Sample records for improving prefrontal cortex

  1. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was prefrontal cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  2. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex.

    PubMed

    Hussey, Erika K; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F

    2015-01-01

    Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing.

  3. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex

    PubMed Central

    Hussey, Erika K.; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F.

    2015-01-01

    Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing. PMID:26528814

  4. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  5. Lateral prefrontal cortex: architectonic and functional organization

    PubMed Central

    Petrides, Michael

    2005-01-01

    A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information. PMID:15937012

  6. Aging, self-referencing, and medial prefrontal cortex.

    PubMed

    Gutchess, Angela H; Kensinger, Elizabeth A; Schacter, Daniel L

    2007-01-01

    The lateral prefrontal cortex undergoes both structural and functional changes with healthy aging. In contrast, there is little structural change in the medial prefrontal cortex, but relatively little is known about the functional changes to this region with age. Using an event-related fMRI design, we investigated the response of medial prefrontal cortex during self-referencing in order to compare age groups on a task that young and elderly perform similarly and that is known to actively engage the region in young adults. Nineteen young (M age = 23) and seventeen elderly (M age = 72) judged whether adjectives described themselves, another person, or were presented in upper case. We assessed the overlap in activations between young and elderly for the self-reference effect (self vs. other person), and found that both groups engage medial prefrontal cortex and mid-cingulate during self-referencing. The only cerebral differences between the groups in self versus other personality assessment were found in somatosensory and motor-related areas. In contrast, age-related modulations were found in the cerebral network recruited for emotional valence processing. Elderly (but not young) showed increased activity in the dorsal prefrontal cortex for positive relative to negative items, which could reflect an increase in controlled processing of positive information for elderly adults.

  7. Working Memory in the Prefrontal Cortex

    PubMed Central

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  8. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  9. ALCOHOL AND THE PREFRONTAL CORTEX

    PubMed Central

    Abernathy, Kenneth; Chandler, L. Judson; Woodward, John J.

    2013-01-01

    The prefrontal cortex occupies the anterior portion of the frontal lobes and is thought to be one of the most complex anatomical and functional structures of the mammalian brain. Its major role is to integrate and interpret inputs from cortical and sub-cortical structures and use this information to develop purposeful responses that reflect both present and future circumstances. This includes both action-oriented sequences involved in obtaining rewards and inhibition of behaviors that pose undue risk or harm to the individual. Given the central role in initiating and regulating these often complex cognitive and behavioral responses, it is no surprise that alcohol has profound effects on the function of the prefrontal cortex. In this chapter, we review the basic anatomy and physiology of the prefrontal cortex and discuss what is known about the actions of alcohol on the function of this brain region. This includes a review of both the human and animal literature including information on the electrophysiological and behavioral effects that follow acute and chronic exposure to alcohol. The chapter concludes with a discussion of unanswered questions and areas needing further investigation. PMID:20813246

  10. The prefrontal cortex: categories, concepts and cognition.

    PubMed Central

    Miller, Earl K; Freedman, David J; Wallis, Jonathan D

    2002-01-01

    The ability to generalize behaviour-guiding principles and concepts from experience is key to intelligent, goal-directed behaviour. It allows us to deal efficiently with a complex world and to adapt readily to novel situations. We review evidence that the prefrontal cortex-the cortical area that reaches its greatest elaboration in primates-plays a central part in acquiring and representing this information. The prefrontal cortex receives highly processed information from all major forebrain systems, and neurophysiological studies suggest that it synthesizes this into representations of learned task contingencies, concepts and task rules. In short, the prefrontal cortex seems to underlie our internal representations of the 'rules of the game'. This may provide the necessary foundation for the complex behaviour of primates, in whom this structure is most elaborate. PMID:12217179

  11. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study

    PubMed Central

    Foy, Hannah J.; Runham, Patrick; Chapman, Peter

    2016-01-01

    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population. PMID:27227990

  12. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    PubMed Central

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  13. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    PubMed

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Plasticity in the prefrontal cortex of adult rats

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  15. Developmental outcomes after early prefrontal cortex damage.

    PubMed

    Eslinger, Paul J; Flaherty-Craig, Claire V; Benton, Arthur L

    2004-06-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.

  16. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  17. Increasing generosity by disrupting prefrontal cortex

    PubMed Central

    Sugiyama, Taisei; Grigaityte, Kristina; Iacoboni, Marco

    2017-01-01

    Recent research suggests that prosocial outcomes in sharing games arise from prefrontal control of self-maximizing impulses. We used continuous Theta Burst Stimulation (cTBS) to disrupt the functioning of two prefrontal areas, the right dorsolateral prefrontal cortex (DLPFC) and dorsomedial prefrontal cortex (DMPFC). We used cTBS in the right MT/V5, as a control area. We then tested subjects’ prosocial inclinations with an unsupervised Dictator Game in which they allocated real money anonymously between themselves and low and high socioeconomic status (SES) players. cTBS over the two prefrontal sites made subjects more generous compared to MT/V5. More specifically, cTBS over DLPFC increased offers to high SES players, while cTBS over DMPFC caused increased offers to low SES players. These data, the first to demonstrate an effect of disruptive neuromodulation on costly sharing, suggest that DLPFC and MPFC exert inhibitory control over prosocial inclinations during costly sharing, though they may do so in different ways. DLPFC may implement contextual control, while DMPFC may implement a tonic form of control. This study demonstrates that humans’ prepotent inclination is toward prosocial outcomes when cognitive control is reduced, even when prosocial decisions carry no strategic benefit and concerns for reputation are minimized. PMID:26942832

  18. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.

    PubMed

    Verghese, Ashika; Garner, K G; Mattingley, Jason B; Dux, Paul E

    2016-03-02

    The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control. Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level. Copyright © 2016 the authors 0270-6474/16/362638-08$15.00/0.

  19. Interplay of hippocampus and prefrontal cortex in memory

    PubMed Central

    Preston, Alison R.; Eichenbaum, Howard

    2013-01-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation. PMID:24028960

  20. Neuropsychology of prefrontal cortex

    PubMed Central

    Siddiqui, Shazia Veqar; Chatterjee, Ushri; Kumar, Devvarta; Siddiqui, Aleem; Goyal, Nishant

    2008-01-01

    The history of clinical frontal lobe study is long and rich which provides valuable insights into neuropsychologic determinants of functions of prefrontal cortex (PFC). PFC is often classified as multimodal association cortex as extremely processed information from various sensory modalities is integrated here in a precise fashion to form the physiologic constructs of memory, perception, and diverse cognitive processes. Human neuropsychologic studies also support the notion of different functional operations within the PFC. The specification of the component ‘executive’ processes and their localization to particular regions of PFC have been implicated in a wide variety of psychiatric disorders. PMID:19742233

  1. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex

    PubMed Central

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.

    2017-01-01

    Abstract Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. PMID:28402565

  2. Prefrontal cortex activity during swallowing in dysphagia patients.

    PubMed

    Lee, Jun; Yamate, Chisato; Taira, Masato; Shinoda, Masamichi; Urata, Kentaro; Maruno, Mitsuru; Ito, Reio; Saito, Hiroto; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Iwata, Koichi

    2018-05-24

    Prefrontal cortex activity is modulated by flavor and taste stimuli and changes during swallowing. We hypothesized that changes in the modulation of prefrontal cortex activity by flavor and taste were associated with swallowing movement and evaluated brain activity during swallowing in patients with dysphagia. To evaluate prefrontal cortex activity in dysphagia patients during swallowing, change in oxidized hemoglobin (z-score) was measured with near-infrared spectroscopy while dysphagia patients and healthy controls swallowed sweetened/unsweetened and flavored/unflavored jelly. Total z-scores were positive during swallowing of flavored/unsweetened jelly and negative during swallowing of unflavored/sweetened jelly in controls but negative during swallowing of sweetened/unsweetened and flavored/unflavored jelly in dysphagia patients. These findings suggest that taste and flavor during food swallowing are associated with positive and negative z-scores, respectively. Change in negative and positive z-scores may be useful in evaluating brain activity of dysphagia patients during swallowing of sweetened and unsweetened food.

  3. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    PubMed

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.

  4. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans.

    PubMed

    Smaers, Jeroen B; Gómez-Robles, Aida; Parks, Ashley N; Sherwood, Chet C

    2017-03-06

    One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules.

    PubMed

    Balsters, J H; Cussans, E; Diedrichsen, J; Phillips, K A; Preuss, T M; Rilling, J K; Ramnani, N

    2010-02-01

    It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  6. Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory

    PubMed Central

    Wilson, Charles R E; Gaffan, David; Mitchell, Anna S; Baxter, Mark G

    2007-01-01

    Disconnection of the frontal lobe from the inferotemporal cortex produces deficits in a number of cognitive tasks that require the application of memory-dependent rules to visual stimuli. The specific regions of frontal cortex that interact with the temporal lobe in performance of these tasks remain undefined. One capacity that is impaired by frontal–temporal disconnection is rapid learning of new object-in-place scene problems, in which visual discriminations between two small typographic characters are learned in the context of different visually complex scenes. In the present study, we examined whether neurotoxic lesions of ventrolateral prefrontal cortex in one hemisphere, combined with ablation of inferior temporal cortex in the contralateral hemisphere, would impair learning of new object-in-place scene problems. Male macaque monkeys learned 10 or 20 new object-in-place problems in each daily test session. Unilateral neurotoxic lesions of ventrolateral prefrontal cortex produced by multiple injections of a mixture of ibotenate and N-methyl-d-aspartate did not affect performance. However, when disconnection from inferotemporal cortex was completed by ablating this region contralateral to the neurotoxic prefrontal lesion, new learning was substantially impaired. Sham disconnection (injecting saline instead of neurotoxin contralateral to the inferotemporal lesion) did not affect performance. These findings support two conclusions: first, that the ventrolateral prefrontal cortex is a critical area within the frontal lobe for scene memory; and second, the effects of ablations of prefrontal cortex can be confidently attributed to the loss of cell bodies within the prefrontal cortex rather than to interruption of fibres of passage through the lesioned area. PMID:17445247

  7. Medial prefrontal cortex supports source memory accuracy for self-referenced items

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey

    2013-01-01

    Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex, underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial prefrontal cortex might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial prefrontal cortex (BA 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial prefrontal cortex contributes to this source memory benefit. This evidence expands the purported role that the medial prefrontal cortex plays in self-referencing. PMID:21936739

  8. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function.

    PubMed

    Butts, Kelly A; Weinberg, Joanne; Young, Allan H; Phillips, Anthony G

    2011-11-08

    Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.

  9. A dorsolateral prefrontal cortex semi-automatic segmenter

    NASA Astrophysics Data System (ADS)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  10. Increased GABA Levels in Medial Prefrontal Cortex of Young Adults with Narcolepsy

    PubMed Central

    Kim, Seog Ju; Lyoo, In Kyoon; Lee, Yujin S.; Sung, Young Hoon; Kim, Hengjun J.; Kim, Jihyun H.; Kim, Kye Hyun; Jeong, Do-Un

    2008-01-01

    Study Objectives: To explore absolute concentrations of brain metabolites including gamma amino-butyric acid (GABA) in the medial prefrontal cortex and basal ganglia of young adults with narcolepsy. Design: Proton magnetic resonance (MR) spectroscopy centered on the medial prefrontal cortex and the basal ganglia was acquired. The absolute concentrations of brain metabolites including GABA and glutamate were assessed and compared between narcoleptic patients and healthy comparison subjects. Setting: Sleep and Chronobiology Center at Seoul National University Hospital; A high strength 3.0 Tesla MR scanner in the Department of Radiology at Seoul National University Hospital. Patients or Participants: Seventeen young adults with a sole diagnosis of HLA DQB1 0602 positive narcolepsy with cataplexy (25.1 ± 4.6 years old) and 17 healthy comparison subjects (26.8 ± 4.8 years old). Interventions: N/A. Measurements and Results: Relative to comparison subjects, narcoleptic patients had higher GABA concentration in the medial prefrontal cortex (t = 4.10, P <0.001). Narcoleptic patients with nocturnal sleep disturbance had higher GABA concentration in the medial prefrontal cortex than those without nocturnal sleep disturbance (t = 2.45, P= 0.03), but had lower GABA concentration than comparison subjects (t = 2.30, P = 0.03). Conclusions: The current study reports that young adults with narcolepsy had a higher GABA concentration in the medial prefrontal cortex, which was more prominent in patients without nocturnal sleep disturbance. Our findings suggest that the medial prefrontal GABA level may be increased in narcolepsy, and the increased medial prefrontal GABA might be a compensatory mechanism to reduce nocturnal sleep disturbances in narcolepsy. Citation: Kim SJ; Lyoo IK; Lee YS; Sung YH; Kim HJ; Kim JH; Kim KH; Jeong DU. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. SLEEP 2008;31(3):342-347. PMID:18363310

  11. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats.

    PubMed

    Russell, V A; Wiggins, T M

    2000-12-01

    Spontaneously hypertensive rats (SHR) have behavioral characteristics (hyperactivity, impulsiveness, poorly sustained attention) similar to the behavioral disturbances of children with attention-deficit hyperactivity disorder (ADHD). We have previously shown that dopaminergic and noradrenergic systems are disturbed in the prefrontal cortex of SHR compared to their normotensive Wistar-Kyoto (WKY) control rats. It was of interest to determine whether the underlying neural circuits that use glutamate as a neurotransmitter function normally in the prefrontal cortex of SHR. An in vitro superfusion technique was used to demonstrate that glutamate caused a concentration-dependent stimulation of [3H]norepinephrine release from rat prefrontal cortex slices. Glutamate (100 microM and 1 mM) caused significantly greater release of norepinephrine from prefrontal cortex slices of SHR than from control slices. The effect of glutamate was not mediated by NMDA receptors, since NMDA (10 and 100 microM) did not exert any effect on norepinephrine release and MK-801 (10 microM) did not antagonize the effect of 100 microM glutamate. These results demonstrate that glutamate stimulates norepinephrine release from rat prefrontal cortex slices and that this increase is enhanced in SHR. The results are consistent with the suggestion that the noradrenergic system is overactive in prefrontal cortex of SHR, the animal model for ADHD.

  12. Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic brain injury

    PubMed Central

    Pardini, Matteo; Krueger, Frank; Raymont, Vanessa; Grafman, Jordan

    2010-01-01

    Background: Fatigue is a common and disabling symptom in neurologic disorders including traumatic penetrating brain injury (PBI). Despite fatigue's prevalence and impact on quality of life, its pathophysiology is not understood. Studies on effort perception in healthy subjects, animal behavioral paradigms, and recent evidence in different clinical populations suggest that ventromedial prefrontal cortex could play a significant role in fatigue pathophysiology in neurologic conditions. Methods: We enrolled 97 PBI patients and 37 control subjects drawn from the Vietnam Head Injury Study registry. Fatigue was assessed with a self-report questionnaire and a clinician-rated instrument; lesion location and volume were evaluated on CT scans. PBI patients were divided in 3 groups according to lesion location: a nonfrontal lesion group, a ventromedial prefrontal cortex lesion (vmPFC) group, and a dorso/lateral prefrontal cortex (d/lPFC) group. Fatigue scores were compared among the 3 PBI groups and the healthy controls. Results: Individuals with vmPFC lesions were significantly more fatigued than individuals with d/lPFC lesions, individuals with nonfrontal lesions, and healthy controls, while these 3 latter groups were equally fatigued. VmPFC volume was correlated with fatigue scores, showing that the larger the lesion volume, the higher the fatigue scores. Conclusions: We demonstrated that ventromedial prefrontal cortex lesion (vmPFC) plays a critical role in penetrating brain injury–related fatigue, providing a rationale to link fatigue to different vmPFC functions such as effort and reward perception. The identification of the anatomic and cognitive basis of fatigue can contribute to developing pathophysiology-based treatments for this disabling symptom. GLOSSARY AAL = Automated Anatomic Labeling; ANOVA = analysis of variance; BDI = Beck Depression Inventory; d/lPFC = dorso/lateral prefrontal cortex; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th

  13. An integrative theory of prefrontal cortex function.

    PubMed

    Miller, E K; Cohen, J D

    2001-01-01

    The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

  14. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making.

    PubMed

    van 't Wout, Mascha; Kahn, René S; Sanfey, Alan G; Aleman, André

    2005-11-07

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task. This is restricted to correlational evidence, however, and it remains unclear whether the dorsolateral prefrontal cortex is crucial for strategic decision-making. The present study used repetitive transcranial magnetic stimulation in order to investigate the causal role of the dorsolateral prefrontal cortex in strategic decision-making in the Ultimatum Game. The results showed that repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex resulted in an altered decision-making strategy compared with sham stimulation. We conclude that the dorsolateral prefrontal cortex is causally implicated in strategic decision-making in healthy human study participants.

  15. Dorsomedial prefrontal cortex mediates rapid evaluations predicting the outcome of romantic interactions

    PubMed Central

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O’Doherty, John P.

    2012-01-01

    Humans frequently make real-world decisions based on rapid evaluations of minimal information – for example, should we talk to an attractive stranger at a party? Little is known, however, about how the brain makes rapid evaluations with real and immediate social consequences. To address this question, we scanned participants with FMRI while they viewed photos of individuals that they subsequently met at real-life “speed-dating” events. Neural activity in two areas of dorsomedial prefrontal cortex, paracingulate cortex and rostromedial prefrontal cortex (RMPFC), was predictive of whether each individual would be ultimately pursued for a romantic relationship or rejected. Activity in these areas was attributable to two distinct components of romantic evaluation: either consensus judgments about physical beauty (paracingulate cortex) or individualized preferences based on a partner’s perceived personality (RMPFC). These data identify novel computational roles for these regions of the dorsomedial prefrontal cortex in even very rapid social evaluations. Even a first glance, then, can accurately predict romantic desire, but that glance involves a mix of physical and psychological judgments that depend on specific regions of dorsomedial prefrontal cortex. PMID:23136406

  16. The development of the ventral prefrontal cortex and social flexibility.

    PubMed

    Nelson, Eric E; Guyer, Amanda E

    2011-07-01

    Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context.

  17. The Development of the Ventral Prefrontal Cortex and Social Flexibility

    PubMed Central

    Nelson, Eric E.; Guyer, Amanda E.

    2011-01-01

    Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context. PMID:21804907

  18. Prefrontal Cortex, Emotion, and Approach/Withdrawal Motivation

    PubMed Central

    Spielberg, Jeffrey M.; Stewart, Jennifer L.; Levin, Rebecca L.; Miller, Gregory A.; Heller, Wendy

    2010-01-01

    This article provides a selective review of the literature and current theories regarding the role of prefrontal cortex, along with some other critical brain regions, in emotion and motivation. Seemingly contradictory findings have often appeared in this literature. Research attempting to resolve these contradictions has been the basis of new areas of growth and has led to more sophisticated understandings of emotional and motivational processes as well as neural networks associated with these processes. Progress has, in part, depended on methodological advances that allow for increased resolution in brain imaging. A number of issues are currently in play, among them the role of prefrontal cortex in emotional or motivational processes. This debate fosters research that will likely lead to further refinement of conceptualizations of emotion, motivation, and the neural processes associated with them. PMID:20574551

  19. Prefrontal Cortex, Emotion, and Approach/Withdrawal Motivation.

    PubMed

    Spielberg, Jeffrey M; Stewart, Jennifer L; Levin, Rebecca L; Miller, Gregory A; Heller, Wendy

    2008-01-01

    This article provides a selective review of the literature and current theories regarding the role of prefrontal cortex, along with some other critical brain regions, in emotion and motivation. Seemingly contradictory findings have often appeared in this literature. Research attempting to resolve these contradictions has been the basis of new areas of growth and has led to more sophisticated understandings of emotional and motivational processes as well as neural networks associated with these processes. Progress has, in part, depended on methodological advances that allow for increased resolution in brain imaging. A number of issues are currently in play, among them the role of prefrontal cortex in emotional or motivational processes. This debate fosters research that will likely lead to further refinement of conceptualizations of emotion, motivation, and the neural processes associated with them.

  20. Semantic strategy training increases memory performance and brain activity in patients with prefrontal cortex lesions.

    PubMed

    Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson

    2013-03-01

    Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Risk-dependent reward value signal in human prefrontal cortex

    PubMed Central

    Tobler, Philippe N.; Christopoulos, George I.; O'Doherty, John P.; Dolan, Raymond J.; Schultz, Wolfram

    2009-01-01

    When making choices under uncertainty, people usually consider both the expected value and risk of each option, and choose the one with the higher utility. Expected value increases the expected utility of an option for all individuals. Risk increases the utility of an option for risk-seeking individuals, but decreases it for risk averse individuals. In 2 separate experiments, one involving imperative (no-choice), the other choice situations, we investigated how predicted risk and expected value aggregate into a common reward signal in the human brain. Blood oxygen level dependent responses in lateral regions of the prefrontal cortex increased monotonically with increasing reward value in the absence of risk in both experiments. Risk enhanced these responses in risk-seeking participants, but reduced them in risk-averse participants. The aggregate value and risk responses in lateral prefrontal cortex contrasted with pure value signals independent of risk in the striatum. These results demonstrate an aggregate risk and value signal in the prefrontal cortex that would be compatible with basic assumptions underlying the mean-variance approach to utility. PMID:19369207

  2. Prefrontal Cortex and Drug Abuse Vulnerability: Translation to Prevention and Treatment Interventions

    PubMed Central

    Perry, Jennifer L.; Joseph, Jane E.; Jiang, Yang; Zimmerman, Rick S.; Kelly, Thomas H.; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P.; Bardo, Michael T.

    2010-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and primates. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences factors (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. PMID:20837060

  3. Authoritarianism, religious fundamentalism, and the human prefrontal cortex

    PubMed Central

    Asp, Erik; Ramchandran, Kanchna; Tranel, Daniel

    2012-01-01

    Objective The psychological processes of doubting and skepticism have recently become topics of neuroscientific investigation. In this context, we developed the False Tagging Theory, a neurobiological model of the belief and doubt process, which proposes that the prefrontal cortex is critical for normative doubt regarding properly comprehended cognitive representations. Here, we put our theory to an empirical test, hypothesizing that patients with prefrontal cortex damage would have a doubt deficit that would manifest as higher authoritarianism and religious fundamentalism. Method Ten patients with bilateral damage to the ventromedial prefrontal cortex (vmPFC), ten patients with damage to areas outside the vmPFC, and sixteen medical comparison patients, who experienced life-threatening (but non-neurological) medical events, completed a series of scales measuring authoritarianism, religious fundamentalism, and specific religious beliefs. Results VMPFC patients reported significantly higher authoritarianism and religious fundamentalism than the other groups. The degrees of authoritarianism and religious fundamentalism in the vmPFC group were significantly higher than normative values, as well; by contrast, the comparison groups did not differ from normative values. Moreover, vmPFC patients reported increased specific religious beliefs after brain injury. Conclusions The findings support the False Tagging Theory, and suggest that the vmPFC is critical for psychological doubt and resistance to authoritarian persuasion. PMID:22612576

  4. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.

    PubMed

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-05-01

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lesions to Polar/Orbital Prefrontal Cortex Selectively Impair Reasoning about Emotional Material

    PubMed Central

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W.; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-01-01

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. PMID:28263798

  6. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    PubMed

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

    PubMed Central

    Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei

    2015-01-01

    Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425

  8. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Ma, Kaizong; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2013-01-01

    Background Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in schizophrenic (SCZ) patients, often as percent of total lipid concentration or incomplete lipid profile. In this study, we quantified absolute concentrations (nmol/g wet weight) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). Methods Lipids were extracted, fractionated with thin layer chromatography and assayed. Results Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acids in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid in total lipids, triglycerides or phospholipids. Conclusion These changes suggest disturbed prefrontal cortex fatty acid concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia. PMID:23428160

  9. Williams Syndrome Hypersociability: A Neuropsychological Study of the Amygdala and Prefrontal Cortex Hypotheses

    ERIC Educational Resources Information Center

    Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.

    2011-01-01

    Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…

  10. Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping.

    PubMed

    Milne, E; Grafman, J

    2001-06-15

    Patients with prefrontal cortex lesions and controls were administered an implicit association task (IAT) that measured the degree of association between male and female names and their stereotypical attributes of strength and weakness. They also completed three questionnaires measuring their explicit judgment regarding gender-related stereotypical attributes. There were no between-group differences on the explicit measures. On the IAT, patients with dorsolateral lesions and controls showed a strong association, whereas patients with ventromedial prefrontal cortex lesions had a significantly lower association, between the stereotypical attributes of men and women and their concepts of gender. This finding provides support for the hypothesis that patients with ventromedial prefrontal lesions have a deficit in automatically accessing certain aspects of overlearned associated social knowledge.

  11. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex.

    PubMed

    Bancroft, Tyler D; Hogeveen, Jeremy; Hockley, William E; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.

  12. Experience and the developing prefrontal cortex

    PubMed Central

    Kolb, Bryan; Mychasiuk, Richelle; Muhammad, Arif; Li, Yilin; Frost, Douglas O.; Gibb, Robbin

    2012-01-01

    The prefrontal cortex (PFC) receives input from all other cortical regions and functions to plan and direct motor, cognitive, affective, and social behavior across time. It has a prolonged development, which allows the acquisition of complex cognitive abilities through experience but makes it susceptible to factors that can lead to abnormal functioning, which is often manifested in neuropsychiatric disorders. When the PFC is exposed to different environmental events during development, such as sensory stimuli, stress, drugs, hormones, and social experiences (including both parental and peer interactions), the developing PFC may develop in different ways. The goal of the current review is to illustrate how the circuitry of the developing PFC can be sculpted by a wide range of pre- and postnatal factors. We begin with an overview of prefrontal functioning and development, and we conclude with a consideration of how early experiences influence prefrontal development and behavior. PMID:23045653

  13. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients.

    PubMed

    Sassi, Roberto B; Stanley, Jeffrey A; Axelson, David; Brambilla, Paolo; Nicoletti, Mark A; Keshavan, Matcheri S; Ramos, Renato T; Ryan, Neal; Birmaher, Boris; Soares, Jair C

    2005-11-01

    Converging evidence implicates prefrontal circuits in the pathophysiology of bipolar disorder. Proton spectroscopy studies performed in adult bipolar patients assessing prefrontal regions have suggested decreased levels of N-acetylaspartate (NAA), a putative marker of neuronal integrity. In order to examine whether such abnormalities would also be found in younger patients, a 1H spectroscopy study was conducted that focused on the dorsolateral prefrontal cortex of children and adolescents with bipolar disorder. The authors examined the levels of NAA, creatine plus phosphocreatine, and choline-containing molecules in the left dorsolateral prefrontal cortex of 14 bipolar disorder patients (mean age=15.5 years, SD=3, eight female) and 18 healthy comparison subjects (mean age=17.3, SD=3.7, seven female) using short echo time, single-voxel in vivo 1H spectroscopy. Absolute metabolite levels were determined using the water signal as an internal reference. Bipolar patients presented significantly lower NAA levels and a significant inverse correlation between choline-containing molecules and number of previous affective episodes. No differences were found for other metabolites. These findings suggest that young bipolar patients have decreased NAA levels in the dorsolateral prefrontal cortex, similar to what was previously reported in adult patients. Such changes may reflect an underdevelopment of dendritic arborizations and synaptic connections. These neuronal abnormalities in the dorsolateral prefrontal cortex of bipolar disorder youth are unlikely to represent long-term degenerative processes, at least in the subgroup of patients where the illness had relatively early onset.

  14. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.

    PubMed

    Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán

    2012-03-20

    The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The amygdala and ventromedial prefrontal cortex in morality and psychopathy.

    PubMed

    Blair, R J R

    2007-09-01

    Recent work has implicated the amygdala and ventromedial prefrontal cortex in morality and, when dysfunctional, psychopathy. This model proposes that the amygdala, through stimulus-reinforcement learning, enables the association of actions that harm others with the aversive reinforcement of the victims' distress. Consequent information on reinforcement expectancy, fed forward to the ventromedial prefrontal cortex, can guide the healthy individual away from moral transgressions. In psychopathy, dysfunction in these structures means that care-based moral reasoning is compromised and the risk that antisocial behavior is used instrumentally to achieve goals is increased.

  16. The role of prefrontal cortex in psychopathy

    PubMed Central

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  17. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  18. Task alters category representations in prefrontal but not high-level visual cortex.

    PubMed

    Bugatus, Lior; Weiner, Kevin S; Grill-Spector, Kalanit

    2017-07-15

    A central question in neuroscience is how cognitive tasks affect category representations across the human brain. Regions in lateral occipito-temporal cortex (LOTC), ventral temporal cortex (VTC), and ventro-lateral prefrontal cortex (VLFPC) constitute the extended "what" pathway, which is considered instrumental for visual category processing. However, it is unknown (1) whether distributed responses across LOTC, VTC, and VLPFC explicitly represent category, task, or some combination of both, and (2) in what way representations across these subdivisions of the extended 'what' pathway may differ. To fill these gaps in knowledge, we scanned 12 participants using fMRI to test the effect of category and task on distributed responses across LOTC, VTC, and VLPFC. Results reveal that task and category modulate responses in both high-level visual regions, as well as prefrontal cortex. However, we found fundamentally different types of representations across the brain. Distributed responses in high-level visual regions are more strongly driven by category than task, and exhibit task-independent category representations. In contrast, distributed responses in prefrontal cortex are more strongly driven by task than category, and contain task-dependent category representations. Together, these findings of differential representations across the brain support a new idea that LOTC and VTC maintain stable category representations allowing efficient processing of visual information, while prefrontal cortex contains flexible representations in which category information may emerge only when relevant to the task. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of Mandibular Retrusive Deviation on Prefrontal Cortex Activation: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Otsuka, Takero; Yamasaki, Ryuichi; Shimazaki, Tateshi; Sasaguri, Kenichi; Kawata, Toshitsugu

    2015-01-01

    The objective of this study was to evaluate occlusal condition by assessing brain activity in the prefrontal cortex, which is associated with emotion. Functional near-infrared spectroscopy (fNIRS) was used to detect changes in cerebral blood flow in the prefrontal cortex of 12 healthy volunteers. The malocclusion model was a custom-made splint that forced the mandible into retrusion. A splint with no modification was used as a control. The cortical activation during clenching was compared between the retrusive position condition and the control condition. A visual analog scale score for discomfort was also obtained during clenching and used to evaluate the interaction between fNIRS data and psychiatric changes. Activation of the prefrontal cortex was significantly greater during clenching in the mandibular retrusive condition than during clenching in the control condition. Furthermore, Spearman rank-correlation coefficient revealed a parallel relation between prefrontal cortex activation and visual analog scale score for discomfort. These results indicate that fNIRS can be used to objectively evaluate the occlusal condition by evaluating activity in the prefrontal cortex. PMID:26075235

  20. Effects of mandibular retrusive deviation on prefrontal cortex activation: a functional near-infrared spectroscopy study.

    PubMed

    Otsuka, Takero; Yamasaki, Ryuichi; Shimazaki, Tateshi; Yoshino, Fumihiko; Sasaguri, Kenichi; Kawata, Toshitsugu

    2015-01-01

    The objective of this study was to evaluate occlusal condition by assessing brain activity in the prefrontal cortex, which is associated with emotion. Functional near-infrared spectroscopy (fNIRS) was used to detect changes in cerebral blood flow in the prefrontal cortex of 12 healthy volunteers. The malocclusion model was a custom-made splint that forced the mandible into retrusion. A splint with no modification was used as a control. The cortical activation during clenching was compared between the retrusive position condition and the control condition. A visual analog scale score for discomfort was also obtained during clenching and used to evaluate the interaction between fNIRS data and psychiatric changes. Activation of the prefrontal cortex was significantly greater during clenching in the mandibular retrusive condition than during clenching in the control condition. Furthermore, Spearman rank-correlation coefficient revealed a parallel relation between prefrontal cortex activation and visual analog scale score for discomfort. These results indicate that fNIRS can be used to objectively evaluate the occlusal condition by evaluating activity in the prefrontal cortex.

  1. Reduced Global Functional Connectivity of the Medial Prefrontal Cortex in Major Depressive Disorder

    PubMed Central

    Murrough, James W.; Abdallah, Chadi G.; Anticevic, Alan; Collins, Katherine A.; Geha, Paul; Averill, Lynnette A.; Schwartz, Jaclyn; DeWilde, Kaitlin E.; Averill, Christopher; Yang, Genevieve Jia-wei; Wong, Edmund; Tang, Cheuk Y.; Krystal, John H.; Iosifescu, Dan V.; Charney, Dennis S.

    2016-01-01

    Background Major depressive disorder is a disabling neuropsychiatric condition that is associated with disrupted functional connectivity across brain networks. The precise nature of altered connectivity, however, remains incompletely understood. The current study was designed to examine the coherence of large-scale connectivity in depression using a recently developed technique termed global brain connectivity. Methods A total of 82 subjects, including medication-free patients with major depression (n=57) and healthy volunteers (n=25) underwent functional magnetic resonance imaging with resting data acquisition for functional connectivity analysis. Global brain connectivity was computed as the mean of each voxel’s time series correlation with every other voxel and compared between study groups. Relationships between global connectivity and depressive symptom severity measured using the Montgomery-Åsberg Depression Rating Scale were examined by means of linear correlation. Results Relative to the healthy group, patients with depression evidenced reduced global connectivity bilaterally within multiple regions of medial and lateral prefrontal cortex. The largest between-group difference was observed within the right subgenual anterior cingulate cortex, extending into ventromedial prefrontal cortex bilaterally (Hedges’ g = −1.48, p<0.000001). Within the depressed group, patients with the lowest connectivity evidenced the highest symptom severity within ventromedial prefrontal cortex (r = −0.47, p=0.0005). Conclusions Patients with major depressive evidenced abnormal large-scale functional coherence in the brain that was centered within the subgenual cingulate cortex, and medial prefrontal cortex more broadly. These data extend prior studies of connectivity in depression and demonstrate that functional disconnection of the medial prefrontal cortex is a key pathological feature of the disorder. PMID:27144347

  2. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  3. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    PubMed

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Amodal processing in human prefrontal cortex.

    PubMed

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  5. Executive Control Over Cognition: Stronger and Earlier Rule-Based Modulation of Spatial Category Signals in Prefrontal Cortex Relative to Parietal Cortex

    PubMed Central

    Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia

    2012-01-01

    Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773

  6. Prefrontal cortex activation during obstacle negotiation: What's the effect size and timing?

    PubMed

    Maidan, Inbal; Shustak, Shiran; Sharon, Topaz; Bernad-Elazari, Hagar; Geffen, Nimrod; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-04-01

    Obstacle negotiation is a daily activity that requires the integration of sensorimotor and cognitive information. Recent studies provide evidence for the important role of prefrontal cortex during obstacle negotiation. We aimed to explore the effects of obstacle height and available response time on prefrontal activation. Twenty healthy young adults (age: 30.1 ± 1.0 years; 50% women) walked in an obstacle course while negotiating anticipated and unanticipated obstacles at heights of 50 mm and 100 mm. Prefrontal activation was measured using a functional near-infrared spectroscopy system. Kinect cameras measured the obstacle negotiation strategy. Prefrontal activation was defined based on mean level of HbO 2 before, during and after obstacle negotiation and the HbO 2 slope from gait initiation and throughout the task. Changes between types of obstacles were assessed using linear-mix models and partial correlation analyses evaluated the relationship between prefrontal activation and the distance between the feet as the subjects traversed the obstacles. Different obstacle heights showed similar changes in prefrontal activation measures (p > 0.210). However, during unanticipated obstacles, the slope of the HbO 2 response was steeper (p = 0.048), as compared to anticipated obstacles. These changes in prefrontal activation during negotiation of unanticipated obstacles were correlated with greater distance of the leading foot after the obstacles (r = 0.831, p = 0.041). These findings are the first to show that the pattern of prefrontal activation depends on the nature of the obstacle. More specifically, during unanticipated obstacles the recruitment of the prefrontal cortex is faster and greater than during negotiating anticipated obstacles. These results provide evidence of the important role of the prefrontal cortex and the ability of healthy young adults to tailor the activation pattern to different types of obstacles. Copyright © 2018

  7. Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex

    PubMed Central

    Abe, Hiroshi; Lee, Daeyeol

    2011-01-01

    SUMMARY Knowledge about hypothetical outcomes from unchosen actions is beneficial only when such outcomes can be correctly attributed to specific actions. Here, we show that during a simulated rock-paper-scissors game, rhesus monkeys can adjust their choice behaviors according to both actual and hypothetical outcomes from their chosen and unchosen actions, respectively. In addition, neurons in both dorsolateral prefrontal cortex and orbitofrontal cortex encoded the signals related to actual and hypothetical outcomes immediately after they were revealed to the animal. Moreover, compared to the neurons in the orbitofrontal cortex, those in the dorsolateral prefrontal cortex were more likely to change their activity according to the hypothetical outcomes from specific actions. Conjunctive and parallel coding of multiple actions and their outcomes in the prefrontal cortex might enhance the efficiency of reinforcement learning and also contribute to their context-dependent memory. PMID:21609828

  8. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    PubMed

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of electrical stimulation of the lateral aspect of the prefrontal cortex upon attack behavior in cats.

    PubMed

    Siegel, A; Edinger, H; Dotto, M

    1975-08-15

    An experiment was performed to determine the role of the lateral aspect of the prefrontal cortex upon quiet biting attack behavior elicited from the hypothalamus in the cat. The results of this experiment indicate that stimulation of 19 of 28 electrode sites sampled in the lateral prefrontal cortex produced a statistically significant inhibition of attack behavior elicited from the hypothalamus of the ipsilateral side. Stimulation of sites in the prefrontal cortex on the side contralateral to the hypothalamus from which attack was elicited had no effect upon this response. No systematic effect of prefrontal stimulation upon flight behavior was observed. Anatomical studies suggest that the lateral prefrontal cortex may inhibit attack behavior by modulating neurons in either the mediodorsal thalamic nucleus or ventral tegmental area.

  10. Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex.

    PubMed

    Major, Alex J; Vijayraghavan, Susheel; Everling, Stefan

    2018-01-31

    Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers. SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can

  11. Idiosyncratic Patterns of Representational Similarity in Prefrontal Cortex Predict Attentional Performance.

    PubMed

    Lee, Jeongmi; Geng, Joy J

    2017-02-01

    The efficiency of finding an object in a crowded environment depends largely on the similarity of nontargets to the search target. Models of attention theorize that the similarity is determined by representations stored within an "attentional template" held in working memory. However, the degree to which the contents of the attentional template are individually unique and where those idiosyncratic representations are encoded in the brain are unknown. We investigated this problem using representational similarity analysis of human fMRI data to measure the common and idiosyncratic representations of famous face morphs during an identity categorization task; data from the categorization task were then used to predict performance on a separate identity search task. We hypothesized that the idiosyncratic categorical representations of the continuous face morphs would predict their distractability when searching for each target identity. The results identified that patterns of activation in the lateral prefrontal cortex (LPFC) as well as in face-selective areas in the ventral temporal cortex were highly correlated with the patterns of behavioral categorization of face morphs and search performance that were common across subjects. However, the individually unique components of the categorization behavior were reliably decoded only in right LPFC. Moreover, the neural pattern in right LPFC successfully predicted idiosyncratic variability in search performance, such that reaction times were longer when distractors had a higher probability of being categorized as the target identity. These results suggest that the prefrontal cortex encodes individually unique components of categorical representations that are also present in attentional templates for target search. Everyone's perception of the world is uniquely shaped by personal experiences and preferences. Using functional MRI, we show that individual differences in the categorization of face morphs between two identities

  12. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex

    PubMed Central

    McNamee, Daniel; Rangel, Antonio; O’Doherty, John P

    2013-01-01

    To choose between manifestly distinct options, it is suggested that the brain assigns values to goals using a common currency. Although previous studies have reported activity in ventromedial prefrontal cortex (vmPFC) correlating with the value of different goal stimuli, it remains unclear whether such goal-value representations are independent of the associated stimulus categorization, as required by a common currency. Using multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data, we found a region of medial prefrontal cortex to contain a distributed goal-value code that is independent of stimulus category. More ventrally in the vmPFC, we found spatially distinct areas of the medial orbitofrontal cortex to contain unique category-dependent distributed value codes for food and consumer items. These results implicate the medial prefrontal cortex in the implementation of a common currency and suggest a ventral versus dorsal topographical organization of value signals in the vmPFC. PMID:23416449

  13. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  14. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis.

    PubMed

    Meier, Sandra L; Charleston, Alison J; Tippett, Lynette J

    2010-11-01

    Amyotrophic lateral sclerosis, a progressive disease affecting motor neurons, may variably affect cognition and behaviour. We tested the hypothesis that functions associated with orbitomedial prefrontal cortex are affected by evaluating the behavioural and cognitive performance of 18 participants with amyotrophic lateral sclerosis without dementia and 18 healthy, matched controls. We measured Theory of Mind (Faux Pas Task), emotional prosody recognition (Aprosodia Battery), reversal of behaviour in response to changes in reward (Probabilistic Reversal Learning Task), decision making without risk (Holiday Apartment Task) and aberrant behaviour (Neuropsychiatric Inventory). We also assessed dorsolateral prefrontal function, using verbal and written fluency and planning (One-touch Stockings of Cambridge), to determine whether impairments in tasks sensitive to these two prefrontal regions co-occur. The patient group was significantly impaired at identifying social faux pas, recognizing emotions and decision-making, indicating mild, but consistent impairment on most measures sensitive to orbitomedial prefrontal cortex. Significant levels of aberrant behaviour were present in 50% of patients. Patients were also impaired on verbal fluency and planning. Individual subject analyses involved computing classical dissociations between tasks sensitive to different prefrontal regions. These revealed heterogeneous patterns of impaired and spared cognitive abilities: 33% of participants had classical dissociations involving orbitomedial prefrontal tasks, 17% had classical dissociations involving dorsolateral prefrontal tasks, 22% had classical dissociations between tasks of both regions, and 28% had no classical dissociations. These data indicate subtle changes in behaviour, emotional processing, decision-making and altered social awareness, associated with orbitomedial prefrontal cortex, may be present in a significant proportion of individuals with amyotrophic lateral sclerosis

  15. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.

    PubMed

    Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S

    2007-10-17

    The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.

  16. The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex.

    PubMed

    Pira, Luigi; Mongeau, Raymond; Pani, Luca

    2004-11-03

    Quetiapine is a novel atypical antipsychotic drug with multi-receptorial affinity. Using in vivo microdialysis, we investigated if quetiapine modulates extracellular noradrenaline and dopamine in brain areas generally believed to be involved in the pathophysiology of schizophrenia and in the action of antipsychotic drugs. Quetiapine (5, 10 and 20 mg/kg, i.p.) increased levels of noradrenaline in both the prefrontal cortex and the caudate nucleus, while it increased dopamine levels mainly in the prefrontal cortex. It is argued that the marked increase of dopaminergic transmission in the prefrontal cortex induced by quetiapine might be relevant to its therapeutical action.

  17. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition.

    PubMed

    Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A

    2016-05-01

    The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.

  18. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    PubMed

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    PubMed Central

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  20. Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex

    PubMed Central

    Ryals, Anthony J.; Rogers, Lynn M.; Gross, Evan Z.; Polnaszek, Kelly L.; Voss, Joel L.

    2016-01-01

    Neuroimaging and lesion studies have implicated specific prefrontal cortex locations in subjective memory awareness. Based on this evidence, a rostrocaudal organization has been proposed whereby increasingly anterior prefrontal regions are increasingly involved in memory awareness. We used theta-burst transcranial magnetic stimulation (TBS) to temporarily modulate dorsolateral versus frontopolar prefrontal cortex to test for distinct causal roles in memory awareness. In three sessions, participants received TBS bilaterally to frontopolar cortex, dorsolateral prefrontal cortex, or a control location prior to performing an associative-recognition task involving judgments of memory awareness. Objective memory performance (i.e., accuracy) did not differ based on stimulation location. In contrast, frontopolar stimulation significantly influenced several measures of memory awareness. During study, judgments of learning were more accurate such that lower ratings were given to items that were subsequently forgotten selectively following frontopolar TBS. Confidence ratings during test were also higher for correct trials following frontopolar TBS. Finally, trial-by-trial correspondence between overt performance and subjective awareness during study demonstrated a linear increase across control, dorsolateral, and frontopolar TBS locations, supporting a rostrocaudal hierarchy of prefrontal contributions to memory awareness. These findings indicate that frontopolar cortex contributes causally to memory awareness, which was improved selectively by anatomically targeted TBS. PMID:25577574

  1. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  2. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    PubMed Central

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  3. The prefrontal cortex and hybrid learning during iterative competitive games.

    PubMed

    Abe, Hiroshi; Seo, Hyojung; Lee, Daeyeol

    2011-12-01

    Behavioral changes driven by reinforcement and punishment are referred to as simple or model-free reinforcement learning. Animals can also change their behaviors by observing events that are neither appetitive nor aversive when these events provide new information about payoffs available from alternative actions. This is an example of model-based reinforcement learning and can be accomplished by incorporating hypothetical reward signals into the value functions for specific actions. Recent neuroimaging and single-neuron recording studies showed that the prefrontal cortex and the striatum are involved not only in reinforcement and punishment, but also in model-based reinforcement learning. We found evidence for both types of learning, and hence hybrid learning, in monkeys during simulated competitive games. In addition, in both the dorsolateral prefrontal cortex and orbitofrontal cortex, individual neurons heterogeneously encoded signals related to actual and hypothetical outcomes from specific actions, suggesting that both areas might contribute to hybrid learning. © 2011 New York Academy of Sciences.

  4. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU.

    ERIC Educational Resources Information Center

    Diamond, Adele; Prevor, Meredith B.; Druin, Donald P.; Callender, Glenda

    1997-01-01

    Hypothesized that elevated ratio of phenylalanine to tyrosine in blood of children with phenylketonuria uniquely affects cognitive functions dependent on prefrontal cortex because of the special sensitivity of prefrontally projecting dopamine neurons to small decreases in tyrosine. Found that children whose phenylalanine levels were three to five…

  5. Prefrontal Cortex and Social Cognition in Mouse and Man

    PubMed Central

    Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  6. Ventromedial prefrontal cortex, adding value to autobiographical memories.

    PubMed

    Lin, Wen-Jing; Horner, Aidan J; Burgess, Neil

    2016-06-24

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants' memories when they were recalling and evaluating these items. An unrelated modulation by the participant's familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories.

  7. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    PubMed

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  8. Making sense: Dopamine activates conscious self‐monitoring through medial prefrontal cortex

    PubMed Central

    Joensson, Morten; Thomsen, Kristine Rømer; Andersen, Lau M.; Gross, Joachim; Mouridsen, Kim; Sandberg, Kristian; Østergaard, Leif

    2015-01-01

    Abstract When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self‐awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self‐awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self‐awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self‐awareness. In a separate experiment with extended self‐awareness dopamine improved the retrieval accuracy of memories of self‐judgment (autonoetic, i.e., explicitly self‐conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self‐awareness, this explains the specific effect of dopamine on explicit self‐awareness and autonoetic metacognition. Hum Brain Mapp 36:1866–1877, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25627861

  9. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  10. Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex

    PubMed Central

    Salzman, C. Daniel; Fusi, Stefano

    2011-01-01

    Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior. PMID:20331363

  11. Dyspnea-Related Cues Engage the Prefrontal Cortex

    PubMed Central

    Herigstad, Mari; Hayen, Anja; Evans, Eleanor; Hardinge, Frances M.; Davies, Robert J.; Wiech, Katja

    2015-01-01

    BACKGROUND: Dyspnea is the major source of disability in COPD. In COPD, environmental cues (eg, the prospect of having to climb stairs) become associated with dyspnea and may trigger dyspnea even before physical activity commences. We hypothesized that brain activation relating to such cues would be different between patients with COPD and healthy control subjects, reflecting greater engagement of emotional mechanisms in patients. METHODS: Using functional MRI (FMRI), we investigated brain responses to dyspnea-related word cues in 41 patients with COPD and 40 healthy age-matched control subjects. We combined these findings with scores on self-report questionnaires, thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enabled identification of brain networks responsible for pain processing despite absence of a physical challenge. RESULTS: Patients with COPD demonstrated activation in the medial prefrontal cortex and anterior cingulate cortex, which correlated with the visual analog scale (VAS) response to word cues. This activity independently correlated with patient responses on questionnaires of depression, fatigue, and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex, and precuneus correlated with the VAS dyspnea scale but not with the questionnaires. CONCLUSIONS: The findings suggest that engagement of the emotional circuitry of the brain is important for interpretation of dyspnea-related cues in COPD and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and the findings suggest that such mechanisms may be relevant in COPD. PMID:26134891

  12. The time course of ventrolateral prefrontal cortex involvement in memory formation.

    PubMed

    Machizawa, Maro G; Kalla, Roger; Walsh, Vincent; Otten, Leun J

    2010-03-01

    Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (approximately 4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between > or = 350 and 1,150 ms after an event is encountered.

  13. Emotion regulation in spider phobia: role of the medial prefrontal cortex

    PubMed Central

    Schäfer, Axel; Walter, Bertram; Stark, Rudolf; Vaitl, Dieter; Schienle, Anne

    2009-01-01

    Phobic responses are strong emotional reactions towards phobic objects, which can be described as a deficit in the automatic regulation of emotions. Difficulties in the voluntary cognitive control of these emotions suggest a further phobia-specific deficit in effortful emotion regulation mechanisms. The actual study is based on this emotion regulation conceptualization of specific phobias. The aim is to investigate the neural correlates of these two emotion regulation deficits in spider phobics. Sixteen spider phobic females participated in a functional magnetic resonance imaging (fMRI) study in which they were asked to voluntarily up- and down-regulate their emotions elicited by spider and generally aversive pictures with a reappraisal strategy. In line with the hypothesis concerning an automatic emotion regulation deficit, increased activity in the insula and reduced activity in the ventromedial prefrontal cortex was observed. Furthermore, phobia-specific effortful regulation within phobics was associated with altered activity in medial prefrontal cortex areas. Altogether, these results suggest that spider phobic subjects are indeed characterized by a deficit in the automatic as well as the effortful regulation of emotions elicited by phobic compared with aversive stimuli. These two forms of phobic emotion regulation deficits are associated with altered activity in different medial prefrontal cortex subregions. PMID:19398537

  14. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes.

    PubMed

    Sherwood, Chet C; Raghanti, Mary Ann; Stimpson, Cheryl D; Spocter, Muhammad A; Uddin, Monica; Boddy, Amy M; Wildman, Derek E; Bonar, Christopher J; Lewandowski, Albert H; Phillips, Kimberley A; Erwin, Joseph M; Hof, Patrick R

    2010-04-07

    Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.

  15. The role of left prefrontal cortex in language and memory

    PubMed Central

    Gabrieli, John D. E.; Poldrack, Russell A.; Desmond, John E.

    1998-01-01

    This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences. PMID:9448258

  16. Role of the ventrolateral orbital cortex and medial prefrontal cortex in incentive downshift situations.

    PubMed

    Ortega, Leonardo A; Glueck, Amanda C; Uhelski, Megan; Fuchs, Perry N; Papini, Mauricio R

    2013-05-01

    The present research evaluated the role of two prefrontal cortex areas, the ventrolateral orbital cortex (VLO) and the medial prefrontal cortex (mPFC), on two situations involving incentive downshifts, consummatory successive negative contrast (cSNC) with sucrose solutions and Pavlovian autoshaping following continuous vs. partial reinforcement with food pellets. Animals received electrolytic lesions and then were tested on cSNC, autoshaping, open-field activity, and sucrose sensitivity. Lesions of the VLO reduced suppression of consummatory behavior after the incentive downshift, but only during the first downshift trial, and also eliminated the enhancement of anticipatory behavior during partial reinforcement, relative to continuous reinforcement, in autoshaping. There was no evidence of specific effects of mPFC lesions on incentive downshifts. Open-field activity was also reduced by VLO lesions, but only in the central area, whereas mPFC lesions had no observable effects on activity. Animals with mPFC lesions exhibited decreased consumption of the lowest sucrose concentration, whereas no effects were observed in animals with VLO lesions. These results suggest that the VLO may exert nonassociative (i.e., motivational, emotional) influences on behavior in situations involving incentive downshifts. No clear role on incentive downshift was revealed by mPFC lesions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Neural mechanisms of economic commitment in the human medial prefrontal cortex

    PubMed Central

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-01-01

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. DOI: http://dx.doi.org/10.7554/eLife.03701.001 PMID:25333687

  18. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    PubMed

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  19. Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends

    PubMed Central

    Kovach, Christopher K.; Daw, Nathaniel; Rudrauf, David; Tranel, Daniel; O’Doherty, John P.; Adolphs, Ralph

    2012-01-01

    The functions of prefrontal cortex remain enigmatic, especially so for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task-switching and memory. A predominant current theory regarding the most anterior sector, frontopolar cortex (FPC), is that it is involved in exploring alternate courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a 4-armed bandit task known from neuroimaging studies to activate FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments. PMID:22723683

  20. Adaptation to conflict via context-driven anticipatory signals in the dorsomedial prefrontal cortex.

    PubMed

    Horga, Guillermo; Maia, Tiago V; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S

    2011-11-09

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging, we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict.

  1. Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex

    PubMed Central

    Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.

    2011-01-01

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672

  2. Hemodynamic responses on prefrontal cortex related to meditation and attentional task

    PubMed Central

    Deepeshwar, Singh; Vinchurkar, Suhas Ashok; Visweswaraiah, Naveen Kalkuni; Nagendra, Hongasandra RamaRao

    2015-01-01

    Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC. PMID:25741245

  3. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  4. Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys

    PubMed Central

    Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.

    2013-01-01

    The dorsolateral prefrontal cortex matures late into adolescence or early adulthood. This pattern of maturation mirrors working memory abilities, which continue to improve into adulthood. However, the nature of the changes that prefrontal neuronal activity undergoes during this process is poorly understood. We investigated behavioral performance and neural activity in working memory tasks around the time of puberty, a developmental event associated with the release of sex hormones and significant neurological change. The developmental stages of male rhesus monkeys were evaluated with a series of morphometric, hormonal, and radiographic measures. Peripubertal monkeys were trained to perform an oculomotor delayed response task and a variation of this task involving a distractor stimulus. We found that the peripubertal monkeys tended to abort a relatively large fraction of trials, and these were associated with low levels of task-related neuronal activity. However, for completed trials, accuracy in the delayed saccade task was high and the appearance of a distractor stimulus did not impact performance significantly. In correct trials delay period activity was robust and was not eliminated by the presentation of a distracting stimulus, whereas in trials that resulted in errors the sustained cue-related activity was significantly weaker. Our results show that in peripubertal monkeys the prefrontal cortex is capable of generating robust persistent activity in the delay periods of working memory tasks, although in general it may be more prone to stochastic failure than in adults. PMID:24047904

  5. Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation

    ERIC Educational Resources Information Center

    Cruse, Damian; Wilding, Edward L.

    2009-01-01

    Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…

  6. Ventromedial prefrontal cortex, adding value to autobiographical memories

    PubMed Central

    Lin, Wen-Jing; Horner, Aidan J.; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants’ memories when they were recalling and evaluating these items. An unrelated modulation by the participant’s familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  7. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  8. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex

    PubMed Central

    Ray, Rebecca; Zald, David H.

    2011-01-01

    Ray, R. and D. Zald. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. NEUROSCI BIOBEHAV REV 36(X) XXX-XXX, 2011. -Psychological research increasingly indicates that emotional processes interact with other aspects of cognition. Studies have demonstrated both the ability of emotional stimuli to influence a broad range of cognitive operations, and the ability of humans to use top-down cognitive control mechanisms to regulate emotional responses. Portions of the prefrontal cortex appear to play a significant role in these interactions. However, the manner in which these interactions are implemented remains only partially elucidated. In the present review we describe the anatomical connections between ventral and dorsal prefrontal areas as well as their connections with limbic regions. Only a subset of prefrontal areas are likely to directly influence amygdalar processing, and as such models of prefrontal control of emotions and models of emotional regulation should be constrained to plausible pathways of influence. We also focus on how the specific pattern of feedforward and feedback connections between these regions may dictate the nature of information flow between ventral and dorsal prefrontal areas and the amygdala. These patterns of connections are inconsistent with several commonly expressed assumptions about the nature of communications between emotion and cognition. PMID:21889953

  9. A General Role for Medial Prefrontal Cortex in Event Prediction

    DTIC Science & Technology

    2014-07-11

    anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn . Neurosci . 18, 766–780. doi: 10.1162/jocn.2006.18.5.766...losses in the anterior cingulate cortex. Cogn . Affect. Behav. Neurosci . 7, 327–336. doi: 10.3758/cabn.7.4.327 Shima, K., and Tanji, J. (1998). Role of...COMPUTATIONAL NEUROSCIENCE ORIGINAL RESEARCH ARTICLE published: 11 July 2014 doi: 10.3389/fncom.2014.00069 A general role for medial prefrontal

  10. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning.

    PubMed

    Brincat, Scott L; Miller, Earl K

    2016-09-14

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with "internal" memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)-regions critical for sensory associations-of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11-27 Hz) oscillatory power and synchrony associated with "top-down" or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired "top-down" knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. Copyright © 2016 the authors 0270-6474/16/369739-16$15.00/0.

  11. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.

    PubMed

    Gjedde, Albert; Geday, Jacob

    2009-12-07

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.

  12. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    PubMed Central

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  13. The role of the prefrontal cortex in controlling gender-stereotypical associations: a TMS investigation.

    PubMed

    Cattaneo, Zaira; Mattavelli, Giulia; Platania, Elisa; Papagno, Costanza

    2011-06-01

    Stereotypes associated with gender, race, ethnicity and religion are powerful forces in human social interactions. Previous neuroimaging and neuropsychological studies point to a role of the prefrontal cortex in controlling stereotypical responses. Here we used transcranial magnetic stimulation (TMS) in combination with an Implicit Association Test (IAT) to highlight the possible causal role of the left dorsolateral prefrontal cortex (DLPFC) and the right anterior dorsomedial prefrontal cortex (aDMPFC) in controlling gender-stereotypical responses. Young male and female participants were tested. Our results showed that applying TMS over the left DLPFC and the right aDMPFC increased the gender-stereotypical bias in male participants compared to when TMS was applied to a control site (vertex). This suggests that both the left DLPFC and the right aDMPFC play a direct role in stereotyping. Females did not show a significant gender bias on the IAT; correspondingly their responses were unaffected by TMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. © 2015 Wiley Periodicals, Inc.

  15. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths.

    PubMed

    Yang, Yaling; Raine, Adrian; Colletti, Patrick; Toga, Arthur W; Narr, Katherine L

    2010-08-01

    Although deficits in several cortical and subcortical structures have been found in psychopaths, it remains unclear whether the neuropathology differs between subgroups of psychopaths (i.e., unsuccessful and successful). Using both traditional and novel image analyses methods, this study aims to reveal gross and subtle morphological changes in the prefrontal cortex and the amygdala in unsuccessful and successful psychopaths. Volumetric segmentation, cortical pattern matching, and surface-based mesh modeling methods were used to examine prefrontal and amygdala structures in 16 unsuccessful psychopaths, 10 successful psychopaths, and 27 controls. Significant reduced gray matter volume and cortical thickness/surface shape in the middle frontal, orbitofrontal cortex and the amygdala were found in unsuccessful psychopaths but not successful psychopaths, compared with controls. This study provides the first evidence of greater prefrontal and amygdala structural deficits in unsuccessful psychopaths, which may predispose them to poor behavioral control and impaired decision-making, thus making them more prone to convictions. Copyright 2010 APA, all rights reserved

  16. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge.

    PubMed

    Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L

    2014-11-18

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.

  17. Medial prefrontal cortex neuronal circuits in fear behavior.

    PubMed

    Courtin, J; Bienvenu, T C M; Einarsson, E Ö; Herry, C

    2013-06-14

    The medial prefrontal cortex (mPFC) has emerged as a key structure involved in the modulation of fear behavior over the past few decades. Anatomical, functional and electrophysiological studies have begun to shed light on the precise mechanisms by which different prefrontal regions regulate the expression and inhibition of fear behavior. These studies have established a canonical view of mPFC functions during fear behavior with dorsal regions selectively involved in the expression of fear behavior and ventral regions linked to the inhibition of fear behavior. Although numerous reports support this view, recent data have refined this model and suggested that dorsal prefrontal regions might also play an important role in the encoding of fear behavior itself. The recent development of sophisticated approaches such as large scale neuronal recordings, simultaneous multisite recordings of spiking activity and local field potentials (LFPs) along with optogenetic approaches will facilitate the testing of these new hypotheses in the near future. Here we provide an extensive review of the literature on the role of mPFC in fear behavior and propose further directions to dissect the contribution of specific prefrontal neuronal elements and circuits in the regulation of fear behavior. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    PubMed

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Benefit of the doubt: a new view of the role of the prefrontal cortex in executive functioning and decision making

    PubMed Central

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Denburg, Natalie L.; Tranel, Daniel

    2013-01-01

    The False Tagging Theory (FTT) is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the “heuristics and biases” psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments. PMID:23745103

  20. Magnetic Field Homogenization of the Human Prefrontal Cortex with a Set of Localized Electrical Coils

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909

  1. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    PubMed

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  2. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    ERIC Educational Resources Information Center

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  3. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge

    PubMed Central

    Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.

    2014-01-01

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170

  4. Differential Effects of Insular and Ventromedial Prefrontal Cortex Lesions on Risky Decision-Making

    ERIC Educational Resources Information Center

    Clark, L.; Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.

    2008-01-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear…

  5. Extinction Circuits for Fear and Addiction Overlap in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Peters, Jamie; Kalivas, Peter W.; Quirk, Gregory J.

    2009-01-01

    Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is…

  6. Fine-grained temporal coding of visually-similar categories in the ventral visual pathway and prefrontal cortex

    PubMed Central

    Xu, Yang; D'Lauro, Christopher; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2013-01-01

    Humans are remarkably proficient at categorizing visually-similar objects. To better understand the cortical basis of this categorization process, we used magnetoencephalography (MEG) to record neural activity while participants learned–with feedback–to discriminate two highly-similar, novel visual categories. We hypothesized that although prefrontal regions would mediate early category learning, this role would diminish with increasing category familiarity and that regions within the ventral visual pathway would come to play a more prominent role in encoding category-relevant information as learning progressed. Early in learning we observed some degree of categorical discriminability and predictability in both prefrontal cortex and the ventral visual pathway. Predictability improved significantly above chance in the ventral visual pathway over the course of learning with the left inferior temporal and fusiform gyri showing the greatest improvement in predictability between 150 and 250 ms (M200) during category learning. In contrast, there was no comparable increase in discriminability in prefrontal cortex with the only significant post-learning effect being a decrease in predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the ventral visual pathway appears to encode learned visual categories over the long term. At the same time these results add to our understanding of the cortical origins of previously reported signature temporal components associated with perceptual learning. PMID:24146656

  7. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    PubMed

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  8. Emotion recognition deficits associated with ventromedial prefrontal cortex lesions are improved by gaze manipulation.

    PubMed

    Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael

    2016-09-01

    Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex

    PubMed Central

    Marcos, Encarni; Tsujimoto, Satoshi

    2016-01-01

    The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF. NEW & NOTEWORTHY Human behavioral studies have shown that spatial and duration judgments can interfere with each other. We investigated the neural representation of such magnitudes in the prefrontal cortex. We found that the two magnitudes are independently coded by prefrontal neurons. We suggest that the interference among magnitude judgments might depend on the goal rather than the perceptual resource sharing. PMID:27760814

  10. Absence of fear renewal and functional connections between prefrontal cortex and hippocampus in infant mice.

    PubMed

    Li, Liyu; Gao, Xiaoli; Zhou, Qiang

    2018-04-20

    Impairment in fear extinction is widely viewed as a major contributor to, or even an underlying mechanism of, the pathogenesis of anxiety disorders and PTSD. Children with traumatic experience have a higher risk for developing anxiety disorders and PTSD in the adult. Little is known about the nature of fear memory extinction and its underlying mechanism during this period. Here we showed that while renewal of fear memory is context-specific in adult mice, it is absent in infant mice (P17). Using local injection of GABAa receptor antagonist picrotoxin, we found that there is no functional connectivity between infralimbic prefrontal cortex and hippocampus in P17 mice, while prefrontal cortex projection to amygdala is functioning. Hence, the lack of fear renewal is likely caused by the lack of connections between hippocampus and prefrontal cortex which are known to be involved in the regulation of extinction memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning.

    PubMed

    Goel, Vinod; Dolan, Raymond J

    2003-12-01

    Logic is widely considered the basis of rationality. Logical choices, however, are often influenced by emotional responses, sometimes to our detriment, sometimes to our advantage. To understand the neural basis of emotionally neutral ("cold") and emotionally salient ("hot") reasoning we studied 19 volunteers using event-related fMRI, as they made logical judgments about arguments that varied in emotional saliency. Despite identical logical form and content categories across "hot" and "cold" reasoning conditions, lateral and ventral medial prefrontal cortex showed reciprocal response patterns as a function of emotional saliency of content. "Cold" reasoning trials resulted in enhanced activity in lateral/dorsal lateral prefrontal cortex (L/DLPFC) and suppression of activity in ventral medial prefrontal cortex (VMPFC). By contrast, "hot" reasoning trials resulted in enhanced activation in VMPFC and suppression of activation in L/DLPFC. This reciprocal engagement of L/DLPFC and VMPFC provides evidence for a dynamic neural system for reasoning, the configuration of which is strongly influenced by emotional saliency.

  12. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex.

    PubMed

    Romanski, L M; Diehl, M M

    2011-08-25

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in nonhuman primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze, and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and -30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication

  13. Neurons responsive to face-view in the Primate Ventrolateral Prefrontal Cortex

    PubMed Central

    Romanski, Lizabeth M.; Diehl, Maria M.

    2011-01-01

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in non-human primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and −30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication

  14. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex

    PubMed Central

    Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika

    2014-01-01

    Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339

  15. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    PubMed

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Transcranial direct current stimulation of dorsolateral prefrontal cortex during encoding improves recall but not recognition memory

    DOE PAGES

    Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.; ...

    2017-10-19

    Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less

  17. Transcranial direct current stimulation of dorsolateral prefrontal cortex during encoding improves recall but not recognition memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.

    Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less

  18. Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex.

    PubMed

    Ciaramelli, Elisa; Muccioli, Michela; Làdavas, Elisabetta; di Pellegrino, Giuseppe

    2007-06-01

    Recent fMRI evidence has detected increased medial prefrontal activation during contemplation of personal moral dilemmas compared to impersonal ones, which suggests that this cortical region plays a role in personal moral judgment. However, functional imaging results cannot definitively establish that a brain area is necessary for a particular cognitive process. This requires evidence from lesion techniques, such as studies of human patients with focal brain damage. Here, we tested 7 patients with lesions in the ventromedial prefrontal cortex and 12 healthy individuals in personal moral dilemmas, impersonal moral dilemmas and non-moral dilemmas. Compared to normal controls, patients were more willing to judge personal moral violations as acceptable behaviors in personal moral dilemmas, and they did so more quickly. In contrast, their performance in impersonal and non-moral dilemmas was comparable to that of controls. These results indicate that the ventromedial prefrontal cortex is necessary to oppose personal moral violations, possibly by mediating anticipatory, self-focused, emotional reactions that may exert strong influence on moral choice and behavior.

  19. Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex

    PubMed Central

    Ciaramelli, Elisa; Muccioli, Michela; Làdavas, Elisabetta

    2007-01-01

    Recent fMRI evidence has detected increased medial prefrontal activation during contemplation of personal moral dilemmas compared to impersonal ones, which suggests that this cortical region plays a role in personal moral judgment. However, functional imaging results cannot definitively establish that a brain area is necessary for a particular cognitive process. This requires evidence from lesion techniques, such as studies of human patients with focal brain damage. Here, we tested 7 patients with lesions in the ventromedial prefrontal cortex and 12 healthy individuals in personal moral dilemmas, impersonal moral dilemmas and non-moral dilemmas. Compared to normal controls, patients were more willing to judge personal moral violations as acceptable behaviors in personal moral dilemmas, and they did so more quickly. In contrast, their performance in impersonal and non-moral dilemmas was comparable to that of controls. These results indicate that the ventromedial prefrontal cortex is necessary to oppose personal moral violations, possibly by mediating anticipatory, self-focused, emotional reactions that may exert strong influence on moral choice and behavior. PMID:18985127

  20. Cocaine cue–induced dopamine release in the human prefrontal cortex

    PubMed Central

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  1. Cocaine cue-induced dopamine release in the human prefrontal cortex.

    PubMed

    Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-08-01

    Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.

  2. Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

    PubMed Central

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response

  3. Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle.

    PubMed

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.

  4. Consequences of Variations in Genes that affect Dopamine in Prefrontal Cortex

    PubMed Central

    Diamond, Adele

    2008-01-01

    Patricia Goldman-Rakic played a groundbreaking role in investigating the cognitive functions subserved by dorsolateral prefrontal cortex and the key role of dopamine in that. The work discussed here builds on that including: 1) Studies of children predicted to have lower levels of prefrontal dopamine but otherwise basically normal brains (children treated for phenylketonuria [PKU]). Those studies changed medical guidelines, improving the children’s lives. 2) Studies of visual impairments (in contrast sensitivity and motion perception) in PKU children due to reduced retinal dopamine and due to excessive phenylalanine during the first postnatal weeks. Those studies, too, changed medical guidelines. 3) Studies of working memory and inhibitory control differences in typically developing children due to differences in catechol-O-methyltransferase (COMT) genotype, which selectively affect prefrontal dopamine levels. 4) Studies of gender differences in the effect of COMT genotype on cognitive performance in older adults. 5) A hypothesis about fundamental differences between attention deficit hyperactivity disorder (ADHD) that includes hyperactivity and ADHD of the inattentive type. Those disorders are hypothesized to differ in the affected neural system, underlying genetics, responsiveness to medication, comorbidities, and cognitive and behavioral profiles. These sound quite disparate but they all grew systematically out the base laid down by Patricia Goldman-Rakic. PMID:17725999

  5. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.

    PubMed

    Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti

    2017-05-10

    Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two

  6. Left Ventrolateral Prefrontal Cortex and the Cognitive Control of Memory

    ERIC Educational Resources Information Center

    Badre, David; Wagner, Anthony D.

    2007-01-01

    Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic…

  7. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  8. Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior.

    PubMed

    Le Merre, Pierre; Esmaeili, Vahid; Charrière, Eloïse; Galan, Katia; Salin, Paul-A; Petersen, Carl C H; Crochet, Sylvain

    2018-01-03

    The neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hippocampus in naive mice, but developed with task learning and correlated with behavioral performance in mice trained in the detection task. The sensory responses in medial prefrontal cortex and dorsal hippocampus occurred with short latencies of less than 50 ms after whisker deflection. Pharmacological and optogenetic inactivation of medial prefrontal cortex or dorsal hippocampus impaired behavioral performance. Neuronal activity in medial prefrontal cortex and dorsal hippocampus thus appears to contribute directly to task performance, perhaps providing top-down control of learned, context-dependent transformation of sensory input into goal-directed motor output. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia

    PubMed Central

    Hoftman, Gil D.; Lewis, David A.

    2011-01-01

    Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116

  10. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    PubMed

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  11. The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior.

    PubMed

    Karim, Ahmed A; Schneider, Markus; Lotze, Martin; Veit, Ralf; Sauseng, Paul; Braun, Christoph; Birbaumer, Niels

    2010-01-01

    Recent neuroimaging studies have indicated a predominant role of the anterior prefrontal cortex (aPFC) in deception and moral cognition, yet the functional contribution of the aPFC to deceptive behavior remains unknown. We hypothesized that modulating the excitability of the aPFC by transcranial direct current stimulation (tDCS) could reveal its functional contribution in generating deceitful responses. Forty-four healthy volunteers participated in a thief role-play in which they were supposed to steal money and then to attend an interrogation with the Guilty Knowledge Test. During the interrogation, participants received cathodal, anodal, or sham tDCS. Remarkably, inhibition of the aPFC by cathodal tDCS did not lead to an impairment of deceptive behavior but rather to a significant improvement. This effect manifested in faster reaction times in telling lies, but not in telling the truth, a decrease in sympathetic skin-conductance response and feelings of guilt while deceiving the interrogator and a significantly higher lying quotient reflecting skillful lying. Increasing the excitability of the aPFC by anodal tDCS did not affect deceptive behavior, confirming the specificity of the stimulation polarity. These findings give causal support to recent correlative data obtained by functional magnetic resonance imaging studies indicating a pivotal role of the aPFC in deception.

  12. Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest.

    PubMed

    Zhu, Lusha; Jenkins, Adrianna C; Set, Eric; Scabini, Donatella; Knight, Robert T; Chiu, Pearl H; King-Casas, Brooks; Hsu, Ming

    2014-10-01

    Substantial correlational evidence suggests that prefrontal regions are critical to honest and dishonest behavior, but causal evidence specifying the nature of this involvement remains absent. We found that lesions of the human dorsolateral prefrontal cortex (DLPFC) decreased the effect of honesty concerns on behavior in economic games that pit honesty motives against self-interest, but did not affect decisions when honesty concerns were absent. These results point to a causal role for DLPFC in honest behavior.

  13. Nitric oxide synthase and the acetylcholine receptor in the prefrontal cortex: metasynaptic organization of the brain.

    PubMed

    Csillik, B; Nemcsók, J; Boncz, I; Knyihár-Csillik, E

    1998-01-01

    Nitric oxide synthase (NOS) and the nicotinic acetylcholine receptor (nAChR) immunoreactivity of the cerebral cortex was studied in adult Macaca fascicularis monkeys at light- and electron microscopic levels. NOS was located by means of the polyclonal antibodies developed by Transduction Laboratories (Lexington, KY, USA), as primary serum, in a dilution of 1:1000, and nAChR was located by means of biotinylated alpha-bungarotoxin (BTX) obtained from Molecular probes (Eugene, Oregon, USA) in a dilution of 1:2000. While endothelial eNOS outlined blood vessels in the brain, brain-derived (neural) bNOS labelled three well-defined cell types in area 46 of the prefrontal cortex, viz. (a) bipolar cells, scattered through layers III to V, equipped with long dendrites which pass over the thickness of the cortex in a right angle to the pial surface, establishing dendritic bundles closely reminiscent of a columnar organization; (b) large multipolar cells, located mainly in layers V and VI, with axons which interconnect dendritic bundles of the bipolar cells and establish synapses with dendritic shafts and spines of the former; and (c) stellate cells, located in lamina II and III, which establish an axonal network in lamina zonalis (lamina I). This arrangement is most characteristic in area 46 of the prefrontal cortex; areas 10 and 12 display similar features. In contrast, the primary visual cortex (area 17), is lacking any sign of columnar organization. Localization of bNOS immunoreactivity is at marked variance to that of NADPH-diaphorase which labels large pyramidal cells in the primate cortex. Binding of alpha-bungarotoxin (BTX) which labels the alpha 7 subunit of nAChR is located in somata, dendrites and axons of interneurons scattered over the entire width of the prefrontal cortex; on the other hand, the monoclonal antibody mAb 35 which labels subunits alpha 1, alpha 3 and alpha 5 in the main immunogenic region of the receptor, visualizes apical dendritic shafts similar

  14. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala

    PubMed Central

    Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.

    2010-01-01

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403

  15. Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)

    PubMed Central

    Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.

    2014-01-01

    We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475

  16. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

  17. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    PubMed

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  18. The Neuropsychology of Ventral Prefrontal Cortex: Decision-Making and Reversal Learning

    ERIC Educational Resources Information Center

    Clark, L.; Cools, R.; Robbins, T. W.

    2004-01-01

    Converging evidence from human lesion, animal lesion, and human functional neuroimaging studies implicates overlapping neural circuitry in ventral prefrontal cortex in decision-making and reversal learning. The ascending 5-HT and dopamine neurotransmitter systems have a modulatory role in both processes. There is accumulating evidence that…

  19. Persistent neuronal activity in human prefrontal cortex links perception and action

    PubMed Central

    Haller, Matar; Case, John; Crone, Nathan E.; Chang, Edward F.; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Parvizi, Josef; Knight, Robert T.; Shestyuk, Avgusta Y.

    2017-01-01

    How do humans flexibly respond to changing environmental demands on a sub-second temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behavior, yet the core mechanisms that translate sensory information into behavior remain undefined. Utilizing direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centered in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behavior.

  20. Extrapunitive and Intropunitive Individuals Activate Different Parts of the Prefrontal Cortex under an Ego-Blocking Frustration

    PubMed Central

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation. PMID:24454951

  1. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making

    PubMed Central

    Weilbächer, Regina A.; Gluth, Sebastian

    2016-01-01

    Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making. PMID:28036071

  2. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    PubMed

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  4. Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.

    PubMed

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi

    2014-09-05

    BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Orbital and Ventromedial Prefrontal Cortex Functioning in Parkinson's Disease: Neuropsychological Evidence

    ERIC Educational Resources Information Center

    Poletti, Michele; Bonuccelli, Ubaldo

    2012-01-01

    A recent paper (Zald & Andreotti, 2010) reviewed neuropsychological tasks that assess the function of the orbital and ventromedial portions of the prefrontal cortex (OMPFC). Neuropathological studies have shown that the function of the OMPFC should be preserved in the early stages of Parkinson's disease (PD) but becomes affected in the advanced…

  6. Prefrontal Cortex: Role in Acquisition of Overlapping Associations and Transitive Inference

    ERIC Educational Resources Information Center

    DeVito, Loren M.; Lykken, Christine; Kanter, Benjamin R.; Eichenbaum, Howard

    2010-01-01

    "Transitive inference" refers to the ability to judge from memory the relationships between indirectly related items that compose a hierarchically organized series, and this capacity is considered a fundamental feature of relational memory. Here we explored the role of the prefrontal cortex in transitive inference by examining the performance of…

  7. Biological and social influences on cognitive control processes dependent on prefrontal cortex

    PubMed Central

    Diamond, Adele

    2014-01-01

    Cognitive control functions (“executive functions” [EFs] such as attentional control, self-regulation, working memory, and inhibition) that depend on prefrontal cortex (PFC) are critical for success in school and in life. Many children begin school lacking needed EF skills. Disturbances in EFs occur in many mental health disorders, such as ADHD and depression. This chapter addresses modulation of EFs by biology (genes and neurochemistry) and the environment (including school programs) with implications for clinical disorders and for education. Unusual properties of the prefrontal dopamine system contribute to PFC’s vulnerability to environmental and genetic variations that have little effect elsewhere. EFs depend on a late-maturing brain region (PFC), yet they can be improved even in infants and preschoolers, without specialists or fancy equipment. Research shows that activities often squeezed out of school curricula (play, physical education, and the arts) rather than detracting from academic achievement help improve EFs and enhance academic outcomes. Such practices may also head off problems before they lead to diagnoses of EF impairments, including ADHD. Many issues are not simply education issues or health issues; they are both. PMID:21489397

  8. Informal Face-to-Face Interaction Improves Mood State Reflected in Prefrontal Cortex Activity

    PubMed Central

    Watanabe, Jun-ichiro; Atsumori, Hirokazu; Kiguchi, Masashi

    2016-01-01

    Recent progress with wearable sensors has enabled researchers to capture face-to-face interactions quantitatively and given great insight into human dynamics. One attractive field for applying such sensors is the workplace, where the relationship between the face-to-face behaviors of employees and the productivity of the organization has been investigated. One interesting result of previous studies showed that informal face-to-face interaction among employees, captured by wearable sensors that the employees wore, significantly affects their performance. However, the mechanism behind this relationship has not yet been adequately explained, though experiences at the job scene might qualitatively support the finding. We hypothesized that informal face-to-face interaction improves mood state, which in turn affects the task performance. To test this hypothesis, we evaluated the change of mood state before and after break time for two groups of participants, one that spent their breaks alone and one that spent them with other participants, by administering questionnaires and taking brain activity measurements. Recent neuroimaging studies have suggested a significant relationship between mood state and brain activity. Here, we show that face-to-face interaction during breaks significantly improved mood state, which was measured by Profiles of Mood States (POMS). We also observed that the verbal working memory (WM) task performance of participants who did not have face-to-face interaction during breaks decreased significantly. In this paper, we discuss how the change of mood state was evidenced in the prefrontal cortex (PFC) activity accompanied by WM tasks measured by near-infrared spectroscopy (NIRS). PMID:27199715

  9. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  11. Evidence for involvement of nitric oxide and GABAB receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex

    PubMed Central

    Roenker, Nicole L.; Gudelsky, Gary A.; Ahlbrand, Rebecca; Horn, Paul S.; Richtand, Neil M.

    2012-01-01

    Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABAB receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABAB receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pretreatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5 – 5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABAB receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABAB receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release. PMID:22579658

  12. Social and Nonsocial Functions of Rostral Prefrontal Cortex: Implications for Education

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Burgess, Paul W.

    2008-01-01

    In this article, we discuss the role of rostral prefrontal cortex (approximating Brodmann Area 10) in two domains relevant to education: executive function (particularly prospective memory, our ability to realize delayed intentions) and social cognition (particularly our ability to reflect on our own mental states and the mental states of others).…

  13. Prefrontal Cortex Is Critical for Contextual Processing: Evidence from Brain Lesions

    ERIC Educational Resources Information Center

    Fogelson, Noa; Shah, Mona; Scabini, Donatella; Knight, Robert T.

    2009-01-01

    We investigated the role of prefrontal cortex (PFC) in local contextual processing using a combined event-related potentials and lesion approach. Local context was defined as the occurrence of a short predictive series of visual stimuli occurring before delivery of a target event. Targets were preceded by either randomized sequences of standards…

  14. Effect of Prefrontal Cortex Damage on Resolving Lexical Ambiguity in Text

    ERIC Educational Resources Information Center

    Frattali, Carol; Hanna, Rebecca; McGinty, Anita Shukla; Gerber, Lynn; Wesley, Robert; Grafman, Jordan; Coelho, Carl

    2007-01-01

    The function of suppression of context-inappropriate meanings during lexical ambiguity resolution was examined in 25 adults with prefrontal cortex damage (PFCD) localized to the left (N = 8), right (N = 6), or bilaterally (N = 11); and 21 matched Controls. Results revealed unexpected inverse patterns of suppression between PFCD and Control groups,…

  15. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories

    PubMed Central

    Warren, Brandon L.; Mendoza, Michael P.; Cruz, Fabio C.; Leao, Rodrigo M.; Caprioli, Daniele; Rubio, F. Javier; Whitaker, Leslie R.; McPherson, Kylie B.; Bossert, Jennifer M.; Shaham, Yavin

    2016-01-01

    In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. SIGNIFICANCE STATEMENT A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes

  16. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories.

    PubMed

    Warren, Brandon L; Mendoza, Michael P; Cruz, Fabio C; Leao, Rodrigo M; Caprioli, Daniele; Rubio, F Javier; Whitaker, Leslie R; McPherson, Kylie B; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T

    2016-06-22

    In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the

  17. Lateralized Contribution of Prefrontal Cortex in Controlling Task-Irrelevant Information during Verbal and Spatial Working Memory Tasks: rTMS Evidence

    ERIC Educational Resources Information Center

    Sandrini, Marco; Rossini, Paolo Maria; Miniussi, Carlo

    2008-01-01

    The functional organization of working memory (WM) in the human prefrontal cortex remains unclear. The present study used repetitive transcranial magnetic stimulation (rTMS) to clarify the role of the dorsolateral prefrontal cortex (dlPFC) both in the types of information (verbal vs. spatial), and the types of processes (maintenance vs.…

  18. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    PubMed

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Prefrontal Cortex Lesions and Sex Differences in Fear Extinction and Perseveration

    ERIC Educational Resources Information Center

    Baran, Sarah E.; Armstrong, Charles E.; Niren, Danielle C.; Conrad, Cheryl D.

    2010-01-01

    Electrolytic lesions of the medial prefrontal cortex (PFCX) were examined using fear conditioning to assess the recall of fear extinction and performance in the Y-maze, open field, and object location/recognition in male and female Sprague-Dawley rats. Rats were conditioned to seven tone/footshocks, followed by extinction after 1-h and 24-h…

  20. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD.

    PubMed

    Dahlgren, M K; Laifer, L M; VanElzakker, M B; Offringa, R; Hughes, K C; Staples-Bradley, L K; Dubois, S J; Lasko, N B; Hinojosa, C A; Orr, S P; Pitman, R K; Shin, L M

    2018-05-01

    Previous research has shown relatively diminished medial prefrontal cortex activation and heightened psychophysiological responses during the recollection of personal events in post-traumatic stress disorder (PTSD), but the origin of these abnormalities is unknown. Twin studies provide the opportunity to determine whether such abnormalities reflect familial vulnerabilities, result from trauma exposure, or are acquired characteristics of PTSD. In this case-control twin study, 26 male identical twin pairs (12 PTSD; 14 non-PTSD) discordant for PTSD and combat exposure recalled and imagined trauma-unrelated stressful and neutral life events using a standard script-driven imagery paradigm during functional magnetic resonance imaging and concurrent skin conductance measurement. Diminished activation in the medial prefrontal cortex during Stressful v. Neutral script-driven imagery was observed in the individuals with PTSD, relative to other groups. Diminished medial prefrontal cortex activation during Stressful v. Neutral script-driven imagery may be an acquired characteristic of PTSD. If replicated, this finding could be used prospectively to inform diagnosis and the assessment of treatment response.

  2. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.

    PubMed

    Kegeles, Lawrence S; Mao, Xiangling; Stanford, Arielle D; Girgis, Ragy; Ojeil, Najate; Xu, Xiaoyan; Gil, Roberto; Slifstein, Mark; Abi-Dargham, Anissa; Lisanby, Sarah H; Shungu, Dikoma C

    2012-05-01

    Postmortem studies have found evidence of γ-aminobutyric acid (GABA) deficits in fast-spiking, parvalbumin-positive interneurons in the prefrontal cortex in schizophrenia. Magnetic resonance spectroscopy studies in unmedicated patients have reported glutamine or glutamate-glutamine (Glx) elevations in this region. Abnormalities in these transmitters are thought to play a role in cognitive impairments in the illness. To measure GABA and Glx levels in vivo in 2 prefrontal brain regions in unmedicated and medicated patients with schizophrenia and healthy controls. Case-control study. Inpatient psychiatric research unit and associated outpatient clinic. Sixteen unmedicated patients with schizophrenia, 16 medicated patients, and 22 healthy controls matched for age, sex, ethnicity, parental socioeconomic status, and cigarette smoking. Proton magnetic resonance spectroscopy with a 3-T system and the J-edited spin-echo difference method. The GABA and Glx levels were measured in the dorsolateral and medial prefrontal cortex and normalized to the simultaneously acquired water signal. Working memory performance was assessed in all subjects. The GABA and Glx concentrations determined by proton magnetic resonance spectroscopy. In the medial prefrontal cortex region, 30% elevations were found in GABA (P = .02) and Glx (P = .03) levels in unmedicated patients compared with controls. There were no alterations in the medicated patients or in either group in the dorsolateral prefrontal cortex. Both regions showed correlations between GABA and Glx levels in patients and controls. No correlations with working memory performance were found. To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with

  3. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex

    PubMed Central

    Fan, Chunling; Zhang, Mengqi; Shang, Lei; Cynthia, Ngobe Akume; Li, Zhi; Yang, Zhenyu; Chen, Dan; Huang, Jufang; Xiong, Kun

    2014-01-01

    Previous studies have demonstrated that doublecortin-positive immature neurons exist predominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunofluorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was significantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell proliferation), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental findings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs. PMID:25206818

  4. A neuropsychological test of belief and doubt: damage to ventromedial prefrontal cortex increases credulity for misleading advertising.

    PubMed

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Cole, Catherine A; Denburg, Natalie L; Tranel, Daniel

    2012-01-01

    We have proposed the False Tagging Theory (FTT) as a neurobiological model of belief and doubt processes. The theory posits that the prefrontal cortex is critical for normative doubt toward properly comprehended ideas or cognitions. Such doubt is important for advantageous decisions, for example in the financial and consumer purchasing realms. Here, using a neuropsychological approach, we put the FTT to an empirical test, hypothesizing that focal damage to the ventromedial prefrontal cortex (vmPFC) would cause a "doubt deficit" that would result in higher credulity and purchase intention for consumer products featured in misleading advertisements. We presented 8 consumer ads to 18 patients with focal brain damage to the vmPFC, 21 patients with focal brain damage outside the prefrontal cortex, and 10 demographically similar healthy comparison participants. Patients with vmPFC damage were (1) more credulous to misleading ads; and (2) showed the highest intention to purchase the products in the misleading advertisements, relative to patients with brain damage outside the prefrontal cortex and healthy comparison participants. The pattern of findings was obtained even for ads in which the misleading bent was "corrected" by a disclaimer. The evidence is consistent with our proposal that damage to the vmPFC disrupts a "false tagging mechanism" which normally produces doubt and skepticism for cognitive representations. We suggest that the disruption increases credulity for misleading information, even when the misleading information is corrected for by a disclaimer. This mechanism could help explain poor financial decision-making when persons with ventromedial prefrontal dysfunction (e.g., caused by neurological injury or aging) are exposed to persuasive information.

  5. A Neuropsychological Test of Belief and Doubt: Damage to Ventromedial Prefrontal Cortex Increases Credulity for Misleading Advertising

    PubMed Central

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Cole, Catherine A.; Denburg, Natalie L.; Tranel, Daniel

    2012-01-01

    We have proposed the False Tagging Theory (FTT) as a neurobiological model of belief and doubt processes. The theory posits that the prefrontal cortex is critical for normative doubt toward properly comprehended ideas or cognitions. Such doubt is important for advantageous decisions, for example in the financial and consumer purchasing realms. Here, using a neuropsychological approach, we put the FTT to an empirical test, hypothesizing that focal damage to the ventromedial prefrontal cortex (vmPFC) would cause a “doubt deficit” that would result in higher credulity and purchase intention for consumer products featured in misleading advertisements. We presented 8 consumer ads to 18 patients with focal brain damage to the vmPFC, 21 patients with focal brain damage outside the prefrontal cortex, and 10 demographically similar healthy comparison participants. Patients with vmPFC damage were (1) more credulous to misleading ads; and (2) showed the highest intention to purchase the products in the misleading advertisements, relative to patients with brain damage outside the prefrontal cortex and healthy comparison participants. The pattern of findings was obtained even for ads in which the misleading bent was “corrected” by a disclaimer. The evidence is consistent with our proposal that damage to the vmPFC disrupts a “false tagging mechanism” which normally produces doubt and skepticism for cognitive representations. We suggest that the disruption increases credulity for misleading information, even when the misleading information is corrected for by a disclaimer. This mechanism could help explain poor financial decision-making when persons with ventromedial prefrontal dysfunction (e.g., caused by neurological injury or aging) are exposed to persuasive information. PMID:22787439

  6. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  7. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  8. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    PubMed

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2017-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  9. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Post-Hypoglycemia Period in Young Rats

    PubMed Central

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887

  10. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  11. Differences in reward processing between putative cell types in primate prefrontal cortex.

    PubMed

    Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.

  12. Lateral, Not Medial, Prefrontal Cortex Contributes to Punishment and Aversive Instrumental Learning

    ERIC Educational Resources Information Center

    Jean-Richard-dit-Bressel , Philip; McNally, Gavan P.

    2016-01-01

    Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…

  13. Dynamic Neuroplasticity after Human Prefrontal Cortex Damage

    PubMed Central

    Voytek, Bradley; Davis, Matar; Yago, Elena; Barceló, Francisco; Vogel, Edward K.; Knight, Robert T.

    2010-01-01

    Summary Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions but the temporal dynamics underlying cognitive recovery are poorly understood. Here we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity. PMID:21040843

  14. Medial prefrontal cortex as an action-outcome predictor.

    PubMed

    Alexander, William H; Brown, Joshua W

    2011-09-18

    The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex is central to higher cognitive function and many clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility and reward, using findings from neuroimaging and neurophysiology in humans and monkeys. No single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions. © 2011 Nature America, Inc. All rights reserved.

  15. Medial prefrontal cortex as an action-outcome predictor

    PubMed Central

    Alexander, William H.; Brown, Joshua W.

    2011-01-01

    The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex (ACC) is central to higher cognitive function and numerous clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility, and reward, based on findings from neuroimaging and neurophysiology in humans and monkeys. To date, no single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions. PMID:21926982

  16. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala.

    PubMed

    Ghashghaei, H T; Hilgetag, C C; Barbas, H

    2007-02-01

    The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.

  17. Auditory inhibitory gating in medial prefrontal cortex: Single unit and local field potential analysis.

    PubMed

    Mears, R P; Klein, A C; Cromwell, H C

    2006-08-11

    Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial

  18. Capturing the temporal evolution of choice across prefrontal cortex

    PubMed Central

    Hunt, Laurence T; Behrens, Timothy EJ; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. DOI: http://dx.doi.org/10.7554/eLife.11945.001 PMID:26653139

  19. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex.

    PubMed

    Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S

    2004-09-01

    Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.

  20. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  1. On short-term memory of prefrontal cortex using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Gan, Zhuo; Gong, Hui; Luo, Qingming; Zeng, Shaoqun

    2003-12-01

    For studying prefrontal cortical function in short-term memory two tasks were designed. In task one, a plus expression appears on screen for 300 milliseconds every other 2 seconds and the subject is required to give it"s answer but not to remember it. In task two, an Arabic numeral presents on screen as the same frequency as in task one. While a number is present, the subject need adding it to the sum he got last time. As subjects, 26 children participated in the work. Blood volume changes(BVCs) of right prefrontal cortex(PC) under two cognitive tasks were examined using functional near infrared imaging(fNIRI), a noninvasive technique for localizing regional BVCs which correlate with neural activities. The BVCs caused by short-term memory for numbers were retrieved from BVCs by task one and task two. Results revealed that short-term memory is related to PC and the near-infrared spectroscopy(NIRS) can be used to study prefrontal cortical function in short-term memory.

  2. Mediation by neurotensin-receptors of effects of neurotensin on self-stimulation of the medial prefrontal cortex.

    PubMed Central

    Fernández, R.; Sabater, R.; Sáez, J. A.; Montes, R.; Alba, F.; Ferrer, J. M.

    1996-01-01

    1 Intracortical microinjections of neurotensin (NT) selectively decreased intracranial self-stimulation (ICSS) of the medial prefrontal cortex in the rat. 2 To elucidate whether this effect is mediated by NT receptors or by the formation of NT-dopamine complexes, we investigated the effects on ICSS of intracortical microinjections of neurotensin (1-11), an NT fragment that forms extracellular complexes with dopamine but does not bind to NT receptors. 3 We also studied the effects of the peripheral administration of SR 48692, a selective antagonist of NT receptors, on the inhibition of ICSS produced by the intracortical administration of NT. 4 Unilateral microinjections of neurotensin (1-11) at doses of 10, 20 and 40 nmol into the medial prefrontal cortex did not change the basal ICSS rate of this area. 5 The intraperitoneal administration of SR 48692 at doses of 0.08 and 0.16 mg kg-1 30 min before microinjection of 10 nmol of NT into the medial prefrontal cortex, antagonized the inhibition of ICSS produced by the neuropeptide. 6 These results demonstrate that the inhibitory effect of NT on ICSS is mediated by NT receptors. PMID:8886412

  3. Executive Functions and Prefrontal Cortex: A Matter of Persistence?

    PubMed Central

    Ball, Gareth; Stokes, Paul R.; Rhodes, Rebecca A.; Bose, Subrata K.; Rezek, Iead; Wink, Alle-Meije; Lord, Louis-David; Mehta, Mitul A.; Grasby, Paul M.; Turkheimer, Federico E.

    2011-01-01

    Executive function is thought to originates from the dynamics of frontal cortical networks. We examined the dynamic properties of the blood oxygen level dependent time-series measured with functional MRI (fMRI) within the prefrontal cortex (PFC) to test the hypothesis that temporally persistent neural activity underlies performance in three tasks of executive function. A numerical estimate of signal persistence, the Hurst exponent, postulated to represent the coherent firing of cortical networks, was determined and correlated with task performance. Increasing persistence in the lateral PFC was shown to correlate with improved performance during an n-back task. Conversely, we observed a correlation between persistence and increasing commission error – indicating a failure to inhibit a prepotent response – during a Go/No-Go task. We propose that persistence within the PFC reflects dynamic network formation and these findings underline the importance of frequency analysis of fMRI time-series in the study of executive functions. PMID:21286223

  4. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    ERIC Educational Resources Information Center

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  5. The Medial Prefrontal Cortex Is Critical for Memory Retrieval and Resolving Interference

    ERIC Educational Resources Information Center

    Peters, Gregory J.; David, Christopher N.; Marcus, Madison D.; Smith, David M.

    2013-01-01

    The prefrontal cortex (PFC) is known to be critically involved in strategy switching, attentional set shifting, and inhibition of prepotent responses. A central feature of this kind of behavioral flexibility is the ability to resolve conflicting response tendencies, suggesting a general role of the PFC in resolving interference. If so, the PFC…

  6. Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1-/y mouse.

    PubMed

    Routh, Brandy N; Rathour, Rahul K; Baumgardner, Michael E; Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H

    2017-07-01

    Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 -/y mice. In fmr1 -/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na + conductance density is higher in fmr1 -/y L2/3 neurons. Measurements of three biophysically distinct K + currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K + conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1 -/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1 -/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1 -/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na + current was significantly larger in fmr1 -/y neurons. Furthermore, the activation curve of somatic A-type K + current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na

  7. Distributed value representation in the medial prefrontal cortex during intertemporal choices.

    PubMed

    Wang, Qiang; Luo, Shan; Monterosso, John; Zhang, Jintao; Fang, Xiaoyi; Dong, Qi; Xue, Gui

    2014-05-28

    The ability to resist current temptations in favor of long-term benefits is a critical human capacity. Despite the extensive studies on the neural mechanisms of intertemporal choices, how the subjective value of immediate and delayed rewards is represented and compared in the brain remains to be elucidated. The present fMRI study addressed this question by simultaneously and independently manipulating the magnitude of immediate and delayed rewards in an intertemporal decision task, combined with univariate analysis and multiple voxel pattern analysis. We found that activities in the posterior portion of the dorsal medial prefrontal cortex (DmPFC) were modulated by the value of immediate options, whereas activities in the adjacent anterior DmPFC were modulated by the subjective value of delayed options. Brain signal change in the ventral mPFC was positively correlated with the "relative value" (the absolute difference of subjective value between two intertemporal alternatives). In contrast, the dorsal anterior cingulate cortex activity was negatively correlated with the relative value. These results suggest that immediate and delayed rewards are separately represented in the dorsal mPFC and compared in the ventral mPFC to guide decisions. The functional dissociation of posterior and anterior DmPFC in representing immediate and delayed reward is consistent with the general structural and functional architecture of the prefrontal cortex and may provide a neural basis for human's unique capacity to delayed gratification. Copyright © 2014 the authors 0270-6474/14/347522-09$15.00/0.

  8. Differences in reward processing between putative cell types in primate prefrontal cortex

    PubMed Central

    Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734

  9. A key role of the prefrontal cortex in the maintenance of chronic tinnitus: An fMRI study using a Stroop task.

    PubMed

    Araneda, Rodrigo; Renier, Laurent; Dricot, Laurence; Decat, Monique; Ebner-Karestinos, Daniela; Deggouj, Naïma; De Volder, Anne G

    2018-01-01

    Since we recently showed in behavioural tasks that the top-down cognitive control was specifically altered in tinnitus sufferers, here we wanted to establish the link between this impaired executive function and brain alterations in the frontal cortex in tinnitus patients. Using functional magnetic resonance imaging (fMRI), we monitored the brain activity changes in sixteen tinnitus patients (TP) and their control subjects (CS) while they were performing a spatial Stroop task, both in audition and vision. We observed that TP differed from CS in their functional recruitment of the dorsolateral prefrontal cortex (dlPFC, BA46), the cingulate gyrus and the ventromedial prefrontal cortex (vmPFC, BA10). This recruitment was higher during interference conditions in tinnitus participants than in controls, whatever the sensory modality. Furthermore, the brain activity level in the right dlPFC and vmPFC correlated with the performance in the Stroop task in TP. Due to the direct link between poor executive functions and prefrontal cortex alterations in TP, we postulate that a lack of inhibitory modulation following an impaired top-down cognitive control may maintain tinnitus by hampering habituation mechanisms. This deficit in executive functions caused by prefrontal cortex alterations would be a key-factor in the generation and persistence of tinnitus.

  10. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  11. Prefrontal Cortex and Hippocampus Subserve Different Components of Working Memory in Rats

    ERIC Educational Resources Information Center

    Yoon, Taejib; Okada, Jeffrey; Jung, Min W.; Kim, Jeansok J.

    2008-01-01

    Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working…

  12. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  13. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    PubMed

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  15. Activation of the prefrontal cortex while performing a task at preferred slow pace and metronome slow pace: a functional near-infrared spectroscopy study.

    PubMed

    Shimoda, Kaori; Moriguchi, Yoshiya; Tsuchiya, Kenji; Katsuyama, Shiori; Tozato, Fusae

    2014-01-01

    Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition) with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition) using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10) was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.

  16. Activation of the Prefrontal Cortex While Performing a Task at Preferred Slow Pace and Metronome Slow Pace: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Moriguchi, Yoshiya

    2014-01-01

    Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition) with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition) using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10) was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions. PMID:25436155

  17. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex

    PubMed Central

    Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.

    2015-01-01

    Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in

  18. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat.

    PubMed

    Russell, V; Allie, S; Wiggins, T

    2000-12-20

    Spontaneously hypertensive rats (SHR) are used as a model for attention-deficit/hyperactivity disorder (ADHD) since SHR are hyperactive and they show defective sustained attention in behavioral tasks. Using an in vitro superfusion technique we showed that norepinephrine (NE) release from prefrontal cortex slices of SHR was not different from that of their Wistar-Kyoto (WKY) control rats when stimulated either electrically or by exposure to buffer containing 25 mM K(+). The monoamine vesicle transporter is, therefore, unlikely to be responsible for the deficiency in DA observed in SHR, since, in contrast to DA, vesicle stores of NE do not appear to be depleted in SHR. In addition, alpha(2)-adrenoceptor mediated inhibition of NE release was reduced in SHR, suggesting that autoreceptor function was deficient in prefrontal cortex of SHR. So, while DA neurotransmission appears to be down-regulated in SHR, the NE system appears to be under less inhibitory control than in WKY suggesting hypodopaminergic and hypernoradrenergic activity in prefrontal cortex of SHR. These findings are consistent with the hypothesis that the behavioral disturbances of ADHD are the result of an imbalance between NE and DA systems in the prefrontal cortex, with inhibitory DA activity being decreased and NE activity increased relative to controls.

  19. Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech

    PubMed Central

    Romanski, Lizabeth M.

    2012-01-01

    The integration of facial gestures and vocal signals is an essential process in human communication and relies on an interconnected circuit of brain regions, including language regions in the inferior frontal gyrus (IFG). Studies have determined that ventral prefrontal cortical regions in macaques [e.g., the ventrolateral prefrontal cortex (VLPFC)] share similar cytoarchitectonic features as cortical areas in the human IFG, suggesting structural homology. Anterograde and retrograde tracing studies show that macaque VLPFC receives afferents from the superior and inferior temporal gyrus, which provide complex auditory and visual information, respectively. Moreover, physiological studies have shown that single neurons in VLPFC integrate species-specific face and vocal stimuli. Although bimodal responses may be found across a wide region of prefrontal cortex, vocalization responsive cells, which also respond to faces, are mainly found in anterior VLPFC. This suggests that VLPFC may be specialized to process and integrate social communication information, just as the IFG is specialized to process and integrate speech and gestures in the human brain. PMID:22723356

  20. Contribution of different regions of the prefrontal cortex and lesion laterality to deficit of decision-making on the Iowa Gambling Task.

    PubMed

    Ouerchefani, Riadh; Ouerchefani, Naoufel; Allain, Philippe; Ben Rejeb, Mohamed Riadh; Le Gall, Didier

    2017-02-01

    Few studies have examined the contribution of different sub-regions of the prefrontal cortex and lesion laterality to decision-making abilities. In addition, there are inconsistent findings about the role of ventromedial and dorsolateral lesions in decision-making deficit. In this study, decision-making processes are investigated following different damaged areas of the prefrontal cortex. We paid particular attention to the contribution of laterality, lesion location and lesion volume in decision-making deficit. Twenty-seven patients with discrete ventromedial lesions, dorsolateral lesions or extended-frontal lesions were compared with normal subjects on the Iowa Gambling Task (IGT). Our results showed that all frontal subgroups were impaired on the IGT in comparison with normal subjects. We noted also that IGT performance did not vary systematically based on lesion laterality or location. More precisely, our lesion analysis revealed that decision-making processes depend on a large cerebral network, including both ventromedial and dorsolateral areas of the prefrontal cortex. Consistent with past findings, our results support the claim that IGT deficit is not solitarily associated with ventromedial prefrontal cortex lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Cognitive Functions in the Prefrontal Association Cortex; Transitive Inference and the Lateral Prefrontal Cortex].

    PubMed

    Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi

    2016-11-01

    To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.

  2. Sleep restriction in rats leads to changes in operant behaviour indicative of reduced prefrontal cortex function.

    PubMed

    Kamphuis, Jeanine; Baichel, Swetlana; Lancel, Marike; de Boer, Sietse F; Koolhaas, Jaap M; Meerlo, Peter

    2017-02-01

    Sleep deprivation has profound effects on cognitive performance, and some of these effects may be mediated by impaired prefrontal cortex function. In search of an animal model to investigate this relationship we studied the influence of restricted sleep on operant conditioning in rats, particularly the performance in a differential reinforcement of low rate responding (DRL) task, which is highly dependent upon an intact prefrontal cortex. Animals were trained to withhold a lever press until an imposed delay of 30 s after the last press had passed in order to achieve a food reward. Once the animals had mastered the task, they were sleep-restricted for 7 days with 20 h of sleep deprivation per day. At the end of each daily sleep deprivation session, performance on the DRL task was assessed. The results show that sleep-restricted animals were less able to time their responses correctly, started pressing the lever more randomly and showed signs of behavioural disinhibition, the latter possibly reflecting enhanced impulsivity. Our data support the hypothesis that a sleep debt has disruptive consequences for the functioning of the prefrontal cortex. This model offers possibilities for future studies investigating the underlying biochemical and molecular mechanisms of this relationship. © 2016 European Sleep Research Society.

  3. Evaluating the Role of the Dorsolateral Prefrontal Cortex and Posterior Parietal Cortex in Memory-Guided Attention With Repetitive Transcranial Magnetic Stimulation.

    PubMed

    Wang, Min; Yang, Ping; Wan, Chaoyang; Jin, Zhenlan; Zhang, Junjun; Li, Ling

    2018-01-01

    The contents of working memory (WM) can affect the subsequent visual search performance, resulting in either beneficial or cost effects, when the visual search target is included in or spatially dissociated from the memorized contents, respectively. The right dorsolateral prefrontal cortex (rDLPFC) and the right posterior parietal cortex (rPPC) have been suggested to be associated with the congruence/incongruence effects of the WM content and the visual search target. Thus, in the present study, we investigated the role of the dorsolateral prefrontal cortex and the PPC in controlling the interaction between WM and attention during a visual search, using repetitive transcranial magnetic stimulation (rTMS). Subjects maintained a color in WM while performing a search task. The color cue contained the target (valid), the distractor (invalid) or did not reappear in the search display (neutral). Concurrent stimulation with the search onset showed that relative to rTMS over the vertex, rTMS over rPPC and rDLPFC further decreased the search reaction time, when the memory cue contained the search target. The results suggest that the rDLPFC and the rPPC are critical for controlling WM biases in human visual attention.

  4. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    PubMed

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  5. Maternal exercise decreases maternal deprivation induced anxiety of pups and correlates to increased prefrontal cortex BDNF and VEGF.

    PubMed

    Uysal, Nazan; Sisman, Ali Riza; Dayi, Ayfer; Aksu, Ilkay; Cetin, Ferihan; Gencoglu, Celal; Tas, Aysegul; Buyuk, Erkan

    2011-11-21

    Maternal deprivation (MD) may cause neuropsychiatric disorders such as anxiety disorder by negatively affecting the cognitive functions and behavior in pups. The aim of this study is to investigate whether maternal exercise during pregnancy has beneficial effects on anxiety that increases with MD, and on the levels of VEGF and BDNF which have anxiolytic effects on the prefrontal cortex, the anxiety-related region of the brain. The anxiety level in the deprivation group was greater than the control group and found more in male than female pups. The prefrontal cortex VEGF and BDNF levels were decreased in the deprivation group compared to control group while serum corticosterone levels were increased in the deprivation group. Anxiety and serum corticosterone levels were decreased in maternally exercised female and male pups, while the prefrontal cortex VEGF and BDNF levels were increased, compared to sedentary mother's pups. These results indicate that maternal exercise may attenuate the negative effect of stresses such as maternal deprivation that can be encountered early in life. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions

    PubMed Central

    Funahashi, Shintaro

    2014-01-01

    Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions

  7. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex.

    PubMed

    Murray, Elisabeth A; Rudebeck, Peter H

    2018-05-23

    The estimated values of choices, and therefore decision-making based on those values, are influenced by both the chance that the chosen items or goods can be obtained (availability) and their current worth (desirability) as well as by the ability to link the estimated values to choices (a process sometimes called credit assignment). In primates, the prefrontal cortex (PFC) has been thought to contribute to each of these processes; however, causal relationships between particular subdivisions of the PFC and specific functions have been difficult to establish. Recent lesion-based research studies have defined the roles of two different parts of the primate PFC - the orbitofrontal cortex (OFC) and the ventral lateral frontal cortex (VLFC) - and their subdivisions in evaluating each of these factors and in mediating credit assignment during reward-based decision-making.

  8. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control

    PubMed Central

    Egner, Tobias

    2013-01-01

    Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631

  9. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    PubMed

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  10. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    PubMed Central

    Ruocco, Anthony C.; Rodrigo, Achala H.; McMain, Shelley F.; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S.

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT. PMID:27242484

  11. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study.

    PubMed

    Ruocco, Anthony C; Rodrigo, Achala H; McMain, Shelley F; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  12. Relationship between changes in rat behavior and integral biochemical indexes determined by laser correlation spectroscopy after photothrombosis of the prefrontal cortex.

    PubMed

    Romanova, G A; Shakova, F M; Kovaleva, O I; Pivovarov, V V; Khlebnikova, N N; Karganov, M Yu

    2004-02-01

    Experiments on rats showed that Noopept improved retention and retrieval of conditioned passive avoidance response after phototrombosis of the prefrontal cortex (a procedure impairing retention of memory traces). The impairment of mnesic functions was accompanied by changes in integral biochemical indexes of the plasma determined by laser correlation spectroscopy. Treatment of behavioral disorders with Noopepet normalized biochemical indexes.

  13. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus.

    PubMed

    Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos

    2017-01-01

    Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.

  14. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus

    PubMed Central

    Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.

    2017-01-01

    Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804

  15. Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention.

    PubMed

    Yago, Elena; Duarte, Audrey; Wong, Ting; Barceló, Francisco; Knight, Robert T

    2004-12-01

    Single-unit, event-related potential (ERP), and neuroimaging studies have implicated the prefrontal cortex (PFC) in top-down control of attention and working memory. We conducted an experiment in patients with unilateral PFC damage (n = 8) to assess the temporal kinetics of PFC-extrastriate interactions during visual attention. Subjects alternated attention between the left and the right hemifields in successive runs while they detected target stimuli embedded in streams of repetitive task-irrelevant stimuli (standards). The design enabled us to examine tonic (spatial selection) and phasic (feature selection) PFC-extrastriate interactions. PFC damage impaired performance in the visual field contralateral to lesions, as manifested by both larger reaction times and error rates. Assessment of the extrastriate P1 ERP revealed that the PFC exerts a tonic (spatial selection) excitatory input to the ipsilateral extrastriate cortex as early as 100 msec post stimulus delivery. The PFC exerts a second phasic (feature selection) excitatory extrastriate modulation from 180 to 300 msec, as evidenced by reductions in selection negativity after damage. Finally, reductions of the N2 ERP to target stimuli supports the notion that the PFC exerts a third phasic (target selection) signal necessary for successful template matching during postselection analysis of target features. The results provide electrophysiological evidence of three distinct tonic and phasic PFC inputs to the extrastriate cortex in the initial few hundred milliseconds of stimulus processing. Damage to this network appears to underlie the pervasive deficits in attention observed in patients with prefrontal lesions.

  16. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    NASA Astrophysics Data System (ADS)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P < 0.05) and higher increase of oxyhemoglobin in both left ( P < 0.05) and right ( P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions ( P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.

  17. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  18. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

    PubMed Central

    Gacias, Mar; Gaspari, Sevasti; Santos, Patricia-Mae G; Tamburini, Sabrina; Andrade, Monica; Zhang, Fan; Shen, Nan; Tolstikov, Vladimir; Kiebish, Michael A; Dupree, Jeffrey L; Zachariou, Venetia; Clemente, Jose C; Casaccia, Patrizia

    2016-01-01

    Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior. DOI: http://dx.doi.org/10.7554/eLife.13442.001 PMID:27097105

  19. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex.

    PubMed

    López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M

    2015-01-01

    Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals' avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.

  20. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    PubMed Central

    López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M.

    2015-01-01

    Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations. PMID:25688195

  1. Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making.

    PubMed

    Clarke, Hannah F; Horst, Nicole K; Roberts, Angela C

    2015-03-31

    Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.

  2. Lateral Prefrontal Cortex Mediates the Cognitive Modification of Attentional Bias

    PubMed Central

    Browning, Michael; Holmes, Emily A.; Murphy, Susannah E.; Goodwin, Guy M.; Harmer, Catherine J.

    2010-01-01

    Background A tendency to orient attention toward threatening stimuli may be involved in the etiology of anxiety disorders. In keeping with this, both psychological and pharmacological treatments of anxiety reduce this negative attentional bias. It has been hypothesized, but not proved, that psychological interventions may alter the function of prefrontal regions supervising the allocation of attentional resources. Methods The current study examined the effects of a cognitive training regime on attention. Participants were randomly assigned to one of two training conditions: “attend-threat” training, which increases negative attentional bias, or “avoid-threat” training, which reduces it. The behavioral effects of training were assessed using a sample of 24 healthy participants. Functional magnetic resonance imaging data were collected in a further 29 healthy volunteers using a protocol that allowed the influence of both stimuli valence and attention to be discriminated. Results Cognitive training induced the expected attentional biases in healthy volunteers. Further, the training altered lateral frontal activation to emotional stimuli, with these areas responding specifically to violations of the behavioral rules learned during training. Connectivity analysis confirmed that the identified lateral frontal regions were influencing attention as indexed by activity in visual association cortex. Conclusions Our results indicate that frontal control over the processing of emotional stimuli may be tuned by psychological interventions in a manner predicted to regulate levels of anxiety. This directly supports the proposal that psychological interventions may influence attention via an effect on the prefrontal cortex. PMID:20034617

  3. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  4. Local and downstream effects of excitotoxic lesions in the rat medial prefrontal cortex on In vivo 1H-MRS signals.

    PubMed

    Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R

    2000-04-01

    The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.

  5. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    PubMed

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  6. Anterior Cingulate Cortex Instigates Adaptive Switches in Choice by Integrating Immediate and Delayed Components of Value in Ventromedial Prefrontal Cortex

    PubMed Central

    Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.

    2014-01-01

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291

  7. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    PubMed

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  8. White matter integrity between left basal ganglia and left prefrontal cortex is compromised in gambling disorder.

    PubMed

    van Timmeren, Tim; Jansen, Jochem M; Caan, Matthan W A; Goudriaan, Anna E; van Holst, Ruth J

    2017-11-01

    Pathological gambling (PG) is a behavioral addiction characterized by an inability to stop gambling despite the negative consequences, which may be mediated by cognitive flexibility deficits. Indeed, impaired cognitive flexibility has previously been linked to PG and also to reduced integrity of white matter connections between the basal ganglia and the prefrontal cortex. It remains unclear, however, how white matter integrity problems relate to cognitive inflexibility seen in PG. We used a cognitive switch paradigm during functional magnetic resonance imaging in pathological gamblers (PGs; n = 26) and healthy controls (HCs; n = 26). Cognitive flexibility performance was measured behaviorally by accuracy and reaction time on the switch task, while brain activity was measured in terms of blood oxygen level-dependent responses. We also used diffusion tensor imaging on a subset of data (PGs = 21; HCs = 21) in combination with tract-based spatial statistics and probabilistic fiber tracking to assess white matter integrity between the basal ganglia and the dorsolateral prefrontal cortex. Although there were no significant group differences in either task performance, related neural activity or tract-based spatial statistics, PGs did show decreased white matter integrity between the left basal ganglia and prefrontal cortex. Our results complement and expand similar findings from a previous study in alcohol-dependent patients. Although we found no association between white matter integrity and task performance here, decreased white matter connections may contribute to a diminished ability to recruit prefrontal networks needed for regulating behavior in PG. Hence, our findings could resonate an underlying risk factor for PG, and we speculate that these findings may extend to addiction in general. © 2016 Society for the Study of Addiction.

  9. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    PubMed Central

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  10. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI.

    PubMed

    Bozzali, M; MacPherson, S E; Dolan, R J; Shallice, T

    2006-10-15

    Recollection and familiarity represent two processes involved in episodic memory retrieval. We investigated how scopolamine (an antagonist of acetylcholine muscarinic receptors) influenced brain activity during memory retrieval, using a paradigm that separated recollection and familiarity. Eighteen healthy volunteers were recruited in a randomized, placebo-controlled, double-blind design using event-related fMRI. Participants were required to perform a verbal recognition memory task within the scanner, either under placebo or scopolamine conditions. Depending on the subcondition, participants were required to make a simple recognition decision (old/new items) or base their decision on more specific information related to prior experience (target/non-target/new items). We show a drug modulation in left prefrontal and perirhinal cortex during recollection. Such an effect was specifically driven by novelty and showed an inverse correlation with accuracy performance. Additionally, we show a direct correlation between drug-related signal change in left prefrontal and perirhinal cortices. We discuss the findings in terms of acetylcholine mediation of the familiarity/novelty signal through perirhinal cortex and the control of the relative signal strength through prefrontal cortex.

  11. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  12. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    PubMed

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  13. Response of dorsomedial prefrontal cortex predicts altruistic behavior

    PubMed Central

    Waytz, Adam; Zaki, Jamil; Mitchell, Jason P.

    2012-01-01

    Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex (dorsal MPFC)—a region consistently involved in understanding others’ mental states—predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought. PMID:22649243

  14. Prefrontal cortex as a meta-reinforcement learning system.

    PubMed

    Wang, Jane X; Kurth-Nelson, Zeb; Kumaran, Dharshan; Tirumala, Dhruva; Soyer, Hubert; Leibo, Joel Z; Hassabis, Demis; Botvinick, Matthew

    2018-06-01

    Over the past 20 years, neuroscience research on reward-based learning has converged on a canonical model, under which the neurotransmitter dopamine 'stamps in' associations between situations, actions and rewards by modulating the strength of synaptic connections between neurons. However, a growing number of recent findings have placed this standard model under strain. We now draw on recent advances in artificial intelligence to introduce a new theory of reward-based learning. Here, the dopamine system trains another part of the brain, the prefrontal cortex, to operate as its own free-standing learning system. This new perspective accommodates the findings that motivated the standard model, but also deals gracefully with a wider range of observations, providing a fresh foundation for future research.

  15. Impairment of social and moral behavior related to early damage in human prefrontal cortex.

    PubMed

    Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R

    1999-11-01

    The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.

  16. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex.

    PubMed

    Nee, Derek Evan; Kastner, Sabine; Brown, Joshua W

    2011-01-01

    The last decade has seen considerable discussion regarding a theoretical account of medial prefrontal cortex (mPFC) function with particular focus on the anterior cingulate cortex. The proposed theories have included conflict detection, error likelihood prediction, volatility monitoring, and several distinct theories of error detection. Arguments for and against particular theories often treat mPFC as functionally homogeneous, or at least nearly so, despite some evidence for distinct functional subregions. Here we used functional magnetic resonance imaging (fMRI) to simultaneously contrast multiple effects of error, conflict, and task-switching that have been individually construed in support of various theories. We found overlapping yet functionally distinct subregions of mPFC, with activations related to dominant error, conflict, and task-switching effects successively found along a rostral-ventral to caudal-dorsal gradient within medial prefrontal cortex. Activations in the rostral cingulate zone (RCZ) were strongly correlated with the unexpectedness of outcomes suggesting a role in outcome prediction and preparing control systems to deal with anticipated outcomes. The results as a whole support a resolution of some ongoing debates in that distinct theories may each pertain to corresponding distinct yet overlapping subregions of mPFC. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice.

    PubMed

    Paul, Kush; Venkitaramani, Deepa V; Cox, Charles L

    2013-02-15

    Fragile X syndrome (FXS) is the most common form of inheritable mental retardation caused by transcriptional silencing of the Fmr1 gene resulting in the absence of fragile X mental retardation protein (FMRP). The role of this protein in neurons is complex and its absence gives rise to diverse alterations in neuronal function leading to neurological disorders including mental retardation, hyperactivity, cognitive impairment, obsessive-compulsive behaviour, seizure activity and autism. FMRP regulates mRNA translation at dendritic spines where synapses are formed, and thus the lack of FMRP can lead to disruptions in synaptic transmission and plasticity. Many of these neurological deficits in FXS probably involve the prefrontal cortex, and in this study, we have focused on modulatory actions of dopamine in the medial prefrontal cortex. Our data indicate that dopamine produces a long-lasting enhancement of evoked inhibitory postsynaptic currents (IPSCs) mediated by D1-type receptors seen in wild-type mice; however, such enhancement is absent in the Fmr1 knock-out (Fmr1 KO) mice. The facilitation of IPSCs produced by direct cAMP stimulation was unaffected in Fmr1 KO, but D1 receptor levels were reduced in these animals. Our results show significant disruption of dopaminergic modulation of synaptic transmission in the Fmr1 KO mice and this alteration in inhibitory activity may provide insight into potential targets for the rescue of deficits associated with FXS.

  18. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    PubMed

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; Giordano, Marianna; Grossi, Dario; Trojano, Luigi

    2015-01-01

    Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.

  19. The lateral prefrontal cortex mediates the hyperalgesic effects of negative cognitions in chronic pain patients.

    PubMed

    Loggia, Marco L; Berna, Chantal; Kim, Jieun; Cahalan, Christine M; Martel, Marc-Olivier; Gollub, Randy L; Wasan, Ajay D; Napadow, Vitaly; Edwards, Robert R

    2015-08-01

    Although high levels of negative affect and cognitions have been associated with greater pain sensitivity in chronic pain conditions, the neural mechanisms mediating the hyperalgesic effect of psychological factors in patients with pain disorders are largely unknown. In this cross-sectional study, we hypothesized that 1) catastrophizing modulates brain responses to pain anticipation and 2) anticipatory brain activity mediates the hyperalgesic effect of different levels of catastrophizing in fibromyalgia (FM) patients. Using functional magnetic resonance imaging, we scanned the brains of 31 FM patients exposed to visual cues anticipating the onset of moderately intense deep-tissue pain stimuli. Our results indicated the existence of a negative association between catastrophizing and pain-anticipatory brain activity, including in the right lateral prefrontal cortex. A bootstrapped mediation analysis revealed that pain-anticipatory activity in the lateral prefrontal cortex mediates the association between catastrophizing and pain sensitivity. These findings highlight the role of the lateral prefrontal cortex in the pathophysiology of FM-related hyperalgesia and suggest that deficits in the recruitment of pain-inhibitory brain circuitry during pain-anticipatory periods may play an important contributory role in the association between various degrees of widespread hyperalgesia in FM and levels of catastrophizing, a well-validated measure of negative cognitions and psychological distress. This article highlights the presence of alterations in pain-anticipatory brain activity in FM. These findings provide the rationale for the development of psychological or neurofeedback-based techniques aimed at modifying patients' negative affect and cognitions toward pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Prefrontal Cortex and Impulsive Decision Making

    PubMed Central

    Kim, Soyoun; Lee, Daeyeol

    2010-01-01

    Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor responses also result when the subjects fail to suppress inappropriate automatic behaviors. In addition, impulsive actions can be produced when too much emphasis is placed on speed rather than accuracy in a wide range of behaviors, including perceptual decision making. Despite this heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe key features of computations necessary for optimal decision making, and how their failures can lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging approaches in economics, psychology, and neuroscience provide a unique vista for better understanding the nature of behavioral impairments associated with impulsivity. PMID:20728878

  1. Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference

    ERIC Educational Resources Information Center

    Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.

    2013-01-01

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…

  2. Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder.

    PubMed

    Altinay, Murat; Karne, Harish; Anand, Amit

    2018-01-01

    This study, for the first time, investigated lithium monotherapy associated effects on amygdala- ventromedial prefrontal cortex (vMPFC) resting-state functional connectivity and correlation with clinical improvement in bipolar disorder (BP) METHODS: Thirty-six medication-free subjects - 24 BP (12 hypomanic BPM) and 12 depressed (BPD)) and 12 closely matched healthy controls (HC), were included. BP subjects were treated with lithium and scanned at baseline, after 2 weeks and 8 weeks. HC were scanned at same time points but were not treated. The effect of lithium was studied for the BP group as a whole using two way (group, time) ANOVA while regressing out effects of state. Next, correlation between changes in amygdala-vMPFC resting-state connectivity and clinical global impression (CGI) of severity and improvement scale scores for overall BP illness was calculated. An exploratory analysis was also conducted for the BPD and BPM subgroups separately. Group by time interaction revealed that lithium monotherapy in patients was associated with increase in amygdala-medial OFC connectivity after 8 weeks of treatment (p = 0.05 (cluster-wise corrected)) compared to repeat testing in healthy controls. Increased amygdala-vMPFC connectivity correlated with clinical improvement at week 2 and week 8 as measured with the CGI-I scale. The results pertain to open-label treatment and do not account for non-treatment related improvement effects. Only functional connectivity was measured which does not give information regarding one regions effect on the other. Lithium monotherapy in BP is associated with modulation of amygdala-vMPFC connectivity which correlates with state-independent global clinical improvement. Copyright © 2017. Published by Elsevier B.V.

  3. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources.

    PubMed

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-05-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts--for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts.

  4. ``Seeing'' electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; Vanmeter, John

    2010-11-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS-EEG ICA pairs was highly significant (p < 10-8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust ``optical N200'' at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject's reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components ``reflect'' electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes.

  5. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources

    PubMed Central

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-01-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts—for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts. PMID:23460073

  6. The Representation of Self and Person Knowledge in the Medial Prefrontal Cortex

    PubMed Central

    Haxby, James V.; Heatherton, Todd F.

    2012-01-01

    Nearly forty years ago, social psychologists began applying the information processing framework of cognitive psychology to the question of how humans understand and represent knowledge about themselves and others. This approach gave rise to the immensely successful field of social cognition and fundamentally changed the way in which social psychological phenomena are studied. More recently, social scientists of many stripes have turned to the methods of cognitive neuroscience to understand the neural basis of social cognition. A pervasive finding from this research is that social knowledge, be it about one's self or of others, is represented in the medial prefrontal cortex. This review focuses on the social cognitive neuroscience of self and person knowledge in the medial prefrontal cortex. We begin with a brief historical overview of social cognition, followed by a review of recent and influential research on the brain basis of self and person knowledge. In the latter half of this review we discuss the role of familiarity and similarity in person perception and of spontaneous processes in self and other referential cognition. Throughout, we discuss the myriad ways in which the social cognitive neuroscience approach has provided new insights into the nature and structure of self and person knowledge. PMID:22712038

  7. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  8. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex

    PubMed Central

    Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-01-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. SIGNIFICANCE STATEMENT Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  9. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity

    PubMed Central

    Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel

    2016-01-01

    The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563

  10. The role of the medial prefrontal cortex in trace fear extinction

    PubMed Central

    Kwapis, Janine L.; Jarome, Timothy J.

    2015-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576

  11. Infralimbic prefrontal cortex interacts with nucleus accumbens shell to unmask expression of outcome-selective Pavlovian-to-instrumental transfer

    PubMed Central

    Keistler, Colby; Barker, Jacqueline M.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context (i.e., addiction). Here we use bilateral lesions in a rat model to show that infralimbic prefrontal cortex (ilPFC) is necessary for appropriate expression of PIT. Further, we show that ilPFC mediates this effect via functional connectivity with nucleus accumbens shell (NAcS). Together, these data provide the first demonstration that a specific cortico-striatal circuit is necessary for cue-invigorated reward seeking during specific PIT. PMID:26373829

  12. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with

  13. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    PubMed

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  15. The role of the dorsolateral prefrontal cortex in early threat processing: a TMS study.

    PubMed

    Sagliano, Laura; D'Olimpio, Francesca; Panico, Francesco; Gagliardi, Serena; Trojano, Luigi

    2016-12-01

    Previous studies demonstrated that excitatory (high frequency) offline transcranial magnetic stimulation (TMS) over the left and right dorsolateral prefrontal cortex (DLPFC) modulates attention allocation on threatening stimuli in non-clinical samples. These studies only employed offline TMS protocol that did not allow investigating the effect of the stimulation on the early stage of threat processing. In this study, the role of the right and left dorsolateral prefrontal cortex in early threat processing was investigated in high and low anxious individuals by means of an inhibitory single-pulse online TMS protocol. Our results demonstrated the role of the left DLPFC in an early stage of threat processing and that this effect is modulated by individuals' anxiety level. The inhibitory stimulation of the left DLPFC determined a disengagement bias in high anxious individuals, while the same stimulation determined an attentional avoidance in low anxious individuals. The findings of the present study suggest that right and left DLPFC are differently involved in early threat processing of healthy individuals. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Prefrontal cortex dysfunction and 'Jumping to Conclusions': bias or deficit?

    PubMed

    Lunt, Laura; Bramham, Jessica; Morris, Robin G; Bullock, Peter R; Selway, Richard P; Xenitidis, Kiriakos; David, Anthony S

    2012-03-01

    The 'beads task' is used to measure the cognitive basis of delusions, namely the 'Jumping to Conclusions' (JTC) reasoning bias. However, it is not clear whether the task merely taps executive dysfunction - known to be impaired in patients with schizophrenia - such as planning and resistance to impulse. To study this, 19 individuals with neurosurgical excisions to the prefrontal cortex, 21 unmedicated adults with Attention Deficit Hyperactivity Disorder (ADHD), and 25 healthy controls completed two conditions of the beads task, in addition to tests of memory and executive function as well as control tests of probabilistic reasoning ability. The results indicated that the prefrontal lobe group (in particular, those with left-sided lesions) demonstrated a JTC bias relative to the ADHD and control groups. Further exploratory analyses indicated that JTC on the beads task was associated with poorer performance in certain executive domains. The results are discussed in terms of the executive demands of the beads task and possible implications for the model of psychotic delusions based on the JTC bias. ©2011 The British Psychological Society.

  17. Functional abnormalities in the left ventrolateral prefrontal cortex during a semantic fluency task, and their association with thought disorder in patients with schizophrenia.

    PubMed

    Marumo, Kohei; Takizawa, Ryu; Kinou, Masaru; Kawasaki, Shingo; Kawakubo, Yuki; Fukuda, Masato; Kasai, Kiyoto

    2014-01-15

    Thought disorder is one of the primary symptoms in schizophrenia, yet the neural correlates and related semantic processing abnormalities remain unclear. We aimed to investigate the relationship between functional prefrontal abnormalities and thought disorder in schizophrenia using 2 types of verbal fluency tasks: the letter fluency task (LFT) and the category fluency task (CFT). Fifty-six adult patients with schizophrenia and 56 healthy controls matched for age, gender, and IQ participated in the study. During completion of the 2 types of verbal fluency tasks, we measured oxy- and deoxy-hemoglobin concentration ([oxy-Hb] and [deoxy-Hb]) signal changes over a wide area of the bilateral prefrontal cortex, using a 52-channel near-infrared spectroscopy (NIRS) system. Thought disorder scores were evaluated using the positive and negative syndrome scale. CFT performance was significantly higher than LFT performance in both groups, while there was no significant difference in any prefrontal NIRS signal changes between the 2 tasks in either group. In both versions of verbal fluency task, healthy controls exhibited a significantly greater NIRS signal change than did patients with schizophrenia. On the CFT only, left ventrolateral prefrontal NIRS [deoxy-Hb] signals were significantly associated with thought disorder scores in patients with schizophrenia. Our results suggest that left ventrolateral prefrontal abnormalities in category fluency might be related to thought disorder in schizophrenia. This could lead to an improved understanding of the neural mechanisms within the left ventrolateral prefrontal cortex involved in mediating semantic processing, as well as the relationship between semantic processing abnormalities and thought disorder in schizophrenia. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits

    PubMed Central

    McGarrity, Stephanie; Mason, Rob; Fone, Kevin C.

    2014-01-01

    Attentional deficits are core symptoms of schizophrenia, contributing strongly to disability. Prefrontal dysfunction has emerged as a candidate mechanism, with clinical evidence for prefrontal hypoactivation and disinhibition (reduced GABAergic inhibition), possibly reflecting different patient subpopulations. Here, we tested in rats whether imbalanced prefrontal neural activity impairs attention. To induce prefrontal hypoactivation or disinhibition, we microinfused the GABA-A receptor agonist muscimol (C4H6N2O2; 62.5, 125, 250 ng/side) or antagonist picrotoxin (C30H34O13; 75, 150, 300 ng/side), respectively, into the medial prefrontal cortex. Using the five-choice serial reaction time (5CSRT) test, we showed that both muscimol and picrotoxin impaired attention (reduced accuracy, increased omissions). Muscimol also impaired response control (increased premature responses). In addition, muscimol dose dependently reduced open-field locomotor activity, whereas 300 ng of picrotoxin caused locomotor hyperactivity; sensorimotor gating (startle prepulse inhibition) was unaffected. Therefore, infusion effects on the 5CSRT test can be dissociated from sensorimotor effects. Combining microinfusions with in vivo electrophysiology, we showed that muscimol inhibited prefrontal firing, whereas picrotoxin increased firing, mainly within bursts. Muscimol reduced and picrotoxin enhanced bursting and both drugs changed the temporal pattern of bursting. Picrotoxin also markedly enhanced prefrontal LFP power. Therefore, prefrontal hypoactivation and disinhibition both cause attentional deficits. Considering the electrophysiological findings, this suggests that attention requires appropriately tuned prefrontal activity. Apart from attentional deficits, prefrontal disinhibition caused additional neurobehavioral changes that may be relevant to schizophrenia pathophysiology, including enhanced prefrontal bursting and locomotor hyperactivity, which have been linked to psychosis

  19. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice

    PubMed Central

    Paul, Kush; Venkitaramani, Deepa V; Cox, Charles L

    2013-01-01

    Fragile X syndrome (FXS) is the most common form of inheritable mental retardation caused by transcriptional silencing of the Fmr1 gene resulting in the absence of fragile X mental retardation protein (FMRP). The role of this protein in neurons is complex and its absence gives rise to diverse alterations in neuronal function leading to neurological disorders including mental retardation, hyperactivity, cognitive impairment, obsessive-compulsive behaviour, seizure activity and autism. FMRP regulates mRNA translation at dendritic spines where synapses are formed, and thus the lack of FMRP can lead to disruptions in synaptic transmission and plasticity. Many of these neurological deficits in FXS probably involve the prefrontal cortex, and in this study, we have focused on modulatory actions of dopamine in the medial prefrontal cortex. Our data indicate that dopamine produces a long-lasting enhancement of evoked inhibitory postsynaptic currents (IPSCs) mediated by D1-type receptors seen in wild-type mice; however, such enhancement is absent in the Fmr1 knock-out (Fmr1 KO) mice. The facilitation of IPSCs produced by direct cAMP stimulation was unaffected in Fmr1 KO, but D1 receptor levels were reduced in these animals. Our results show significant disruption of dopaminergic modulation of synaptic transmission in the Fmr1 KO mice and this alteration in inhibitory activity may provide insight into potential targets for the rescue of deficits associated with FXS. PMID:23148316

  20. When giving is good: Ventromedial prefrontal cortex activation for others’ intentions

    PubMed Central

    Cooper, Jeffrey C.; Kreps, Tamar A.; Wiebe, Taylor; Pirkl, Tristana; Knutson, Brian

    2010-01-01

    Summary In social decision-making, people care both about others’ outcomes and their intentions to help or harm. How the brain integrates representations of others’ intentions with their outcomes, however, is unknown. In this study, participants inferred others’ decisions in an economic game during functional magnetic resonance imaging. When the game was described in terms of donations, ventromedial prefrontal cortex (VMPFC) activation increased for inferring generous play and decreased for inferring selfish play. When the game was described in terms of individual savings, however, VMPFC activation did not distinguish between strategies. Distinct medial prefrontal regions also encoded consistency with situational norms. A separate network, including right temporoparietal junction and parahippocampal gyrus, was more activated for inferential errors in the donation than in the savings condition. These results for the first time demonstrate that neural responses to others’ generosity or selfishness depend not only on their actions but also on their perceived intentions. PMID:20696386

  1. Norepinephrine versus Dopamine and their Interaction in Modulating Synaptic Function in the Prefrontal Cortex

    PubMed Central

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-01-01

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. PMID:26790349

  2. Impaired mixed emotion processing in the right ventrolateral prefrontal cortex in schizophrenia: an fMRI study.

    PubMed

    Szabó, Ádám György; Farkas, Kinga; Marosi, Csilla; Kozák, Lajos R; Rudas, Gábor; Réthelyi, János; Csukly, Gábor

    2017-12-08

    Schizophrenia has a negative effect on the activity of the temporal and prefrontal cortices in the processing of emotional facial expressions. However no previous research focused on the evaluation of mixed emotions in schizophrenia, albeit they are frequently expressed in everyday situations and negative emotions are frequently expressed by mixed facial expressions. Altogether 37 subjects, 19 patients with schizophrenia and 18 healthy control subjects were enrolled in the study. The two study groups did not differ in age and education. The stimulus set consisted of 10 fearful (100%), 10 happy (100%), 10 mixed fear (70% fear and 30% happy) and 10 mixed happy facial expressions. During the fMRI acquisition pictures were presented in a randomized order and subjects had to categorize expressions by button press. A decreased activation was found in the patient group during fear, mixed fear and mixed happy processing in the right ventrolateral prefrontal cortex (VLPFC) and the right anterior insula (RAI) at voxel and cluster level after familywise error correction. No difference was found between study groups in activations to happy facial condition. Patients with schizophrenia did not show a differential activation between mixed happy and happy facial expression similar to controls in the right dorsolateral prefrontal cortex (DLPFC). Patients with schizophrenia showed decreased functioning in right prefrontal regions responsible for salience signaling and valence evaluation during emotion recognition. Our results indicate that fear and mixed happy/fear processing are impaired in schizophrenia, while happy facial expression processing is relatively intact.

  3. Sex differences in learned fear expression and extinction involve altered gamma oscillations in medial prefrontal cortex.

    PubMed

    Fenton, Georgina E; Halliday, David M; Mason, Rob; Bredy, Timothy W; Stevenson, Carl W

    2016-11-01

    Sex differences in learned fear expression and extinction involve the medial prefrontal cortex (mPFC). We recently demonstrated that enhanced learned fear expression during auditory fear extinction and its recall is linked to persistent theta activation in the prelimbic (PL) but not infralimbic (IL) cortex of female rats. Emerging evidence indicates that gamma oscillations in mPFC are also implicated in the expression and extinction of learned fear. Therefore we re-examined our in vivo electrophysiology data and found that females showed persistent PL gamma activation during extinction and a failure of IL gamma activation during extinction recall. Altered prefrontal gamma oscillations thus accompany sex differences in learned fear expression and its extinction. These findings are relevant for understanding the neural basis of post-traumatic stress disorder, which is more prevalent in women and involves impaired extinction and mPFC dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Neuroanatomy of Frontal Association Cortex].

    PubMed

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  5. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    PubMed

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P < 0.05 or P < 0.01). However, the AC activity, cAMP and PKA quantity of rat hippocampus and prefrontal cortex in the fluoxetine group and the Mongolian pharmaceutical Betel shisanwei ingredients pill group indecreased significantly than those of model group (P < 0.01 or P < 0.05). Especially for the high dose group of Mongolian pharmaceutical Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  6. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study.

    PubMed

    Daneshparvar, Hamidreza; Sadat-Shirazi, Mitra-Sadat; Fekri, Monir; Khalifeh, Solmaz; Ziaie, Ali; Esfahanizadeh, Nasrin; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2018-05-16

    Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.

  7. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    PubMed Central

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  8. Hippocampus and Medial Prefrontal Cortex Contributions to Trace and Contextual Fear Memory Expression over Time

    ERIC Educational Resources Information Center

    Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J.

    2013-01-01

    Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…

  9. The Ventromedial Prefrontal Cortex in a Model of Traumatic Stress: Fear Inhibition or Contextual Processing?

    ERIC Educational Resources Information Center

    Pennington, Zachary T.; Anderson, Austin S.; Fanselow, Michael S.

    2017-01-01

    The ventromedial prefrontal cortex (vmPFC) has consistently appeared altered in post-traumatic stress disorder (PTSD). Although the vmPFC is thought to support the extinction of learned fear responses, several findings support a broader role for this structure in the regulation of fear. To further characterize the relationship between vmPFC…

  10. Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study.

    PubMed

    Chen, Tianyi; Wang, Yingchan; Zhang, Jianye; Wang, Zuowei; Xu, Jiale; Li, Yao; Yang, Zhilei; Liu, Dengtang

    2017-10-25

    The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases in the ventromedial prefrontal cortex (vmPFC) including the anterior cingulated cortex (ACC) in those with schizophrenia. To investigate the function of the glutamate system (glutamate and γ-aminobutyric acid) in the etiology and pathomechanism of schizophrenia. 24 drug naïve patients with schizophrenia and 24 healthy volunteers were matched by gender, age, and educational level. The Siemens 3T MRI system was used to collect the magnetic resonance spectroscopy (MRS) data of the subjects. The regions of interest included the left dorsolateral prefrontal cortex (IDLPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex (ACC). LCModel software was used to analyze the concentrations of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and N-acetylaspartylglutamate (NAAG) in the region of interest. Meanwhile, the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) were used to assess the mental symptoms and severity of the disease. The median GABA concentrations in the anterior cingulate cortex of the schizophrenia group and the healthy control group were 1.90 (Q1=1.55, Q3=2.09) and 2.16 (Q1=1.87, Q3=2.59) respectively; the mean (sd) Glu concentrations were 6.07 (2.48) and 6.54 (1.99); the median Gln concentrations were 0.36 (Q1=0.00, Q3=0.74) and 0.29 (Q1=0.00, Q3=0.59); the between-group difference of the GABA concentrations was statistically significant ( Z =-2.95, p =0.003); the between-group difference of the GABA/(NAA+NAAG) was statistically significant ( Z =-2.72, p =0.012); the

  11. Medial prefrontal cortex supports source memory for self-referenced materials in young and older adults

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey

    2013-01-01

    Behavioral evidence suggests that young and older adults show a benefit in source memory accuracy when processing materials in reference to the self. In the young, activity within the medial prefrontal cortex supports this source memory benefit at study. This investigation examined whether the same neural regions support this memory benefit in both age groups. Using fMRI, participants were scanned while studying and retrieving pictures of objects paired with one of three scenes (source) under self-reference and other-reference conditions. At the time of study, half of the items were presented once and half twice, allowing us to match behavioral performance between groups. Both groups showed equivalent source accuracy benefit for objects encoded self-referentially. Activity in the left dorsal medial prefrontal cortex supported subsequent source memory in both age groups for the self-referenced relative to the other-referenced items. At the time of test, source accuracy for both self- and other-referenced items was supported by a network of regions including the precuneus in both age groups. At both study and test, little in the way of age-differences emerged, suggesting that when matched on behavioral performance young and older adults engage similar regions in support of source memory when processing materials in reference to the self; however, when performance was not matched, age differences in functional recruitment were prevalent. These results suggest that by capitalizing on preserved processes (self-referential encoding), older adults can show improvement in memory for source details which typically are not well remembered relative to the young. PMID:23904335

  12. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust.

    PubMed

    Ciaramelli, Elisa; Sperotto, Rebecca G; Mattioli, Flavia; di Pellegrino, Giuseppe

    2013-02-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach.

  13. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust

    PubMed Central

    Ciaramelli, Elisa; Sperotto, Rebecca G.; Mattioli, Flavia

    2013-01-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach. PMID:22842816

  14. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    PubMed

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  15. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    PubMed Central

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  16. Nicotinic α5 Subunits Drive Developmental Changes in the Activation and Morphology of Prefrontal Cortex Layer VI Neurons

    PubMed Central

    Bailey, Craig D.C.; Alves, Nyresa C.; Nashmi, Raad; De Biasi, Mariella; Lambe, Evelyn K.

    2013-01-01

    Background Nicotinic signaling in prefrontal layer VI pyramidal neurons is important to the function of mature attention systems. The normal incorporation of α5 subunits into α4β2* nicotinic acetylcholine receptors augments nicotinic signaling in these neurons and is required for normal attention performance in adult mice. However, the role of α5 subunits in the development of the prefrontal cortex is not known. Methods We sought to answer this question by examining nicotinic currents and neuronal morphology in layer VI neurons of medial prefrontal cortex of wild-type and α5 subunit knockout (α5−/−) mice during postnatal development and in adulthood. Results In wild-type but not in α5−/− mice, there is a developmental peak in nicotinic acetylcholine currents in the third postnatal week. At this juvenile time period, the majority of neurons in all mice have long apical dendrites extending into cortical layer I. Yet, by early adulthood, wild-type but not α5−/− mice show a pronounced shift toward shorter apical dendrites. This cellular difference occurs in the absence of genotype differences in overall cortical morphology. Conclusions Normal developmental changes in nicotinic signaling and dendritic morphology in prefrontal cortex depend on α5-comprising nicotinic acetylcholine receptors. It appears that these receptors mediate a specific developmental retraction of apical dendrites in layer VI neurons. This finding provides novel insight into the cellular mechanisms underlying the known attention deficits in α5−/− mice and potentially also into the pathophysiology of developmental neuropsychiatric disorders such as attention-deficit disorder and autism. PMID:22030359

  17. The role of left and right dorsolateral prefrontal cortex in semantic processing: A transcranial direct current stimulation study.

    PubMed

    Mitchell, Rachel L C; Vidaki, Kleio; Lavidor, Michal

    2016-10-01

    For complex linguistic strings such as idioms, making a decision as to the correct meaning may require complex top-down cognitive control such as the suppression of incorrect alternative meanings. In the study presented here, we used transcranial direct current stimulation to test the hypothesis that a domain general dorsolateral prefrontal cognitive control network is involved in constraining the complex processing involved. Specifically, we sought to test prominent theoretical stances on the division of labour across dorsolateral prefrontal cortex in the left- and right-hemispheres of the brain, including the role of salience and fine vs. coarse semantic coding. 32 healthy young adult participants were randomly allocated to one of two stimulation montage groups (LH anodal/RH cathodal or RH anodal/LH cathodal). Participants were tested twice, completing a semantic decision task after either receiving active or sham stimulation. The semantic decision task required participants to judge the relatedness of an idiom and a target word. The target word was figuratively related, literally related, or unrelated to the idiom. Control non-literal non-idiomatic sentences were also included that only had a literal meaning. The results showed that left-hemisphere dorsolateral prefrontal cortex is highly involved in processing figurative language, whereas both left- and right- dorsolateral prefrontal cortex contributed to literal language processing. In comparison, semantic processing for the non-idiomatic control sentences did not require domain general cognitive control as it relates to suppression of the rejected alternative meaning. The results are discussed in terms of the interplay between need for domain general cognitive control in understanding the meaning of complex sentences, hemispheric differences in semantic processing, and salience detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    PubMed

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  19. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    PubMed

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-09

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  20. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    PubMed

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  1. Monitoring of prefrontal cortex activation during verbal n-back task with 24-channel functional NIRS imager

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Gong, Hui; Gan, Zhuo; Luo, Qingming

    2005-01-01

    Human prefrontal cortex (PFC) helps mediate working memory (WM), a system that is used for temporary storage and manipulation of information and is involved with many higher-level cognitive functions. Here, we report a functional near-infrared spectroscopy (NIRS) study on the PFC activation caused by verbal WM task. For investigating the effect of memory load on brain activation, we adopted the "n-back" task in which subjects must decide for each present letter whether it matches the letter presented n items back in sequence. 27 subjects (ages 18-24, 13 females) participated in the work. Concentration changes in oxy-Hb (HbO2), deoxy-Hb (Hb), and total-Hb (HbT) in the subjects" prefrontal cortex were monitored by a 24-channel functional NIRS imager. The cortical activations and deactivations were found in left ventrolateral PFC and bilateral dorsolateral PFC. As memory load increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of the activations and deactivations in PFC.

  2. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex.

    PubMed

    Neves, Ricardo M; van Keulen, Silvia; Yang, Mingyu; Logothetis, Nikos K; Eschenko, Oxana

    2018-03-01

    The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α 2 -adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information

  3. Disruption of the Perineuronal Net in the Hippocampus or Medial Prefrontal Cortex Impairs Fear Conditioning

    ERIC Educational Resources Information Center

    Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.

    2013-01-01

    The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…

  4. Medial Prefrontal Cortex Is Selectively Involved in Response Selection Using Visual Context in the Background

    ERIC Educational Resources Information Center

    Lee, Inah; Shin, Ji Yun

    2012-01-01

    The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…

  5. Inefficiency in Self-organized Attentional Switching in the Normal Aging Population is Associated with Decreased Activity in the Ventrolateral Prefrontal Cortex

    PubMed Central

    Hampshire, Adam; Gruszka, Aleksandra; Fallon, Sean J.; Owen, Adrian M.

    2010-01-01

    Studies of the aging brain have demonstrated that areas of the frontal cortex, along with their associated top–down executive control processes, are particularly prone to the neurodegenerative effects of age. Here, we investigate the effects of aging on brain and behavior using a novel task, which allows us to examine separate components of an individual's chosen strategy during routine problem solving. Our findings reveal that, contrary to previous suggestions of a specific decrease in cognitive flexibility, older participants show no increased level of perseveration to either the recently rewarded object or the recently relevant object category. In line with this lack of perseveration, lateral and medial regions of the orbito-frontal cortex, which are associated with inhibitory control and reward processing, appear to be functionally intact. Instead, a general loss of efficient problem-solving strategy is apparent with a concomitant decrease in neural activity in the ventrolateral prefrontal cortex and the posterior parietal cortex. The dorsolateral prefrontal cortex is also affected during problem solving, but age-related decline within this region appears to occur at a later stage. PMID:18345987

  6. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence

    PubMed Central

    Tapocik, Jenica D.; Solomon, Matthew; Flanigan, Meghan; Meinhardt, Marcus; Barbier, Estelle; Schank, Jesse; Schwandt, Melanie; Sommer, Wolfgang H.; Heilig, Markus

    2012-01-01

    Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs for persistent gene expression changes in the rat medial prefrontal cortex after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, qPCR, bioinformatic analysis, and microRNA-mRNA integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. 41 rat-microRNAs and 165 mRNAs in the medial prefrontal cortex were significantly altered after chronic alcohol exposure. A subset of the microRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation, and synaptic plasticity. microRNA-mRNA expression pairing identified 33 microRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the medial prefrontal cortex following a history of dependence. Due to their global regulation of multiple downstream target transcripts, microRNAs may play a pivotal role in the reorganization of synaptic connections and long term neuroadaptations in alcohol dependence. microRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol-drinking observed in alcoholic patients. PMID:22614244

  7. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    PubMed

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    PubMed

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with

  9. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight

    PubMed Central

    Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-01-01

    Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with

  10. The role of the medial prefrontal cortex in the play fighting of rats.

    PubMed

    Bell, Heather C; McCaffrey, David R; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M

    2009-12-01

    Although decorticated rats are able to engage in play, their play is abnormal in three ways. First, decorticates do not display the normal, age-related shifts in defensive strategies during development. Second, decorticates do not modify their defensive tactics in response to the social identity of their partners. Third, decorticates display a global shift in defensive tactics from more complex to less complex strategies. It has been shown that lesions of the motor cortex (MC) selectively produce the abnormal developmental effects on play, and that lesions of the orbitofrontal cortex (OFC) selectively produce the deficits in behavioral discrimination between social partners. In the current set of experiments, we demonstrate that lesions of the medial prefrontal cortex (mPFC) produce the shift from more complex to less complex defensive tactics, while leaving intact the age-related and partner-related modulation of defensive strategies. Thus, we have evidence for a triple dissociation of function between the MC, the OFC, and the mPFC with respect to social play behavior.

  11. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    PubMed Central

    2011-01-01

    Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC) has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process. PMID:22136635

  12. Maternal prefrontal cortex activation by newborn infant odors.

    PubMed

    Nishitani, Shota; Kuwamoto, Saori; Takahira, Asuka; Miyamura, Tsunetake; Shinohara, Kazuyuki

    2014-03-01

    Mothers are attracted by infant cues of a variety of different modalities. To clarify the possible neural mechanisms underlying maternal attraction to infant odor cues, we used near-infrared spectroscopy to examine prefrontal cortex (PFC) activity during odor detection tasks in which 19 mothers and 19 nulliparous females (nonmothers) were presented with infant or adult male odors. They were instructed to make a judgment about whether they smelled an odor during each task. We estimated the PFC activity by measuring the relative oxyhemoglobin (oxyHb) concentrations. The results showed that while detecting the infant odors, bilateral PFC activities were increased in mothers but not in nonmothers. In contrast, adult male odors activated the PFC similarly in mothers and nonmothers. These findings suggest that maternal activation of the PFC in response to infant odors explains a part of the neural mechanisms for maternal attraction to infant odors.

  13. Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control.

    PubMed

    Schulz, Kurt P; Clerkin, Suzanne M; Fan, Jin; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2013-03-01

    Functional interactions between limbic regions that process emotions and frontal networks that guide response functions provide a substrate for emotional cues to influence behavior. Stimulation of postsynaptic α₂ adrenoceptors enhances the function of prefrontal regions in these networks. However, the impact of this stimulation on the emotional biasing of behavior has not been established. This study tested the effect of the postsynaptic α₂ adrenoceptor agonist guanfacine on the emotional biasing of response execution and inhibition in prefrontal cortex. Fifteen healthy young adults were scanned twice with functional magnetic resonance imaging while performing a face emotion go/no-go task following counterbalanced administration of single doses of oral guanfacine (1 mg) and placebo in a double-blind, cross-over design. Lower perceptual sensitivity and less response bias for sad faces resulted in fewer correct responses compared to happy and neutral faces but had no effect on correct inhibitions. Guanfacine increased the sensitivity and bias selectively for sad faces, resulting in response accuracy comparable to happy and neutral faces, and reversed the valence-dependent variation in response-related activation in left dorsolateral prefrontal cortex (DLPFC), resulting in enhanced activation for response execution cued by sad faces relative to happy and neutral faces, in line with other frontoparietal regions. These results provide evidence that guanfacine stimulation of postsynaptic α₂ adrenoceptors moderates DLPFC activation associated with the emotional biasing of response execution processes. The findings have implications for the α₂ adrenoceptor agonist treatment of attention-deficit hyperactivity disorder.

  14. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, < 0.1% of all GluR-2 RNA molecules were unedited and > 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of

  15. 56. The Role of Prefrontal Cortex in Self-Referential Memory Retrieval in Schizophrenia

    PubMed Central

    Jimenez, Amy; Lee, Junghee; Wynn, Jonathan K.; Horan, William; Iglesias, Julio; Hoy, Jennifer; Green, Michael F.

    2017-01-01

    Abstract Background: Enhanced memory for self-oriented information is known as the self-referential memory (SRM) effect. fMRI studies of the SRM effect have largely focused on encoding, revealing selective engagement of medial prefrontal cortex (mPFC) during “self” relative to other semantic processing conditions. Other areas typically activated during self-processing include the ventrolateral prefrontal cortex (vlPFC) and temporo-parietal junction (TPJ). Previous imaging work by our group indicated that patients with schizophrenia activate regions similar to controls during encoding of self-referential information. However, little is known about activation patterns during retrieval, or how activation during encoding relates to retrieval behaviorally. The current study utilized an SRM task to examine: (1) the neural correlates of the retrieval of previously encoded self-oriented information, and (2) the relationship between behavioral data from the retrieval phase and fMRI data at encoding. Methods: 20 clinically stable schizophrenia outpatients and 16 demographically matched healthy controls completed an SRM task modified for event-related fMRI. During the encoding phase, trait adjectives were judged in terms of structural features (“case” condition), social desirability (“other” condition), or as self-referential (“self” condition). Following a 12-minute delay comprised of distractor tasks, memory for trait adjectives was tested during an unexpected yes–no recognition test (retrieval phase). Voxel-wise whole-brain BOLD signal analysis of retrieval phase data was used to examine contrasts of interest with a cluster-threshold of Z = 2.3, P < .05, corrected for multiple comparisons. Results: During retrieval, both groups demonstrated better recognition discriminability (d-prime) for adjectives from the “self” and “other” conditions compared to the “case” condition; d-prime scores were greater for the “self” condition compared to

  16. Autonomous encoding of irrelevant goals and outcomes by prefrontal cortex neurons.

    PubMed

    Genovesio, Aldo; Tsujimoto, Satoshi; Navarra, Giulia; Falcone, Rossella; Wise, Steven P

    2014-01-29

    Two rhesus monkeys performed a distance discrimination task in which they reported whether a red square or a blue circle had appeared farther from a fixed reference point. Because a new pair of distances was chosen randomly on each trial, and because the monkeys had no opportunity to correct errors, no information from the previous trial was relevant to a current one. Nevertheless, many prefrontal cortex neurons encoded the outcome of the previous trial on current trials. A smaller, intermingled population of cells encoded the spatial goal on the previous trial or the features of the chosen stimuli, such as color or shape. The coding of previous outcomes and goals began at various times during a current trial, and it was selective in that prefrontal cells did not encode other information from the previous trial. The monitoring of previous goals and outcomes often contributes to problem solving, and it can support exploratory behavior. The present results show that such monitoring occurs autonomously and selectively, even when irrelevant to the task at hand.

  17. Bilateral recruitment of prefrontal cortex in working memory is associated with task demand but not with age

    PubMed Central

    Höller-Wallscheid, Melanie S.; Thier, Peter; Pomper, Jörn K.; Lindner, Axel

    2017-01-01

    Elderly adults may master challenging cognitive demands by additionally recruiting the cross-hemispheric counterparts of otherwise unilaterally engaged brain regions, a strategy that seems to be at odds with the notion of lateralized functions in cerebral cortex. We wondered whether bilateral activation might be a general coping strategy that is independent of age, task content and brain region. While using functional magnetic resonance imaging (fMRI), we pushed young and old subjects to their working memory (WM) capacity limits in verbal, spatial, and object domains. Then, we compared the fMRI signal reflecting WM maintenance between hemispheric counterparts of various task-relevant cerebral regions that are known to exhibit lateralization. Whereas language-related areas kept their lateralized activation pattern independent of age in difficult tasks, we observed bilaterality in dorsolateral and anterior prefrontal cortex across WM domains and age groups. In summary, the additional recruitment of cross-hemispheric counterparts seems to be an age-independent domain-general strategy to master cognitive challenges. This phenomenon is largely confined to prefrontal cortex, which is arguably less specialized and more flexible than other parts of the brain. PMID:28096364

  18. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  19. Optogenetic dissection of medial prefrontal cortex circuitry.

    PubMed

    Riga, Danai; Matos, Mariana R; Glas, Annet; Smit, August B; Spijker, Sabine; Van den Oever, Michel C

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  20. Bilinearity, Rules, and Prefrontal Cortex

    PubMed Central

    Dayan, Peter

    2007-01-01

    Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function. PMID:18946523

  1. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  2. Increased prefrontal cortex neurogranin enhances plasticity and extinction learning.

    PubMed

    Zhong, Ling; Brown, Joshua; Kramer, Audra; Kaleka, Kanwardeep; Petersen, Amber; Krueger, Jamie N; Florence, Matthew; Muelbl, Matthew J; Battle, Michelle; Murphy, Geoffrey G; Olsen, Christopher M; Gerges, Nashaat Z

    2015-05-13

    Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates long-term potentiation) in the PFC. Neurogranin overexpression in the PFC enhanced long-term potentiation and increased the rates of extinction learning of both fear conditioning and sucrose self-administration. Our results indicate that elevated neurogranin function within the PFC can enhance local plasticity and increase the rate of extinction learning across different behavioral tasks. Thus, neurogranin can provide a molecular link between enhanced plasticity and enhanced extinction. Copyright © 2015 the authors 0270-6474/15/357503-06$15.00/0.

  3. Self-distancing improves interpersonal perceptions and behavior by decreasing medial prefrontal cortex activity during the provision of criticism.

    PubMed

    Leitner, Jordan B; Ayduk, Ozlem; Mendoza-Denton, Rodolfo; Magerman, Adam; Amey, Rachel; Kross, Ethan; Forbes, Chad E

    2017-04-01

    Previous research suggests that people show increased self-referential processing when they provide criticism to others, and that this self-referential processing can have negative effects on interpersonal perceptions and behavior. The current research hypothesized that adopting a self-distanced perspective (i.e. thinking about a situation from a non-first person point of view), as compared with a typical self-immersed perspective (i.e. thinking about a situation from a first-person point of view), would reduce self-referential processing during the provision of criticism, and in turn improve interpersonal perceptions and behavior. We tested this hypothesis in an interracial context since research suggests that self-referential processing plays a role in damaging interracial relations. White participants prepared for mentorship from a self-immersed or self-distanced perspective. They then conveyed negative and positive evaluations to a Black mentee while electroencephalogram (EEG) was recorded. Source analysis revealed that priming a self-distanced (vs self-immersed) perspective predicted decreased activity in regions linked to self-referential processing (medial prefrontal cortex; MPFC) when providing negative evaluations. This decreased MPFC activity during negative evaluations, in turn, predicted verbal feedback that was perceived to be more positive, warm and helpful. Results suggest that self-distancing can improve interpersonal perceptions and behavior by decreasing self-referential processing during the provision of criticism. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Bacopa monnieri (Brahmi) Enhanced Cognitive Function and Prevented Cognitive Impairment by Increasing VGLUT2 Immunodensity in Prefrontal Cortex of Sub-Chronic Phencyclidine Rat Model of Schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2015-04-01

    Glutamatergic hypofunction is affected in schizophrenia. The decrement ofpresynaptic glutamatergic marker remarkably vesicular glutamate transporter type 1 (VGLUT1) indicates the deficit ofglutamatergic and cognitive function in schizophrenic brain. However there have been afew studies in VGLUT2. Brahmi, a traditional herbal medicine, might be a new frontier of cognitive deficit treatment and prevention in schizophrenia by changing cerebral VGLUT2 density. To study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition task and cerebral VGLUT2 immunodensity in sub-chronic phencyclidine (PCP) rat model of schizophrenia. Cognitive enhancement effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: PCP + Brahmi. Neuroprotective effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: Brahmi + PCP Discrimination ratio (DR) representing cognitive ability was obtained from novel object recognition task. VGLUT2 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields 1 (CA1) and 2/3 (CA2/3) of hippocampus using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside VGLUT2 reduction in prefrontal cortex, but not in striatum, CA1 or CA2/3. Both PCP + Brahmi and Brahmi + PCP groups showed an increased DR score up to normal, which occurred alongside a significantly increased VGLUT2 immunodensity in the prefrontal cortex, compared with PCP group. The decrement of VGLUT2 density in prefrontal cortex resulted in cognitive deficit in rats receiving PCP. Interestingly, receiving Brahmi after PCP administration can restore this cognitive deficit by increasing VGLUT2 density in prefrontal cortex. This investigation is defined as Brahmi's cognitive enhancement effect. Additionally, receiving Brahmi before PCP administration can also prevent cognitive impairment by

  5. Hope, coping skills, and the prefrontal cortex in alcohol use disorder recovery.

    PubMed

    Bradshaw, Spencer D; Shumway, Sterling T; Dsauza, Cynthia M; Morris, Neli; Hayes, Nicholas D

    2017-09-01

    Alcohol use disorders adversely affect individual and societal health. These disorders are a chronic brain disease, and protective factors against relapse should be studied. Prefrontal cortex (PFC) dysfunction is evident in alcohol use disorders, and research that explores recovery of the PFC in alcohol use disorders is needed, specifically in regard to how psychological and behavioral factors can augment medicalized treatments and protect against relapse. For example, hope or a belief that recovery is possible is an important cognitive construct-thought to precede behavioral action-that has been associated with relapse. In this study, associations between healthy coping skills and hope (psychological/behavioral factors) and PFC regional activation in response to alcohol cue exposure were examined. It was also examined whether such associations were unique to alcohol cues. Forty-two participants, 32 males and nine females in recovery from an alcohol use disorder (AUD), were administered a subjective hope and coping in recovery measure. They also viewed alcohol, positive, negative, and neutral cues during functional near-infrared spectroscopy (fNIR) PFC assessment. Levels of healthy coping skills positively correlated with activation in the right dorsomedial prefrontal cortex (DMPFC) in response to alcohol cues. This finding was unique to alcohol cues. The association between coping skills and activation of the right DMPFC in response to alcohol cues may reflect greater action restraint and top-down PFC control processing that may protect against relapse.

  6. Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex

    PubMed Central

    Luk, Chung-Hay; Wallis, Jonathan D.

    2009-01-01

    Medial prefrontal cortex (MPFC) and lateral prefrontal cortex (LPFC) both contribute to goal-directed behavior, but their precise role remains unclear. Several lines of evidence suggest that MPFC is more important than LPFC for outcome-guided response selection. To examine this, we trained two subjects to perform a task that required them to monitor the specific outcome associated with a specific response on a trial-by-trial basis. While the subjects performed this task, we recorded the electrical activity of single neurons simultaneously from MPFC and LPFC. There were marked differences in the neuronal properties of these two areas. Neurons encoding the response were present in both areas, but in MPFC, there were also neurons that encoded the outcome. In particular, neurons encoded the subject’s intended response and how preferable the received outcome was. Thus, only in MPFC was all the information necessary to solve the task encoded. In addition, largely separate populations of MPFC neurons encoded the response and the outcome. Neurons encoding the outcome were in the anterior parts of MPFC: posterior to the corpus callosum there was a marked drop in their incidence. Our results suggest differences in the contribution of MPFC and LPFC to action control. MPFC neurons encode the desirability of the outcome produced by a specific response on a trial-by-trial basis. This capability may contribute to several of the functions of MPFC, such as action valuation, error detection and decision-making. PMID:19515921

  7. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    PubMed

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  8. Peptidase inhibitors potentiate the effects of neurotensin and neuromedin N on self-stimulation of the medial prefrontal cortex.

    PubMed

    Fernández, R; Alba, F; Ferrer, J M

    1996-02-29

    The purpose of this study was to examine the possible role of endogenous peptidases in the inhibition of intracranial self-stimulation (ICSS) produced by injections of neurotensin (NT) and neuromedin N (NN) into the medial prefrontal cortex (MPC) of the rat. We studied the effects on ICSS of the MPC of the administration of thiorphan and bestatin, two specific inhibitors of the peptidases that inactivate NT and NN respectively. Microinjections into MPC of thiorphan (10 micrograms) and bestatin (25 micrograms) potentiated in inhibition of ICSS produced by the intracortical administration of NT (10 nmol) and NN (20 nmol) respectively. This potentiation affected both the amplitude and the duration of the inhibition of ICSS produced by the neuropeptides. Our data indicate that endogenous peptidases are involved in the inactivation of NT and NN in the prefrontal cortex.

  9. Noradrenaline and acetylcholine responsiveness of glucose-monitoring and glucose-insensitive neurons in the mediodorsal prefrontal cortex.

    PubMed

    Nagy, Bernadett; Szabó, István; Csetényi, Bettina; Hormay, Edina; Papp, Szilárd; Keresztes, Dóra; Karádi, Zoltán

    2014-01-16

    The mediodorsal prefrontal cortex (mdPFC), as part of the forebrain glucose-monitoring (GM) system, plays important role in several regulatory processes to control the internal state of the organism and to initiate behavioral outputs accordingly. Little is known, however, about the neurochemical sensitivity of neurons located in this area. Substantial evidence indicates that the locus ceruleus - noradrenaline (NA) projection system and the nucleus basalis magnocellularis - cholinergic projection system regulate behavioral state and state dependent processing of sensory information, various cognitive functions already associated with the mdPFC. The main goal of the present study was to examine noradrenergic and cholinergic responsiveness of glucose-monitoring and glucose-insensitive (GIS) neurons in the mediodorsal prefrontal cortex. One fifth of the neurons tested changed in firing rate to microelectrophoretically applied NA. Responsiveness of the GM cells to this catecholamine proved to be significantly higher than that of the GIS units. Microiontophoretic application of acetylcholine (Ach) resulted in activity changes (predominantly facilitation) of more than 40% of the mdPFC neurons. Proportion of Ach sensitive units among the GM and the GIS neurons was found to be similar. The glucose-monitoring neurons of the mdPFC and their distinct NA and remarkable Ach sensitivity are suggested to be of particular significance in prefrontal control of adaptive behaviors. © 2013 Published by Elsevier B.V.

  10. IS THE PREFRONTAL CORTEX IMPORTANT FOR FLUID INTELLIGENCE? A NEUROPSYCHOLOGICAL STUDY USING MATRIX REASONING

    PubMed Central

    Tranel, Daniel; Manzel, Kenneth; Anderson, Steven W.

    2008-01-01

    Patients with prefrontal damage and severe defects in decision making and emotional regulation often have a remarkable absence of intellectual impairment, as measured by conventional IQ tests such as the WAIS/WAIS-R. This enigma might be explained by shortcomings in the tests, which tend to emphasize measures of “crystallized” (e.g., vocabulary, fund of information) more than “fluid” (e.g., novel problem solving) intelligence. The WAIS-III added the Matrix Reasoning subtest to enhance measurement of fluid reasoning. In a set of four studies, we investigated Matrix Reasoning performances in 80 patients with damage to various sectors of the prefrontal cortex, and contrasted these with the performances of 80 demographically matched patients with damage outside the frontal lobes. The results failed to support the hypothesis that prefrontal damage would disproportionately impair fluid intelligence, and every prefrontal subgroup we studied (dorsolateral, ventromedial, dorsolateral + ventromedial) had Matrix Reasoning scores (as well as IQ scores more generally) that were indistinguishable from those of the brain-damaged comparison groups. Our findings do not support a connection between fluid intelligence and the frontal lobes, although a viable alternative interpretation is that the Matrix Reasoning subtest lacks construct validity as a measure of fluid intelligence. PMID:17853146

  11. Ventromedial prefrontal cortex encodes emotional value.

    PubMed

    Winecoff, Amy; Clithero, John A; Carter, R McKell; Bergman, Sara R; Wang, Lihong; Huettel, Scott A

    2013-07-03

    The ventromedial prefrontal cortex (vmPFC) plays a critical role in processing appetitive stimuli. Recent investigations have shown that reward value signals in the vmPFC can be altered by emotion regulation processes; however, to what extent the processing of positive emotion relies on neural regions implicated in reward processing is unclear. Here, we investigated the effects of emotion regulation on the valuation of emotionally evocative images. Two independent experimental samples of human participants performed a cognitive reappraisal task while undergoing fMRI. The experience of positive emotions activated the vmPFC, whereas the regulation of positive emotions led to relative decreases in vmPFC activation. During the experience of positive emotions, vmPFC activation tracked participants' own subjective ratings of the valence of stimuli. Furthermore, vmPFC activation also tracked normative valence ratings of the stimuli when participants were asked to experience their emotions, but not when asked to regulate them. A separate analysis of the predictive power of vmPFC on behavior indicated that even after accounting for normative stimulus ratings and condition, increased signal in the vmPFC was associated with more positive valence ratings. These results suggest that the vmPFC encodes a domain-general value signal that tracks the value of not only external rewards, but also emotional stimuli.

  12. Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games.

    PubMed

    Yamagishi, Toshio; Takagishi, Haruto; Fermin, Alan de Souza Rodrigues; Kanai, Ryota; Li, Yang; Matsumoto, Yoshie

    2016-05-17

    Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices.

  13. “Seeing” electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    PubMed Central

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; VanMeter, John

    2010-01-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS–EEG ICA pairs was highly significant (p < 10−8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust “optical N200” at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject’s reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components “reflect” electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes. PMID:21198150

  14. Single neurons in prefrontal cortex encode abstract rules.

    PubMed

    Wallis, J D; Anderson, K C; Miller, E K

    2001-06-21

    The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.

  15. The prefrontal cortex: a target for antipsychotic drugs.

    PubMed

    Artigas, F

    2010-01-01

    At therapeutic doses, classical antipsychotic drugs occupy a large proportion of subcortical dopamine D2 receptors, whereas atypical antipsychotics preferentially occupy cortical 5-HT(2) receptors. However, the exact cellular and network basis of their therapeutic action is not fully understood. To review the mechanism of action of antipsychotic drugs with a particular emphasis on their action in the prefrontal cortex (PFC). The PFC controls a large number of higher brain functions altered in schizophrenia. Histological studies indicate the presence of a large proportion of PFC neurons expressing monoaminergic receptors sensitive to the action of atypical- and to a lesser extentclassical antipsychotic drugs. Functional studies also indicate that both drug families act at PFC level. Atypical antipsychotic drugs likely exert their therapeutic activity by a preferential action on PFC neurons, thus modulating the PFC output to basal ganglia circuits. Classical antipsychotics also interact with these PFC targets in addition to blocking massively striatal D2 receptors.

  16. Role of the medial prefrontal cortex in cataplexy.

    PubMed

    Oishi, Yo; Williams, Rhiannan H; Agostinelli, Lindsay; Arrigoni, Elda; Fuller, Patrick M; Mochizuki, Takatoshi; Saper, Clifford B; Scammell, Thomas E

    2013-06-05

    Narcolepsy is characterized by chronic sleepiness and cataplexy, episodes of profound muscle weakness that are often triggered by strong, positive emotions. Narcolepsy with cataplexy is caused by a loss of orexin (also known as hypocretin) signaling, but almost nothing is known about the neural mechanisms through which positive emotions trigger cataplexy. Using orexin knock-out mice as a model of narcolepsy, we found that palatable foods, especially chocolate, markedly increased cataplexy and activated neurons in the medial prefrontal cortex (mPFC). Reversible suppression of mPFC activity using an engineered chloride channel substantially reduced cataplexy induced by chocolate but did not affect spontaneous cataplexy. In addition, neurons in the mPFC innervated parts of the amygdala and lateral hypothalamus that contain neurons active during cataplexy and that innervate brainstem regions known to regulate motor tone. These observations indicate that the mPFC is a critical site through which positive emotions trigger cataplexy.

  17. Role of the medial prefrontal cortex in cataplexy

    PubMed Central

    Oishi, Yo; Williams, Rhiannan H.; Agostinelli, Lindsay; Arrigoni, Elda; Fuller, Patrick M.; Mochizuki, Takatoshi; Saper, Clifford B.; Scammell, Thomas E.

    2013-01-01

    Narcolepsy is characterized by chronic sleepiness and cataplexy - episodes of profound muscle weakness that are often triggered by strong, positive emotions. Narcolepsy with cataplexy is caused by a loss of orexin (also known as hypocretin) signaling, but almost nothing is known about the neural mechanisms through which positive emotions trigger cataplexy. Using orexin knockout mice as a model of narcolepsy, we found that palatable foods, especially chocolate, markedly increased cataplexy and activated neurons in the medial prefrontal cortex (mPFC). Reversible suppression of mPFC activity using an engineered chloride channel substantially reduced cataplexy induced by chocolate but did not affect spontaneous cataplexy. In addition, neurons in the mPFC innervated parts of the amygdala and lateral hypothalamus that contain neurons active during cataplexy, and that innervate brainstem regions known to regulate motor tone. These observations indicate that the mPFC is a critical site through which positive emotions trigger cataplexy. PMID:23739971

  18. Disrupting the right prefrontal cortex alters moral judgement

    PubMed Central

    Tassy, Sébastien; Oullier, Olivier; Duclos, Yann; Coulon, Olivier; Mancini, Julien; Deruelle, Christine; Attarian, Sharam; Felician, Olivier

    2012-01-01

    Humans daily face social situations involving conflicts between competing moral decision. Despite a substantial amount of studies published over the past 10 years, the respective role of emotions and reason, their possible interaction, and their behavioural expression during moral evaluation remains an unresolved issue. A dualistic approach to moral evaluation proposes that the right dorsolateral prefrontal cortex (rDLPFc) controls emotional impulses. However, recent findings raise the possibility that the right DLPFc processes emotional information during moral decision making. We used repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt rDLPFc activity before measuring decision making in the context of moral dilemmas. Results reveal an increase of the probability of utilitarian responses during objective evaluation of moral dilemmas in the rTMS group (compared to a SHAM one). This suggests that the right DLPFc function not only participates to a rational cognitive control process, but also integrates emotions generated by contextual information appraisal, which are decisive for response selection in moral judgements. PMID:21515641

  19. Neuron density is decreased in the prefrontal cortex in Williams syndrome.

    PubMed

    Lew, Caroline Horton; Brown, Chelsea; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  20. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    PubMed

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  1. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  2. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus

    PubMed Central

    Evuarherhe, Obaro; Barker, Gareth R. I.; Savalli, Giorgia; Warburton, Elizabeth C.; Brown, Malcolm W.

    2014-01-01

    Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesised to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluR2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluR2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluR2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation. PMID:24729442

  3. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales.

    PubMed

    Teles-Grilo Ruivo, Leonor M; Baker, Keeley L; Conway, Michael W; Kinsley, Peter J; Gilmour, Gary; Phillips, Keith G; Isaac, John T R; Lowry, John P; Mellor, Jack R

    2017-01-24

    Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study.

    PubMed

    Sano, Masahiro; Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-12-04

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient's habitual breathing route than a patient interview.

  5. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study

    PubMed Central

    Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-01-01

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient’s habitual breathing route than a patient interview. PMID:24169579

  6. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.

    PubMed

    Khamassi, Mehdi; Enel, Pierre; Dominey, Peter Ford; Procyk, Emmanuel

    2013-01-01

    Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal

  7. rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words.

    PubMed

    Balconi, M; Cobelli, C

    2015-02-26

    The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Increased N-Acetylaspartate/creatine ratio in the medial prefrontal cortex among unmedicated obsessive-compulsive disorder patients.

    PubMed

    Fan, Qing; Tan, Ling; You, Chao; Wang, Jijun; Ross, Colin A; Wang, Xuemei; Zhang, Tianhong; Li, Jianqi; Chen, Kemin; Xiao, Zeping

    2010-10-01

    Changes in the fronto-striato-thalamo-cortical-circuit loop have been suggested in the pathogenesis of obsessive-compulsive disorder (OCD), and have been studied using (1)H magnetic resonance spectroscopy ((1)H MRS) with interesting findings. However, whether neural metabolites are abnormal in the medial prefrontal cortex in patients with OCD is unknown. The purpose of the present study was to investigate neural metabolites in this brain region in a sample of patients with OCD. Subjects were 21 unmedicated OCD patients, including 10 who were drug-naïve, and 19 healthy controls. Single-voxel (1)H MRS was used to study the medial prefrontal cortex for each subject. Levels of N-acetylaspartate (NAA), choline-containing compounds and myoinositol were measured in terms of their ratios with creatine (Cr). The NAA/Cr ratio was significantly higher among OCD patients than among healthy controls (F = 4.76, P = 0.037). However, it did not correlate with patients' symptoms or with their illness durations. The NAA/Cr ratio also did not differ between drug-naïve and previously medicated patients. No significant group differences were found between OCD patients and normal controls for the choline-containing compounds/Cr or myoinositol/Cr ratios. In addition, a significant correlation between the NAA/Cr ratio and trait anxiety scores on the State-Trait Anxiety Inventory was found among the controls (r = 0.639, P = 0.010). The N-Acetylaspartate level relative to creatine in the medial prefrontal cortex was increased among unmedicated OCD patients. This cannot be attributed to the effect of medications. The possible significance of this finding in the pathophysiology of OCD is discussed. © 2010 Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  9. Hippocampal Train Stimulation Modulates Recall of Fear Extinction Independently of Prefrontal Cortex Synaptic Plasticity and Lesions

    ERIC Educational Resources Information Center

    Garcia, Rene; Farinelli, Melissa; Deschaux, Olivier; Hugues, Sandrine; Thevenet, Aurelie

    2006-01-01

    It has been shown that long-term potentiation (LTP) develops in the connection between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) and between the hippocampus (HPC) and the mPFC following fear extinction, and correlates with extinction retention. However, recent lesion studies have shown that combined lesions of the MD…

  10. When "Happy" Means "Sad": Neuropsychological Evidence for the Right Prefrontal Cortex Contribution to Executive Semantic Processing

    ERIC Educational Resources Information Center

    Samson, Dana; Connolly, Catherine; Humphreys, Glyn W.

    2007-01-01

    The contribution of the left inferior prefrontal cortex in semantic processing has been widely investigated in the last decade. Converging evidence from functional imaging studies shows that this region is involved in the "executive" or "controlled" aspects of semantic processing. In this study, we report a single case study of a patient, PW, with…

  11. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex.

    PubMed

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Lénárd, László; Karádi, Zoltán

    2018-02-01

    Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. NEUROSCI BIOBEHAV REV 73(1) XXX-XXX, 2017.- Special chemosensory cells, the glucose-monitoring (GM) neurons, reportedly involved in the central feeding control, exist in the medial orbitofrontal (ventrolateral prefrontal) cortex (mVLPFC). Electrophysiological, metabolic and behavioral studies reveal complex functional attributes of these cells and raise their homeostatic significance. Single neuron recordings, by means of the multibarreled microelectrophoretic technique, elucidate differential sensitivities of limbic forebrain neurons in the rat and the rhesus monkey to glucose and other chemicals, whereas gustatory stimulations demonstrate their distinct taste responsiveness. Metabolic examinations provide evidence for alteration of blood glucose level in glucose tolerance test and elevation of plasma triglyceride concentration after destruction of the local GM cells by streptozotocin (STZ). In behavioral studies, STZ microinjection into the mVLPFC fails to interfere with the acquisition of saccharin conditioned taste avoidance, does cause, however, taste perception deficit in taste reactivity tests. Multiple functional attributes of GM neurons in the mVLPFC, within the frame of the hierarchically organized central GM neuronal network, appear to play important role in the maintenance of the homeostatic balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training.

    PubMed

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D

    2013-10-15

    A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals' GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.

  13. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training

    PubMed Central

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.

    2013-01-01

    A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training. PMID:24129098

  14. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    ERIC Educational Resources Information Center

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  15. Accelerated aging-related transcriptome changes in the female prefrontal cortex

    PubMed Central

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet

    2012-01-01

    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD. PMID:22783978

  16. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    PubMed Central

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  17. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

  18. Comparison of the adolescent and adult mouse prefrontal cortex proteome

    PubMed Central

    Small, Amanda T.; Spanos, Marina; Burrus, Brainard M.

    2017-01-01

    Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity. PMID:28570644

  19. Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study.

    PubMed

    Carrieri, Marika; Lancia, Stefania; Bocchi, Alessia; Ferrari, Marco; Piccardi, Laura; Quaresima, Valentina

    2018-06-01

    The Key Search Task (KST) is a neuropsychological test that requires strategies for searching a lost key in an imaginary field. This request may involve different cognitive processes as mental imagery and navigation planning. This study was aimed at investigating, by a twenty-channel functional near-infrared spectroscopy (fNIRS) system, the hemodynamic response (i.e., oxygenated-hemoglobin (O 2 Hb) and deoxygenated-hemoglobin (HHb) changes) of the prefrontal cortex in navigation planning. A right ventrolateral prefrontal cortex (rVLPFC) activation during the KST was hypothesized. Thirty-eight volunteers performed the KST and a Control Task (CT), the latter requiring the volunteers to mark the X letter. An activation (i.e., increase/decrease in O 2 Hb/HHb) of: 1) rVLPFC during the KST execution, and 2) bilateral dorsolateral prefrontal cortex (DLPFC) during the CT execution was found. The present study provides a contribution in localizing the rVLPFC as the critically active region, within the frontal lobes, that was found maximally activated during mental navigation in the mind's eye of healthy participants while performing the KST. Considering the contribution of rVLPFC in spatial navigation, its activation suggests that the KST could be adopted in the clinical routine for investigating navigation planning. Compared to other neuroimaging techniques, fNIRS (with its relatively low physical constraints) contributes to better clarifying the role of rVLPFC in some aspects of human navigation. Therefore, the combined use of the fNIRS and the KST could be considered as an innovative and valid tool to evaluate fundamental functions for everyday life, such as spatial navigation planning.

  20. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    PubMed Central

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  1. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia.

    PubMed

    Chen, Xi; Liu, Chang; He, Hui; Chang, Xin; Jiang, Yuchao; Li, Yingjia; Duan, Mingjun; Li, Jianfu; Luo, Cheng; Yao, Dezhong

    2017-08-01

    Depression and schizophrenia are two of the most serious psychiatric disorders. They share similar symptoms but the pathology-specific commonalities and differences remain unknown. This study was conducted to acquire a full picture of the functional alterations in schizophrenia and depression patients. The resting-state fMRI data from 20 patients with schizophrenia, 20 patients with depression and 20 healthy control subjects were collected. A data-driven approach that included local functional connectivity density (FCD) analysis combined with multivariate pattern analysis (MVPA) was used to compare the three groups. Based on the results of the MVPA, the local FCD value in the orbitofrontal cortex (OFC) can differentiate depression patients from schizophrenia patients. The patients with depression had a higher local FCD value in the medial and anterior parts of the OFC than the subjects in the other two groups, which suggested altered abstract and reward reinforces processing in depression patients. Subsequent functional connectivity analysis indicated that the connection in the prefrontal cortex was significantly lower in people with schizophrenia compared to people with depression and healthy controls. The systematically different medications for schizophrenia and depression may have different effects on functional connectivity. These results suggested that the resting-state functional connectivity pattern in the prefrontal cortex may be a transdiagnostic difference between depression and schizophrenia patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of continuous theta burst stimulation of the right dorsolateral prefrontal cortex on cerebral blood flow changes during decision making.

    PubMed

    Cho, Sang Soo; Pellecchia, Giovanna; Ko, Ji Hyun; Ray, Nicola; Obeso, Ignacio; Houle, Sylvain; Strafella, Antonio P

    2012-04-01

    Decision making is a cognitive function relaying on a complex neural network. In particular, the right dorsolateral prefrontal cortex (DLPFC) plays a key role within this network. We used positron emission tomography (PET) combined with continuous theta burst transcranial magnetic stimulation (cTBS) to investigate neuronal and behavioral changes in normal volunteers while performing a delay discounting (DD) task. We aimed to test whether stimulation of right DLPFC would modify the activation pattern of the neural circuit underlying decision making during the DD task and influence discounting behavior. We found that cTBS of the right DLPFC influenced decision making by reducing impulsivity and inducing participants to favor large but delayed rewards instead of immediate but small rewards. Stimulation also affected activation in several prefrontal areas associated with DD. In particular, we observed a reduced regional cerebral blood flow (rCBF) in the ipsilateral DLPFC (BA 46) extending into the rostral part of the prefrontal cortex (BA 10) as well as a disrupted relationship between impulsivity (k-value) and rCBF in these and other prefrontal areas. These findings suggest that transcranial magnetic stimulation of the DLPFC influences the neural network underlying impulsive decision making behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    PubMed

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  4. Reversal of Cocaine-Associated Synaptic Plasticity in Medial Prefrontal Cortex Parallels Elimination of Memory Retrieval.

    PubMed

    Otis, James M; Mueller, Devin

    2017-09-01

    Addiction is characterized by abnormalities in prefrontal cortex that are thought to allow drug-associated cues to drive compulsive drug seeking and taking. Identification and reversal of these pathologic neuroadaptations are therefore critical for treatment of addiction. Previous studies using rodents reveal that drugs of abuse cause dendritic spine plasticity in prelimbic medial prefrontal cortex (PL-mPFC) pyramidal neurons, a phenomenon that correlates with the strength of drug-associated memories in vivo. Thus, we hypothesized that cocaine-evoked plasticity in PL-mPFC may underlie cocaine-associated memory retrieval, and therefore disruption of this plasticity would prevent retrieval. Indeed, using patch clamp electrophysiology we find that cocaine place conditioning increases excitatory presynaptic and postsynaptic transmission in rat PL-mPFC pyramidal neurons. This was accounted for by increases in excitatory presynaptic release, paired-pulse facilitation, and increased AMPA receptor transmission. Noradrenergic signaling is known to maintain glutamatergic plasticity upon reactivation of modified circuits, and we therefore next determined whether inhibition of noradrenergic signaling during memory reactivation would reverse the cocaine-evoked plasticity and/or disrupt the cocaine-associated memory. We find that administration of the β-adrenergic receptor antagonist propranolol before memory retrieval, but not after (during memory reconsolidation), reverses the cocaine-evoked presynaptic and postsynaptic modifications in PL-mPFC and causes long-lasting memory impairments. Taken together, these data reveal that cocaine-evoked synaptic plasticity in PL-mPFC is reversible in vivo, and suggest a novel strategy that would allow normalization of prefrontal circuitry in addiction.

  5. The Role of the Rat Medial Prefrontal Cortex in Adapting to Changes in Instrumental Contingency

    PubMed Central

    Coutureau, Etienne; Esclassan, Frederic; Di Scala, Georges; Marchand, Alain R.

    2012-01-01

    In order to select actions appropriate to current needs, a subject must identify relationships between actions and events. Control over the environment is determined by the degree to which action consequences can be predicted, as described by action-outcome contingencies – i.e. performing an action should affect the probability of the outcome. We evaluated in a first experiment adaptation to contingency changes in rats with neurotoxic lesions of the medial prefrontal cortex. Results indicate that this brain region is not critical to adjust instrumental responding to a negative contingency where the rats must refrain from pressing a lever, as this action prevents reward delivery. By contrast, this brain region is required to reduce responding in a non-contingent situation where the same number of rewards is freely delivered and actions do not affect the outcome any more. In a second experiment, we determined that this effect does not result from a different perception of temporal relationships between actions and outcomes since lesioned rats adapted normally to gradually increasing delays in reward delivery. These data indicate that the medial prefrontal cortex is not directly involved in evaluating the correlation between action-and reward-rates or in the perception of reward delays. The deficit in lesioned rats appears to consist of an abnormal response to the balance between contingent and non-contingent rewards. By highlighting the role of prefrontal regions in adapting to the causal status of actions, these data contribute to our understanding of the neural basis of choice tasks. PMID:22496747

  6. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study.

    PubMed

    Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles

    2009-08-01

    Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. 2009 John Wiley & Sons, Ltd.

  7. Evidence for a neural correlate of a framing effect: bias-specific activity in the ventromedial prefrontal cortex during credibility judgments.

    PubMed

    Deppe, M; Schwindt, W; Krämer, J; Kugel, H; Plassmann, H; Kenning, P; Ringelstein, E B

    2005-11-15

    Neural processes within the medial prefrontal cortex play a crucial role in assessing and integrating emotional and other implicit information during decision-making. Phylogenetically, it was important for the individual to assess the relevance of all kinds of environmental stimuli in order to adapt behavior in a flexible manner. Consequently, we can in principle not exclude that environmental information covertly influences the evaluation of actually decision relevant facts ("framing effect"). To test the hypothesis that the medial prefrontal cortex is involved into a framing effect we employed functional magnetic resonance imaging (fMRI) during a binary credibility judgment task. Twenty-one subjects were asked to judge 30 normalized news magazine headlines by forced answers as "true" or "false". To confound the judgments by formally irrelevant framing information we presented each of the headlines in four different news magazines characterized by varying credibility. For each subject the susceptibility to the judgment confounder (framing information) was assessed by magazine-specific modifications of the answers given. We could show that individual activity changes of the ventromedial prefrontal cortex during the judgments correlate with the degree of an individual's susceptibility to the framing information. We found (i) a neural correlate of a framing effect as postulated by behavioral decision theorists that (ii) reflects interindividual differences in the degree of the susceptibility to framing information.

  8. Solving the Credit Assignment Problem With the Prefrontal Cortex

    PubMed Central

    Stolyarova, Alexandra

    2018-01-01

    In naturalistic multi-cue and multi-step learning tasks, where outcomes of behavior are delayed in time, discovering which choices are responsible for rewards can present a challenge, known as the credit assignment problem. In this review, I summarize recent work that highlighted a critical role for the prefrontal cortex (PFC) in assigning credit where it is due in tasks where only a few of the multitude of cues or choices are relevant to the final outcome of behavior. Collectively, these investigations have provided compelling support for specialized roles of the orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal (dlPFC) cortices in contingent learning. However, recent work has similarly revealed shared contributions and emphasized rich and heterogeneous response properties of neurons in these brain regions. Such functional overlap is not surprising given the complexity of reciprocal projections spanning the PFC. In the concluding section, I overview the evidence suggesting that the OFC, ACC and dlPFC communicate extensively, sharing the information about presented options, executed decisions and received rewards, which enables them to assign credit for outcomes to choices on which they are contingent. This account suggests that lesion or inactivation/inhibition experiments targeting a localized PFC subregion will be insufficient to gain a fine-grained understanding of credit assignment during learning and instead poses refined questions for future research, shifting the focus from focal manipulations to experimental techniques targeting cortico-cortical projections. PMID:29636659

  9. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex

    PubMed Central

    Choi, Hannah; Shea-Brown, Eric

    2017-01-01

    Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354

  10. Control of Intermale Aggression by Medial Prefrontal Cortex Activation in the Mouse

    PubMed Central

    Takahashi, Aki; Nagayasu, Kazuki; Nishitani, Naoya; Kaneko, Shuji; Koide, Tsuyoshi

    2014-01-01

    Aggressive behavior is widely observed throughout the animal kingdom because of its adaptiveness for social animals. However, when aggressive behavior exceeds the species-typical level, it is no longer adaptive, so there should be a mechanism to control excessive aggression to keep it within the adaptive range. Using optogenetics, we demonstrate that activation of excitatory neurons in the medial prefrontal cortex (mPFC), but not the orbitofrontal cortex (OFC), inhibits inter-male aggression in mice. At the same time, optogenetic silencing of mPFC neurons causes an escalation of aggressive behavior both quantitatively and qualitatively. Activation of the mPFC suppresses aggressive bursts and reduces the intensity of aggressive behavior, but does not change the duration of the aggressive bursts. Our findings suggest that mPFC activity has an inhibitory role in the initiation and execution, but not the termination, of aggressive behavior, and maintains such behavior within the adaptive range. PMID:24740241

  11. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex

    PubMed Central

    Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.

    2017-01-01

    Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID

  12. Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games

    PubMed Central

    Yamagishi, Toshio; Takagishi, Haruto; Fermin, Alan de Souza Rodrigues; Kanai, Ryota; Li, Yang; Matsumoto, Yoshie

    2016-01-01

    Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices. PMID:27140622

  13. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    PubMed

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  14. Integration of Auditory and Visual Communication Information in the Primate Ventrolateral Prefrontal Cortex

    PubMed Central

    Sugihara, Tadashi; Diltz, Mark D.; Averbeck, Bruno B.; Romanski, Lizabeth M.

    2009-01-01

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O’Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication. PMID:17065454

  15. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    PubMed Central

    Murray, Andrew J.; Woloszynowska-Fraser, Marta U.; Ansel-Bollepalli, Laura; Cole, Katy L. H.; Foggetti, Angelica; Crouch, Barry; Riedel, Gernot; Wulff, Peer

    2015-01-01

    Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements. PMID:26608841

  16. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex

    PubMed Central

    McGarry, Laura M.

    2016-01-01

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at

  17. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making.

    PubMed

    Clark, L; Bechara, A; Damasio, H; Aitken, M R F; Sahakian, B J; Robbins, T W

    2008-05-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more 'bankruptcies'. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and

  18. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.

    PubMed

    van den Bos, Wouter; Cohen, Michael X; Kahnt, Thorsten; Crone, Eveline A

    2012-06-01

    During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.

  19. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor.

    PubMed

    Figueiredo, Helmer F; Bruestle, Amy; Bodie, Bryan; Dolgas, Charles M; Herman, James P

    2003-10-01

    The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.

  20. Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory

    PubMed Central

    Hanson, Jamie L.; Chung, Moo K.; Avants, Brian B.; Rudolph, Karen D.; Shirtcliff, Elizabeth A.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    A large corpus of research indicates exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n=61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans, to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence—a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning. PMID:22674267

  1. Activation of the prefrontal cortex by unilateral transcranial direct current stimulation leads to an asymmetrical effect on risk preference in frames of gain and loss.

    PubMed

    Ye, Hang; Huang, Daqiang; Wang, Siqi; Zheng, Haoli; Luo, Jun; Chen, Shu

    2016-10-01

    Previous brain imaging and brain stimulation studies have suggested that the dorsolateral prefrontal cortex may be critical in regulating risk-taking behavior, although its specific causal effect on people's risk preference remains controversial. This paper studied the independent modulation of the activity of the right and left dorsolateral prefrontal cortex using various configurations of transcranial direct current stimulation. We designed a risk-measurement table and adopted a within-subject design to compare the same participant's risk preference before and after unilateral stimulation when presented with different frames of gain and loss. The results confirmed a hemispheric asymmetry and indicated that the right dorsolateral prefrontal cortex has an asymmetric effect on risk preference regarding frames of gain and loss. Enhancing the activity of the right dorsolateral prefrontal cortex significantly decreased the participants' degree of risk aversion in the gain frame, whereas it increased the participants' degree of risk aversion in the loss frame. Our findings provide important information regarding the impact of transcranial direct current stimulation on the risk preference of healthy participants. The effects observed in our experiment compared with those of previous studies provide further evidence of the effects of hemispheric and frame-dependent asymmetry. These findings may be helpful in understanding the neural basis of risk preference in humans, especially when faced with decisions involving possible gain or loss relative to the status quo. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    PubMed

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  3. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency

    PubMed Central

    Motes, Michael A.; Biswal, Bharat B.; Rypma, Bart

    2012-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants’ performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency. PMID:22792129

  4. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency.

    PubMed

    Motes, Michael A; Biswal, Bharat B; Rypma, Bart

    2011-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants' performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency.

  5. Sex Differences in Early Childhood, Adolescence, and Adulthood on Cognitive Tasks that Rely on Orbital Prefrontal Cortex

    ERIC Educational Resources Information Center

    Overman, William H.

    2004-01-01

    Through the use of several tests of cognition we have documented sex differences in young children, adolescents, and adults on tasks that rely on the integrity of the orbital prefrontal cortex. In children under three years of age, males performed with significantly fewer errors than did females on tests of object reversals. No significant sex…

  6. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    NASA Astrophysics Data System (ADS)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  7. Role of Prefrontal Cortex Glucocorticoid Receptors in Stress and Emotion

    PubMed Central

    McKlveen, Jessica M.; Myers, Brent; Flak, Jonathan N.; Bundzikova, Jana; Solomon, Matia B.; Seroogy, Kim B.; Herman, James P.

    2013-01-01

    Background Stress-related disorders (e.g., depression) are associated with hypothalamic-pituitary-adrenocortical axis dysregulation and prefrontal cortex (PFC) dysfunction, suggesting a functional link between aberrant prefrontal corticosteroid signaling and mood regulation. Methods We used a virally mediated knockdown strategy (short hairpin RNA targeting the glucocorticoid receptor [GR]) to attenuate PFC GR signaling in the rat PFC. Adult male rats received bilateral microinjections of vector control or short hairpin RNA targeting the GR into the prelimbic (n = 44) or infralimbic (n = 52) cortices. Half of the animals from each injection group underwent chronic variable stress, and all were subjected to novel restraint. The first 2 days of chronic variable stress were used to assess depression- and anxiety-like behavior in the forced swim test and open field. Results The GR knockdown confined to the infralimbic PFC caused acute stress hyper-responsiveness, sensitization of stress responses after chronic variable stress, and induced depression-like behavior (increased immobility in the forced swim test). Knockdown of GR in the neighboring prelimbic PFC increased hypothalamic-pituitary-adrenocortical axis responses to acute stress and caused hyper-locomotion in the open field, but did not affect stress sensitization or helplessness behavior. Conclusions The data indicate a marked functional heterogeneity of glucocorticoid action in the PFC and highlight a prominent role for the infralimbic GR in appropriate stress adaptation, emotional control, and mood regulation. PMID:23683655

  8. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    PubMed

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Disrupting the right prefrontal cortex alters moral judgement.

    PubMed

    Tassy, Sébastien; Oullier, Olivier; Duclos, Yann; Coulon, Olivier; Mancini, Julien; Deruelle, Christine; Attarian, Sharam; Felician, Olivier; Wicker, Bruno

    2012-03-01

    Humans daily face social situations involving conflicts between competing moral decision. Despite a substantial amount of studies published over the past 10 years, the respective role of emotions and reason, their possible interaction, and their behavioural expression during moral evaluation remains an unresolved issue. A dualistic approach to moral evaluation proposes that the right dorsolateral prefrontal cortex (rDLPFc) controls emotional impulses. However, recent findings raise the possibility that the right DLPFc processes emotional information during moral decision making. We used repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt rDLPFc activity before measuring decision making in the context of moral dilemmas. Results reveal an increase of the probability of utilitarian responses during objective evaluation of moral dilemmas in the rTMS group (compared to a SHAM one). This suggests that the right DLPFc function not only participates to a rational cognitive control process, but also integrates emotions generated by contextual information appraisal, which are decisive for response selection in moral judgements. © The Author (2011). Published by Oxford University Press.

  10. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  11. Social Play Behavior in Adolescent Rats is Mediated by Functional Activity in Medial Prefrontal Cortex and Striatum

    PubMed Central

    van Kerkhof, Linda WM; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk JMJ

    2013-01-01

    Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior. PMID:23568326

  12. Age-related differences in prefrontal cortex activity during retrieval monitoring: testing the compensation and dysfunction accounts.

    PubMed

    McDonough, Ian M; Wong, Jessica T; Gallo, David A

    2013-05-01

    Current theories of cognitive aging emphasize that the prefrontal cortex might not only be a major source of dysfunction but also a source of compensation. We evaluated neural activity associated with retrieval monitoring--or the selection and evaluation of recollected information during memory retrieval--for evidence of dysfunction or compensation. Younger and older adults studied pictures and words and were subsequently given criterial recollection tests during event-related functional magnetic resonance imaging. Although memory accuracy was greater on the picture test than the word test in both groups, activity in right dorsolateral prefrontal cortex (DLPFC) was associated with greater retrieval monitoring demands (word test > picture test) only in younger adults. Similarly, DLPFC activity was consistently associated with greater item difficulty (studied > nonstudied) only in younger adults. Older adults instead exhibited high levels of DLPFC activity for all of these conditions, and activity was greater than younger adults even when test performance was naturally matched across the groups (picture test). Correlations also differed between DLPFC activity and test performance across the groups. Collectively, these findings are more consistent with accounts of DLPFC dysfunction than compensation, suggesting that aging disrupts the otherwise beneficial coupling between DLPFC recruitment and retrieval monitoring demands.

  13. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    PubMed

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Prefrontal cortex activity during response selection predicts processing speed impairment in schizophrenia

    PubMed Central

    Woodward, Neil D.; Duffy-Alberto, Brittney; Karbasforoushan, Haleh

    2014-01-01

    Processing speed is the most impaired neuropsychological domain in schizophrenia and a robust predictor of functional outcome. Determining the specific cognitive operations underlying processing speed dysfunction and indentifying their neural correlates may assist in developing pro-cognitive interventions. Response selection, the process of mapping stimuli onto motor responses, correlates with neuropsychological tests of processing speed and may contribute to processing speed impairment in schizophrenia. This study investigated the relationship between behavioral and neural measures of response selection, and a neuropsychological index of processing speed in schizophrenia. 26 patients with schizophrenia and 21 healthy subjects underwent fMRI scanning during performance of 2 and 4-choice-reaction time (RT) tasks and completed the Wechsler Adult Intelligence Scale-III (WAIS) Processing Speed Index (PSI). Response selection, defined as RT slowing between 2 and 4-choice RT, was impaired in schizophrenia and correlated with psychometric processing speed. Greater activation of the dorsolateral prefrontal cortex (PFC) was observed in schizophrenia and correlated with poorer WAIS PSI scores. Deficient response selection and abnormal recruitment of the dorsolateral PFC during response selection contribute to processing speed impairment in schizophrenia. Interventions that improve response selection and normalize dorsolateral PFC function may improve processing speed in schizophrenia. PMID:23816240

  15. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    PubMed

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  16. Adaptive Encoding of Outcome Prediction by Prefrontal Cortex Ensembles Supports Behavioral Flexibility.

    PubMed

    Del Arco, Alberto; Park, Junchol; Wood, Jesse; Kim, Yunbok; Moghaddam, Bita

    2017-08-30

    The prefrontal cortex (PFC) is thought to play a critical role in behavioral flexibility by monitoring action-outcome contingencies. How PFC ensembles represent shifts in behavior in response to changes in these contingencies remains unclear. We recorded single-unit activity and local field potentials in the dorsomedial PFC (dmPFC) of male rats during a set-shifting task that required them to update their behavior, among competing options, in response to changes in action-outcome contingencies. As behavior was updated, a subset of PFC ensembles encoded the current trial outcome before the outcome was presented. This novel outcome-prediction encoding was absent in a control task, in which actions were rewarded pseudorandomly, indicating that PFC neurons are not merely providing an expectancy signal. In both control and set-shifting tasks, dmPFC neurons displayed postoutcome discrimination activity, indicating that these neurons also monitor whether a behavior is successful in generating rewards. Gamma-power oscillatory activity increased before the outcome in both tasks but did not differentiate between expected outcomes, suggesting that this measure is not related to set-shifting behavior but reflects expectation of an outcome after action execution. These results demonstrate that PFC neurons support flexible rule-based action selection by predicting outcomes that follow a particular action. SIGNIFICANCE STATEMENT Tracking action-outcome contingencies and modifying behavior when those contingencies change is critical to behavioral flexibility. We find that ensembles of dorsomedial prefrontal cortex neurons differentiate between expected outcomes when action-outcome contingencies change. This predictive mode of signaling may be used to promote a new response strategy at the service of behavioral flexibility. Copyright © 2017 the authors 0270-6474/17/378363-11$15.00/0.

  17. From blame to punishment: Disrupting prefrontal cortex activity reveals norm enforcement mechanisms

    PubMed Central

    Buckholtz, Joshua W.; Martin, Justin W.; Treadway, Michael T.; Jan, Katherine; Zald, David H.; Jones, Owen; Marois, René

    2017-01-01

    Summary Humans maintain a level of cooperation among non-kin that is unrivaled in the animal kingdom. This unique feature of human culture is enabled by our ability to generate, transmit, and follow widely held agreements about morally acceptable and permissible behavior (social norms). However, the social welfare provided by cooperation crucially depends on our ability to enforce these norms by sanctioning those who violate them. Determining moral responsibility and assigning a deserved punishment are two cognitive cornerstones of norm enforcement; together, they form the foundation for modern state-administered systems of justice. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in social norm-based judgments, the relative contribution of this brain region to judgments of moral responsibility and punishment decision-making remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and functional magnetic resonance imaging (fMRI) to determine the specific, causal role of DLPFC function in norm-enforcement behavior. rTMS to DLPFC significantly reduced punishment for wrongful acts without affecting blameworthiness ratings for the same acts, suggesting a neural dissociation between punishment decisions and moral responsibility judgments. We confirmed this dissociation using fMRI: DLPFC is preferentially recruited for punishment decision-making compared to blameworthiness evaluation. Finally, we employed conditional process modeling to show that DLPFC supports punishment decision-making by integrating information about culpability and harm. Together, these findings reveal a selective, causal role for lateral prefrontal cortex in punishment decision-making, and suggest a computational source for this selectivity: the ability of the DLPFC to integrate distinct information processing streams that form the basis of our punishment decisions. PMID:26386518

  18. Amphetamine modulation of long-term potentiation in the prefrontal cortex: dose dependency, monoaminergic contributions, and paradoxical rescue in hyperdopaminergic mutant.

    PubMed

    Xu, Tai-Xiang; Ma, Qi; Spealman, Roger D; Yao, Wei-Dong

    2010-12-01

    Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  19. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    PubMed

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  20. Intracerebroventricular administration of growth hormone induces morphological changes in pyramidal neurons of the hippocampus and prefrontal cortex in adult rats.

    PubMed

    Olivares-Hernández, Juan David; García-García, Fabio; Camacho-Abrego, Israel; Flores, Gonzalo; Juárez-Aguilar, Enrique

    2018-07-01

    A growing body of evidence suggests that growth hormone (GH) affects synaptic plasticity at both the molecular and electrophysiological levels. However, unclear is whether plasticity that is stimulated by GH is associated with changes in neuron structure. This study investigated the effect of intracerebroventricular (ICV) administration of GH on the morphology of pyramidal neurons of the CA1 region of the dorsal hippocampus and layer III of the prefrontal cortex. Male Wistar rats received daily ICV injections of GH (120 ng) for 7 days, and they were euthanized 21 days later. Changes in neuronal morphology were evaluated using Golgi-Cox staining and subsequent Sholl analysis. GH administration increased total dendritic length in the CA1 region of the dorsal hippocampus and prefrontal cortex. The Sholl analysis revealed an increase in dendritic length of the third to eighth branch orders in the hippocampus and from the third to sixth branch orders in the prefrontal cortex. Interestingly, GH treatment increased the density of dendritic spines in both brain regions, favoring the presence of mushroom-like spines only in the CA1 hippocampal region. Our results indicated that GH induces changes in the length of dendritic trees and the density of dendritic spines in two high-plasticity brain regions, suggesting that GH-induced synaptic plasticity at the molecular and electrophysiological levels may be associated with these structural changes in neurons. © 2018 Wiley Periodicals, Inc.

  1. Domain expertise insulates against judgment bias by monetary favors through a modulation of ventromedial prefrontal cortex

    PubMed Central

    Kirk, Ulrich; Harvey, Ann; Montague, P. Read

    2011-01-01

    Recent work using an art-viewing paradigm shows that monetary sponsorship of the experiment by a company (a favor) increases the valuation of paintings placed next to the sponsoring corporate logo, an effect that correlates with modulation of the ventromedial prefrontal cortex (VMPFC). We used the same art-viewing paradigm to test a prevailing idea in the domain of conflict-of-interest: that expertise in a domain insulates against judgment bias even in the presence of a monetary favor. Using a cohort of art experts, we show that monetary favors do not bias the experts’ valuation of art, an effect that correlates with a lack of modulation of the VMPFC across sponsorship conditions. The lack of sponsorship effect in the VMPFC suggests the hypothesis that their brains remove the behavioral sponsorship effect by censoring sponsorship-dependent modulation of VMPFC activity. We tested the hypothesis that prefrontal regions play a regulatory role in mediating the sponsorship effect. We show that the dorsolateral prefrontal cortex (DLPFC) is recruited in the expert group. Furthermore, we tested the hypothesis in nonexpert controls by contrasting brain responses in controls who did not show a sponsorship effect to controls who did. Changes in effective connectivity between the DLPFC and VMPFC were greater in nonexpert controls, with an absence of the sponsorship effect relative to those with a presence of the sponsorship effect. The role of the DLPFC in cognitive control and emotion regulation suggests that it removes the influence of a monetary favor by controlling responses in known valuation regions of the brain including the the VMPFC. PMID:21646526

  2. Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder.

    PubMed

    Hauser, Tobias U; Iannaccone, Reto; Ball, Juliane; Mathys, Christoph; Brandeis, Daniel; Walitza, Susanne; Brem, Silvia

    2014-10-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with deficient decision making and learning. Models of ADHD have suggested that these deficits could be caused by impaired reward prediction errors (RPEs). Reward prediction errors are signals that indicate violations of expectations and are known to be encoded by the dopaminergic system. However, the precise learning and decision-making deficits and their neurobiological correlates in ADHD are not well known. To determine the impaired decision-making and learning mechanisms in juvenile ADHD using advanced computational models, as well as the related neural RPE processes using multimodal neuroimaging. Twenty adolescents with ADHD and 20 healthy adolescents serving as controls (aged 12-16 years) were examined using a probabilistic reversal learning task while simultaneous functional magnetic resonance imaging and electroencephalogram were recorded. Learning and decision making were investigated by contrasting a hierarchical Bayesian model with an advanced reinforcement learning model and by comparing the model parameters. The neural correlates of RPEs were studied in functional magnetic resonance imaging and electroencephalogram. Adolescents with ADHD showed more simplistic learning as reflected by the reinforcement learning model (exceedance probability, Px = .92) and had increased exploratory behavior compared with healthy controls (mean [SD] decision steepness parameter β: ADHD, 4.83 [2.97]; controls, 6.04 [2.53]; P = .02). The functional magnetic resonance imaging analysis revealed impaired RPE processing in the medial prefrontal cortex during cue as well as during outcome presentation (P < .05, family-wise error correction). The outcome-related impairment in the medial prefrontal cortex could be attributed to deficient processing at 200 to 400 milliseconds after feedback presentation as reflected by reduced feedback-related negativity (ADHD, 0.61 [3.90] μV; controls, -1.68 [2

  3. Ginkobiloba extract improves working memory performance in middle-aged women: role of asymmetry of prefrontal cortex activity during a working memory task.

    PubMed

    Sakatani, Kaoru; Tanida, Masahiro; Hirao, Naoyasu; Takemura, Naohiro

    2014-01-01

    In order to clarify the mechanism through which extract of Ginkgo biloba leaves (EGb) improves cognitive function, we examined the effects of EGb on cerebral blood oxygenation in the prefrontal cortex (PFC) and on performance during a working memory task, using near-infrared spectrometry (NIRS). First, we evaluated differences in behavioral performance of the Sternberg working memory test (ST) and in the activation pattern of the PFC during ST between 15 young and 19 middle-aged healthy women. Then, we examined the effect of EGb (120 mg/day for 6 weeks) on ST performance and PFC activation pattern in the middle-aged group. The middle-aged group exhibited a longer reaction time (RT) in ST than the young group and showed a different PFC activation pattern during ST, i.e., the middle-aged group showed bilateral activation while the young group showed right-dominant activation. In the middle-aged group, administration of EGb for 6 weeks shortened the RT of ST and changed the PFC activation pattern to right-dominant, like that in the young group. The results indicate the PFC plays a role in the physiological cognitive function-enhancing effect of EGb. EGb might improve working memory function in middle-aged individuals by counteracting the occurrence of aging-related hemispheric asymmetry reduction.

  4. Damage to the prefrontal cortex increases utilitarian moral judgements.

    PubMed

    Koenigs, Michael; Young, Liane; Adolphs, Ralph; Tranel, Daniel; Cushman, Fiery; Hauser, Marc; Damasio, Antonio

    2007-04-19

    The psychological and neurobiological processes underlying moral judgement have been the focus of many recent empirical studies. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion-related areas of the brain contribute to moral judgement. Here we show that six patients with focal bilateral damage to the ventromedial prefrontal cortex (VMPC), a brain region necessary for the normal generation of emotions and, in particular, social emotions, produce an abnormally 'utilitarian' pattern of judgements on moral dilemmas that pit compelling considerations of aggregate welfare against highly emotionally aversive behaviours (for example, having to sacrifice one person's life to save a number of other lives). In contrast, the VMPC patients' judgements were normal in other classes of moral dilemmas. These findings indicate that, for a selective set of moral dilemmas, the VMPC is critical for normal judgements of right and wrong. The findings support a necessary role for emotion in the generation of those judgements.

  5. Medial prefrontal cortex subserves diverse forms of self-reflection.

    PubMed

    Jenkins, Adrianna C; Mitchell, Jason P

    2011-01-01

    The ability to think about oneself--to self--reflect--is one of the defining features of the human mind. Recent research has suggested that this ability may be subserved by a particular brain region: the medial prefrontal cortex (MPFC). However, although humans can contemplate a variety of different aspects of themselves, including their stable personality traits, current feelings, and physical attributes, no research has directly examined the extent to which these different forms of self-reflection are subserved by common mechanisms. To address this question, participants were scanned using functional magnetic resonance imaging (fMRI) while making judgments about their own personality traits, current mental states, and physical attributes as well as those of another person. Whereas some brain regions responded preferentially during only one form of self-reflection, a robust region of MPFC was engaged preferentially during self-reflection across all three types of judgment. These results suggest that--although dissociable--diverse forms of self-referential thought draw on a shared cognitive process subserved by MPFC.

  6. Modulating Memory Performance in Healthy Subjects with Transcranial Direct Current Stimulation Over the Right Dorsolateral Prefrontal Cortex.

    PubMed

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Cipolotti, Lisa; Oliveri, Massimiliano

    2015-01-01

    The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task. 36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS. Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance. Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.

  7. Prefrontal cortex afferents to the anterior temporal lobe in the Macaca fascicularis monkey.

    PubMed

    Mohedano-Moriano, Alicia; Muñoz-López, Mónica; Sanz-Arigita, Ernesto; Pró-Sistiaga, Palma; Martínez-Marcos, Alino; Legidos-Garcia, María Ester; Insausti, Ana María; Cebada-Sánchez, Sandra; Arroyo-Jiménez, María Del Mar; Marcos, Pilar; Artacho-Pérula, Emilio; Insausti, Ricardo

    2015-12-01

    The anatomical organization of the lateral prefrontal cortex (LPFC) afferents to the anterior part of the temporal lobe (ATL) remains to be clarified. The LPFC has two subdivisions, dorsal (dLPFC) and ventral (vLPFC), which have been linked to cognitive processes. The ATL includes several different cortical areas, namely, the temporal polar cortex and rostral parts of the perirhinal, inferotemporal, and anterior tip of the superior temporal gyrus cortices. Multiple sensory modalities converge in the ATL. All of them (except the rostral inferotemporal and superior temporal gyrus cortices) are components of the medial temporal lobe, which is critical for long-term memory processing. We studied the LPFC connections with the ATL by placing retrograde tracer injections into the ATL: the temporal polar (n = 3), perirhinal (areas 35 and 36, n = 6), and inferotemporal cortices (area TE, n = 5), plus one additional deposit in the posterior parahippocampal cortex (area TF, n = 1). Anterograde tracer deposits into the dLPFC (A9 and A46, n = 2), the vLPFC (A46v, n = 2), and the orbitofrontal cortex (OF; n = 2) were placed for confirmation of those projections. The results showed that the vLPFC displays a moderate projection to rostral area TE and the dorsomedial portion of the temporal polar cortex; in contrast, the dLPFC connections with the ATL were weak. By comparison, the OFC and medial frontal cortices (MFC) showed dense connectivity with the ATL, namely, A13 with the temporopolar and perirhinal cortices. All areas of the MFC projected to the temporopolar cortex, albeit with a lower intensity. The functional significance of such paucity of LPFC afferents is unknown. © 2015 Wiley Periodicals, Inc.

  8. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  9. Changes in cue-induced, prefrontal cortex activity with video-game play.

    PubMed

    Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F

    2010-12-01

    Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.

  10. Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats.

    PubMed

    Davis, Jon F; Loos, Maarten; Di Sebastiano, Andrea R; Brown, Jennifer L; Lehman, Michael N; Coolen, Lique M

    2010-06-15

    An inability to inhibit behaviors once they become maladaptive is a component of several psychiatric illnesses, and the medial prefrontal cortex (mPFC) was identified as a potential mediator of behavioral inhibition. The current study tested if the mPFC is involved in inhibition of sexual behavior when associated with aversive outcomes. Using male rats, effects of lesions of the infralimbic and prelimbic areas of the mPFC on expression of sexual behavior and ability to inhibit mating were tested using a paradigm of copulation-contingent aversion. Medial prefrontal cortex lesions did not alter expression of sexual behavior. In contrast, mPFC lesions completely blocked the acquisition of sex-aversion conditioning and lesioned animals continued to mate, in contrast to the robust behavioral inhibition toward copulation in mPFC intact male animals, resulting in only 22% of intact male animals continuing to mate. However, rats with mPFC lesions were capable of forming a conditioned place preference to sexual reward and conditioned place aversion for lithium chloride, suggesting that these lesions did not alter associative learning or sensitivity for lithium chloride. The current study indicates that animals with mPFC lesions are likely capable of forming the associations with aversive outcomes of their behavior but lack the ability to suppress seeking of sexual reward in the face of aversive consequences. These data may contribute to a better understanding of a common pathology underlying impulse control disorders, as compulsive sexual behavior has a high prevalence of comorbidity with psychiatric disorders and Parkinson's disease.

  11. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    PubMed Central

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  12. The role of the right prefrontal cortex in self-evaluation of the face: a functional magnetic resonance imaging study.

    PubMed

    Morita, Tomoyo; Itakura, Shoji; Saito, Daisuke N; Nakashita, Satoshi; Harada, Tokiko; Kochiyama, Takanori; Sadato, Norihiro

    2008-02-01

    Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.

  13. Levels of conflict in reasoning modulate right lateral prefrontal cortex.

    PubMed

    Stollstorff, Melanie; Vartanian, Oshin; Goel, Vinod

    2012-01-05

    Right lateral prefrontal cortex (rlPFC) has previously been implicated in logical reasoning under conditions of conflict. A functional magnetic resonance imaging (fMRI) study was conducted to explore its role in conflict more precisely. Specifically, we distinguished between belief-logic conflict and belief-content conflict, and examined the role of rlPFC under each condition. The results demonstrated that a specific region of rlPFC is consistently activated under both types of conflict. Moreover, the results of a parametric analysis demonstrated that the same region was modulated by the level of conflict contained in reasoning arguments. This supports the idea that this specific region is engaged to resolve conflict, including during deductive reasoning. This article is part of a Special Issue entitled "The Cognitive Neuroscience of Thought". Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  15. Electrolytic Lesions of the Medial Prefrontal Cortex Do Not Interfere with Long-Term Memory of Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Garcia, Rene; Chang, Chun-hui; Maren, Stephen

    2006-01-01

    Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…

  16. Emotion and the prefrontal cortex: An integrative review.

    PubMed

    Dixon, Matthew L; Thiruchselvam, Ravi; Todd, Rebecca; Christoff, Kalina

    2017-10-01

    The prefrontal cortex (PFC) plays a critical role in the generation and regulation of emotion. However, we lack an integrative framework for understanding how different emotion-related functions are organized across the entire expanse of the PFC, as prior reviews have generally focused on specific emotional processes (e.g., decision making) or specific anatomical regions (e.g., orbitofrontal cortex). Additionally, psychological theories and neuroscientific investigations have proceeded largely independently because of the lack of a common framework. Here, we provide a comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC. We introduce the appraisal-by-content model, which provides a new framework for integrating the diverse range of empirical findings. Within this framework, appraisal serves as a unifying principle for understanding the PFC's role in emotion, while relative content-specialization serves as a differentiating principle for understanding the role of each subregion. A synthesis of data from affective, social, and cognitive neuroscience studies suggests that different PFC subregions are preferentially involved in assigning value to specific types of inputs: exteroceptive sensations, episodic memories and imagined future events, viscero-sensory signals, viscero-motor signals, actions, others' mental states (e.g., intentions), self-related information, and ongoing emotions. We discuss the implications of this integrative framework for understanding emotion regulation, value-based decision making, emotional salience, and refining theoretical models of emotion. This framework provides a unified understanding of how emotional processes are organized across PFC subregions and generates new hypotheses about the mechanisms underlying adaptive and maladaptive emotional functioning. (PsycINFO Database Record (c) 2017 APA, all

  17. Perceived Occupational Stress is associated with Decreased Cortical Activity of the Prefrontal Cortex: A Multichannel Near-infrared Spectroscopy Study.

    PubMed

    Chou, Po-Han; Lin, Wei-Hao; Hung, Chao-An; Chang, Chiung-Chih; Li, Wan-Rung; Lan, Tsuo-Hung; Huang, Min-Wei

    2016-12-13

    Despite an increasing number of reports on the associations between chronic occupational stress and structural and functional changes of the brain, the underlying neural correlates of perceived occupational stress is still not clear. Perceived stress reflects the extents to which situations are appraised as stressful at a given point in one's life. Using near-infrared spectroscopy, we investigated the associations between perceived occupational stress and cortical activity over the bilateral frontotemporal regions during a verbal fluency test. Sixty-eight participants (17 men, 51 women), 20-62 years of age were recruited. Perceived occupational stress was measured using the Chinese version of Job Content Questionnaire, and the Chinese version of the Copenhagen Burnout Inventory. We found statistically significant negative associations between occupational burnout and brain cortical activity over the fronto-polar and dorsolateral prefrontal cortex during the VFT (r = -0.343 to -0.464). In conclusion, our research demonstrated a possible neural basis of perceived occupational stress that are distributed across the prefrontal cortex.

  18. The Dorsal Medial Prefrontal Cortex Responds Preferentially to Social Interactions during Natural Viewing.

    PubMed

    Wagner, Dylan D; Kelley, William M; Haxby, James V; Heatherton, Todd F

    2016-06-29

    Humans display a strong tendency to make spontaneous inferences concerning the thoughts and intentions of others. Although this ability relies upon the concerted effort of multiple brain regions, the dorsal medial prefrontal cortex (DMPFC) is most closely associated with the ability to reason about other people's mental states and form impressions of their character. Here, we investigated this region's putative social category preference using fMRI as 34 participants engaged in uninstructed viewing of a complex naturalistic stimulus. Using a data-driven "reverse correlation" approach, we characterize the DMPFC's stimulus response profile from ongoing neural responses to a dynamic movie stimulus. Results of this analysis demonstrate that the DMPFC's response profile is dominated by the presence of scenes involving social interactions between characters. Subsequent content analysis of video clips created from this response profile confirmed this finding. In contrast, regions of the inferotemporal and parietal cortex were selectively tuned to faces and actions, both features that often covary with social interaction but may be difficult to disentangle using standard event-related approaches. Together, these findings suggest that the DMPFC is finely tuned for processing social interaction above other categories and that this preference is maintained during unrestricted viewing of complex natural stimuli such as movies. Recently, studies have brought into question whether the dorsal medial prefrontal cortex (DMPFC), a region long associated with social cognition, is specialized for the processing of social information. We examine the response profile of this region during natural viewing of a reasonably naturalistic stimulus (i.e., a Hollywood movie) using a data-driven reverse correlation technique. Our findings demonstrate that, during natural viewing, the DMPFC is strongly tuned to the social features of the stimulus above other categories. Moreover, this response

  19. The Dorsal Medial Prefrontal Cortex Responds Preferentially to Social Interactions during Natural Viewing

    PubMed Central

    Kelley, William M.; Haxby, James V.; Heatherton, Todd F.

    2016-01-01

    Humans display a strong tendency to make spontaneous inferences concerning the thoughts and intentions of others. Although this ability relies upon the concerted effort of multiple brain regions, the dorsal medial prefrontal cortex (DMPFC) is most closely associated with the ability to reason about other people's mental states and form impressions of their character. Here, we investigated this region's putative social category preference using fMRI as 34 participants engaged in uninstructed viewing of a complex naturalistic stimulus. Using a data-driven “reverse correlation” approach, we characterize the DMPFC's stimulus response profile from ongoing neural responses to a dynamic movie stimulus. Results of this analysis demonstrate that the DMPFC's response profile is dominated by the presence of scenes involving social interactions between characters. Subsequent content analysis of video clips created from this response profile confirmed this finding. In contrast, regions of the inferotemporal and parietal cortex were selectively tuned to faces and actions, both features that often covary with social interaction but may be difficult to disentangle using standard event-related approaches. Together, these findings suggest that the DMPFC is finely tuned for processing social interaction above other categories and that this preference is maintained during unrestricted viewing of complex natural stimuli such as movies. SIGNIFICANCE STATEMENT Recently, studies have brought into question whether the dorsal medial prefrontal cortex (DMPFC), a region long associated with social cognition, is specialized for the processing of social information. We examine the response profile of this region during natural viewing of a reasonably naturalistic stimulus (i.e., a Hollywood movie) using a data-driven reverse correlation technique. Our findings demonstrate that, during natural viewing, the DMPFC is strongly tuned to the social features of the stimulus above other categories

  20. From rule to response: neuronal processes in the premotor and prefrontal cortex.

    PubMed

    Wallis, Jonathan D; Miller, Earl K

    2003-09-01

    The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.

  1. In vivo effects of phosphodiesterase inhibition on basal cyclic guanosine monophosphate levels in the prefrontal cortex, hippocampus and cerebellum of freely moving rats.

    PubMed

    Marte, Antonella; Pepicelli, Olimpia; Cavallero, Anna; Raiteri, Maurizio; Fedele, Ernesto

    2008-11-15

    We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.

  2. Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus.

    PubMed

    Biro, Laszlo; Sipos, Eszter; Bruzsik, Biborka; Farkas, Imre; Zelena, Dora; Balazsfi, Diana; Toth, Mate; Haller, Jozsef

    2018-04-25

    An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles. SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in

  3. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left) Lateral Prefrontal Cortex

    PubMed Central

    Gómez-Ariza, Carlos J.; Martín, María C.; Morales, Julia

    2017-01-01

    Behavioral and neuroimaging data support the distinction of two different modes of cognitive control: proactive, which involves the active and sustained maintenance of task-relevant information to bias behavior in accordance with internal goals; and reactive, which entails the detection and resolution of interference at the time it occurs. Both control modes may be flexibly deployed depending on a variety of conditions (i.e., age, brain alterations, motivational factors, prior experience). Critically, and in line with specific predictions derived from the dual mechanisms of control account (Braver, 2012), findings from neuroimaging studies indicate that the same lateral prefrontal regions (i.e., left dorsolateral cortex and right inferior frontal junction) may implement different control modes on the basis of temporal dynamics of activity, which would be modulated in response to external or internal conditions. In the present study, we aimed to explore whether transcraneal direct current stimulation over either the left dorsolateral prefrontal cortex or the right inferior frontal junction would differentially modulate performance on the AX-CPT, a well-validated task that provides sensitive and reliable behavioral indices of proactive/reactive control. The study comprised six conditions of real stimulation [3 (site: left dorsolateral, right dorsolateral and right inferior frontal junction) × 2 (polarity: anodal and cathodal)], and one sham condition. The reference electrode was always placed extracephalically. Performance on the AX-CPT was assessed through two blocks of trials. The first block took place while stimulation was being delivered, whereas the second block was administered after stimulation completion. The results indicate that both offline cathodal stimulation of the right dorsolateral prefrontal cortex and online anodal stimulation of the right inferior frontal junction led participants to be much less proactive, with such a dissociation suggesting

  4. Medial Prefrontal Cortex: Adding Value to Imagined Scenarios

    PubMed Central

    Lin, Wen-Jing; Horner, Aidan J.; Bisby, James A.; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) is consistently implicated in the network supporting autobiographical memory. Whereas more posterior regions in this network have been related to specific processes, such as the generation of visuospatial imagery or the association of items and contexts, the functional contribution of the mPFC remains unclear. However, the involvement of mPFC in estimation of value during decision-making suggests that it might play a similar role in memory. We investigated whether mPFC activity reflects the subjective value of elements in imagined scenarios. Participants in an MRI scanner imagined scenarios comprising a spatial context, a physiological state of need (e.g., thirst), and two items that could be congruent (e.g., drink) or incongruent (e.g., food) with the state of need. Memory for the scenarios was tested outside the scanner. Our manipulation of subjective value by imagined need was verified by increased subjective ratings of value for congruent items and improved subsequent memory for them. Consistent with our hypothesis, fMRI signal in mPFC reflected the modulation of an item’s subjective value by the imagined physiological state, suggesting the mPFC selectively tracked subjective value within our imagination paradigm. Further analyses showed uncorrected effects in non-mPFC regions, including increased activity in the insula when imagining states of need, the caudate nucleus when imagining congruent items, and the anterior hippocampus/amygdala when imagining subsequently remembered items. We therefore provide evidence that the mPFC plays a role in constructing the subjective value of the components of imagined scenarios and thus potentially in reconstructing the value of components of autobiographical recollection. PMID:26042501

  5. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress.

    PubMed

    Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan

    2018-08-01

    Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.

  6. Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    PubMed Central

    Garcin, Béatrice; Volle, Emmanuelle; Dubois, Bruno; Levy, Richard

    2012-01-01

    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC. PMID:22479551

  7. Trace and Contextual Fear Conditioning Require Neural Activity and NMDA Receptor-Dependent Transmission in the Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…

  8. Impact of one HF-rTMS session on fine motor function in right-handed healthy female subjects: a comparison of stimulation over the left versus the right dorsolateral prefrontal cortex.

    PubMed

    Baeken, C; Schrijvers, D L; Sabbe, B G C; Vanderhasselt, M A; De Raedt, R

    2012-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool to investigate neural conduction in motor processes. Most rTMS research has been conducted by targeting the primary motor cortex. Several studies have also found increased psychomotor speed after rTMS of the dorsolateral prefrontal cortex (DLPFC). However, these studies were mainly performed in psychiatric patients, only targeting the left DLPFC, and often without sham control. Moreover, psychomotor speed is mostly measured based on tasks that also require higher executive functions. Here, we examined the lateralized effect of one sham-controlled high-frequency rTMS session applied to the left or right DLPFC on fine motor function in 36 healthy right-handed females, using the Fitts' paradigm. We found a significant improvement in psychomotor speed only after actively stimulating the right DLPFC. Our results support the assumption of a right prefrontal neural network implicated in visuomotor behavior and performance processes, and that the improvement in psychomotor speed is not a secondary effect of decreased mood. Copyright © 2012 S. Karger AG, Basel.

  9. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  10. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making

    PubMed Central

    Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.

    2008-01-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more ‘bankruptcies’. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vm

  11. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear

    PubMed Central

    Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.

    2017-01-01

    The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552

  12. Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults

    PubMed Central

    Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  13. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    PubMed

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  14. Ventromedial Prefrontal Cortex Is Critical for Helping Others Who Are Suffering.

    PubMed

    Beadle, Janelle N; Paradiso, Sergio; Tranel, Daniel

    2018-01-01

    Neurological patients with damage to the ventromedial prefrontal cortex (vmPFC) are reported to display reduced empathy toward others in their daily lives in clinical case studies. However, the empathic behavior of patients with damage to the vmPFC has not been measured experimentally in response to an empathy-eliciting event. This is important because characterizing the degree to which patients with damage to the vmPFC have lower empathic behavior will allow for the development of targeted interventions to improve patients' social skills and in turn will help family members to better understand their impairments so they can provide appropriate supports. For the first time, we induced empathy using an ecologically-valid empathy induction in neurological patients with damage to the vmPFC and measured their empathic emotional responses and behavior in real time. Eight neurological patients with focal damage to the vmPFC were compared to demographically-matched brain-damaged and healthy comparison participants. Patients with damage to the vmPFC gave less money in the empathy condition to a person who was suffering (a confederate) than comparison participants. This provides the first direct experimental evidence that the vmPFC is critical for empathic behavior toward individuals who are suffering.

  15. Role of the dorsolateral prefrontal cortex in context-dependent motor performance.

    PubMed

    Lee, Y-Y; Winstein, C J; Fisher, B E

    2016-04-01

    Context-dependent motor performance is a phenomenon in which people perform better in the environmental context where they originally practised a task. Some animal and computer simulation studies have suggested that context-dependent performance may be associated with neural activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine the role of the DLPFC in context-dependent motor performance by perturbing the neural processing of the DLPFC with repetitive transcranial magnetic stimulation (rTMS) in healthy adults. Thirty healthy adults were recruited into the Control, rTMS DLPFC and rTMS Vertex groups. The participants practised three finger sequences associated with a specific incidental context (a coloured circle and a location on the computer screen). One day following practice, the rTMS groups received 1 Hz rTMS prior to the testing conditions in which the sequence-context associations remained the same as practice (SAME) or changed (SWITCH). All three groups improved significantly over practice on day 1. The second day testing results showed that the DLPFC group had a significantly lower decrease in motor performance under the SWITCH condition than the Control and Vertex groups. This finding suggests a specific role of the DLPFC in context-dependent motor performance. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Stress during a Critical Postnatal Period Induces Region-Specific Structural Abnormalities and Dysfunction of the Prefrontal Cortex via CRF1

    PubMed Central

    Yang, Xiao-Dun; Liao, Xue-Mei; Uribe-Mariño, Andrés; Liu, Rui; Xie, Xiao-Meng; Jia, Jiao; Su, Yun-Ai; Li, Ji-Tao; Schmidt, Mathias V; Wang, Xiao-Dong; Si, Tian-Mei

    2015-01-01

    During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF1) by systemic antalarmin administration (20 μg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF1 in modulating early-life stress-induced prefrontal abnormalities. PMID:25403725

  17. Lucid Dreaming and Ventromedial versus Dorsolateral Prefrontal Task Performance

    PubMed Central

    Neider, Michelle; Pace-Schott, Edward F.; Forselius, Erica; Pittman, Brian; Morgan, Peter T.

    2010-01-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for one week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  18. Ventrolateral prefrontal cortex and the effects of task demand context on facial affect appraisal in schizophrenia.

    PubMed

    Leitman, David I; Wolf, Daniel H; Loughead, James; Valdez, Jeffrey N; Kohler, Christian G; Brensinger, Colleen; Elliott, Mark A; Turetsky, Bruce I; Gur, Raquel E; Gur, Ruben C

    2011-01-01

    Schizophrenia patients display impaired performance and brain activity during facial affect recognition. These impairments may reflect stimulus-driven perceptual decrements and evaluative processing abnormalities. We differentiated these two processes by contrasting responses to identical stimuli presented under different contexts. Seventeen healthy controls and 16 schizophrenia patients performed an fMRI facial affect detection task. Subjects identified an affective target presented amongst foils of differing emotions. We hypothesized that targeting affiliative emotions (happiness, sadness) would create a task demand context distinct from that generated when targeting threat emotions (anger, fear). We compared affiliative foil stimuli within a congruent affiliative context with identical stimuli presented in an incongruent threat context. Threat foils were analysed in the same manner. Controls activated right orbitofrontal cortex (OFC)/ventrolateral prefrontal cortex (VLPFC) more to affiliative foils in threat contexts than to identical stimuli within affiliative contexts. Patients displayed reduced OFC/VLPFC activation to all foils, and no activation modulation by context. This lack of context modulation coincided with a 2-fold decrement in foil detection efficiency. Task demands produce contextual effects during facial affective processing in regions activated during affect evaluation. In schizophrenia, reduced modulation of OFC/VLPFC by context coupled with reduced behavioural efficiency suggests impaired ventral prefrontal control mechanisms that optimize affective appraisal.

  19. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

    PubMed

    Goldstein, Rita Z; Volkow, Nora D

    2011-10-20

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.

  20. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy.

    PubMed

    Blair, R J R

    2008-08-12

    The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus-reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.

  1. Medial Prefrontal Cortex Activity When Thinking About Others Depends on Their Age

    PubMed Central

    Ebner, Natalie C.; Gluth, Sebastian; Johnson, Matthew R.; Raye, Carol L.; Mitchell, Karen J.; Johnson, Marcia K.

    2011-01-01

    This functional magnetic resonance imaging (fMRI) study examined medial prefrontal cortex (mPFC) activity as young and older participants rated an unknown young and older person, and themselves, on personality characteristics. For both young and older participants, there was greater activation in ventral mPFC (anterior cingulate) when they made judgments about own-age than other-age individuals. Additionally, across target age and participant age, there was greater activity in a more anterior region of ventral mPFC (largely medial frontal gyrus, anterior cingulate) when participants rated others than when they rated themselves. We discuss potential interpretations of these findings in the context of previous results suggesting functional specificity of subregions of ventral mPFC. PMID:21432722

  2. The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers.

    PubMed

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Wang, Ruonan; Li, Min; Zhang, Yajuan; Dong, Minghao; Zhai, Jinquan; Li, Yangding; Lu, Xiaoqi; Tian, Jie

    2017-09-01

    Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty-five young male smokers and 26 age- and gender-matched nonsmokers participated in the smoking cue-reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC-efferent pathways contributed to smoking cue-induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue-induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC-caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC-caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC-caudate pathway in smoking cue-induced craving in smokers, which may reflect top-down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644-4656, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    PubMed

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  5. Differential roles of polar orbital prefrontal cortex and parietal lobes in logical reasoning with neutral and negative emotional content.

    PubMed

    Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan

    2018-05-14

    To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive

  6. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  7. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus

    PubMed Central

    Ouhaz, Zakaria; Fleming, Hugo; Mitchell, Anna S.

    2018-01-01

    The mediodorsal nucleus of the thalamus (MD) has been implicated in executive functions (such as planning, cognitive control, working memory, and decision-making) because of its significant interconnectivity with the prefrontal cortex (PFC). Yet, whilst the roles of the PFC have been extensively studied, how the MD contributes to these cognitive functions remains relatively unclear. Recently, causal evidence in monkeys has demonstrated that in everyday tasks involving rapid updating (e.g., while learning something new, making decisions, or planning the next move), the MD and frontal cortex are working in close partnership. Furthermore, researchers studying the MD in rodents have been able to probe the underlying mechanisms of this relationship to give greater insights into how the frontal cortex and MD might interact during the performance of these essential tasks. This review summarizes the circuitry and known neuromodulators of the MD, and considers the most recent behavioral, cognitive, and neurophysiological studies conducted in monkeys and rodents; in total, this evidence demonstrates that MD makes a critical contribution to cognitive functions. We propose that communication occurs between the MD and the frontal cortex in an ongoing, fluid manner during rapid cognitive operations, via the means of efference copies of messages passed through transthalamic routes; the conductance of these messages may be modulated by other brain structures interconnected to the MD. This is similar to the way in which other thalamic structures have been suggested to carry out forward modeling associated with rapid motor responding and visual processing. Given this, and the marked thalamic pathophysiology now identified in many neuropsychiatric disorders, we suggest that changes in the different subdivisions of the MD and their interconnections with the cortex could plausibly give rise to a number of the otherwise disparate symptoms (including changes to olfaction and cognitive

  8. Dissociable prefrontal brain systems for attention and emotion

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  9. Developmental changes in real life decision making: performance on a gambling task previously shown to depend on the ventromedial prefrontal cortex.

    PubMed

    Crone, Eveline A; van der Molen, Maurits W

    2004-01-01

    Patients with bilateral lesions of the ventromedial prefrontal cortex, when performing gambling tasks modeling real-life decision-making, opt for choices that yield high immediate gains in spite of higher future losses. Under the hypothesis that the prefrontal cortex is the last brain region to mature, it was examined whether young children would show a similar preference for immediate prospects. In Experiment 1, 4 age groups (6-9, 10-12, 13-15 and 18-25 years olds) performed 2 versions of a computerized variant of the original Iowa gambling task under 3 different feedback conditions (no feedback, global feedback, and option-specific feedback) and completed the Raven Standard Progressive Matrices as an index of inductive reasoning ability. In Experiment 2, 3 age groups (7-8, 11-12, and 15-16 year olds) performed both task versions in addition to a working memory task ("Digit Span Backwards"). Results showed a developmental increase in the sensitivity to future consequences, positive or negative, that could not be explained by developmental changes in working memory capacity or inductive reasoning. It was concluded that young children share with ventromedial prefrontal patients the failure to anticipate on future outcomes.

  10. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.

    PubMed

    Plakke, Bethany; Diltz, Mark D; Romanski, Lizabeth M

    2013-11-01

    Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linked in animals and humans and therefore may also be tightly linked in the coding of communication calls in prefrontal neurons. In this study we therefore examined the role of VLPFC in encoding vocalization call type information. Specifically, we examined previously recorded single unit responses from the VLPFC in awake, behaving rhesus macaques in response to 3 types of species-specific vocalizations made by 3 individual callers. Analysis of responses by vocalization call type and caller identity showed that ∼19% of cells had a main effect of call type with fewer cells encoding caller. Classification performance of VLPFC neurons was ∼42% averaged across the population. When assessed at discrete time bins, classification performance reached 70 percent for coos in the first 300 ms and remained above chance for the duration of the response period, though performance was lower for other call types. In light of the sub-optimal classification performance of the majority of VLPFC neurons when only vocal information is present, and the recent evidence that most VLPFC neurons are multisensory, the potential enhancement of classification with the addition of accompanying face information is discussed and additional studies recommended. Behavioral and neuronal evidence has shown a considerable benefit in recognition and memory performance when faces and voices are presented simultaneously. In the natural environment both facial and vocalization information is present simultaneously and

  11. Regionally Selective Requirement for D[subscript 1]/D[subscript 5] Dopaminergic Neurotransmission in the Medial Prefrontal Cortex in Object-in-Place Associative Recognition Memory

    ERIC Educational Resources Information Center

    Savalli, Giorgia; Bashir, Zafar I.; Warburton, E. Clea

    2015-01-01

    Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D[subscript 1]/D[subscript 5] receptor neurotransmission within these brain regions for OiP memory. Bilateral…

  12. Damage to ventromedial prefrontal cortex impairs judgment of harmful intent.

    PubMed

    Young, Liane; Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Hauser, Marc; Damasio, Antonio

    2010-03-25

    Moral judgments, whether delivered in ordinary experience or in the courtroom, depend on our ability to infer intentions. We forgive unintentional or accidental harms and condemn failed attempts to harm. Prior work demonstrates that patients with damage to the ventromedial prefrontal cortex (VMPC) deliver abnormal judgments in response to moral dilemmas and that these patients are especially impaired in triggering emotional responses to inferred or abstract events (e.g., intentions), as opposed to real or actual outcomes. We therefore predicted that VMPC patients would deliver abnormal moral judgments of harmful intentions in the absence of harmful outcomes, as in failed attempts to harm. This prediction was confirmed in the current study: VMPC patients judged attempted harms, including attempted murder, as more morally permissible relative to controls. These results highlight the critical role of the VMPC in processing harmful intent for moral judgment. (c) 2010 Elsevier Inc. All rights reserved.

  13. A three-layered model of primate prefrontal cortex encodes identity and abstract categorical structure of behavioral sequences.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2011-01-01

    Categorical encoding is crucial for mastering large bodies of related sensory-motor experiences, but what is its neural substrate? In an effort to respond to this question, recent single-unit recording studies in the macaque lateral prefrontal cortex (LPFC) have demonstrated two characteristic forms of neural encoding of the sequential structure of the animal's sensory-motor experience. One population of neurons encodes the specific behavioral sequences. A second population of neurons encodes the sequence category (e.g. ABAB, AABB or AAAA) and does not differentiate sequences within the category (Shima, K., Isoda, M., Mushiake, H., Tanji, J., 2007. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315-318.). Interestingly these neurons are intermingled in the lateral prefrontal cortex, and not topographically segregated. Thus, LPFC may provide a neurophysiological basis for sensorimotor categorization. Here we report on a neural network simulation study that reproduces and explains these results. We model a cortical circuit composed of three layers (infragranular, granular, and supragranular) of 5*5 leaky integrator neurons with a sigmoidal output function, and we examine 1000 such circuits running in parallel. Crucially the three layers are interconnected with recurrent connections, thus producing a dynamical system that is inherently sensitive to the spatiotemporal structure of the sequential inputs. The model is presented with 11 four-element sequences following Shima et al. We isolated one subpopulation of neurons each of whose activity predicts individual sequences, and a second population that predicts category independent of the specific sequence. We argue that a richly interconnected cortical circuit is capable of internally generating a neural representation of category membership, thus significantly extending the scope of recurrent network computation. In order to demonstrate that these representations can be used to create an

  14. Role of Prefrontal Persistent Activity in Working Memory

    PubMed Central

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  15. Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity.

    PubMed

    Calcagno, E; Canetta, A; Guzzetti, S; Cervo, L; Invernizzi, R W

    2007-11-01

    We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.

  16. The neural dynamics of competition resolution for language production in the prefrontal cortex.

    PubMed

    Bourguignon, Nicolas J; Ohashi, Hiroki; Nguyen, Don; Gracco, Vincent L

    2018-03-01

    Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior. © 2017 Wiley Periodicals, Inc.

  17. Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia.

    PubMed

    Schenk, Lieven A; Sprenger, Christian; Onat, Selim; Colloca, Luana; Büchel, Christian

    2017-10-04

    Classical learning theories predict extinction after the discontinuation of reinforcement through prediction errors. However, placebo hypoalgesia, although mediated by associative learning, has been shown to be resistant to extinction. We tested the hypothesis that this is mediated by the suppression of prediction error processing through the prefrontal cortex (PFC). We compared pain modulation through treatment cues (placebo hypoalgesia, treatment context) with pain modulation through stimulus intensity cues (stimulus context) during functional magnetic resonance imaging in 48 male and female healthy volunteers. During acquisition, our data show that expectations are correctly learned and that this is associated with prediction error signals in the ventral striatum (VS) in both contexts. However, in the nonreinforced test phase, pain modulation and expectations of pain relief persisted to a larger degree in the treatment context, indicating that the expectations were not correctly updated in the treatment context. Consistently, we observed significantly stronger neural prediction error signals in the VS in the stimulus context compared with the treatment context. A connectivity analysis revealed negative coupling between the anterior PFC and the VS in the treatment context, suggesting that the PFC can suppress the expression of prediction errors in the VS. Consistent with this, a participant's conceptual views and beliefs about treatments influenced the pain modulation only in the treatment context. Our results indicate that in placebo hypoalgesia contextual treatment information engages prefrontal conceptual processes, which can suppress prediction error processing in the VS and lead to reduced updating of treatment expectancies, resulting in less extinction of placebo hypoalgesia. SIGNIFICANCE STATEMENT In aversive and appetitive reinforcement learning, learned effects show extinction when reinforcement is discontinued. This is thought to be mediated by

  18. Neuron number and size in prefrontal cortex of children with autism.

    PubMed

    Courchesne, Eric; Mouton, Peter R; Calhoun, Michael E; Semendeferi, Katerina; Ahrens-Barbeau, Clelia; Hallet, Melodie J; Barnes, Cynthia Carter; Pierce, Karen

    2011-11-09

    Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.

  19. Prioritising the relevant information for learning and decision making within orbital and ventromedial prefrontal cortex.

    PubMed

    Walton, Mark E; Chau, Bolton K H; Kennerley, Steven W

    2015-02-01

    Our environment and internal states are frequently complex, ambiguous and dynamic, meaning we need to have selection mechanisms to ensure we are basing our decisions on currently relevant information. Here, we review evidence that orbitofrontal (OFC) and ventromedial prefrontal cortex (VMPFC) play conserved, critical but distinct roles in this process. While OFC may use specific sensory associations to enhance task-relevant information, particularly in the context of learning, VMPFC plays a role in ensuring irrelevant information does not impinge on the decision in hand.

  20. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    PubMed

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  1. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    PubMed Central

    Katsuki, Fumi; Constantinidis, Christos

    2012-01-01

    The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms. PMID:22563310

  2. The role of medial prefrontal cortex in theory of mind: a deep rTMS study.

    PubMed

    Krause, Laura; Enticott, Peter G; Zangen, Abraham; Fitzgerald, Paul B

    2012-03-01

    Neuroimaging studies suggest that the medial prefrontal cortex (mPFC) plays a central role in cognitive theory of mind (ToM). This can be assessed more definitively, however, using repetitive transcranial magnetic stimulation (rTMS). Sixteen healthy participants (10 females, 6 males) completed tasks assessing cognitive and affective ToM following low-frequency deep rTMS to bilateral mPFC in active-stimulation and placebo-stimulation sessions. There was no effect of deep rTMS on either cognitive or affective ToM performance. When examining self-reported empathy, however, there was evidence for a double dissociation: deep rTMS disrupted affective ToM performance for those with high self-reported empathy, but improved affective ToM performance for those with low self-reported empathy. mPFC appears to play a role in affective ToM processing, but the present study suggest that stimulation outcomes are dependent on baseline empathic abilities. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    PubMed

    Balzarotti, Stefania; Colombo, Barbara

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  4. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli

    PubMed Central

    Balzarotti, Stefania

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli. PMID:27433807

  5. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease.

    PubMed

    Kashani, Alireza; Lepicard, Eve; Poirel, Odile; Videau, Catherine; David, Jean Philippe; Fallet-Bianco, Catherine; Simon, Axelle; Delacourte, André; Giros, Bruno; Epelbaum, Jacques; Betancur, Catalina; El Mestikawy, Salah

    2008-11-01

    Several lines of evidence suggest that the glutamatergic system is severely impaired in Alzheimer disease (AD). Here, we assessed the status of glutamatergic terminals in AD using the first available specific markers, the vesicular glutamate transporters VGLUT1 and VGLUT2. We quantified VGLUT1 and VGLUT2 in the prefrontal dorsolateral cortex (Brodmann area 9) of controls and AD patients using specific antiserums. A dramatic decrease in VGLUT1 and VGLUT2 was observed in AD using Western blot. Similar decreases were observed in an independent group of subjects using immunoautoradiography. The VGLUT1 reduction was highly correlated with the degree of cognitive impairment, assessed with the clinical dementia rating (CDR) score. A significant albeit weaker correlation was also observed with VGLUT2. These findings provide evidence indicating that glutamatergic systems are severely impaired in the A9 region of AD patients and that this impairment is strongly correlated with the progression of cognitive decline. Our results suggest that VGLUT1 expression in the prefrontal cortex could be used as a valuable neurochemical marker of dementia in AD.

  6. Gene expression changes in the ventral hippocampus and medial prefrontal cortex of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    PubMed

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2018-05-01

    Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and deficits in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-h sessions/day during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation, and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Binge ethanol effects on prefrontal cortex neurons, spatial working memory and task-induced neuronal activation in male and female rats.

    PubMed

    West, Rebecca K; Maynard, Mark E; Leasure, J Leigh

    2018-05-01

    Excessive alcohol intake is associated with a multitude of health risks, especially for women. Recent studies in animal models indicate that the female brain is more negatively affected by alcohol, compared to the male brain. Among other regions, excessive alcohol consumption damages the frontal cortex, an area important for many functions and decision making of daily life. The objective of the present study was to determine whether the medial prefrontal cortex (mPFC) in female rats is selectively vulnerable to alcohol-induced damage. In humans, loss of prefrontal grey matter resulting from heavy alcohol consumption has been documented, however this volume loss is not necessarily due to a decrease in the number of neurons. We therefore quantified both number and nuclear volume of mPFC neurons following binge alcohol, as well as performance and neuronal activation during a prefrontal-dependent behavioral task. Adult male and female Long-Evans rats were assigned to binge or control groups and exposed to ethanol using a well-established 4-day model of alcohol-induced neurodegeneration. Both males and females had significantly smaller average neuronal nuclei volumes than their respective control groups immediately following alcohol binge, but neither sex showed a decrease in neuron number. Binged rats of both sexes initially showed spatial working memory deficits. Although they eventually achieved control performance, binged rats of both sexes showed increased c-Fos labeling in the mPFC during rewarded alternation, suggesting decreased neural efficiency. Overall, our results substantiate prior evidence indicating that the frontal cortex is vulnerable to alcohol, but also indicate that sex-specific vulnerability to alcohol may be brain region-dependent. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex.

    PubMed

    Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa

    2017-02-01

    In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.

  9. Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia.

    PubMed

    Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon

    2015-01-01

    There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. We found a 20% decrease in NR1 protein (t(66)=-2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=-2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.

  10. Murine GRPR and Stathmin Control in Opposite Directions both Cued Fear Extinction and Neural Activities of the Amygdala and Prefrontal Cortex

    PubMed Central

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P.

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. PMID:22312434

  11. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    PubMed

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  12. Elevated Thyroid Peroxidase Antibody Increases Risk of Post-partum Depression by Decreasing Prefrontal Cortex BDNF and 5-HT Levels in Mice.

    PubMed

    Zhou, Yingying; Wang, Xinyi; Zhao, Yuhang; Liu, Aihua; Zhao, Tong; Zhang, Yuanyuan; Shan, Zhongyan; Teng, Weiping

    2016-01-01

    Post-partum depression (PPD) is a common mental disease in the perinatal period that profoundly affects mothers and their offspring. Some clinical studies have found that PPD is related to thyroid peroxidase antibodies (TPOAbs); however, the mechanism underlying this relationship is unclear. Female C57BL/6 mice immunized with adenovirus encoding the cDNA of the full-length mTPO (mTPO-Ad) were used to establish the isolated TPOAb-positive mouse model in the present study. Maternal depressive-like behaviors were assessed using the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST) post-partum. The serum TPOAb titer was measured by enzyme-linked immunosorbent assay (ELISA) before pregnancy and post-partum. Furthermore, in the prefrontal cortex, the mRNA and protein expression levels of brain-derived neurotrophic factor (BDNF) were measured, serotonin (5-HT) levels were measured by ultra-high-performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS), and total thyroxine (TT4) levels were determined by ELISA. Compared with the controls, the mice immunized with mTPO-Ad displayed depressive behaviors, with a significantly lower sucrose preference (SP) at the 12-h time point and a longer immobility time in the FST and TST, which were accompanied by a lower expression of BDNF and 5-HT but no change in the TT4 concentration in the prefrontal cortex. Together, these findings suggest that elevated TPOAb may increase the risk of subsequent PPD and decrease the concentration of BDNF and 5-HT in the prefrontal cortex.

  13. Increased antidepressant sensitivity after prefrontal cortex glucocorticoid receptor gene deletion in mice.

    PubMed

    Hussain, Rifat J; Jacobson, Lauren

    2015-01-01

    Our laboratory has previously shown that antidepressants regulate glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC). To determine if PFC GR are involved in antidepressant effects on behavior or hypothalamic-pituitary-adrenocortical (HPA) axis activity, we treated floxed GR male mice with saline or 15 or 30 mg/kg/d imipramine after PFC injection of adeno-associated virus 2/9 vectors transducing expression of Cre recombinase, to knock-down GR (PFC-GRKD), or green fluorescent protein (PFC-GFP), to serve as a control. The pattern of virally transduced GR deletion, common to all imipramine treatment groups, included the infralimbic, prelimbic, and medial anterior cingulate cortex at its largest extent, but was confined to the prelimbic and anterior cingulate cortex at its smallest extent. PFC GR knock-down increased behavioral sensitivity to imipramine, with imipramine-treated PFC-GRKD but not PFC-GFP mice exhibiting significant decreases in depression-like immobility during forced swim. PFC GR deletion did not alter general locomotor activity. The 30 mg/kg dose of imipramine increased plasma corticosterone levels immediately after a 5-min forced swim, but PFC GR knock-down had no significant effect on plasma corticosterone under these experimental conditions. We conclude that PFC GR knock-down, likely limited to the medial prelimbic and anterior cingulate cortices, can increase behavioral sensitivity to antidepressants. These findings indicate a novel role for PFC GR in influencing antidepressant response. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray.

    PubMed

    Dampney, Roger

    2018-01-01

    The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates.

  15. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications

    PubMed Central

    Goldstein, Rita Z.; Volkow, Nora D.

    2012-01-01

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will. PMID:22011681

  16. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model.

    PubMed

    Hara, Yuta; Takuma, Kazuhiro; Takano, Erika; Katashiba, Keisuke; Taruta, Atsuki; Higashino, Kosuke; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2015-08-01

    Previous studies suggest that dysfunction of neurotransmitter systems is associated with the pathology of autism in humans and the disease model rodents, but the precise mechanism is not known. Rodent offspring exposed prenatally to VPA shows autism-related behavioral abnormalities. The present study examined the effect of prenatal VPA exposure on brain monoamine neurotransmitter systems in male and female mice. The prenatal VPA exposure did not affect the levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex and striatum, while it significantly reduced methamphetamine (METH) (1.0 mg/kg)-induced hyperlocomotion in male offspring. In vivo microdialysis study demonstrated that prenatal VPA exposure attenuated METH-induced increases in extracellular DA levels in the prefrontal cortex, while it did not affect those in extracellular NA and 5-HT levels. Prenatal VPA exposure also decreased METH-induced c-Fos expression in the prefrontal cortex and the mRNA levels of DA D1 and D2 receptors in the prefrontal cortex. These effects of VPA were not observed in the striatum. In contrast to male offspring, prenatal VPA exposure did not affect METH-induced increases in locomotor activity and prefrontal DA levels and the D1 and D2 receptor mRNA levels in the prefrontal cortex in female offspring. These findings suggest that prenatal VPA exposure causes hypofunction of prefrontal DA system in a sex-dependent way. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study.

    PubMed

    Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia

    2014-01-01

    Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer's patients.

  18. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study

    PubMed Central

    Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia

    2014-01-01

    Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer’s patients. PMID:24860481

  19. Prefrontal cortex damage abolishes brand-cued changes in cola preference.

    PubMed

    Koenigs, Michael; Tranel, Daniel

    2008-03-01

    Human decision-making is remarkably susceptible to commercial advertising, yet the neurobiological basis of this phenomenon remains largely unexplored. With a series of Coke and Pepsi taste tests we show that patients with damage specifically involving ventromedial prefrontal cortex (VMPC), an area important for emotion, did not demonstrate the normal preference bias when exposed to brand information. Both comparison groups (neurologically normal adults and lesion patients with intact VMPC) preferred Pepsi in a blind taste test, but in subsequent taste tests that featured brand information ('semi-blind' taste tests), both comparison groups' preferences were skewed toward Coke, illustrating the so-called 'Pepsi paradox'. Like comparison groups, the VMPC patients preferred Pepsi in the blind taste test, but unlike comparison groups, the VMPC patients maintained their Pepsi preference in the semi-blind test. The result that VMPC damage abolishes the 'Pepsi paradox' suggests that the VMPC is an important part of the neural substrate for translating commercial images into brand preferences.

  20. Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding

    PubMed Central

    Guise, Kevin G.; Shapiro, Matthew L.

    2017-01-01

    Summary The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances. PMID:28343868

  1. Learning-Induced Plasticity in Medial Prefrontal Cortex Predicts Preference Malleability

    PubMed Central

    Garvert, Mona M.; Moutoussis, Michael; Kurth-Nelson, Zeb; Behrens, Timothy E.J.; Dolan, Raymond J.

    2015-01-01

    Summary Learning induces plasticity in neuronal networks. As neuronal populations contribute to multiple representations, we reasoned plasticity in one representation might influence others. We used human fMRI repetition suppression to show that plasticity induced by learning another individual’s values impacts upon a value representation for oneself in medial prefrontal cortex (mPFC), a plasticity also evident behaviorally in a preference shift. We show this plasticity is driven by a striatal “prediction error,” signaling the discrepancy between the other’s choice and a subject’s own preferences. Thus, our data highlight that mPFC encodes agent-independent representations of subjective value, such that prediction errors simultaneously update multiple agents’ value representations. As the resulting change in representational similarity predicts interindividual differences in the malleability of subjective preferences, our findings shed mechanistic light on complex human processes such as the powerful influence of social interaction on beliefs and preferences. PMID:25611512

  2. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex

    PubMed Central

    Strait, Caleb E.; Blanchard, Tommy C.; Hayden, Benjamin Y.

    2014-01-01

    Recent theories suggest that reward-based choice reflects competition between value signals in the ventromedial prefrontal cortex (vmPFC). We tested this idea by recording vmPFC neurons while macaques performed a gambling task with asynchronous offer presentation. We found that neuronal activity shows four patterns consistent with selection via mutual inhibition. (1) Correlated tuning for probability and reward size, suggesting that vmPFC carries an integrated value signal, (2) anti-correlated tuning curves for the two options, suggesting mutual inhibition, (3) neurons rapidly come to signal the value of the chosen offer, suggesting the circuit serves to produce a choice, (4) after regressing out the effects of option values, firing rates still could predict choice – a choice probability signal. In addition, neurons signaled gamble outcomes, suggesting that vmPFC contributes to both monitoring and choice processes. These data suggest a possible mechanism for reward-based choice and endorse the centrality of vmPFC in that process. PMID:24881835

  3. Prefrontal cortex damage abolishes brand-cued changes in cola preference

    PubMed Central

    Tranel, Daniel

    2008-01-01

    Human decision-making is remarkably susceptible to commercial advertising, yet the neurobiological basis of this phenomenon remains largely unexplored. With a series of Coke and Pepsi taste tests we show that patients with damage specifically involving ventromedial prefrontal cortex (VMPC), an area important for emotion, did not demonstrate the normal preference bias when exposed to brand information. Both comparison groups (neurologically normal adults and lesion patients with intact VMPC) preferred Pepsi in a blind taste test, but in subsequent taste tests that featured brand information (‘semi-blind’ taste tests), both comparison groups’ preferences were skewed toward Coke, illustrating the so-called ‘Pepsi paradox’. Like comparison groups, the VMPC patients preferred Pepsi in the blind taste test, but unlike comparison groups, the VMPC patients maintained their Pepsi preference in the semi-blind test. The result that VMPC damage abolishes the ‘Pepsi paradox’ suggests that the VMPC is an important part of the neural substrate for translating commercial images into brand preferences. PMID:18392113

  4. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

    PubMed

    Marek, Roger; Jin, Jingji; Goode, Travis D; Giustino, Thomas F; Wang, Qian; Acca, Gillian M; Holehonnur, Roopashri; Ploski, Jonathan E; Fitzgerald, Paul J; Lynagh, Timothy; Lynch, Joseph W; Maren, Stephen; Sah, Pankaj

    2018-03-01

    The medial prefrontal cortex (mPFC) has been implicated in the extinction of emotional memories, including conditioned fear. We found that ventral hippocampal (vHPC) projections to the infralimbic (IL) cortex recruited parvalbumin-expressing interneurons to counter the expression of extinguished fear and promote fear relapse. Whole-cell recordings ex vivo revealed that optogenetic activation of vHPC input to amygdala-projecting pyramidal neurons in the IL was dominated by feed-forward inhibition. Selectively silencing parvalbumin-expressing, but not somatostatin-expressing, interneurons in the IL eliminated vHPC-mediated inhibition. In behaving rats, pharmacogenetic activation of vHPC→IL projections impaired extinction recall, whereas silencing IL projectors diminished fear renewal. Intra-IL infusion of GABA receptor agonists or antagonists, respectively, reproduced these effects. Together, our findings describe a previously unknown circuit mechanism for the contextual control of fear, and indicate that vHPC-mediated inhibition of IL is an essential neural substrate for fear relapse.

  5. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    PubMed

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  6. Single unit activity in the medial prefrontal cortex during Pavlovian heart rate conditioning: Effects of peripheral autonomic blockade.

    PubMed

    Powell, D A; Ginsberg, Jay P

    2005-11-01

    Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.

  7. Decreased prefrontal Myo-inositol in major depressive disorder.

    PubMed

    Coupland, Nick J; Ogilvie, Catherine J; Hegadoren, Kathleen M; Seres, Peter; Hanstock, Chris C; Allen, Peter S

    2005-06-15

    Postmortem studies have shown robust prefrontal cortex glial losses and more subtle neuronal changes in major depressive disorder (MDD). Earlier proton magnetic resonance spectroscopy (1H-MRS) studies of the glial marker myo-inositol in MDD were subject to potential confounds. The primary hypothesis of this study was that MDD patients would show reduced prefrontal/anterior cingulate cortex levels of myo-inositol. Thirteen nonmedicated moderate-severe MDD patients and 13 matched control subjects were studied (six male, seven female per group). Proton magnetic resonance spectroscopy stimulated echo acquisition mode spectra (3.0 T; echo time=168 msec; mixing time=28 msec; repetition time=3000 msec) were obtained from prefrontal/anterior cingulate cortex. Metabolite data were adjusted for tissue composition. Patients with MDD showed significantly lower myo-inositol/creatine ratios (.94+/-.23) than control subjects (1.32+/-.37) [F(1,23)=6.9; p=.016]. These data suggest a reduction of myo-inositol in prefrontal/anterior cingulate cortex in MDD, which could be a consequence of glial loss or altered glial metabolism. Additional in vivo studies of glial markers could add to the understanding of the pathophysiology of MDD.

  8. Thiopental sodium reduces glutamate extracellular levels in rat intact prefrontal cortex.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2005-12-01

    To investigate the effect of thiopental sodium on glutamate extracellular levels in the prefrontal cortex (PFC) of rats, a microdialysis probe was inserted into the PFC, the perfusate was collected every 10 min throughout the experiment with thiopental sodium ip or perfused into the PFC locally. The concentrations of glutamate in the perfusate were determined by reversed-phase high performance liquid chromatography. Thiopental sodium 30 mg kg(-1) ip significantly decreased glutamate levels in the perfusate after 10, 20, 30, and 40 min; glutamate levels in the perfusate were also decreased from 10 to 90 min after thiopental sodium 50 mg kg(-1) ip. Thiopental sodium with concentrations of 30, 100, or 300 microM perfused into the PFC also decreased glutamate levels in the perfusate significantly. The results suggest that thiopental sodium decreases glutamate extracellular levels in rat intact PFC.

  9. Exon Microarray Analysis of Human Dorsolateral Prefrontal Cortex in Alcoholism

    PubMed Central

    Manzardo, Ann M.; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G.

    2014-01-01

    Background Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Methods Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC, Brodmann area 9) of 7 adult Alcoholic (6 males, 1 female, mean age 48 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST Array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using qRT-PCR, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Results Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN) and signaling (e.g., RASGRP, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease, and development including cellular assembly and organization impacting on psychological disorders. Conclusions Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation and signaling that targets white matter of the brain. PMID:24890784

  10. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  11. d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.

    PubMed

    Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A

    2008-03-31

    Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.

  12. Electrical stimulation reduces smokers' craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus.

    PubMed

    Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu

    2017-08-01

    Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.

  13. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  14. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.

    PubMed

    Birnbaum, S G; Yuan, P X; Wang, M; Vijayraghavan, S; Bloom, A K; Davis, D J; Gobeske, K T; Sweatt, J D; Manji, H K; Arnsten, A F T

    2004-10-29

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  15. A portable, multi-channel fNIRS system for prefrontal cortex: Preliminary study on neurofeedback and imagery tasks (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paik, Seung-ho; Kim, Beop-Min

    2016-03-01

    fNIRS is a neuroimaging technique which uses near-infrared light source in the 700-1000 nm range and enables to detect hemodynamic changes (i.e., oxygenated hemoglobin, deoxygenated hemoglobin, blood volume) as a response to various brain processes. In this study, we developed a new, portable, prefrontal fNIRS system which has 12 light sources, 15 detectors and 108 channels with a sampling rate of 2 Hz. The wavelengths of light source are 780nm and 850nm. ATxmega128A1, 8bit of Micro controller unit (MCU) with 200~4095 resolution along with MatLab data acquisition algorithm was utilized. We performed a simple left and right finger movement imagery tasks which produced statistically significant changes of oxyhemoglobin concentrations in the dorsolateral prefrontal cortex (dlPFC) areas. We observed that the accuracy of the imagery tasks can be improved by carrying out neurofeedback training, during which a real-time feedback signal is provided to a participating subject. The effects of the neurofeedback training was later visually verified using the 3D NIRfast imaging. Our portable fNIRS system may be useful in non-constraint environment for various clinical diagnoses.

  16. Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory

    PubMed Central

    Balaguer-Ballester, Emili; Seamans, Jeremy K.; Phillips, Anthony G.; Durstewitz, Daniel

    2015-01-01

    Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines. PMID:26180194

  17. Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo

    PubMed Central

    Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2015-01-01

    Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks. PMID:23152631

  18. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay.

    PubMed

    Floor, E; Wetzel, M G

    1998-01-01

    The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.

  20. Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults.

    PubMed

    Lighthall, Nichole R; Huettel, Scott A; Cabeza, Roberto

    2014-11-19

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults-evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC. Copyright © 2014 the authors 0270-6474/14/3415648-10$15.00/0.