quercifolia (Polypodiaceae). Materials and methods: Each the plant was extracted with methanol at room temperature and the concentrated methanolic extracts (MEF) were fractionated by the modified Kupchan partitioning method to render pet-ether soluble fraction (PESF), carbon tetrachloride soluble fraction (CTSF), chloroform soluble fraction (CSF) and aqueous soluble fraction (AQSF). To observe their thrombolytic potential, a prompt and swift method was involved where streptokinase and water were used as positive and negative control, respectively. Result: Among the three plants, AQSF and PESF of D. quercifolia with CTSF of C. viscosum exhibited highest thrombolytic activity by clot lysis of 34.38%, 34.27% and 28.64%, respectively. Among other extracts A. bilimbi, C. viscosun and D.quercifolia showed significant percentage (%) of clot lysis compared to standard streptokinase (41.05%) while the negative control water revealed 3.31 % lysis of clot. Conclusion: From our findings it is observed that all the plants revealed remarkable thrombolytic activity. Therefore, steps should be taken to observe in vivo clot dissolving potential and to isolate active component(s) of these extracts. PMID:25386407

  17. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  18. Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil.

    PubMed

    Mench, M; Vangronsveld, J; Didier, V; Clijsters, H

    1994-01-01

    Metal-contaminated soils in the vicinity of industrial sites become of ever-increasing concern. Diagnostic criteria and ecological technologies for soil remediation should be calibrated for various soil conditions; actually, our knowledge of calcareous soil is poor. Silty soils near smelters at Evin (Pas de Calais, France) have been contaminated by non-ferrous metal fallout and regularly limed using foams. Therefore, the mobility, bioavailability, and potential phytotoxicity of Cd, Pb and Zn, were investigated using single soil extractions (i.e. water, 0.1 n Ca(NO(3))(2), and EDTA pH 7), and vegetation experiments, in parallel with a biological test based on (iso)-enzymes in leaves and roots, before and following soil treatment with chemical agents, i.e. Thomas basic slags (TBS), hydrous manganese oxide (HMO), steel shots (ST) and beringite. No visible toxicity symptoms developed on the above-ground parts of ryegrass, tobacco and bean plants grown in potted soil under controlled environmental conditions. Cd, Zn and Pb uptake resulted in high concentrations in the above-ground plant parts, but the enzyme capacities in leaves and roots, and the peroxidase pattern indicated that these metal concentrations were not phytotoxic for beans as test plants. The addition of chemical agents to the soil did not increase biomass production, but treatment with either HMO, ST or beringite markedly decreased the mobility of Cd, Zn and Pb. These agents were proven to be effective in mitigating the Cd uptake by plants. HMO and ST decreased either Pb or Zn uptake by ryegrass. TBS was effective in lowering Pb uptake by the same species. Beringite decreased Cd uptake by beans. If fallout could be restricted, the metal content of food crops in this area should be lowered by soil treatment. However, the differences in Cd uptake between plant species were not suppressed, regardless of the type of agents applied to the soil. PMID:15091619

  19. SF3M 2.0: improvement of 3D photo-reconstruction interface based on freely available software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael R.; Pérez, Rafael; Gómez, Jose A.

    2016-04-01

    During recent years, a number of tools based on Structure-from-Motion algorithms have been released for full image-based 3D reconstruction either freely (e.g. Bundler, PMVS2, VisualSFM, MicMac) or commercially (e.g. Agisoft PhotoScan). The SF3M interface was developed in Matlab® to use link software developments (VisualSFM, CloudCompare) and new applications to create a semi-automated workflow including reconstruction, georeferencing and point-cloud filtering, and has been tested for gully erosion assessment with terrestrial images (Castillo et al., 2015). The main aim of this work to provide an improved freely-available and easy-to-use alternative for 3D reconstruction intended for public agencies, non-profit organisations, researchers and other stakeholders interested in 3D modelling. In this communication we present SF3M 2.0, a new version of the graphical user interface. In this case, the SfM module is based on MicMac, an open-software tool (Pierrot-Deseilligny and Cléry, 2011) which provides advanced features such as camera calibration and constrained bundle adjustment using ground control points. SF3M 2.0 will be tested in two scenarios: a) using the same ground-based image set tested in Castillo et al. (2015) to compare the performance of both versions and b) using aerial images taken from a helium balloon to assess a gully network in a 40-hectares catchment. In this study we explore the advantages of SF3M 2.0, explain its operation and evaluate its accuracy and performance. This tool will be also available for free download. References Castillo, C., James, M.R., Redel-Macías, M. D., Pérez, R., and Gómez, J.A.: SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network, SOIL, 1, 583-594. Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision

  20. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2003-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and

  1. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  2. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  3. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  4. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  5. Exploiting plant-microbe partnerships to improve biomass production and remediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J.

    2009-10-01

    Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agrochemicals in food crops.

  6. Use of validation dosimetry, in source rack load planning, to improve cobalt irradiation plant efficiency

    NASA Astrophysics Data System (ADS)

    Pyne, C. H.; Comben, M. J.

    2002-03-01

    Source load planning is an important part of optimising the performance of cobalt-60 gamma irradiation plants. The best results are achieved using a complex algorithm to accurately model the radiation profile of the source. In this way operational plant performance may be predicted as a function of changes in activity distribution within the source rack. This paper describes an approach to the prediction of plant performance that is numerically simpler than attempting to calculate actual doses from first principles. It shows how validation dosimetry results can be used to validate the software-predicted dose distribution and details how this enables the load plan to be tailored to meet the specific objectives of the plant operator. Improvements in product throughput and reduced maximum to minimum dose ratios are typical.

  7. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. PMID:24679262

  8. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  9. Motor Assembly Plant Saves $85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project.

  10. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  11. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  12. Practical aspects of running DOE for improving growth media for in vitro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments using DOE software to improve plant tissue culture growth medium are complicated and require complex setups. Once the experimental design is set and the treatment points calculated, media sheets and mixing charts must be developed. Since these experiments require three passages on the sa...

  13. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions.

    PubMed

    Albert, Benjamin; Le Cahérec, Françoise; Niogret, Marie-Françoise; Faes, Pascal; Avice, Jean-Christophe; Leport, Laurent; Bouchereau, Alain

    2012-08-01

    Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25-85% of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape. PMID:22526495

  14. 76 FR 80872 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ...We are advising the public that the Animal and Plant Health Inspection Service has received a petition from Dow AgroScience LLC seeking a determination of nonregulated status of corn designated as DAS-40278-9, which has been genetically engineered for increased resistance to broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the......

  15. EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2002-07-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

  16. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  17. Plant growth improvement mediated by nitrate capture in co-composted biochar.

    PubMed

    Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  18. Plant growth improvement mediated by nitrate capture in co-composted biochar

    PubMed Central

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  19. Plant growth improvement mediated by nitrate capture in co-composted biochar

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-06-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  20. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions. PMID:24463051

  1. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    high survival potential and greater area cover. In contrast, a pre-treatment of cuttings of S. virginicus with Kinetin would achieve more acceptable plant survival rates. This easy and low cost-effective technique may be extended to other dune plant species and applied on a large scale to improve the chance of dune restoration success.

  2. Amino acid availability from selected animal and plant derived feedstuffs for market size sunshine bass (Morone chrysops X M. saxatilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate diet formulations are essential for the commercial production of hybrid striped bass. However, limited information is available regarding nutrient digestibility and amino acid availability of readily-used practical ingredients for different size classes of this taxon. Therefore, two trial...

  3. Consumption and biochemical impact of commercially available plant-derived nutritional supplements. An observational pilot-study on recreational athletes

    PubMed Central

    2012-01-01

    Background A growing consumption of natural (plant-derived) dietary supplements with ergogenic aims, with particular regard for ecdysteroids, phytoestrogens and vegetal sterols, has been registered over the last years among “recreational” athletes. The present study was carried out in order to evaluate the real knowledge of plant-derived nutritional supplements among physically active people as well as their real consumption. Additional aim was to evaluate the effects of these supplements on the health profile of the users. Methods Twenty-three trained subjects who habitually used natural dietary supplements, and 30 matched controls were analyzed for plasma biochemical markers and hormonal profile. Results The laboratory tests revealed the absence of any sign of organ toxicity/damage in both athletes and controls. On the contrary, hormone profiles revealed marked alterations in 15 (65%) out of the 23 of investigated athletes. Specifically, 10 males presented increased plasma levels of progesterone, 15 subjects presented abnormal estrogen levels, including 5 (2 F and 3 M) presenting a “dramatic” increased estrogen values and 2 two males with increased estrogen levels, increased testosterone levels and associated suppression of luteinizing hormone and follicle-stimulating hormone. Conclusions The results of the present study highlighted that the habitual consumption of plant-derived nutritional supplements is frequently associated with significant hormonal alterations both in male and female subjects. Although these biochemical alterations were not associated with signs or symptoms of organ toxicity/damage at the moment of the study, it cannot be excluded that, in the mid/long-term, these subjects would suffer of health problems secondary to chronic exposure to heavily altered hormonal levels. Further large scale studies are needed to confirm the results of this pilot study as well as to investigate the biological mechanisms at the base of the observed

  4. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth.

    PubMed

    Karlsson, Patrik M; Herdean, Andrei; Adolfsson, Lisa; Beebo, Azeez; Nziengui, Hugues; Irigoyen, Sonia; Ünnep, Renáta; Zsiros, Ottó; Nagy, Gergely; Garab, Győző; Aronsson, Henrik; Versaw, Wayne K; Spetea, Cornelia

    2015-10-01

    The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms. PMID:26255788

  5. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  6. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. PMID:25944926

  7. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  8. 75 FR 26294 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... (74 FR 58065-58067), is available electronically under ADAMS Accession Number ML100780154. Federal... . From this page, the public can gain entry into ADAMS, which provides text and image files of...

  9. 75 FR 75705 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... for Comment announced in the Federal Register on November 21, 2007 (72 FR 65615-65629), is available... Engineer, ] Technical Specifications Branch, Mail Stop: O-7C2A, Division of Inspection and Regional...

  10. 75 FR 29588 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Comment announced in the Federal Register on August 20, 2009 (74 FR 42131-42138), is available... Electronic Reading Room at http://www.nrc.gov/reading-rm/adams.html . From this page, the public can...

  11. Silicon moderated the K deficiency by improving the plant-water status in sorghum

    PubMed Central

    Chen, Daoqian; Cao, Beibei; Wang, Shiwen; Liu, Peng; Deng, Xiping; Yin, Lina; Zhang, Suiqi

    2016-01-01

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K+ concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K+ concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K+ accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition. PMID:26961070

  12. Silicon moderated the K deficiency by improving the plant-water status in sorghum.

    PubMed

    Chen, Daoqian; Cao, Beibei; Wang, Shiwen; Liu, Peng; Deng, Xiping; Yin, Lina; Zhang, Suiqi

    2016-01-01

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K(+) concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K(+) concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K(+) accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition. PMID:26961070

  13. Foliar absorption of intercepted rainfall improves woody plant water status most during drought.

    PubMed

    Breshears, David D; McDowell, Nathan G; Goddard, Kelly L; Dayem, Katherine E; Martens, Scott N; Meyer, Clifton W; Brown, Karen M

    2008-01-01

    A large proportion of rainfall in dryland ecosystems is intercepted by plant foliage and is generally assumed to evaporate to the atmosphere or drip onto the soil surface without being absorbed. We demonstrate foliar absorption of intercepted rainfall in a widely distributed, continental dryland, woody-plant genus: Juniperus. We observed substantial improvement in plant water status, exceeding 1.0 MPa water potential for drought-stressed plants, following precipitation on an experimental plot that excluded soil water infiltration. Experiments that wetted shoots with unlabeled and with isotopically labeled water confirmed that water potential responded substantially to foliar wetting, that these responses were not attributable to re-equilibration with other portions of the xylem, and that magnitude of response increased with water stress. Foliar absorption is not included in most ecological, hydrological, and atmospheric models; has implications for interpreting plant isotopic signatures; and not only supplements water acquisition associated with increases in soil moisture that follow large or repeated precipitation events, but also enables plants to bypass soil water uptake and benefit from the majority of precipitation events, which wet foliage but do not increase soil moisture substantially. Foliar absorption of intercepted water could be more important than previously appreciated, especially during drought when water stress is greatest. PMID:18376545

  14. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  15. Practicing attachment in the real world: improving maternal insightfulness and dyadic emotional availability at an outpatient community mental health clinic.

    PubMed

    Ziv, Yair; Kaplan, Betty Ann; Venza, Jimmy

    2016-06-01

    The purpose of the study was to examine the efficacy of an attachment-based intervention program practiced at an outpatient clinic. Changes in parental insightfulness and dyadic emotional availability were assessed in 32 mother-child dyads from pre- to post-intervention. At both data collection points, mothers were interviewed with the Insightfulness Assessment and the mother-child dyad was observed in play sessions coded with the Emotional Availability Scales. Findings revealed a strong association between maternal insightfulness and dyadic emotional availability, both before and after treatment. In terms of intervention efficacy, positive gains were observed in both insightfulness and dyadic emotional availability from pre- to post-intervention. Mothers who changed their classifications from non-insightful to insightful following the intervention showed the greatest gains in emotional availability. These findings have important implications for the type of interventions and service delivery model that could work in real world clinical settings. PMID:26824790

  16. 76 FR 53482 - Endangered and Threatened Wildlife and Plants; Notice of Availability of a Revised Recovery Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... southwestern tip of Utah in the United States, as well as in Sonora and northern Sinaloa in Mexico. The listed... improvement of the status of listed species to the point at which listing is no longer required under the... California, southern Nevada, Arizona, and the southwestern tip of Utah in the United States, as well as...

  17. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 21st century, nutrient efficient plants will play a major role in increasing crop yields compared to the 20th century, mainly due to limited land and water resources available for crop production, higher cost of inorganic fertilizer inputs, and declining trends in crop yields globally. Furthe...

  18. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.

    SciTech Connect

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-11-01

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  19. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  20. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  1. Water-conserving practices in Arkansas rice production to improve soil N availability and reduce greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is commonly grown in the U.S. under continual flood from early vegetative growth until shortly before harvest. Wetting and drying cycles offer potential savings in water use. In a three-year field study, wetting/drying cycles improved water use efficiency (kg grain m-3 water applied) by 22 to 4...

  2. Experimental Warming and Precipitation Effects on Plant Community Composition, Productivity, Nutrient Availability, and Soil Respiration in Pacific Northwest Prairies along a Natural Climate Gradient

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Pfeifer-Meister, L.; Tomaszewski, T.; Reynolds, L.; Goklany, M.; Wilson, H.; Johnson, B. R.

    2011-12-01

    Climate change effects on soil respiration and carbon stores in grasslands globally may have significant implications for future atmospheric carbon dioxide concentrations. Climate change may also may negatively impact native plant species and favor exotic species. We are experimentally increasing temperature by 3 degrees C and increasing precipitation by 25% above ambient in three upland prairie sites along a natural climate gradient from southwestern Oregon to central-western Washington to determine how future climate change will affect (i) plant community composition and the relative success of native versus introduced plant species and (ii) above- and belowground carbon and nutrient dynamics. Sixty plots (20 at each site) were restored by mowing, raking, and herbicide application followed by the sowing of the same 34 native grass and forb species in each plot. Differences in total cover, net primary productivity, and community composition were much greater among sites than among treatments within sites in both 2010--the establishment year, and 2011-the first full year of treatment. Strong successional dynamics occurred over the two years as competition intensified, but these were dependent on a site-treatment interaction, with lower native plant survival in heated plots because of competitive exclusion by exotic, invasive plants. A strong treatment - season interaction in canopy cover (as determined by canopy reflectance) also occurred, with heating causing greater cover during the wet season and lower cover during the dry season. This effect was strongest in the southernmost site which experiences earlier and more intense drought conditions. There were also strong site, treatment, and season interactions on nutrient availability as determined by cation-anion exchange resins. Heating increased nutrient availability in all but the northernmost site during the growing season, and that site also had much lower nutrient availability, but overall availability and

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  4. Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...

  5. 76 FR 9614 - Notice of Availability of the Proposed Models for Plant-Specific Adoption of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ..., published in the Federal Register on March 23, 2006 (71 FR 14726-14745, ADAMS Accession Number ML060760206..., 2005 (70 FR 74037), is available electronically under ADAMS Accession Number ML102700373. Federal... provides text and image files of NRC's public documents. If you do not have access to the ADAMS, or...

  6. Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in ecuadorian soils under cacao production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...

  7. 75 FR 81637 - Endangered and Threatened Wildlife and Plants; Notice of Availability of the St. Andrew Beach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... (63 FR 70053). The endangered St. Andrew beach mouse is now found in two populations: East Crooked... recovery plan available for public comment from April 22, 2009 through June 22, 2009 (74 FR 18403). We... feral cats and hogs in beach mouse habitat. 4. In areas with known populations of beach mice...

  8. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

  9. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    SciTech Connect

    Chakravarti, B.

    1996-07-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ``like for like`` replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants.

  10. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  11. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution. PMID:26785565

  12. Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna.

    PubMed

    Ferreira, Joice N; Bustamante, Mercedes; Garcia-Montiel, Diana C; Caylor, Kelly K; Davidson, Eric A

    2007-08-01

    Tropical savannas commonly exhibit large spatial heterogeneity in vegetation structure. Fine-scale patterns of soil moisture, particularly in the deeper soil layers, have not been well investigated as factors possibly influencing vegetation patterns in savannas. Here we investigate the role of soil water availability and heterogeneity related to vegetation structure in an area of the Brazilian savanna (Cerrado). Our objective was to determine whether horizontal spatial variations of soil water are coupled with patterns of vegetation structure across tens of meters. We applied a novel methodological approach to convert soil electrical resistivity measurements along three 275-m transects to volumetric water content and then to estimates of plant available water (PAW). Structural attributes of the woody vegetation, including plant position, height, basal circumference, crown dimensions, and leaf area index, were surveyed within twenty-two 100-m(2) plots along the same transects, where no obvious vegetation gradients had been apparent. Spatial heterogeneity was evaluated through measurements of spatial autocorrelation in both PAW and vegetation structure. Comparisons with null models suggest that plants were randomly distributed over the transect with the greatest mean PAW and lowest PAW heterogeneity, and clustered in the driest and most heterogeneous transect. Plant density was positively related with PAW in the top 4 m of soil. The density-dependent vegetation attributes that are related to plot biomass, such as sum of tree heights per plot, exhibited spatial variation patterns that were remarkably similar to spatial variation of PAW in the top 4 m of soil. For PAW below 4 m depth, mean vegetation attributes, such as mean height, were negatively correlated with PAW, suggesting greater water uptake from the deep soil by plants of larger stature. These results are consistent with PAW heterogeneity being an important structuring factor in the plant distribution at the

  13. Strategies to improve MEA CO/sub 2/-removal detailed at Louisiana ammonia plant

    SciTech Connect

    Gagliardi, C.R.; Smith, D.D.; Wang, S.I.

    1989-03-06

    Alkanolamines are chemically reactive solvents widely used for removal of CO/sub 2/ and H/sub 2/S from sour-gas streams. Monoethanolamine (MEA) is the most popular of the alkanolamines. Improving efficiencies and increasing capacities in existing MEA CO/sub 2/-removal systems may be constrained by several limitations. Air Products and Chemicals Inc. (APCI), Allentown, Pa., has experience resolving these limitations as shown in a CO/sub 2/-removal system project at a Louisiana ammonia plant.

  14. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  15. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  16. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

    PubMed

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies. PMID:27014254

  17. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Burgos, Pilar; Cabrera, Francisco

    2006-06-15

    We evaluated the effects of different amendments and/or a plant cover on reclamation of a trace element contaminated soil. Seven treatments were established: four organic (leonardite (LEO), litter (LIT), municipal waste compost (MWC), biosolid compost (BC)), one inorganic (sugar beet lime (SL)) and two controls (control without amendment but with Agrostis (CTRP) and control without amendment and without Agrostis (CTR)). Results showed that total organic C was significantly higher in organic treatments in all samplings. Water-soluble C was lower in CTR compared to other treatments, but no significant differences were observed between organic treatments and SL and CTR. SL, BC and MWC treatments increased soil pH and reduced 0.01 M CaCl2-extractable Cd, Cu and Zn concentrations more efficiently, especially in the first 2 years. At the end of the experiment 0.01 M CaCl2-extractable trace element concentrations were similar in all treatments. 0.01 M CaCl2-extractable As and Pb were below the detection limit. Addition of amendments showed no clear reduction in 0.05 M EDTA-extractable trace element concentrations and some amendments even increased 0.05 M EDTA-extractable As and Cu with time. Pseudo-total trace element concentrations were higher for As in controls. On the other hand, mean values of Cu and Zn were higher in MWC treatment. BC and SL treatments also showed higher Zn mean concentration than controls. No amendment effect was observed for Cd and Pb. PMID:16581109

  18. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth

    PubMed Central

    Wilson, Robert H.; Alonso, Hernan; Whitney, Spencer M.

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted “trial and error” protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  19. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  20. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  1. Environmental sustainability and water availability: Analyses of the scarcity and improvement opportunities in the Usangu plain, Tanzania

    NASA Astrophysics Data System (ADS)

    Malley, Z. J. U.; Taeb, M.; Matsumoto, T.; Takeya, H.

    Environmental sustainability is one among the eight United Nations Millennium Development Goals (MDGs) for sustainable development. As a measure of this goal, proportion of people with sustainable access to improved water source is an indicator of progress towards its achievement by the year 2015. This study assessed the emerging scarcity of water and analyzed opportunities for improvement in six rural villages of the Usangu plain in south-western Tanzania. A combination of the literature survey, participatory rural appraisal, formal survey, participant observations and biophysical data collection were research tools used. A problem of water shortage for domestic use exists and is increasing in the Usangu plain. In the area of study, only 13% of the households had full time access to improved sources of water. This proportion is very low, compared to national average of 65.7% in 1999, and the national target to be achieved is 82.1% by year 2015. Environmental change, manifested by increasing drought events, decline of water levels in underground aquifers, streams, rivers and springs, and observed increased losses through runoff floods are the major causes of emerging shortages of the water. Use of techniques that increase conservation and infiltration of the rainwater in the watershed areas of the major sources would enhance the recharge of underground aquifers and reduce floods. Technologies and skills, that would enable local people to directly harvest rainwater and tap underground water and manage these sources effectively, at household or sub-village community levels, seem to be sustainable solutions to the scarcity of safe drinking water supply in this semi-arid environment, where there is increasing rainfall amount and pattern variability.

  2. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  3. Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R S; Li, Y C; Baligar, V C

    2016-05-01

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the chocolate consumption on human health. Accumulation of Cd in cacao bean in southern Ecuador has been related to soil contamination. In this study, soil fractionation approach was used to identify available Cd pools in the soils and to correlate these Cd pools with bean Cd concentration and soil test indexes. The distribution of soil Cd fractions decreased in the order: oxidizable > acid-soluble > residual > reducible > water-soluble (+exchangeable). Oxidizable and acid-soluble fractions accounted for 59 and 68% of the total recoverable Cd for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble fraction was closely related to bean-Cd, with correlation coefficients (r) of 0.70 and 0.81 (P < 0.01) for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble Cd was significantly correlated with 0.01 M HCl- (r = 0.99, P < 0.01) or Mehlich 3- extractable Cd (r = 0.97, P < 0.01). These results indicate that acid-soluble Cd fraction is an important part of available Cd pool. Since approximately 60% of Cd in the cacao-growing soils is related to the acid-soluble fraction and bound to organic matter, remediation of the contaminated soils should consider to the dynamics of soil pH and organic matter content. PMID:26891357

  4. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach.

    PubMed

    Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin

    2016-04-01

    Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought. PMID:26639082

  5. Improving outcomes for people in mental health crisis: a rapid synthesis of the evidence for available models of care.

    PubMed Central

    Paton, Fiona; Wright, Kath; Ayre, Nigel; Dare, Ceri; Johnson, Sonia; Lloyd-Evans, Brynmor; Simpson, Alan; Webber, Martin; Meader, Nick

    2016-01-01

    BACKGROUND Crisis Concordat was established to improve outcomes for people experiencing a mental health crisis. The Crisis Concordat sets out four stages of the crisis care pathway: (1) access to support before crisis point; (2) urgent and emergency access to crisis care; (3) quality treatment and care in crisis; and (4) promoting recovery. OBJECTIVES To evaluate the clinical effectiveness and cost-effectiveness of the models of care for improving outcomes at each stage of the care pathway. DATA SOURCES Electronic databases were searched for guidelines, reviews and, where necessary, primary studies. The searches were performed on 25 and 26 June 2014 for NHS Evidence, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, NHS Economic Evaluation Database, and the Health Technology Assessment (HTA) and PROSPERO databases, and on 11 November 2014 for MEDLINE, PsycINFO and the Criminal Justice Abstracts databases. Relevant reports and reference lists of retrieved articles were scanned to identify additional studies. STUDY SELECTION When guidelines covered a topic comprehensively, further literature was not assessed; however, where there were gaps, systematic reviews and then primary studies were assessed in order of priority. STUDY APPRAISAL AND SYNTHESIS METHODS Systematic reviews were critically appraised using the Risk Of Bias In Systematic reviews assessment tool, trials were assessed using the Cochrane risk-of-bias tool, studies without a control group were assessed using the National Institute for Health and Care Excellence (NICE) prognostic studies tool and qualitative studies were assessed using the Critical Appraisal Skills Programme quality assessment tool. A narrative synthesis was conducted for each stage of the care pathway structured according to the type of care model assessed. The type and range of evidence identified precluded the use of meta-analysis. RESULTS AND LIMITATIONS One review of reviews, six systematic reviews

  6. The potential of beech seedlings to adapt to low P availability in soil - plant versus microbial effects on P mobilising potential in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Meller, Sonia; Frey, Beat; Frossard, Emmanuel; Spohn, Marie; Schack-Kirchner, Helmer; Luster, Jörg

    2016-04-01

    The objective of our work was to investigate to what extent tree seedlings (Fagus sylvatica) are able to adapt the process of P mobilisation in the rhizosphere according to P speciation in the soil. Such mobilisation activity can include root exudation of P mobilising compounds or stimulation of specific P mobilising soil microbes. We hypothesized that Fagus sylvatica seedlings can adapt their own activity based on their P nutritional status and genetic memory of how to react under a given nutritional situation. To test the hypothesis, we set up a cross-growth experiment with beech of different provenances growing in soil from their own provenance site and in soil differing in P availability. Experiments were performed as a greenhouse experiment, with temperature control and natural light, during one vegetation period in rhizoboxes . We used two acidic forest soils, contrasting in P availability, collected at field sites of the German research priority program "Ecosystem Nutrition". Juvenile trees were collected along with the soils at the sites and planted respectively. The occurrence of P mobilising compounds and available P in the rhizosphere and in bulk soil were measured during the active growth season of the plants. In particular, we assessed phosphatase activity, (measured with zymography and plate enzymatic assay at pH 4,6.5, and 11) carboxylates and phosphate (measured by application of ion exchange membranes to specific soil micro zones, and by microdialysis), and pH (mapping with optodes). Plant P nutrition status was assessed by total P, N/P, phosphatase activity, and metabolic (TCA extractable) P in the leaves. The P-nutritional status of the beech provenances differed markedly independent from the P status of the soil where they were actually grown during experiment. In particular, the juvenile trees from the site rich in mineral P were sufficient in P, while those from the P-poor site with mostly organic P, were deficient. Enzymatic activity at the

  7. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis.

    PubMed

    Wilhelm, Christian; Selmar, Dirk

    2011-01-15

    In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO(2) conditions or other metabolic strategies which can increase the carbon flux from CO(2) to metabolic pools. However, even under optimal CO(2) conditions plants will provide much more NADPH+H(+) and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP(+) would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called "alternative electron cycling" which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non

  8. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-10-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.

  9. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.

    PubMed

    Xu, Zhihao; Yang, Zhifeng; Yin, Xinan; Cai, Yanpeng; Sun, Tao

    2016-07-15

    Wetland eutrophication is a global environmental problem. Besides reducing pollutant emissions, improving nutrient assimilative capacity in wetlands is also significant for preventing eutrophication. Hydrological management can improve nutrient assimilative capacity in wetlands through physical effects on the dilution capacity of water body and ecological effects on wetland nutrient cycles. The ecological effects are significant while were rarely considered in previous research. This study focused on the ecological effects of hydrological management on two crucial nutrient removal processes, plant uptake and biological denitrification, in plant-dominated wetlands. A dual-objective optimization model for hydrological management was developed to improve wetland nitrogen and phosphorus assimilative capacities, using upstream reservoir release as water regulating measure. The model considered the interactions between ecological processes and hydrological cycles in wetlands, and their joint effects on nutrient assimilative capacity. Baiyangdian Wetland, the largest freshwater wetland in northern China, was chosen as a case study. The results found that the annual total assimilative capacity of nitrogen (phosphorus) was 4754 (493) t under the optimal scheme for upstream reservoir operation. The capacity of nutrient removal during the summer season accounted for over 80% of the annual total removal capacity. It was interesting to find that the relationship between water inflow and nutrient assimilative capacity in a plant-dominated wetland satisfied a dose-response relationship commonly describing the response of an organism to an external stressor in the medical field. It illustrates that a plant-dominated wetland shows similar characteristics to an organism. This study offers a useful tool and some fresh implications for future management of wetland eutrophication prevention. PMID:27085151

  10. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    PubMed

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  11. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models

    PubMed Central

    Ramírez-Albores, Jorge E.; Bustamante, Ramiro O.

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  12. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  13. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  14. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos

  15. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-07-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist, but generally they do not resolve arable land into different crop types. However, the characteristic phenological behaviour of different crops affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for Central Europe based on CORINE Land Cover 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for Central Europe using statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types, taking a multiseasonal series of MERIS Normalized Difference Vegetation Index (NDVI) into account. The satellite data were used for the separation of spring and summer crops. The hydrological impact of the improved land cover map was modelled exemplarily for the Upper Danube catchment.

  16. Small RNAs in plants: recent development and application for crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  17. Small RNAs in plants: recent development and application for crop improvement

    PubMed Central

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20–24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  18. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions.

    PubMed

    Saud, Shah; Li, Xin; Chen, Yang; Zhang, Lu; Fahad, Shah; Hussain, Saddam; Sadiq, Arooj; Chen, Yajun

    2014-01-01

    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses. PMID:25054178

  19. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology. PMID:24142380

  20. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  1. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants.

    PubMed

    Sutton, D W; Havstad, P K; Kemp, J D

    1992-09-01

    A 1974 bp synthetic gene was constructed from chemically synthesized oligonucleotides in order to improve transgenic protein expression of the cryIIIA gene from Bacillus thuringiensis var. tenebrionis in transgenic tobacco. The crystal toxin genes (cry) from B. thuringiensis are difficult to express in plants even when under the control of efficient plant regulatory sequences. We identified and eliminated five classes of sequence found throughout the cryIIIA gene that mimic eukaryotic processing signals and which may be responsible for the low levels of transcription and translation. Furthermore, the GC content of the gene was raised from 36% to 49% and the codon usage was changed to be more plant-like. When the synthetic gene was placed behind the cauliflower mosaic virus 35S promoter and the alfalfa mosaic virus translational enhancer, up to 0.6% of the total protein in transgenic tobacco plants was cryIIIA as measured from immunoblot analysis. Bioassay data using potato beetle larvae confirmed this estimate. PMID:1301214

  2. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I Demonstruation Plant, Newman, Kentucky. Appendix B. Best available control technology (BACT) proposals. [Demonstration plant at Newman, KY

    SciTech Connect

    Not Available

    1980-11-21

    The best available control technology (BACT) proposals for the following areas of the SRC-I demonstration plant are described: coal preparation and handling, SRC process and deashing, coke and liquid fuels (control of particles and hydrocarbon vapors), cryogenic systems and fuel gas purification (including sulfur recovery system and venting of gaseous wastes). (LTN)

  3. Glutamate promotes nucleotide synthesis in the gut and improves availability of soybean meal feed in rainbow trout.

    PubMed

    Yoshida, Chika; Maekawa, Mayumi; Bannai, Makoto; Yamamoto, Takeshi

    2016-01-01

    Glutamate (Glu) plays various roles directly or through conversions to other amino acids in intracellular metabolisms such as energy source for enterocytes and precursor for nucleic acids. In this study, we examined the effect of single and chronic oral administration of Glu on cell proliferation in intestine and growth in rainbow trout fed soybean meal (SBM) based diet. In the single dose study, 30, 120 and 360 min after oral administration of 50 and 500 mg/kg Glu, the blood and intestine tissues were collected for amino acid concentration and gene expression analysis. Cell-proliferation was detected 24 h after administration using bromo-deoxy uridine (BrdU) in intestine. In the chronic experiment, fish were fed SBM-based diet added 1 and 2 % of Glu for 8 weeks. Final body weight, plasma amino acid concentrations, gene expression and cell-proliferation in the intestine were analyzed. The expressions of some nucleic acid-synthesis related genes were significantly increased 30 min after administration of 50 mg/kg of Glu. After 8 weeks of feeding, the fish fed SBM-based diet showed significantly lower body weight and microvillus thickness in proximal intestine. Supplementation of 2 % of Glu in the SBM-based feed improved both of them. Though it was not significant difference, Glu tended to increase cell-proliferation in the proximal intestine dose-dependently in both single and chronic administration. Our experiment indicates that Glu has positive effect on rainbow trout fed SBM-based feed by reforming proximal intestine through altering cell-proliferation. PMID:27441140

  4. Development of an engineered soil bacterium enabling to convert both insoluble inorganic and organic phosphate into plant available phosphate and its use as a biofertilizer.

    PubMed

    Liu, Lili; Du, Wenya; Luo, Wenyu; Su, Yi; Hui, Jiejie; Ma, Shengwu

    2015-05-01

    Phosphorus (P) is one of the most important nutrient elements for plant growth and metabolism. We previously isolated a P-solubilizing bacterium 9320-SD with the ability to utilize inorganic P and convert it into plant-available P. The present study aims to enhance the P-solubilizing capacity of 9320-SD, as our long-term goal is to develop a more effective P-solubilizing bacterial strain for use as a biofertilizer. In this end, we introduced a bacterial phytase encoding gene into 9320-SD. One randomly selected transformant, SDLiuTP02, was examined for recombinant protein expression and phytase activity, and assessed for its ability to promote plant growth. Our results indicate that SDLiuTP02 is capable of expressing high levels of phytase activity. Importantly, corn seedlings treated with the SDLiuTP02 cell culture exhibited increased rates of photosynthesis, transpiration, and stomatal conductance as well as increased growth rate under laboratory conditions and increased growth rate in pot assays compared to seedlings treated with cell cultures of the parental strain 9320-SD. Field experiments further indicated that application of SDLiuTP02 promoted a greater growth rate in young cucumber plant and a higher foliar chlorophyll level in chop suey greens when compared to 9320-SD treated controls. These results indicate that SDLiuTP02 has the potential to be a more effective P biofertilizer to increase agricultural productivity. PMID:25585914

  5. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation. PMID:21254775

  6. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain

  7. Optical fiber sensors to improve the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Magne, S.; Laffont, G.

    2013-09-01

    Safety must always prevail in Nuclear Power Plants (NPPs), as shown at Fukushima-Daiichi. So, innovations are clearly needed to strengthen instrumentations, which went inoperative during this nuclear accident as a consequence of power supply losses. Possible improvements concern materials and structures, which may be remotely monitored thanks to Optical Fiber Sensors (OFS). We detail topics involving OFS helpful for monitoring, in nominal conditions as well as during a severe accident. They include distributed sensing (Rayleigh, Raman, Brillouin) for both temperature sensing and structure monitoring as well as H2 concentration and ionizing radiation monitoring. For future plants, Fiber Bragg Grating (FBG) sensors are considered up to high temperature for sodium-cooled fast reactor monitoring. These applications can benefit from fiber advantages: sensor multiplexing, multi-km range, no risk-to-people, no common failure mode with other technologies, remote sensing, and the ability to operate in case of power supply lost in the NPP.

  8. Using game technologies to improve the safety of construction plant operations.

    PubMed

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general. PMID:22664683

  9. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  10. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production. PMID:26951371

  11. Improving planting stock quality: The humboldt experience. Forest Service general technical report (Final)

    SciTech Connect

    Jenkinson, J.L.; Nelson, J.A.; Huddleston, M.E.

    1993-05-01

    A seedling testing program was developed to improve the survival and growth potential of planting stock produced in the USDA Forest Service Humboldt Nursery, situated on the Pacific Coast in northern California. Coastal and inland seed sources of Douglas-fir and eight other conifers in the Pacific Slope forests of western Oregon and northern California were assessed in both nursery and field studies. Seedling top and root growth capacities were evaluated just after lifting and after cold storage, and stored seedlings were tested for suvival and growth on cleared planting sites in the seed zones of origin. Safe lifting and cold storage schedules were defined, and seedling cultural regimes were formulated to produce successful 1-0, 1-1, and 2-0 stock types. Testing deomonstrated the critical elements of reforestation and proved that rapid establishment is attainable on diverse sites. Accomplishments of the Humboldt program recommended similar programs for other forest nurseries and their service regions.

  12. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America.

    PubMed

    Feeley, Kenneth

    2015-01-01

    Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., "big data"). In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF) and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping "data void" such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances. PMID:25927831

  13. Are We Filling the Data Void? An Assessment of the Amount and Extent of Plant Collection Records and Census Data Available for Tropical South America

    PubMed Central

    Feeley, Kenneth

    2015-01-01

    Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., “big data”). In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF) and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping “data void” such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances. PMID:25927831

  14. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation

    PubMed Central

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-01-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca’ Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2/FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P < 0.05), had lower PaO2/FiO2 (264 ± 78 mmHg vs. 453 ± 119 mmHg, P < 0.05), and more chest X-ray abnormalities (P < 0.05). EVLP recipients were more often admitted to intensive care unit as urgent cases (57% vs. 18%, P = 0.05); lung allocation score at transplantation was higher (79 [40–84] vs. 39 [36–46], P < 0.05). After transplantation, primary graft dysfunction (PGD72 grade 3, 32% vs. 28%, EVLP versus Standard, P = 1), mortality at 30 days (0% vs. 0%, P = 1), and overall survival (71% vs. 86%, EVLP versus Standard P = 0.27) were not different between groups. EVLP enabled a 20% increase in available donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953). PMID:24628890

  15. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation.

    PubMed

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-06-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca' Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2 /FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P < 0.05), had lower PaO2 /FiO2 (264 ± 78 mmHg vs. 453 ± 119 mmHg, P < 0.05), and more chest X-ray abnormalities (P < 0.05). EVLP recipients were more often admitted to intensive care unit as urgent cases (57% vs. 18%, P = 0.05); lung allocation score at transplantation was higher (79 [40-84] vs. 39 [36-46], P < 0.05). After transplantation, primary graft dysfunction (PGD72 grade 3, 32% vs. 28%, EVLP versus Standard, P = 1), mortality at 30 days (0% vs. 0%, P = 1), and overall survival (71% vs. 86%, EVLP versus Standard P = 0.27) were not different between groups. EVLP enabled a 20% increase in available donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953). PMID:24628890

  16. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    Not Available

    2005-05-01

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant's compressed air system to enhance its performance while saving energy and improving production. After plant staff identified opportunities for system improvements, a qualified instructor from a U.S. Department of Energy (DOE) Allied Partner, Scales Air Compressor Corporation, helped to clarify several of them. The resulting improvement measures are yielding energy savings for compressed air of more than 1 million kWh; energy and maintenance cost savings total $165,000. The total cost of planned upgrades and other measures was $336,000, for a 2-year simple payback.

  17. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    PubMed Central

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  18. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    PubMed

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  19. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    PubMed

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme. PMID:26662726

  20. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Oshiba, A; Marubayashi, T; Sato, S

    2014-01-01

    We investigated the effects of basicity, sulfate content, and aluminum hydrolyte species on the ability of polyaluminum chloride (PACl) coagulants to remove F-specific RNA bacteriophages from river water at a pH range of 6-8. An increase in PACl basicity from 1.5 to 2.1 and the absence of sulfate led to a reduction of the amount of monomeric aluminum species (i.e., an increase of the total amount of polymeric aluminum and colloidal aluminum species) in the PACl, to an increase in the colloid charge density of the PACl, or to both and, as a result, to high virus removal efficiency. The efficiency of virus removal at around pH 8 observed with PACl-2.1c, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high colloidal aluminum content, was larger than that observed with PACl-2.1b, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high polymeric aluminum content. In contrast, although extremely high basicity PACls (e.g., PACl-2.7ns, basicity 2.7) effectively removed turbidity and UV260-absorbing natural organic matter and resulted in a very low residual aluminum concentration, the virus removal ratio with PACl-2.7ns was smaller than the ratio with PACl-2.1c at around pH 8, possibly as a result of a reduction of the colloid charge density of the PACl as the basicity was increased from 2.1 to 2.7. Liquid (27)Al NMR analysis revealed that PACl-2.1c contained Al30 species, which was not the case for PACl-2.1b or PACl-2.7ns. This result suggests that Al30 species probably played a major role in virus removal during the coagulation process. In summary, PACl-2.1c, which has high colloidal aluminum content, contains Al30 species, and has a high colloid charge density, removed viruses more efficiently (>4 log10 for infectious viruses) than the other aluminum-based coagulants-including commercially available PACls (basicity 1.5-1.8), alum, and PACl-2.7ns-over the entire tested pH (6-8) and coagulant dosage (0.54-5.4 mg-Al/L) ranges. PMID:24139360

  1. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  2. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  3. Why Would Plant Species Become Extinct Locally If Growing Conditions Improve?

    PubMed Central

    Kramer, Koen; Bijlsma, Rienk-Jan; Hickler, Thomas; Thuiller, Wilfried

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change. PMID:22991500

  4. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    PubMed

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions. PMID:23831950

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  6. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  7. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy at a Lehigh Southwest Cement Plant

    SciTech Connect

    Not Available

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  8. Can Physiological Endpoints Improve the Sensitivity of Assays with Plants in the Risk Assessment of Contaminated Soils?

    PubMed Central

    Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The

  9. Improving survival and growth of planted Austrocedrus chilensis seedlings in disturbed patagonian forests of Argentina by managing understory vegetation.

    PubMed

    Pafundi, Leticia; Urretavizcaya, M Florencia; Defossé, Guillermo E

    2014-12-01

    This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress-coihue mixed forest (42°02'S, 71°33'W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55'S, 71°21'W) consisted of two groups: "shade" (grown under shade cloth) and "sun" (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment. PMID:25216990

  10. Improving Survival and Growth of Planted Austrocedrus chilensis Seedlings in Disturbed Patagonian Forests of Argentina by Managing Understory Vegetation

    NASA Astrophysics Data System (ADS)

    Pafundi, Leticia; Urretavizcaya, M. Florencia; Defossé, Guillermo E.

    2014-12-01

    This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress-coihue mixed forest (42°02'S, 71°33'W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55'S, 71°21'W) consisted of two groups: "shade" (grown under shade cloth) and "sun" (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment.

  11. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. PMID:24681087

  12. Assessment of plant availability and environmental risk of biosolids-phosphorus in a U.S. Midwest Corn-Belt Soil.

    PubMed

    Tian, G; Cox, A E; Kumar, K; Granato, T C; O'Connor, G A; Elliott, H A

    2016-05-01

    A field experiment was conducted from 2005 to 2008 in Fulton County, Western Illinois with biosolids from conventional wastewater treatment applied as corn fertilizer in a series of P rates (0, 163, 325, 488, 650 kg P ha(-1)) along with commercial P fertilizer - triple superphosphate P (TSP) as reference to assess biosolids-P plant availability and potential loss to waterbodies through runoff. Air-dried biosolids and TSP were incorporated into surface soil at end of 2005, and corn (Zea mays) was planted for three consecutive years (2006-2008). Concentrations of soil extractable P except for Mehlich-3 P were always lower in the biosolids than TSP treatments at the same P rates. The soil potentially available P in water extractable P (WEP) and Olsen P derived from biosolids-P estimated by the exponential depletion model was 2-4% and 15-24% of total P in the applied biosolids, respectively. The residence time of biosolids-induced WEP and Olsen P in Midwest soil under annual corn cropping was 5 and 2 years, respectively. Corn tissue analysis showed lower increase in P concentration by biosolids-P than TSP. The elevation rate of soluble reactive P (SRP) concentration in simulated runoff was less by biosolids than TSP. Based on the data in this study, the plant availability and environmental risk of biosolids-P are lower than those of TSP in the Midwest soil, thus use of biosolids as P nutrient for corn would not cause a major impairment to water sources even P applied through biosolids was not completely used by annual crop. PMID:26945189

  13. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  14. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  16. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. PMID:24112644

  17. Using closed-loop dynamic optimization to improve boiler efficiency at Chemopetrol's Litvinov Plant

    SciTech Connect

    Jarc, C.A.; Lang, R.

    1998-07-01

    Due to ever increasing demands by shareholders, environmental and governmental agencies, and customers, power generation and co-generating companies are looking more and more into advanced technologies to help them gain an edge on their competitors. Intelligent empirical optimization is a promising family of technologies to tune boilers for maximum efficiency and/or minimum emissions. A recent project teamed the Ultramax Corporation and Honeywell to install an on-line, closed-loop optimization solution on four new boilers at the Chemopetrol plant in Litvinov, Czech Republic, Honeywell has created an engineered solution called Individual Boiler Optimization (IBO) which utilizes the Ultramax Method and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}, to optimize combustion of the boilers which are controlled by Honeywell's TotalPlant{reg{underscore}sign} solutions (TPS) System. IBO provides a real-time shell providing for automatic Ultramax operation in either open or closed-loop. With this system, Chemopetrol will be able to improve their boiler efficiency and NO{sub x} emissions on-line with little operator intervention. It can safely maintain best operating settings and compensate for changes that could potentially cause poor performance. The integrated dynamic solution enables greater emissions control fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and plant demands.

  18. [Not Available].

    PubMed

    Cederholm, Tommy; Hellénius, Mai-Lis

    2016-01-01

    By the food intake man is daily exposed to numerous chemical agents with impact on ageing and longevity. Over the last two centuries longevity in the affluent societies has increased by 2 years per decade. Improved food habits are important contributing factors.  Dietary patterns of populations with long life-spans, like the traditional Mediterranean diet and the Okinawa Island diet, provide the basis to recommend plant foods like vegetables, legumes, fruits, non-tropical vegetable oils as basic fat, light meat (e.g. poultry) of moderate amounts, plenty of fish and moderate beverage intakes of wine, coffee and tea. Oxidative damage is suggested as one major reason for exaggerated ageing. Foods that promote longevity are rich in antioxidants. Still there is no evidence that extra anti-oxidant supplementation has any beneficial effects. Energy balance to avoid obesity at young and middle ages, e.g. by calorie restricted diets and increased physical activity, promotes longevity, whereas at older age overweight is usually associated with a longer life-span. PMID:27272545

  19. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms.

    PubMed

    Zhou, Cheng; Guo, Jiansheng; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Ma, Zhongyou; Wang, Jianfei

    2016-08-01

    Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe-deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition. PMID:27105423

  20. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  1. Use of collaboration software to improve nuclear power plant outage management

    SciTech Connect

    Germain, Shawn

    2015-02-01

    Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktop computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.

  2. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through

  3. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  4. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    PubMed

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming. PMID:27092104

  5. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties

    PubMed Central

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D.; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar–mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming. PMID:27092104

  6. An Innovative Magnetic Charging Chute to Improve Productivity of Sinter Machine at Rourkela Steel Plant

    NASA Astrophysics Data System (ADS)

    Selvam, Sambandham Thirumalai; Chaudhuri, Subhasis; Das, Arunaba; Singh, Mithilesh Kumar; Mahanta, H. K.

    Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. 'Permeability' of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of 'permeability' in sinter-bed is depending upon the effectiveness of 'charging chute' in size-wise 'segregation' of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional 'charging chute' was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, "Magnetic Charging Chute" at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1 kg/t of sinter.

  7. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  8. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  9. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01

    will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  10. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research.

    PubMed

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S Luke

    2015-01-01

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m(2). There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379

  11. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research

    PubMed Central

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S. Luke

    2015-01-01

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m2. There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379

  12. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  13. Chiller plant CFC, energy and operational improvements{hor_ellipsis} or, killing three birds with one stone

    SciTech Connect

    Waltz, J.P.

    1996-05-01

    This paper explores the hidden opportunities that exist when planning CFC abatement or modernization projects for central cooling plants, both small and large. It is critically important to perform an in-depth, comprehensive, and integrated re-evaluation of the entire cooling plant, its auxiliaries and its distribution system. By doing so, numerous system improvements can be identified and implemented which will reduce operating costs, simplify maintenance, improve plant operations, enhance plant reliability and even improve building comfort. Among the improvement measures are more efficient chillers, cooling tower replacement and optimization, plant re-sizing, optimizing, primary and auxiliary equipment {open_quotes}mix{close_quotes}chilled water variable flow conversion, multiple-plant integration, installation of dedicated cooling systems and fuel substitution. These measures can all independently, or concurrently, contribute to dramatically improved cooling operations. The paper refers to numerous actual projects that have already employed these techniques and also discusses the major CFC abatement compliance dates. The hidden opportunities presented and explained in this paper can do much to take the{open_quote}sting{close_quote} out of an otherwise onerous regulatory {open_quotes}predicament{close_quotes} and, perhaps most significantly, help to secure funding from management for much-needed projects sooner rather than later.

  14. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants

    PubMed Central

    Homrich, Milena Schenkel; Wiebke-Strohm, Beatriz; Weber, Ricardo Luís Mayer; Bodanese-Zanettini, Maria Helena

    2012-01-01

    Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area. PMID:23412849

  15. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Van Meighem, Jeffery S.; Duncan, Garth M.; Pell, Michael J.; Harrington, Christopher C.

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  16. [Not Available].

    PubMed

    Soret, Juliette; Kiladjian, Jean-Jacques

    2016-06-01

    THE ROLE OF RUXOLITINIB IN THE TREATMENT OF MYELOPROLIFERATIVE NEOPLASMS: The discovery of the JAK2V617F mutation in 2005, present in 95% of polycythemia vera (PV) and in 55% of myelofibrosis (MF) patients, opened the way for a new era of targeted therapies for myeloproliferative neoplasms. Ruxolitinib was the first-in-class Janus Kinase (JAK) inhibitor approved for the management of these diseases. In PV patients, conventional treatment strategies including aspirin, phlebotomy, cytoreductive agents such as hydroxyurea and interferon, clearly provide clinical benefits. However, some patients develop resistance or intolerance to these treatments. Ruxolitinib has been approved for PV patients who are resistant to or intolerant of hydroxyurea, based on the results of the phase 3 RESPONSE study. This study showed that ruxolitinib improves hematocrit control, reduces splenomegaly, and ameliorate disease-related symptoms as compared with best available therapy. In MF patients, the only curative treatment is allogeneic stem cell transplantation, but it remains restricted to a limited group of patients with poor prognosis and who are eligible for such procedure associated with non-negligible transplant-related mortality. Other treatments are palliative and unlikely to prolong survival. Ruxolitinib has been approved in the United States for MF patients with intermediate or high-risk disease, and in Europe for disease-related splenomegaly or symptoms in adults with MF, based on phase 3 COMFORT-I and COMFORT-II studies. These studies showed that ruxolitinib was able to reduce splenomegaly, ameliorate symptoms, and improve survival. However, the journey is not finished yet since there are still important unmet needs for MF patients, including improvement in cytopenias, and significant modification of disease natural history. PMID:27494970

  17. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy