Science.gov

Sample records for improving sewage degradation

  1. The use of biochar-amended composting to improve the humification and degradation of sewage sludge.

    PubMed

    Zhang, Jining; L, Fan; Shao, Liming; He, Pinjing

    2014-09-01

    Wood biochar (6%, 12% and 18% of fresh sludge weight) adding to a sludge-and-straw composting system was investigated to assess the potential of biochar as a composting amendment. Organic degradation efficiency, temporal humification profile of the water-extractable organic fraction and solid organic matter, through spectroscopic, microscopic and elementary analysis were monitored. Fluorescent excitation and emission matrix indicated that concentrations of aqueous fulvic-acid-like and humic-acid-like compounds were, respectively, 13-26% and 15-30% higher in the biochar-amended treatments, than those in the control without biochar-amended. On the first day of sludge aerobic incubation, the presence of biochar resulted in increased oxygen uptake rates of 21-37% due to its higher nano-porosity and surface area. SEM indicated that, in the biochar-amended sludge, the dense microstructure on the sludge surface disintegrated into fragments with organic fraction degraded and water lost. Results indicated that 12-18%w/w addition of wood biochar to sludge composting was recommended. PMID:24656550

  2. Modification to degradation of hexazinone in forest soils amended with sewage sludge.

    PubMed

    Wang, Huili; Wang, Chengjun; Chen, Fan; Ma, Meiping; Lin, Zhenkun; Wang, Wenwei; Xu, Zhengti; Wang, Xuedong

    2012-01-15

    Influences of one sewage sludge on degradation of hexazinone and formation of its major metabolites were investigated in four forest soils (A, B, C and D), collected in Zhejiang Province, China. In non-amended forest soils, the degradation half-life of hexazinone was 21.4, 30.4, 19.4 and 32.8 days in forest soil A, B, C and D, respectively. Degradation could start in soil A and C without lag period because the two soils had been contaminated by this herbicide for a long time, possibly leading to completion of acclimation period of hexazinone-degrading bacteria. In forest soils amended with sewage sludge, the degradation rate constant increased by 17.3% in soil A, 48.2% in soil B, 8.1% in soil C and 51.6% in soil D, respectively. The higher degradation rates (soil A and C) in non-amended soils accord with the lower rate increase in sewage sludge-amended soils. Under non-sterile conditions, biological mechanism accounted for 51.8-62.4% of hexazinone degradation in four soils. Under sterile conditions, the four soils had the similar chemical degradation capacity for hexazinone. In non-amended soil B, only one metabolite (B) was detected, while two metabolites (B and C) were found in sewage sludge-amended soil B. Similarly situated in agricultural soils, N-demethylation at 6-position of triazine ring, hydroxylation at the 4-positon of cyclohexyl group, and removal of the dimethylamino group with formation of a carbonyl group at 6-position of triazine ring appear to be the principal mechanism involved in hexazinone degradation in sewage sludge-amended forest soils. These data will improve understanding of the actual pollution risk as a result of forest soil fertilization with sewage sludge. PMID:22112800

  3. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    PubMed

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low. PMID:26452367

  4. Simulation of substrate degradation in composting of sewage sludge

    SciTech Connect

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-10-15

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.

  5. Strategies to improve energy efficiency in sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua

    2013-06-01

    This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.

  6. Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong; Liu, Yuankun

    2015-03-01

    The gamma-irradiation-induced degradation of antibiotics sulfamethazine (SMT) in sludge mixture was investigated. The results showed that gamma irradiation was effective in removing SMT from contaminated sludge mixture. With an initial SMT concentration of 10 mg/L, the SMT removal efficiency reached 65% at 1.0 kGy and increased to 98% at 2.5 kGy. The SMT degradation rate was lower in the sludge mixture than that in pure water. The pseudo first-order kinetic constant of SMT degradation in pure water was 2.3 times higher than that in the sludge mixture. Analysis of the SMT concentrations in the supernatant and sludge residue revealed that 93-97% of SMT was observed in the supernatant and the detected SMT in the sludge residue was 168±29, 147±4, and 87±9 μg/g dry weight following irradiation at doses of 0, 1.0 and 2.5 kGy, respectively. The sludge solubilization slowly increased from 1.5% to 3.5% with increasing dose from 1.0 to 5.0 kGy, while the sludge activity decreased by 85-98%. Addition of H2O2 exhibited a synergetic effect on the degradation of SMT, with the pseudo first-order kinetic constant k increasing by around 25%.

  7. Eucalyptus development in degraded soil fertilized with sewage sludge and mineral fertilizer

    NASA Astrophysics Data System (ADS)

    Rodrigues, R. A. F.; Santos, E. B.; Alves, M. C.; Arruda, O. G.

    2012-04-01

    The aim of this study was to compare the development of eucalyptus in a degraded Oxisol with mineral fertilizer and sewage sludge. The study was conducted in Selviria, Mato Grosso do Sul, Brasil. The culture of eucalyptus was planted in 2003 at 2.0 m x 1.5 m spacing, with application of 60 Mg ha-1 of sewage sludge (dry basis) and mineral fertilizer. After five years (2008) the area received biosolids and mineral fertilizer, and after five months, were evaluated for height and diameter at breast height of Eucalyptus. The experimental design was randomized blocks with four treatments: T1 - control (without addition of inputs), T2 - Mineral fertilization (30 kg ha-1 N, 90 kg ha-1 of P2O5 and 60 kg ha-1 K2O), T3 - Reapplication of 4.64 Mg ha-1 of sewage sludge, dry basis, T4 - Reapplication of 9.28 Mg ha-1 of sewage sludge, dry basis. Before reapplication the biosolids plant height was higher in the eucalyptus with treatment 9.28 Mg ha-1 of sewage sludge (8.03 m) compared to control (5.75 m) and mineral fertilizer (5.91 m) and that treatment 4.64 Mg ha-1 of sewage sludge (6.34 m) did not differ from the previous three. For the diameter at breast height was the highest value for treatment with 9.28 Mg ha-1 (7.78 cm) compared to control (5.23 cm) and 4.64 Mg ha-1 (5.03 cm), and that of mineral fertilizer (5.96 cm) did not differ from all treatments. After reapplication of sludge plant height was higher in the eucalyptus treatment with 9.28 Mg ha-1 of sewage sludge (11.21 m) compared with control (7.51 m), mineral fertilizer (7.77 m) and 4 64 Mg ha-1 (8.07 m), which did not differ. The diameter at breast height had the same behavior before the application of biosolids in the highest value observed being 9.28 Mg ha-1 (8.46 cm) compared with control (5.75 cm) and 4.64 Mg ha-1 (5.03 cm) and that of mineral fertilizer (6.34 cm) did not differ from the others. Reapplication of the dose of 9.28 Mg ha-1 of sewage sludge in degraded Oxisol provided greater height and diameter at breast height from eucalyptus trees.

  8. Improving the growth of Rubrivivax gelatinosus cultivated in sewage environment.

    PubMed

    Wu, Pan; Li, Jian-zheng; Wang, Yan-ling; Tong, Qing-yue; Liu, Xian-shu; Du, Cong; Li, Ning

    2015-01-01

    Rubrivivax gelatinosus cultivated in wastewater environment can combine the biomass resource recycling for generating chemicals with sewage purification. However, low biomass accumulation restricts the exertion of this advantage. Thus, this paper investigated Fe(3+) advancement for biomass production in starch wastewater under light-anaerobic condition. Results showed that addition of Fe(3+) was successful in enhancing biomass production, which certainly improved the feasibility of biomass recycling in R. gelatinosus starch wastewater treatment. With optimal Fe(3+) dosage (20 mg/L), biomass production reached 4,060 mg/L, which was 1.63 times that of control group. Amylase activity was improved by 48 %. Both COD removal and starch removal reached 90 %. Hydraulic retention time was shortened by 25 %. Proper Fe(3+) dosage enhanced biomass production, but excess Fe(3+) was harmful for biomass accumulation. PMID:25060412

  9. Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge

    SciTech Connect

    Mikesell, M.D.; Boyd, S.A.

    1988-12-01

    The addition of biologically active anaerobic sewage sludge, previously shown to dechlorinate chlorophenols, to soil contaminated with pentachlorophenol (PCP) resulted in greatly enhanced rates of PCP degradation. The sludge was added to a soil at a rate of 5 g kg/sup -1/ (dry weight basis) and the mixture incubated anaerobically. Initial PCP concentrations of 10-30 mg kg/sup -1/ (ppm) were completely degraded within 28-35 days. In anaerobic soil without sludge or aerobic soil with or without sludge, PCP persisted, 55% and 90%, respectively, remaining after 56 days. Higher rates of sludge addition gave small differences in PCP degradation. PCP was degraded by sequential dechlorination, and the products of PCP degradation in soil-sludge mixtures were the same as observed in sludge alone. The sequence of products was PCP ..-->.. 2,3,4,5-tetrachlorophenol ..-->.. 3,4,5-trichlorophenol ..-->.. 3,5-dichlorophenol ..-->.. 3-chlorophenol; 3,4-dichlorophenol was also observed. These results clearly demonstrate that the dechlorinating activity present in sludge could be transferred to soil through bioaugmentation.

  10. Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology.

    PubMed

    Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F

    2014-05-15

    Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. PMID:24631876

  11. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  12. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    PubMed

    Rodrguez-Rodrguez, Carlos E; Lucas, Daniel; Barn, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodrguez-Mozaz, Sara; Eljarrat, Ethel; Daz-Cruz, M Silvia; Barcel, Dami; Caminal, Glria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge. PMID:24582425

  13. Development of an analytical procedure to study linear alkylbenzenesulphonate (LAS) degradation in sewage sludge-amended soils.

    PubMed

    Comellas, L; Portillo, J L; Vaquero, M T

    1993-12-24

    A procedure for determining linear alkylbenzenesulphonates (LASs) in sewage sludge and amended soils has been developed. Extraction by sample treatment with 0.5 M potassium hydroxide in methanol and reflux was compared with a previously described extraction procedure in Soxhlet with methanol and solid sodium hydroxide in the sample. Repeatability results were similar with savings in extraction time, solvents and evaporation time. A clean-up method involving a C18 cartridge has been developed. Analytes were quantified by a reversed-phase HPLC method with UV and fluorescence detectors. Recoveries obtained were higher than 84%. The standing procedure was applied to high doses of sewage sludge-amended soils (15%) with increasing quantities of added LASs. Degradation data for a 116-day period are presented. PMID:8111477

  14. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-06-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  15. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    PubMed

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. PMID:25662236

  16. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis.

    PubMed

    Liang, Kang; Liu, Jingfu

    2016-02-15

    Although organophosphate esters (OPEs) in the ambient environment are from sewage treatment plants due to the discharge of effluent and application of sludge, the distribution, degradation and fate of OPEs in advanced municipal sewage treatment plants remain unclear. This work focused on the use of mass flow and mass balance analysis to understand the behaviors and fate of 14 OPEs in an advanced municipal sewage treatment plant. OPEs were detected in all sewage water and sludge samples with total OPEs (ΣOPEs) concentrations of 1399±263ng/L in raw sewage aqueous phase, 833±175ng/L in tertiary effluent aqueous phase, and 315±89ng/g dry weight in dewatered sludge. The dissolved concentrations of ΣOPEs significantly decreased during biological treatment, whereas negligible decrease was observed in mechanical and physical-chemical treatments. For individual OPE, the chlorinated tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP) did not decrease but increased during both biological treatment and physical-chemical treatment. Mass flow analysis indicated the total removal efficiency of ΣOPEs in aqueous phase was 40.5%, and the polarity-specific removal efficiencies for individual OPE were positively related to their solid-water partition coefficients (Kd). Furthermore, mass balance results showed that 53.1% and 6.3% of the initial OPE mass flow were eventually transferred to the effluents and dewatered sludge, respectively, while the remaining 39.9% and 0.7% were lost due to biodegradation and physical-chemical treatment, respectively. It was indicated that the activated sludge treatment system with anaerobic/anoxic/aerobic bioreactors was a major factor in the removal of OPEs from the raw sewage, while transfer to dewatered sludge governed by hydrophobic interactions was limited during the sewage treatment. Meanwhile, the degradation difference of OPEs in activated sludge treatment was more related with their molecular structure over their hydrophobicity. PMID:26657372

  17. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge.

    PubMed

    Donoso-Bravo, Andrs; Prez-Elvira, Sara; Fdz-Polanco, Fernando

    2015-01-01

    Two-phase anaerobic systems are being increasingly implemented for the treatment of both sewage sludge and organic fraction of municipal solid waste. Despite the good amount of mathematical models in anaerobic digestion, few have been applied in two-phase systems. In this study, a three-reaction mechanistic model has been developed, implemented and validated by using experimental data from a long-term anaerobic two-phase (TPAD) digester treating sewage sludge. A sensitivity analysis shows that the most influential parameters of the model are the ones related to the hydrolysis reaction and the activity of methanogens in the thermophilic reactor. The calibration procedure highlights a noticeable growth rate of the thermophilic methanogens throughout the evaluation period. Overall, all the measured variables are properly predicted by the model during both the calibration and the cross-validation periods. The model's representation of the organic matter behaviour is quite good. The most important disagreements are observed for the biogas production especially during the validation period. The whole application procedure underlines the ability of the model to properly predict the behaviour of this bioprocess. PMID:25400016

  18. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  19. The impact of intermediate thermal hydrolysis on the degradation kinetics of carbohydrates in sewage sludge.

    PubMed

    Shana, A; Ouki, S; Asaadi, M; Pearce, P; Mancini, G

    2013-06-01

    The purpose of this paper is to report the results, from laboratory-scale investigations, on the impact of intermediate thermal hydrolysis process (ITHP) on already digested sludge in general, and sludge carbohydrate content degradation process efficiency in particular. The ITHP performance data were compared with the performance of established conventional thermal hydrolysis process (THP). The degradation of sludge carbohydrates as a result of thermal pre-treatment and anaerobic digestion followed the first order kinetics. The overall sludge organic matter degradation kinetics rate constants indicated that the use of THP as an intermediate digestion step can enhance the already digested sludge organic matter degradation; further reducing the sludge mass and increasing its conversion to biogas. PMID:23584417

  20. Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers.

    PubMed

    Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2015-12-30

    We studied in the laboratory the bioremediation effects over a 100-day period of three edaphic biostimulants (BS) obtained from sewage sludge (SS) and from two different types of chicken feathers (CF1 and CF2), in a soil polluted with three polycyclic aromatic hydrocarbons (PAH) (phenanthrene, Phe; pyrene, Py; and benzo(a)pyrene, BaP), at a concentration of 100 mg kg(-1) soil. We determined their effects on enzymatic activities and on soil microbial community. Those BS with larger amounts of proteins and a higher proportion of peptides (<300 daltons), exerted a greater stimulation on the soil biochemical properties and microbial community, possibly because low molecular weight proteins can be easily assimilated by soil microorganisms. The soil dehydrogenase, urease, β-glucosidase and phosphatase activities and microbial community decreased in PAH-polluted soil. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe. The application of the BS to PAH-polluted soils decreased the inhibition of the soil biological properties, principally at 7 days into the experiment. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe and was higher in polluted soils amended with CF2, followed by SS and CF1, respectively. PMID:26188866

  1. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell.

    PubMed

    Chen, Yuejia; Jiang, Junqiu; Zhao, Qingliang

    2014-01-01

    The effect of sludge freezing/thawing on its disintegration and subsequent use as substrate in a microbial fuel cell (MFC) was investigated to enhance organic matter degradation and electricity generation. Experimental results indicated that long freezing time (more than 48 h) was effective in disintegrating the sludge collected from the secondary sedimentation tank of a wastewater treatment plant. Freezing/thawing pretreatment could enhance the degradation of total chemical oxygen demand (COD) and electricity generation in MFC due to the higher concentration of soluble COD and ammonium nitrogen available in the pretreated sludge. The removal efficiency of total COD was increased from 25.3% (raw sludge as substrate) to 66.2% and the maximum power output was increased from 8.9 (raw sludge as substrate) to 10.2 W/m in MFC. PMID:25098873

  2. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  3. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    PubMed

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P < 0.05) and blank control (P < 0.01). The bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P < 0.01). The centrifugal dehydration efficiency of MSS rose from 73.00 to 90.00% at day 12. Microscopic observations and energy dispersive spectrum analysis demonstrated that the dewaterability improvement might be attributed to the changes of sludge structure from flocculent to obvious granular and the formation of secondary minerals mainly consisting of iron, oxygen and sulfur elements. The results above demonstrated that bacterial consortium enriched from acid mine drainage (AMD) was suitable to boost sludge bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies. PMID:26271772

  4. A Study About Improvement of Efficiency of a Sewage Heat Utilization System

    NASA Astrophysics Data System (ADS)

    Kobayakawa, Tomoaki; Hihara, Eiji; Hanazaki, Hirotaka

    In order to acquire the basis of technical information that will be required for the design and operation of a sewage heat utilization system, this paper discusses the data analysis of operational performance at the DHC plant in Makuhari HB area. The methodology used in this study is to clarify the characteristics of a sewage heat utilization system from compound characteristics of the DHC plant that consists of various heating systems, and evaluate them.

  5. A Study About Improvement of Efficiency of a Sewage Heat Utilization System

    NASA Astrophysics Data System (ADS)

    Kobayakawa, Tomoaki; Hihara, Eiji; Hanazaki, Hirotaka

    On the basis of the data analysis of operational performance at the DHC plant in Makuhari HB area, it is examined how the properties of the sewage used as a heat source affect the effectiveness of the system. The result of this study suggests that a sewage heat utilization system is able to perform higher efficiency when it is designed as a distributed system that has separate heat sources than a central system.

  6. Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH.

    PubMed

    Le, Ngoc Tuan; Julcour, Carine; Ratsimba, Berthe; Delmas, Henri

    2013-10-15

    This work aimed at understanding the combined effect of sludge pH, temperature, and external pressure on the efficiency of sewage sludge ultrasound (US) pretreatment. Based on the evolution of both the degree of sludge disintegration (DDCOD) and pH, application of 40 mgNaOH/gTS during 30 min was selected for chemical pretreatment. Mechanical and thermal effects induced by cavitation contributed in similar proportion to sludge disruption, but the role of the latter effect tended to be weakened after mild alkalisation of sludge. When applying external pressure, DDCOD was always improved, by about 10% at the optimal value of 2 bar. The optimal combination was an addition of 40 mgNaOH/gTS prior to adiabatic sonication at 2 bar, resulting in a DDCOD value of about 46% at 75,000 kJ/kgTS (as compared to 35% for sole US) for the investigated mixed sludge. Very short time US application yielded a drastic reduction of the volume mean particle size, mainly due to the erosion and disruption of large flocs (>90 μm), yet this was not sufficient to initiate significant subsequent COD solubilisation under stirring. PMID:23831677

  7. Improved degradation resistance of (AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Ladany, J.

    1980-01-01

    Simultaneous doping with Ge and Zn improves degradation resistance of short-wavelength (AlGa)As lasers. Method opens up prospects for greatly increased reliability in lasers and LED's operating at 7,500 angstroms or below.

  8. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater forage production potential, and could be applied as forage supply source for ruminants. The improved effective degradability of harvest mixture material could be attributed to greater degradable components involving the rapidly degradable fractions (a), potentially degradable (b) fractions, and degradable rate constant PMID:26672990

  9. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability

    PubMed Central

    Xie, Yuhuai; Li, Jing.; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of ‘b’ fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater ‘a’ fraction, ‘b’ fraction, ‘c’ values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater forage production potential, and could be applied as forage supply source for ruminants. The improved effective degradability of harvest mixture material could be attributed to greater degradable components involving the rapidly degradable fractions (a), potentially degradable (b) fractions, and degradable rate constant (c), than that of corn and rye hay. PMID:26672990

  10. Improving material and energy recovery from the sewage sludge and biomass residues.

    PubMed

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. PMID:25481696

  11. Management Practices to Improve Productivity of Degraded/Eroded Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productivity of degraded/eroded soils can be restored by using organic amendment, such as manure, and improved soil management. A study is being conducted near Hays, KS, to investigate and compare restorative potential of two nitrogen (N) sources. Dried beef manure and urea fertilizer were each appl...

  12. Magnesium ions improving the growth and organics reduction of Rhodospirillum rubrum cultivated in sewage through regulating energy metabolism pathways.

    PubMed

    Xu, Chang-Ru; Wu, Pan; Lang, Lang; Liu, Ri-Jia; Li, Jian-Zheng; Ji, Yu-Bin

    2015-01-01

    Rhodospirillum rubrum has the potential for biomass resource recycling combined with sewage purification. However, low biomass production and yield restricts the potential for sewage purification. This research investigated the improvement of biomass production, yield and organics reduction by Mg²⁺ in R. rubrum wastewater treatment. Results showed that with optimal dosage (120 mg/L), biomass production reached 4,000 mg/L, which was 1.5 times of that of the control group. Biomass yield was improved by 43.3%. Chemical oxygen demand (COD) removal reached over 90%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that Mg²⁺ enhanced the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content on respiration and photophosphorylation. These effects then enhanced ATP production, which led to more biomass accumulation and COD removal. With 120 mg/L Mg²⁺ dosage, the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content, ATP production were improved, respectively, by 33.3%, 50%, 67%, 41.3% compared to those of the control group. PMID:26204080

  13. Composition and method for the treatment of sewage

    SciTech Connect

    Starr, J.

    1981-01-20

    Sewage treatment composition formed by combination of triancontanol with an organic soil improvement agent derived by digestion of milch cow excrement and method of treating sewage are described to reduce sludge by addition of the composition to the sewage.

  14. Sewage Monitors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Every U.S. municipality must determine how much waste water it is processing and more importantly, how much is going unprocessed into lakes and streams either because of leaks in the sewer system or because the city's sewage facilities were getting more sewer flow than they were designed to handle. ADS Environmental Services, Inc.'s development of the Quadrascan Flow Monitoring System met the need for an accurate method of data collection. The system consists of a series of monitoring sensors and microcomputers that continually measure water depth at particular sewer locations and report their findings to a central computer. This provides precise information to city managers on overall flow, flow in any section of the city, location and severity of leaks and warnings of potential overload. The core technology has been expanded upon in terms of both technical improvements, and functionality for new applications, including event alarming and control for critical collection system management problems.

  15. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.

  16. Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast

    SciTech Connect

    Charles R. Berry

    1987-09-01

    In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. In all studies, concentrations of total nitrogen in the soil were higher on sludge plots than on control or fertilizer plots, even on good forest sites. In seven of the eight studies, concentrations of phosphorus also were higher on sludge plots than on control or fertilizer plots. Nitrogen and phosphorus tended to be higher in foliage from trees growing on sludge plots. Deep subsoiling was beneficial regardless of soil amendment. Where weeds were plentiful at the outset, they became serious competitors on plots receiving sludge.

  17. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1970's, National Space Technology Laboratories discovered that water hyacinths literally thrive on sewage; they absorb and digest nutrients and minerals from wastewater, converting sewage effluents to clean water. They offer a means of purifying water at a fraction of the cost of a conventional sewage treatment plant, and provide a bonus value in byproducts. Hyacinths must be harvested at intervals; the harvested plants are used as fertilizers, high-protein animal feed and a source of energy. Already serving a number of small towns, the "aquaculture" technique has significantly advanced with its adoption by a major U.S. city.

  18. Improvement in the degradation resistance of LDPE for radiochemical processing

    NASA Astrophysics Data System (ADS)

    Zaharescu, Traian; Ple?a, Ilona; Jipa, Silviu

    2014-01-01

    The effect of rosemary extract on radiochemical stability of low density polyethylene was studied by chemiluminescence, FT-IR spectroscopy and differential scanning calorimetry after ?(137Cs)-irradiation at processing low doses (10 and 20 kGy) in respect of pristine material. The additive concentrations (1, 2 and 5 wt%) induced a significant improvement in radiation stability, especially at high temperatures, for example 200 C, which is proved chiefly by lower values of chemiluminescence intensities. The comparison of neat and rosemary-modified LDPE samples has revealed the protection action of this natural extract, which delays efficiently the propagation of oxidative degradation in ?-exposed polyethylene. The most evident proof for antioxidative protection efficiency promoted by rosemary is the smooth changes in hydroxyl and carbonyl indexes calculated on LDPE/5 wt% rosemary samples at all exposure doses.

  19. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernndez Fernndez, Mara Teresa; Garca Izquierdo, Carlos; Sol Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gdor (Almera), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, ?-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue, which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  20. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion.

    PubMed

    Schaubroeck, Thomas; De Clippeleir, Haydée; Weissenbacher, Norbert; Dewulf, Jo; Boeckx, Pascal; Vlaeminck, Siegfried E; Wett, Bernhard

    2015-05-01

    It is still not proven that treatment of sewage in a wastewater treatment plant (WWTP) is (in every case) environmentally friendly. To address this matter, we have applied a state-of-the-art life cycle assessment (LCA) to an energy self-sufficient WWTP in Strass (Austria), its supply chain and the valorization of its 'products': produced electricity out of biogas from sludge digestion and the associated stabilized digestate, applied as agricultural fertilizer. Prominent aspects of our study are: a holistic environmental impact assessment, measurement of greenhouse gas emissions (including N2O), and accounting for infrastructure, replacement of conventional fertilizers and toxicity of metals present in the stabilized digestate. Additionally, the environmental sustainability improvement by implementing one-stage partial nitritation/anammox (e.g. DEMON(®)) and co-digestion was also assessed. DEMON on the digesters reject water leads to a considerable saving of natural resources compared to nitritiation/denitritation (about 33% of the life cycle resource input), this through the lowering of sludge consumption for N-removal, and thus increasing electricity production via a higher sludge excess. However, its N2O emission could be restrained through further optimization as it represents a large share (30-66%) of the plants' damaging effect on human health, this through climate change. The co-substrate addition to the digester resulted in no significant improvement of the digestion process but induced net electricity generation. If respective amounts of conventional fertilizers are replaced, the land application of the stabilized digestate is environmentally friendly through prevention of natural resource consumption and diversity loss, but possibly not regarding human health impact due the presence of toxic heavy metals, mainly Zn, in the digestate. The outcomes show that the complete life cycle results in a prevention of resource extraction from nature and a potential mitigation of diversity loss (though for some impact categories no quantification of associated diversity loss is possible) but it also leads to a damaging effect on human health, mainly via climate change and heavy metal toxicity. Since it is for now impossible to aggregate the impact to these different aspects in a sound manner, it is not yet possible to consider in this case the studied system as environmentally friendly. Generally, the field of LCA needs further development to present a better and single outcome. PMID:25727156

  1. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.

  2. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism.

    PubMed

    Annabi, Cyrine; Fourcade, Florence; Soutrel, Isabelle; Geneste, Florence; Floner, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2016-01-01

    This study aims to investigate the effectiveness of the electro-Fenton process on the removal of a second generation of fluoroquinolone, enoxacin. The electrochemical reactor involved a carbon-felt cathode and a platinum anode. The influence of some experimental parameters, namely the initial enoxacin concentration, the applied current intensity and the Fe(II) amount, was examined. The degradation of the target molecule was accompanied by an increase of the biodegradability, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0.5 after 180min of electrolysis at 50mgL(-1) initial enoxacin concentration, 0.2mmolL(-1) Fe(II) concentration and 300mA applied current intensity. TOC and COD time-courses were also evaluated during electrolysis and reached maximum residual yields of 54% and 43% after 120min of treatment, respectively. Moreover, a simultaneous generation of inorganic ions (fluorides, ammonium and nitrates) were observed and 3 short chain carboxylic acids (formic, acetic and oxalic acids) were identified and monitored during 180min of electrolysis. By-products were identified according to UPLC-MS/MS results and a degradation pathway was proposed. PMID:26413803

  3. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil.

    PubMed

    Oleszczuk, Patryk

    2006-11-01

    The application of sewage sludge as a fertilizer is a common method used to improve soil properties. However, sewage sludge may contain various organic pollutants including polycyclic aromatic hydrocarbons. In the present study, the persistence of PAHs in soils fertilized with different sewage sludge doses was compared in relation to the sewage sludge dose applied (30, 75, 150, 300 and 600 Mgha(-1)) and the content of the polycyclic aromatic hydrocarbons in them. The experiment was carried out in two blocks of experimental plots divided according to the type of plants grown: field plants and perennial-willow. Sewage sludge addition to soils resulted in an increase in the content of polycyclic aromatic hydrocarbons in these soils. This increase was proportional to the quantity of sewage sludge applied. The results obtained showed that during a 42/54-month period, more than half of the individual PAHs introduced into the soil with sewage sludge were degraded. The scope of dissipation depended on the sewage sludge dose and the use to which the area was put. In the experiment with the willow only in the case of the highest sludge dose was a decrease in the PAH content above 50% noted; whereas in the case of the experiment with the field plants, it was higher by 50% for all sewage sludge doses. In experiment with field plants the highest scope of individual PAH disappearance was observed in the soil with the sewage sludge dose amounting to 300 Mgha(-1). In experiment with willow a relatively high dissipation of individual PAHs (>50%) was found in the treatment with the highest sludge dose (600 Mgha(-1)). A wider PAH dissipation range in the experiment with field plants was conditioned by the more favourable conditions created as a result of the breeding treatments applied. Agrotechnical treatments clearly increased the disappearance of the PAHs in those soils fertilized with the lowest sewage sludge doses (30 and 75 Mgha(-1)). The results obtained showed that the preferred method of treating a light soil fertilised with sewage sludges should be a one-year system, with a sludge application of 75 Mgha(-1). PMID:16624376

  4. Inducing Oncoprotein Degradation to Improve Targeted Cancer Therapy1

    PubMed Central

    Ray, Dipankar; Cuneo, Kyle C.; Rehemtulla, Alnawaz; Lawrence, Theodore S.; Nyati, Mukesh K.

    2015-01-01

    Over the past decade, inhibition of the kinase activities of oncogenic proteins using small molecules and antibodies has been a mainstay of our anticancer drug development effort, resulting in several Food and Drug Administration–approved cancer therapies. The clinical effectiveness of kinase-targeted agents has been inconsistent, mostly because of the development of resistance. The expression and function of oncoproteins and tumor suppressors are regulated by numerous posttranslational protein modifications including phosphorylation, ubiquitination, and acetylation; hence, targeting specific posttranslational protein modifications provides for an attractive strategy for anticancer drug development. The present review discusses the hypothesis that targeted degradation of an oncoprotein may overcome many of the shortcomings seen with kinase inhibitors and that the approach would enable targeted inhibition of oncogenic proteins previously thought to be undruggable. PMID:26476077

  5. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    PubMed

    Pea, Arnzazu; Mingorance, Ma Dolores; Guzmn-Carrizosa, Ignacio; Fernndez-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment. PMID:25506677

  6. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with sequence batch reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2011-07-01

    To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge. PMID:21922825

  7. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng

    2011-10-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application. PMID:22279914

  8. Remediation/Restoration of Degraded Soil to Improve Productivity In The Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and productivity of some farmlands in the central Great Plains Region (CGPR) have been lost through wind and water erosion induced by tillage and poor soil management. Productivity of degraded/eroded soils can be restored using organic amendments such as manure and improved crop and soil...

  9. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.

    PubMed

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard

    2016-02-10

    Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. PMID:26712478

  10. 1. VIEW OF SEWAGE TANKS AT SEWAGE TREATMENT PLANT, BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SEWAGE TANKS AT SEWAGE TREATMENT PLANT, BUILDING 304, LOOKING SOUTHEAST. - Mill Valley Air Force Station, Sewage Plant & Tanks, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  11. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application.

    PubMed

    Venkatesan, Arjun K; Halden, Rolf U

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~pH2) followed by basic (~pH12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40±16t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. PMID:26849337

  12. Sewage: waste or resource

    SciTech Connect

    Hamlin, C.

    1980-10-01

    This article contains a historical review of sewage, its collection and disposal, its treatment and its application. It was not until the second half of the 19th Century that it was realized, that sewage should be returned to the soil where its immense fertilizer value would prove a source of prosperity. The production of biogas and/or alcohol has been largely overlooked and the utilization of sewage as a renewable resource is urged.

  13. Free Fe(3+)/Fe(2+) improved the biomass resource recovery and organic matter removal in Rhodobacter sphaeroides purification of sewage.

    PubMed

    Liu, Rijia; Wu, Pan; Lang, Lang; Xu, Changru; Wang, Yanling

    2016-01-01

    The enhancement in biomass production and organic matter removal of Rhodobacter sphaeroides (R. sphaeroides) through iron ions in soybean protein wastewater treatment was investigated. Different dosages of ferric ions were introduced in the reactors under light-anaerobic conditions. Free ferric and ferrous ions in wastewater were formed and their concentrations were the optimal for the growth of R. sphaeroides when the total Fe dosage was 20 mg/L. At the optimal dosage, biomass production (4000 mg/L) and protease activity improved by 50% and 48% when compared to the controls, respectively. The organic matter and protein removal reached above 90% and hydraulic retention time was shortened from 96 to 72 h. A mechanism analysis indicated that iron ions can effectively improve the adenosine triphosphate production, which may furthermore encourage the synthesis of protease and the cellular material. PMID:26565434

  14. CONNECTICUT SEWAGE TREATMENT PLANTS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of sewage treatment plants in Connecticut. It is a point Shapefile that includes the locations of sewage treatment plants, but not their discharge locations to surface or groundater. The National Pollution Discharge Elimintation Discharge Syste...

  15. Wastewater discharge degrades coastal waters and reef communities in southern Thailand.

    PubMed

    Reopanichkul, Pasinee; Carter, R W; Worachananant, Suchai; Crossland, C J

    2010-06-01

    Runoff and sewage discharge from land developments can cause significant changes in water quality of coastal waters, resulting in coral degradation. Coastal waters around Phuket, Thailand are influenced by numerous sewage outfalls associated with rapid tourism development. Water quality and biological monitoring around the Phuket region was undertaken to quantify water quality and biotic characteristics at various distances from sewage outfalls. The surveys revealed strong gradients in water quality and biotic characteristics associated with tourism concentration levels as well as seasonal variability. Water and reef quality tended to decrease with increasing tourist intensity, but improved with increasing distance from sewage discharge within each of the three study locations. In addition, the effect of wastewater discharge was not localised around the source of pollution, but appeared to be transported to non-developed sites by currents, and exacerbated in the wet season. PMID:20044130

  16. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  17. A universal method for improving the dynamical degradation of a digital chaotic system

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Miao, Suoxia

    2015-08-01

    Trying to generate a chaotic signal on a computer (or a finite precision machine) will lead to dynamical degradation of chaotic properties. In this paper, we use a variable function to replace the input variable of the chaotic system, which does not change the original chaos equation. We show that our new system has the properties of sensitive dependence on initial conditions and transitivity, and when the system is running on the finite precision device, the dynamical degradation has been greatly improved compared to the original digital chaotic system. Our method is universal, can be easily used in all the digital chaotic systems and is more efficient than the other frequently used methods in the overall characteristics.

  18. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    PubMed

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. PMID:23008190

  19. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems. PMID:26178534

  20. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  1. Prolongation of the degradation period and improvement of the angiogenesis of zein porous scaffolds in vivo.

    PubMed

    Wang, Hua-Jie; Huang, Jing-Chun; Hou, Li; Miyazawa, Teruo; Wang, Jin-Ye

    2016-05-01

    Zein porous scaffolds modified with fatty acids have shown great improvement in mechanical properties and good cell compatibility in vitro, indicating the potential application as a bone tissue engineering substitute. The present study was conducted to systematically investigate whether the addition of fatty acids affects the short-term (up to 12 weeks) and long-term (up to 1 year) behaviors of scaffolds in vivo, mainly focusing on changes in the degradation period and inflammatory responses. Throughout the implantation period, no abnormal signs occurred and zein porous scaffolds modified with oleic acid showed good tolerance in rabbits, characterized by the growth of relatively more blood vessels in the scaffolds and only a slight degree of fibrosis histology. Moreover, the degradation period was prolonged from 8 months to 1 year as compared to the control. These results affirmed further that zein could be used as a new kind of natural biomaterial suitable for bone tissue engineering. PMID:26979976

  2. Sewage impacts coral reefs at multiple levels of ecological organization.

    PubMed

    Reopanichkul, Pasinee; Schlacher, Thomas A; Carter, R W; Worachananant, Suchai

    2009-09-01

    Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services. PMID:19515390

  3. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  4. Usage of pumice as bulking agent in sewage sludge composting.

    PubMed

    Wu, Chuandong; Li, Weiguang; Wang, Ke; Li, Yunbei

    2015-08-01

    In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss. PMID:25913030

  5. Improved biocompatibility of a viscous bioerodible poly(ortho ester) by controlling the environmental pH during degradation.

    PubMed

    Zignani, M; Le Minh, T; Einmahl, S; Tabatabay, C; Heller, J; Anderson, J M; Gurny, R

    2000-09-01

    The poly(ortho ester), POE, used in this investigation, is a viscous bioerodible polymer (8 kDa), which rapidly degrades into a triol and an acidic by-product, acetic acid. In order to improve biocompatibility, we have evaluated the addition of various basic excipients, such as sodium acetate, hydroxyapatite, calcium carbonate and magnesium hydroxide, which buffered and neutralized the acidic degradation product and prolonged the polymer lifetime and drug release. This decrease of POE degradation rate results in a decreased rate of formation of the acidic by-product. Similarly, a POE of higher molecular weight (14 kDa) has been tested. Sodium acetate was too hydrophilic to affect the drug release and the biocompatibility of the polymer, whereas the presence of magnesium hydroxide markedly prolonged the drug release and improved the acceptability of the polymer. The increased molecular weight POE did not improve biocompatibility and a similar but delayed, inflammatory reaction was observed. PMID:10905459

  6. Do new matrix formulations improve resin composite resistance to degradation processes?

    PubMed

    Fonseca, Andrea Soares Quirino da Silva; Gerhardt, Kátia Maria da Fonseca; Pereira, Gisele Damiana da Silveira; Sinhoreti, Mário Alexandre Coelho; Schneider, Luis Felipe Jochims

    2013-01-01

    The aim of this study was to determine the degradation resistance of three new formulations-silorane-, Ormocer- and dimer-acid-based materials-and compare them to the traditional dimethacrylate-based materials. One silorane- (Filtek P90, P90), one Ormocer- (Ceram-X, CX), one dimer-acid- (N'Durance, ND) and two dimethacrylate-based (Filtek P60, P60; Tetric Ceram, TC) materials were investigated. Water sorption (Wsp) and solubility (Wsl) were determined after the materials were immersed in water for 28 days. Knoop hardness (KH) was determined before and after 24 h immersion in pure ethanol. The flexural-strength (FS) was determined by the bending test after one-week storage in a dry environment or after one-week immersion in pure ethanol. Data were submitted to analysis of variance (ANOVA) and Tukey's test (95%). The three new formulations showed lower Wsp than the dimethacrylate-based formulation. CX (0.50 ± 0.17%) and ND (0.72 ± 0.19%) exhibited the lowest Wsp, whereas P90 (0.02 ± 0.03%) and P60 (0.04 ± 0.03%) showed the lowest Wsl. All resins showed reduced Knoop hardness number (KHN) after ethanol immersion. P60 presented the lowest decrease in KH value (19 ± 5%). TC (48 ± 3%) and P90 (39 ± 9%) showed the highest KHN decrease after ethanol storage. The FS of CX, ND and TC were affected by ethanol storage. The new formulations did not improve the degradation resistance, as compared with the traditional methacrylate-based materials. PMID:24036979

  7. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the

  8. Basic Sewage Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce operators to the fundamentals of sewage plant operation. The course consists of lecture-discussions and hands-on activities. Each of the lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in

  9. PHOSPHORUS RECOVERY FROM SEWAGE

    EPA Science Inventory

    Phosphorus is a growth limiting nutrient that is mined from rock ore, refined, used in fertilizers, and discharged to the environment through municipal sewage. The impacts of phosphorus discharge include severe eutrophication of fresh water bodies. The future sustainable use of...

  10. Improved mechanical properties of chitosan fibers with applications to degradable radar countermeasure chaff

    NASA Astrophysics Data System (ADS)

    Knaul, Jonathan Zvi

    The objective of this work has been to improve the mechanical properties of wet spun chitosan fibers for applications to a degradable form of radar countermeasure chaff. The first part of the study characterizes the chitosan used for spinning. Three methods for determining the degree of deacetylation (% DDA) were used and they include titration, elemental analysis, and first derivative ultraviolet (UV) spectrometry. The molecular weight of the chitosan was determined in a solvent system of 0.25 M CH3COOH/0.25 M CH3COONa, using viscometry and gel permeation chromatography (GPC). Several samples of chitosan were used with the % DDA varying from 64.3 to 96.0%. The Mark-Houwink-Sakurada constants used for the determination of viscosity average molecular weight and the universal calibration of the HPLC system were K = 1.40 x 10 -4 dL/g and a = 0.83, respectively. A literature review of molecular weight analysis of chitosan is included. Preliminary wet spinning experiments involved a coagulation rate study which demonstrated that 1 M KOH was an effective coagulant for wet spinning and that the rate of coagulation increases with decreasing solvent ratio in the spin dope. A drying study confirmed the effectiveness of a methanol drying bath followed by a heated roller at 50C. Following these studies, a wet spinning system was constructed and used. A lack of published data exists concerning the subjects of chitosan fiber spinning and mechanical improvements to both wet and dry chitosan fibers. Several post-spinning modification experiments focused on the reaction of the dried as-spun chitosan fibers with aqueous agents including potassium dihydrogen phosphate (KH2PO4), potassium hydrogen phthalate (KHP), glutaraldehyde (GA), and glyoxal (GLY). For the aqueous buffering agents of KH2PO4, and KHP, the highest mechanical properties resulted from solutions containing phthalate ions at pH 5.00, and from solutions containing phosphate ions at pH 5.39. The best time and temperature for these reactions was 25.8C and 1 hour reaction time. Substantial gains in mechanical properties were witnessed with an aqueous 0.024 mol/dL solution of GA and an aqueous 0.100 mol/dL solution of GLY after 1 hour at 25.8C. Reaction time shortened with increasing temperature. Chitosan films were subjected to similar treatments in phosphate and phthalate ion solutions, and also aqueous solutions of GA and GLY. Fourier Transform Infrared (FTIR) spectra of the films suggest that some interaction is occurring between the phosphate ions and the amine group on the chitosan backbone. IR film spectra indicate the presence of a 'C = N' bond in the cases of GA and GLY reacting with chitosan. Extensive published material is available suggesting that the reaction mechanism between chitosan and GA or GLY is either a Schiff's base or an acetyl type reaction. Evidence presented herein proposes a new reaction mechanism for both GA/chitosan and GLY/chitosan systems. A six week environmental experiment involved all of the chemically reacted fibers, along with unreacted chitosan fibers, and chaff fibers, in soil burial, water immersion, and open air environments. Fibers of chitosan, chitosan reacted with KHP(aq.), and chitosan fibers reacted with KH2PO 4 (aq.) degraded completely from sight after 6 weeks in wet soil kept in light conditions. The chaff, GLY/chitosan, and GA/chitosan fibers did not degrade in any of the environments after 6 weeks.

  11. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite.

    PubMed

    Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao

    2015-10-27

    Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability. PMID:26316321

  12. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  13. Recovery potential of German sewage sludge ash.

    PubMed

    Krüger, Oliver; Adam, Christian

    2015-11-01

    Incineration of sewage sludge is expected to increase in the future due to growing concerns about the direct use of sludge in agriculture. Sewage sludge is the pollutant sink of wastewater treatment and thus loaded with contaminants that might pose environmental hazards. Incineration degrades organic pollutants efficiently, but since the ash is currently mostly disposed of, all valuable component like phosphorus (P) and technologically relevant metals present in the sewage sludge ash (SSA) are removed from the economic cycle entirely. We conducted a complete survey of SSA from German mono-incineration facilities and determined the theoretical recovery potential of 57 elements. German SSA contains up to 19,000 t/a P which equals approximately 13% of phosphorus applied in the German agriculture in form of phosphate rock based mineral fertilizers. Thus, SSA is an important secondary resource of P. However, its P-solubility in ammonium citrate solution, an indicator for the bioavailability, is only about 26%. Treatment of SSA is recommended to enhance P bioavailability and remove heavy metals before it is applied as fertilizer. The recovery potential for technologically relevant metals is generally low, but some of these elements might be recovered efficiently in the course of P recovery exploiting synergies. PMID:25697389

  14. Analysis of coral mucus as an improved medium for detection of enteric microbes and for determining patterns of sewage contamination in reef environments

    USGS Publications Warehouse

    Lipp, Erin K.; Griffin, Dale W.

    2004-01-01

    Traditional fecal indicator bacteria are often subject to a high degree of die-off and dilution in tropical marine waters, particularly in offshore areas such as coral reefs. Furthermore, these microbes are often not associated with human waste, and their presence may not be indicative of health risk. To address the offshore extent of wastewater contamination in the Florida Keys reef tract, we assayed coral surfaces for the presence of human-specific enteric viruses. The overlying water column and surface mucopolysaccharide (mucus) layers from scleractinian corals were sampled from three stations along a nearshore-to-offshore transect beginning at Long Key in the middle Florida Keys, USA. Samples were assayed for standard bacterial water quality indicators (fecal coliform bacteria and enterococci) and for human enteroviruses by direct reverse transcriptase-polymerase chain reaction (RT-PCR). The concentration of the bacterial indicators was greatest at the nearshore station in both the water column and corals, and decreased with distance from shore; no indicator bacteria were detected at the offshore station. Whereas human enteroviruses were not detected in any of the water column samples, they were detected in 50–80% of coral mucus samples at each station. These data provide evidence that human sewage is impacting the reef tract up to ~6.5 km from shore in the middle Florida Keys and that coral mucus is an efficient trap for viral markers associated with anthropogenic pollution.

  15. Improving lignocellulose degradation using xylanase-cellulase fusion protein with a glycine-serine linker.

    PubMed

    Kim, Ho Myeong; Jung, Sera; Lee, Kwang Ho; Song, Younho; Bae, Hyeun-Jong

    2015-02-01

    The fungal hydrolytic system efficiently degrades lignocellulosics efficiently. We previously characterized two hydrolytic enzymes from Gloeophyllum trabeum, namely, endoglucanase (Cel5B) and xylanase (Xyl10g). To enhance lignocellulosic degradation, we designed a fusion protein (Xyl10g GS Cel5B) using a glycine-serine (GS) linker and expressed it in Pichia pastoris GS115, which produced a hydrolytic fusion enzyme for the degradation of lignocellulosics. Purified Xyl10g GS Cel5B protein has a molecular weight of approximately 97 kDa and shows a lower specific activity than Xyl10g or Cel5B. However, Xyl10g GS Cel5B can degrade popping-pretreated rice straw, corn stover, kenaf, and oak more efficiently than the mixture of Xyl10g and Cel5B, by about 1.41-, 1.37-, 1.32-, and 1.40-fold, respectively. Our results suggest that Xyl10g GS Cel5B is an efficient hydrolytic enzyme and a suitable candidate for degrading lignocellulosics to produce fermentable sugar. PMID:25478962

  16. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation.

    PubMed

    Wanapat, Metha; Kang, Sungchhang; Khejornsart, Pichad; Pilajun, Ruangyote

    2013-11-01

    Whole crop rice was harvested 120days after planting and chopped to 2-3-cm length for silage making. The whole crop rice silage (WCRS) was supplemented with different levels of molasses and urea to study nutritive value and in situ rumen degradability. The ensiling study was randomly assigned according to a 6??5 factorial arrangement, in which the first factor was molasses (M) supplementation at M0, M1, M2, M3, M4, and M5%, and the second was urea (U) supplementation at U0, U0.5, U1.0, U1.5, and U2.0% of the crop dry mater (DM), respectively. After 45days of ensiling, temperature, pH, chemical composition, and fermentation end products of the silages were measured. Ten U and M treatment combinations of WCRS were subsequently selected to study rumen degradability by nylon bag technique. The results showed that temperature and pH of the silages linearly increased with U supplementation level, while total volatile fatty acid (TVFA), acetic acid (C2) and propionic acid (C3) decreased. In contrast, increasing level of M supplementation decreased WCRS temperature and pH, whereas TVFA, C2, and C3 concentrations increased dramatically. Both M and U supplementation increased concentration of butyric acid (C4). Dry matter, organic matter (OM), and acid detergent fiber (ADF) contents of the silages were not influenced by either M or U supplementation. Increasing U supplementation increased crude protein (CP) content, while M level did not show any effect. Furthermore, neutral detergent fiber (NDF) content in silage was decreased by both M and U supplementation. The results of the in situ study showed that M and U supplementation increased both ruminal DM and OM degradation. The water-soluble fraction (a) was the highest in WCRS U1.5M3 and lowest in U0M0. Increasing M and U supplementation levels increased the potentially degradable fraction (b) of both DM and OM. Total rumen degradable fraction (a?+?b) was highest in WCRS U1.5M3, whereas OM degradability was highest in U0M3. However, effective degradation of both DM and OM were the highest in WCRS U1.5M3 and the lowest in U0M0. We conclude that supplementation of U and M increases WCRS quality and rumen degradability. Supplementation of U at 1.5 and M at 3-4% of the crop DM is recommended for lactating dairy cows and fattening beef cattle. PMID:23771776

  17. No-tillage Improvement of Soil Physical Quality in Calcareous, Degradation-prone, Semiarid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soils in the semiarid Mediterranean Ebro Valley of Spain are prone to physical and chemical degradation due to their silty texture, low organic matter contents, and presence of carbonates, gypsum, and other soluble salts. Rainfed agriculture on these soils is also hindered by the scarcity of wa...

  18. Sewage treatment method

    DOEpatents

    Fassbender, Alex G.

    1995-01-01

    The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.

  19. Synthesis and radiation degradation of vinyl polymers with fluorine: search for improved lithographic resists. [Gamma rays

    SciTech Connect

    Pittman, C.U. Jr.; Chen, C.Y.; Ueda, M.; Helbert, J.N.; Kwiatkowski, J.H.

    1980-12-01

    Homopolymers of methyl ..cap alpha..-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the /sup 60/Co ..gamma..-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl ..cap alpha..-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The G/sub s/-G/sub x/ and G/sub s/ values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl ..cap alpha..-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of G/sub s/ that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the homopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components (present in smaller concentrations (3 to 5 mole %) than the threshold levels (25 to 50% necessary for significant crosslinking).

  20. Starch degradation and nutrition value improvement in corn grits by solid state fermentation technique with Coriolus versicolor

    PubMed Central

    Huang, Mian; Zhang, Song

    2011-01-01

    The study was conducted to evaluate effect of Coriolus versicolor mycelia on degrading starch and improving nutrition value in corn grits through solid state fermentation technique. The results showed that using soybean meal as a nitrogen source, α-amylase secreted from C. versicolor expressed 407.25U/g of activity, leading to 45.15% of starch degraded. The activity grew with fermentation time until the 15th day, after that the amylase was deactivated rapidly. An orthogonal experiment designed for the study illustrated that degradation rate of starch in corn grits attained to maximum, 50.51%, when 100g of corn grits, added 16g of soybean meal, were fermented by C. versicolor for 12 days, in an initial pH 5.5. After fermenting, compared to the nonfermented control, contents of amino acids, total sugar, crude fat and crude protein were increased by 21.00%, 38.45%, 55.56%, 69.15% respectively. The significant improvement of nutrition value in corn grits is probably attributed to the intense metabolism of C. versicolor. PMID:24031762

  1. Ternary composite scaffolds with tailorable degradation rate and highly improved colonization by human bone marrow stromal cells.

    PubMed

    Idaszek, J; Bruinink, A; ?wi?szkowski, W

    2015-07-01

    Poly(?-caprolactone), PCL, is of great interest for fabrication of biodegradable scaffolds due to its high compatibility with various manufacturing techniques, especially Fused Deposition Modeling (FDM). However, slow degradation and low strength make application of PCL limited only to longer-term bioresorbable and non-load bearing implants. To overcome latter drawbacks, ternary PCL-based composite fibrous scaffolds consisting of 70-95 wt % PCL, 5 wt % Tricalcium Phosphate (TCP) and 0-25 wt % poly(lactide-co-glycolide) (PLGA) were fabricated using FDM. In the present study, the effect of composition of the scaffolds on their mechanical properties, degradation kinetics, and surface properties (wettability, surface energy, and roughness) was investigated and correlated with response of human bone marrow mesenchymal stromal cells (HBMC). The presence of PLGA increased degradation kinetics, surface roughness and significantly improved scaffold colonization. Of the evaluated surface properties only the wettability was correlated with the surface area colonized by HBMC. This study demonstrates that introduction of PLGA into PCL-TCP binary composite could largely abolish the disadvantages of the PCL matrix and improve biocompatibility by increasing wettability and polar interactions rather than surface roughness. Additionally, we showed great potential of multicellular spheroids as a sensitive in vitro tool for detection of differences in chemistry of 3D scaffolds. PMID:25424876

  2. Improved determination of tributyl phosphate degradation products (mono- and dibutyl phosphates) by ion chromatography.

    PubMed

    Dodi, A; Verda, G

    2001-06-22

    Tributyl phosphate (TBP) is a very important compound in the nuclear industry, particularly in the area of nuclear fuel reprocessing. This compound is used in the PUREX (plutonium and uranium refining extraction) process which consists of the extraction of uranium and plutonium from an aqueous nitric acid phase, for the purpose of recycling. But TBP may be degraded to dibutyl phosphate (DBP) and monobutyl phosphate (MBP) by dealkylation of one or two butoxy groups, respectively. We have compared and evaluated the capacity of two resins manufactured by Dionex (AS11 and AS5A) in the separation and measurement of these two degradation products. AS11 generates two interferences: nitrite/DBP and carbonate/MBP. The first one is the most serious. So, we have developed a method for oxidising nitrite ions to nitrate ions which have no trouble over the measurement. The second resin tested, AS5A, allows a very efficient separation between DBP and NO2- ions and a good separation between MBP and CO3(2-) in comparison with the AS11. The detection limits for the AS5A column are 0.13 microM for MBP and 0.71 microM for DBP (injection loop=50 microl). PMID:11453010

  3. Luciferase protection against proteolytic degradation: a key for improving signal in nano-system biology.

    PubMed

    Ataei, Farangis; Hosseinkhani, Saman; Khajeh, Khosro

    2009-10-26

    Luciferase is most widely used bioluminescence protein in biotechnological processes, but the enzyme is susceptible to proteolytic degradation, thereby its intracellular half-life decreased. Osmolytes are known to enhance the stability of proteins and protect them in a native folded and functional state. The effects of osmolytes, including sucrose, glycine and DMSO on the stability of luciferase were investigated. To different extents, all osmolytes protected the luciferase towards proteolytic degradation in a concentration-dependent manner. The results showed that 1.5M sucrose, 1.5M glycine and 15% DMSO are the best. The ability of these osmolytes to protect luciferase against proteolysis decreased from sucrose, glycine, and finally DMSO. Enzymatic kinetic data showed that the luciferase activity is significantly kept in the presence of sucrose and glycine compared to DMSO, particularly at high temperatures. Bioluminescence intensity, circular dichroism (CD), intrinsic and ANS fluorescence experiments showed change in secondary and tertiary luciferase structure. These results suggest that osmolytes exert an important effect on stabilization of luciferase conformation; decreasing the unfolding rate, preventing adaptation and binding of luciferase at the active site of proteases, thereby the proteolytic digestion reduced and its active conformation was kept. PMID:19732802

  4. Acute Acidification of Stratum Corneum Membrane Domains Using Polyhydroxyl Acids Improves Lipid Processing and Inhibits Degradation of Corneodesmosomes

    PubMed Central

    Hachem, Jean-Pierre; Roelandt, Truus; Schrer, Nanna; Pu, Xu; Fluhr, Joachim; Giddelo, Christina; Man, Mao-Qiang; Crumrine, Debra; Roseeuw, Diane; Feingold, Kenneth R.; Mauro, Theodora; Elias, Peter M.

    2010-01-01

    Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PHA), lactobionic acid (LBA), or gluconolactone (GL). Applications of the PHA reduced the pH at all levels of SC of hairless mouse, with further selective acidification of SC membrane domains, as shown by fluorescence lifetime imaging. Hyperacidification improved permeability barrier homeostasis, attributable to increased activities of two key membrane-localized, ceramide-generating hydrolytic enzymes (?-glucocerebrosidase and acidic sphingomyelinase), which correlated with accelerated extracellular maturation of SC lamellar membranes. Hyperacidification generated supernormal SC integrity/cohesion, attributable to an SP-dependent decreased degradation of desmoglein-1 (DSG1) and the induction of DSG3 expression in lower SC. As SC hyperacidification improves the structure and function, even of normal epidermis, these studies lay the groundwork for an assessment of the potential utility of SC acidification as a therapeutic strategy for inflammatory dermatoses, characterized by abnormalities in barrier function, cohesion, and surface pH. PMID:19741713

  5. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation.

    PubMed

    Anastasio, Marilena; Pepe, Olimpia; Cirillo, Teresa; Palomba, Simona; Blaiotta, Giuseppe; Villani, Francesco

    2010-01-01

    New producers of phytate-degrading enzymes, especially lactic acid bacteria (LAB), were used to improve mineral solubilization during dough fermentation. In all, among strains from different sources by microorganisms (150 lactic acid bacteria, 36 yeasts), 38 (24%) exhibited a clear zone around the colonies by hydrolyzing hexacalcium phytate contained in solid medium. When phytase-positive strains from plate assay were tested for phytase activity in liquid medium, 6 of the strains (37%) exhibited phytate-degrading activity in at least one of the 3 different media used. Of the LAB, the highest phytase values were found for Enterococcus faecium A86 (0.74 U/mL) and Lactobacillus plantarum H5 (0.71 U/mL). Two different starter cultures obtained by combinations of phytase-positive (phy+: L. plantarum H5 and L3, Leuconostoc gelidum A16, and E. faecium A86) or phytase-negative (phy-: L. gelidum LM249, L. plantarum H19, and L. plantarum L8) selected LAB strains, were used to measure mineral concentrations of iron, zinc, and manganese during dough fermentation. Although the 2 kinds of starter showed similar acidic values, the presence of phytate-degrading LAB strains increased mineral solubilization in comparison to the starter phy-. PMID:20492182

  6. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year. PMID:357121

  7. SEWAGE SLUDGE AND THEIR BYPRODUCTS: SOIL AMENDMENTS FOR OPTIMUM PLANT GROWTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic amendments play a significant role in improving soil fertility and supplying various nutrient elements in a sustainable manner. Greenhouse studies were conducted to evaluate the elemental uptake by Sorghum sudan grass with varying rates sewage sludge (SS), incinerated sewage sludge (ISS) and...

  8. Partial oxidation of sewage sludge

    SciTech Connect

    McMahon, M.A.; Martin, M.C.; McKenzie, K.W.

    1993-07-27

    A process is described comprising: (1) splitting a stream of dewatered sewage sludge having a solids content in the range of about 17-40 wt.% into a first stream and a second stream; (2) drying the first stream of dewatered sewage sludge to produce a stream of dried sewage sludge having a solids content in the range of about 75-99 wt.%: (3) grinding the dried sewage sludge from (2) to a particle size so that 100 wt% passes through ASTM E11 Standard Sieve Designation 1.40 mm; (4) mixing about 2-8 parts by dry weight aqueous slurry of solid carbonaceous fuel having a solids content of about 50-70 wt. % with each part by weight of said second stream of dewatered sewage sludge from (1); (5) heating the solid carbonaceous fuel-sewage slurry from (4) to a temperature of about 140-212 F; and mixing together 3-9 parts by dry weight of the solid carbonaceous fuel-sewage sludge slurry from (4) with each part by weight of dried sewage sludge from (2) to produce a pumpable fuel slurry comprising sewage sludge and solid carbonaceous fuel and having a solids content in the range of about 45-70 wt. %; and (6) reacting the fuel slurry from (5) in the reaction zone of a partial oxidation gas generator at a temperature in the range of about 1800-3500 F and a pressure in the range of about 1-35 atmospheres, and in the presence of free-oxygen containing gas, thereby producing a hot raw effluent gas stream of synthesis gas, reducing gas or fuel gas; (7) cooling, cleaning and purifying said raw effluent gas stream to produce a stream of fuel gas; (8) burning the fuel gas from (7) with air in a combustor of a gas turbine, and passing the hot exhaust gas through an expansion turbine which drives an electric generator; and (9) passing the hot exhaust gas from (8) in indirect heat exchange with water to produce steam for use in drying said first stream of dewatered sewage sludge in (2) and/or for heating said solid carbonaceous fuel-sewage slurry is (5) by indirect heat exchange.

  9. Characterization of a modified amplification approach for improved STR recovery from severely degraded skeletal elements.

    PubMed

    Irwin, Jodi A; Just, Rebecca S; Loreille, Odile M; Parsons, Thomas J

    2012-09-01

    Degraded skeletal remains generally contain limited quantities of genetic material and thus DNA-based identification efforts often target the mitochondrial DNA (mtDNA) control region due to the relative abundance of intact mtDNA as compared to nuclear DNA. In many missing person cases, however, the discriminatory power of mtDNA is inadequate to permit identification when associated anthropological, odontological, or contextual evidence is also limited, and/or the event involves a large number of individuals. In situations such as these, more aggressive amplification protocols which can permit recovery of STR data are badly needed as they may represent the last hope for conclusive identification. We have previously demonstrated the potential of a modified Promega PowerPlex 16 amplification strategy for the recovery of autosomal STR data from severely degraded skeletal elements. Here, we further characterize the results obtained under these modified parameters on a variety of sample types including pristine control DNA and representative case work specimens. Not only is the amplification approach evaluated here sensitive to extremely low authentic DNA input quantities (6 pg), but when the method was applied to thirty-one challenging casework specimens, nine or more alleles were reproducibly recovered from 69% of the samples tested. Moreover, when we independently considered bone samples extracted with a protocol that includes complete demineralization of the bone matrix, the percentage of samples yielding nine or more reproducible alleles increased to 95% with the modified amplification parameters. Overall, direct comparisons between the modified amplification protocol and the standard amplification protocol demonstrated that allele recovery was significantly greater using the aggressive parameters, with only a minimal associated increase in artifactual data. PMID:22402195

  10. SORPTION AND DEGRADATION OF PENTACHLOROPHENOL IN SLUDGE-AMENDED SOILS

    EPA Science Inventory

    Sorption and degradation of pentachlorophenol (PCP) by two alkaline and one acid soil was studied in the presence and absence of sewage sludge. he PCP concentrations used (0.1-10 mg kg-1) included PCP rates expected with land application of normal municipal sewage sludges. orptio...

  11. Sewage disposal system and apparatus

    SciTech Connect

    Danford, J.D.

    1981-02-03

    The system includes transport means to carry sewage to holding pits or tanks in open areas remote from community and delivery from tanks to tunnels plowed in ground. Transport may be by tankers or pipeline. Tender tankers receive batches of sewage from storage tanks and deliver to field where tractors pull frames with depending plow members which produce tunnels in ground with narrow slashes or crevices extending to surface. Frames carry manifolds and discharge conduits to deliver sewage to tunnels. Tender tankers arranged beside tractors have supply conduits connecting them to manifolds, with pumps in conduits to produce continuous flow. Tankers travel in synchronism with tractors and deliver sewage to tunnels as they are formed. Compacting rollers pulled behind frames close crevices directly after they are formed by plow, and sewage is sealed into ground. The sewage provides moisture, nutrients, and humus at a proper sub-surface level to support crop growth for a year or more, and the same ground may be used for repeated disposals at suitable intervals.

  12. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues.

    PubMed

    Hendricks, Rahzia; Pool, Edmund John

    2012-01-01

    Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent. PMID:22242882

  13. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues

    PubMed Central

    Hendricks, Rahzia; Pool, Edmund John

    2012-01-01

    Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent. PMID:22242882

  14. Complete survey of German sewage sludge ash.

    PubMed

    Krüger, Oliver; Grabner, Angela; Adam, Christian

    2014-10-21

    The amount of sewage sludge produced worldwide is expected to further increase due to rising efforts in wastewater treatment. There is a growing concern against its direct use as fertilizer due to contamination of the sludge with heavy metals and organic pollutants. Incinerating the sludge degrades organic compounds almost completely and concentrates heavy metals and phosphorus. However, the sewage sludge ash (SSA) is almost completely disposed of and with it all resources are removed from the economic cycle. Comprehensive knowledge of the composition of SSA is crucial to assess the resource recovery potentials. We conducted a survey of all SSA emerging in Germany and determined the respective mass fractions of 57 elements over a period of one year. The median content of phosphorus was 7.9%, indicating an important recovery potential. Important trace elements were Zn (2.5 g/kg), Mn (1.3 g/kg), and Cu (0.9 g/kg). Mass fractions of technology metals such as V, Cr, Ga, Nb, and rare earths were comparatively low. Considering the possible use of SSA as secondary raw material for fertilizer production it should be noted that its Cd and U content (2.7 mg/kg and 4.9 mg/kg respectively) is significantly lower than that of rock phosphate based mineral fertilizers. PMID:25265150

  15. Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates.

    PubMed

    Coconi-Linares, Nancy; Ortiz-Vzquez, Elizabeth; Fernndez, Francisco; Loske, Achim M; Gmez-Lim, Miguel A

    2015-09-10

    Phanerochaete chrysosporium belongs to a group of lignin-degrading fungi that secretes various oxidoreductive enzymes, including lignin peroxidase (LiP) and manganese peroxidase (MnP). Previously, we demonstrated that the heterologous expression of a versatile peroxidase (VP) in P. chrysosporium recombinant strains is possible. However, the production of laccases (Lac) in this fungus has not been completely demonstrated and remains controversial. In order to investigate if the co-expression of Lac and VP in P. chrysosporium would improve the degradation of phenolic and non-phenolic substrates, we tested the constitutive co-expression of the lacIIIb gene from Trametes versicolor and the vpl2 gene from Pleurotus eryngii, and also the endogenous genes mnp1 and lipH8 by shock wave mediated transformation. The co-overexpression of peroxidases and laccases was improved up to five-fold as compared with wild type species. Transformant strains showed a broad spectrum in phenolic/non-phenolic biotransformation and a high percentage in synthetic dye decolorization in comparison with the parental strain. Our results show that the four enzymes can be constitutively expressed in a single transformant of P. chrysosporium in minimal medium. These data offer new possibilities for an easy and efficient co-expression of laccases and peroxidases in suitable basidiomycete species. PMID:26113215

  16. Scientific impact of MODIS C5 calibration degradation and C6+ improvements

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-12-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and ngstrm exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ?NDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.

  17. Science impact of MODIS C5 calibration degradation and C6+ improvements

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-07-01

    The Collection 6 (C6) MODIS land and atmosphere datasets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra, and to lesser extent, in MODIS Aqua geophysical datasets. Sensor degradation is largest in the Blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and ngstrm Exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS dataset which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as de-trending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over deserts, we have also developed a de-trending and cross-calibration method which removes residual decadal trends on the order of several tenths of one percent of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ?NDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.

  18. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.61% to 33.61% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  19. Analysis of degradation phenomena in ancient, traditional and improved building materials of historical monuments

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2008-07-01

    A review is presented on constructive techniques plus materials and the processes involved in degradation phenomena observed in two historical monuments: the Zambujeiro dolmen (Portugal) and the Roman Aqueduct of Carthage (Tunisia). Dolmens are particularly impressive megalithic constructions for the dimensions of granite blocks. At Zambujeiro, the upright stones have undergone a catastrophic evolution after the archaeological exploitation due to accelerated weathering through a process apparently distinct from natural granite decay in nearby outcrops. The biological attack of granite minerals by lichen exudates has emphasized the hazardous character of bromine and more has been learnt about construction techniques, namely, the insertion in the mound of an impermeable clay stratum that hinders water penetration into the dolmen chamber. The characterization of original Roman ashlar blocks, including masonry and the diagnosis of Byzantine and medieval reconstruction testimonies in the Aqueduct of Carthage were the object of a detailed study by X-ray diffraction and synchrotron radiation X-ray fluorescence. Traditional constructive techniques and local construction materials were studied and successive historical, modern and recent rehabilitations were reappraised.

  20. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated. PMID:24281673

  1. Marine sewage disposal

    SciTech Connect

    Sullivan, D.W.

    1981-03-03

    An activated sludge marine sewage disposal apparatus is described that includes an aeration chamber immediately adjacent to a flooded settling tank, rising above a disinfectant chamber and a holding chamber disposed around the lower part of the tank. Flow from the aeration chamber to the settling tank is through a port in the common wall between the aeration chamber and settling tank, and up inside a pond separated from the rest of the tank by a downwardly flaring baffle of skirt depending from the top of the tank. A single shimmer at the center of the area at the top of the pond picks up floating solids and returns them to the top of the aeration chamber. A vent disposed directly over the shimmer continuously draws off air and gas to the aeration chamber. A sludge return line picks up heavy solids for the bottom of the tank and returns them to the top of the aeration chamber through a riser located in the aeration chamber. Liquid in the settling tank flows out through a submerged perforated pipe into a standpipe in the aeration chamber, with is located centrally in the aeration chamber, and overflows through an inverted U tube, vented to the aeration chamber, the tube connecting to a downcomer sending the liquid back through the common wall to the disinfectant compartment. When sufficient volume of fluid accumulates in the disinfectant compartment, it overflows into a holding tank, from which it emerges via a port.

  2. Improved mannan-degrading enzymes' production by Aspergillus niger through medium optimization.

    PubMed

    Mohamad, Siti Norita; Ramanan, Ramakrishnan Nagasundara; Mohamad, Rosfarizan; Ariff, Arbakariya B

    2011-02-28

    The effect of different carbon and nitrogen sources on the production of mannan-degrading enzymes, focussing on β-mannanase, by Aspergillus niger was investigated using shake flask culture. The β-mannanase activity obtained during growth of A. niger on guar gum (GG, 1495 nkat mL(-1)) was much higher than those observed on other carbon substrates, locust bean gum (1148 nkat mL(-1)), α-cellulose (10.7 nkat mL(-1)), glucose (8.8 nkat mL(-1)) and carboxymethylcellulose (4.6 nkat mL(-1)). For fermentation using GG as a carbon source, bacteriological peptone gave the highest β-mannanase activity (1744 nkat mL(-1)) followed by peptone from meat (1168 nkat mL(-1)), yeast extract (817 nkat mL(-1)), ammonium sulphate (241 nkat mL(-1)), ammonium nitrate (113 nkat mL(-1)) and ammonium chloride (99 nkat mL(-1)) when used as a nitrogen source. The composition of bacteriological peptone and initial pH of the medium were further optimized using response surface methodology (RSM). Medium consisted of 21.3 g L(-1) GG and 57 g L(-1) peptone with initial culture pH of 5.5 was optimum for β-mannanase production (2063 nkat mL(-1)) by A. niger. The β-mannanase production obtained in this study using A. niger was significantly higher than those reported in the literature. PMID:20970530

  3. Radiation degradation behavior of chlorine-containing vinyl copolymers. Search for improved electron-beam resists

    SciTech Connect

    Helbert, J.N.; Poindexter, E.H.; Pittman, C.U. Jr.; Chen, C.Y.

    1980-06-01

    Vinyl copolymers with high radiation degradation sensitivity have been synthesized by copolymerizing vinylidene chloride (VDC), CH/sub 2/ = CCl/sub 2/, with methyl methacrylate (MMA), methacrylonitrile, methyl ..cap alpha..-chloroacrylate, and dimethyl itaconate using emulsion techniques. In addition, copolymers of methyl ..cap alpha..-chloroacrylate with methyl methacrylate and poly(..cap alpha..-chloroacrylonitrile) were studied. Introduction of vinylidene chloride into methyl methacrylate polymers caused a sharp increase in G/sub s/ even at relatively low VDC incorporation. Upon 29% VDC incorporation, the G/sub s/ value increased from 1.3 (homopolymer of MMA) to 3.4. G/sub s/ was found to be a linear function of copolymer content for several systems, but G/sub x/ was not. At higher VDC levels, the increase in G/sub s/ was countered by increases in G/sub x/. At lower VDC levels, G/sub x/ was suppressed below the values predicted by a linear G/sub x/ dependence on composition for such systems as VDC/MMA, MCA/MMA, and ..cap alpha..-chloroacrylonitrile/MMA. The VDC/MMA copolymer (29% VDC) gave a sensitivity of 4.0 x 10/sup -5/ C/cm/sup 2/ to electron beam exposure using the 0% unexposed resist thickness loss criterion and is 2 to 3 times more sensitive than PMMA. Poly(..cap alpha..-chloroacrylonitrile) is a negative resist with a sensitivity of 5 x 10/sup -5/ C/cm/sup 2/ using one-micron line images for testing.

  4. Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy.

    PubMed

    Cui, Yani; Sui, Junhui; He, Mengmeng; Xu, Zhiyi; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-01-27

    In this study, five kinds of reduction-degradable polyamide amine-g-polyethylene glycol/polyarginine (PAA-g-PEG/PArg) micelles with different proportions of hydrophilic and hydrophobic segments were synthesized as novel drug delivery vehicles. Polyarginine not only acted as a hydrophilic segment but also possessed a cell-penetrating function to carry out a rapid transduction into target cells. Polyamide amine-g-polyethylene glycol (PAA-g-PEG) was prepared for comparison. The characterization and antitumor effect of the DOX-incorporated PAA-g-PEG/PArg cationic polymeric micelles were investigated in vitro and in vivo. The cytotoxicity experiments demonstrated that the PAA-g-PEG/PArg micelles have good biocompatibility. Compared with DOX-incorporated PAA-g-PEG micelles, the DOX-incorporated PAA-g-PEG/PArg micelles were more efficiently internalized into human hepatocellular carcinoma (HepG2) cells and more rapidly released DOX into the cytoplasm to inhibit cell proliferation. In the 4T1-bearing nude mouse tumor models, the DOX-incorporated PAA-g-PEG/PArg micelles could efficiently accumulate in the tumor site and had a longer accumulation time and more significant aggregation concentration than those of PAA-g-PEG micelles. Meanwhile, it excellently inhibited the solid tumor growth and extended the survival period of the tumor-bearing Balb/c mice. These results could be attributed to their appropriate nanosize and the cell-penetrating peculiarity of polyarginine as a surface layer. The PAA-g-PEG/PArg polymeric micelles as a safe and high efficiency drug delivery system were expected to be a promising delivery carrier that targeted hydrophobic chemotherapy drugs to tumors and significantly enhanced antitumor effects. PMID:26720795

  5. Water quality simulation of sewage impacts on the west coast of Mumbai, India.

    PubMed

    Vijay, R; Khobragade, P J; Sohony, R A

    2010-01-01

    Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment. PMID:20651431

  6. Incorporation of sewage sludge in clay brick and its characterization.

    PubMed

    Liew, Abdul G; Idris, Azni; Wong, Calvin H K; Samad, Abdul A; Noor, Megat Johari M M; Baki, Aminuddin M

    2004-08-01

    This study reports the use of sewage sludge generated from sewage treatment plant (STP) as raw material in a clay brick-making process. The physico-chemical and mineralogical characterization of the sewage sludge and clay were carried out in order to identify the major technological constraints and to define the sludge pretreatment requirements if necessary. Moreover, the effects on processing conditions and/or on changes of typical final characteristics are also evaluated. Bricks were produced with sewage sludge additions ranging from 10 to 40% by dry weight. The texture and finishing of the surface of sludge-amended clay bricks were rather poor. As for the physical and chemical properties, bricks with a sludge content of up to 40 wt.% were capable of meeting the relevant technical standards. However, bricks with more than 30 wt.% sludge addition are not recommended for use since they are brittle and easily broken even when handled gently. A tendency for a general degradation of brick properties with sludge additions was observed due to its refractory nature. Therefore, sludge bricks of this nature are only suitable for use as common bricks, which are normally not exposed to view, because of poor surface finishing. PMID:15462329

  7. Endocannabinoid Degradation Inhibition Improves Neurobehavioral Function, Blood–Brain Barrier Integrity, and Neuroinflammation following Mild Traumatic Brain Injury

    PubMed Central

    Katz, Paige S.; Sulzer, Jesse K.; Impastato, Renata A.; Teng, Sophie X.; Rogers, Emily K.

    2015-01-01

    Abstract Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. The aim of this study was to determine whether EC degradation inhibition after TBI would improve neurobehavioral recovery by reducing inflammatory and oxidative damage. Adult male Sprague-Dawley rats underwent a 5-mm left lateral craniotomy, and TBI was induced by lateral fluid percussion. TBI produced apnea (17±5 sec) and a delayed righting reflex (479±21 sec). Thirty minutes post-TBI, rats were randomized to receive intraperitoneal injections of vehicle (alcohol, emulphor, and saline; 1:1:18) or a selective inhibitor of 2-AG (JZL184, 16 mg/kg) or AEA (URB597, 0.3 mg/kg) degradation. At 24 h post-TBI, animals showed significant neurological and -behavioral impairment as well as disruption of blood–brain barrier (BBB) integrity. Improved neurological and -behavioral function was observed in JZL184-treated animals. BBB integrity was protected in both JZL184- and URB597-treated animals. No significant differences in ipsilateral cortex messenger RNA expression of interleukin (IL)-1β, IL-6, chemokine (C-C motif) ligand 2, tumor necrosis factor alpha, cyclooxygenase 2 (COX2), or nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and protein expression of COX2 or NOX2 were observed across experimental groups. Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined. PMID:25166905

  8. Vermitechnology for sewage sludge recycling.

    PubMed

    Khwairakpam, Meena; Bhargava, Renu

    2009-01-30

    The present paper is aimed at safe reuse and recycling of sewage sludge (SS) and production of good quality compost using vermicomposting. Three different earthworm species Eiseniafetida (E. fetida), Eudrilus eugeniae (E. eugeniae), Perionyx excavatus (P. excavatus) in individual and combinations were utilized to compare the suitability of worm species for composting of sewage sludge as well as the quality of the end product. The sewage sludge without blending can be directly converted into good quality fertilizer (vermicompost). Vermicomposting resulted in reduction in C/N ratio 25.6 to 6-9, TOC (25%) but increase in electrical conductivity (EC) (47-51%), total nitrogen (TN) (2.4-2.8 times), potassium (45-71%), calcium (49-62%), sodium (62-82%) and total phosphorous (TP) (1.5-1.8 times), which indicated that sewage sludge can be recycled as a good quality fertilizer. The present study also inferred that the application of sewage sludge in the agricultural fields after vermicomposting would not have any adverse effect as the heavy metals (Cu, Mn, Pb and Zn) are now within the permissible limits. PMID:18515003

  9. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70%. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature. PMID:26359182

  10. Lightweight aggregate made from sewage sludge and incinerated ash.

    PubMed

    Chiou, Ing-Jia; Wang, Kuen-Sheng; Chen, Ching-Ho; Lin, Ya-Ting

    2006-01-01

    In this study, sewage sludge ash (SSA), with similar characteristics to expansive clay, was used as the principal material and sewage sludge (SS) as the admixture to sinter lightweight aggregate and to study the influences of raw material composition on pelletising, sintering effect and aggregate properties. Results showed that both SS and SSA could be sintered to produce synthetic aggregates individually or mixed. Increasing the amount of SS would decrease the pelletising ratio. Under the consideration of energy saving, the mixture of SSA was better for sintering normal weight aggregate. On the contrary, the mixture that added 20-30% of SS was more adequate to make lightweight aggregates. Adding SS would enhance the oxidation-reduction reaction and lower the bulk density and sintering temperature of aggregates to save energy. Sintering temperature affected the properties of sewage sludge ash lightweight aggregate (SSALA) more than retention period did. Prolonging the retention period could improve bloating effect. PMID:16431096

  11. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2014-10-22

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario. PMID:25459836

  12. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis.

    PubMed

    Xia, Jonathan Y; Holland, William L; Kusminski, Christine M; Sun, Kai; Sharma, Ankit X; Pearson, Mackenzie J; Sifuentes, Angelica J; McDonald, Jeffrey G; Gordillo, Ruth; Scherer, Philipp E

    2015-08-01

    Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. We have developed transgenic mice inducibly expressing acid ceramidase that display a reduction in ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue upon exposure to high-fat diet. Conversely, overexpression of acid ceramidase within adipose tissue also prevents hepatic steatosis and systemic insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKC?, though the induction of ceramidase activity in the adipocyte prompts more rapid resolution of hepatic steatosis than overexpression of the enzyme directly in the liver. Collectively, our observations suggest the existence of a rapidly acting "cross-talk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake. PMID:26190650

  13. Reconcentration of poliovirus from sewage.

    PubMed Central

    Farrah, S; Wallis, C; Shaffer, P T; Melnick, J L

    1976-01-01

    Virus can be adsorbed from effluents of sewage treatment plants on large-surface membranes. Subsequent elution of virus requires large volumes, which in turn requires reconcentration of virus for assay. However, reconcentration of such viral eluates on small adsorbent surfaces is difficult because certain soluble sewage components are adsorbed along with the virus on the initial virus adsorbent and are removed along with the virus by the eluent. Upon acidification of the initial eluate to reconcentrate the virus on smaller membrane surfaces, flocs are formed that interfere with the reconcentration process. To circumvent this problem, the interfering sewage components can be removed by activated carbon and ion-exchange resins. The virus is then readily reconcentrated on small membranes. PMID:10842

  14. Evaluation of forest trees growth after sewage sludge application

    NASA Astrophysics Data System (ADS)

    Vaitkutä--, Dovilé; Balträ--Naitä--, Edita; Booth, Colin A.; Fullen, Michael A.; Pereira, Paulo

    2010-05-01

    Sewage sludge is extensively used in forest to improve soil properties. It is expected that sewage sludge rich in phosphorus, nitrogen and organic material enhance the germination of tree seedlings in poor soils. In Lithuania, the deforested soils are highly acid, and have a lack of nutrients, especially in exploited peat areas. Sewage sludge from industry contains beneficial components for the soils (such as organic matter, phosphorus, nitrogen, calcium, magnesium, etc.). However, it is also rich in heavy metals, especially Cd, Pb, Cu and Zn. High heavy metals concentrations in soil can be phytotoxic and cause reduced plant growth or plant death. The main objectives of this research was to determine the influence of industrial sewage sludge in the forestry and to highlight the idea that industrial sewage sludge containing metals does not favour development of birch and pine trees. The study was performed in Taruskos experimental plot in Panevezys region (Lithuania), amended with industrial sewage sludge ten years ago was afforestated with birch and pine seedlings. In order to observe the effects of the amendment in accumulation the mentioned metals and tree growth we collected data from trees in amended plot and control plot. The results showed that soil parameters were improved in the amended plot, in comparing with control site (higher pH, organic matter and cation exchange capacity). However, the growth of investigated trees was slower (e.g. birch roots, shoot, stem and leaves biomass was 40, 7.4, 18.6, 22% smaller than in control site. In pine case: 30, 1.2, 17, 36%, respectively; the stem height of birch was 16% and pine - 12% smaller than in control site). This reduced growth can be related with heavy metals concentration load on soil and accumulation in trees. Cu and Cd concentrations were higher in soil amended with sewage sludge comparing with control site (60 and 36%, respectively). Also, in contaminated trees Cu and Cd concentrations were higher (Cu - 37% in birch and 27% in pine shoots; 6% in birch and 73% in pine roots; Cd was 3% in birch and 1.4% in pine shoots; 53% in birch and 24% in pine roots). Our results showed that the sewage sludge applied from industrial sources was not effective to improve tree growth, despite the fact, that it revealed positive effects on forest soil properties.

  15. Heavy rains cause a sewage overflow.

    USGS Multimedia Gallery

    Epic rainfall fell around Atlanta, Georgia on Sept. 21, 2009. The resulting runoff overwhelmed many of the combined storm/sewage systems, resulting in sewage overflows coming out of the sewers and flowing directly into rivers. This picture shows a sewage overflow occuring in Roswell, Georgia, just ...

  16. Improving stability of a novel dextran-degrading enzyme from marine Arthrobacter oxydans KQ11.

    PubMed

    Wang, Delong; Lu, Mingsheng; Wang, Xiaobei; Jiao, Yuliang; Fang, Yaowei; Liu, Zhaopu; Wang, Shujun

    2014-03-15

    Dextranases can hydrolyze dextran, so they are used in the sugar industry to mitigate the milling problems associated with dextran contamination. Few studies have been carried out on the storage stability of dextranase, let alone the dextranase of Arthrobacter oxydans KQ11 isolated from sea mud samples. This study improved the storage stability of dextranase from marine A. oxydans KQ11 by adding enzymatic protective reagents (stabilizer and antiseptic). Initially, the conditions (55 °C and 30 min) for maintaining 50% dextranase activity were obtained. Then, the best stabilizers of dextranase were obtained, namely, glycerol (16%), sodium acetate (18%) and sodium citrate (20%). Results showed that p-hydroxybenzoic acid compound sodium acetate (0.05%), D-sodium isoascorbiate (0.03%), and potassium sorbate (0.05%) were the best antiseptics. Subsequent validation experiment showed that dextranase with enzymatic protective reagents maintained 70.8% and 28.96% activities at the 13th week at 25 and 37 °C, respectively. PMID:24528732

  17. CHARACTERIZATION OF SEWAGE SLUDGE AND SEWAGE SLUDGE-SOIL SYSTEMS

    EPA Science Inventory

    Field and laboratory studies were conducted to characterize the chemical properties of municipal sewage sludges, to evaluate the fate of sludge components in soils, and to determine the distribution of trace metals in milling fractions of grains grown on sludge-treated soils.

  18. EVALUATION OF METHODS TO MEASURE THE ACUTE TOXICITY OF SEWAGE SLUDGE

    EPA Science Inventory

    Research was undertaken to determine whether improvements were needed to increase the reliability of acute toxicity methodologies for mysid and juvenile Atlantic silverside waste characterization tests for municipal sewage sludge. Three new acute bioassays using mysids, larval fi...

  19. 1988 NATIONAL SEWAGE SLUDGE SURVEY

    EPA Science Inventory

    Resource Purpose:Originally developed to support Phase I regulation for use or disposal of biosolids (sewage sludge). Data collected were used to estimate risks, potential regulatory limits, and the cost of regulation. This is currently the only statistically designed surv...

  20. Presence and destruction of tubercle bacilli in sewage*

    PubMed Central

    Jensen, K. Erik

    1954-01-01

    The author examined the sewage from 5 towns with tuberculosis sanatoria and from one institution for the care of the feeble-minded, which had a tuberculosis ward, for the presence of tubercle bacilli. The 6 effluents were treated in biological-purification plants and average samples taken. These were centrifuged, and the sediment treated for 1 hour at 37C with 4% NaOH before inoculation into guinea-pigs. Tubercle bacilli were demonstrated in the influent to all the plants and in the digested sludge of all those operating on sewage where the ratio of infective patients to all persons connected with the plant was up to 1:600. Experiments with cultivated tubercle bacilli showed that centrifuging of sewage resulted in only an insignificant loss of bacilli, but that NaOH treatment caused a loss of over 99%. After consideration of the risk of infection to both man and cattle from the sewage of tuberculosis institutions, the author reports on his own studies on the killing of tubercle bacilli in sewage. It took about 11-15 months before tubercle bacilli could no longer be demonstrated in sludge that had been kept on the drying beds. The addition of 10 mg of chlorine per litre of biologically purified effluent from an activated-sludge plant was found effectively to destroy tubercle bacilli. Disinfection of sludge was also carried out with 0.5% lysol and 0.1%-0.2% formol; 3.1% copper sulfate proved ineffective. The author concludes that the disinfection of sewage from tuberculosis institutions presents no special difficulties, but that work on this subject in different countries should be co-ordinated in an effort to improve plant and reduce costs. PMID:13160757

  1. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion.

    PubMed

    Theuretzbacher, Franz; Lizasoain, Javier; Lefever, Christopher; Saylor, Molly K; Enguidanos, Ramon; Weran, Nikolaus; Gronauer, Andreas; Bauer, Alexander

    2015-03-01

    Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process. PMID:25549903

  2. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].

    PubMed

    Su, Yu; Wang, Jin; Peng, Shu-chuan; Yue, Zheng-bo; Chen, Tian-hu; Jin, Jie

    2010-08-01

    The performance of three organic carbon sources was assessed in terms of sulfate reduction and main metal removal, by using sewage sludge as the source of sulfate-reducing bacteria (SRB) and adding rice straw and ethanol with equal quantity. Results indicated that sewage sludge which contained certain amount of alkaline material could neutralize acidity of acid mine drainage(AMD) on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4-6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substance, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9%). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2%), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Control experiment with ethanol was most effective in promoting sulfate reduction (97.9%). Metal removal efficiency in all three reactors was as high as 99% for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. It is feasible for using rice straw and sewage sludge as carbon sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment. PMID:21090305

  3. Modified DOP-PCR for improved STR typing of degraded DNA from human skeletal remains and bloodstains.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; Gill-King, Harrell; King, Jonathan; Sajantila, Antti; Budowle, Bruce

    2016-01-01

    Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors. PMID:26832369

  4. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke

    PubMed Central

    Yu, Yung-Luen; Chou, Ruey-Hwang; Shyu, Woei-Cherng; Hsieh, Shu-Ching; Wu, Chen-Shiou; Chiang, Shu-Ya; Chang, Wei-Jung; Chen, Jia-Ni; Tseng, Yen-Ju; Lin, Yu-Hsuan; Lee, Wei; Yeh, Su-Peng; Hsu, Jennifer L; Yang, Cheng-Chieh; Hung, Shih-Chieh; Hung, Mien-Chie

    2013-01-01

    EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed that EZH2 downregulation enhances neuron differentiation of human mesenchymal stem cells (hMSCs); however, the underlying mechanisms of EZH2-regulated neuron differentiation are still unclear. Here, we identify Smurf2 as the E3 ubiquitin ligase responsible for the polyubiquitination and proteasome-mediated degradation of EZH2, which is required for neuron differentiation. A ChIP-on-chip screen combined with gene microarray analysis revealed that PPAR? was the only gene involved in neuron differentiation with significant changes in both its modification and expression status during differentiation. Moreover, knocking down PPAR? prevented cells from undergoing efficient neuron differentiation. In animal model, rats implanted with intracerebral EZH2-knocked-down hMSCs or hMSCs plus treatment with PPAR? agonist (rosiglitazone) showed better improvement than those without EZH2 knockdown or rosiglitazone treatment after a stroke. Together, our results support Smurf2 as a regulator of EZH2 turnover to facilitate PPAR? expression, which is specifically required for neuron differentiation, providing a molecular mechanism for clinical applications in the neurodegenerative diseases. PMID:23526793

  5. Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement.

    PubMed

    Wu, Yingyang; Tang, Xiaofeng; Chen, Jie; Tang, Tingting; Guo, Han; Tang, Songchao; Zhao, Liming; Ma, Xuhui; Hong, Hua; Wei, Jie

    2015-09-01

    A novel mesoporous magnesium-based cement (MBC) was fabricated by using the mixed powders of magnesium oxide, sodium dihydrogen phosphate, and mesoporous magnesium silicate (m-MS). The results indicate that the setting time and water absorption of the MBC increased as a function of increasing m-MS content, while compressive strength decreased. In addition, the degradability of the MBC in a solution of Tris-HCl and the ability of apatite formation on the MBC were significantly improved with the increase in m-MS content. In cell culture experiments, the results show that the attachment, proliferation, and alkaline phosphatase activity of the MC3T3-E1 cells on the MBC were significantly enhanced with the increase of the content of m-MS. It can be suggested that the MBC with good cytocompatibility could promote the proliferation and differentiation of the MC3T3-E1 cells. In short, our findings indicate that the MBC containing m-MS had promising potential as a new biocement for bone regeneration and repair applications. PMID:26395363

  6. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model. PMID:26476309

  7. Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-09-15

    In this work, a simple and effective strategy to improve the photocatalytic dye degradation efficiency of the mesoporous-assembled TiO2 nanoparticle thin films by incorporating small contents of commercial P-25 TiO2 during the thin film preparation was developed. The mesoporous-assembled TiO2 nanoparticles were synthesized by a sol-gel method with the aid of a mesopore-directing surfactant, followed by homogeneously mixing with P-25 TiO2 prior to the thin film coating on glass substrate. The mesoporous-assembled TiO2 film with 5 wt.% P-25 TiO2 incorporation and calcined at 400°C provided an improved photocatalytic Acid Black (AB) dye degradation efficiency. The increase in number of coated layers to the optimum four layers of the aforementioned film was found to further improve the degradation efficiency. The recyclability test of this 5 wt.% P-25 TiO2-incorporated mesoporous-assembled TiO2 film with four coated layers revealed that it can be reused for multiple cycles without a requirement of post-treatment while the degradation efficiency was retained. PMID:24998072

  8. Radiofrequency-oxidation treatment of sewage sludge.

    PubMed

    Srinivasan, Asha; Young, Chris; Liao, Ping H; Lo, Kwang V

    2015-12-01

    A novel thermal-chemical treatment technology using radiofrequency heating and oxidants (hydrogen peroxide, ozone and a combination of both) was used for the treatment of sewage sludge. This was to evaluate the process effectiveness on cell disintegration and nutrient release of sludge, physical property changes such as particle size distribution, dewaterability and settleability, and their inter-relationships. The effectiveness of treatment processes was in the following order, from the most to least: thermal-oxidation process, oxidation process and thermal process. The thermal-oxidation process greatly increased cell disintegration and nutrient release, improved settleability, and decreased particle sizes. The treatment scheme involving ozone addition followed by hydrogen peroxide and radiofrequency heating yielded the highest soluble chemical oxygen demand, volatile fatty acids, ammonia and metals, while proffering the shortest capillary suction time and excellent settling properties. PMID:26233925

  9. Factors favoring a degradation or an improvement in activities of daily living (ADL) performance among nursing home (NH) residents: a survival analysis.

    PubMed

    Brge, Elisabeth; von Gunten, Armin; Berchtold, Andr

    2013-01-01

    Different factors influence ADL performance among nursing home (NH) residents in long term care. The aim was to investigate which factors were associated with a significant change of ADL performance in NH residents, and whether or not these factors were gender-specific. The design was a survival analysis. The 10,199 participants resided in ninety Swiss NHs. Their ADL performance had been assessed by the Resident Assessment Instrument Minimum Data Set (RAI-MDS) in the period from 1997 to 2007. Relevant change in ADL performance was defined as 2 levels of change on the ADL scale between two successive assessments. The occurrence of either an improvement or a degradation of the ADL status) was analyzed using the Cox proportional hazard model. The analysis included a total of 10,199 NH residents. Each resident received between 2 and 23 assessments. Poor balance, incontinence, impaired cognition, a low BMI, impaired vision, no daily contact with proxies, impaired hearing and the presence of depression were, by hierarchical order, significant risk factors for NH residents to experience a degradation of ADL performance. Residents, who were incontinent, cognitively impaired or had a high BMI were significantly less likely to improve their ADL abilities. Male residents with cancer were prone to see their ADL improve. The year of NH entry was significantly associated with either degradation or improvement of ADL performance. Measures aiming at improving balance and continence, promoting physical activity, providing appropriate nourishment and cognitive enhancement are important for ADL performance in NH residents. PMID:23022056

  10. Biological Hazards in Sewage and Wastewater Treatment Plants

    MedlinePLUS

    Biological Hazards in Sewage and Wastewater Treatment Plants Hazard Alert During construction and maintenance of sewage and ... Careful work habits can help protect you. Some Biological Hazards That May Be in Sewage Or Wastewater ...

  11. 1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF STORAGE SHED (BLDG 773). SECURITY FENCE EAST OF SEWAGE TREATMENT PLANT. - Vandenberg Air Force Base, Space Launch Complex 3, Sewage Treatment Plant, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil. PMID:24797639

  13. The production, use and quality of sewage sludge in Denmark.

    PubMed

    Jensen, John; Jepsen, Svend-Erik

    2005-01-01

    In Denmark, the production of municipal sewage sludge decreased from approximately 170,000 ton d.m. in 1994 to 140,000 ton d.m. in 2002. The sludge is handled and treated in a number of ways. The quality of Danish sludge has steadily improved since the middle of the 1980s, when the first set of quality criteria for heavy metals was introduced. In 1997, cut-off criteria for the organic pollutants, LAS, DEHP, nonylphenol and PAHs were introduced. Effective control from authorities, voluntary phasing out agreements with industry, improved source identification tools, better handling and after-care methods have in combination with higher waste duties led to a significant reduction in the sludge level of especially cadmium, mercury, chromium, LAS and nonylphenol. The increased quality demand has, nevertheless, also led to a minor reduction in the use of sewage sludge as organic fertiliser on agricultural land. PMID:15823740

  14. PEM fuel cell degradation

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  15. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge.

    PubMed

    Pasda, N; Limtong, P; Oliver, R; Montange, D; Panichsakpatana, S

    2005-10-01

    Bangkok, while improving the wastewater treatment in order to alleviate the river pollution, faces important amounts of sewage sludge. The sewage sludge contains organic matter, nitrogen and phosphorus available for plant growth. However, it may contain pathogenic microorganisms. To be used for agricultural purposes, these pathogens should be destroyed, which can be achieved with the thermophilic phase of composting. As the sewage sludge is dense and unable to compost alone (low C/N ratio), it should be mixed with an organic by-product. Two by-products available in large quantities in Thailand (wood chips and rice husk) have been tested for mixture with sewage sludge. As these products are not easy to decompose (presence of silica in rice husk and lignin/tannins in wood chips), the addition of a microbial activator for composting has been tested in controlled conditions (small quantities of organic mixtures, 55 degrees C, moisture maintained at 60-70% of water holding capacity). The monitoring of the decomposition has been made by measuring the carbon dioxide respiration, pH, organic matter and nitrogen contents and the evolution of enzymatic activities. When mixed with sewage sludge, wood chips and rice husk do not show significant differences concerning decomposition after 63 days. The use of an activator within the experimental conditions does not improve the decomposition of organic matter contained in the mixture of sewage sludge and rice husk or wood chips. PMID:16342535

  16. My Town, My Creek, My Sewage

    ERIC Educational Resources Information Center

    Woodburn, John H.

    1972-01-01

    After summarizing the ecology of polluted streams as well as the technology and biology of sewage treatment methods, and considering the economic and social aspects of introducing advanced sewage treatment, comments on the role of biology teachers in providing public information are made. (AL)

  17. BY-PRODUCTS FROM SEWAGE SLUDGE

    PubMed Central

    Weston, Robert Spurr

    1920-01-01

    Economy and conservation have worked for years at the problem of profit from sewage. Mr. Weston notes that many American cities have potential by-products enough to make recovery worth trying. English cities have found the American Miles process profitable. It will at least lessen the cost of sewage disposal. PMID:18010306

  18. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing 159.85 Sewage removal. The...

  19. REGROWTH OF SALMONELLAE IN COMPOSTED SEWAGE SLUDGE

    EPA Science Inventory

    Research was conducted to investigate the regrowth of salmonellae in composted sewage sludge. Though composting effectively stabilizes and disinfects sewage sludges, the decrease in salmonellae may be only temporary, since this pathogen can survive and grow without a human or ani...

  20. Sewage Disposal in Port Harcourt, Nigeria.

    ERIC Educational Resources Information Center

    Ayotamuno, M. J.

    1993-01-01

    This survey of the Port Harcourt, Nigeria, sewage disposal system exemplifies sewage disposal in the developing world. Results reveal that some well-constructed and maintained drains, as well as many open drains and septic tanks, expose women and children to the possibility of direct contact with parasitic organisms and threaten water resources.…

  1. Sewage Disposal in Port Harcourt, Nigeria.

    ERIC Educational Resources Information Center

    Ayotamuno, M. J.

    1993-01-01

    This survey of the Port Harcourt, Nigeria, sewage disposal system exemplifies sewage disposal in the developing world. Results reveal that some well-constructed and maintained drains, as well as many open drains and septic tanks, expose women and children to the possibility of direct contact with parasitic organisms and threaten water resources.

  2. Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol

    NASA Astrophysics Data System (ADS)

    Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.

    2013-12-01

    Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.

  3. Boston Harbor sewage stack (for microcomputers). Software

    SciTech Connect

    Not Available

    1992-12-01

    The Boston Harbor Sewage Stack is interactive educational computer program about how municipalities deal with sewage, how sewage systems work, non point pollution, and what citizens can do to help - focusing on Boston Harbor and the Boston Harbor Cleanup. The program is written at a level accessible to middle-school students, but with enough depth for adults. Schools and environmental organizations, especially in coastal areas, will find this program a useful addition to their environmental education offerings. The program shows what happens to sewage - from the moment of flush to its passage through the Massachusetts Water Resources Authority's sewage system and into Boston Harbor - now and as the cleanup proceeds. Users encounter topics for exploration, including storm sewers and combined sewer overflows (CSOs); non point pollution from pets, spilled waste oil, lawn and garden chemicals, and other sources; what not to flush and why; how officials can tell if water is polluted; and why it all matters.

  4. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  5. Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4

    PubMed Central

    Lee, Jennifer; Shieh, Jae-Hung; Zhang, Jianxuan; Liu, Liren; Zhang, Yue; Eom, Jae Yong; Morrone, Giovanni; Moore, Malcolm A. S.

    2013-01-01

    Direct transduction of the homeobox (HOX) protein HOXB4 promotes the proliferation of hematopoietic stem cells (HSCs) without induction of leukemogenesis, but requires frequent administration to overcome its short protein half-life (?1 hour). We demonstrate here that HOXB4 protein levels are post-translationally regulated by the CUL4 ubiquitin ligase, and define the degradation signal sequence (degron) of HOXB4 required for CUL4-mediated destruction. Additional HOX paralogs share the conserved degron in the homeodomain and are also subject to CUL4-mediated degradation, indicating that CUL4 likely controls the stability of all HOX proteins. Moreover, we engineered a degradation-resistant HOXB4 that conferred a growth advantage over wild-type HOXB4 in myeloid progenitor cells. Direct transduction of recombinant degradation-resistant HOXB4 protein to human adult HSCs significantly enhanced their maintenance in a more primitive state both in vitro and in transplanted NOD/SCID/IL2R-?null mice compared with transduction with wild-type HOXB4 protein. Our studies demonstrate the feasibility of engineering a stable HOXB4 variant to overcome a major technical hurdle in the ex vivo expansion of adult HSCs and early progenitors for human therapeutic use. PMID:23520338

  6. Improved Pulsed-Field Gel Electrophoresis Procedure for the Analysis of F. columnare Isolates Previously Affected by DNA Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a fresh water bacterium that causes columnaris diseases in over 36 fish species. Intra-species typing of F. columnare can be performed by pulsed-field gel electrophoresis (PFGE). However, this method is hampered by the degradation of chromosomal DNA in about 10% of strain...

  7. Improvement of municipal wastewaters by electron beam accelerator in Brazil

    NASA Astrophysics Data System (ADS)

    Borrely, S. I.; Del Mastro, N. L.; Sampa, M. H. O.

    1998-06-01

    Radiation processing of municipal sewage and sludge has been considered not only for disinfection but also for solids and organic matter removal in Brazil. The improvement of irradiated systems were demonstrated by the elimination of indicator bacteria and by the reduction on the total bacteria count, on the chemical and biochemical oxygen demand from raw sewage and biologically treated effluents. The selected doses of radiation to be applied to sewage and sewage sludge are in the range of 3.0 to 4.0 kGy to sewage and 4.0 to 6.0 kGy to sewage sludge.

  8. Using microorganisms to aid in hydrocarbon degradation

    SciTech Connect

    Black, W.; Zamora, J. )

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  9. Improvements to the design process for a real-time passive millimeter-wave imager to be used for base security and helicopter navigation in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Anderton, Rupert N.; Cameron, Colin D.; Burnett, James G.; Gell, Jeff J.; Sanders-Reed, John N.

    2014-06-01

    This paper discusses the design of an improved passive millimeter wave imaging system intended to be used for base security in degraded visual environments. The discussion starts with the selection of the optimum frequency band. The trade-offs between requirements on detection, recognition and identification ranges and optical aperture are discussed with reference to the Johnson Criteria. It is shown that these requirements also affect image sampling, receiver numbers and noise temperature, frame rate, field of view, focusing requirements and mechanisms, and tolerance budgets. The effect of image quality degradation is evaluated and a single testable metric is derived that best describes the effects of degradation on meeting the requirements. The discussion is extended to tolerance budgeting constraints if significant degradation is to be avoided, including surface roughness, receiver position errors and scan conversion errors. Although the reflective twist-polarization imager design proposed is potentially relatively low cost and high performance, there is a significant problem with obscuration of the beam by the receiver array. Methods of modeling this accurately and thus designing for best performance are given.

  10. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization.

    PubMed

    vom Eyser, C; Palmu, K; Schmidt, T C; Tuerk, J

    2015-12-15

    We investigated the removal of twelve pharmaceuticals in sewage sludge by hydrothermal carbonization (HTC), which has emerged as a technology for improving the quality of organic waste materials producing a valuable biochar material. In this study, the HTC converted sewage sludge samples to a biochar product within 4h at a temperature of 210 °C and a resulting pressure of about 15 bar. Initial pharmaceutical load of the sewage sludge was investigated as well as the residual concentrations in biochar produced from spiked and eight native sewage sludge samples from three waste water treatment plants. Additionally, the solid contents of source material and product were compared, which showed a considerable increase of the solid content after filtration by HTC. All pharmaceuticals except sulfamethoxazole, which remained below the limit of quantification, frequently occurred in the investigated sewage sludges in the μg/kg dry matter (DM) range. Diclofenac, carbamazepine, metoprolol and propranolol were detected in all sludge samples with a maximum concentration of 800 μg/kgDM for metoprolol. HTC was investigated regarding its contaminant removal efficiency using spiked sewage sludge. Pharmaceutical concentrations were reduced for seven compounds by 39% (metoprolol) to≥97% (carbamazepine). In native biochar samples the four compounds phenazone, carbamazepine, metoprolol and propranolol were detected, which confirmed that the HTC process can reduce the load of micropollutants. In contrast to the other investigated compounds phenazone concentration increased, which was further addressed in thermal behaviour studies including three structurally similar potential precursors. PMID:26282751

  11. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water.

    PubMed

    Renuka, N; Sood, A; Ratha, S K; Prasanna, R; Ahluwalia, A S

    2013-01-01

    The present work was aimed at analysing the role of inoculated microalgae in nutrient dynamics, bioremediation and biomass production of sewage water. Preliminary microscopic analyses of sewage water revealed the presence of different algal groups, with predominance of Cyanophyta. Among the inoculated strains, Calothrix showed highest dry cell weight (916.67 mg L(-1)), chlorophyll and carotenoid content in tap water + sewage water (1:1) treatment. Significant removal of NO3-N ranging from 57-78% and PO4-P (44-91%) was recorded in microalgae inoculated tap water + sewage water. The total dissolved solids and electrical conductivity of tap water + sewage water after incubation with Calothrix sp. decreased by 28.5 and 28.0%, accompanied by an increase in dissolved oxygen from 4.4 to 6.4 mg L(-1) on the 20th day. Our investigation revealed the robustness of Calothrix sp. in sequestering nutrients (N and P), improving water quality and proliferating in sewage water. PMID:23819275

  12. A study on torrefaction of sewage sludge to enhance solid fuel qualities.

    PubMed

    Poudel, Jeeban; Ohm, Tae-In; Lee, Sang-Hoon; Oh, Sea Cheon

    2015-06-01

    Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300-350C were the optimum torrefaction temperatures for sewage sludge. PMID:25812807

  13. Improvement of 3Y-TZP hydrothermal degradation resistance by surface modification with ceria without impairing mechanical properties

    NASA Astrophysics Data System (ADS)

    Marro, F. G.; Valle, J.; Mestra, A.; Anglada, M.

    2009-09-01

    Surface modification with cerium oxide of tetragonal zirconia polycrystals stabilised with 3% molar yttria (3Y-TZP) has been investigated in order to avoid low temperature degradation. The surface modification was performed by annealing 3Y-TZP with surface coated CeO2 powder at temperatures of 1400 C and 1500 C for periods of time up to 10 hours. These heat-treatments diffused cerium up to about 10 ?m depth. The bulk fracture toughness, Vickers hardness and Young modulus of the surface modified specimens showed no significant deviation as compared to the non-treated original material. Even the surface mechanical properties measured by penetration curves corresponding to nanoindentations of up to 2 ?m depth, did not show significant differences after surface modification. All heat-treatments produced an increase in the surface grain size and a large increase in resistance to degradation.

  14. Microalgae cultured by sewage and organic constituents.

    PubMed

    Inoue, Kenichiro; Uchida, Tsutomu

    2013-10-01

    The microalgae could be multiplied by supplying only sewage influent or effluent without any additional microalgal stock or nutrient salt. In a semicontinuous culture, the N:P weight ratios consumed were 14:1 and 18:1 for the sewage influent and effluent, respectively. The total cell number and green algae ratio of microalgae cultivated by semicontinuous culture exceeded those of batch culture. No cyanobacterial cells were observed in the semicontinuous culture using the sewage effluent. The organic components in the cultured microalgae using sewage effluent, eluted by n-hexane, were determined. The ratio of unsaturated fatty acid exceeded that of saturated fatty acid, which was possibly attributable to the fluidity of the cell membrane. The squalene was also obtained by the culture using sewage alone, free of any external stock or nutrient salt. The higher heating value of the microalgae of semicontinuous culture using the sewage influent was 25 MJ kg(-1), corresponding to the heating value of lignite and showing the potential of the sewage culture microalgae as a means of power generation and combustion aid. PMID:24059978

  15. Improvement of physico-mechanical, thermomechanical, thermal and degradation properties of PCL/gelatin biocomposites: Effect of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zaman, Haydar U.; Beg, M. D. H.

    2015-04-01

    This research was to study the effects of gelatin content variation and gamma radiation after the 2-ethylhexyl acrylate (EHA) pre-treatment on the foundamental properties of gelatin film laminated polycaprolactone (PCL) biocomposites. PCL/gelatin film (PCL/GF) composites were fabricated by compression molding and their properties were studied by physico-mechanical, thermomechanical, thermal and degradation properties. The results from mechanical properties such as tensile modulus and impact strength of the composites increased with increasing of gelatin content up to 10 wt% and then decreased while the tensile strength and elongation at break decreased. EHA monomer (2-8 wt%) was added to the gelatin solution and films were prepared by casting and found to increase the mechanical properties of the PCL/EHA blended gelatin film (PCL/EGF) composites. Treatment of the gelatin film with gamma radiation after the EHA pre-treatment showed the best mechanical properties of the resulting composites. Dynamic mechanical thermal analysis results showed that the storage modulus of the PCL/EGF and PCL/EHA blended gelatin film with gamma radiation (PCL/GEGF) composites was increased significantly. The degradation properties in water and soil were determined for the non-irradiated and irradiated composites. It was observed that the non-irradiated composite degrades more than that of the irradiated composites.

  16. Strategic environmental assessment of alternative sewage sludge management scenarios.

    PubMed

    Poulsen, Tjalfe G; Hansen, Jens Aa

    2003-02-01

    Strategic environmental assessment (SEA) of sewage sludge management in a Danish municipality (Aalborg), with 160,000 inhabitants using alternative methods for aggregation of environmental impacts was performed. The purpose is to demonstrate the use of SEA in relation to sludge management and to improve SEA methodology. Six different scenarios for management of sewage sludge within the Aalborg municipality involving thermal treatment, composting and landfilling of sludge were evaluated. Environmental impact categories considered were global warming, non-renewable resources (nutrients and fossil fuels) and land use. Impact categories human health, ecotoxicity and soil quality were excluded as methodology for their assessment is not yet fully developed. Thermal sludge treatment with energy utilisation was shown to be a promising option for sewage sludge management in Aalborg. Sensitivity of the relative environmental impacts with respect to calculation methodology and input parameter values were evaluated to identify important parameters and calculation methods. The analysis showed that aggregation procedures, sludge biogas potential and sludge production were very important whereas sludge transport was not. PMID:12667015

  17. Flow Characteristics of the Raw Sewage for the Design of Sewage-Source Heat Pump Systems

    PubMed Central

    Xu, Ying; Wu, Yuebin; Sun, Qiang

    2014-01-01

    The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponent n being 0.891 and the rheological coefficient k being 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems. PMID:24987735

  18. The occurrence and significance to animal health of salmonellas in sewage and sewage sludges.

    PubMed Central

    Jones, P. W.; Rennison, L. M.; Lewin, V. H.; Redhead, D. L.

    1980-01-01

    A total of 882 samples of settled sewage, sewage sludges and final effluents from eight sewage treatment plants were examined for the presence of salmonellas. Of these samples 68% were positive, isolations being made most frequently from settled sewage (85%), raw sludge (87%) and anaerobically digested sludge (96%). Fewer isolations were made from final effluent (24%) and processed sludges (58%). Samples usually contained less than 200 salmonellas/100 ml and arguments are presented that such concentrations should not lead to disease in animals if suitable grazing restrictions are followed. PMID:6985928

  19. Pathway of radioisotopes from land surface to sewage sludge

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Yokoo, Yoshiyuki

    2014-05-01

    Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

  20. The pyrolysis process of sewage sludge

    NASA Astrophysics Data System (ADS)

    Kosov, V. F.; Umnova, O. M.; Zaichenko, V. M.

    2015-11-01

    The experimental investigations of pyrolysis process sewage sludge at different conditions are presented. As a result of executed investigations it was shown that syngas (mixrure of CO and H2) used in gas engine can be obtained in pyrolysis process.

  1. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode.

    PubMed

    Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin

    2016-03-01

    Solutions of 500mL 200mgL(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed. PMID:26561756

  2. Improved mortality of the Formosan subterranean termite by fungi, when amended with cuticle-degrading enzymes or eicosanoid biosynthesis inhibitors.

    PubMed

    Wright, Maureen S; Lax, Alan R

    2016-01-01

    Formosan subterranean termites (FST) were exposed to strains of Beauveria pseudobassiana (Bpb) and Isaria fumosorosea (Ifr) to determine virulence of the fungi. Once lethality was determined, sublethal doses of Bpb were combined with enzymes capable of degrading the insect cuticle to measure the potential to enhance fungal infection. Bpb applied to FST in combination with proteinases and a chitinase caused increased mortality over the fungus alone. Mortality was enhanced when Ifr was applied to FST in combination with a chitinase isolated from Serratia marcesans. A lipase isolated from Pseudomonas cepacia, when combined with Ifr, also resulted in greater mortality than all control treatments. FST were also exposed to the eicosanoid biosynthesis inhibitors (EBIs) dexamethasone (DEX), ibuprofen (IBU), and ibuprofen sodium salt (IBUNA), in combination with Ifr. Combining Ifr with IBUNA caused significantly increased mortality on days 6, 7, and 9. Cuticle-degrading enzymes and EBIs may have potential to enhance the pathogenic effect of a fungal control agent against the Formosan subterranean termite. PMID:26122366

  3. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5?. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5?) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5? to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5? could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  4. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment

    NASA Astrophysics Data System (ADS)

    Sangareswari, Murugan; Meenakshi Sundaram, Mariappan

    2015-10-01

    In this study, the photocatalytic activity of polypyrrole-TiO2 nanocomposite was studied experimentally for the degradation of methylene blue (MB) dye under simulating solar light irradiation. To improve the photocatalytic activity of TiO2 under sunlight irradiation, conducting polymers such as polypyrrole (PPy) and its derivatives are generally used as photosensitizers. The PPy-TiO2 nanocomposite was prepared by the chemical oxidative polymerization method. The prepared nanocomposite showed better photocatalytic activity than bare TiO2 under sunlight irradiation for the degradation of MB dye. The prepared nanocomposite was subjected to characterization techniques such as SEM-EDAX, FT-IR, UV-DRS, XRD, TGA and PL spectral analysis. Different influencing operating parameters like initial concentration of dye, irradiation time, pH and amount of PPy-TiO2 nanocomposite used have also been studied. The optical density of the dye degradation was measured by UV-Visible spectrophotometer. The repeatability of photocatalytic activity was also tested. A plausible mechanism was proposed and discussed on the basis of experimental results.

  5. A Family Physician's Guide to Sewage Sludge

    PubMed Central

    Connop, Peter J.

    1983-01-01

    The potential environmental and personal health effects from the agricultural uses of domestic sewage sludge may increasingly require the guidance of the family physician, especially in farming communities. This article summarizes the potential health hazards and outlines the tripartite risk phenomenonhazard identification, risk assessment, and social evaluation. For the agricultural use of dewatered sewage sludge, strict adherence to regulated procedures should not increase risk beyond that of agriculture generally. Confirmation by prospective epidemiological studies is recommended. PMID:21283298

  6. Sewage Reflects the Microbiomes of Human Populations

    PubMed Central

    Newton, Ryan J.; McLellan, Sandra L.; Dila, Deborah K.; Vineis, Joseph H.; Morrison, Hilary G.; Eren, A. Murat

    2015-01-01

    ABSTRACT Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. PMID:25714718

  7. Global hepatic gene expression in rainbow trout exposed to sewage effluents: a comparison of different sewage treatment technologies.

    PubMed

    Cuklev, Filip; Gunnarsson, Lina; Cvijovic, Marija; Kristiansson, Erik; Rutgersson, Carolin; Bjrlenius, Berndt; Larsson, D G Joakim

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. PMID:22575374

  8. Management of sewage sludge by composting using fermented water hyacinth.

    PubMed

    Tello-Andrade, A F; Jiménez-Moleón, M C; Sánchez-Galván, G

    2015-10-01

    The goal of the present research work was to assess the management of sewage sludge (SS) by composting using fermented water hyacinth (WHferm) as an amendment. The water hyacinth was fermented, and a higher production of volatile fatty acids (VFAs) (782.67 mg L(-1)) and soluble organic carbon (CSOL) (4788.34 mg L(-1)) was obtained using a particle size of 7 mm compared to 50 mm. For composting, four treatments (10 kg fresh weight each) were evaluated: treatment A (100 % SS + 0 % WHferm), treatment B (75 % SS + 25 % WHferm), treatment C (50 % SS + 50 % WHferm), and treatment D (25 % SS + 75 % WHferm). The WHferm added to SS, especially in treatments C (50 %) and D (75 %), increased the initial contents of organic matter (OM), organic carbon (CORG), CSOL, the C/N ratio, and the germination index (GI). The heavy metal content (HMC) (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) at the beginning was below the maximum allowed by USEPA regulations. All of the samples were free of Salmonella sp. from the beginning. The reduction of the CORG, CSOL, total Kjeldahl nitrogen (TKN), and C/N ratio indicated the degradation of the OM by day 198. The treatments with WHferm (B, C, and D) yielded higher values of electrical conductivity, cation exchange capacity, and GI than SS at day 198. No significant differences were observed in GI among the treatments with WHferm. The fecal coliforms were eliminated (<3 MPN g(-1)) and the helminths were reduced to ≤5 eggs/2 g during the process. The competition for nutrients and the presence of suppressive fungi of the genera Penicillium, Rhizopus, Paecilomyces (penicillin producers), and Fusariella isolated from the compost may have promoted the elimination of pathogens since no thermophile temperatures were obtained. WHferm as an amendment in the composting of SS improved the characteristics of the final product, especially when it was used in proportions of 25 and 50 %. An excellent product was obtained in terms of HMC, and the product was B class in terms of pathogens. PMID:25989858

  9. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35C) and thermophilic (55C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65% resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80%, and pH7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p?sewage sludge under mesophilic and thermophilic conditions. PMID:26300352

  10. Influence of soil fertilization by sewage sludge on the content of polycyclic aromatic hydrocarbons (PAHs) in crops.

    PubMed

    Oleszczuk, Patryk; Baran, Stanis?aw

    2005-01-01

    The aim of the present study was an evaluation of the influence of the addition of different sewage sludge doses on the uptake of polycyclic aromatic hydrocarbons from fertilized soil. Sewage sludge was introduced into the soil in the following doses: 30, 75, 150, 300, and 600 Mg/ha. The content of polycyclic aromatic hydrocarbons (PAH) was determined by means of HPLC-UV method. The addition of increasing doses of sludge into the soil resulted in a gradual increase in the amount of the polycyclic aromatic hydrocarbons contained therein. During the period of the study, continuous changes in the content of all the compounds studied were found in all the experimental variants. Finally, on the last day of the study, the highest degree of degradation (73%) of 16 PAHs' sum (US EPA) was noted for sludge doses of 30 and 300 Mg/ha. In the case of individual PAHs, the change in their content differed and clearly depended on the sewage sludge dose. The introduction of sewage sludge into the soil influenced the increase of the sum of 16 PAHs in the plants grown in this soil. The influence mentioned above depended on the sewage sludge dose and the plant species grown, as well as the PAH content in the soil. The evaluation of individual PAHs in plants showed an increase in their content with the increase of the amount of sewage sludge. A statistically significant increase in their content was most often observed for sewage sludge doses above 150 Mg/ha. Moreover, it was found that fertilization of the soil with sewage sludge resulted in pollution of the plants with PAHs of high molecular weight. PMID:16287643

  11. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  12. Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.

    PubMed

    Li, Gui-E; Wu, Xiao-Qin; Ye, Jian-Ren; Hou, Liang; Zhou, Ai-Dong; Zhao, Liu

    2013-11-01

    A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future. PMID:23709169

  13. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment

    NASA Astrophysics Data System (ADS)

    Masto, Reginald Ebhin; Chhonkar, Pramod K.; Singh, Dhyan; Patra, Ashok K.

    2009-01-01

    Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18-22.7%, organic carbon to 0.51-0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha-1, available N (397 kg ha-1), available P (128 kg ha-1), available K (524 kg ha-1) and available S (65.5 kg ha-1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (-78.2%), soil respiration (-82.3%), phosphatase activity (-59.12%) and dehydrogenase activity (-59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.

  14. Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation-emission matrix.

    PubMed

    Zhang, Jie; Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2015-05-01

    Sewage sludge (T1) and the mixture of sewage sludge and cattle dung (T2) were vermicomposted with Eisenia fetida, respectively. The transformation of humic acid (HA) and fulvic acid (FA) extracted from these two treatments were evaluated by a series of chemical and spectroscopic methods. Results indicated that the vermicomposting decreased pH, TOC, and C/N ratio, and increased EC, total extractable C, and HA contents. The FA content in treatment T1 was increased significantly, and only slight increasing was observed in treatment T2. Moreover, vermicomposting decreased H content, C/N ratio, proteinaceous and carbohydrates components, and increased the N content, C/H ratio, aromatic compounds and polycondensation structures in HA and FA. In addition, fluorescence spectra and fluorescence regional integration indicated that protein-like groups were degraded and HA compounds were formed. Furthermore, the addition of cattle dung enhanced the humification process and improved the HA quality in spite of no significant effect on the FA. PMID:25736580

  15. Assessing Ecological Impacts of Shrimp and Sewage Effluent: Biological Indicators with Standard Water Quality Analyses

    NASA Astrophysics Data System (ADS)

    Jones, A. B.; O'Donohue, M. J.; Udy, J.; Dennison, W. C.

    2001-01-01

    Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (δ 15N), and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO-3/NO-2 and PO3-4, compared to NH+4 in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant δ 15N values ranged from 10·4-19·6‰ at the site of sewage discharge to 2·9-4·5‰ at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The δ 15N isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters.

  16. Microbial sewage contamination associated with Superstorm Sandy flooding in New York City

    NASA Astrophysics Data System (ADS)

    O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.

    2013-05-01

    The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.

  17. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.

    PubMed

    Khiewwijit, Rungnapha; Keesman, Karel J; Rijnaarts, Huub; Temmink, Hardy

    2015-10-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1h and an SRT of 1 day. The HL-MBR process removed on average 83% of sewage COD, while only 10% of nitrogen and phosphorus was removed. During anaerobic fermentation of HL-MBR concentrate at an SRT of 5 days and 35 C, specific VFA production rate of 282 mg VFA-COD/g VSS could be reached and consisted of 50% acetate, 40% propionate and 10% butyrate. More than 75% of sewage COD was diverted to the concentrate, but only 15% sewage COD was recovered as VFA, due to incomplete VSS degradation at the short treatment time applied. This shows that combined process for the VFA production is technologically feasible and needs further optimization. PMID:26133471

  18. Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer.

    PubMed

    Wang, J Y; Stabnikova, O; Tay, S T L; Ivanov, V; Tay, J H

    2004-01-01

    Biotechnology for intensive aerobic bioconversion of sewage sludge and food waste into fertilizer was developed. The wastes were treated in a closed reactor under controlled aeration, stirring, pH, and temperature at 60 degrees C, after addition of starter bacterial culture Bacillus thermoamylovorans. The biodegradation of sewage sludge was studied by decrease of volatile solids (VS), content of organic carbon and autofluorescence of coenzyme F420. The degradation of anaerobic biomass was faster than biodegradation of total organic matter. The best fertilizer was obtained when sewage sludge was thermally pre-treated, mixed with food waste, chalk, and artificial bulking agent. The content of volatile solid and the content of organic carbon decreased at 24.8% and 13.5% of total solids, respectively, during ten days of bioconversion. The fertilizer was a powder with moisture content of 5%. It was stable, and not toxic for the germination of plant seeds. Addition of 1.0 to 1.5% of this fertilizer to the subsoil increased the growth of different plants tested by 113 to 164%. The biotechnology can be applied in larger scale for the recycling of sewage sludge and food wastes in Singapore. PMID:15259949

  19. Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning.

    PubMed

    Zhang, Hao; Yang, Jiakuan; Yu, Wenbo; Luo, Sen; Peng, Li; Shen, Xingxing; Shi, Yafei; Zhang, Shinan; Song, Jian; Ye, Nan; Li, Ye; Yang, Changzhu; Liang, Sha

    2014-08-01

    Red mud was evaluated as an alternative skeleton builder combined with Fenton's reagent in sewage sludge conditioning. The results show that red mud combined with Fenton's reagent showed good conditioning capability with the pH of the filtrate close to neutrality, indicating that red mud acted as a neutralizer as well as a skeleton builder when jointly used with Fenton's reagent. Through response surface methodology (RSM), the optimal dosages of Fe(2+), H2O2 and red mud were proposed as 31.9, 33.7 and 275.1 mg/g DS (dry solids), respectively. The mechanism of the composite conditioner could be illuminated as follows: (1) extracellular polymeric substances (EPS), including loosely bound EPS and tightly bound EPS, were degraded into dissolved organics, e.g., proteins and polysaccharides; (2) bound water was released and converted into free water due to the degradation of EPS; and (3) morphology of the conditioned sludge exhibited a porous structure in contrast with the compact structure of raw sludge, and the addition of red mud formed new mineral phases and a rigid lattice structure in sludge, allowing the outflow of free water. Thus, sludge dewatering performance was effectively improved. The economic assessment for a wastewater treatment plant of 370,000 equivalent inhabitants confirms that using red mud conditioning, combined with Fenton's reagent, leads to a saving of approximately 411,000 USD/y or 50.8 USD/t DS comparing with using lime and ordinary Portland cement combined with Fenton's reagent, and approximately 612,000 USD/y or 75.5 USD/t DS comparing with the traditional treatment. PMID:24810740

  20. Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions.

    PubMed

    Stiborova, Hana; Vrkoslavova, Jana; Pulkrabova, Jana; Poustka, Jan; Hajslova, Jana; Demnerova, Katerina

    2015-11-15

    Disposal of solid waste to landfills from waste water sewage treatment plants (WWTPs) serves as a potential source of contamination by polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). Native microbial communities have been found to degrade a variety of xenobiotics, such as PBDEs and HBCDs. This study investigates the potential of autochthonous microflora to remove 11 PBDE congeners and HBCDs in waste water sludge under anaerobic conditions. Laboratory microcosms were constructed with sewage sludge from the WWTPs of Hradec Kralove and Brno. BDE 209 was detected as the prevailing congener in concentrations 685 and 1403 ng/g dw and the total amounts of 10 lower PBDEs (BDE 28, 47, 49, 66, 85, 99, 100, 153, 154, 183) were 605 and 205 ng/g dw in sludge from Hradec Kralove and Brno, respectively. The levels of HBCD were detected in both sludge lower than 24 ng/g dw. The experiment was carried out for 15 months. After three months of incubation, HBCD was completely degraded to below detection limits. In sewage from both WWTPs, the higher brominated DEs were removed faster than the lower brominated congeners. One exception was tri-BDE, which was degraded completely within 15 months of cultivation. A significant increase in congener tetra-BDE 49 concentrations was observed over the course of the experiment in all tested sewage. The relative distribution of individual congeners among all PBDEs changed after 15 months of the incubation in favour of lower brominated congeners. This indicates that debromination is the major mechanism of anaerobic biodegradation. Despite of the increase of BDE 49, the overall removal of all 11 PBDEs achieved the levels of 47.4 and 68.7% in samples from WWTPs Hradec Kralove and Brno, respectively. PMID:26179781

  1. Could sewage epidemiology be a strategy to assess lifestyle and wellness of a large scale population?

    PubMed

    Santos, Julia M; Jurban, Michael; Kim, Hyesook

    2015-10-01

    The use of sewage epidemiology to estimate the behavior of a large scale population has mainly been used to assess illicit drug use within a community. The systemic oxidative stress marker, 8-isoprostane, is a wildly accepted biomarker for various diseases such as diabetes, and cardiovascular and renal diseases. 8-Isoprostane is detected in urine and, as with illicit drugs, is excreted into urban sewer networks. Initially, we tested the hypothesis that differential 8-isoprostane levels are detected in wastewater of different communities and that 8-isoprostane values adjusted for the flow rate and population size will remain constant over a 2 months period. Sewage samples were collected from three sewage collection points supplied by different communities located in the Detroit metropolitan area and concentration of 8-isoprostane and synthetic plastic component, bisphenol A (BPA), were measured. Levels of 8-isoprostane were constant during the two measured months at each collection point in oppose to BPA levels. When the levels were compared among communities, 8-isoprostane levels in 24h flow and their concentrations per capita in each community varied by more than 5-fold among them. Considering the fact that 8-isoprostane is a biomarker of several diseases, we hypothesize that measurement of 8-isoprostane levels in sewage may serve as a risk assessment tool of oxidative stress-related diseases in a large scale population. Thus, sewage epidemiology can be utilized to obtain an early warning in a community to facilitate intervention for improvement of the community health. PMID:26146131

  2. Exploring the bioaccessibility of polybrominated diphenyl ethers (PBDEs) in sewage sludge.

    PubMed

    Meng, Xiang-Zhou; Xiang, Nan; Yu, Lihong; Zhang, Jiying; Chen, Ling; Dai, Xiaohu

    2015-12-01

    Environmental risks of polybrominated diphenyl ethers (PBDEs) in sewage sludge are assessed based on the concentration by exhaustive extraction, which is a likely overestimation of the pool available to exposed organisms. This study evaluated the bioaccessibility of PBDEs in sewage sludge from Shanghai using a 3-compartment model and a 6-d Tenax extraction. The very slowly fraction contributed 56-88% of total PBDEs in spiked sludge, whereas the rapidly desorbing fraction contributed only 1.1-10%. For the same PBDE congener, the rapidly desorbing fractions for sewage sludge measured in the present study were lower than those for sediment. The bioaccessible concentrations of PBDEs were 2.3-56ng/g dry weight in sewage sludge from Shanghai, which represented 5.2% of the concentration determined by exhaustive (Soxhlet) extraction. BDE-209 was the predominant congener in sludge, contributing to 63% of the total. Moreover, the Ratio between 6-h Tenax and Soxhlet concentrations (T/S Ratio, indicating bioaccessibility) was lower in sludge generated from industrial wastewater treatment compared to sludge from facilities that treated mostly domestic wastewater. The T/S Ratio of PBDE congeners was related to KOW, specifically as KOW increases, the T/S Ratio decreased. These results will improve understanding of the fate and potential toxicity of PBDEs during land and/or landfill application of sewage sludge. PMID:26327497

  3. Direct sewage filtration for concentration of organic matters by dynamic membrane.

    PubMed

    Gong, Hui; Wang, Xian; Zheng, Mingxia; Jin, Zhengyu; Wang, Kaijun

    2014-01-01

    Sewage treatment is experiencing a paradigm shift whereby sewage should be treated as a resource with maximum reuse of water, nutrients and energy. Concentration of sewage for organic matter enrichment is essential for improved energy recovery. In this study, the concentrating performance of direct sewage filtration by a dynamic membrane was investigated. A novel double-layer cloth-media membrane module was developed. A 50 ?m Daron cloth was selected as inner layer and a 1 ?m propene polymer cloth as outer layer. Quick formation of the dynamic membrane was observed and it agreed with the complete blocking model. The results of continuous-flow experiments showed that chemical oxygen demand (COD) was concentrated to about 4500 mg/L within nine operation cycles in 70 hours. Trans-membrane pressure increased quickly to 80 kPa at the end of each cycle. Theoretical concentrating efficiency (?) was 77% and the carbon balance calculation showed 70.7% COD was retained in the reactor during the concentrating process. Scanning electron microscopy analysis showed that the cake layer was almost completely removed after physical cleaning and the gel layer was not remarkable. A sequencing sewage concentrating process was proposed for long-term operation. PMID:25353951

  4. Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents.

    PubMed

    David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette

    2013-03-01

    This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vne river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vne river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vne river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods. PMID:22847028

  5. Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge.

    PubMed

    Malins, Kristaps; Kampars, Valdis; Brinks, Janis; Neibolte, Ilze; Murnieks, Raimonds; Kampare, Ruta

    2015-01-01

    The present work demonstrates the influence of experimental conditions such as weight ratio of sewage sludge to water (1/0-1/15), reaction temperature (200-350C), initial H2 pressure (2.0-11.0MPa), residence time (10-100min) and type of catalysts (Na2CO3, Raney nickel, FeSO4, MoS2) on hydro-liquefaction process of sewage sludge. High amount of water improves the hydro-liquefaction process of sewage sludge by increasing the yield of bio-oil and the total conversion. The highest yield of bio-oil (47.79 wt.%) from sewage sludge was obtained with initial H2 pressure 5.0MPa, reaction temperature 300C, and residence time 40min. Under these experimental conditions, using weight ratio of sewage sludge to water 1/5, catalyst (FeSO4) - 5 wt.% of dry SS, mixing speed 350rpm the obtained bio-oil had the highest energy recovery (69.84%), total conversion (70.64%) and its calorific value was 35.22MJ/kg. PMID:25827249

  6. Determination of synthetic musk compounds in sewage biosolids by gas chromatography/mass spectrometry.

    PubMed

    Osemwengie, Lantis I

    2006-09-01

    A review of sewage sludge regulations and land application practices by the United States National Research Council (2002) recommended development of improved analytical techniques to adequately identify and quantify new chemical contaminants, such as synthetic musk compounds in Class A sewage sludge (i.e., biosolids). This prompted the development of a rugged analytical method using gas chromatography coupled to mass spectrometry to detect this group of organic pollutants in biosolids. In this paper, the term "biosolids" is used interchangeably with "sewage sludge", which is defined in the regulations and used in the statue (Clean Water Act). Samples of Class A biosolids obtained from sewage treatment plants in Los Angeles, California, the City of Las Vegas, Nevada, and also in the form of a commercial fertilizer, were extracted using pressurized liquid extraction technique, subjected to gel permeation chromatography clean-up, and analyzed by GC/MS using the selected ion monitoring mode. The method developed has the potential to detect synthetic musk compounds in complex matrices, may provide accurate data useful in human health and environmental risk assessment, and may be useful in determining the efficacy of municipal sewage treatment plants for removing synthetic musk compounds. PMID:16951749

  7. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge.

    PubMed

    Liu, Xiaoli; Hu, Chengxiao; Zhang, Shuzhen

    2005-08-01

    The potential for using earthworms (Eisenia fetida) to improve fertility and reduce copper and cadmium availability in sewage sludge was tested by laboratory incubation experiments. Results comparing sewage sludge with and without earthworm treatment showed that earthworm activity decreased the contents of organic matter, total nitrogen, but increased the contents of available nitrogen and phosphorus and had no significant effect on the contents of total phosphorus, total potassium and available potassium. After incubation of the sewage sludge with earthworms for 60 days, the contents of Cu and Cd in the earthworms increased with the increase of additional Cu up to 250 mg kg(-1) and Cd up to 10 mg kg(-1). Bioconcentration factors (BCF) were higher than 1 only for Cd when the addition rate was lower than 5 mg kg(-1), which indicates that the earthworms can only accumulate Cd when the concentration of Cd is low in sewage sludge. Bioavailability of Cd and Cu was evaluated by applying sewage sludge with and without earthworm treatment to soil and then growing cabbage plants. The results showed that earthworm treatment increased the biomass of cabbage and decreased the bioaccumulation of Cd and Cu in the cabbage plants. PMID:15979143

  8. Utilization and Conversion of Sewage Sludge as Metal Sorbent

    NASA Astrophysics Data System (ADS)

    Gong, Xu Dong; Li, Loretta Y.

    2013-04-01

    Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC × CAC × clinoptilolite > kaolite.

  9. Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS.

    PubMed

    Kowal, Sebastian; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2012-06-01

    The development and validation of a sensitive and reliable detection method for the determination of two polar degradation products, desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) in surface water, ground water and drinking water is presented. The method is based on direct large volume injection ultra-performance liquid chromatography electrospray tandem mass spectrometry. This simple but powerful analytical method for polar substances in the aquatic environment is usually hampered by varying matrix effects, depending on the nature of different water bodies. For the two examined degradation products, the matrix effects are particularly strong compared with other polar degradation products of pesticides. Therefore, matrix effects were studied thoroughly with the aim of minimising them and improving sensitivity during determination by postcolumn addition of ammonia solution as a modifier. An internal standard was used in order to compensate for remaining matrix effects. The calibration curve shows very good coefficients of correlation (0.9994 for DPC and 0.9999 for MDPC). Intraday precision values were lower than 5 % for DPC, 3 % for MDPC and the limits of detection were 10 ng/L for both substances. The method was successfully used in a national round robin test with a deviation between 3 and 8 % from target values. Finally, about 1,000 samples from different water bodies have been examined with this method in the Rhine and Ruhr region of North-Rhine-Westphalia (Germany) and in the European Union. Approximately 76 % of analysed samples contained measurable amounts of DPC at concentrations up to 8 ?g/L while 53 % of the samples showed MDPC concentrations up to 2.3 ?g/L. PMID:22526659

  10. A control system based on field programmable gate array for papermaking sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing

    2013-03-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  11. Heavy metal speciation an uptake to durum wheat from sewage sludge

    SciTech Connect

    Ketchum, L.H.; Frost, H.L.

    1998-07-01

    This project focused on detection of heavy metal accumulation in durum wheat from sewage sludge or commercial phosphate fertilizer application, using Inductively Coupled Argon Plasma Mass Spectrometry. Four parts of the durum wheat plants were separated and analyzed (i.e., root, stem, leaves, and grain). Studies compared the metal uptake resulting from sewage sludge application and from commercial fertilizer. Sludges and fertilizers were applied in one application, except for one study which considered the effect of the same sludge dosage, except in two applications. The main objective of this research is to improve the grain quality by minimizing the accumulation of toxic elements in durum wheat.

  12. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  13. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  14. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. PMID:25638405

  15. Fuel composition comprised of heat-treated dewatered sewage sludge and a biocide-containing fuel oil

    SciTech Connect

    Beshore, D.G.

    1988-10-04

    An improved fuel composition is described comprised of a colloidal dispersion of a sewage sludge in a fuel oil. The composition consists of (1) from about 20 to 70 percent by weight of a heat-treated dewatered sewage sludge comprising from about 50 to 85 percent by weight of water with the remainder comprising solids, the sewage sludge having been heat-treated under conditions effective to substantially reduce the microorganism activity within the composition while maintaining the water content of the sewage sludge within the range, and (2) from about 30 to 80 percent by weight of a fuel oil containing a biocide which is at least oil soluble or dispersible in an amount effective to inhibit the growth of microorganisms within the composition.

  16. Biological and ecophysiological reactions of white wall rocket (Diplotaxis erucoides L.) grown on sewage sludge compost.

    PubMed

    Korboulewsky, Nathalie; Bonin, Gilles; Massiani, Catherine

    2002-01-01

    We studied the effects of sewage sludge compost on white wall rocket (Diplotaxis erucoides L.) compared with mineral fertilization and control (without any fertilizer) in a greenhouse experiment. The plants grown on the compost-amended soil showed a different growth dynamic: a significant delay in flowering and a bigger root system. Both the compost and the fertilization treatments increased biomass and seed yield. Heavy metal (Cu, Cd, Zn, Ni) distribution within the plant was in the following order: roots > leaves > stems, except for zinc which was homogeneously distributed. The balance of mineral nutrition was not affected by treatments. Zinc was the trace element which was most taken up. Unlike many species of Brassicaceae, white wall rocket is not a hyperaccumulator. Although sewage sludge compost improved plant growth, delay in flowering shows that it is necessary to take precautions when spreading sewage sludge in natural areas. PMID:11916052

  17. Treating sewage using coimmobilized system of Chlorella pyrenoidosa and activated sludge.

    PubMed

    Xiong, Z H; Ma, H J; Huang, G L; Pan, H; Sun, C Z

    2007-01-01

    Chlorella pyrenoidosa was coimmobilized with activated sludge to produce algae-bacteria beads for sewage treatment. Hydrolysis/acidogenesis pretreatment could improve the symbiotic microenvironment of coimmobilized Chlorella pyrenoidosa and activated sludge, and as a result, promote the removal of nutrients (COD(cr), inorganic nitrogen and inorganic phosphorus) in the sewage. A photo-bioreactor combining hydrolysis/acidogenesis pretreatment and coimmobilized technique was designed to treat sewage continuously. The results show that, the removal efficiencies of COD(cr), NH4(+)-N and TP reached steady state after 4-days of experiment. The removal efficiencies of COD(cr), NH4(+)-N and TP were 59.6%, 59.0% and 60.3% respectively. PMID:17283947

  18. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants.

    PubMed

    Zeng, Tao; Zhang, Xiaole; Wang, Saihua; Niu, Hongyun; Cai, Yaqi

    2015-02-17

    We here first proposed a yolk-shell Co3O4@metal-organic frameworks (MOFs) nanoreactor via a facile method to accommodate sulfate radical-based advanced oxidation processes (SR-AOPs) into its interior cavity. The mesoporous and adsorptive MOFs shells allow the rapid diffusion of reactant molecules to the encapsulated Co3O4 active sites, and the confined high instantaneous concentration of reactants in the local void space is anticipated to facilitate the SR-AOPs. As a proof of concept, the nanoreactor was fully characterized and applied for catalytic degradation of 4-chlorophenol (4-CP) in the presence of peroxymonosulfate (PMS). The enhancement of SR-AOPs in the nanoreactor is demonstrated by the result that degradation efficiency of 4-CP reached almost 100% within 60 min by using the yolk-shell Co3O4@MOFs catalysts as compared to only 59.6% under the same conditions for bare Co3O4 NPs. Furthermore, the applicability of this nanoreactor used in SR-AOPs was systematically investigated in terms of effect of reaction parameters and identification of intermediates and primary radical as well as mineralization of the reaction and stability of the composite. The findings of this study elucidated a new opportunity for improved environmental remediation. PMID:25608052

  19. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (?-glutamic acid)/gelatin hydrogel.

    PubMed

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai; Zhang, Huiwen

    2015-04-28

    Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (?-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ. PMID:25661176

  20. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the city and county of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system indicated that five wells perforated in alluvium were found to have markedly degradedd water quality. One well is located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others are located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. (Woodard-USGS)

  1. [Influencing Factors for Hydrolysis of Sewage Sludge Pretreated by Microwave-H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Wei, Yuan-song; Liu, Ji-bao

    2015-06-01

    Pretreatment can improve carbon source utilization of sludge. In this study, influencing factors of hydrolysis including hydrolysis time, ratio of seed sludge and temperature were investigated for sewage sludge pretreated by microwave-H2O2-alkaline process through batch experiments. Meanwhile, effects of hydrolysis and releasing characteristics of organic matters were also investigated under the optimized conditions. The results showed that the optimal hydrolysis time was 12 h and the optimized inoculum to substrate ratio (I/S) was 0.07. Under optimized conditions (12 h, I/S =0.07), SCOD, soluble proteins, soluble sugars and total VFAs content increased with increasing temperature, reaching the maximum at 65 degrees C. Acetic, propionic and iso-valeric acids were the dominant VFAs produced, and the percentage of acetic acid accounting for total VFAs was between 42.7% and 59.7%. In terms of carbon source composition, SCOD accounted for 37.8%-40.8% of total COD, soluble proteins accounted for 38.3%-41.3% of SCOD, soluble sugars accounted for 9.0%-9.3% of SCOD and total VFAs accounted for 3.3%-5.5% of SCOD. The COD/TN watio was between 15.79 and 16.50 in the sludge supernatant. The results of the three-dimensional fluorescence spectra and apparent molecular weight distributions showed that the fluorescence intensity of tyrosine-like substances in the soluble microbial products was the highest and increased with the increasing temperature in the sludge supernatant. After the sewage sludge was pretreated by microwave-H2O2-OH process, a lot of organic matters were released, including small molecule organics (M 100-350), while after hydrolysis, M, 3000-60,000 organics were degraded. PMID:26387329

  2. Biodegradation of Sewage Wastewater Using Autochthonous Bacteria

    PubMed Central

    Dhall, Purnima; Kumar, Rita; Kumar, Anil

    2012-01-01

    The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants. PMID:22272181

  3. Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.

    ERIC Educational Resources Information Center

    Anderson, Stephen P.

    Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.

  4. NHD INDEXED LOCATIONS FOR SEWAGE NO DISCHARGE ZONES

    EPA Science Inventory

    Locations where vessel sewage discharge is prohibited. Sewage no discharge zone (NDZ) locations are coded onto route.drain (Transport and Coastline Reach) feature of NHD to create Point Events and Linear Events. Sewage no discharge zone locations are coded onto region.rch (Wat...

  5. Improved purity and immunostimulatory activity of ?-(1?3)(1?6)-glucan from Pleurotus sajor-caju using cell wall-degrading enzymes.

    PubMed

    Satitmanwiwat, Saranya; Ratanakhanokchai, Khanok; Laohakunjit, Natta; Chao, Louis Kuoping; Chen, Shui-Tein; Pason, Patthra; Tachaapaikoon, Chakrit; Kyu, Khin Lay

    2012-05-30

    The objective of this work was to improve the purity of ?-(1?3)(1?6)-glucan in the native triple helical structure from the fruiting bodies of Pleurotus sajor-caju for effective biological function using cell wall-degrading enzymes. A crude carbohydrate was extracted with hot water, then treated with crude xylanase and cellulase from Paenibacillus curdlanolyticus B-6. ?-Glucan in the extract was purified to homogeneity with a single and symmetrical peak using 650M DEAE Toyopearl and Sepharose CL-6B column chromatography. The purity of ?-glucan was confirmed by high-performance size-exclusion chromatography. Purified ?-glucan was obtained at a purity of up to 90.2%. The Congo red reaction and atomic force microscopy indicated that the purified ?-glucan exhibited a triple helix conformation. Purified ?-glucan was able to effectively up-regulate the functions of macrophages such as nitric oxide (NO) and tumor necrosis factor (TNF-?) production. PMID:22563990

  6. Dual attenuation of proteasomal and autophagic BMAL1 degradation in Clock?19/+ mice contributes to improved glucose homeostasis

    PubMed Central

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-01-01

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated Clock?19/+ heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCK?19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks. PMID:26228022

  7. Hydrodynamic assessment of sewage impact on water quality of Malad Creek, Mumbai, India.

    PubMed

    Vijay, Ritesh; Sardar, Veena K; Dhage, Shivani S; Kelkar, Prakash S; Gupta, Apurba

    2010-06-01

    The rapid population growth and uncontrolled development in the coastal zone have led to major pollution impacts on creeks, estuarine, and coastal environment. Water quality models are valuable tools to understand the environmental processes for prediction of pollution impacts and evaluate future trends for management. Presently, the Malad creek in west coast of Mumbai receives wastewater and sewage from open drains and partially treated sewage from Malad and Versova treatment plants. The objective of the paper is to assess the environmental quality and estimate the extent of improvement in different parts of the creek by enhancing the collection efficiency and adequate treatment of sewage as well as disposal through ocean outfall. A hydrodynamic and water quality simulation has been carried out for the present condition in the creek and calibrated and validated with two different season data for better representation of the system. Calibrated model has been used to generate future scenarios based on various options. Among scenarios, option of treated effluent diverted to propose outfall and improvement in collection of unorganized flow through sewage up to 40% and 60% are found most significant for biochemical oxygen demand reduction and increase in dissolved oxygen. Fecal coliform reduction is also found drastically but still very high against standard. To improve the environmental quality of the creek, still upper stretch requires more dilution and flushing due to narrow width and contribution of heavy pollution from open drains. PMID:19424815

  8. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage.

    PubMed

    Guan, Xiao-Hong; Chen, Guang-Hao; Shang, Chii

    2005-09-01

    This paper attempted to study the feasibility of reusing water treatment works sludge ("alum sludge") to improve particulate pollutant removal from sewage. The main issues focused upon were: (1) the appropriate dosage of the alum sludge, (2) the appropriate operating conditions, and (3) the possible mechanisms for enhancement by adding alum sludge. Actual alum sludge and sewage were applied to a series of jar tests conducted under various conditions. It has been found that both the SS and COD removal efficiencies could be improved by the addition of the alum sludge, which was mainly attributed to the removal of relatively fine particles with a size of 48-200 microm. The appropriate dosage of the alum sludge was determined to be 18-20 mg of Al/L. Increasing the mixing speed or reducing the floc size of the alum sludge enhanced the SS and COD removal and the dispersed alum sludge could remove particulate contaminants with smaller size than the raw sewage. ToF-SIMS evidence revealed that the aluminum species at the surface of the alum sludge were effectively utilized for improving the SS and COD removal. It was postulated that the sweep flocculation and/or the physical adsorption might play key roles in the enhancement of particulate pollutant removal from sewage. PMID:16095658

  9. Chlorination of Indicator Bacteria and Viruses in Primary Sewage Effluent

    PubMed Central

    Tree, Julia A.; Adams, Martin R.; Lees, David N.

    2003-01-01

    Wastewater disinfection is used in many countries for reducing fecal coliform levels in effluents. Disinfection is therefore frequently used to improve recreational bathing waters which do not comply with microbiological standards. It is unknown whether human enteric viruses (which are responsible for waterborne disease) are simultaneously inactivated alongside fecal coliforms. This laboratory study focused on the chlorination of primary treated effluent with three doses (8, 16, and 30 mg/liter) of free chlorine as sodium hypochlorite. Seeding experiments showed that inactivation (>5 log10 units) of Escherichia coli and Enterococcus faecalis was rapid and complete but that there was poor inactivation (0.2 to 1.0 log10 unit) of F+-specific RNA (FRNA) bacteriophage (MS2) (a potential virus indicator) at all three doses. However, seeded poliovirus was significantly more susceptible (2.8 log10 units) to inactivation by chlorine than was the FRNA bacteriophage. To ensure that these results were not artifacts of the seeding process, comparisons were made between inactivation rates of laboratory-seeded organisms in sterilized sewage and inactivation rates of organisms occurring naturally in sewage. Multifactorial analysis of variance showed that there was no significant difference (P > 0.05) between the inactivation rates for seeded and naturally occurring FRNA bacteriophage. However, laboratory-grown poliovirus was inactivated much more rapidly than were naturally occurring, indigenous enteroviruses (P < 0.001). This may reflect differences in the way indigenous virus is presented to the disinfectant. Inactivation rates for indigenous enteroviruses were quite similar to those seen for FRNA bacteriophage at lower doses of chlorine. These results have significance for the effectiveness of chlorination as a sewage treatment process, particularly where virus contamination is of concern, and suggest that FRNA bacteriophage would be an appropriate indicator of such viral inactivation under field conditions. PMID:12676680

  10. Chlorination of indicator bacteria and viruses in primary sewage effluent.

    PubMed

    Tree, Julia A; Adams, Martin R; Lees, David N

    2003-04-01

    Wastewater disinfection is used in many countries for reducing fecal coliform levels in effluents. Disinfection is therefore frequently used to improve recreational bathing waters which do not comply with microbiological standards. It is unknown whether human enteric viruses (which are responsible for waterborne disease) are simultaneously inactivated alongside fecal coliforms. This laboratory study focused on the chlorination of primary treated effluent with three doses (8, 16, and 30 mg/liter) of free chlorine as sodium hypochlorite. Seeding experiments showed that inactivation (>5 log(10) units) of Escherichia coli and Enterococcus faecalis was rapid and complete but that there was poor inactivation (0.2 to 1.0 log(10) unit) of F(+)-specific RNA (FRNA) bacteriophage (MS2) (a potential virus indicator) at all three doses. However, seeded poliovirus was significantly more susceptible (2.8 log(10) units) to inactivation by chlorine than was the FRNA bacteriophage. To ensure that these results were not artifacts of the seeding process, comparisons were made between inactivation rates of laboratory-seeded organisms in sterilized sewage and inactivation rates of organisms occurring naturally in sewage. Multifactorial analysis of variance showed that there was no significant difference (P > 0.05) between the inactivation rates for seeded and naturally occurring FRNA bacteriophage. However, laboratory-grown poliovirus was inactivated much more rapidly than were naturally occurring, indigenous enteroviruses (P < 0.001). This may reflect differences in the way indigenous virus is presented to the disinfectant. Inactivation rates for indigenous enteroviruses were quite similar to those seen for FRNA bacteriophage at lower doses of chlorine. These results have significance for the effectiveness of chlorination as a sewage treatment process, particularly where virus contamination is of concern, and suggest that FRNA bacteriophage would be an appropriate indicator of such viral inactivation under field conditions. PMID:12676680

  11. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway

    PubMed Central

    2014-01-01

    Background Due to an increasing demand of transportation fuels, a lower availability of cheap crude oil and a lack of sustainability of fossil fuels, a gradual shift from petroleum based fuels towards alternative and renewable fuel resources will be required in the near future. Fatty acid ethyl esters (FAEEs) have properties similar to current crude diesel and could therefore form an important contribution to the development of sustainable transportation fuels in future. It is important to develop novel cell factories for efficient production of FAEEs and their precursors. Results Here, a Saccharomyces cerevisiae cell factory expressing a heterologous wax ester synthase (ws2) from Marinobacter hydrocarbonoclasticus was used to produce FAEEs from ethanol and acyl-coenzyme A (acyl-CoA). The production of acyl-CoA requires large amounts of NADPH and acetyl-CoA. Therefore, two metabolic engineering strategies for improved provision of NADPH and acetyl-CoA were evaluated. First, the ethanol degradation pathway was employed to re-channel carbon flow towards the synthesis of acetyl-CoA. Therefore, ADH2 and ALD6 encoding, respectively, alcohol dehydrogenase and acetaldehyde dehydrogenase were overexpressed together with the heterologous gene acsSEL641P encoding acetyl-CoA synthetase. The co-overexpression of ADH2, ALD6 and acsSEL641P with ws2 resulted in 408??270?g FAEE gCDW?1, a 3-fold improvement. Secondly, for the expression of the PHK pathway two genes, xpkA and ack, both descending from Aspergillus nidulans, were co-expressed together with ws2 to catalyze, respectively, the conversion of xylulose-5-phosphate to acetyl phosphate and glyceraldehyde-3-phosphate and acetyl phosphate to acetate. Alternatively, ack was substituted with pta from Bacillus subtilis, encoding phosphotransacetylase for the conversion of acetyl phosphate to acetyl-CoA. Both PHK pathways were additionally expressed in a strain with multiple chromosomally integrated ws2 gene, which resulted in respectively 5100??509 and 4670??379?g FAEE gCDW?1, an up to 1.7-fold improvement. Conclusion Two different strategies for engineering of the central carbon metabolism for efficient provision of acetyl-CoA and NADPH required for fatty acid biosynthesis and hence FAEE production were evaluated and it was found that both the ethanol degradation pathway as well as the phosphoketolase pathway improve the yield of FAEEs. PMID:24618091

  12. Dual attenuation of proteasomal and autophagic BMAL1 degradation in Clock Δ19/+ mice contributes to improved glucose homeostasis.

    PubMed

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-01-01

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated Clock(Δ19/+) heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks. PMID:26228022

  13. Beneficial uses of nuclear byproducts/sewage sludge irradiation project. Progress report, October 1982-March 1983

    SciTech Connect

    Pierce, J.D.

    1984-11-01

    Gamma irradiation of various commodities in the Sandia Irradiator for Dried Sewage Solids (SIDSS) and the Gamma Irradiation Facility (GIF) continued during this reporting period. One truck-load of grapefruit was irradiated. Pelletized straw was irradiated to doses of 1, 5, 10, 20, and 40 megarads in SIDSS. Sludge, virus, and fungus samples were irradiated. Infected ground pork and infected pig carcasses were irradiated in the GIF as a method of Trichinella spiralis inactivation. Other experiments conducted in the GIF included irradiation of cut flowers to extend their shelf life and irradiation of kepone to induce its degradation. Waste Encapsulation and Storage Facility (WESF) capsule studies at ORNL and SNLA continued. A purchase order was placed for a prototype sludge solar dryer. Sewage Sludge Irradiation Transportation System (SSITS) cask activities included thermal stress analyses of cask performance following separation from the impact limiters during a fire. Analyses of cask performance, when loaded with six strontium-90 (Sr-90) capsules, also were done.

  14. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. PMID:26724438

  15. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.

    PubMed

    Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang

    2016-03-01

    Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate. PMID:26610799

  16. Oxisol decapitated recovery with green manure and sewage sludge: Effect on growth of Astronium fraxinifolium

    NASA Astrophysics Data System (ADS)

    Souto Filho, S. N.; Marchini, D. C.; de Arruda, O. G.; Gicomo, R. G.; Alves, M. C.

    2012-04-01

    Incorrect use of land and large buildings in rural areas are causing changes to it, making them less productive and thus increasing the degraded areas. Techniques aimed at ecological restoration of degraded soils have been investigated. In recovery planning a degraded area, the great challenge to be achieved is the establishment of a A horizon, so that from then on, the process is catalyzed by the biosphere, and there may be other horizons, as the natural conditioning. In this sense the positive changes were investigated in an environment of decapitated Savannah Oxisol, which was removed a layer 8.5 m thick to build a hydroelectric power plant. For recovery, we used a native tree species, green manure, sewage sludge and grass. The studied soil is under human intervention techniques for recovery for seven years. The experimental design was randomized blocks with five treatments and five replications. The treatments were: 1-Control- bare soil (without management), 2-Astronium fraxinifolium Schott; 3-A. fraxinifolium + Canavalia ensiformis; 4- A. fraxinifolium + Raphanus sativus by 2005 was replaced in 2006 by Crotalaria juncea; 5- A. fraxinifolium + Brachiaria decumbens + sewage sludge (60 t ha-1, dry basis). We studied in 2010 and 2011 the development of tree species (stem diameter and plant height), the fresh and dry matter of green manures and B. decumbens. The results were analyzed by performing the variance analysis and Tukey test at 5% probability to compare averages. The rate of plant growth during the periods studied in the treatment with sewage sludge was higher than other treatments, so this is the most appropriate management for the recovery of degraded soil under study.

  17. HEALTH IMPLICATIONS OF SEWAGE TREATMENT FACILITIES

    EPA Science Inventory

    An epidemiology study which included environmental samples and clinical specimens within a three mile radius of a new sewage treatment plant near Chicago, Illinois was carried out. Evaluations were made before and after plant start-up to determine if operations resulted in any ad...

  18. SEWAGE SLUDGE PATHOGEN TRANSPORT MODEL PROJECT

    EPA Science Inventory

    The sewage sludge pathogen transport model predicts the number of Salmonella, Ascaris, and polioviruses which might be expected to occur at various points in the environment along 13 defined pathways. These pathways describe the use of dried or liquid, raw or anaerobically digest...

  19. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, L.W.

    1985-08-30

    This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

  20. COMPARISON OF THE MUTAGENICITY OF SEWAGE SLUDGES

    EPA Science Inventory

    Samples of five municipal sewage sludges from Illinois cities have been subjected to a multiorganism testing program to determine the presence or absence of mutagenic activity. Chicago sludge has been the most extensively tested by using the Salmonella/microsome reverse mutation ...

  1. Energy minimization at Metro Denver Sewage District

    SciTech Connect

    Korbitz, W.E.

    1980-01-01

    The Metro Denver Sewage District energy minimization includes adjustment of treatment operations to maximize use of high purity oxygen treatment with 31 percent reduction in electric power and replacement of sludge incineration with land disposal at 23 percent energy reduction. Future sludge utilization as fertilizer and minor energy reduction efforts in areas of illumination, heating and employee transportation offer additional benefits.

  2. SEWAGE SLUDGE INCINERATOR FUEL REDUCTION, HARTFORD, CONNECTICUT

    EPA Science Inventory

    A field demonstration project was conducted at Hartford, Connecticut, which showed that the supplemental fuel usage for sewage sludge incineration could be reduced 83%. This was accomplished by using a belt press filter for dewatering which reduced fuel usage 65% and then fuel ef...

  3. Home Sewage Disposal. Special Circular 212.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction

  4. Utilization of night-soil, sewage, and sewage sludge in agriculture

    PubMed Central

    Petrik, Milivoj

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary. Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds. More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation. PMID:13160760

  5. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes

    PubMed Central

    Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; Garca, Andrs J.

    2015-01-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  6. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.

    PubMed

    Gutowski, Stacie M; Shoemaker, James T; Templeman, Kellie L; Wei, Yang; Latour, Robert A; Bellamkonda, Ravi V; LaPlaca, Michelle C; Garca, Andrs J

    2015-03-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  7. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1.

    PubMed

    Wang, Xitao; Wang, Lili; Che, Jian; Li, Zhen; Zhang, Jiancheng; Li, Xiaoyu; Hu, Weiqing; Xu, Yongping

    2015-07-01

    Laminaria japonica feedstuff is used as a substitute for Sargassum thunbergii in the small-scale culturing of Apostichopus japonicus (sea cucumber) because of its abundant sources and low price in China. However, the difficulty associated with the degradation of algin by A. japonicus and, hence, its utilization have limited the practical value of L. japonica feedstuff in sea cucumber farming. In this study, A. japonicus individuals were fed with L. japonica feedstuff pretreated, via fermentation with the algin-degrading bacterial strain, Bacillus amyloliquefaciens WB1, and their growth performance, nonspecific immune responses, and resistance against Vibrio infection were then determined over a 60-day period. Growth performance of these individuals was similar to those fed with a commercial feedstuff made from S. thunbergii (mean weight gain of 5.79 versus 5.69 g on day 60), but was significantly (P < 0.05) increased compared to those fed with untreated L. japonica feedstuff (mean weight gain of 1.31 g). At the same time, they also showed significantly higher levels of amylase, protease, and alginate lyase activities than the other groups. These individuals and those fed with the commercial feedstuff or heat-inactivated but B. amyloliquefaciens WB1-treated L. japonicas feedstuff showed enhanced levels of activities for the immune enzymes nitric oxide synthase, lysozyme, peroxidase, and acid phosphatase, compared to those fed with nontreated L. japonica feedstuff. Furthermore, A. japonicus individuals fed with B. amyloliquefaciens WB1-treated L. japonica feedstuff exhibited greater resistance to disease following Vibrio splendidus challenge, as shown by the much lower cumulative symptom (10 %) compared to the rest, which showed as much as 73 % in the case of individuals fed with the untreated L. japonica feedstuff. Analysis of their intestinal tract revealed a much lower number of total Vibrio sp. These results demonstrated that L. japonica in which the algin content had been degraded by B. amyloliquefaciens WB1 could improve the growth performance of A. japonicus as well its resistance to bacterial infection. It could therefore act as an alternative to S. thunbergii and is economical at the same time. PMID:25895094

  8. Preparation of biochar from sewage sludge

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  9. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term "stabilization pond". PMID:1132387

  10. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This shows the fundamental importance of rapid processing. Rapid thermal conditioning may be incorporated into a wastewater treatment plant where biological treatment is used. For purposes of a concrete example, flow-sheets for the incorporation of the RTC process into the New York City Wards Island WPCP were prepared, and experimental data from the laboratory scale RTC test facility were used to set design parameters. A design incorporating nitrogen removal into the RTC flow sheet was also examined. ASPEN software was used to design the proposed processes and perform economic analyses. Cost estimates for these alternatives show a substantial advantage to implement RTC in comparison to present plant operation. About one third of the current sludge processing cost can be saved by incorporation of RTC into the Wards Island Plant. With nitrogen removal, the economics are even more attractive.

  11. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    TOXLINE Toxicology Bibliographic Information

    Ramos P; Cunha SR; Neves MV; Pereira FL; Quintaneiro I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  12. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    PubMed

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated. PMID:16477997

  13. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil.

    PubMed

    Rincn, Ana; de Felipe, M R; Fernndez-Pascual, M

    2007-12-01

    Vegetative inoculum of Amanita ovoidea (Bull.) Link and three isolates of Suillus collinitus (Fr.) Kuntze, as well as spore inoculum of Rhizopogon roseolus (Corda) Th. M. Fr. and S. collinitus, were evaluated for the production of Pinus halepensis Mill. in nursery and for the establishment of seedlings in a degraded gypsum soil. In nursery, most of the fungi significantly improved the height of seedlings and modified the accumulation of nutrients in needles. The percentage of ectomycorrhizas (ESR) per seedling ranged from 25 to 78%, depending on the fungi. One and 2 years after planting in the field, the survival of seedlings was significantly improved by inoculation with two isolates of S. collinitus and with spores of the same fungus. Inoculation with A. ovoidea had no significant effect on seedling survival, whilst R. roseolus caused a significant mortality of seedlings. Seedling height was significantly improved by inoculation with all fungi except R. roseolus and isolate CCMA-1 of S. collinitus. One year after planting, mycorrhization of control seedlings was negligible, and percentages of ESR were under 38% for the rest of treatments. In spring of the second year, seedlings in all treatments, including the control, became highly mycorrhizal (60-77% of ESR). Low ectomycorrhizal diversity (five morphotypes described) and seasonal variation on morphotype composition were detected 2 years after plantation. From a perspective of soil restoration management under limiting environmental conditions, nursery inoculation with selected fungi can be a key advantage for tree seedlings to surmount the initial transplant stress, assuring their establishment in the field. Our results emphasise the importance of selecting compatible fungal-host species combinations for nursery inoculation and sources of inoculum adapted to the environmental conditions of the transplantation site. PMID:17874144

  14. Water pollution and degradation in Pearl River Delta, South China.

    PubMed

    Zhu, Zhaoyu; Deng, Qinglu; Zhou, Houyun; Ouyang, Tingping; Kuang, Yaoqiu; Huang, Ningsheng; Qiao, Yulou

    2002-05-01

    The Pearl River Delta Economic Zone is the most dynamic economic area in South China. One of the major problems in the region is the sustainable utilization of the water resources. On the basis of analysis of the water environment status and pollution sources, it is suggested that domestic sewage is the primary cause of pollution. Two new concepts "degradation coefficient" and "degradation volume" of water resources, due to pollution, which may be used to assess macroscopically the carrying capacity of the water resources and sustainability of the water environment, are proposed by the authors. The results calculated indicate that the volumes of degraded water resources will be up to 204, 352, and 537 million m3 in 2002, 2010, and 2020. It is suggested that water for daily consumption and domestic sewage must be controlled more effectively and there should be cross-regional coordination in tackling problems of water environment. PMID:12164132

  15. Investigation of effects of background water on upwelled reflectance spectra and techniques for analysis of dilute primary-treated sewage sludge

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Farmer, F. H.; Gurganus, E. A.

    1979-01-01

    In an effort to improve understanding of the effects of variations in background water on reflectance spectra, laboratory tests were conducted with various concentrations of sewage sludge diluted with several types of background water. The results from these tests indicate that reflectance spectra for sewage-sludge mixtures are dependent upon the reflectance of the background water. Both the ratio of sewage-sludge reflectance to background-water reflectance and the ratio of the difference in reflectance to background-water reflectance show spectral variations for different turbid background waters. The difference in reflectance is the only parameter considered.

  16. Modeling sewage leakage to surrounding groundwater and stormwater drains.

    PubMed

    Ly, Duy Khiem; Chui, Ting Fong May

    2012-01-01

    Underground sewage pipe systems deteriorate over time resulting in cracks and joint defects. Sewage thus leaks out and contaminates the surrounding groundwater and the surface water in stormwater drains. Many studies have investigated the problem of sewage leakage but no published studies, to the best knowledge of the authors, have examined the hydrologic interactions between leaky sewage pipes, groundwater and stormwater drains. This study numerically models such interactions using generic conditions in Singapore. It first develops accurate representations of weep holes and leaky sewage pipes, and further shows the long-term and short-term system responses to rainfall events. Some of the implications include: (1) quality of water seeping into the drains tends to be low in dry years; (2) complete contaminant attenuation after pipe rehabilitation takes several years; (3) responses to rainfall events at weep holes are immediate but the effects on sewage leakage might only show up a few days later. The simulation results allow us to better understand the local-scale migration of sewage leakage from a sewage pipe to nearby stormwater drains. With calibrations and verifications with local field data, the modeling framework would be applicable and beneficial to the sewage leakage monitoring and sewage pipe rehabilitation worldwide. PMID:23109583

  17. Cold Vacuum Drying facility sanitary sewage collection system design description (SYS 27)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank.

  18. Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment.

    PubMed

    Yuan, Zi-Qiang; Yu, Kai-Liang; Wang, Bin-Xian; Zhang, Wang-Yun; Zhang, Xu-Long; Siddique, Kadambot H M; Stefanova, Katia; Turner, Neil C; Li, Feng-Min

    2015-01-01

    Understanding the relationships between vegetative and environmental variables is important for revegetation and ecosystem management on the Loess Plateau, China. Lucerne (Medicago sativa L.) has been widely used in the region to improve revegetation, soil and water conservation, and to enhance livestock production. However, there is little information on how environmental factors influence long-term succession in lucerne-rich vegetation. Our objective was to identify the main environmental variables controlling the succession process in lucerne-rich vegetation such that native species are not suppressed after sowing on the Loess Plateau. Vegetation and soil surveys were performed in 31 lucerne fields (three lucerne fields without any management from 2003-2013 and 28 fields containing 11-year-old lucerne with one cutting each year). Time after planting was the most important factor affecting plant species succession. Cutting significantly affected revegetation characteristics, such as aboveground biomass, plant density and diversity. Soil moisture content, soil organic carbon, soil available phosphorus and slope aspect were key environmental factors affecting plant species composition and aboveground biomass, density and diversity. Long-term cutting can cause self-thinning in lucerne, maintain the stability of lucerne production and slow its degradation. For effective management of lucerne fields, phosphate fertilizer should be applied and cutting performed. PMID:26166449

  19. Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment

    PubMed Central

    Yuan, Zi-Qiang; Yu, Kai-Liang; Wang, Bin-Xian; Zhang, Wang-Yun; Zhang, Xu-Long; Siddique, Kadambot H. M.; Stefanova, Katia; Turner, Neil C.; Li, Feng-Min

    2015-01-01

    Understanding the relationships between vegetative and environmental variables is important for revegetation and ecosystem management on the Loess Plateau, China. Lucerne (Medicago sativa L.) has been widely used in the region to improve revegetation, soil and water conservation, and to enhance livestock production. However, there is little information on how environmental factors influence long-term succession in lucerne-rich vegetation. Our objective was to identify the main environmental variables controlling the succession process in lucerne-rich vegetation such that native species are not suppressed after sowing on the Loess Plateau. Vegetation and soil surveys were performed in 31 lucerne fields (three lucerne fields without any management from 2003–2013 and 28 fields containing 11-year-old lucerne with one cutting each year). Time after planting was the most important factor affecting plant species succession. Cutting significantly affected revegetation characteristics, such as aboveground biomass, plant density and diversity. Soil moisture content, soil organic carbon, soil available phosphorus and slope aspect were key environmental factors affecting plant species composition and aboveground biomass, density and diversity. Long-term cutting can cause self-thinning in lucerne, maintain the stability of lucerne production and slow its degradation. For effective management of lucerne fields, phosphate fertilizer should be applied and cutting performed. PMID:26166449

  20. Aerobic biodegradation of selected polybrominated diphenyl ethers (PBDEs) in wastewater sewage sludge.

    PubMed

    Stiborova, Hana; Vrkoslavova, Jana; Lovecka, Petra; Pulkrabova, Jana; Hradkova, Petra; Hajslova, Jana; Demnerova, Katerina

    2015-01-01

    Due to widespread accumulation of polybrominated diphenyl ethers (PBDEs) in our surroundings, it is important to clarify their fate in the environment and the options of their elimination. The aim of this study was to monitor the biodegradation of the most frequent congeners (BDE 28, 47, 49, 66, 85, 99, 100, 153, 154, 183 and 209) under aerobic condition by indigenous microflora in 2 industrially contaminated sewage sludge samples. BDE 209 was detected as the predominating congener in concentrations 685 ng/g and 1403 ng/g dry weight in sewage sludge from WWTPs (waste water treatment plants) Hradec Kralove and Brno, respectively. The total amount of 10 lower PBDEs was 605 and 205 ng/g dry weight, respectively. The aerobic degradation was significantly enhanced by the addition of yeast extract and 4-bromobiphenyl. The total concentrations of all 11 PBDE congeners were lowered and their elimination was detected reaching 6278% of their initial amounts after 11 months of cultivation. The degradation of most abundant congener BDE 209 followed the first-order kinetics with constant detected between 2.77 10(?3) d(?1) and 3.79 10?(3)d(?1) and the half-lives of BDE 209 degradation ranged between 6.0 and 8.2 months. This work clearly demonstrates that both lower brominated PBDEs as well as the major representative BDE 209 could be successfully removed from municipally contaminated sludge under aerobic conditions. PMID:25463256

  1. Survival of Human Pathogens in Composted Sewage

    PubMed Central

    Wiley, B. Beauford; Westerberg, Stephen C.

    1969-01-01

    Studies were conducted to assess the effectiveness of an aerobic composter in destroying pathogens that may possibly be present in raw sewage sludge. Experiments conducted in this study were designed to determine whether or not selected indicator organisms (i.e., Salmonella newport, poliovirus type 1, Ascaris lumbricoides ova, and Candida albicans) could survive the composting process. The results of the assay showed that after 43 hr of composting, no viable indicator organisms could be detected. The poliovirus type I was the most sensitive, being inactivated within the first hour, whereas C. albicans was the most resistant, requiring more than 28 hr of composting for its inactivation. The data from this study indicated that aerobic composting of sewage sludge would destroy the indicator pathogens when a temperature of 60 to 70 C is maintained for a period of 3 days. PMID:4313209

  2. Evolutionary parameter optimization of a fuzzy controller which is used to control a sewage treatment plant.

    PubMed

    Ebner, Marc; Stalph, Patrick; Michel, Martin; Benz, Roland

    2010-01-01

    In order to meet new environmental standards, sewage treatment plants may need to be redesigned or extended. Instead of reconstructing large parts of a sewage treatment plant, which can be very costly, it is in many cases sufficient to install relatively inexpensive equipment, which controls parts of the plant in a new way. Fuzzy controllers are often used for this task. Use of these controllers often leads to an improved water quality. Such fuzzy controllers contain a number of parameters which are determined by a human expert. With this contribution, a dedicated multi-objective evolutionary algorithm is developed to optimize these parameters. The evolutionary algorithm is based on the successful strength pareto evolutionary algorithm 2 (SPEA2). The fuzzy control parameters, which are optimized are continuous parameters. Therefore, an evolution strategy was employed which uses the multi-objective ranking as used by the SPEA2 algorithm. Optimal parameters were first evolved on simulated sewage treatment plants. One set of parameters was also tested on an actual plant. Owing to the enormous computational demands of simulating a sewage treatment plant, it is only possible to work with small population sizes. Nevertheless, it was possible to evolve parameters which were equally well as those found by a human expert indicating that the parameter tuning can be automized. PMID:20057091

  3. Land application of sewage sludge: physicochemical and microbial response.

    PubMed

    Singh, Rajeev Pratap; Singh, Pooja; Ibrahim, M Hakimi; Hashim, Rokiah

    2011-01-01

    In the present review, we address the effects of sewage sludge amendment on soil physicochemical properties and on soil microbial biomass. Sewage sludge is a by-product of sewage treatment processes and is increasingly applied to agricultural lands as a source of fertilizer, and as an alternative to conventional means of disposal. The particular characteristics of sewage sludge depend upon the quality of sewage from which it is made, and the type of treatment processes through which it passes. Sewage sludge may substitute for inorganic fertilizers because it is rich in organic and inorganic plant nutrients. However, the presence of potentially toxic metals and pathogens in sewage sludge often restricts its uses. Ground water and food chain contamination resulting from sewage sludge amendment is one major concern worldwide. The health of soils is represented by a composite of their physical, chemical and biological properties. Amending soil with sewage sludge modifies the physicochemical and biological properties of soils. Perhaps the central constituent of soil that is important in the context of sewage sludge amendment is microbial biomass. Soil microbial biomass, the key living part of the soil, is very closely associated with the content of organic matter that exists in arable agricultural soils. When sewage sludge is land-applied, soil enzyme activities may be directly or indirectly affected by the presence of heavy metals. In several studies, results have shown that sewage sludge amendment increased soil microbial and soil enzyme activities; however, reduction in soil enzyme activity has also been reported. When incubation periods of sewage sludge were longer, heavy metal bioavailability increased. Soil pathogenic activity has also been reported to increase as a result of land application of sewage sludges. The level of pathogens in treated sewage sludge (biosolids) depends on the processes used to treat wastewater and sewage sludge. Agricultural application of sewage sludge may result in the transport of pathogens through aerosols downwind of sludge storage or dispersal sites, may contaminate ground water, stock ponds, or may produce food chain contamination from eating food grown in sludge-treated land. PMID:21913124

  4. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage.

    PubMed

    Zhang, Haowei; Jiang, Jianguo; Li, Menglu; Yan, Feng; Gong, Changxiu; Wang, Quan

    2016-01-15

    The production of volatile fatty acids (VFAs) from food waste to improve biological nutrient removal has drawn much attention. In this study, acidogenic liquid from food waste was used as an alternative carbon source for synthetic wastewater treatment. C/N ratios of 5 and 6 were suitable for denitrification, and the change in acidogenic liquid composition had no negative effect on denitrification. The denitrification rates using optimal carbon-to-nitrate ratios of acidogenic liquid were more than 25 mg NO3-N/(gVSS·h). At the same time, acidogenic liquid was used to improve nutrient removal from summer and winter sewage. C/N ratios of 5 and 6 were acceptable for summer sewage treatment. Total nitrogen in the final effluent was less than 7 mg/L. Two additional hours were required for winter sewage treatment, and the C/N ratio had to be >6. PMID:26547269

  5. PCR- RFLP based bacterial diversity analysis of a municipal sewage treatment plant.

    PubMed

    Devi, S Gayathri; Ramya, M

    2015-09-01

    Bacterial diversity of sewage soil is an essential study to discover novel bacterial species involved in biodegradation. Restriction Fragment Length Polymorphism is one of the most useful molecular technique for diversity analysis in terms of cost effectiveness and reliability. The present study focuses on bacterial diversity of municipal sewage treatment plant in Chennai, Tamil Nadu, India through metagenomic approach. A 16S r DNA clone library was constructed from metagenomic DNA of sewage soil. 200 clones from the library were subjected to colony PCR and RFLP analysis. Upon RFLP analysis, 16 different Operational Taxonomic Units (OTU's) were obtained and a single clone from each OTU was subjected to sequencing. Phylogenetic analysis of sequences revealed the presence of five different groups of bacteria namely Proteobacteria (56%), Actinobacteria (7%), Firmicutes (5%), Bacteroidetes (17%) and Plancomycetes (7%). Three novel and uncultured groups of bacteria (8%) were also discovered. Most of the organisms identified through this study were reported to be efficient degraders of hydrocarbons, aromatic compounds and heavy metals, thereby promoting biodegradation of polluted environment. PMID:26521553

  6. Ammonia sanitisation of sewage sludge using urea.

    PubMed

    Fidjeland, Jørgen; Lalander, Cecilia; Jönsson, Håkan; Vinnerås, Björn

    2013-01-01

    The aim of the study was to develop a simple, low-cost treatment for sewage sludge using urea as a sanitising agent. Sewage sludge was spiked with Enterococcus faecalis and Salmonella typhimurium, treated with 0.5, 1, 1.5 and 2% w/w urea at laboratory scale, and the viability was monitored during 4 months of storage at 4, 10 and 22 °C (only 0.5%). A linear relationship was identified between Salmonella spp. inactivation rate and ammonia (NH3) concentration. Temperature had a positive impact on Salmonella spp. inactivation at higher temperatures, but in the range 4-10 °C temperature influenced this inactivation merely by its impact on the ammonia equilibrium. Enterococcus spp. was more persistent and a lag phase of up to 11 weeks was observed. Higher temperature and ammonia concentration reduced the lag phase duration significantly, and also had a clear effect on the inactivation rate for the treatments with 0.5% urea at 22 °C and 2% urea at 4 and 10 °C. Urea sanitisation of sewage sludge can give a 2 log10 reduction of Enterococcus spp. and more than a 5 log10 reduction of Salmonella spp. within 6 weeks with either 0.5% w/w urea at 22 °C or 2% urea at 10 °C. PMID:24185072

  7. Estrogens from sewage in coastal marine environments.

    PubMed Central

    Atkinson, Shannon; Atkinson, Marlin J; Tarrant, Ann M

    2003-01-01

    Estrogens are ancient molecules that act as hormones in vertebrates and are biologically active in diverse animal phyla. Sewage contains natural and synthetic estrogens that are detectable in streams, rivers, and lakes. There are no studies reporting the distribution of steroidal estrogens in marine environments. We measured estrogens in sewage, injection-well water, and coastal tropical and offshore tropical water in the Pacific Ocean, western Atlantic Ocean, and Caribbean Sea. Concentrations of unconjugated estrone ranged from undetectable (< 40 pg/L) in the open ocean to nearly 2,000 pg/L in Key West, Florida, and Rehoboth Bay, Delaware (USA); estrone concentrations were highest near sources of sewage. Enzymatic hydrolysis of steroid conjugates in seawater samples indicated that polar conjugates comprise one-half to two-thirds of "total estrone" (unconjugated plus conjugated) in Hawaiian coastal samples. Adsorption to basalt gravel and carbonate sand was less than 20% per week and indicates that estrogens can easily leach into the marine environment from septic fields and high-estrogen groundwater. Of 20 sites (n = 129 samples), the mean values from 12 sites were above the threshold concentration for uptake into coral, indicating that there is a net uptake of anthropogenic steroidal estrogen into these environments, with unknown impacts. PMID:12676611

  8. Sensitivity of amphipods to sewage pollution

    NASA Astrophysics Data System (ADS)

    de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Giménez-Casalduero, F.; Sánchez-Lizaso, J. L.; Dauvin, J.-C.

    2012-01-01

    Amphipods are considered a sensitive group to pollution but here different levels of sensitivity were detected among species, by analysing the impact of five sewage outfalls, with different flow and treatment levels, on amphipod assemblages from the Castellon coast (NE Spain). Sewage pollution produced a decrease in the abundance and richness of amphipods close to the outfalls. Most of the species showed high sensitivity, particularly species such as Bathyporeia borgi, Perioculodes longimanus and Autonoe spiniventris, whereas other species appeared to be more tolerant to the sewage input, such as Ampelisca brevicornis. These different responses could be related to burrowing behaviour, with fossorial species being more sensitive and domicolous species being less affected. Benthic amphipods, which live in direct contact with sediment, are widely used for bioassay and numerous species are usually employed in ecotoxicology tests for diverse contaminants. In order to consider amphipods for monitoring and biodiversity programmes, it is important to establish the degree of sensitivity of each species to different sources of pollution.

  9. Biological nitrogen removal from sewage via anammox: Recent advances.

    PubMed

    Ma, Bin; Wang, Shanyun; Cao, Shenbin; Miao, Yuanyuan; Jia, Fangxu; Du, Rui; Peng, Yongzhen

    2016-01-01

    Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented. PMID:26586538

  10. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gmez, I.; Navarro-Pedreo, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not change so much except for the one of the sludges, which experienced an important reduction. According to the results, and from a point of view of future soil applications, the balance of the drying process could be considered as positive. It is using a free, renewable and clean energy, which reduces the water content and odours of sludge, thereby improving their management. Except for the water content, there was little modification of the behaviour in soil of greenhouse dried sludges compared to the dehydrated sludges, maintaining its large amount of available nitrogen after drying. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

  11. Process for degrading hypochlorite

    SciTech Connect

    Huxtable, W.P.; Griffith, W.L.; Compere, A.L.

    1989-05-12

    It is an object of the present invention to provide an improved means and method for the degradation of hypochlorite in alkali waste solutions. It is a further object of the present invention to provide a more effective and less costly method for the degradation of hypochlorite. The foregoing objects and others are accomplished in accordance with the present invention, generally speaking, by providing a process to degrade hypochlorite into chloride and oxygen which includes contacting an aqueous hypochlorite basic solution with a catalyst comprising about 1--10 w/w % cobalt oxide and about 1--15 w/w % molybdenum oxide on a suitable substrate. In another embodiment a similar process for degrading lithium hypochlorite is provided in which waste solution concentration is lowered in order to minimize carbonate precipitation. 6 tabs.

  12. Enhanced physicochemical-biological sewage treatment process in cold regions.

    PubMed

    Xu, Guoren; Jia, Chao; Zhang, Zhao; Jiang, Yunlong

    2014-01-01

    Biological treatment processes give relatively poor pollutant removal efficiencies in cold regions because microbial activity is inhibited at low temperatures. We developed an enhanced physicochemical-biological wastewater treatment process that involves micro-membrane filtration, anaerobic biofilter, and aerobic biofilter to improve the pollutant removal efficiencies that can be achieved under cold conditions. Full-scale experiments using the process were carried out in the northeast of China, at outdoor temperatures of around -30 C. The average removal efficiencies achieved for chemical oxygen demand, total phosphorus, ammonia nitrogen, and suspended solids were 89.8, 92.9, 94.3, and 95.8%, respectively, using a polyaluminium chloride dosage of 50 mg L?. We concluded that the process is effective to treat sewage in cold regions. PMID:25401308

  13. Measuring restoration in intertidal macrophyte assemblages following sewage treatment upgrade.

    PubMed

    Díez, I; Santolaria, A; Muguerza, N; Gorostiaga, J M

    2013-03-01

    Understanding the effectiveness of pollution mitigation actions in terms of biological recovery is essential if the environmental protection goals of management policies are to be achieved. Few studies, however, have evaluated the restoration of seaweed assemblages following pollution abatement. This study aimed to investigate the response of macroalgal vegetation to the upgrade of a wastewater treatment plant using a "Beyond BACI" experimental design. Temporal differences in vegetation structure between the outfall and two control locations over a 10-year period were assessed. Improvement in sewage treatment was found to lead to increases in diversity, cover of morphologically complex algae and spatial heterogeneity. The multivariate composition of assemblages at the outfall location became more similar to that at the controls; however, their complete recovery may depend on factors other than pollution removal. Our findings also suggest that the extent of restoration and the time required to detect it are largely predetermined by the response variables we choose to assess recovery. PMID:23253741

  14. Genetic diversity of noroviruses in raw and treated sewage water.

    PubMed

    van den Berg, Harold; Lodder, Willemijn; van der Poel, Wim; Vennema, Harry; de Roda Husman, Ana Maria

    2005-05-01

    Human noroviruses cause gastroenteritis in humans, leading to high virus loads in sewage. Norovirus concentrations in raw and treated sewage samples from two sewage treatment plants (STP) were studied, along with virus removal and genetic diversity. Over one year, the average norovirus concentrations in raw sewage were approximately 10(5) pcr detectable units (pdu) per liter compared with 10(3) pdu/l of treated sewage. Similar sewage treatment processes at STP-A and STP-B led to 2.7 and 2.0 log(10)-units of virus removal, respectively. In total, 11 different norovirus variants were detected in 49 out of 53 sewage samples, with up to four different norovirus strains in a single sewage sample. Along with GGI.6 Sindlesham and GGII.2 Melksham, the GGIIb variant was one of the most prevalent noroviruses in both raw and treated sewage. This strain emerged among populations in Europe in 2000 and 2001. Treated sewage containing 10(2)-10(3) norovirus pdu is discharged into the surface water. The use of such fecally contaminated surface waters for shellfish culture, drinking water production and recreational purposes poses a potential health risk. We showed the presence of multiple norovirus strains in raw and treated sewage, confirming the need to clone before sequencing the RT-PCR products. Exposure to multiple norovirus strains in sewage contaminated food or water may lead to the occurrence of norovirus recombinants, which may be more virulent and pathogenic than the norovirus strains already circulating in the population. PMID:15862452

  15. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  16. Detection of Human Sewage in Urban Stormwater Using DNA Based Methods and Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    McLellan, S. L.; Malet, N.; Sauer, E.; Mueller-Spitz, S.; Borchardt, M.

    2008-12-01

    Urban stormwater is a major source of fecal indicator bacteria in the Milwaukee River Basin, a major watershed draining to Lake Michigan. Much of the watershed is in highly urbanized areas and Escherichia coli (E. coli) levels have been found to be 20,000 CFU per 100 ml in the estuary leading to Lake Michigan. Aging infrastructure and illicit cross connections may allow sewage to infiltrate the stormwater system and could contribute both fecal indicator bacteria and human pathogens to these waters. We conducted extensive sampling of stormwater outfalls in the lower reaches of three major tributaries. Three outfalls along the heavily urbanized Kinnickinnick (KK) were found to have geometric mean E. coli and enterococci levels of 16,200 and 28,700 CFU/100 ml, respectively. Four outfalls along the Menomonee River, draining both suburban and urban areas, had geometric mean E. coli and enterococci levels of 14,700 and 12,800 CFU/100 ml, respectively. These seven outfalls had more than 60% of the samples positive for human specific Bacteroides genetic marker (n=46), suggesting the presence of human sources. In addition, two outfalls on Lincoln Creek, a smaller tributary of the Milwaukee River, had geometric mean E. coli and enterococci levels of 16,700 and 14,900 CFU per 100 ml, respectively. The human specific Bacteroides marker was positive in nearly 90% of the samples (n=24). Subsequent virus testing at one of these outfalls confirmed human pathogens were present with adenovirus detected at 1.3 x 10E3 genomic equivalents (ge)/L, enterovirus at 1.9 x 10E4 ge/L and G1 norovirus at 1.5 x 10E3 ge/L; these values are similar to concentrations found in sewage. Stable isotope studies were conducted in the three tributaries to investigate the relationship between delta C and delta N isotopic composition and microbiological quality of this urban freshwater system. This work is based on the premise that the organic matter of the stormwater will have a stable isotopic signature related to the mixed organic matter sources in polluted stormwater runoff, and that this signal will distinct from untreated sanitary sewage. Stable isotope signatures of stormwater and untreated sewage were determined and compared with the rivers. Isotopic values of stormwater was delta 15N = 1.1 2 %; delta 13C = -25.5 3 % and sewage was delta 15N = -1.9 0.2 %; delta 13C = -23.6 0.3. Suspended particular organic matter (SPOM) of Milwaukee River showed depleted delta 13C (-28.6 1.6 %) and enriched delta 15N (7.7 1.9 %) values. SPOM of the KK River exhibited the most depleted delta 15N (0.2 1.6 %) and enriched delta 13C (-24.8 1.8 %) isotopic values. Menomonee River SPOM showed intermediate isotopic values. The delta 13C values of each river and the estuary enriched significantly throughout the summer storm periods. The isotope signals in the KK and Menomonee were indicative of stormwater runoff and sewage contamination. These results suggest that unrecognized sewage inputs are chronically present and may be delivered through urban stormwater systems. DNA based methods combined with isotope analysis may provide a useful tool for urban watershed assessments and to identify sewage inputs. Delineating the relative contribution of stormwater and sewage to overall degraded water quality might give the first indication of the impact of these sources on the Michigan Lake waters.

  17. Sewage pollution: mitigation is key for coral reef stewardship.

    PubMed

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-10-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage-based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef-focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. PMID:25959987

  18. Molecular Detection of Norwalk-Like Caliciviruses in Sewage

    PubMed Central

    Lodder, W. J.; Vinjé, J.; van de Heide, R.; de Roda Husman, A. M.; Leenen, E. J. T. M.; Koopmans, M. P. G.

    1999-01-01

    In this study, Norwalk-like virus (NLV) RNA was detected by reverse transcriptase PCR (RT-PCR) in sewage water concentrates. Sequence analysis of the RT-PCR products revealed identical sequences in stools of patients and related sewage samples. In 6 of 11 outbreak-unrelated follow-up samples, multiple NLV genotypes were present. Levels as high as 107 RNA-containing particles per liter were found. These data show that high loads of NLVs may be present in sewage and warrant further studies addressing the efficacy of NLV removal by sewage water treatment processes. PMID:10584031

  19. The economics of the disposal of sewage and trade effluents*

    PubMed Central

    Townend, C. B.

    1959-01-01

    In this review of the economics of the disposal of sewage and trade wastes, the author touches on all aspects of the subject, from the annual costs of sewerage and sewage-disposal services in England and Wales, and what he terms the uneconomics of pollution of natural waters, to the financing of capital expenditure on the construction of new sewage works and equipment and on alterations to existing works. He discusses the purposes and relative costs of the various processes in the treatment of domestic sewage and outlines the special problems involved in the disposal of trade wastes. PMID:13839093

  20. Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products.

    PubMed

    Carballa, M; Omil, F; Alder, A C; Lema, J M

    2006-01-01

    Many novel treatment technologies, usually representing a pre-treatment prior to the biological degradation process, have been developed in order to improve the recycling and reuse of sewage sludge. Among all the methods available, a chemical (alkaline) and a thermal treatment have been considered in this study. The behaviour of 13 substances belonging to different therapeutic classes (musks, tranquillisers, antiepileptic, anti-inflammatories, antibiotics, X-ray contrast media and estrogens) has been studied during the anaerobic digestion of sewage sludge combined with these pre-treatments (advanced operation) in comparison with the conventional process. Two parameters have been analysed: the temperature (mesophilic and thermophilic conditions) and the sludge retention time. While organic matter solubilization was higher with the alkaline process (55-80%), no difference between both pre-treatments was observed concerning volatile solids solubilization (up to 20%). The removal efficiencies of solids and organic matter during anaerobic digestion ranged from 40-70% and 45-75%, respectively. The higher removal efficiencies of pharmaceuticals and personal care products were achieved for the antibiotics, Naproxen and the natural estrogens (>80%). For the other compounds, the values were in the range 20-70%, except for Carbamazepine, which was not removed at any condition tested. PMID:16784195

  1. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure. PMID:24912141

  2. Using biomarkers in sewage to monitor community-wide human health: isoprostanes as conceptual prototype.

    PubMed

    Daughton, Christian G

    2012-05-01

    Timely assessment of the aggregate health of small-area human populations is essential for guiding the optimal investment of resources needed for preventing, avoiding, controlling, or mitigating exposure risks. Seeking those interventions yielding the greatest benefit with respect to allocation of resources is essential for making progress toward community sustainability, promoting social justice, and maintaining or improving health and well-being. More efficient approaches are needed for revealing cause-effect linkages between environmental stressors and human health and for measuring overall aggregate health of small-area populations. A new concept is presented--community health assessment via Sewage Chemical Information Mining (SCIM)--for quickly gauging overall, aggregate health status or trends for entire small-area populations. The approach--BioSCIM--would monitor raw sewage for specific biomarkers broadly associated with human disease, stress, or health. A wealth of untapped chemical information resides in raw sewage, a portion comprising human biomarkers of exposure and effects. BioSCIM holds potential for capitalizing on the presence of biomarkers in sewage for accomplishing any number of objectives. One of the many potential applications of BioSCIM could use various biomarkers of stress resulting from the collective excretion from all individuals in a local population. A prototype example is presented using a class of biomarkers that measures collective, systemic oxidative stress--the isoprostanes (prostaglandin-like free-radical catalyzed oxidation products from certain polyunsaturated fatty acids). Sampling and analysis of raw sewage hold great potential for quickly determining aggregate biomarker levels for entire communities. Presented are the basic principles of BioSCIM, together with its anticipated limitations, challenges, and potential applications in assessing community-wide health. Community health assessment via BioSCIM could allow rapid assessments and intercomparisons of health status among distinct populations, revealing hidden or emerging trends or disparities and aiding in evaluating correlations (or hypotheses) between stressor exposures and disease. PMID:22425170

  3. Assessment of enteric viruses in a sewage treatment plant located in Porto Alegre, southern Brazil.

    PubMed

    Vecchia, A D; Fleck, J D; Kluge, M; Comerlato, J; Bergamaschi, B; Luz, R B; Arantes, T S; Silva, J V S; Thewes, M R; Spilki, F R

    2012-11-01

    In order to verify the microbial quality of the influents and effluents of one STP from southern Brazil, an eight-month survey was conducted to examine the presence of total and fecal coliforms and of adenovirus (HAdV), enterovirus (EV), genogroup A rotaviruses (GARV) and Torque teno virus (TTV), in treated effluent samples from So Joo/Navegantes STP, Porto Alegre (Brazil). A total of 16 samples were collected, eight of influent (raw sewage, prior to treatment), and the other eight of the effluent (post-treatment sewage). Total and fecal coliform levels ranging from 3.6 10(4) to 4.4 10(7) MPN/100 mL and 2.9 10(3) to 1.7 10(7) MPN/100 mL, were detected in all samples. In raw sewage, HAdV (25%) and GARV (28.6%) viral genomes were detected. The analysis of effluent samples revealed the presence of HAdV (50%), EV (37.5%), and TTV (12.5%) genomic fragments. All samples, regardless of the month analysed, presented detection of a least one virus genus, except for in April. Higher virus detection rates were observed in treated sewage samples (62.5%), and in 80% of them (effluent positive samples) HAdV was detected. Results showed that improvements in sewage monitoring and treatment processes are necessary to reduce the viral and bacterial load on the environment in southern Brazil. To the knowledge of the authors, this is the first study showing the monitoring of viral genomes in influent and effluent samples from a STP located in Porto Alegre (Rio Grande do Sul, Brazil), southern Brazil. PMID:23295512

  4. The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils.

    PubMed

    Beck, A J; Johnson, D L; Jones, K C

    1996-06-21

    The application of sewage sludges to agricultural land may increase the concentrations of many toxic organic chemicals in soils which could have adverse effects on wildlife and human health if these compounds enter foodchains. Chlorobenzenes (CBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) are amongst those compounds currently receiving most attention. The "form' in which these, and other organic chemicals, are present in soils and their potential to be lost by various processes including leaching, volatilisation and (bio)degradation is shown to be dependent on the physicochemical characteristics of the soil and sewage sludge, environmental conditions and the properties of the chemicals themselves. The distinction is made between those compounds that are labile, reversibly sorbed and irreversibly sorbed by sewage sludge-amended soils. The implications of the form in which the chemicals are present in soil for their "availability' to transfer from the soil to bacteria, fungi, earthworms, grazing livestock and food crops followed by the potential for further transfers, metabolism or bioaccumulation are discussed. The importance of the timing and method of sewage sludge application to soil on "form' and "availability' are also considered. PMID:8643957

  5. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. PMID:26645649

  6. Sewage sludge composting: quality assessment for agricultural application.

    PubMed

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration. PMID:26508019

  7. The environmental quality of the sewage discharge area of Qingdao CoveA cladistic analysis

    NASA Astrophysics Data System (ADS)

    Wu, Baoling; Lu, Hua

    1993-06-01

    This study on the environmental quality of the Qingdao Cove intertidal zone sewage discharge area is based on data obtained from the December of 1989 and 1990 macrobenthos investigations there, and uses pollution indicator species and computer aided cladistic analysis to divide the area into a polluted area and a semipolluted area. The study showed the environmental quality in 1990 improved over that in 1989.

  8. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  9. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  10. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  11. Mechanical disintegration of sewage sludge.

    PubMed

    Lehne, G; Mller, A; Schwedes, J

    2001-01-01

    Mechanical disintegration can be used for an accelerated and improved anaerobic digestion of excess sludge. The hydrolysis is the limiting step of this process. Mechanical disintegration can be used to disrupt the cell walls and to cause the release of the organic material from the cells. Particle size analysis describes the size reduction but is not suitable for characterising the release of the organic material and the cell disruption. Two biochemical methods were developed for these phenomena. One of the parameters provides information about the disruption of micro-organisms, the other one gives information about the release of organic material. Different ultrasonic homogenizers, a high pressure homogenizer and stirred ball mills were used for disintegration experiments using various parameters. The influences of a mechanical disintegration on the particle size and of the energy intensity on the disintegration were investigated. Further investigations had to detect the influence of the solid content on the disintegration results. For sludge with a higher solid content better results in terms of energy consumption could be achieved. An optimum of the bead diameter and the stress intensity in stirred ball mills could be detected. A comparison of the results of different methods of sludge disintegration shows that the investigated ultrasonic homogenizers are inferior to a high pressure homogenizer and a stirred ball mill in terms of energy consumption. PMID:11379090

  12. Radioactivity in municipal sewage and sludge.

    PubMed Central

    Martin, J E; Fenner, F D

    1997-01-01

    OBJECTIVE: To determine the environmental consequences of discharges of radioactivity from a large medical research facility into municipal sewage, specifically 131I activity in sewage sludge, and the radiation exposures to workers and the public when sludges are incinerated. METHODS: The authors measured radioactivity levels in the sludge at the Ann Arbor, Michigan, Waste Water Treatment Plant following radioiodine treatments of two patients at the University of Michigan hospital complex and performed a series of calculations to estimate potential radiation doses due to releases of 131I from incineration of sewage sludge. RESULTS: Approximately 1.1% of the radioactive 131I administered therapeutically to patients was measured in the primary sludge. Radiation doses from incineration of sludge were calculated to be 0.048 millirem (mrem) for a worker during a period in which the incinerator filtration system failed, a condition that could be considered to represent maximum exposure conditions, for two nine-hour days. Calculated results for a more typically exposed worker (with the filtration system in operation and a 22-week period of incineration) yielded a committed effective dose equivalent of 0.066 mrem. If a worker were exposed to both conditions during the period of incineration, the dose was calculated to be 0.11 mrem. For a member of the public, the committed effective dose equivalent was calculated as 0.003 mrem for a 22-week incineration period. Exposures to both workers and the public were a very small fraction of a typical annual dose (about 100 mrem excluding radon, or 300 mrem with radon) due to natural background radiation. Transport time to the treatment plant for radioiodine was found to be much longer than that of a normal sewage, possibly due to absorption of iodine by organic material in the sewer lines. The residence time of radioiodine in the sewer also appears to be longer than expected. CONCLUSION: 131I in land-applied sludge presents few health concerns because sufficient decay occurs before it can reach the public however, incineration, which is done in winter months, directly releases the 131I from sewage sludge to the atmosphere, and even though exposures to both workers and the public were found to be considerably lower than 1% of natural background, incineration of sludge in a pathway for public exposure. Although 131I was readily measurable in sewage sludge, only about 1% of the radioione administered to patients was found in the sludge. The fate of the remaining radioactivity has not been established; some may be in secondary and tertiary residuals, but it is quite likely that most passed through the plant and was discharged in dilute concentrations in plant emissions. The behavior of radioiodine and other radioactive materials released into municipal seweage systems, such as those from large medical facilities, is not yet well understood. PMID:9258296

  13. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    PubMed Central

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-01-01

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PMID:25893998

  14. 33 CFR 159.121 - Sewage processing test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing 159.121 Sewage processing test. (a) The device must process human sewage in the manner for which it is designed when tested in accordance... crevices that could come in contact with a person using the device or servicing the device in...

  15. Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA

  16. [Environmental impacts of sewage treatment system based on emergy analysis].

    PubMed

    Li, Min; Zhang, Xiao-Hong; Li, Yuan-Wei; Zhang, Hong; Zhao, Min; Deng, Shi-Huai

    2013-02-01

    "Integrated sewage treatment system" (ISTS) consists of sewage treatment plant system and their products (treated water and dewatered sludge) disposal facilities, which gives a holistic view of the whole sewage treatment process. During its construction and operation, ISTS has two main impacts on the environment, i.e., the consumption of resources and the damage of discharged pollutants on the environment, while the latter was usually ignored by the previous researchers when they assessed the impacts of wastewater treatment system. In order to more comprehensively understanding the impacts of sewage treatment on the environment, an analysis was made on the ISTS based on the theories of emergy analysis, and, in combining with ecological footprint theory, the sustainability of the ISTS was also analyzed. The results showed that the emergy of the impacts of water pollutants on the environment was far larger than that of the impacts of air pollutants, and NH3-N was the main responsible cause. The emergy consumption of ISTS mainly came from the emergy of wastewater and of local renewable resources. The "sewage treatment plant system + landfill system" had the highest emergy utilization efficiency, while the "sewage treatment plant system + reclaimed water reuse system + incineration system" had the lowest one. From the aspect of environmental sustainability, the "sewage treatment plant system + reclaimed water reuse system + landfill system" was the best ISTS, while the "sewage treatment plant system + incineration system" was the worst one. PMID:23705396

  17. Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor.

    PubMed

    Li, Yunbei; Li, Weiguang

    2015-02-01

    Composting is one of the cost-saving ways for sewage sludge treatment to produce a final product that is stable, and free of pathogens and plant seeds. However, the loss of nitrogen through ammonia emission not only reduces the agronomic value of the composting product, but also leads to air pollution and is potentially health threatening. Five mixtures of sewage sludge and acidified sawdust were co-composted for 22 days with different initial pH values (3.51, 4.45, 5.51, 6.48 and 7.56). Acidified sawdust was used as a pH regulator and also bulking agent during composting. Changes in physicochemical properties were characterised by the temperature, organic matter degradation, carbon dioxide emission and pH value. The results showed that regulating the initial pH of composting materials to 5.51~6.48 was the most effective way in reducing ammonia emissions. Compared with the control group, the cumulative ammonia emission was reduced by 52.1% and the nitrogen loss decreased from 44.7% to 24.8% with no adverse effects on organic matter degradation and microbial activity. PMID:25649403

  18. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    NASA Astrophysics Data System (ADS)

    Lag, A.; Gomez, I.; Navarro-Pedreo, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was the only with marked and significant decreasing trend from the first to the last sampling period. Mean cardoon biomass production in D1subplot was 13 ton/ha which differed significantly from D4 production, which was about 20 ton/ha. Hence, the maximum biomass production was obtained with the maximum compost dose. The results show that compost amendment increased cardoon biomass production, probably due to the improvement of soil properties, especially plant nutrient availability. No significant differences were found in soil parameters along time, with the exception of pH. However, longer test time is needed to evaluate long term effects in soil and to check the maintenance of biomass productivity. References Fernadez J., Curt, M.D., Aguado P.L. Industrial applications of Cynara cardunculus for energy and other uses. Industrial Crops and Product 24 (2006) pp 222-229. WRB (2006). World Reference Base for Soil Resources (2nd ed.). World Soil Resources Report 103, FAO, Rome, Italy (2006) 133 pp. Casado, J.; Sells, S.; Navarro, J.; Bustamante, M.A.; Mataix, J.; Guerrero, C.; Gomez, I. Evaluation of composted sewage sludge as nutricional source for horticulturals soils. Waste Management 26 (2006). pp 946-952. Acknowledgements: The author gratefully acknowledges the Spanish Ministry of Innovation and Science for a research fellowship (AP2007-01641).

  19. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment.

    PubMed

    Zhou, Nicolette A; Lutovsky, April C; Andaker, Greta L; Gough, Heidi L; Ferguson, John F

    2013-11-01

    Pharmaceutical and personal care products (PPCPs) discharged with wastewater treatment plant (WWTP) effluents are an emerging surface water quality concern. Biological transformation has been identified as an important removal mechanism during wastewater treatment. The aim of this research was the identification of bacteria with characteristics for potential bioaugmentation to enhance PPCP removal. We report here the cultivation and characterization of bacteria capable of degrading PPCPs to ng/L concentrations. An isolation approach was developed using serial enrichment in mineral medium containing 1 mg/L of an individual PPCP as the sole organic carbon source available to heterotrophs until the original activated sludge inocula was diluted to ~10(-8) of its initial concentration, followed by colony growth on solid R2A agar. Eleven bacteria were isolated, eight that could remove triclosan, bisphenol A, ibuprofen, or 17β-estradiol to below 10 ng/L, one that could remove gemfibrozil to below 60 ng/L, and two that could remove triclosan or E2, but not to ng/L concentrations. Most bacterial isolates degraded contaminants during early growth when grown utilizing rich carbon sources and were only able to degrade the PPCPs on which they were isolated. Seven of the bacterial isolates were sphingomonads, including all the triclosan and bisphenol A degraders and the ibuprofen degrader. The study results indicate that the isolated bacteria may have a positive influence on removal in WWTPs if present at sufficient concentrations and may be useful for bioaugmentation. PMID:23455956

  20. The effect of bioleaching on sewage sludge pyrolysis.

    PubMed

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. PMID:26481636

  1. Occupational hepatitis B virus infection in sewage workers.

    PubMed

    Arvanitidou, M; Constantinidis, T C; Doutsos, J; Mandraveli, K; Katsouyannopoulos, V

    1998-01-01

    In a cross-sectional study the employees of a Sewage Company were tested for hepatitis B virus (HBV) markers--HBsAg, anti-HBs, anti-HBc--to determine the prevalence of HBV infection and assess the risk of exposed sewage workers becoming infected, so as to evaluate the necessity for appropriate vaccination. The overall prevalence of HBV markers was 43.9% and 6.6% of the employees were HBsAg carriers. In the univariate analysis the prevalence of past and current infection was significantly associated with exposure to sewage (p < 0.001), age (p < 0.001) and with educational level (p < 0.001). However, the logistic regression analysis confirmed that only exposure to sewage was independently associated with positivity for HBV infection (p < 0.001). Workers exposed to sewage should therefore be considered for vaccination against hepatitis B virus. PMID:10064948

  2. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    PubMed

    Corra Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils. PMID:26643763

  3. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szo?tysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals. PMID:25242604

  4. Environmental degradation and environmental threats in China.

    PubMed

    Wang, Ying

    2004-01-01

    The article presents a review of environmental degradation and its threats in China. Air pollution, water pollution, deforestation, soil degradation, sand depositing in dams, decaying urban infrastructure, and more and more hazards such as floods, landslides and soil erosion are major consequences of environmental degradation and are making tremendous loss both in life and property. Through investigation, the author found that poor air quality in the large cities; water pollution in the downstream of many rivers; the multiple problems of many mining areas; lack of access to fresh water; decaying sewage systems; and the disastrous impact of these environmental degradations on public health and agricultural products in many provinces is rather serious. Relationship of environmental degradation and natural hazards is close; more attention should be put in environmental degradation that may surpass economy progress if the trend continues. It is therefore imperative that Chinese government undertake a series of prudent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes. PMID:15887370

  5. Cogeneration plant serves Prague sewage works

    SciTech Connect

    1995-10-01

    The new cogeneration plant at the sewage works in Prague, Czech Republic, was commissioned in June of this year. The plant is based on three gas engine modules from Deutz MWM-Gastechnik, which supply power and heat from the sewage gas. Also installed was a central plant control system (CPCS) for automation of the power plant, including long-term data storage for operation optimization. The gas engines are equipped with an individual total electronic management system (TEM) that optimizes engine operation and heat transfer. The TEM system also serves for safety monitoring of the relevant modules. Data communication between the TEM system and the CPCS is realized via a serial interface. The CPCS can thus test the availability of the individual heat generators and, depending on the condition of an individual module, switch over to another. With due consideration to environmental protection, Deutz MWM-Gastechnik guarantees NO{sub x} emissions of less than 500 mg/Nm{sup 3} (at 5% O{sub 2}) and CO emissions of less than 650 mg/Nm{sup 3}. The plant operator has also encapsulated the three gas engine modules in soundproofing enclosures in order to reduce noise emissions from 105 down to 78 dB(A).

  6. Treatment of sewage sludge using electrokinetic geosynthetics.

    PubMed

    Glendinning, Stephanie; Lamont-Black, John; Jones, Colin J F P

    2007-01-31

    The treatment and disposal of sewage sludge is one of the most problematical issues affecting wastewater treatment in the developed world. The traditional outlets for sewage sludge are to spread it on agricultural land, or to form a cake for deposit to landfill or incineration. In order to create a sludge cake, water must be removed. Existing dewatering technology based on pressure can only remove a very limited amount of this water because of the way in which water is bound to the sludge particles or flocs. Several researchers have shown that electrokinetic dewatering of sludge is more efficient than conventional hydraulically driven methods. This involves the application of a dc voltage across the sludge, driving water under an electrical gradient from positive (anode) electrode to negative (cathode) electrode. However, there have been several reasons why this technique has not been adopted in practice, not least because the, normally metallic, anode rapidly dissolves due to the acidic environment created by the electrolysis of water. This paper will describe experimentation using electrokinetic geosynthetics (EKG): polymer-based materials containing conducting elements. These have been used to minimise the problem of electrode corrosion and create a sludge treatment system that can produce dry solids contents in excess of 30%. It will suggest different options for the treatment of sludges both in situ in sludge lagoons and windrows, and ex situ as a treatment process. PMID:16635546

  7. Microwave oxidation treatment of sewage sludge.

    PubMed

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols. PMID:26030695

  8. Stabilization of primary sewage sludge during vermicomposting.

    PubMed

    Gupta, Renuka; Garg, V K

    2008-05-30

    In India, over the last few decades, there has been a remarkable increase in sewage sludge production due to population increase and unplanned urbanization. The aim of the present study was to investigate the ability of an epigeic earthworm Eisenia foetida to transform primary sewage sludge (PSS) amended with cow dung (CD) into value added product, i.e., vermicompost in laboratory scale experiments. Two approaches investigated in the study were: (1) evaluation of vermistabilization of PSS and CD mixtures after 15 weeks in terms of fertilizer quality of the products and; (2) growth and reproduction of Eisenia foetida up to 11 weeks in different vermireactors. In all the PSS and CD mixtures, a decrease in pH, TOC and C:N ratio, but increase in EC, TKN, TK and TP was recorded. The heavy metals' content in the vermicomposts was higher than initial mixtures. Maximum worm biomass was attained in 10% PSS+90% CD mixture while, the worm growth rate was highest in 30% PSS+70% CD feed mixture. It was inferred from the study that addition of 30-40% of PSS with CD had no adverse effect on the fertilizer value of the vermicompost as well as growth of Eisenia foetida. The results indicated that PSS could be converted into good quality manure by vermicomposting if mixed in appropriate ratio (30-40%) with cow dung. PMID:17950995

  9. Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes.

    PubMed

    Cusid, J A; Cremades, L V; Gonzlez, M

    2003-01-01

    The re-use of sewage sludge without any treatment as primary material-mixed with clays-in order to obtain structural ceramics for buildings has been successfully improved. In the Ecobrick project, the firing of a mixture of specific percentages of three components (clays, sludges and forest debris) resulted in a lighter and more thermal and acoustic insulating brick, compared with conventional clay-bricks. Volatile organic compounds (VOC) emission from the manufacturing of ceramics is the most important aspect to control. In the Ecobrick project VOC emissions were monitored by using a bench-scale furnace. The study was conducted using an EPA recommended sampling train and portable sampling tubes that were thermally desorbed and analyzed by gas chromatography/mass spectrometry. Drying of raw sewage-sludge and firing processes were considered separately. In this paper, we present VOC emissions coming from the firing step of the Ecobrick production. PMID:12737969

  10. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge.

    PubMed

    Lindberg, Richard H; Olofsson, Ulrika; Rendahl, Per; Johansson, Magnus I; Tysklind, Mats; Andersson, Barbro A V

    2006-02-01

    The behavior and fate of three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one sulfonamide (sulfamethoxazole), and trimethoprim were investigated at a sewage treatment plant in Ume, Sweden, in 2004. This plant uses conventional mechanical, chemical, and activated sludge methods to treat the sewage water and digest the sludge; the dewatered digested sludge is pelleted (dry weight > 90% of total weight). Raw sewage water and particles as well as effluents and sludge from specific treatment areas within the plant were sampled. In addition to quantifying the antibiotics within the plant, we characterized the sample matrixes to facilitate evaluation of the results. Of the five substances examined, only norfloxacin, ciprofloxacin, and trimethoprim were present in concentrations higher than their limits of quantification. Norfloxacin and ciprofloxacin sorbed to sludge in a manner that was independent of changes in pH during sewage treatment, and more than 70% of the total amount of these compounds passing through the plant was ultimately found in the digested sludge. The results suggest that fluoroquinolones undergo thermal degradation during pelleting, but more studies are needed to confirm this. Trimethoprim was found in the final effluent at approximately the same concentration and mass flow as in the raw sewage, and could not be quantified in any solid sample. Predicted environmental concentrations, based on consumption data for Ume municipality, correlated well with the results obtained, especially when the predicted concentrations were corrected to account for the amount of each active substance excreted in urine. The results obtained were compared to those of previous studies of these three substances' behavior and fate and were found to be similar, although some of the other plants studied employed the various treatment steps in different orders. PMID:16509355

  11. MICROBIAL DEGRADATION OF CORRINOIDS I. Vitamin B12

    PubMed Central

    Scott, W. M.; Burgus, R. C.; Hufham, J. B.; Pfiffner, J. J.

    1964-01-01

    Scott, W. M. (Wayne State University, Detroit, Mich.), R. C. Burgus, J. B. Hufham, and J. J. Pfiffner. Microbial degradation of corrinoids. I. Vitamin B12. J. Bacteriol. 88:581585. 1964.Microorganisms isolated from a variety of soil, sewage, and mud samples, and stock cultures, were examined for the ability to degrade vitamin B12. More than 200 isolates which attack the vitamin were examined, and they all demonstrated reversible fading of the red vitamin. The color was restored by aeration. Very few microorganisms were able to degrade the vitamin to permanently colorless products, although many were able to degrade it partially, to produce new pigments. Some of these pigments appeared similar, if not identical, although they were produced by different bacteria. Radiotracer and electrophoretic mobility data are presented to show that the transformation products are derived from the vitamin. All the degradative microorganisms isolated were bacteria, and the most active was Pseudomonas rubescens. PMID:14208491

  12. The study of the cumulative effects of the application of urban sewage sludge on an eroded soil cultivated in the Algerian steppe

    NASA Astrophysics Data System (ADS)

    Boutmedjet, Ahmed; Boukkaya, Nassira; Houyou, zohra; Ouakid, Mohamed; Bielders, Charles

    2014-05-01

    Since the seventies, desertification is one of the major problems faced by the Mediterranean climate regions. These problems are inherent in the soil and climate characteristics of these regions, but their magnitude and acuity depend mainly on human activities. The process of desertification that affects more and more land is more pronounced as soil degradation, which accelerates constantly reduced resources farmland and pasture. Especially in areas bordering the Sahara, as the Algerian steppe, a real belt between the Sahara and the Algerian tell As part of the study of the cumulative effect of the application of urban sewage sludge on sandy soil and culture that is a cereal (barley), we had results that enabled us to identify some precepts,. The short-term effects studied in this experiment indicate that the amendment of the sewage sludge had a beneficial effect on the fertilizing qualities of the soil and therefore the performance of barley. To observations of Culture (barley), indicate that the best grain yield was obtained with D3 (28.76 quintals / ha) and D2 (33.91 quintals / ha). This is due to the effect of the sludge by the addition of required nutrients crop production. The lowest yield (24.11 quintals / ha) being obtained for the control (D0). It is the same for straw yield, with 47.5 quintals / ha in D2. The D3 treatment (30 t / ha) has previously presented the best results, but after 3 years we noticed that the best yields are obtained with D2 (10 t / ha). Except the pH and the rate of limestone that are related to changes in the characteristics of the site, there was an improvement in some physical and chemical properties of the soil. The contributions of sewage sludge amended greater quality soil biology D2 (number and effective species collected). Increasing the organic matter content (1.45%) and electrical conductivity (0.18 microseconds / cm) in the soil is only significant for the highest dose (30t/ha), although a tendency to enrichment in proportion to the dose appears clearly (except for nitrogen with a maximum of 0.066% in D3). The content of nitrogen increases less than organic carbon, which results in an increase of the C/N in the processing D2, justifying a biological activity which allows a soil structure, ensuring protection against leaching and challenging creating conditions favorable for crop development. So opportunities for agricultural use of sewage sludge exist for the rehabilitation of degraded sites (revegetation), while remaining in an application under controlled and regulated. These pathways underused in Algeria may comprise an interesting alternative to overcome the lack of organic matter, and even conserve soil areas subject has often destructive climatic and anthropogenic conditions.

  13. 17 ?-estradiol and 17 ?-ethinylestradiol mineralization in sewage sludge and biosolids.

    PubMed

    Rose, Karin P; Farenhorst, Annemieke; Claeys, Anne; Ascef, Bruna

    2014-01-01

    Natural steroid estrogens (e.g., 17 ?-estradiol, E2), synthetic steroid estrogens (e.g., 17 ?-ethinylestradiol, EE2) and pharmaceutical antibiotics (e.g., ciprofloxacin) are chemicals detected in biosolids and sewage sludges because they partition into the solids fraction during the wastewater treatment process. This research utilized a three-way factorial design (six media two estrogens three antibiotic treatments) to quantify cumulative E2 and EE2 mineralization over 133d (MAX) in a range of sewage sludge and biosolid samples in the presence (4 and 40mg kg(-1)) and absence of ciprofloxacin. The same three-way factorial design was utilized to quantify the impact of the six media, E2 or EE2, and ciprofloxacin on cumulative soil respiration over 133 d (RESP). Minimal ciprofloxacin mineralization was observed (<0.05% over 133 d), but despite its persistence, ciprofloxacin had no significant effect on MAX of E2 or EE2, and, in general, no significant effect on RESP. MAX ranged from 38.38% to 48.44% for E2 but from only 0.72% to 24.27% for EE2 although RESP was relatively similar, ranging from 101.00 to 866.54mg CO2 in the presence of E2 and from 69.55 to 893.95mg CO2 in the presence of EE2. The sorption-limited bioavailability of EE2, which is inherently resistant to biodegradation due to chemical structure, as MAX and Freundlich sorption coefficients (Kf) were negatively correlated. As such, the Kf values of EE2 were largest in composted biosolids in which EE2 was particularly resistant to microbial degradation as the MAX of EE2 was <3%. In contrast, the MAX of E2 showed a positive association with the Kf values of E2 because some steps in the E2 transformation process have been found to occur in the sorbed phase. The MAX of E2 was significantly greater in the biosolid and composted biosolid media than in any other media, whereas the MAX of E2 decreased in the following order: secondary sewage sludge > primary sewage sludge > biosolid = composted biosolid. This suggests that sewage sludges in municipal lagoons and pre-treatment holding lagoons are a more favorable media for mineralization of EE2, whereas biosolids in post-treatment storage lagoons are a more favorable media for the mineralization of E2. The presence of ciprofloxacin will have no impact on the potential E2 or EE2 mineralization rates in these cases. PMID:25190562

  14. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling.

    PubMed

    Smith, S R

    2009-10-13

    Organic chemicals discharged in urban wastewater from industrial and domestic sources, or those entering through atmospheric deposition onto paved areas via surface run-off, are predominantly lipophilic in nature and therefore become concentrated in sewage sludge, with potential implications for the agricultural use of sludge as a soil improver. Biodegradation occurs to varying degrees during wastewater and sludge treatment processes. However, residues will probably still be present in the resulting sludge and can vary from trace values of several micrograms per kilogram up to approximately 1 per cent in the dry solids for certain bulk chemicals, such as linear alkylbenzene sulphonate, which is widely used as a surfactant in detergent formulations. However, the review of the scientific literature on the potential environmental and health impacts of organic contaminants (OCs) in sludge indicates that the presence of a compound in sludge, or of seemingly large amounts of certain compounds used in bulk volumes domestically and by industry, does not necessarily constitute a hazard when the material is recycled to farmland. Furthermore, the chemical quality of sludge is continually improving and concentrations of potentially harmful and persistent organic compounds have declined to background values. Thus, recycling sewage sludge on farmland is not constrained by concentrations of OCs found in contemporary sewage sludges. A number of issues, while unlikely to be significant for agricultural utilization, require further investigation and include: (i) the impacts of chlorinated paraffins on the food chain and human health, (ii) the risk assessment of the plasticizer di(2-ethylhexyl)phthalate, a bulk chemical present in large amounts in sludge, (iii) the microbiological risk assessment of antibiotic-resistant micro-organisms in sewage sludge and sludge-amended agricultural soil, and (iv) the potential significance of personal-care products (e.g. triclosan), pharmaceuticals and endocrine-disrupting compounds in sludge on soil quality and human health. PMID:19736232

  15. SURFACE DISPOSAL OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE (EPA/625/R-95/002)

    EPA Science Inventory

    Sewage sludge and domestic septage may be applied to the land as a soil conditioner and partial fertilizer, incinerated, or placed on land (surface disposal). Placement refers to the act of putting sewage sludge on an active sewage sludge unit (land on which only sewage sludge is...

  16. An environmental risk assessment for oseltamivir (Tamiflu) for sewage works and surface waters under seasonal-influenza- and pandemic-use conditions.

    PubMed

    Straub, Jrg Oliver

    2009-09-01

    In the event of an influenza pandemic, anti-viral medications such as oseltamivir (Tamiflu) are expected to be used in high amounts over a duration of several weeks. Oseltamivir has been predicted to reach high concentrations in surface waters and sewage works. New oseltamivir environmental fate and toxicity studies permit an environmental risk assessment (ERA) under seasonal- and pandemic-use scenarios. The environmental fate data for sewage works (no removal), surface waters (no significant degradation), and water/sediment systems (>50% primary degradation in 100 days) were used for the derivation of new predicted environmental concentrations (PECs) for western Europe and the River Lee catchment in the UK. Existing worst-case PECs for western Europe, the River Lee catchment in the UK and the Lower Colorado basin in the USA under pandemic conditions (< or =98.1 microg/L for surface waters, < or =348 microg/L for sewage works) were also considered for the ERA. PECs were compared with predicted no-effect concentrations (PNECs) based on new chronic ecotoxicity data (no observed effect concentration for algae, daphnia, and fish > or =1 mg/L). Based on all PEC/PNEC risk ratios, no significant risk is evident to surface waters or sewage works during both regular seasonal-use and high pandemic-use of oseltamivir. PMID:19560203

  17. Virus isolations from sewage and from a stream receiving effluents of sewage treatment plants*

    PubMed Central

    Grinstein, Saul; Melnick, Joseph L.; Wallis, Craig

    1970-01-01

    In order to detect viruses in sewage or streams, it is first necessary to concentrate the virus present in the fluid sample. Available methods are not readily manageable for concentrating virus from large volumes of fluid, and have not always yielded high recovery rates. In the study described in this paper, a method for concentration of viruses by adsorption on insoluble cross-linked maleic anhydride polyelectrolytes has been utilized to survey the viral flora of sewage and of a stream receiving sewage effluents, in a residential area of Houston, Texas. On a single day the virus flow at different points along the stream varied from 304 000 to 6 014 000 PFU/min. From 84 samples each of 1 US gal, 14 520 isolates were obtained, chiefly echovirus type 7 and polioviruses of all 3 types, some of them with characteristics of virulent wild strains. With virus isolation rates as high as those achieved, it is now possible to monitor virus in natural waters more effectively. PMID:4315865

  18. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA code, which determines structurally controlled key-block failure, is not applicable for stress-controlled failure in the lithophysal units. To address these limitations, additional numerical codes have been included that can explicitly apply seismic and thermal loads, providing significant improvements to the analysis of drift degradation and extending the validity of drift degradation models.

  19. Metal transfer in vermicomposting of sewage sludge and plant wastes

    SciTech Connect

    Frank, R.; Klauck, C.; Stonefield, K.I.

    1983-12-01

    Sewage sludge is an urban waste that has a potential nutrient value for recycling into food production. A set of guidelines has been developed that prescribes the quality of sludge suitable for utilization on foodlands. A number of sewage sludges do not meet the criteria and are therefore not acceptable for direct foodland application. One of the options available for such sludges is the production of compost and one of these composting processes involves worms (vermicomposting). This study looks at a pilot vermicomposting operation and follows metal concentrations by batch lot from the sewage sludge to the final commercial product.

  20. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.

    PubMed

    Lopez, H W; Ouvry, A; Bervas, E; Guy, C; Messager, A; Demigne, C; Remesy, C

    2000-06-01

    Five strains of lactic bacteria have been isolated from sour doughs and examined for their ability to degrade phytic acid. In white flour medium in which phytic acid was the only source of phosphorus, the disappearance of phytate and an elevation of inorganic phosphate were observed after only 2 h of incubation in all strains tested (-30 and +60%, respectively). Both phenomena correspond to phytate breakdown. No difference was observed in the levels of phytic acid hydrolysis among strains, suggesting that phytase enzymes are similar among these bacteria. Using whole wheat flour medium naturally rich in phytic acid in the presence of Leuconostoc mesenteroides strain 38, a 9 h fermentation established that the degradation of PA and the production of lactic acid lead to greater Ca and Mg solubility than in control medium. PMID:10888537

  1. Thixotropic behaviour of thickened sewage sludge

    PubMed Central

    2014-01-01

    The aim of the work is a description of the rheological behaviour of thickened sewage sludge. The sample of thickened sludge was collected from the wastewater treatment plant, where pressure flotation unit is used for a process of thickening. The value of dry matter of collected sample was 3.52%. Subsequently the sample was diluted and the rheological properties of individual samples were obtained. Several types of rheological tests were used for the determination of the sample. At first the hysteresis loop test was performed. The next test was focused on the time-dependency, i.e. measurement of dependence of dynamic viscosity on the time at constant shear rate. Further dependence dynamic viscosity on the temperature was performed. Then the activation energy was obtained from measured values. Finally, the hysteresis areas were counted and measured values were evaluated with use of Herschel-Bulkley mathematical model. PMID:24860659

  2. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  3. Preparation of new magnetic nanocatalysts based on TiO2 and ZnO and their application in improved photocatalytic degradation of dye pollutant under visible light.

    PubMed

    Nabid, Mohammad Reza; Sedghi, Roya; Gholami, Saeede; Oskooie, Hossein Abdi; Heravi, Majid M

    2013-01-01

    Photocatalytic degradation of methyl orange (MO) as a model of an organic pollution was accomplished with magnetic and porous TiO(2)/ZnO/Fe(3)O(4)/PANI and ZnO/Fe(3)O(4)/PANI nanocomposites under visible light irradiation. The structures of nanocomposites were characterized by various techniques including UV-Vis absorption spectroscopy, XRD, SEM, EDS, BET and TGA. Optical absorption investigations show two ?(max) at 450 and 590 nm for TiO(2)/ZnO/Fe(3)O(4)/PANI nanocomposites respectively possessing optical band gaps about 2.75 and 2.1 eV smaller than that of the neat TiO(2) and ZnO nanoparticles. Due to these optical absorptions, the nanocomposites can be considered promising candidates as visible light photocatalysts to produce more electron-hole pairs. The degradation of MO, extremely increased using polymeric photocatalysts and decolorization in the presence of visible light achieved up to 90% in less than 20 min in comparison with the neat nanoparticles (about 10%). All these advantages promise a bright future for these composites as useful photocatalysts. The degradation efficiency of MO using stable nanocomposites was still over 70% after ten times reusing. The highest decolorizing efficiencies were achieved with 0.75 g L(-1) of catalyst and 10 mg L(-1) of MO at natural pH under visible light irradiation in less than 20 min. PMID:22817280

  4. Evidence for Anaerobic Dechlorination of Dechlorane Plus in Sewage Sludge.

    PubMed

    Sverko, Ed; McCarry, Brian; McCrindle, Robert; Brazeau, Allison; Pena-Abaurrea, Miren; Reiner, Eric; Anne Smyth, Shirley; Gill, Biban; Tomy, Gregg T

    2015-12-01

    The environmental occurrence of dechlorination moieties from the high production volume flame retardant, Dechlorane Plus (DP), has largely been documented; however, the sources have yet to be well understood. In addition, few laboratory-based studies exist which identify the cause for the occurrence of these chemicals in the environment or humans. Anaerobic dechlorination of the two DP isomers was investigated using a laboratory-simulated wastewater treatment plant (WWTP) environment where anaerobic digestion is used as part of the treatment regime. Known amounts of each isomer were added separately to sewage sludge which provided the electron-donating substrate and at prescribed time points in the incubation, a portion of the media was removed and analyzed for DP and any dechlorination metabolites. After 7 days, monohydrodechlorinated products were observed for both the syn- and anti-DP which were continued throughout the duration of our study (49 days) in an increasing manner giving a calculated formation rate of 0.48 0.09 and 0.79 0.12 pmols/day for syn- and anti-DP, respectively. Furthermore, we observed a second monohydrodechlorinated product only in the anti-DP isomer incubation medium. This strongly suggests that anti-DP is more susceptible to anaerobic degradation than the syn isomer. We also provide compelling evidence to the location of chlorine loss in the dechlorination DP analogues. Finally, the dechlorination DP moieties formed in our study matched the retention times and identification of those observed in surficial sediment located downstream of the WWTP. PMID:26572321

  5. Effects of sewage effluents on water quality in tropical streams.

    PubMed

    Figueroa-Nieves, Dbora; McDowell, William H; Potter, Jody D; Martnez, Gustavo; Ortiz-Zayas, Jorge R

    2014-11-01

    Increased urbanization in many tropical regions has led to an increase in centralized treatment of sewage effluents. Research regarding the effects of these wastewater treatment plants (WWTPs) on the ecology of tropical streams is sparse, so we examined the effects of WWTPs on stream water quality on the Caribbean island of Puerto Rico. Nutrient concentrations, discharge, dissolved oxygen (DO), biochemical oxygen demand (CBOD), and specific UV absorbance (SUVA) at 254 nm were measured upstream from the WWTP effluent, at the WWTP effluent, and below the WWTP effluent. All parameters measured (except DO) were significantly affected by discharge of WWTP effluent to the stream. The values of SUVA at 254 nm were typically lower (<2.5 m mg L) in WWTP effluents than those measured upstream of the WWTP, suggesting that WWTP effluents are contributing labile carbon fractions to receiving streams, thus changing the chemical composition of dissolved organic carbon in downstream reaches. Effluents from WWTP contributed on average 24% to the stream flow at our tropical streams. More than 40% of the nutrient loads in receiving streams came from WWTP effluents, with the effects on NO-N and PO-P loads being the greatest. The effect of WWTPs on nutrient loads was significantly larger than the effect of flow due to the elevated nutrient concentrations in treated effluents. Our results demonstrate that inputs from WWTPs to streams contribute substantially to changes in water quality, potentially affecting downstream ecosystems. Our findings highlight the need to establish nutrient criteria for tropical streams to minimize degradation of downstream water quality of the receiving streams. PMID:25602222

  6. Raw Sewage Harbors Diverse Viral Populations

    PubMed Central

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected. PMID:21972239

  7. [Nitrogen Removal Using ANAMMOX and Denitrification for Treatment of Municipal Sewage].

    PubMed

    Zhang, Shi-ying; Wu, Peng; Song, Yin-ling; Shen, Yao-liang; Zhang, Ting

    2015-11-01

    In this study, an Anaerobic Baffled Reactor ( ABR) was constructed. The ANAMMOX process was successfully started up using this reactor within 45 days under the following condition: 27 degrees C, pH of 8, HRT of 10 h, and the influent NO2(-) -N/NH4(+) -N was 1.32. At the stable phase, the average TN removal percentages reached 83% and the ΔNH4(+) -N: ΔNO2(-) -N: ΔNO3(-) -N was 1 : 1. 31 : 0.27. In the process of treating municipal sewage, there was inevitably a certain amount of organic carbon in the influent. Organic carbon had no obvious effect on the ANAMMOX process at C/N of 0.5; Nitrogen removal was improved, and the average total nitrogen (TN, including ammonia, nitrite and nitrate nitrogen) removal efficiency of 93% was obtained at C/N of 1. However, at C/N of 2, the TN removal performance reduced due to the suppression of ANAMMOX by organic carbon; the ANAMMOX bacteria could recover their activity in a short period of time by reducing the influent COD concentration. In this work, the performance of the ANAMMOX-denitrification process in the treatment of municipal sewage was investigated, which proved the suitability of ABR-denitrification reactor in treating municipal sewage with low ammonia nitrogen concentration, with an effluent TN concentration of 7.5 mg x L(-1), and the average TN removal percentages reaching 86%. PMID:26911006

  8. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. PMID:26031329

  9. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  10. Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges.

    PubMed

    Hait, Subrata; Tare, Vinod

    2012-05-01

    Transformation and availability of nutrients and some heavy metals were assessed during the integrated composting-vermicomposting of both primary sewage sludge (PSS) and waste activated sewage sludge (WAS) using matured vermicompost as indigenous bulking material and employing Eisenia fetida as earthworm species. Vermicomposting resulted in significant increase in total N (TN) (PSS: 41.7-64.6%, F=11.6, P<0.05; WAS: 36.4-58.6%, F=6.4, P<0.05), water soluble N (WSN) (PSS: 37.1-50.5%, F=30.1, P<0.05; WAS: 40.1-53.0%, F=27.6, P<0.05), total P (TP) (PSS: 39.9-69.8%, F=27.1, P<0.05; WAS: 32.2-56.6%, F=21.4, P<0.05) and water soluble P (WSP) (PSS: 25.2-34.3%, F=163.9, P<0.05; WAS: 24.1-34.2%, F=144.3, P<0.05) as compared to the initial compost material depending on different experimental conditions. The study demonstrated that the vermicomposting significantly improved the availability of nutrients in sewage sludges. In addition, vermicomposting considerably reduced the availability of heavy metals except Fe and Mn, presumably by forming organic-bound complexes in spite of several fold increase in their total content. The environmental conditions (i.e., temperature and relative humidity), in general, showed significant effect on the transformation and availability of nutrients and heavy metals. There was no effect of earthworm density on the transformation and availability of heavy metals and nutrients except N and P, possibly due to prior exposure during acclimation period in sewage sludge. PMID:22277776

  11. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernndez, Ana J; Gutirrez-Gins, Mara J; Pastor, Jess

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates. PMID:26436275

  12. Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability.

    PubMed

    Jensen, P D; Astals, S; Lu, Y; Devadas, M; Batstone, D J

    2014-12-15

    Anaerobic codigestion (AcoD) is a proven option to significantly boost biogas production while utilizing existing digesters and infrastructure. The aim of the present research was to conduct an exhaustive study regarding anaerobic codigestion of mixed sewage sludge and crude glycerol considering impacts on organic load, hydraulic load, process performance and microbial community. The methane potential of crude glycerol varied from 370 mL CH4g(-1) VS to 483 mL CH4g(-1) VS for different samples tested. The half maximal inhibitory concentration of crude glycerol was 1.01 g VS L(-1), and the primary mechanism of inhibition was through overload from rapid fermentation rather than the presence of toxic compounds in the crude glycerol. In continuous operation over 200 days, feeding glycerol at up to 2% v/v, increased organic load by up to 70% and resulted in a 50% increase in methane production. Glycerol dosing resulted in no change in apparent dewaterability, with both codigestion and control reactors returning values of 22%-24%. Members of the phylum Thermotogae emerged as a niche population during AcoD of sewage sludge and glycerol; however there was no gross change in microbial community structure and only minimal changes in diversity. AcoD did not result in synergisms between sewage sludge and crude glycerol. Actually, at dose rate up to 2% v/v glycerol dosing is still an effective strategy to increase the organic loading rate of continuous anaerobic digesters with minimal impact of the hydraulic retention time. Nonetheless, the dose rate must be managed to: (i) prevent process inhibition and (ii) ensure sufficient degradation time to produce a stable biosolids product. PMID:25459224

  13. Transformation Products and Human Metabolites of Triclocarban and Triclosan in Sewage Sludge Across the United States

    PubMed Central

    2015-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  14. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    USGS Publications Warehouse

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (? = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2?-hydroxy-TCC (r= 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r= 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (? = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (3774%), whereas its contribution to partial TCC dechlorination was limited (0.42.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  15. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.

    PubMed

    Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

    2014-07-15

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (?=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (?=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  16. High congruence of isotope sewage signals in multiple marine taxa.

    PubMed

    Connolly, Rod M; Gorman, Daniel; Hindell, Jeremy S; Kildea, Timothy N; Schlacher, Thomas A

    2013-06-15

    Assessments of sewage pollution routinely employ stable nitrogen isotope analysis (?(15)N) in biota, but multiple taxa are rarely used. This single species focus leads to underreporting of whether derived spatial N patterns are consistent. Here we test the question of 'reproducibility', incorporating 'taxonomic replication' in the measurement of ?(15)N gradients in algae, seagrasses, crabs and fish with distance from a sewage outfall on the Adelaide coast (southern Australia). Isotopic sewage signals were equally strong in all taxa and declined at the same rate. This congruence amongst taxa has not been reported previously. It implies that sewage-N propagates to fish via a tight spatial coupling between production and consumption processes, resulting from limited animal movement that closely preserves the spatial pollution imprint. In situations such as this where consumers mirror pollution signals of primary producers, analyses of higher trophic levels will capture a broader ambit of ecological effects. PMID:23602260

  17. Method for treating sewage to produce a fuel

    SciTech Connect

    Leen, C.

    1983-03-29

    A method is disclosed for treating sewage in which the combustible components of the sewage are separated from the sewage and utilized as a primary fuel. Scum is collected, preferably by skimming, from screened sewage. This scum comprises oils, greases, fats, water and intermixed solid material. The collected scum is then transferred to a separation tank. The scum is maintained within the tank in a quiescent and substantially nonagitated state for at least twelve hours, during which the combustible oils, greases, fats and the like are rendered separable from the other components of the scum. The scum is then conveyed from the tank to a processing unit where the fats, oils, greases and the like are separated from the water and solid material remaining in the scum. The resulting product is a combustible product and can be used as a primary fuel.

  18. Sandis irradiator for dried sewage solids. Final safety analysis report

    SciTech Connect

    Morris, M.

    1980-07-01

    Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

  19. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters.

    PubMed

    Tartera, C; Jofre, J

    1987-07-01

    Twelve strains of different Bacteroides species were tested for their efficiency of detection of bacteriophages from sewage. The host range of several isolated phages was investigated. The results indicated that there was a high degree of strain specificity. Then, by using Bacteroides fragilis HSP 40 as the host, which proved to be the most efficient for the detection of phages, feces from humans and several animal species and raw sewage, river water, water from lagoons, seawater, groundwater, and sediments were tested for the presence of bacteriophages that were active against B. fragilis HSP 40. Phages were detected in feces of 10% of the human fecal samples tested and was never detected in feces of the other animal species studied. Moreover, bacteriophages were always recovered from sewage and sewage-polluted samples of waters and sediments, but not from nonpolluted samples. The titers recovered were dependent on the degree of pollution in analyzed waters and sediments. PMID:3662510

  20. Impact of Mid-Atlantic sewage sludge probed

    NASA Astrophysics Data System (ADS)

    Blue, Charles

    1992-01-01

    Every year since 1986, 8 million tons of raw sewage has been dumped into the ocean at the Mid-Atlantic Bight, an area 100 miles off the coast of New York and New Jersey. Originally, this location was thought to be a safe dump site because of its considerable depth and strong ocean currents, which would prevent sewage from accumulating on the ocean floor. Recently, several scientists tested that assumption and found evidence for significant amounts of sewage accumulation at the dump site.Scientific studies of the dump site, coordinated by NOAA's National Undersea Research Program, will be presented at the 1992 AGU Ocean Science Meeting in New Orleans, January 27-31. The studies reveal the extent of sewage sludge accumulation at the Mid-Atlantic Bight and determine the environmental impact that significant accumulations of this material has on the ocean environment.

  1. WINDROW AND STATIC PILE COMPOSTING OF MUNICIPAL SEWAGE SLUDGES

    EPA Science Inventory

    Research was conducted on composting anaerobically digested and centrifuge dewatered sewage sludge from 1975 through 1980. Windrow and static pile composting processes were evaluated; new methods were employed using deeper windrows and aerated static piles were constructed withou...

  2. USE OF SEWAGE SLUDGE FOR FOREST-TREE SEEDLING PRODUCTION

    EPA Science Inventory

    Research was undertaken to determine the beneficial and harmful effects of using dewatered, digested sewage sludge in: (1) containerized production of forest tree seedlings, (2) tree seedling production in a conventional outdoor nursery, (3) establishment and growth of transplant...

  3. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters.

    PubMed Central

    Tartera, C; Jofre, J

    1987-01-01

    Twelve strains of different Bacteroides species were tested for their efficiency of detection of bacteriophages from sewage. The host range of several isolated phages was investigated. The results indicated that there was a high degree of strain specificity. Then, by using Bacteroides fragilis HSP 40 as the host, which proved to be the most efficient for the detection of phages, feces from humans and several animal species and raw sewage, river water, water from lagoons, seawater, groundwater, and sediments were tested for the presence of bacteriophages that were active against B. fragilis HSP 40. Phages were detected in feces of 10% of the human fecal samples tested and was never detected in feces of the other animal species studied. Moreover, bacteriophages were always recovered from sewage and sewage-polluted samples of waters and sediments, but not from nonpolluted samples. The titers recovered were dependent on the degree of pollution in analyzed waters and sediments. PMID:3662510

  4. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  5. POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

  6. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals.

  7. MYC Degradation

    PubMed Central

    Farrell, Amy S.; Sears, Rosalie C.

    2014-01-01

    The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitinproteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting. PMID:24591536

  8. [A methodological study on treatment of hospital sewage].

    PubMed

    Zhou, Y L

    1990-07-01

    With the view to finding a more effective and economic system for the disposal of hospital sewage, a series of experimental and on the spot investigations were conducted. The results are as follows. Disinfection must be taken as the key link in the treatment of hospital sewage. After primary treatment and chlorination, when the product value of concentration (mg/L) multiplied by time (min.) achieved to 240 (general hospital) and 540 (tuberculosis hospital), the content of suspended substances (SS) fell to 37 mg/L; the clearance rate of SS reached 82%. The BOD5 fell to 35 mg/L a drop to 42%. E. coli was less than 9 individual/L, the killing rate reached 99.999 99%. The intestinal pathogens and tubercle bacillus were completely wiped out. The sludge from the sewage can be treated with lime [Ca(OH)2] and when the pH value rose to 12, the requirement of disinfection was satisfied and both the sludge and sewage can be drained. The aeration of sewage through shooting flow, biological oxidation combined with sediment action by passing thru reclining tubes is an effective way for the secondary treatment of hospital sewage. In addition, we developed the double siphon equipment with water power-automatic controller, the WD-700 flowmeter, the anti-corrosive paint coating the contact pond; according to test parameters, we designed a simplified evaluation graph for the purpose of surveillance. PMID:2209262

  9. Oceanographic effects of the 1992 Point Loma sewage pipe spill

    SciTech Connect

    Casey, R.; Ciccateri, A.; Dougherty, K.; Gacek, L.; Lane, S.; Liponi, K.; Leeds, R.; Walsh, F. )

    1992-01-01

    Early in early 1992, 180 million gallons of advanced primarily treated sewage emptied into 10 meters of water from the broken Point Loma sewage pipe, San Diego. For about two months a sewage boil about the size of a football field existed at the surface and within the Point Loma kelp bed. Sampling and observations taken during the spill indicated the surface waters at the spill site were grayish and smelling of sewage. The sewage water had mixed with the marine waters reducing salinity to about one-half normal (or 15 ppt.). The sediment load of the sewage coated the blades of the giant kelp and the kelp was limp and withdrawn from the surface. At the site of the main boil the kelp appeared to have dropped to the bottom. Sediments on the bottom in the boil area were mainly coarse sands as compared to the surrounding sandy-muds. Preliminary results using laboratory analysis suggest: one month into the spill no infauna were observed in the sediments or planktons in the water of the boil area, but were in the surrounding sediments and water; the observed phytoplankton were dominated by dinoflagellates and suggested red tide conditions surrounding the boil. The site has been monitored monthly since the spill to observe further impact and recovery.

  10. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures.

    PubMed

    Dong, Haoran; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Chang; He, Xiaoxiao; He, Yan

    2015-08-01

    The pollutants classified as "persistent organic pollutants (POPs)", are being subject to high concern among the scientific community due to their persistence in the environment. TiO2-based photocatalytic process has shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology to remove POPs in sewage to overcome the shortcomings of the conventional technologies. However, this technology suffers from some main technical barriers that impede its commercialization, i.e., the inefficient exploitation of visible light, low adsorption capacity for hydrophobic contaminants, uniform distribution in aqueous suspension and post-recovery of the TiO2 particles after water treatment. To improve the photocatalytic efficiency of TiO2, many studies have been carried out with the aim of eliminating the limitations mentioned above. This review summarizes the recently developed countermeasures for improving the performance of TiO2-based photocatalytic degradation of organic pollutants with respect to the visible-light photocatalytic activity, adsorption capacity, stability and separability. The performance of various TiO2-based photocatalytic processes for POPs degradation and the underlying mechanisms were summarized and discussed. The future research needs for TiO2-based technology are suggested accordingly. This review will significantly improve our understanding of the process of photocatalytic degradation of POPs by TiO2-based particles and provide useful information to scientists and engineers who work in this field. PMID:25980914

  11. Application of Pseudomonas flava WD-3 for sewage treatment in constructed wetland in winter.

    PubMed

    Tang, Meizhen; Zhang, Fengfeng; Yao, Shumin; Liu, Yuling; Chen, Junfeng

    2015-01-01

    Recently, constructed wetland was applied for sewage treatment globally due to its high efficiency and relatively low investment. However, operation of many constructed wetlands in cold winter is quite difficult due to the inhibition effect of low temperature. The objective of this experiment is to study the sewage treatment efficiency of Pseudomonas flava WD-3 in the integrated vertical-flow constructed wetland (IVCW) during winter with different dosages (bacterial suspension concentration: 4.57510(8?)mL(-1)). Two treatments were designed, inoculation of P. flava WD-3 with different dosages and the control without bacterium incubation. A simplified Monod model was applied to simulate and evaluate the pollutant removal efficiency of this bacterial strain with respect to its dosages. Results indicated that P. flava WD-3 could degrade organic pollutants, nitrogen, and phosphorus nutrients from wastewater effectively. The optimal dosage of this strain was 6.0%, and the removal rates of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total phosphorous (TP) were 85.82-87.00%, 73.91-84.18%, and 82.04-87.00%, respectively. Furthermore, the average removal efficiencies of COD, NH4+-N, and TP were 1.46, 1.49, and 1.76 times, respectively, than the control. The simplified Monod model accurately predicted the pollutant removal efficiency of P. flava WD-3 in the IVCW system in winter. PMID:25384718

  12. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17?-estradiol (E2), estrone (E1) and 17?-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  13. Algal bioflocculation and energy conservation in microalgal sewage ponds

    SciTech Connect

    Eisenberg, D.M.; Koopman, B.; Benemann, J.R.; Oswald, W.J.

    1981-01-01

    Controlled bioflocculation for harvesting of microalgae produced during municipal wastewater treatment in high-rate ponds was investigated. Nonflocculant algal cultures were produced in high-rate ponds operated at very high dilution rates or with poor mixing. Bioflocculation of such cultures was achieved by isolating them in secondary ponds, but isolation periods of up to 29 days were required. In-pond sedimentation of flocculant algal cultures produced by the isolation technique resulted in algal removals consistently exceeding 80%. When high-rate ponds were operated with improved mixing and at moderate-to-high dilution rates, flocculant algal cultures were developed. The settleability of flocculant algal cultures produced in this manner averaged 76 to 80% when measured in 24-h-detention Imhoff cones and 71% when measured in 48-h-detention settling ponds. It is estimated that, under suitable climate conditions, a high-rate pond system employing bioflocculation-sedimentation for algal removal would require less than one-half the direct energy input of an equivalently sized activated sludge or trickling filter plant. This requirement could be provided entirely through complete utilization of biogas produced from anaerobic digestion of primary (sewage) sludge.

  14. Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms.

    PubMed

    Bia?obrzewski, I; Mik-Krajnik, M; Dach, J; Markowski, M; Czeka?a, W; G?uchowska, K

    2015-09-01

    A mathematical model integrating 11 first-order differential equations describing the dynamics of the aerobic composting process of sewage sludge was proposed. The model incorporates two microbial groups (mesophiles and thermophiles) characterized by different capacities of heat generation. Microbial growth rates, heat and mass transfer and degradation kinetics of the sewage sludge containing straw were modeled over a period of 36days. The coefficients of metabolic heat generation for mesophiles were 4.3210(6) and 6.9310(6)J/kg, for winter and summer seasons, respectively. However, for thermophiles, they were comparable for both seasons reaching 10.9110(6) and 10.5110(6)J/kg. In the model, significant parameters for microbial growth control were temperature and the content of easily hydrolysable substrate. The proposed model provided a satisfactory fit to experimental data captured for cuboid-shaped bioreactors with forced aeration. Model predictions of specific microbial populations and substrate decomposition were crucial for accurate description and understanding of sewage sludge composting. PMID:26087644

  15. Strengthening the growth of Rubrivivax gelatinosus in sewage purification through ferric ion regulated photophosphorylation and respiration.

    PubMed

    Wu, Pan; Li, Jian-zheng; Wang, Yan-ling; Du, Cong; Tong, Qing-yue; Liu, Xian-shu; Li, Ning

    2014-01-01

    Rubrivivax gelatinosus has the potential of biomass resource recycling combined with sewage purification. However, low biomass production and yield restricts the potential for sewage purification. Thus, this research investigated the improvement of biomass production and yield and organics reduction by Fe(3+) in R. gelatinosus wastewater treatment. Results showed that 10-30 mg/L Fe(3+) improved biomass yield in wastewater to a level found in culture medium. With optimal dosage (20 mg/L), biomass production reached 4,300 mg/L, which was 1.67 times that of the control group. Biomass yield was improved by 43.3%. Chemical oxygen demand (COD) removal reached above 91%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that Fe(3+) enhanced the succinate and NADH dehydrogenase activities and, bacteriochlorophyll content in three energy metabolism pathways. These effects then enhanced adenosine triphosphate (ATP) production, which led to more biomass accumulation and COD removal. With 20 mg/L Fe(2+) dosage, succinate and NADH dehydrogenase, coproporphyrinogen III oxidase activities, bacteriochlorophyll content and ATP production were improved, respectively, by 48.4, 50.8, 50, 67 and 56% compared to those of the control group. PMID:25521132

  16. Kinetics of organic matter removal and humification progress during sewage sludge composting.

    PubMed

    Kulikowska, Dorota

    2016-03-01

    This study investigated the kinetics of organic matter (OM) removal and humification during composting of sewage sludge and lignocellulosic waste (wood chips, wheat straw, leaves) in an aerated bioreactor. Both OM degradation and humification (humic substances, HS, and humic acids, HA formation) proceeded according to 1. order kinetics. The rate constant of OM degradation was 0.196d(-1), and the rate of OM degradation was 39.4mg/gOMd. The kinetic constants of HS and HA formation were 0.044d(-1) and 0.045d(-1), whereas the rates of HS and HA formation were 3.46mgC/gOMd and 3.24mgC/gOMd, respectively. The concentration profiles of HS and HA indicated that humification occurred most intensively during the first 3months of composting. The high content of HS (182mgC/gOM) in the final product indicated that the compost could be used in soil remediation as a source of HS for treating soils highly contaminated with heavy metals. PMID:26783099

  17. Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades.

    PubMed

    Pitt, Kylie A; Connolly, Rod M; Maxwell, Paul

    2009-04-01

    Stable nitrogen isotopes were used to assess the effects of wastewater treatment plant (WWTP) upgrades on the utilisation of sewage-N by estuarine biota in Moreton Bay, Australia. We measured delta(15)N of filamentous algae, mangrove leaves and shore crabs at the Brisbane and Logan Rivers before and after scheduled WWTP upgrades, and at two reference rivers where WWTPs had been upgraded >4 years previously. The total N discharged into Brisbane River decreased by >80% after the upgrades had occurred, but N loads remained similar at Logan River despite the upgrade. In Brisbane River, delta(15)N values of algae and crabs decreased and were comparable to the reference rivers within 1-2 years but no changes occurred at Logan River. The delta(15)N of mangrove leaves remained elevated in all rivers, indicating that sewage-N remained a major source to mangroves either from residual WWTP discharges or from N accumulated in the sediments over many years. PMID:19138774

  18. Rearranging the domain order of a diabody-based IgG-like bispecific antibody enhances its antitumor activity and improves its degradation resistance and pharmacokinetics.

    PubMed

    Asano, Ryutaro; Shimomura, Ippei; Konno, Shota; Ito, Akiko; Masakari, Yosuke; Orimo, Ryota; Taki, Shintaro; Arai, Kyoko; Ogata, Hiromi; Okada, Mai; Furumoto, Shozo; Onitsuka, Masayoshi; Omasa, Takeshi; Hayashi, Hiroki; Katayose, Yu; Unno, Michiaki; Kudo, Toshio; Umetsu, Mitsuo; Kumagai, Izumi

    2014-01-01

    One approach to creating more beneficial therapeutic antibodies is to develop bispecific antibodies (bsAbs), particularly IgG-like formats with tetravalency, which may provide several advantages such as multivalent binding to each target antigen. Although the effects of configuration and antibody-fragment type on the function of IgG-like bsAbs have been studied, there have been only a few detailed studies of the influence of the variable fragment domain order. Here, we prepared four types of hEx3-scDb-Fc, IgG-like bsAbs, built from a single-chain hEx3-Db (humanized bispecific diabody [bsDb] that targets epidermal growth factor receptor and CD3), to investigate the influence of domain order and fusion manner on the function of a bsDb with an Fc fusion format. Higher cytotoxicities were observed with hEx3-scDb-Fcs with a variable light domain (VL)-variable heavy domain (VH) order (hEx3-scDb-Fc-LHs) compared with a VH-VL order, indicating that differences in the Fc fusion manner do not affect bsDb activity. In addition, flow cytometry suggested that the higher cytotoxicities of hEx3-scDb-Fc-LH may be attributable to structural superiority in cross-linking. Interestingly, enhanced degradation resistance and prolonged in vivo half-life were also observed with hEx3-scDb-Fc-LH. hEx3-scDb-Fc-LH and its IgG2 variant exhibited intense in vivo antitumor effects, suggesting that Fc-mediated effector functions are dispensable for effective anti-tumor activities, which may cause fewer side effects. Our results show that merely rearranging the domain order of IgG-like bsAbs can enhance not only their antitumor activity, but also their degradation resistance and in vivo half-life, and that hEx3-scDb-Fc-LHs are potent candidates for next-generation therapeutic antibodies. PMID:25517309

  19. Rearranging the domain order of a diabody-based IgG-like bispecific antibody enhances its antitumor activity and improves its degradation resistance and pharmacokinetics

    PubMed Central

    Asano, Ryutaro; Shimomura, Ippei; Konno, Shota; Ito, Akiko; Masakari, Yosuke; Orimo, Ryota; Taki, Shintaro; Arai, Kyoko; Ogata, Hiromi; Okada, Mai; Furumoto, Shozo; Onitsuka, Masayoshi; Omasa, Takeshi; Hayashi, Hiroki; Katayose, Yu; Unno, Michiaki; Kudo, Toshio; Umetsu, Mitsuo; Kumagai, Izumi

    2014-01-01

    One approach to creating more beneficial therapeutic antibodies is to develop bispecific antibodies (bsAbs), particularly IgG-like formats with tetravalency, which may provide several advantages such as multivalent binding to each target antigen. Although the effects of configuration and antibody-fragment type on the function of IgG-like bsAbs have been studied, there have been only a few detailed studies of the influence of the variable fragment domain order. Here, we prepared four types of hEx3-scDb-Fc, IgG-like bsAbs, built from a single-chain hEx3-Db (humanized bispecific diabody [bsDb] that targets epidermal growth factor receptor and CD3), to investigate the influence of domain order and fusion manner on the function of a bsDb with an Fc fusion format. Higher cytotoxicities were observed with hEx3-scDb-Fcs with a variable light domain (VL)–variable heavy domain (VH) order (hEx3-scDb-Fc-LHs) compared with a VH–VL order, indicating that differences in the Fc fusion manner do not affect bsDb activity. In addition, flow cytometry suggested that the higher cytotoxicities of hEx3-scDb-Fc-LH may be attributable to structural superiority in cross-linking. Interestingly, enhanced degradation resistance and prolonged in vivo half-life were also observed with hEx3-scDb-Fc-LH. hEx3-scDb-Fc-LH and its IgG2 variant exhibited intense in vivo antitumor effects, suggesting that Fc-mediated effector functions are dispensable for effective anti-tumor activities, which may cause fewer side effects. Our results show that merely rearranging the domain order of IgG-like bsAbs can enhance not only their antitumor activity, but also their degradation resistance and in vivo half-life, and that hEx3-scDb-Fc-LHs are potent candidates for next-generation therapeutic antibodies. PMID:25517309

  20. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants.

    PubMed Central

    Steber, J; Wierich, P

    1985-01-01

    The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the 14C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of 14C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated 14C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. Most of the identified low-molecular-weight 14C-labeled acids suggest an ultimate degradation of EO monomers by the oxidative dicarbonic acid cycle or the glycerate pathway or both. In addition, the finding of considerable amounts of oxalic and formic acids allow consideration of an additional mineralization route via glyoxylic, oxalic, and formic acids. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions. PMID:3994363

  1. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  2. Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent.

    PubMed

    Markman, Shai; Guschina, Irina A; Barnsley, Sara; Buchanan, Katherine L; Pascoe, David; Müller, Carsten T

    2007-11-01

    Endocrine disrupting chemicals (EDCs) can alter endocrine function in exposed animals. Such critical effects, combined with the ubiquity of EDCs in sewage effluent and potentially in tapwater, have led to concerns that they could be major physiological disruptors for wildlife and more controversially for humans. Although sewage effluent is known to be a rich source of EDCs, there is as yet no evidence for EDC uptake by invertebrates that live within the sewage treatment system. Here, we describe the use of an extraction method and GC-MS for the first time to determine levels of EDCs (e.g., dibutylphthalate, dioctylphthalate, bisphenol-A and 17beta-estradiol) in tissue samples from earthworms (Eisenia fetida) living in sewage percolating filter beds and garden soil. To the best of our knowledge, this is the first such use of these techniques to determine EDCs in tissue samples in any organism. We found significantly higher concentrations of these chemicals in the animals from sewage percolating filter beds. Our data suggest that earthworms can be used as bioindicators for EDCs in these substrates and that the animals accumulate these compounds to levels well above those reported for waste water. The potential transfer into the terrestrial food chain and effects on wildlife are discussed. PMID:17675209

  3. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemys?aw

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. PMID:25840737

  4. [Analysis on relationship between regional economic development and sewage disposal].

    PubMed

    Wang, La-Chun; Huo, Yu; Zhu, Ji-Ye; Li, Sheng-Feng; Gao, Chao

    2008-03-01

    Based on the relationship between district GDP and sewage disposal, the water environment protection effect in 3 cities, Suzhou, Nanjing and Xuzhou, with different economic development degrees in Jiangsu Province was dynamically analyzed. The economy in Suzhou was well developed, where the foreign capital proportion was in a high level. Its GDP per capita was 53,800 yuan in 2005 and the sewage disposal grew linearly when its GDP increased in the study time period. Nanjing was less developed than Suzhou, and the state-owned enterprises in large and medium sizes were in a high percentage. Its GDP per capita was 37,100 yuan in 2005, while the sewage disposal reduced linearly when its GDP increased in the study time period. The economy in Xuzhou is under-developed, where coal-based heavy industry was the most important one. The GDP per capita in this city was 13,200 yuan in 2005 and the sewage disposal fluctuated when its GDP increased in the study time period. According to the relationship between economic development and sewage disposal in different cities, we suggested that the water environment protection in Suzhou should focus on the control of both water pollutant total emission and emission concentration, the major work in Nanjing should focus on adjusting the industrial structure and meanwhile controlling the total emission of water pollutants, while in Xuzhou the water pollutant emission concentration should be firstly controlled. PMID:18649513

  5. Factors impacting on pharmaceutical leaching following sewage application to land.

    PubMed

    Gielen, Gerty J H P; van den Heuvel, Michael R; Clinton, Peter W; Greenfield, Laurie G

    2009-01-01

    Sewage effluent application to land is a treatment technology that requires appropriate consideration of various design factors. Soil type, level of sewage pre-treatment and irrigation rate were assessed for their influence on the success of soil treatment in removing pharmaceuticals remaining after conventional sewage treatment. A large scale experimental site was built to assess treatment performance in a realistic environment. Of the factors investigated, soil type had the biggest impact on treatment performance. In particular, carbamazepine was very efficiently removed (>99%) when irrigated onto a volcanic sandy loam soil. This was in contrast to irrigation onto a sandy soil where no carbamazepine removal occurred after irrigation. Differences were likely caused by the presence of allophane in the volcanic soil which is able to accumulate a high level of organic matter. Carbamazepine apparent adsorption distribution coefficients (K(d)) for both soils when irrigated with treated sewage effluent were determined as 25 L kg(-1) for the volcanic soil and 0.08 L kg(-1) for the sandy soil. Overall, a volcanic soil was reasonably efficient in removing carbamazepine while soil type was not a major factor for caffeine removal. Removal of caffeine, however, was more efficient when a partially treated rather than fully treated effluent was applied. Based on the investigated pharmaceuticals and given an appropriate design, effluent irrigation onto land, in conjunction with conventional sewage treatment may be considered a beneficial treatment for pharmaceutical removal. PMID:18996568

  6. Pharmaceuticals as indictors of sewage-influenced groundwater

    NASA Astrophysics Data System (ADS)

    Mller, Beate; Scheytt, Traugott; Asbrand, Martin; de Casas, Andrea Mross

    2012-09-01

    A set of human pharmaceuticals enables identification of groundwater that is influenced by sewage and provides information on the time of recharge. As the consumption rates of the investigated pharmaceuticals have changed over time, so too has the composition of the sewage. At the study area, south of Berlin (Germany), irrigation was performed as a method of wastewater clean-up at sewage irrigation farms until the early 1990s. Today, treated wastewater is discharged into the surface-water-stream Nuthegraben. Groundwater and surface-water samples were analyzed for the pharmaceutical substances clofibric acid, bezafibrate, diclofenac, carbamazepine and primidone, the main ions and organic carbon. The pharmaceutical substances were detected at concentrations up to microgram-per-liter level in groundwater and surface-water samples from the Nuthegraben Lowland area and from the former irrigation farms. Concentrations detected in groundwater are generally much lower than in surface water and there is significant variation in the distribution of pharmaceutical concentrations in groundwater. Groundwater influenced by the irrigation of sewage water shows higher primidone and clofibric-acid concentrations. Groundwater influenced by recent discharge of treated sewage water into the surface water shows high carbamazepine concentrations while concentrations of primidone and clofibric acid are low.

  7. Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (?-glucosidase) through immobilization using agar-agar gel as a support.

    PubMed

    Nawaz, Muhammad Asif; Karim, Asad; Aman, Afsheen; Marchetti, Roberta; Qader, Shah Ali Ul; Molinaro, Antonio

    2015-04-01

    Maltose degrading enzyme was immobilized within agar-agar support via entrapment method due to its industrial utilization. The maximum immobilization efficiency (82.77%) was achieved using 4.0% agar-agar keeping the diameter of bead up to 3.0 mm. The matrix entrapment showed maximum catalytic activity at pH 7.0 and temperature 65 C. Substrate saturation kinetics showed that the K m of immobilized enzyme increased from 1.717 to 2.117 mM ml(-1) where as Vmax decreased from 8,411 to 7,450 U ml(-1 )min(-1) as compared to free enzyme. The immobilization significantly increased the stability of maltase against various temperatures and immobilized maltase retain 100% of its original activity after 2 h at 50 C, whereas the free maltase only showed 60% residual activity under same condition. The reusability of entrapped maltase showed activity up to 12 cycles and retained 50% of activity even after 5th cycle. Storage stability of agar entrapped maltase retain 73% of its initial activity even after 2 months when stored at 30 C while free enzyme showed only 37% activity at same storage conditions. PMID:25326060

  8. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    PubMed

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piau State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome. PMID:26681043

  9. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  10. Possible practical utility of an enzyme cocktail produced by sludge-degrading microbes for methane and hydrogen production from digested sludge.

    PubMed

    Sato, Hayato; Kuribayashi, Kyohei; Fujii, Katsuhiko

    2016-01-25

    Digested sludge (DS) is a major waste product of anaerobic digestion of sewage sludge and is resistant to biodegradation. In this study, we examined suitability of the hydrolases produced by DS-degrading fungal strains (DS-hydrolases) for methane and hydrogen fermentation from DS. Although the strains are mesophilic, DS-hydrolases showed strong chitinase and keratinase activity at ∼50°C. SDS-PAGE analysis suggested that the strains possess a multienzyme system, which allows the hydrolases of some strains to be stable in a wide range of temperatures. Addition of the DS-hydrolases to a vial-scale anaerobic digester enhanced methane and hydrogen production from DS at pH 9.0 and 5.0, respectively. The hydrogen production was also enhanced by the use of methacrylate ester-precipitated DS as a substrate. Further improvement of culture and reaction conditions may make these hydrolases suitable for production of renewable fuels. PMID:26248274

  11. Metal partitioning and toxicity in sewage sludge

    SciTech Connect

    Carlson-Ekvall, C.E.A.; Morrison, G.M.

    1995-12-31

    Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.

  12. Microbial hydrogen production with immobilized sewage sludge.

    PubMed

    Wu, Shu-Yii; Lin, Chi-Num; Chang, Jo-Shu; Lee, Kuo-Shing; Lin, Ping-Jei

    2002-01-01

    Municipal sewage sludge was immobilized to produce hydrogen gas under anaerobic conditions. Cell immobilization was essentially achieved by gel entrapment approaches, which were physically or chemically modified by addition of activated carbon (AC), polyurethane (PU), and acrylic latex plus silicone (ALSC). The performance of hydrogen fermentation with a variety of immobilized-cell systems was assessed to identify the optimal type of immobilized cells for practical uses. With sucrose as the limiting carbon source, hydrogen production was more efficient with the immobilized-cell system than with the suspended-cell system, and in both cases the predominant soluble metabolites were butyric acid and acetic acid. Addition of activated carbon into alginate gel (denoted as CA/AC cells) enhanced the hydrogen production rate (v(H2)) and substrate-based yield (Y((H2)/sucrose)) by 70% and 52%, respectively, over the conventional alginate-immobilized cells. Further supplementation of polyurethane or acrylic latex/silicone increased the mechanical strength and operation stability of the immobilized cells but caused a decrease in the hydrogen production rate. Kinetic studies show that the dependence of specific hydrogen production rates on the concentration of limiting substrate (sucrose) can be described by Michaelis-Menten model with good agreement. The kinetic analysis suggests that CA/AC cells may contain higher concentration of active biocatalysts for hydrogen production, while PU and ALSC cells had better affinity to the substrate. Acclimation of the immobilized cells led to a remarkable enhancement in v(H2) with a 25-fold increase for CA/AC and ca. 10- to 15-fold increases for PU and ALSC cells. However, the ALSC cells were found to have better durability than PU and CA/AC cells as they allowed stable hydrogen production for over 24 repeated runs. PMID:12363341

  13. Current state of sewage treatment in China.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Tian, Huifang

    2014-12-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the aspects of scale, treatment processes, sludge handling, geographical distribution, and discharge standards. By 2012, there were 3340 WWTPs in operation in China with a capacity of 1.42 × 10(8) m(3)/d. The number of medium-scale WWTPs (1-10 × 10(4) m(3)/d) counted for 75% of total WWTPs. On average, the chemical oxygen demand (COD) removal efficiencies of small-scale, medium-scale, large-scale and super-large-scale WWTPs were 81, 85.5, 87.5 and 86.5%, respectively. Generally speaking, the nutrients removal instead of COD removal was of concern. As to the different processes, oxidation ditch, anaerobic-anoxic-oxic (A(2)/O) and sequencing batch reactor (SBR) were the mainstream technologies in China. These technologies had minor difference in terms of overall COD removal efficiency. The sludge treatment in WWTPs was basically "thickening-coagulation-mechanical dehydration" and the major disposal method was sanitary landfill in China. The distributions of WWTPs and their utilization showed significant regional characteristics. The sewage treatment capacity of China concentrated on the coastal areas and middle reaches of Yangtze River, which were the economically developed zones. Besides, most WWTPs enforced the Class 1 or Class 2 discharge standards, but few realized wastewater reuse. Finally, existing problems were discussed, including low removal efficiency of nitrogen and phosphorus, emerging contaminants, low reuse of reclaimed water, poor sludge treatment and disposal, low execution standard of effluent, and emissions of greenhouse gas from WWTPs. Suggestions regarding potential technical and administrative measures were given. PMID:25189479

  14. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  15. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and... Sewage Sludge Incinerators (SSI). The Indiana Department of Environmental Management submitted the...

  16. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.

  17. β-Hydroxy β-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat.

    PubMed

    Noh, Kyung Kyun; Chung, Ki Wung; Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β-hydroxy β-methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  18. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    PubMed Central

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  19. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    NASA Astrophysics Data System (ADS)

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 g?L-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 410 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  20. [Disinfection of sewage waters from rendering plants with peracetic acid].

    PubMed

    Meyer, E

    1976-01-01

    In our experiments, peracetic acid--known in commerce as "Wolfasteril" was tested as a new and efficient disinfectant to disinfect sewage waters from rendering plants. Peracetic acid was used in experiments in concentration of 0.1 to 1.0% for 30 sec. to 60 min. As a comparative agent, 5% chloramine was used. Results obtained in preliminary and main experiments proved that peracetic acid is fully appropriate to disinfect biologically cleaned sewage waters in rendering plants. Sewage waters supplying the main stream has to pass mostly a short section after having left the water clarifier. Consequently, the concentration of 1% peracetic acid acting for 30 sec. is the optimum one. The recommendation of this application norm for peracetic acid in water clarifiers from rendering plants being at least suitable in controlling disasters. PMID:1033220

  1. Neurotoxic effects of solvent exposure on sewage treatment workers

    SciTech Connect

    Kraut, A.; Lilis, R.; Marcus, M.; Valciukas, J.A.; Wolff, M.S.; Landrigan, P.J.

    1988-07-01

    Nineteen Sewage Treatment Workers (STWs) exposed to industrial sewage that contained benzene, toluene, and other organic solvents at a primary sewage treatment plant in New York City (Plant A) were examined for evidence of solvent toxicity. Fourteen (74%) complained of central nervous system (CNS) symptoms consistent with solvent exposure, including lightheadedness, fatigue, increased sleep requirement, and headache. The majority of these symptoms resolved with transfer from the plant. Men working less than 1 yr at Plant A were more likely to complain of two or more CNS symptoms than men who were working there longer than 1 yr (p = .055). Objective abnormalities in neurobehavioral testing were found in all 4 men working longer than 9 yr at this plant, but in only 5 of 15 employed there for a shorter period (p = .03). These results are consistent with the known effects of solvent exposure. Occupational health personnel must be aware that STWs can be exposed to solvents and other industrial wastes.

  2. Absence of asbestos in municipal sewage sludge ashes

    SciTech Connect

    Patel-Mandlik, K.J.; Manos, C.G. ); Lisk, D.J. )

    1988-06-01

    In earlier studies, asbestos was found in sewage sludges in several cities in the United States using x-ray diffraction, high power light optical microscopy, polarized light microscopy or electron microscopy. In a number of cities in the United States, sewage sludge is incinerated at temperatures up to 1,000{degree}C. Temperatures of 550{degree}C or higher dehydroxylate the asbestos lattice resulting in alteration or even destruction of the mineral. Since refractive index and other key parameters used to identify asbestos minerals change above 550{degree}C, it was of interest to analyze for the presence of asbestos in typically produced municipal sludge ashes. In the work reported here, sewage sludge ashes from 10 American cities were obtained and analyzed for the presence of asbestos.

  3. Impacts on groundwater due to land application of sewage sludge

    SciTech Connect

    Higgins, A.J.

    1984-06-01

    The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

  4. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.

    PubMed

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-02-29

    The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost. PMID:22230755

  5. Behavior of PAHs from sewage sludge incinerators in Korea.

    PubMed

    Park, Jung Min; Lee, Sang Bo; Kim, Jin Pil; Kim, Min Jung; Kwon, Oh Sang; Jung, Dong Il

    2009-02-01

    Although production of sewage sludge increases every year, its proper treatment has only been recently raised as a new issue, as current landfill and ocean dumping arrangements are expected to become increasingly difficult to manage in the future. The Korean Ministry of Environment plans to diversify its processing facilities and expand its processing systems by 2011, with the purpose of processing all sludge produced in Korea. According to this plan, incineration (including incineration of municipal wastes) will process 30% of the entire sewage sludge throughout the country in 2011. This study reviews the characteristics of PAH, which is one of the organic substances found in sewage sludge during the incinerating process. The total amount of PAH produced from sewage sludge incineration was found to be 6.103 mg/kg on average, and investigation performed on 16 PAHs of inlets and outlets of the air control devices at five full-scale incineration facilities showed that concentrations of the PAHs on the inlet and on the outlet ranged from 3.926 to 925.748 microg/m(3) and from 1.153 to 189.449 microg/m(3), respectively. In the case of the incineration facility fed with municipal waste (95%) and sewage sludge (5%), the total of the PAH emissions concentration was higher than that found at the incineration facilities used exclusively to treat sewage. The combustion of waste vinyl and plastics contained in municipal waste fed into the facility might contribute to the high levels of PAHs in the stack gas. However more investigation is needed on the production mechanism of PAHs at different operating conditions of the incineration facilities, such as the types of waste, and other relevant factors. PMID:18951779

  6. Virus movement in soil columns flooded with secondary sewage effluent.

    PubMed Central

    Lance, J C; Gerba, C P; Melnick, J L

    1976-01-01

    Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles. PMID:185960

  7. Degradation of chlorophenols by a defined mixed microbial community.

    PubMed Central

    Schmidt, E; Hellwig, M; Knackmuss, H J

    1983-01-01

    Synthetic sewage containing phenol, acetone, and alkanols plus 4-chlorophenol or a mixture of isomeric chlorophenols is completely degraded by a defined mixed culture with Pseudomonas sp. strain B13 as a chlorocatechol-dissimilating member of the community. Total degradation of the organic carbon was indicated by release of stoichiometric amounts of chloride and low content of dissolved organic carbon in the cell-free effluents. During adaptation to high loads of chlorophenols the initial meta-cleavage activity was completely replaced by ortho-cleavage activity of type I and II. In the fully acclimated culture, hybrid strains such as Alcaligenes sp. strain A7-2 were detected, which are more competitive than Pseudomonas sp. strain B13 with respect to chlorophenol degradation. PMID:6651293

  8. 40 CFR 60.4775 - What is a new sewage sludge incineration unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a new sewage sludge... for New Sewage Sludge Incineration Units Applicability and Delegation of Authority 60.4775 What is a new sewage sludge incineration unit? (a) A new SSI unit is a SSI unit that meets either of the...

  9. 40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What sewage sludge incineration units... Standards of Performance for New Sewage Sludge Incineration Units Applicability and Delegation of...

  10. 40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What sewage sludge incineration units... Standards of Performance for New Sewage Sludge Incineration Units Applicability and Delegation of...

  11. 40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What sewage sludge incineration units... Standards of Performance for New Sewage Sludge Incineration Units Applicability and Delegation of...

  12. PROCESS DESIGN MANUAL: LAND APPLICATION OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    EPA Science Inventory

    Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and cost–effective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by sp...

  13. SEWAGE DISPOSAL ON AGRICULTURAL SOILS: CHEMICAL AND MICROBIOLOGICAL IMPLICATIONS. VOLUME I. CHEMICAL IMPLICATIONS

    EPA Science Inventory

    The city of San Angelo, Texas, has used sewage effluent which has undergone primary treatment for irrigation of the same 259-hectare sewage farm since 1958. The impact of 18 years of sewage effluent irrigation on the soil and water quality was studied from 1975 to 1977. The volum...

  14. PROCESS DESIGN MANUAL: LAND APPLICATION OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    EPA Science Inventory

    Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and costeffective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by sp...

  15. Detection and distribution of rotavirus in raw sewage and creeks in Sao Paulo, Brazil

    SciTech Connect

    Mehnert, D.U.; Stewien, K.E. )

    1993-01-01

    Rotavirus invection is an important cause of hospitalization and mortality of infants and children in developing countries, especially where the water supply and sewage disposal systems are in precarious conditions. This report describes the detection, quantitation, and distribution of rotaviruses in domestic sewage and sewage polluted creeks in the city of San Paulo. 22 refs., 1 fig., 3 tabs.

  16. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 226 citations and includes a subject term index and title list.)

  17. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 230 citations and includes a subject term index and title list.)

  18. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 247 citations and includes a subject term index and title list.)

  19. [Environmental effects of combined sewage detention tank in central Shanghai].

    PubMed

    Cheng, Jiang; Lü, Yong-peng; Huang, Xiao-fang; Guo, Sheng

    2009-08-15

    Through measuring the processes of precipitation, discharge and pollutant concentration over 20 times from 2006 to 2008 in Chendulu combined sewerage system (CSS) along Suzhou Creek in central Shanghai, the environmental effects of Chendulu combined sewage detention tank (CSDT), the first running CSDT in China, were studied. The results show that CSDT could improve CSS discharge capacity effectively with promoted interception ratio from 3.87 to 6.90-9.92. The mean annual combined sewer overflow (CSO) reduction and reduction rate are 9.10 x 10(4) m3 and 9.00%, respectively, and those of sanitary waste discharged directly to Suzhou Creek in non-rain-weather are 8.37 x 10(4) m(3) and 100% , respectively. The mean annual pollutants decrease rate of COD, BOD5, SS, NH4+ -N and TP of CSO are 13.76%, 19.69%, 15.29%, 18.24% and 15.10%, respectively, and those CSO pollutants decrease 41.21 t, 12.37 t, 50.10 t, 2.12 t and 0.29 t annually, respectively. The CSDT also could decrease sanitary waste discharged to Suzhou Creek totally, and those decreased pollutants are 20.75 t, 4.87 t, 14.90 t, 4.49 t and 0.30 t annually, respectively. The analysis shows that the CSDT design standard, running models and rainfall characteristics are the important influencing factors to realize the environmental effects of CSDT. PMID:19799280

  20. Disinfection of sewage wastewater and sludge by electron treatment

    NASA Astrophysics Data System (ADS)

    Trump, J. G.; Merrill, E. W.; Wright, K. A.

    The use of machine-accelerated electrons to disinfect sewage waterwaste and sludge is discussed. The method is shown to be practical and energy-efficient for the broad spectrum disinfection of pathogenic organisms in municipal wastewaters and sludge removed from them. Studies of biological, chemical and physical effects are reported. Electron treatment is suggested as an alternative to chlorination of municipal liquid wastes after electron treatment to provide disinfection. Disposal of sewage sludge is recommended as an agricultural resource by subsurface land injection, or as a nutrient for fish populations by widespread ocean dispersal.

  1. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    PubMed

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production. PMID:25174423

  2. UP3005, a Botanical Composition Containing Two Standardized Extracts of Uncaria gambir and Morus alba, Improves Pain Sensitivity and Cartilage Degradations in Monosodium Iodoacetate-Induced Rat OA Disease Model

    PubMed Central

    Yimam, Mesfin; Lee, Young-Chul; Kim, Tae-Woo; Moore, Breanna; Jiao, Ping; Hong, Mei; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Oh, Jin-Sun; Cleveland, Sabrina; Hyun, Eu-Jin; Chu, Min; Jia, Qi

    2015-01-01

    Osteoarthritis (OA) is a multifactorial disease primarily noted by cartilage degradation in association with inflammation that causes significant morbidity, joint pain, stiffness, and limited mobility. Present-day management of OA is inadequate due to the lack of principal therapies proven to be effective in hindering disease progression where symptomatic therapy focused approach masks the actual etiology leading to irreversible damage. Here, we describe the effect of UP3005, a composition containing a proprietary blend of two standardized extracts from the leaf of Uncaria gambir and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate- (MIA-) induced rat OA disease model. Pain sensitivity, micro-CT, histopathology, and glycosaminoglycans (GAGs) level analysis were conducted. Diclofenac at 10?mg/kg was used as a reference compound. UP3005 resulted in almost a complete inhibition in proteoglycans degradation, reductions of 16.6% (week 4), 40.5% (week 5), and 22.0% (week 6) in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, minimal visual subchondral bone damage, and statistically significant increase in bone mineral density when compared to the vehicle control with MIA. Therefore, UP3005 could potentially be considered as an alternative therapy from natural sources for the treatment of OA and/or its associated symptoms. PMID:25802546

  3. Degradation monitoring using probabilistic inference

    NASA Astrophysics Data System (ADS)

    Alpay, Bulent

    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing algorithm using MCMC in particle filtering helps the filter to explore the state space more effectively in the direction of the degradations. We extended this algorithm for degradation detection and isolation to complete the degradation monitoring framework. We successfully tested our algorithms in degradation monitoring of balance of plant of a boiling water reactor.

  4. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  5. Anaerobic degradation of benzoate to methane by a microbial consortium.

    PubMed

    Ferry, J G; Wolfe, R S

    1976-02-01

    A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture; neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation. PMID:1252087

  6. Diversity and antibiotic susceptibility pattern of cultivable anaerobic bacteria from soil and sewage samples of India.

    PubMed

    Sengupta, Nabonita; Alam, Syed Imteyaz; Kumar, Ravi Bhushan; Singh, Lokendra

    2011-01-01

    Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health. PMID:20965279

  7. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    PubMed

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production. PMID:25728344

  8. Inhibitory effect of metal ions on the poly-phosphate release from sewage sludge during thermal treatment.

    PubMed

    Zhang, Ming Yang; Kuba, Takahiro

    2014-01-01

    The purpose of this study was aimed at identifying the influence of metal cations such as Mg2+, Ca2+, Al3+ and Fe3+ on poly-phosphate (poly-P) and total phosphate (T-P) release from sewage sludge collected from wastewater treatment plant during thermal treatment at 70 degrees C for 80 min. With the addition of chelating reagent such as EDTA, release of poly-P and T-P was improved obviously during thermal treatment. Inhibitory effect of metal cations on phosphorus release was apparent by adding metal cations into sludge sample. Most of Ca, Al and Fe inside of cell could be released into the supernatant, but captured in extracellular polymeric substance (EPS); oppositely, large quantity of Mg could be released into the supernatant directly and not concentrated in EPS. Performance of sewage sludge on phosphorus release in summer and winter was different; different precipitation and temperature possibly result in this phenomenon. PMID:24701911

  9. An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain

    NASA Astrophysics Data System (ADS)

    Navarro, Vicente; Garca, Beatriz; Snchez, David; Asensio, Laura

    2011-04-01

    SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.

  10. Chlorophene degradation by combined ultraviolet irradiation and ozonation.

    PubMed

    He, Zhiqiao; Zhang, Angliang; Li, Yu; Song, Shuang; Liu, Zhiwu; Chen, Jianmeng; Xu, Xinhua

    2011-01-01

    Ozonation combined with UV irradiation (UV/O(3)) is an advanced oxidation technique that is very promising for the destruction of organic compounds in aqueous solution. In this study, chlorophene was chosen as a model substrate to investigate the effects of pH, initial substrate concentration, ozone dose, and UV light intensity in degradation experiments. The pseudo-first-order rate constant for total organic carbon (TOC) removal was 2.4 10(-2), 9.8 10(-4), and 6.4 10(-2) min(-1) for O(3), UV, and UV/O(3) treatment, respectively. Clearly, UV-enhanced ozonation leads to a synergetic increase in the overall degradation efficiency. Comparative experiments were performed to investigate the effect of the matrix (distilled water or sewage) on chlorophene removal. The organic compounds in sewage retarded the rate of chlorophene removal by 38%, probably by competitively reacting with the oxidizing agent and screening light. The compound 2-benzoylbenzo-1,4-quinone, benzo-1,4-quinone, hydroquinone and maleic acid were identified as primary intermediates by gas chromatography-mass spectrometry. The concentrations of acetic, formic and oxalic anions were detected by ion chromatography. A possible degradation pathway is proposed on the basis of the reaction products identified. PMID:21104490

  11. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.

    PubMed

    Maletz, Sibylle; Floehr, Tilman; Beier, Silvio; Klmper, Claudia; Brouwer, Abraham; Behnisch, Peter; Higley, Eric; Giesy, John P; Hecker, Markus; Gebhardt, Wilhelm; Linnemann, Volker; Pinnekamp, Johannes; Hollert, Henner

    2013-03-15

    Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX()). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 8.6 ng/L, 0.33 concentration), which was reduced after treatment by MBR (2.3 0.3 ng/L) and ozone (1.2 0.4 ng/L). Results were confirmed by use of ER CALUX() which measured concentrations of estrogen equivalents (EEQs) of 0.2 0.11 ng/L (MBR) and 0.01 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3 and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX() with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects. Overall, treatment of sewage by use of MBR successfully reduced estrogenicity of hospital effluents as well as substances that are able to alter sex steroid production. However, after ozonation, effluents should undergo further investigations regarding the formation of endocrine active metabolites. The results obtained as part of this study demonstrated applicability of in vitro assays for monitoring of endocrine-modulating potency of treated sewage. PMID:23305681

  12. GIS-based optimization for the locations of sewage treatment plants and sewage outfalls - A case study of Nansha District in Guangzhou City, China

    NASA Astrophysics Data System (ADS)

    Zhao, Y. W.; Qin, Y.; Chen, B.; Zhao, X.; Li, Y.; Yin, X. A.; Chen, G. Q.

    2009-04-01

    Based on GIS technology, eco-suitability evaluation method integrating economic, social and ecological factors is employed to optimize the locations of the sewage treatment plants and outfalls in this paper. The ecological indices considering eco-sensitivity areas as key elements of the integrated evaluation system are allotted to the water subsystem, riparian zone subsystem, and land subsystem. A novel integrated eco-suitability evaluation index system encompassing ten criteria and fifteen indices is established to generate the distributed eco-suitability map of the concerned areas and determine the possible locations of sewage treatment plants and sewage outfalls according to the eco-suitability levels. With the case study of Nansha District in Guangzhou City, China, 212 km2 areas of land are found to be suitable for locating the sewage treatment plants, 87 km2 areas of water suitable for sewage release, and 6 km2 area of riparian zone unsuitable for sewage outfalls.

  13. Carbon sequestration and land degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality of soil. This presentation describes (1) C sequestration concepts and rationale, (2) relevant management approaches to avoid land degradation and fo...

  14. Degradation and Improvement of Argiudolls in Centre Santa Fe (Argentina): Changes in Physical and Chemical Soil Properties and in its Productive Capacity Using a sSmulation Model of Crop Growth

    NASA Astrophysics Data System (ADS)

    Pilatti, M. A.; Marano, R.; Felli, O.; Alesso, A.; Carrizo, M. E.; Miretti, M. C.

    2012-04-01

    Traditional tillage without adequate crop rotation and restoration of nutrients had generated degradation of the soils in Santa Fe. For this reason, it is important to find alternative systems to improve them. The A horizon of a typical Argiudoll of the centre of Santa Fe was chosen in 1983 and 2003 to evaluate: (to) physical and chemical properties of the natural soil (SN), (b) level of deterioration or improvement of those properties due to the management system (LC: traditional till during 50 years with the last 15 years of wheat-soya; RAG: crop-grass rotation under no-till with partial reposition of N, P and S), (c) productive capacity (CP) of the SN and the soil changes according to its management (LC and RAG). Soil data were introduced into a model of crop production (FitoSim), using corn as pattern and 30 years of meteorological data, to evaluate the effect of the soil use on the productive capacity. LC and RAG significantly differ from SN. The former have smaller values of CO, Nt, P e, pH, Ca, K, soil bulk density, relative aggregates stability, least limiting water range and crust infiltration. However the indexes are worse in LC. RAG has greater values of P, Nt and particulate N. The mean potential yield was 16200 kg/ha. The index of production capacity of SN was 75%, i.e. the limitations of the soil and rain only allow taking advantage of 75% of the environment potential capacity. In LC that loss reached 72%. The loss of productive capacity of the evaluated management systems was 21 and 69% for RAG and LC, standing out that although RAG is degraded with regard to the SN, however it is a more conservationist management system that LC. Subsidiado por CA+ID 2009 (UNL) 12/C114; SECTEI- Ley23877-09-04; INTA PNECO-093012

  15. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions.

    PubMed

    Armada, Elisabeth; Azcón, Rosario; López-Castillo, Olga M; Calvo-Polanco, Mónica; Ruiz-Lozano, Juan Manuel

    2015-05-01

    Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B. thuringiensis, a consortium of AM fungi or a combination of both microorganisms. Plants were cultivated under well-watered conditions or subjected to drought stress. Several physiological parameters were measured, including among others, plant growth, photosynthetic efficiency, nutrients content, oxidative damage to lipids, accumulation of proline and antioxidant compounds, root hydraulic conductivity and the expression of plant aquaporin genes. Under drought conditions, the inoculation of Bt increased significantly the accumulation of nutrients. The combined inoculation of both microorganisms decreased the oxidative damage to lipids and accumulation of proline induced by drought. Several maize aquaporins able to transport water, CO2 and other compounds were regulated by the microbial inoculants. The impact of these microorganisms on plant drought tolerance was complementary, since Bt increased mainly plant nutrition and AM fungi were more active improving stress tolerance/homeostatic mechanisms, including regulation of plant aquaporins with several putative physiological functions. Thus, the use of autochthonous beneficial microorganisms from a degraded Mediterranean area is useful to protect not only native plants against drought, but also an agronomically important plant such as maize. PMID:25813343

  16. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    NASA Astrophysics Data System (ADS)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect was observed in the case of limestone residue. The presence of metals in SW was the main source (although the composition was under the UE legislation for its use in agricultural purpouses). Cu, Ni, Cr, Fe, Mn, Pb and Zn were detected in leachates from SW and salinity slightly favoured their presence. Cd was not detected in any of the treatments (concentration under 0,01 mg/L). The combination of saline water for irrigation with the compost has to be considered as a source of pollution for surface and ground waters and the main factor controlling the heavy metal pollution is the composition of the sewage sludge compost. Future long time experiments will determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit Assess doi:10.1007/s10661-006-1072-y. Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma doi:10.1016/j.geoderma.2004.01.016. Navarro-Pedreño J, Almendro-Candel MB, Jordán-Vidal MM, Mataix-Solera J, García-Sánchez E (2004) Risk areas in the application of sewage sludge on degraded soils in Alicante province (Spain). In: Martin JF, Brebbia CA, Godfrey AE, Díaz de Terán JR (eds) Geo-Environment. WIT Press, Southampton, pp 293-302.

  17. Challenge of urban sewage disposal in a karst region: Mérida, Yucátan, Mexico

    NASA Astrophysics Data System (ADS)

    Perry, E. C.; Villasuso, M.

    2013-05-01

    Four hydrogeologic factors influence urban sewage management on the northern Yucátan (Mexico) Peninsula: 1) lack of rivers capable of transporting and/or oxidizing sewage, 2) near-surface flat-lying, porous, permeable limestone and dolomite with shallow layers of variable permeability but without major subsurface aquitards, 3) rapid groundwater transmission, penetration of seawater inland beneath a fresh water lens, and a flat water table only a few meters below land surface and controlled by sea level, 4) near absence of soil cover. Mérida, Yucátan (population approaching one million, approximately the world's 450th most populous city) has no central sewage system. The water table beneath the city is consistently only 7-9 m below land surface, and the 40 m-thick fresh water lens, which is the sole source of municipal, industrial, and agricultural water, directly overlies a marine intrusion of modified seawater composition. The old city has an estimated 130,000 drains feeding untreated household waste directly into the permeable karst aquifer. Numerous storm drains send street runoff directly to the aquifer. In addition, industries, hotels, and some subdivisions have unmonitored injection wells that pump untreated wastewater into the underlying saline intrusion. Some injection wells have flow problems possibly because of low aquifer permeability within the saline intrusion. Deep injection is also problematic because density contrast with saline intrusion water can produce a gravity imbalance, and high sulfate water can react with organic waste to produce H2S. Some city water supply wells are reportedly affected by inflation of the water table beneath the city, by local upconing of saline water, and by nitrate contamination. Paradoxically, Mérida with an abundant, easily contaminated source of fresh water, lacks streams to transport sewage off-site, and thus shares some water supply/sewage treatment problems with cities in arid regions. Recently, compact, efficient systems that provide almost tertiary-level sewage treatment have been developed and installed in various localities worldwide. Fitting the old parts of Mérida with several such systems would be less disruptive than blasting a monolithic sewer network through the city's rocky base, and it would minimize the problem of pumping sewage in an almost completely flat-lying area. Appropriate reuse of water from such local treatment facilities would be more flexible than from a single central system. Furthermore, injecting water into the aquifer after secondary or tertiary treatment would be a huge improvement over pumping of untreated "aguas negras" into the saline intrusion. Finally, there is a renaissance of sorts in sewage treatment technology, and it would be much easier to upgrade a number of individual systems as they became obsolete than to replace a monolithic central system. Safe, effective operation and monitoring of the suggested of sewage system would be challenging. Yet, as more cities join those 500 world-wide that now have populations approaching or exceeding one million, use of streams to export pollution may become infeasible. Perhaps Mérida can become a model to demonstrate that people can safely process and reuse their own wastewater.

  18. Chironomidae From a Sewage Treatment Station of Southern Brazil

    NASA Astrophysics Data System (ADS)

    Signoretti, R. P.; Sonoda, K. C.; Ferraz, E.

    2005-05-01

    As the great number of insects living and reproducing at a municipal sewage treatment station located in Piracicaba City and the fear about how dangerous it could be for human healthy, a study was conduct to identify the taxa presented there and to analyze their community structure using stable isotopes. The Chironomidae identification was performed on specific level. The sewage treatment station is a man-made wetland system, situated 30m nearby the Piracicaba River. It treats the sewage from an urban area with 3000 inhabitants. The sewage discharge varies from 133 to 186L/s/ha. The samples were taken on the ending of the rainy season with a D-frame net. The material was washed (210mm mesh size), sorted and preserved in 70% alcohol. Chironomidae had a low participation in the community, with 14.9% of the specimens. Goeldichironomus serratus (47.8% from total Chironomidae), G. holoprasinus (43.5%) and Chironomus decorus (8.7%) were identified. Those species are worldwide recognized as pollution-resistant, used as indicators of environmental water quality. The wetland studied showed low dissolved oxygen (1.5mg/L) on the sampling period and the presence of those Chironomidae species should be expected. The low diversity and high dominance are common features for those impacted environments.

  19. SOIL FILTRATION OF SEWAGE EFFLUENT OF A RURAL AREA

    EPA Science Inventory

    The treatment performance of irrigation using primary lagoon treated municipal sewage is compared to normal stream or ditch water irrigation when applied to mountain meadows and crops in a high altitude climate during summer months. The two irrigation waters are applied at differ...

  20. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    The increase in resistance rates to trimehtoprim-sulfamethoxazole (TMP/SMX) in isolates of Escherichia coli has become a matter of increasing concern. This has been particularly true in reference to community acquired urinary tract infections (UTI). This study utilized sewage i...

  1. Concentration of viruses from sewage by adsorption on millipore membranes.

    PubMed

    Wallis, C; Melnick, J L

    1967-01-01

    The authors describe a relatively simple membrane-adsorption method for the efficient concentration of viruses from sewage. Sewage, first freed of bacteria by filtration through membranes under conditions that permit virus to pass freely, is then treated with anion resins to remove organic components that adsorb to Millipore membranes and prevent virus adsorption. The salt concentration of the resin filtrates is increased with MgCl(2) to enhance virus adsorption to membranes. The sewage is next adsorbed to a Millipore membrane, from which virus is readily recovered by homogenization in small fluid volumes.The method was tested in Houston, Texas, for 7 months of 1966, during which period 2795 isolates were made from 10 concentrates of 1-US-gallon (3.78-litre) samples and only 4 from unconcentrated sewage. The isolates included types 2 and 3 poliovirus, 9 echovirus types and 2 coxsackieviruses.Examination of these type 2 poliovirus strains isolated over a 4-month period showed that 13 of 19 had d(+) markers (although none was T(+)), indicating either that the vaccine strain had reverted in the d marker, or that wild strains were circulating in the population in spite of the absence of clinical disease. PMID:5299748

  2. Biological Aspects of Metal Waste Reclamation With Sewage Sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smelter waste deposits pose an environmental threat worldwide. Sewage sludges are potentialy useful in reclamation of such sites. Biological aspects of revegetation of Zn and Pb smelter wastelands are discussed in a paper. The goal of the studies was to asses to what extent sludge treatment would...

  3. Parasitic hazard with sewage sludge applied to land.

    PubMed Central

    Barbier, D; Perrine, D; Duhamel, C; Doublet, R; Georges, P

    1990-01-01

    A modification of the FAUST technique allowed a highly regular recovery of Taenia saginata eggs from sewage sludge, as well as their quantification. Despite the low viability (8%) noted, the viable T. saginata egg level remains high (20.10(6)/ha) and offers a serious risk for cattle even after a 3-week "no-grazing" period. PMID:2339893

  4. Application of radiation technology to sewage sludge processing: a review.

    PubMed

    Wang, Jianlong; Wang, Jiazhuo

    2007-05-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of sewage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed. PMID:17293039

  5. Acoustic tracking of ocean-dumped sewage sludge.

    PubMed

    Proni, J R; Newman, F C; Sellers, R L; Parker, C

    1976-09-10

    With a modified 200-kilohertz acoustic echo sounder, it has been possible to detect and map sewage dumped into the ocean over several hours. The three-dimensional distribution of suspended material and its rate of diffusion are indicated after digital processing of the data. PMID:17735703

  6. PRELIMINARY RISK ASSESSMENT FOR PATHOGENS IN LANDFILLED MUNICIPAL SEWAGE SLUDGE

    EPA Science Inventory

    A methodology and accompanying model, SLDGFILL (sludge monofill), have been developed to assess the risk to human health posed by parasites, bacteria and viruses in municipal sewage sludge disposed of in sludge-only landfills (monofills). he following information is required for ...

  7. EVALUATION OF THE MUTAGENICITY OF MUNICIPAL SEWAGE SLUDGE

    EPA Science Inventory

    Samples of five municipal sewage sludges from Illinois cities have been subjected to a multiorganism testing program to determine the presence or absence of mutagenic activity. Chicago sludge has been the most extensively tested using the Salmonella/microsomal activation assay, t...

  8. COSTS OF AIR POLLUTION ABATEMENT SYSTEMS FOR SEWAGE SLUDGE INCINERATORS

    EPA Science Inventory

    Capital and annual costs were calculated for applying six different air pollution control systems to municipal sewage sludge incinerators that were using multiple-hearth furnaces. The systems involved three principal types of air pollution equipment-wet scrubbers, fabric filters,...

  9. DIRECT THERMOCHEMICAL CONVERSION OF SEWAGE SLUDGE TO FUEL OIL

    EPA Science Inventory

    A disposal method for primary sewage sludge and industrial sludges which generates boiler fuel as a product and is energy self sufficient or energy-generating is described. The method involves direct liquefaction in a mild aqueous alkali above 250 degs. C and was demonstrated for...

  10. SEWAGE SLUDGE ENTRENCHMENT SYSTEM FOR USE BY SMALL MUNICIPALITIES

    EPA Science Inventory

    A method of disposing of dewatered sewage sludge by entrenching it into soil was developed for small communities. Readily available and relatively inexpensive equipment was used. Included were a tractor equipped with a loader and backhoe, and dump truck or concrete mixer truck. A...

  11. Viable Blastocystis Cysts in Scottish and Malaysian Sewage Samples

    PubMed Central

    Suresh, K.; Smith, H. V.; Tan, T. C.

    2005-01-01

    Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis. PMID:16151162

  12. PRODUCTION OF NON-FOOD-CHAIN CROPS WITH SEWAGE SLUDGE

    EPA Science Inventory

    Feasibility and market potential were determined for non-food-chain crops cultivated using sewage sludge. Non-food-chain crops that are currently being sold on the open market or that have a good potential for marketability were selected. From a list of 20 crops, 3 were selected ...

  13. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-06-17

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

  14. RESTORATION OF FAILING ON-LOT SEWAGE DISPOSAL AREAS

    EPA Science Inventory

    The objective of this project was to evaluate two rehabilitative techniques-water conservation and absorption bed resting--for restoration of failing on-site sewage disposal areas. Eleven homes with failing absorption areas were characterized and baseline water flow and septic ta...

  15. PATHOGEN RISKS FROM APPLYING SEWAGE SLUDGE TO LAND

    EPA Science Inventory

    Congress banned ocean dumping of municipal wastes in the late 1980s. In its place, EPA developed guidance (40 CFR Part 503) for land application of processed sewage sludge (biosolids), mainly for agricultural purposes (1). Public health and environmental concerns with processed...

  16. 21 CFR 211.50 - Sewage and refuse.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sewage and refuse. 211.50 Section 211.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities 211.50...

  17. 21 CFR 211.50 - Sewage and refuse.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sewage and refuse. 211.50 Section 211.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities 211.50...

  18. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  19. Treatment efficacy of algae-based sewage treatment plants.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2013-09-01

    Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates. PMID:23404546

  20. SEWAGE SLUDGE INCINERATOR FUEL REDUCTION AT NASHVILLE, TENNESSEE

    EPA Science Inventory

    This is a report on the sewage sludge incineration fuel reduction program at the Nashville-Davidson County Metropolitan Government wastewater treatment plant in Nashville, Tennessee. Fuel usage was reduced over 40 percent by reprogramming the methods used for operating the incine...

  1. Land Application of Sewage Effluents and Sludges: Selected Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    This report contains 568 selected abstracts concerned with the land application of sewage effluents and sludges. The abstracts are arranged in chronological groupings of ten-year periods from the l940's to the mid-l970's. The report also includes an author index and a subject matter index to facilitate reference to specific abstracts or narrower

  2. USE OF SEWAGE SLUDGE ON AGRICULTURAL AND DISTURBED LANDS

    EPA Science Inventory

    Results of 8 field studies of long-term use of digested sewage on agricultural and disturbed lands are presented. The studies included: (1) response of corn grown on 3 soil types previously amended with annual sludge applications; (2) response of corn grown annually on Blount sil...

  3. Isolation of Candida albicans from freshwater and sewage.

    PubMed Central

    Cook, W L; Schlitzer, R L

    1981-01-01

    The isolation and identification of Candida albicans from polluted aquatic environments were facilitated by the inclusion of a selective medium and a differential screening medium to detect the reduction of 2,3,5-triphenyltetrazolium chloride. C. albicans occurred commonly in low numbers in sewage influents, rivers, and streams. PMID:7013713

  4. HELMINTH AND HEAVY METALS TRANSMISSION FROM ANAEROBICALLY DIGESTED SEWAGE SLUDGE

    EPA Science Inventory

    This report discusses a study designed to determine the practical survival and transmission of the ova of the nematode worm Ascaris sp. through a modern sewage and sludge treatment process. Four large experiments and three smaller ones involving 178 specific pathogen free (SPF) p...

  5. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS, SECTIONS, AND DETAILS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  6. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FLOOR PLANS AND SECTIONS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  7. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  8. Determination of pesticide residues in sewage sludge: a review.

    PubMed

    Tadeo, Jos L; Snchez-Brunete, Consuelo; Albero, Beatriz; Garca-Valcrcel, Ana I

    2010-01-01

    Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed. PMID:21313796

  9. IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE

    EPA Science Inventory

    Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable
    levels of dozens of compounds resulting from human activities. Recent concern over use and
    disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...

  10. FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE

    EPA Science Inventory

    Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

  11. Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement.

    PubMed

    Ho, Alvin Y T; Xu, Jie; Yin, Kedong; Yuan, Xiangcheng; He, Lei; Jiang, Yuelu; Lee, Joseph H W; Anderson, Donald M; Harrison, Paul J

    2008-01-01

    This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters. PMID:18514234

  12. Evaluation of composted sewage sludge as nutritional source for horticultural soils.

    PubMed

    Casado-Vela, J; Sells, S; Navarro, J; Bustamante, M A; Mataix, J; Guerrero, C; Gomez, I

    2006-01-01

    Water deficit and soil degradation have become some of the major problems for crop production in semi-arid regions, as it is the South East of Spain. As a matter of fact, considerable productivity loss and risk of erosion have to be taken into account in these areas, especially those with an horticultural use (Davis, 1989). Utilization of sewage sludge in agriculture. Agricultural Progress 64, 72-80]. Horticultural soils are highly vulnerable and prone to erosion, as vegetables are generally fast-growing species under intensive exploitation regimes. High-rate chemical inputs contribute to horticultural soil degradation and have a dramatic effect on soil microbial population and nutrient balance whilst, at the same time, have a counter-effect on price competitiveness of the vegetables to be commercialized. In this paper we monitored variations in physical, chemical and biological properties of a cauliflower plot where four increasing quantities of compost were applied. We carried out a three-stage sampling schedule in order to check the effect of compost applications doses. We conclude that a 2 kg compost/m2 application had a positive effect on physical and biological properties of the soil and provides a supply of nutrients to grow cauliflowers on its surface under intensive exploitation regimes without loss in biomass yield. PMID:16198101

  13. Lachnospiraceae and Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an Urban Harbor?

    PubMed Central

    Newton, Ryan J.; VandeWalle, Jessica L.; Borchardt, Mark A.; Gorelick, Marc H.; McLellan, Sandra L.

    2011-01-01

    The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters. PMID:21803887

  14. Microbial Transformation of Nitroaromatic Compounds in Sewage Effluent

    PubMed Central

    Hallas, Laurence E.; Alexander, Martin

    1983-01-01

    The transformation of mono- and dinitroaromatic compounds was measured in sewage effluent maintained under aerobic or anaerobic conditions. Most of the nitrobenzene, 3- and 4-nitrobenzoic acids, and 3- and 4-nitrotoluenes and much of the 1,2- and 1,3-dinitrobenzenes disappeared both in the presence and absence of oxygen. Under anaerobiosis, 2,6-dinitrotoluene and 3,5-dinitrobenzoic acid disappeared slowly, but no loss was evident in 28 days in aerated sewage. Aromatic amines did not accumulate during the aerobic decomposition of the mononitro compounds. They did appear in nonsterile, but not in sterile, sewage incubated aerobically with the dinitro compounds and anaerobically with all the chemicals. Analysis by gas chromatography and combined gas chromatography-mass spectrometry showed that aniline was formed from nitrobenzene, toluidine was formed from 3- and 4-nitrotoluenes, and aminobenzoic acid was formed from 3- and 4-nitrobenzoic acids under anaerobiosis, and that nitroaniline was formed from 1,2- and 1,3-dinitrobenzenes, aminonitrotoluene resulted from 2,6-dinitrotoluene, and aminonitrobenzoic acid was a product of 3,5-dinitrobenzoic acid under both conditions. The isomeric forms of the metabolites were not established. Aniline, 4-toluidine, and 4-aminobenzoic acid added to sewage disappeared from aerated nonsterile, but not from sterile, sewage or sewage in the absence of oxygen. 2-Nitroaniline, 2-amino-3-nitrotoluene, and 2-amino-5-nitrobenzoic acid added to sewage persisted for at least 60 days in aerobic or anaerobic conditions. Gas chromatographic and gas chromatographic-mass spectrometric analyses demonstrated that acetanilide and 2-methylquinoline were formed from aniline, 4-methylformanilide and 4-methylacetanilide were formed from 4-toluidine, 2-methylbenzimidazole was a product of 2-nitroaniline, and unidentified benzimidazoles were formed from 2-amino-3-nitrotoluene in the absence of oxygen, and that 2-nitroacetanilide and 2-methyl-6-nitroacetanilide were formed from 2-nitroaniline and 2-amino-3-nitrotoluene, respectively, in the presence or absence of oxygen. It is suggested that the transformations of widely used nitroaromatic compounds should be further studied because of the persistence and possible toxicity of products of their metabolism. PMID:6859845

  15. Risk of hepatitis A virus infection among sewage workers in Israel.

    PubMed

    Levin, M; Froom, P; Trajber, I; Lahat, N; Askenazi, S; Lerman, Y

    2000-01-01

    Sewage workers are exposed to a wide range of chemicals and biological agents, including the hepatitis A virus. Inasmuch as Israel is an endemic area for hepatitis A, it is unclear if sewage workers are at increased risk for hepatitis A or which factors contribute to such risk. The authors compared seropositivity of hepatitis A in 100 sewage workers with that in 100 blue-collar worker controls. Hepatitis A seropositivity was highly prevalent, but nonsignificant, in both sewage workers and controls (82% and 91%, respectively). In sewage workers, the major risk for serological positivity was age (odds ratio = 4.5, 95% confidence interval = 1.6, 12.4 for every 10 y). The factors associated negatively with seropositivity were years of education and years of seniority. The authors concluded that exposure to sewage is not a risk factor for hepatitis A infection in Israel, and, therefore, sewage workers do not require special attention in this regard. PMID:10735513

  16. State Waste Discharge Permit application, 100-N Sewage Lagoon

    SciTech Connect

    Not Available

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  17. Per- and polyfluoroalkyl substances in selected sewage sludge in Nigeria.

    PubMed

    Sindiku, Omotayo; Orata, Francis; Weber, Roland; Osibanjo, Oladele

    2013-07-01

    Levels of seven major perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs) were analyzed for the first time in sludge from wastewater treatment plants from Nigeria. Measurements were performed using an analytical methodology using solid-phase extraction (SPE) and ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS-MS). The method detection limit and method quantification limit was 3pg/g and 9.5pg/g for both analytes (PFCAs and PFSAs) respectively. Typical recoveries ranged from 50% to 104% for spiked mass labeled internal standards of 1ng (absolute value) to 1g of sample. All sludge samples taken from industrial, domestic and hospital wastewater treatment plants contained measurable levels of PFASs. Levels of the quantified perfluoroalkyl carboxylates and perfluoroalkyl sulfonates concentrations ranged from 10 to 597 and 14 to 540pg/g, respectively. The concentrations were therefore lower compared to sewage sludge samples reported in other regions in the world. Perfluoroalkyl carboxylates with carbon chain having ?8 fluorinated carbons were detected in the analyzed sewage sludge samples at higher levels compared to carboxylates with <8 fluorinated carbon chain. The measured concentrations indicate that no PFAS point source for the 10 investigated sewage treatment plants existed. Furthermore the low levels in the four municipal sewage treatment plants in Lagos is a first indication that even in an African megacity like Lagos the PFASs release from households are low until now. The highest PFOS level was found in a hospital sewage sludge (539.6pg/g) possibly indicating (minor) release from medical equipment where some are known to contain PFOS. The PFASs in waste water sludge from a brewery warrant further investigations. PMID:23648329

  18. Removal of viruses from sewage, effluents, and waters

    PubMed Central

    Berg, Gerald

    1973-01-01

    All sewage and water treatment processes remove or destroy viruses. Some treatment methods are better than others, but none is likely to remove all of the viruses present in sewage or in raw water. Primary settling of solids probably removes a great many of the viruses in sewage because viruses are largely associated with the solids. Long storage of effluents or water is destructive to viruses. Activated sludge is the best biological method for removing viruses from sewage. Trickling filters and oxidation ponds are erratic, the latter probably because of short-circuiting. Coagulation with metal ions is the most effective single treatment method for removing viruses from sewage and from raw waters, according to laboratory studies at least. Lime is the best coagulant for these purposes in the rapidly virucidal high pH range. Polyelectrolytes also can sediment viruses. Rapid filtration through clean sand does not remove viruses, but filtration of coagulated effluents does, probably because the layering floc itself adsorbs viruses. Clays and carbon adsorb viruses to some extent, but the process is not efficient. Ultimately, disinfection should help to produce virus-free waters for drinking and virus-free effluents for discharge into waters with which man may come into contact. Because disinfection is not a simple matter, disinfectants must be selected according to need. Effluents and waters containing solids can probably be disinfected only by heat or by penetrating radiation, waters discharged into streams should not be disinfected with anything that will injure or kill aquatic life (unless the toxic products can be neutralized), and drinking-waters should carry a disinfecting residue. PMID:4607010

  19. Sewage contamination of a densely populated coral 'atoll' (Bermuda).

    PubMed

    Jones, Ross; Parsons, Rachel; Watkinson, Elaine; Kendell, David

    2011-08-01

    Bermuda is a densely populated coral 'atoll' located on a seamount in the mid-Atlantic (Sargasso Sea). There is no national sewerage system and the ?20 10(6)L of sewage generated daily is disposed of via marine outfalls, cess pits/septic tanks underneath houses and through waste disposal (injection) wells. Gastrointestinal (GI) enterococci concentrations were measured in surface seawater samples collected monthly at multiple locations across the island over a 5-year period. According to the EU Bathing Water Directive microbial classification categories, 18 of the sites were in the 'excellent' category, four sites in the 'good', five sites were in the 'sufficient' and three sites in the 'poor' categories. One of the sites in the 'poor' category is beside a popular swimming beach. Between 20-30% of 58 sub tidal sediment samples collected from creeks, coves, bays, harbours and marinas in the Great Sound complex on the western side of Bermuda tested positive for the presence of the human specific bacterial biomarker Bacteroides (using culture-independent PCR-based methods) and for the faecal biomarker coprostanol (5?-cholestan-3-?-ol, which ranged in concentration from <0.05-0.77mgkg(?-?1). There was a significant statistical correlation between these two independent techniques for faecal contamination identification. Overall the microbial water quality and sedimentary biomarker surveys suggest sewage contamination in Bermuda was quite low compared with other published studies; nevertheless, several sewage contamination hotpots exist, and these could be attributed to discharge of raw sewage from house boats, from nearby sewage outfalls and leakage from septic tanks/cess pits. PMID:20978839

  20. Salt Enrichment of Municipal Sewage: New Prevention Approaches in Israel

    PubMed

    Weber; Avnimelech; Juanico

    1996-07-01

    Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the water-softening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCl solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery. PMID:8661617

  1. Removal mechanisms and kinetics of trace tetracycline by two types of activated sludge treating freshwater sewage and saline sewage.

    PubMed

    Li, Bing; Zhang, Tong

    2013-05-01

    Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k? = 2.04 10(-2)?g min(-1) ?g(-1)) and greater adsorption capacity (qe = 38.8 ?g g(-1)) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg(2+) which significantly reduced adsorption distribution coefficient (Kd) from 12,990 260 to 4,690 180 L kg(-1). Species-specific adsorption distribution coefficients followed the order of Kd???>Kd???>Kd???. Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 C) followed the Freundlich adsorption isotherm well. PMID:23054779

  2. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene.

    PubMed

    Zieli?ska, Anna; Oleszczuk, Patryk

    2015-09-01

    The present study investigated the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludges and sewage sludge-derived biochars. The organic carbon normalized distribution coefficient (log K(OC) for C(w) = 0.01 S(w)) for the sewage sludges ranged from 5.62 L kg(-1) to 5.64 L kg(-1) for PHE and from 5.72 L kg(-1) to 5.75 L kg(-1) for PYR. The conversion of sewage sludges into biochar significantly increased their sorption capacity. The value of log K(OC) for the biochars ranged from 5.54 L kg(-1) to 6.23 L kg(-1) for PHE and from 5.95 L kg(-1) to 6.52 L kg(-1) for PYR depending on temperature of pyrolysis. The dominant process was monolayer adsorption in the micropores and/or multilayer surface adsorption (in the mesopores), which was indicated by the significant correlations between log K(OC) and surface properties of biochars. PYR was sorbed better on the tested materials than PHE. PMID:26093256

  3. Evaluation of granular sludge for secondary treatment of saline municipal sewage.

    PubMed

    van den Akker, Ben; Reid, Katherine; Middlemiss, Kyra; Krampe, Joerg

    2015-07-01

    This study examined the impact of chemical oxygen demand (COD) loading and dissolved oxygen (DO) concentration on the stability and performance of granular sludge treating high saline municipal sewage. Under high DO concentrations of 4.0-7.0mg/L, and COD loading rates of 0.98 and 1.55kg/m(3)/d, rapid settling granules were established within four weeks of start-up. Under the highest COD load, a reduction in DO lead to the rapid deterioration of the sludge volume index (SVI) and washout of granules due to prolific growth of the filament Thiothrix Type 021N. Conversely, when operated under a lower COD load, a reduction in DO concentration had no adverse impact on the stability of SVI and granules. A decrease in DO also improved nitrogen removal performance, where simultaneous removal of ammonium (98%), total nitrogen (86%) and BOD5 (98%) were achieved when median DO concentrations were between 1.0 and 1.5mg/L. Phosphate removal was lower than expected, however the level of biological phosphate removal activity observed appeared sufficient to maintain granule stability, even under low DO concentrations. Nitrous oxide emissions were also characterised, which ranged between 2.3 and 6.8% of the total nitrogen load. Our results confirmed that granular sludge is a viable option for the treatment of saline sewage. PMID:25897508

  4. A study of the effectiveness of sewage treatment plants in Delhi region

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep Kumar; Sharma, Divya; Tripathi, Jayant Kumar; Ahirwar, Saroj; Singh, Sudhir Kumar

    2013-03-01

    This is a conventional kind of monitoring study. The objective of the study was to assess and monitor the physicochemical parameters in wastewater at inlet and outlet of sewage treatment plant (STP) and also to study the effectiveness of the STPs. The average concentration of parameters at inlet sampling site pH, electrical conductivity, total dissolved solids, are 7.16, 2,169 ?S/cm, 766.06 mg/l, and major ions bicarbonate, nitrate, sulphate, phosphate, chloride, sodium, potassium, magnesium and calcium values 515.88, 4.28, 82.85, 15.17, 7.01, 23.08, 29.34, 4.14 and 84.31 mg/l. While the average concentration of these parameters, after treatment shows following values 7.47, 2,161.43 (?S/cm), 695.81, 436.52, 1.25, 99.22, 12.69, 6.83, 23.18, 29.07, 4.40 and 82.65 mg/l, respectively. Further, to check the Na % and sodium absorption ratio at inlet and outlet which 27.89 %, 0.67 and 28.19 %, 0.68, respectively, for the suitability of the wastewater. Finally, the agglomerative hierarchical clustering techniques were used to study the similarity in the sewage treatment plants. The result suggests that there is considerable improvement in the wastewater quality after treatment except at the Pappankalan and Coronation Pillar, Timarpur.

  5. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells.

    PubMed

    Karthikeyan, Rengasamy; Selvam, Ammayaippan; Cheng, Ka Yu; Wong, Jonathan Woon-Chung

    2016-01-01

    This study aimed at manipulating ionic conductivity (EC) to harvest the maximum electrical energy from seawater-based domestic wastewater sewage sludge (SWS), unique to only a few cities, through microbial fuel cell (MFC). SWS has never been investigated as a MFC substrate before, and thus the influence of high in-situ EC on the energy recovery was unknown. In this study, the EC of the SWS was reduced through mixing it with fresh water-based domestic wastewater sewage sludge (FWS) or diluted 50% using deionized water while FWS and SWS were individually served as reference treatments. SWS:FWS mix (1:1) exhibited a maximum Coulombic efficiency of 28.6±0.5% at a COD removal of 59±3% while the peak power density was 20-fold higher than FWS. The improved performance was due to the lower ohmic internal resistance (36.8±4.2Ω) and optimal conductivity (12.8±0.2mScm(-1)). Therefore, dilution with FWS could enhance energy recovery from SWS. PMID:26590759

  6. Effects of sewage sludge compost application on crops and cropland in a 3-year field study.

    PubMed

    Wei, Yongjie; Liu, Yangsheng

    2005-06-01

    Composted sewage sludge can be applied to cropland to supply nutrients and improve soil physical properties. However, farmers are much concerned about heavy metal accumulation in cropland and heavy metal availability for crops. A 3-year field study was carried out in this study to investigate the effects of sewage sludge compost (SSC) application on the heavy metal accumulation in cropland soil, rapeseed germination and plumelet development, and yields of barley and Chinese cabbage, compared with conventional mineral fertilization. In addition, the availability of heavy metals for barley and Chinese cabbage was examined. Experimental results showed that SSC application produced little effects on rapeseed germination and stimulated the rape plumelet development at lower application rates (<150 ton ha(-1)). Heavy metals (Cu and Zn) were accumulated in the topsoil (0-20 cm), the barley grains and the cabbage leaves. The yields of barley and Chinese cabbage generated positive response to the SSC application. Addition of mineral N-P-K fertilizers into SSC could further increase the crop yield. Considering the heavy metals accumulation in cropland soil and their availability for crops, SSC should be applied to cropland at a limited application rate (<150 ton ha(-1)). PMID:15857637

  7. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. PMID:25289973

  8. Growth, chemical composition and soil properties of Tipuana speciosa (Benth.) Kuntze seedlings irrigated with sewage effluent

    NASA Astrophysics Data System (ADS)

    Ali, Hayssam M.; Khamis, Mohamed H.; Hassan, Fatma A.

    2012-06-01

    This study was carried out at a greenhouse of Sabahia Horticulture Research Station, Alexandria, Egypt, to study the effect of sewage effluent on the growth and chemical composition of Tipuana speciosa (Benth.) Kuntze seedlings as well as on soil properties for three stages. The irrigation treatments were primary-treated wastewater and secondary-treated wastewater, in addition to tap water as control. Therefore, the treated wastewater was taken from oxidation ponds of New Borg El-Arab City. Results of these study revealed that the primary effluent treatment explored the highest significant values for vegetative growth and biomass, compared to the other treatments. In addition, the higher significant concentration and uptake of chemical composition in different plant parts were obtained from the primary effluent treatment during the three stages of irrigation. It was found that the concentration of heavy metals in either plant or soil was below as compared to the world-recommended levels. These findings suggested that the use of sewage effluent in irrigating T. speciosa seedlings grown in calcareous soil was beneficial for the improvement of soil properties and production of timber trees, and also important for the safe manner of disposal of wastewater.

  9. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio. PMID:15560443

  10. Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R.

    1977-01-01

    The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.

  11. Research on atmospheric pressure plasma processing sewage

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  12. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge.

    PubMed

    Wu, Changzi; Song, Min; Jin, Baosheng; Wu, Yimin; Huang, Yaji

    2013-02-01

    Sewage sludge with the additive corn cob was used as prescusor to prepare sludge-based carbon adsorbents by pyrolysis method. And then, the carbonizated products were activated with potassium hydroxide. The mixing ratio of the corn cob to sewage sludge was investigated. The surface area and pore size distribution, elemental composition, surface chemistry structure and the surface physical morphology were determined and compared. The results demonstrated that the addition of corn cob into the sewage sludge sample could effectively improve the surface area (from 287 to 591 m2/g) and the microporosity (from 5% to 48%) of the carbon based adsorbent, thus enhancing the adsorption behavior. The sulfur dioxide adsorption capacity was measured according to breakthrough test. It was found that the sulfur dioxide adsorption capacity of the adsorbents was obviously enhanced after the addition of the corn cob. It is presumed that not only highly porous adsorbents, but also a high metallic content of these materials are required to achieve good performances. PMID:23596963

  13. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    PubMed

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given. PMID:25028327

  14. Dissolved oxygen in the rehabilitation phase of an estuary: influence of sewage pollution abatement and hydro-climatic factors.

    PubMed

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Intxausti, Lander; de la Sota, Alejandro

    2013-05-15

    Seasonal and inter-annual variations of dissolved oxygen (DO) along the estuary of Bilbao were investigated from 1998 to 2008, during its rehabilitation phase from pollution, to determine whether anthropogenic or natural forcings or both govern DO dynamics and hypoxia. Both seasonal and inter-annual variations of DO were best explained by hydro-climatic factors, sewage pollution and phytoplankton dynamics in the inner, intermediate and outer estuary respectively. The most remarkable intra-decadal improvement in DO occurred in the halocline layer of the intermediate estuary, where the factor that best explained these changes was sewage pollution abatement. However, in the estuarine hotspot for hypoxia, i.e. inner estuary bottom waters, no parallel response to sewage pollution abatement was observed and hydro-climatic factors were the main drivers of inter-annual DO variations. Differences in the degree of stratification and flushing accounted for this differential response of DO to anthropogenic and climate-related forcings at both axial and vertical scales. PMID:23601887

  15. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration.

    PubMed

    Gong, Hui; Jin, Zhengyu; Wang, Xian; Wang, Kaijun

    2015-06-01

    Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration (DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.010(13) m(-1) in the first 70 hr before a jump occurred. Furthermore, the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand (COD) concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation. PMID:26040725

  16. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    PubMed Central

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  17. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water--a case study.

    PubMed

    Yadav, R K; Goyal, B; Sharma, R K; Dubey, S K; Minhas, P S

    2002-12-01

    Long-term irrigation with sewage water adds large amounts of carbon, major and micro- nutrients to the soil. We compared the spatial distribution of N, P, K and other micronutrients and toxic elements in the top 0.6 m of an alluvial soil along with their associated effects on the composition of crops and ground waters after about three decades of irrigation with domestic sewage effluent as a function of distance from the disposal point. Use of sewage for irrigation in various proportions improved the organic matter to 1.24-1.78% and fertility status of soils especially down to a distance of 1 km along the disposal channel. Build up in total N was up to 2908 kg ha(-1), available P (58 kg ha(-1)), total P (2115 kg ha(-1)), available K (305 kg ha(-1)) and total K (4712 kg ha(-1)) in surface 0.15 m soil. Vertical distribution of these parameters also varied, with most accumulations occurring in surface 0.3 m. Traces of NO3-N (up to 2.8 mg l(-1)), Pb (up to 0.35 mg l(-1)) and Mn (up to 0.23 mg l(-1)) could also be observed in well waters near the disposal point thus indicating initiation of ground water contamination. However, the contents of heavy metals in crops sampled from the area were below the permissible critical levels. Though the study confirms that the domestic sewage can effectively increase water resource for irrigation but there is a need for continuous monitoring of the concentrations of potentially toxic elements in soil, plants and ground water. PMID:12503913

  18. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions.

    PubMed

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant's responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 1.03 g/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  19. Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products.

    SciTech Connect

    Palumbo, A V.; Mccarthy, John F.; Amonette, James E.; Fisher, L S.; Wullschleger, Stan D.; Daniels, William L.

    2004-03-01

    Concern for the potential global change consequences of increasing atmospheric CO2 has prompted interest in the development of mechanisms to reduce or stabilize atmospheric CO2 .During the next several decades, a program focused on terrestrial sequestration processes could make a significant contribution to abating CO2 increases.The reclamation of degraded lands, such as mine-spoil sites, highway rights-of-way, and poorly managed lands, represents an opportunity to couple C sequestration with the use of fossil-fuel and energy by-products and other waste material, such as biosolids and organic wastes from human and animal sewage treatment facilities, to improve soil quality. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity.Much is known about the methods to improve these soils, but the cost of implementation is often a limiting factor.However, the additional financial and environmental benefit s of C sequestration may change the economics of land reclamation activities.The addition of energy-related by-products can address the adverse conditions of these degraded lands through a variety of mechanisms, such as enhancing plant growth and capturing of organic C in long-lived soil C pools.This review examines the use of fossil-fuel combustion by-products and organic amendments to enhance C sequestration and identifies the key gaps in information that still must be addressed before these methods can be implemented on an environmentally meaningful scale.

  20. Methanogenic degradation kinetics of phenolic compounds in aquifer-derived microcosms

    USGS Publications Warehouse

    Godsy, E.M.; Goerlitz, D.F.; Grbic-Galic, D.

    1992-01-01

    In this segment of a larger multidisciplinary study of the movement and fate of creosote derived compounds in a sand-and-gravel aquifer, we present evidence that the methanogenic degradation of the major biodegradable phenolic compounds and concomitant microbial growth in batch microcosms derived from contaminated aquifer material can be described using Monod kinetics. Substrate depletion and bacterial growth curves were fitted to the Monod equations using nonlinear regression analysis. The method of Marquardt was used for the determination of parameter values that best fit the experimental data by minimizing the residual sum of squares. The Monod kinetic constants (??max, Ks, Y, and kd) that describe phenol, 2-, 3-, and 4-methylphenol degradation and concomitant microbial growth were determined under conditions that were substantially different from those previously reported for microcosms cultured from sewage sludge. The Ks values obtained in this study are approximately two orders of magnitude lower than values obtained for the anaerobic degradation of phenol in digesting sewage sludge, indicating that the aquifer microorganisms have developed enzyme systems that are adapted to low nutrient conditions. The values for kd are much less than ??max, and can be neglected in the microcosms. The extremely low Y values, approximately 3 orders of magnitude lower than for the sewage sludge derived cultures, and the very low numbers of microorganisms in the aquifer derived microcosms suggest that these organisms use some unique strategies to survive in the subsurface environment. ?? 1992 Kluwer Academic Publishers.

  1. Programming Capital Improvements. Coping With Growth.

    ERIC Educational Resources Information Center

    Meyer, Neil L.

    Capital improvements programming is one financial managment technique for providing public services within the constraints of limited financial resources--a particular problem for communities experiencing rapid population growth. Long-range planning and improvement of public facilities for water supply, sewage treatment, parks and recreation,…

  2. Radiolytic decomposition of multi-class surfactants and their biotransformation products in sewage treatment plant effluents.

    PubMed

    Petrovic, M; Gehringer, P; Eschweiler, H; Barcel, D

    2007-01-01

    Electron beam irradiation (EBI), as one of the most efficient advanced oxidation processes, was applied to the treatment of sewage treatment plant (STP) effluent, with the objective of evaluating the effectiveness of radiolytic decomposition of multi-class surfactants. Target compounds, included several high-volume surfactant groups, such as alkylphenol ethoxylates (APEOs) and their biotransformation products, linear alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkylether sulfates (AES), coconut diethanol amides (CDEA), alcohol ethoxylates (AEO) and polyethylene glycols (PEGs). EBI treatment of STP effluent (total concentration of APEO-derived compounds 265mugl(-1), being APE(2)C the most abundant by-degradation products) resulted in efficient decomposition of all alkylphenolic compounds; elimination of 94% longer ethoxy chain nonylphenol ethoxylates (NPEO, n(EO)=3-15) was obtained when 3kGy were applied. Slightly less efficient decomposition of short ethoxy chain oligomers (NPEO(1) and NPEO(2)) was observed, resulting in disappearance of about 80% of the initially present compounds. LC-MS analysis of treated wastewater suggested that the mechanism of EBI degradation of APEOs is a combination of two parallel pathways: a progressive shortening and oxidation of the ethoxy chain, which resulted in a formation of short ethoxy chain oligomers and APECs and central fission that resulted in formation of PEGs. Decomposition of APECs at 1kGy initially yielded APs, which were subsequently eliminated applying higher radiation doses. With a radiation dose of 2kGy about 95% of NPE(1)C and 97% of NPE(2)C were decomposed. Similar elimination rates were obtained for octylphenolic compounds. Radiolytic treatment applied was also very effective in removing PEGs formed as by-products from APEO degradation, as well as in decomposing other surfactants, such as linear LAS, AS and AES. PMID:16808959

  3. Microbial degradation of hydrocarbons

    SciTech Connect

    Horowitz, A.

    1989-02-21

    A process is described for degrading chloroaliphatic organic compounds which comprises growing a microbe hosting plasmid pEDC, alone or in mixture with other microbes, in the presence of the organic compounds to be degraded.

  4. Responses of the brackish-water amphipod Gammarus duebeni (crustacea) to saline sewage

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Johnson, I.

    Soon after the openiing of the Looe sewage treatment works (Cornwall, southwest England) in 1973, it became colonized by the brackish-water amphipod Gammarus duebeni Liljeborg. The works is unusual as it operates with saline sewage and has a tidally-based pattern of salinity fluctuation (S=13 to 34). Various responses of this unique amphipod population (sewage amphipods) have been compared with G. duebeni from the adjacent Looe River estuary (estuarine amphipods) in an attempt to identify long-term responses to sewage. Sewage amphipods were significantly smaller than their estuarine equivalents; the sewage population was biased significantly to males, whereas the sex ratio of the estuarine population significantly favours females. Compared with the estuary, the consistently lower oxygen levels in the works were reflected in significant differences in metabolism. Sewage amphipods maintained high levels of activity under hypoxia ( e.g. swimming), and the higher survival and lower rates of lactic acid accumulation under anoxia than estuarine individuals. In addition, sewage amphipods recovered more rapidly from anoxia and had a lower critical oxygen tension (p c) than estuarine amphipods. Sewage amphipods are exposed to higher levels of heavy metals associated with the domestic sewage and zinc concentrations are particularly elevated in the works. Exposure to elevated zinc concentrations resulted in similar patterns of body zinc uptake for sewage and estuarine Gammarus at high (30) and low (10) salinity, with zinc regulation apparently occuring to an external threshold of 200 γmgZn·dm -3. No consistent interpopulational differences in the effect ofzinc on zinc uptake or on osmoregulation have been identified. However, sewage amphipods had higher survival at all zinc/salinity combinations compared with estuarine individuals. These indicate that sewage amphipods are adapted to the unusual combination of conditions prevailing in the treatment works and, if reproductive isolation is confirmed, suggest that the speciation process may have commenced.

  5. Characterisation of raw sewage and performance assessment of primary settling tanks at Firle Sewage Treatment Works, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent

    The need for more stringent effluent discharge standards as prescribed by the Environmental Management Act 20:27 to protect the environment can be sustainably achieved with the aid of Activated Sludge Models. Thus, the researchers believe it is time to re-evaluate wastewater characteristics at Firle Sewage Treatment Works (STW) and make use of activated sludge simulators to address pollution challenges caused by the sewage plant. Therefore, this paper characterizes raw sewage and assesses settled and unsettled sewage in order to evaluate the performance of the primary treatment system and the suitability of the settled sewage for treatment by the subsequent Biological Nutrient Removal (BNR) system at Firle STW. Parameters studied included COD, BOD, TKN, TP, NH3, TSS, pH and Alkalinity. Composite samples were collected over a 9-day campaign period (27 June to 6 July 2012), hourly grab samples over 24 hrs and composite samples on 6 March 2012 which were then analysed in the lab in accordance with Standard Methods for the Examination of Water and Wastewater to support the City of Harare 2004-2012 lab historical records. Concentrations for unsettled sewage in mg/L were COD (527 ± 32), BOD (297 ± 83) TKN (19.0 ± 2.0), TP (18 ± 3), NH3 (24.0 ± 12.9), TSS (219 ± 57), while pH was 7.0 ± 0 and Alkalinity 266 ± 36 mg/L. For settled sewage the corresponding values in mg/L were COD (522 ± 15), BOD (324 ± 102), TKN (21.0 ± 3.0), TP (19.0 ± 2.0), NH3 (25.6 ± 11.2), TSS (250 ± 66), while pH was 7.0 ± 0 and Alkalinity 271 ± 17 mg/L. The plant design values for raw sewage are COD (650 mg/L), BOD (200 mg/L), TKN (40 mg/L) and TP (11 mg/L). Thus, COD and nitrogen were within the plant design range while BOD and TP were higher. Treatability of sewage in BNR systems is often inferred from the levels of critical parameters and also the ratios of TKN/COD and COD/TP. The wastewater average settled COD/BOD, COD/TP and TKN/COD ratio were 1.7 ± 0.5, 27.1 ± 3.1 and 0.04 ± 0.01 respectively and corresponding unsettled ratios were 1.8 ± 0.5, 30.77 ± 6.8 and 0.04 ± 0 respectively. Thus, treatability by the 3-stage BNR system appears highly feasible for nitrogen and is likely to be complex for phosphorous. Fractionation of COD, TP and TN is recommended to appropriately advise further steps to optimise the plant operations.

  6. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  7. Isolation and characterization of a pentachlorophenol-degrading bacterium.

    PubMed Central

    Stanlake, G J; Finn, R K

    1982-01-01

    With a new enrichment protocol, pentachlorophenol (PCP)-degrading bacteria were isolated from soil, water, and sewage. When characterized, all isolates were related and shared characteristics of the genus Arthrobacter. Growth rates for strain NC were determined for a number of substrates, including PCP and 2,4,6-trichlorophenol. Changes in PCP concentration affected growth rate and length of the lag phase but not cell yield. Increasing the pH from 6.8 to 7.8 decreased the length of the lag phase for growth on PCP. Cessation of growth, upon incremental addition of PCP, was found to be related to a decrease in pH rather than to a buildup of a toxic metabolite. Degradation of PCP by strain NC was shown to be complete. PMID:7159084

  8. Phosphine production potential of various wastewater and sewage sludge sources

    SciTech Connect

    Devai, I.; DeLaune, R.D.; Patrick, W.H. Jr.; Devai, G.; Czegeny, I.

    1999-05-01

    A laboratory incubation procedure followed by gas chromatographic detection was used to measure phosphine production potential in representative wastewater and sewage sludge sources. Phosphine production potential was determined by measuring the rate of phosphine formation in samples incubated under laboratory conditions over a seven day period when both electron donors and the targeted electron acceptor were not limiting factors. Results of their experiments showed that except the primary effluent and secondary effluent wastewater samples all other samples studied (influent wastewater, various type of sludge and sediment sources) produced phosphine. The minimum phosphine production potential value (0.39 pg/ml wastewater/day) was measured in composite influent wastewater samples while the maximum (268 pg/g wet sludge/day) was measured in sediment samples collected from an open-air sewage treatment plant.

  9. A Case Study in Coastal Transport and Sewage Treatment Policy

    NASA Astrophysics Data System (ADS)

    Cudaback, C.

    2008-12-01

    "Huntington Beach, California, is a popular surfing beach near Los Angeles. In July, 1999, the State of California instituted new beach cleanliness standards: beaches should be closed when bacterial concentrations exceed a certain amount. The beach promptly closed for two months. Local environmentalists blamed a nearby sewage outfall, prompting several million dollars worth of studies. How would you figure out whether the outfall was to blame, and what would you do about it?" From this starting point, my undergraduates work through the scientific, regulatory and policy issues involved in a decision about upgrading a coastal sewage outfall. They learn to interpret complex scientific data, discuss the role of science in policy and also reflect on their own priorities and decision-making processes. I will give a brief summary of my teaching methods, and provide CDs with HTML-based educational resources.

  10. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  11. Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries

    NASA Astrophysics Data System (ADS)

    Jordn, M. M.; Pina, S.; Garca-Orenes, F.; Almendro-Candel, M. B.; Garca-Snchez, E.

    2008-07-01

    The ecologic restoration criteria in areas degraded from extraction activities require making use of their mine spoils. These materials do not meet fertility conditions to guarantee restoration success and therefore, need the incorporation of organic amendments to obtain efficient substratum. Reducing the deficiencies in the organic material and restoration material nutrients with the contribution of treated sewage sludge is proposed in this work. This experiment was based on a controlled study using columns. The work was conducted with two mine spoils, both very rich in calcium carbonate. The first mineral, of poor quality, came from the formation of aggregates of crushed limestone ( Z). The other residual material examined originated in limestone extraction, formed by the levels of interspersed non-limestone materials and the remains of stripped soils ( D). Two treatments were undertaken (30,000 and 90,000 kg/ha of sewage sludge), in addition to a control treatment. The water contribution was carried out with a device that simulated either short-duration rain or a flooding irrigation system in order to cover the surface and then percolate through the soil. The collection of leached water took place 24 h after the applications. Different parameters of the leached water were determined, including pH, electrical conductivity, nitrate anions, ammonium, phosphates, sulphates and chlorides. The values obtained for each irrigation application are discussed, and the nitrate values obtained were very elevated.

  12. Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake.

    PubMed

    Bianchi, Virginia A; Castro, Juan M; Rocchetta, Iara; Bieczynski, Flavia; Luquet, Carlos M

    2014-04-01

    Deleterious effects on health and fitness are expected in mussels chronically exposed to sewage water pollution. Diplodon chilensis inhabiting SMA, an area affected by untreated and treated sewage water,shows increased hemocyte number and phagocytic activity, while bacteriolytic and phenoloxidase activities in plasma and reactive oxygen species production in hemocytes are lower compared to mussels from an unpolluted area (Yuco). There are not differences in cell viability, lysosomal membrane stability, lipid peroxidation and total oxygen scavenging capacity between SMA and Yuco mussels' hemocytes. Energetic reserves and digestive gland mass do not show differences between groups; although the condition factor is higher in SMA than in Yuco mussels. Gills of SMA mussels show an increase in mass and micronuclei frequency compared to those of Yuco. Mussels from both sites reduce bacterial loads in polluted water and sediments, improving their quality with similar feeding performance. These findings suggest that mussels exposed to sewage pollution modulate physiological responses by long-term exposure; although, gills are sensitive to these conditions and suffer chronic damage. Bioremediation potential found in D.chilensis widens the field of work for remediation of sewage bacterial pollution in water and sediments by filtering bivalves. PMID:24589503

  13. Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Yu, Yiyi; Huang, Qiuxin; Cui, Jianlan; Zhang, Kun; Tang, Caiming; Peng, Xianzhi

    2011-01-01

    A sensitive method has been developed and validated for the determination of diverse groups of pharmaceuticals, steroid hormones, and hormone-like personal care products in sewage sludge. Samples were extracted by ultrasonic-assisted extraction followed by solid-phase extraction cleanup. For determination of estrogens and hormone-like phenolic compounds, sample extracts were further derivatized with dansyl chloride and purified with silica gel column chromatography to improve the analytical sensitivity. The chemicals were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in multiple-reaction monitoring mode. Recoveries ranged mostly from 63% to 119% with relative standard deviations within 15%. Method quantification limits were 0.1-3ng?g(-1) dry weight (dw) for sewage sludge. The method was applied to a preliminary investigation of pharmaceuticals and personal care products (PPCPs) in sewage sludge and sediment in the Pearl River Delta, South China. Triclosan, triclocarban, 2-phenylphenol, bisphenol A, and parabens were ubiquitously detected at 3.6-5088.2ng?g(-1) dw in sludge and 0.29-113.1ng?g(-1) dw in sediment samples, respectively. Estrone, carbamazepine, metoprolol, and propranolol were also frequently quantified in the sludge and sediment samples. The dewatering process caused no significant losses of these PPCPs in sewage sludge. PMID:21046090

  14. IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE

    SciTech Connect

    Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

    2004-10-05

    The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

  15. Domestic source of phosphorus to sewage treatment works.

    PubMed

    Comber, Sean; Gardner, Michael; Georges, Karyn; Blackwood, David; Gilmour, Daniel

    2013-01-01

    Phosphorus is an element essential for life. Concerns regarding long-term security of supply and issues related to eutrophication of surface waters once released into the aquatic environment have led governments to consider and apply measures for reducing the use and discharge of phosphorus. Examples of source control include legislation to reduce phosphorus use in domestic detergents. This research shows that other domestic sources of phosphorus also contribute significantly to the domestic load to sewer and that overall, domestic sources dominate loads to sewage treatment works. Estimates provided here show that although the natural diet contributes 40% of the domestic phosphorus load, other potentially preventable sources contribute significantly to the estimated 44,000 tonnes of phosphorus entering UK sewage treatment works each year. In the UK, food additives are estimated to contribute 29% of the domestic load; automatic dishwashing detergents contribute 9% and potentially increasing; domestic laundry 14%, including contributions from phosphonates, but decreasing; phosphorus dosing to reduce lead levels in tap water 6%; food waste disposed of down the drain 1%; and personal care products 1%. Although UK data is presented here, it is anticipated that similar impacts would be expected for other developed economies. Consideration of alternatives to all preventable sources of phosphorus from these sources would therefore offer potentially significant reductions in phosphorus loads to sewage treatment works and hence to the aquatic environment. Combining all source control measures and applying them to their maximum extent could potentially lead to the prevention of over 22,000 tonnes-P/year entering sewage treatment works. PMID:24191467

  16. Targeted polypeptide degradation

    DOEpatents

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  17. [Distribution character of synthetic musks in urban sewage sludges].

    PubMed

    Guo, Ya-Wen; Zhang, Xiao-Lan; Qian, Guang-Ren; Wang, Jun; Liu, Zhong-Zhe; Liang, Gao-Feng; Sheng, Guo-Ying; Fu, Jia-Mo

    2009-05-15

    The characteristics of occurrence and distribution of 8 synthetic musks in 15 sewage sludges in Shanghai were studied. The results indicated that HHCB and AHTN were the two main components in all sludges, with the mean concentration of 2.92 mg x kg(-1) (0.81-6.39 mg x kg(-1)) and 1.96 mg x kg(-1) (0.35-3.11 mg x kg(-1)), respectively; and the concentrations of ADBI, AHMI, MK were less. The distributions detected in sludges are in accordance with the usage patterns in China. Total concentrations of 8 synthetic musks were ranged from 1.16-9.57 mg x kg(-1), which were lower than the results in previous studies. Concentrations in sludges are influenced by ratio of domestic wastewater in influent, sewage load and sewage treatment methods. The good linear relationships among HHCB, AHTN and ADBI indicate that these components have the same source: domestic wastewater. The consumption rates of HHCB and AHTN connected to per inhabitant in Shanghai region were estimated, which are low compared with those found in European. The potential impacts on agricultural soil were also assessed. PMID:19558124

  18. Mechanisms and kinetics of granulated sewage sludge combustion.

    PubMed

    Kijo-Kleczkowska, Agnieszka; ?roda, Katarzyna; Kosowska-Golachowska, Monika; Musia?, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. PMID:26306758

  19. Sewage sludge does not induce genotoxicity and carcinogenesis

    PubMed Central

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lcia Zaidan; Saldiva, Paulo Hilrio Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  20. Sewage sludge does not induce genotoxicity and carcinogenesis.

    PubMed

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lcia Zaidan; Saldiva, Paulo Hilrio Nascimento

    2012-07-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3(rd) week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P(+) AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  1. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes.

    PubMed

    Oleszczuk, Patryk; Jo?ko, Izabela; Xing, Baoshan

    2011-02-15

    The aim of this study was to evaluate the toxicity of sewage sludges containing multiwalled carbon nanotubes (CNTs) with an outer diameter <10 nm (CNT10) or 40-60 nm (CNT60) to Lepidium sativum (cress), Sorghum saccharatum (sorgo), Solanum lycopersicon (tomato), Raphanus sativus (radish) and Cucumis sativus (cucumber). CNTs were also incubated in sewage sludge for 7 or 31 days to determine the effect of CNT aging on sewage sludge phytotoxicity. The influence of CNTs on 4 different sewage sludges was tested. The CNTs' influence on sludge toxicity varied with respect to the CNTs' outer diameter, type of sewage sludges and the plants tested. No significant influence of CNT concentration on phytotoxicity was noted. In the case of two sludges, a positive influence of CNTs on seed germination and root growth was observed. Depending on the CNTs' outer diameter, CNT aging decreased (CNT10) or increased (CNT60) sewage sludge phytotoxicity. PMID:21145166

  2. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. PMID:23777667

  3. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    PubMed

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. PMID:25203227

  4. Degradation of microbial polyesters.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB. PMID:15289671

  5. Data report. The fate of human enteric viruses in a natural sewage recycling system

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1980-09-01

    A two-year study was conducted to determine the virus-removing capacity of two man-made ecosystems designed for the treatment of raw domestic wastewater. The first treatment system consisted of two meadows followed by a marsh-pond unit (M/M/P). The second system contained individual marsh and pond units (M/P). All systems demonstrated moderate virus removal, with the marsh/pond system yielding the most consistent removal rates. Within this system, the greater potential for virus removal appeared to occur in the marsh unit. In addition to the production of system-oriented data, improved techniques for the concentration and enumeration of human viruses from sewage-polluted aquatic systems were developed.

  6. Chemistry and microbiology of a sewage spill in South San Francisco Bay.

    USGS Publications Warehouse

    Cloern, J.E.; Oremland, R.S.

    1983-01-01

    During September 1979, the breakdown of a waste treatment plant resulted in discharge of 1.5 X 107 m3 of primary- treated sewage into a tributary of South San Francisco Bay. Chemical and microbial changes occurred within the tributary as decomposition and nitrification depleted dissolved oxygen. Associated with anoxia were relatively high concentrations of particulate organic carbon, dissolved CO2, CH4, C2H4, NH4+, and fecal bacteria, and low phytoplankton biomass and photosynthetic oxygen production. South San Francisco Bay experienced only small changes in water quality, presumably because of its large volume and the assimilation of wastes that occurred within the tributary. Water quality improved rapidly in the tributary once normal tertiary treatment resumed. -Authors

  7. Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa).

    PubMed

    Belhaj, Dalel; Baccar, Rim; Jaabiri, Ikram; Bouzid, Jalel; Kallel, Moneem; Ayadi, Habib; Zhou, John L

    2015-02-01

    Estrogenic compounds have been monitored for one year at an urban sewage treatment plant (STP) located in Tunisia, to evaluate their fate and seasonal variations. The concentrations of these compounds were determined in both wastewater and sludge phases by gas chromatography coupled with mass spectrometry (GC-MS). Results showed that the highest removal of all estrogens (?80%) was observed in summer. Mass balance analysis revealed that biodegradation was the predominant removal mechanism. Moreover, the results showed that the removal efficiency of the studied emerging micropollutants and their concentrations in the solid phase of return sludge were much higher in winter and spring than in summer and autumn. These findings were closely related to microbial activity and the concentration of mixed liquor suspended solids (MLSSs). Finally, the findings can be used to help with the modifications that could be implemented in that STP for the improved removal of estrogenic contaminants. PMID:25317971

  8. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

    PubMed Central

    Calvo, L. F.; García, A. I.; Otero, M.

    2013-01-01

    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  9. A high-level disinfection standard for land applying sewage sludges (biosolids).

    PubMed Central

    Gattie, David K; McLaughlin, Tara J

    2004-01-01

    Complaints associated with land-applied sewage sludges primarily involve irritation of the skin, mucous membranes, and the respiratory tract accompanied by opportunistic infections. Volatile emissions and organic dusts appear to be the main source of irritation. Occasionally, chronic gastrointestinal problems are reported by affected residents who have private wells. To prevent acute health effects, we recommend that the current system of classifying sludges based on indicator pathogen levels (Class A and Class B) be replaced with a single high-level disinfection standard and that methods used to treat sludges be improved to reduce levels of irritant chemicals, especially endotoxins. A national opinion survey of individuals impacted by or concerned about the safety of land-application practices indicated that most did not consider the practice inherently unsafe but that they lacked confidence in research supported by federal and state agencies. PMID:14754565

  10. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-01

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance. PMID:25454582

  11. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  12. [Effects of sewage discharge on abundance and biomass of meiofauna].

    PubMed

    Huang, De-Ming; Liu, Xiao-Shou; Lin, Ming-Xian; Chen, Huai-Pu; Wei, Lian-Ming; Huang, Xin; Zhang, Zhi-Nan

    2014-10-01

    In order to elucidate the effects of sewage discharge on abundance and biomass of meio- fauna, a seasonal survey was carried out on meiofauna at stations with different distances to a sewage outlet in the middle intertidal zone of No. 1 bathing beach in Huiquan Bay, Qingdao in spring (April), summer (August), autumn (October) and winter (December), 2011. The results showed that the annual average meiofaunal abundance was (1859.9 705.1) ind 10 cm(-2), with higher values of (2444.9 1220.5) ind 10 cm(-2) at Station S2 (20 m to the sewage outlet) and (2492.2 1839.9) ind 10 cm(-2) at Station S3 (40 m to the sewage outlet), while the lowest value of (327.9 183.2) ind 10 cm(-2) was observed at Station S1 (0 m to the sewage outlet) in terms of horizontal distribution. The annual average biomass was (1513.4 372.7) ?g 10 cm(-2). Meiofaunal abundance and biomass varied seasonally with the highest values in spring and the lowest values in summer. A total of 11 meiofaunal groups were identified, including nematodes, copepods, polychaetes, oligochaetes, tardigrades, halacaroideans, planarians, ostracods, isopods, crustacean nauplii and others. Free-living marine nematodes were the dominant group constituting 83. 1% of the total abundance, followed by benthic copepods, accounting for 12. 8% of the total abundance. In terms of vertical distribution, most of the meiofauna concentrated in the top 0-2 cm, and the meiofauna abundance decreased with increasing the sediment depth. Meiofauna was also noted to migrate deeper into the sediment in the winter. Pearson correlation analysis showed that meiofaunal abundance and biomass had highly significant negative correlations with sediment median particle diameter and organic matter content. In addition, tourism-induced activities affected meiofaunal abundance and distribution. A comparison with historical data from similar studies was carried out, and the applicability of the ratio of abundance of nematodes to copepods in monitoring organic pollution was discussed. PMID:25796915

  13. Faecal indicator organism concentrations in sewage and treated effluents.

    PubMed

    Kay, D; Crowther, J; Stapleton, C M; Wyer, M D; Fewtrell, L; Edwards, A; Francis, C A; McDonald, A T; Watkins, J; Wilkinson, J

    2008-01-01

    The importance of faecal indicator organism (FIO) fluxes within drainage basins is increasing as the European Union (EU) Water Framework Directive and the United States Clean Water Act place requirements on regulators to manage point and diffuse sources of microbial pollution causing non-compliance (EU) or impairment (US) of receiving waters. Central to this management task is knowledge of the likely FIO concentrations in raw sewage and treated effluents, but few empirical data have been published in the peer-reviewed literature. Accordingly, this paper presents results for 1933 samples from 162 different sewage discharge sites in the UK and Jersey, which encompass 12 types of sewage-related discharge, representative of untreated sewage and primary-, secondary- and tertiary-treated effluents. Geometric means (GMs) and 95% confidence intervals (CIs) have been used to characterise base- and high-flow FIO concentrations. The data sets and sub-sets are mostly quite large (n 40) and may therefore be applied with some confidence to comparable discharge sites in similar geographical regions. Very marked, statistically significant reductions in GM FIO concentrations result from secondary and tertiary treatment, and there are statistically significant differences between some secondary and some tertiary treatments. Flow conditions are also shown to be important: untreated sewage and effluent from primary treatment plant have lower concentrations at high flow, due to dilution within combined sewerage systems, whereas some treated effluents (e.g. from activated sludge plant) have higher concentrations at high flow because of the shorter residence time within the plant. Under base-flow conditions, secondary treatments result in estimated GM FIO reductions of 95.22-99.29% (cf. primary-treated effluent). Corresponding figures for tertiary treatment plants (cf. secondary-treated effluent) are 93.24-96.59% for reedbed/grass plots and 99.71-99.92% for UV disinfection. Results suggest that secondary and tertiary treatment plants are less effective under high-flow conditions, but further high-flow sampling is required to confirm this. PMID:17709126

  14. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    NASA Astrophysics Data System (ADS)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and reduces the application and storage costs due to its lower proportion of water than the other types of sludge tested. At the same time, the integration of trees in agricultural areas decreases the problem of environmental impact resulting from addition of organic and inorganic fertilisers on soils.

  15. Response of benthic foraminifers to sewage discharge and remediation in Santa Monica Bay, California

    USGS Publications Warehouse

    McGann, M.; Alexander, C.R.; Bay, S.M.

    2003-01-01

    Examination of a time series of foraminiferal assemblage distributions on the continental shelf and slope of Santa Monica Bay from 1955 to 1997-1998 suggests that the benthic microfauna have been greatly affected by the quality and character of the municipal sludge and wastewater discharged into the bay over the last half-century by the Hyperion Treatment Plant serving the greater Los Angeles area. Five species dominate both the living and dead foraminiferal assemblages of the 1997-1998 surface samples, including Eggerella advena, Trochammina pacifica, Bulimina denudata, Buliminella elegantissima, and Epistominella bradyana. Temporal patterns of relative species abundances for both living and dead assemblages, as well as toxicity tests measuring amphipod survival and sea urchin fertilization success, show improvement since the sewage treatment program was enhanced in 1986. None of these trends are evident 10 years earlier, coincident with the onset of a Pacific Decadal Oscillation warming trend. This fact suggests that remediation, and not climate change, is responsible for the faunal changes observed. Even with remediation, however, all foraminiferal faunal trends have not returned to early-outfall levels. The organic-waste indicating species T. pacifica shows a slow decline in abundance as sewage treatment and sludge disposal activities have improved, whereas a dramatic increase in the abundance of the pioneer colonizer of impacted regions, E. advena, has occurred, often with a reciprocal response by B. denudata. Also evident is a dramatic shift in the abundance of the once-dominant species Nonionella basispinata and Nonionella stella, which were unable to recolonize Santa Monica Bay since the two major outfalls (5- and 7-mile) began discharging. Temporal variations in species abundances, as well as range expansions, contractions, and the inability to recolonize areas previously, or presently, impacted, suggests that foraminifers are a useful tool in defining areas affected by waste discharge.

  16. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. PMID:24060290

  17. Long term trends in sewage abatement and water quality in the Hudson-Raritan Estuary

    SciTech Connect

    Brosnan, T.M.; O`Shea, M.L.

    1995-12-31

    Long-term trends in dissolved oxygen (DO) and coliform bacteria concentrations are used to evaluate the impact of 70 years of sewage abatement and treatment in the Hudson-Raritan Estuary near New York City (NYC). Regional construction of wastewater treatment plants since the 1920`s has reduced discharges of untreated sewage into the estuary from approximately 47 M{sup 3}/S in 1936 to less than 0.1 M{sup 3}/S by 1994. From at least 1922 through the early 1960s, average summer DO percent saturation in the Hudson River varied between 35--50% in surface waters and 25--40% in bottom waters. Beginning in the late 1970s, DO concentrations increased through the 1980s and especially into the 1990s, coinciding with the secondary treatment upgrade of the 7.4 M3/s North River plant in the spring of 1991. Average summer percent saturation in the early 1 990s exceeded 80% in surface waters and 60% in bottom waters. In addition, summer DO minima increased from less than 1.5 mg/L in the early 1970s, to greater than 3.0 mg/L in the 1990s, and the duration of hypoxia during summer months has been reduced. While this general trend has been observed throughout the estuary, some areas have displayed recent declines in DO, possibly due to increasing eutrophication. Total coliforms also display strong decreasing trends from the 1960s into the 1990s, with declines attributed to plant construction and expansion, and improved operation of the sewer system. Metal loadings have also decreased significantly. Signs of improved ecosystem quality include reopened beaches and shellfish beds, re-infestation of woodpilings by marine wood-borers, and the resurgence of wading birds in several areas of the estuary.

  18. Response of benthic foraminifers to sewage discharge and remediation in Santa Monica Bay, California.

    PubMed

    McGann, Mary; Alexander, Clark R; Bay, Steven M

    2003-01-01

    Examination of a time series of foraminiferal assemblage distributions on the continental shelf and slope of Santa Monica Bay from 1955 to 1997-1998 suggests that the benthic microfauna have been greatly affected by the quality and character of the municipal sludge and wastewater discharged into the bay over the last half-century by the Hyperion Treatment Plant serving the greater Los Angeles area. Five species dominate both the living and dead foraminiferal assemblages of the 1997-1998 surface samples, including Eggerella advena, Trochammina pacifica, Bulimina denudata, Buliminella elegantissima, and Epistominella bradyana. Temporal patterns of relative species abundances for both living and dead assemblages, as well as toxicity tests measuring amphipod survival and sea urchin fertilization success, show improvement since the sewage treatment program was enhanced in 1986. None of these trends are evident 10 years earlier, coincident with the onset of a Pacific Decadal Oscillation warming trend. This fact suggests that remediation, and not climate change, is responsible for the faunal changes observed. Even with remediation, however, all foraminiferal faunal trends have not returned to early-outfall levels. The organic-waste indicating species T. pacifica shows a slow decline in abundance as sewage treatment and sludge disposal activities have improved, whereas a dramatic increase in the abundance of the pioneer colonizer of impacted regions, E. advena, has occurred, often with a reciprocal response by B. denudata. Also evident is a dramatic shift in the abundance of the once-dominant species Nonionella basispinata and Nonionella stella, which were unable to recolonize Santa Monica Bay since the two major outfalls (5- and 7-mile) began discharging. Temporal variations in species abundances, as well as range expansions, contractions, and the inability to recolonize areas previously, or presently, impacted, suggests that foraminifers are a useful tool in defining areas affected by waste discharge. PMID:12648961

  19. The Impact of Sewage Discharge in a Marine Embayment: A Stable Isotope Reconnaissance

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Tatner, P.; Jack, I.; Arnott, C.

    2001-01-01

    Stable isotope analyses, ? 13C and ? 15N, of sewage tolerant benthic invertebrates seaward of a sewage effluent discharged in a marine embayment, the Firth of Forth, East Scotland, suggest that the polychaete worm Nereis virens is a suitable species for identifying biological assimilation of sewage derived organic matter. The sewage isotopic signal is not strongly recorded in the sediment due to the combined action of tidal movement, wind-induced wave action and benthic invertebrate grazing of particulate matter on the sea-bed. ? 13C of the plankton is significantly different from the effluent, but ? 15N is not which precludes its use as a trace.

  20. K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring reports, second quarter 1992

    SciTech Connect

    Not Available

    1992-10-01

    During second quarter 1992, the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) were sampled for analyses required each quarter or annually by South Carolina Department of Health and Environmental Control Construction Permit 13, 173. This report includes the results of those analyses. None of the analyzed constituents exceeded the Primary Drinking Water Standard or the Savannah River Site Flag 2 criteria at either the K-Area Sewage Sludge Application Site or the Par Pond Sewage Sludge Application Site.