Science.gov

Sample records for improving solar cell

  1. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  2. Solar Cell Modules With Improved Backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2003-12-09

    A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

  3. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  4. Silicon solar cells improved by lithium doping

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1970-01-01

    Results of conference on characteristics of lithium-doped silicon solar cells and techniques required for fabrication indicate that output of cells has been improved to point where cells exhibit radiation resistance superior to those currently in use, and greater control and reproducibility of cell processing have been achieved.

  5. Improvements in InP solar cells

    NASA Technical Reports Server (NTRS)

    Keavney, Christopher; Vernon, Stanley M.; Haven, Victor E.

    1988-01-01

    Indium phosphide solar cells with very thin n-type emitters have been made by both ion implantation and metal-organic chemical vapor deposition. Air mass zero efficiencies as high as 18.8 percent (NASA measurement) have been achieved. The best cells, which were those made by ion implantation, show an open-circuit voltage of 873 mV, short-circuit current of 35.7 mA/sq cm, and fill factor of 0.829. Improvements are anticipated in all three of these parameters. Internal quantum efficiency peaks at over 90 percent in the red end of the spectrum, but drops to 54 percent in the blue end. Other cells have achieved 74 percent in the blue end. A preliminary investigation of InP solar cells on foreign substrates has been carried out. Although problems have been encountered with doping of the InP by the substrate, cells of 7.1 percent efficiency on silicon and cells of 9.4 percent, efficiency on GaAs have been made.

  6. Improved Solar-Cell Tunnel Junction

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A.

    1986-01-01

    Efficiency of multiple-junction silicon solar cells increased by inclusion of p+/n+ tunnel junctions of highly doped GaP between component cells. Relatively low recombination velocity at GaP junction principal reason for recommending this material. Relatively wide band gap also helps increase efficiency by reducing optical losses.

  7. Solar cell having improved back surface reflector

    NASA Astrophysics Data System (ADS)

    Chai, A. T.

    1982-10-01

    The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

  8. Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells

    PubMed Central

    Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tomé, Joao; Cavaleiro, José A.S.; Black, Charles T.; Drain, Charles Michael

    2010-01-01

    A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126

  9. Aluminum doping improves silicon solar cells

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum doped silicon solar cells with resistivities in the 10- to 20-ohm centimeter range have broad spectral response, high efficiency and long lifetimes in nuclear radiation environments. Production advantages include low material rejection and increased production yields, and close tolerance control.

  10. Improving the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Willig, Frank

    2007-09-01

    Two dye sensitized solar cells (DSC) can be joined to form a tandem cell with two separate absorption ranges for the two different absorber materials. This can enhance the solar conversion efficiency and in particular the photovoltage of the DSC. Water splitting appears as a realistic long term target. The DSC tandem can be realized as n-n junction employing known dye molecules with optimal absorption spectra. Dye molecules with elongated shapes can be realized by covalently attaching a conducting bridge group terminated by an anchor group to a desired chromophore. Due to the long conducting bridge group separating the hole state of the dye from the surface of the semiconductor recombination is slowed down. The ordered molecular structure can be self-assembled on the recently introduced rod or cylinder shaped oxide electrodes but will not slow down recombination in the nm-cavities of the conventional TiO II Graetzel electrode.

  11. Silicon solar cell efficiency improvement: Status and outlook

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1985-01-01

    Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.

  12. Solar cell having improved front surface metallization

    SciTech Connect

    Lillington, D.R.; Mardesich, N.; Dill, H.G.; Garlick, G.F.J.

    1987-09-15

    This patent describes a solar cell comprising: a first layer of gallium arsenide semiconductor material of an N+ conductivity; a second layer of gallium arsenide semiconductor material of an N conductivity overlying the first layer; a third layer of gallium arsenide semiconductor material of a P conductivity overlying the N conductivity layer and forming a P-N junction therebetween. A layer of aluminium gallium arsenide semiconductor material of a p conductivity overlying the front major surface of the P conductivity third layer and having an exposed surface essentially parallel to the front major surface and at least one edge; a plurality of metallic contact lines made of a first metal alloy composition and being spaced apart by a first predetermined distance traversing the exposed surface and extending through the aluminium gallium arsenide layer to the front major surface and making electrical contact to the third layer; a plurality of longitudinally disposed metallic grid lines made of a second metal alloy composition and being spaced apart by a second predetermined distance located on the exposed surface of the aluminium gallium arsenide layer and which cross the metallic contact lines and make electrical contact to the metallic lines; a flat metallic strip disposed on the aluminium gallium arsenide layer exposed surface near the edge, the strip electrically coupling the metallic grid lines to one another; and a back contact located on the back major surface.

  13. Solar cell with improved electrical contacts

    SciTech Connect

    Cavicchi, B.T.; Dill, H.G.; Zemmrich, D.K.

    1987-10-06

    A solar cell is described comprising: a first layer of semiconductor material of a first conductivity type; a second layer of semiconductor material of a second opposite conductivity type disposed on the first layer forming a semiconductor junction therebetween. The first and second layers having first and second major essentially parallel surfaces, respectively, essentially parallel to the semiconductor junction; a layer of aluminum gallium arsenide semiconductor material of the second conductivity type disposed on the second major surface and having an exposed front major surface essentially parallel to the second major surface and further having grooves extending vertically to the second layer; electrically conductive material filling the grooves and electrically contacting the second layer to form metallic contact lines; a flat conductive bar transversely disposed on the exposed front major surface across the grooves and making electrical contact ot the electrically conductive material in the grooves; an electrically conductive flat strip disposed on the exposed major surface and spaced apart from the conductive bar; and at least one electrically conductive bridge electrically coupling the conductive bar to the contact strip.

  14. Method and apparatus for fabricating improved solar cell modules

    NASA Technical Reports Server (NTRS)

    Bloch, J. T.; Hanger, R. T.; Nichols, F. W. (Inventor)

    1980-01-01

    A method and apparatus for fabricating an improved solar cell module is described. The apparatus includes a supply drum for feeding a flexible strip having etched electrical circuitry deposited on it a supply drum for feeding into overlying engagement with the flexible strip a flexible tape having a pair of exposed tacky surfaces, and a plurality of rams for receiving and depositing a plurality of solar cells in side-by-side relation on an exposed tacky surface of the tape in electrical contacting engagement with the etched circuitry.

  15. Improvement of polysilicon solar cells by aluminum diffusion

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1982-09-01

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. With regard to bulk cells, gettering of intragrain defects by high-temperature aluminum diffusion, i.e., Al-Si alloying, is suggested. With regard to thin-film cells, substantial grain-boundary passivation by low-temperature aluminum diffusion (from the front surface) is indicated, and evaluated using EBIC measurements interpreted via numerical analysis of the underlying carrier transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  16. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    SciTech Connect

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  17. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    SciTech Connect

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  18. Improved performance design of gallium arsenide solar cells for space

    NASA Technical Reports Server (NTRS)

    Parekh, R. H.; Barnett, A. M.

    1984-01-01

    An improved design, shallow junction heteroface, n-p, gallium arsenide solar cell for space applications is reported, with a predicted AM0 efficiency in the 21.9 to 23.0 percent range. The optimized n-p structure, while slightly more efficient, has the added advantage of being less susceptible to radiation-induced degradation by virtue of this thin top junction layer. Detailed spectral response curves and an analysis of the loss mechanisms are reported. The details of the design are readily measurable. The optimized designs were reached by quantifying the dominant loss mechanisms and then minimizing them by using computer simulations.

  19. Improved High/Low Junction Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.

    1986-01-01

    Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.

  20. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  1. Improved hybrid solar cells via in situ UV-polymerization.

    SciTech Connect

    Tepavcevic, S.; Darling, S. B.; Dimitrijevic, N. M.; Rajh, T.; Sibener, S. J.; Univ. of Chicago

    2009-08-03

    One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO{sub 2} nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO{sub 2} NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO{sub 2} substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact {pi}-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO{sub 2} surface via a charge transfer complex. Coupling with the TiO{sub 2} surface improves UV-PT crystallinity and {pi}-{pi} stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of {approx} 5 {micro}A cm{sup -2} - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO{sub 2} surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.

  2. Improved hybrid solar cells via in situ UV polymerization.

    PubMed

    Tepavcevic, Sanja; Darling, Seth B; Dimitrijevic, Nada M; Rajh, Tijana; Sibener, Steven J

    2009-08-01

    One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO(2) nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO(2) NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO(2) substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C--I bond produces monomer radicals with intact pi-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO(2) surface via a charge transfer complex. Coupling with the TiO(2) surface improves UV-PT crystallinity and pi-pi stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of approximately 5 microA cm(2)-surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO(2) surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced. PMID:19367599

  3. Methods for improving solar cell open circuit voltage

    DOEpatents

    Jordan, John F.; Singh, Vijay P.

    1979-01-01

    A method for producing a solar cell having an increased open circuit voltage. A layer of cadmium sulfide (CdS) produced by a chemical spray technique and having residual chlorides is exposed to a flow of hydrogen sulfide (H.sub.2 S) heated to a temperature of 400.degree.-600.degree. C. The residual chlorides are reduced and any remaining CdCl.sub.2 is converted to CdS. A heterojunction is formed over the CdS and electrodes are formed. Application of chromium as the positive electrode results in a further increase in the open circuit voltage available from the H.sub.2 S-treated solar cell.

  4. Development of economical improved thick film solar cell contact

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1979-01-01

    Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.

  5. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    DOEpatents

    Hanoka, Jack I.

    2003-07-01

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  6. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    DOEpatents

    Hanoka, Jack I.

    2001-11-20

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  7. Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)

    SciTech Connect

    Eisaman, Matthew

    2014-04-16

    Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measured in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.

  8. Nanoetching process on silicon solar cell wafers during mass production for surface texture improvement.

    PubMed

    Ahn, Chisung; Kulkarni, Atul; Ha, Soohyun; Cho, Yujin; Kim, Jeongin; Park, Heejin; Kim, Taesung

    2014-12-01

    Major challenge in nanotechnology is to improve the solar cells efficiency. This can be achieved by controlling the silicon solar cell wafer surface structure. Herein, we report a KOH wet etching process along with an ultrasonic cleaning process to improve the surface texture of silicon solar cell wafers. We evaluated the KOH temperature, concentration, and ultra-sonication time. It was observed that the surface texture of the silicon solar wafer changed from a pyramid shape to a rectangular shape under edge cutting as the concentration of the KOH solution was increased. We controlled the etching time to avoid pattern damage and any further increase of the reflectance. The present study will be helpful for the mass processing of silicon solar cell wafers with improved reflectance. PMID:25971104

  9. New implantation techniques for improved solar cell junctions

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    Ion implantation techniques offering improved cell performance and reduced cost have been studied. These techniques include non-mass-analyzed phosphorus implantation, argon implantation gettering, and low temperature boron annealing. It is found that cells produced by non-mass-analyzed implantation perform as well as mass-analyzed controls, and that the cell performance is largely independent of process parameters. A study of argon implantation gettering shows no improvement over non-gettered controls. Results of low temperature boron annealing experiments are presented.

  10. Photonic crystals for improving light absorption in organic solar cells

    SciTech Connect

    Duché, D. Le Rouzo, J.; Masclaux, C.; Gourgon, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystal able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.

  11. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    PubMed

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-01

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance. PMID:26859777

  12. Recent improvements in materials for thin GaAs and multibandgap solar cells

    SciTech Connect

    Benner, J P

    1985-05-01

    The High Efficiency Concepts Program at SERI supports research on III-V compound semiconductors with the objective of achieving the maximum attainable photovoltaic conversion efficiencies for terrestrial solar electric power. The outcome of this research may also affect the future of space photovoltaic cells. While the interest in thin-film, high-efficiency solar cells for terrestrial applications is driven principally by consideration of system costs, such cells would also improve the power density of space power arrays.

  13. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  14. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  15. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes. PMID:25692264

  16. Improved performance in GaInNAs solar cells by hydrogen passivation

    SciTech Connect

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  17. A synergetic application of surface plasmon and field effect to improve Si solar cell performance.

    PubMed

    Zhou, Zhi-Quan; Wang, Liang-Xing; Shi, Wei; Sun, Shu-Lin; Lu, Ming

    2016-04-01

    We report a synergetic application of surface plasmon (SP) and field effect (FE) to improve crystalline Si solar cell performance. The SPs are supported by small-sized Ag nanoparticles with an average diameter of 36.7 nm. The localized SP electromagnetic field from Ag nanoparticles excites extra electron-hole pairs at the surface region of the Si solar cell emitter, and meanwhile, the electron-hole pairs are detached by the electrostatic field that crosses the emitter surface. This synergism of SP and FE produces extra charges and enhances the Si solar cell efficiency. As compared to a Si solar cell applying SP and FE independently, a more than 10% efficiency enhancement is achieved by using them synergistically. PMID:26902838

  18. A synergetic application of surface plasmon and field effect to improve Si solar cell performance

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Quan; Wang, Liang-Xing; Shi, Wei; Sun, Shu-Lin; Lu, Ming

    2016-04-01

    We report a synergetic application of surface plasmon (SP) and field effect (FE) to improve crystalline Si solar cell performance. The SPs are supported by small-sized Ag nanoparticles with an average diameter of 36.7 nm. The localized SP electromagnetic field from Ag nanoparticles excites extra electron-hole pairs at the surface region of the Si solar cell emitter, and meanwhile, the electron-hole pairs are detached by the electrostatic field that crosses the emitter surface. This synergism of SP and FE produces extra charges and enhances the Si solar cell efficiency. As compared to a Si solar cell applying SP and FE independently, a more than 10% efficiency enhancement is achieved by using them synergistically.

  19. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  20. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths. PMID:23418988

  1. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    NASA Astrophysics Data System (ADS)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  2. Interlaced semi-ellipsoid nanostructures for improving light trapping of ultrathin crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Ge; Li, Juntao; Wang, Xuehua

    2015-10-01

    Ultrathin crystalline silicon (c-Si) solar cells, which are of several micrometers thick, have attracted much attention in recent years, since it can greatly save raw materials than the traditional ones. To enhance the absorption, as well as to improve the cell efficiency, of the ultrathin c-Si, light trapping nanostructures are used to increase the effective absorption length to close to the 4n2 of the materials thickness, which is determined by the Lambertian limit. Here, we propose a novel interlaced semi-ellipsoid nanostructures (ISENs) to improve the performance of ultrathin c-Si solar cells. In this structure, the large and small periods in x and y direction can improve the light trapping capability at long and short wavelengths respectively. Meanwhile, the graded refractive index of the surface can act as the antireflection coating. By optimizing the ISENs, the short circuit current density of 30.15mA/cm2 was achieved by simulations for a 2 μm thick c-Si solar cell with rx = 500 nm, ry = 200 nm, rz= 550 nm and without antireflection coating and metal back reflector. The absorption is close to 87% of the Lambertian limit with equivalent thickness. We expect this structure can be fabricated by low cost nanosphere lithography technology and used to improve the efficiency of the ultrathin c-Si solar cells.

  3. Development of an improved high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Wrigley, C.; Storti, G.

    1978-01-01

    Efforts were directed towards investigating means of producing more effective high-low junctions at the back of the cell. Cells with output power up to 77 mW (AM0 efficiency of 14.2 percent) were fabricated. Some reflectivity studies were also made. Deliveries of 2 cm x 2 cm experimental cells included a number having AM0 outputs greater than 70 mW.

  4. Improving the performance of P3HT/PCBM solar cells with squaraine dye

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Shun; Goh, Tenghooi; Li, Xiaokai; Sfeir, Matthew Y.; Bielinski, Elizabeth A.; Tomasulo, Stephanie; Lee, Minjoo L.; Hazari, Nilay; Taylor, André D.

    2013-10-01

    Expanding the spectral absorption breadth and efficiently harvesting excitons are crucial towards creating highly efficient polymer solar cells. Here we describe a strategy to realize broad-band light harvesting in poly(3-hexylthiophene) (P3HT)-based solar cells. We introduce the use of squaraine dye molecules that play a dual role towards improving P3HT-based solar cells. The first benefit is an increase in the spectral absorption in the near infrared region. The second advantage is the collection of excitons close to the interfacial heterojunctions via Förster resonance energy transfer (FRET). Unlike traditional multi-blend systems, where each donor works independently in separate spectral responses, FRET-based systems enable the effective use of multiple donors with significant improvements in light absorption and conversion. Ultrafast transient absorption experiments show that the excitation energy from P3HT can be transferred rapidly (within a few picoseconds) and efficiently (up to 96%) to the squaraine via FRET. As a result, the overall power conversion efficiency is improved. This architecture opens up a new paradigm towards transformative improvements of polymer solar cells.

  5. Development of an Improved High Efficiency Thin Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Wrigley, C.

    1979-01-01

    Breakage and front contact failure in high efficiency, textured ultrathin cells was reduced as a consequence of the introduction of process modifications. In a small production run, over one hundred ultrathin cells, having an average AMO efficiency of 13%, were fabricated from 10-25 ohm cm silicon. An in-house aluminum paste for back surface field formation was developed that resulted in cell efficiencies equivalent to those from commercial pastes. The quality of the back surface field was found to be dependent on the orientation of the silicon slice during alloying.

  6. Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.

  7. Improving solar cell efficiencies by down-conversion of high-energy photons

    NASA Astrophysics Data System (ADS)

    Trupke, T.; Green, M. A.; Wurfel, P.

    2002-08-01

    One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. A method to realize multiple electron-hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell's band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, which a solar cell exposed directly to nonconcentrated radiation may have under the same assumption of radiative recombination only.

  8. Small-molecule organic solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Song, Q. L.; Li, F. Y.; Yang, H.; Wu, H. R.; Wang, X. Z.; Zhou, W.; Zhao, J. M.; Ding, X. M.; Huang, C. H.; Hou, X. Y.

    2005-11-01

    A stable small-molecule organic photovoltaic device with structure of ITO⧹donor⧹acceptor⧹buffer⧹cathode is presented. A thin layer (˜60 Å) of tris-8-hydroxy-quinolinato aluminum (Alq 3) instead of bathocuproine (BCP) is adopted as the buffer of the device, resulting in 150 times longer lifetime. The power conversion efficiency of the device is 2.11% under 75 mW/cm 2 AM1.5G simulated illumination, and no perceptible efficiency degradation is observed for long-term storage of the device in vacuum or nitrogen-filled glove box. More effective blocking of Alq 3 than BCP against diffusion of cathode atoms and permeation of oxygen and/or water molecules is considered as the main reason for the improved performance of the new device.

  9. Solar cells

    NASA Astrophysics Data System (ADS)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  10. Improvement of Electrical Properties of Silicon Quantum Dot Superlattice Solar Cells with Diffusion Barrier Layers

    NASA Astrophysics Data System (ADS)

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2013-04-01

    We investigate the effects of a niobium-doped titanium dioxide (TiO2:Nb) diffusion barrier layer on the performance of silicon quantum dot superlattice (Si-QDSL) solar cells. The insertion of a 2-nm-thick TiO2:Nb layer significantly reduces phosphorus diffusion from a highly doped n-type layer into a Si-QDSL layer during thermal annealing at 900 °C. The phosphorous concentration in the Si-QDSL layer of the solar cell with the TiO2:Nb diffusion barrier layer was found to be less than 1018 cm-3, which is approximately two orders of magnitude lower than that of the solar cell without the diffusion barrier layer. The reduction in phosphorous concentration leads to the improvement of photo-generated carrier collection in the Si-QDSL layer. The short circuit current density of the solar cell with the diffusion barrier layer was dramatically improved to 1.6 mA/cm2 without the degradation of open circuit voltage and fill factor.

  11. Polymer TiO2 solar cells: TiO2 interconnected network for improved cell performance

    NASA Astrophysics Data System (ADS)

    Oey, C. C.; Djurisic, A. B.; Wang, H.; Man, K. K. Y.; Chan, W. K.; Xie, M. H.; Leung, Y. H.; Pandey, A.; Nunzi, J.-M.; Chui, P. C.

    2006-02-01

    A titanium dioxide porous network structure was synthesized using a poly(styrene-block-polyethylene oxide) diblock copolymer template. The influence of the titanium precursor concentration and annealing temperature on the obtained morphology was studied. Heterojunction solar cells consisting of TiO2 porous network structure and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) were fabricated. The influence of the MEH-PPV layer thickness and device architecture on the solar cell performance was investigated. For an optimized device structure, a short-circuit current as high as 3.3 mA cm-2 is obtained under simulated solar illumination with an air mass AM 1.5 filter. The improved higher short-circuit current compared to other reports on MEH-PPV /TiO2 heterojunction cells can be attributed to improved morphology of the TiO2 layer.

  12. Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Wang, Fengyou; Zhang, Xiaodan; Wang, Ning; Jiang, Yuanjian; Hao, Qiuyan; Zhao, Ying

    2014-12-01

    Texturing of silicon surfaces is an effective method for improving the efficiency of silicon solar cells. Etching by using tetramethylammonium hydroxide (TMAH) is more attractive than other texturing processes because TMAH is non-toxic, and high-quality anisotropic features can be realized without any metal ion contaminants. In this study, TMAH texturing conditions are varied to optimize the surface morphology of silicon wafers. Excellent optical properties are obtained. This is because of the formation of pyramidal structures with different random sizes but uniform shapes; in fact, when the optimal etching conditions (2% TMAH, 10% isopropyl alcohol (IPA) at 80 °C) are used, the reflectance is only 10.7%. In comparison with NaOH texturing, the TMAH process described here yields smaller pyramids with smoother (111) facets, leading to improved performance in silicon heterojunction solar cells, with a conversion efficiency of 17.8%.

  13. Tailoring the Interface to Improve Voc in Dye-Sensitized Solar Cells

    SciTech Connect

    Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Frank, A. J.

    2005-01-01

    Adding certain adsorbents in conjunction with the sensitizing dye employed in high-efficiency TiO2 nanoparticle solar cells has been shown to increase the photovoltage. It is has been speculated that the increased photovoltage is due to these hydrophobic adsorbents passivating surface states that mitigate the recombination of photoinjected electrons with redox species in the electrolyte. In collaboration with the DOE Office of Science Program, we are conducting transient-photovoltage measurements to determine the mechanism for the improved photovoltage.

  14. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  15. Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production.

    PubMed

    Lin, X X; Zeng, Y; Zhong, S H; Huang, Z G; Qian, H Q; Ling, J; Zhu, J B; Shen, W Z

    2015-03-27

    We report the realization of both excellent optical and electrical properties of nanostructured multicrystalline silicon solar cells by a simple and industrially compatible technique of surface morphology modification. The nanostructures are prepared by Ag-catalyzed chemical etching and subsequent NaOH treatment with controllable geometrical parameters and surface area enhancement ratio. We have examined in detail the influence of different surface area enhancement ratios on reflectance, carrier recombination characteristics and cell performance. By conducting a quantitative analysis of these factors, we have successfully demonstrated a higher-than-traditional output performance of nanostructured multicrystalline silicon solar cells with a low average reflectance of 4.93%, a low effective surface recombination velocity of 6.59 m s(-1), and a certified conversion efficiency of 17.75% on large size (156 × 156 mm(2)) silicon cells, which is ∼0.3% higher than the acid textured counterparts. The present work opens a potential prospect for the mass production of nanostructured solar cells with improved efficiencies. PMID:25736199

  16. Improving the efficiency of organic solar cells by varying the material concentration in the photoactive layer

    NASA Astrophysics Data System (ADS)

    Latimer, Kevin Anthony

    Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies. When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is the photoactive layer solution of poly-3(hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC 61BM). Even slight variations in pre-application and post-treatment will lead to large variations in the electrical, physical, and optical properties of the solar cell module. To improve the effectiveness of the photoactive layer, the material concentration of P3HT and PC61BM in the liquid phase, prior to application, was altered. The weight ratio of P3HT to PC61BM was kept at a constant 1 to 0.8, while the amounts of each dissolved in 2 mL of chlorobenzene were varied. Solar cells were fabricated, and J-V characterizations were performed to determine the electrical traits of the devices. Atomic force microscopy (AFM) measurements were done on the photoactive layer films to determine the physical characteristics of the films such as overall surface topology and RMS roughness. Also, variable angle spectroscopic ellipsometry (VASE) was used to determine film thickness and extinction coefficient of the active layers. To further understand the optical properties of the polymer-fullerene blend, the absorption spectrum of the films were calculated through UV-VIS spectrophotometry. It was found that an increased concentration of the polymer-fullerene blend prior to application

  17. InP solar cell improvement by inverse delta-doping

    SciTech Connect

    Piprek, J.; Boeer, K.W.

    1994-12-31

    Recombination loss mechanisms in InP homojunction solar cells are analyzed using numerical modeling. To reduce the junction leakage current, it is proposed to introduce a thin undoped layer with low recombination center density near the pn-junction. This inverse delta-doping is found to be most beneficial in low efficiency p{sup +}n-InP cells, improving the open circuit voltage by 50 mV, the fill factor by 0.09, and the efficiency by 2 percentage points.

  18. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    SciTech Connect

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn

    2014-08-18

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  19. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  20. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Branz, Howard M.; Page, Matthew R.; Jones, Kim M.; Yuan, Hao-Chih

    2011-09-01

    We characterize the optical and carrier-collection physics of multi-scale textured p-type black Si solar cells with conversion efficiency of 17.1%. The multi-scale texture is achieved by combining density-graded nanoporous layer made by metal-assisted etching with micron-scale pyramid texture. We found that (1) reducing the thickness of nanostructured Si layer improves the short-wavelength spectral response and (2) multi-scale texture permits thinning of the nanostructured layer while maintaining low surface reflection. We have reduced the nanostructured layer thickness by 60% while retaining a solar-spectrum-averaged black Si reflectance of less than 2%. Spectral response at 450 nm has improved from 57% to 71%.

  1. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  2. Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer

    NASA Astrophysics Data System (ADS)

    Jian-Feng, Li; Chuang, Zhao; Heng, Zhang; Jun-Feng, Tong; Peng, Zhang; Chun-Yan, Yang; Yang-Jun, Xia; Duo-Wang, Fan

    2016-02-01

    In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)) (PEDOT:PSS) and its influence on the performance of perovskite solar cells. . The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide (ITO)/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al, where PEDOT:PSS and PC61BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency (PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G (100 mW/cm2 illumination) after the buffer layer has been modified. Project supported by the National Natural Science Foundation of China (Grant Nos. 61264002, 61166002, 91333206, and 51463011), the Natural Science Foundation of Gansu Province, China (Grant No. 1308RJZA159), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0840), the Research Project of Graduate Teacher of Gansu Province, China (Grant No. 2014A-0042), and the Postdoctoral Science Foundation from Lanzhou Jiaotong University, China.

  3. Solar cells

    NASA Astrophysics Data System (ADS)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  4. Potential improvement of polysilicon solar cells by grain boundary and intragrain diffusion of aluminum

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1984-02-15

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. For bulk cells, a high-temperature aluminum diffusion (alloying) is shown to increase the minority-carrier diffusion length by gettering intragrain impurities. The role of the grain boundaries in this process and the influence of a light bias on the carrier lifetime are discussed. For thin-film cells, a low-temperature aluminum diffusion is shown to substantially passivate grain boundaries and hence decrease the recombination velocity. The decrease is evaluated using electron-beam-induced-current (EBIC) measurements interpreted via numerical analysis of the underlying carrier-transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  5. Advanced nanostructured materials and their application for improvement of sun-light harvesting and efficiency of solar cells

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2016-02-01

    This review describes the application of different nanostructured materials in solar cells technology for improvement of sun-light harvesting and their efficiency. Several approaches have recently been proposed to increase the efficiency of solar cells above the theoretical limit which are based on a “photon management” concept that employs such phenomena as: (i) down-conversion, and (ii) surface plasmon resonance effect (iii) decreasing of the loss due to the reflection of the radiation, (iv) increasing of the reflection from the back contact, v) increasing of the effective solar cells surface, etc. The results demonstrate the possibility for to increasing of light harvesting, short circuit current and efficiency by application of nanomaterials in thin film and hetero-junction (HJ) solar cells. The first promising results allow an expectation for application of advanced nanomaterials in the 3d generation solar cells.

  6. Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Hairen; Psomadaki, Efthymia; Isabella, Olindo; Fischer, Marinus; Babal, Pavel; Vasudevan, Ravi; Zeman, Miro; Smets, Arno H. M.

    2013-10-01

    Micro-textures with large opening angles and smooth U-shape are applied to nanocrystalline silicon (nc-Si:H) solar cells. The micro-textured substrates result in higher open-circuit-voltage (Voc) and fill-factor (FF) than nano-textured substrates. For thick solar cells, high Voc and FF are maintained. Particularly, the Voc only drops from 564 to 541 mV as solar cell thickness increases from 1 to 5 μm. The improvement in electrical performance of solar cells is ascribed to the growth of dense nc-Si:H layers free from defective filaments on micro-textured substrates. Thereby, micromorph tandem solar cells with an initial efficiency of 13.3%, Voc = 1.464 V, and FF = 0.759 are obtained.

  7. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    SciTech Connect

    Tiwari, J. P. E-mail: tiwarijp@mail.nplindia.org; Ali, Farman; Sharma, Abhishek; Chand, Suresh; Pillai, Sriraj; Parakh, Sonal

    2014-01-27

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution–processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ∼17–19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells.

  8. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Tiwari, J. P.; Pillai, Sriraj; Parakh, Sonal; Ali, Farman; Sharma, Abhishek; Chand, Suresh

    2014-01-01

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C61butyric acid methyl ester (PC61BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution-processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ˜17-19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells.

  9. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging.

    PubMed

    Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W

    2015-08-28

    Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced. PMID:26220159

  10. Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Shi, Zhen-Liang; Ji, Yun; Yu, Wei; Yang, Yan-Bin; Cong, Ri-Dong; Chen, Ying-Juan; Li, Xiao-Wei; Fu, Guang-Sheng

    2015-07-01

    Microcrystalline silicon (μc-Si:H) solar cell with graded band gap microcrystalline silicon oxide (μc-SiOx:H) buffer layer is prepared by plasma enhanced chemical vapor deposition and exhibits improved performance compared with the cell without it. The buffer layer moderates the band gap mismatch by reducing the barrier of the p/i interface, which promotes the nucleation of the i-layer and effectively eliminates the incubation layer, and then enhances the collection efficiency of the cell in the short wavelength region of the spectrum. The p/i interface defect density also decreases from 2.2 × 1012 cm-2 to 5.0 × 1011 cm-2. This graded buffer layer allows to simplify the deposition process for the μc-Si:H solar cell application. Project supported by the Key Basic Research Project of Hebei Province, China (Grant Nos. 12963930D and 12963929D), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and E2012201059), and the Science and Technology Research Projects of the Education Department of Hebei Province, China (Grant No. ZH2012030).

  11. Improvement in efficiency of micromorph tandem silicon solar cells by designing proper interfaces.

    PubMed

    Shen, Xiangqian; Wang, Qingkang; Wangyang, Peihua; Huang, Kun; Chen, Le; Liu, Daiming

    2015-11-15

    Efficient light management for micromorph tandem solar cells is achieved in this Letter by the combined application of TiO(2) and SiO(x) interlayers. Here, TiO(2) is incorporated into a ZnO/a-Si interface as an antireflection layer and SiO(x) is incorporated into an a-Si/μc-Si interface as an intermediate reflecting layer. Solar cells with such architecture not only increase the light absorption but also reduce the mismatch losses of current between the top and bottom cells. The key results, as evidenced by the spectral response measurements, are that the total photocurrent increases from 22.62 to 24.35 mA/cm(2), as well as the short circuit current density of the two component cells is reached to a delicate balance. The influences of the interlayer thickness and morphology on the improvement have been investigated using an electromagnetic simulation in order to take full advantage of this design. PMID:26565829

  12. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    NASA Astrophysics Data System (ADS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-10-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.

  13. Towards a CdS/Cu2ZnSnS4 solar cell efficiency improvement: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2014-12-01

    In this work, a device model for Cu2ZnSnS4 (CZTS) solar cell with certified world record efficiency is presented. A study of the most important loss mechanisms and its effect on solar cell performance was carried out. The trap-assisted tunneling and CdS/CZTS interface recombination are introduced as the most important loss mechanisms. Detailed comparison of the simulation results to the measured device parameters shows that our model is able to reproduce the experimental observations (quantum efficiency, efficiency, Jsc, FF, and Voc) reported under normal operating conditions. Finally, a discussion about a further solar cell efficiency improvement is addressed.

  14. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  15. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts.

    PubMed

    Ma, Yingzhuang; Chung, Yao-Hsien; Zheng, Lingling; Zhang, Danfei; Yu, Xiao; Xiao, Lixin; Chen, Zhijian; Wang, Shufeng; Qu, Bo; Gong, Qihuang; Zou, Dechun

    2015-04-01

    A nonadditive hole-transporting material (HTM) of a triphenylamine derivative of N,N'-di(3-methylphenyl)-N,N'-diphenyl-4,4'-diaminobiphenyl (TPD) is used for the organic-inorganic hybrid perovskite solar cells. The power conversion efficiency (PCE) can be significantly enhanced by inserting a thin layer of 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) without adding an ion additive because the hole-transporting properties improve. The short-circuit current density (J(sc)) increases from 8.5 to 13.1 mA/cm(2), the open-circuit voltage (V(oc)) increases from 0.84 to 0.92 V, and the fill-factor (FF) increases from 0.45 to 0.59, which corresponds to the increase in PCE from 3.2% to 7.1%. Moreover, the PCE decreases by only 10% after approximately 1000 h without encapsulation, which suggests an alternative method to improve the stability of perovskite solar cells. PMID:25761404

  16. Solar cell modules with improved backskin and methods for forming same

    DOEpatents

    Hanoka, Jack I.

    1998-04-21

    A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the

  17. New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    Synthetic fabrication strategy optimizes the illumination geometry and transport properties of dye-sensitized solar cells. Using oriented titanium oxide (TiO{sub 2}) nanotube (NT) arrays has shown promise for dye-sensitized solar cells (DSSCs). High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, for NT-based DSSCs, the light normally enters the cell through the counter electrode because a nontransparent titanium foil is typically used as the substrate for forming the aligned NTs and for making electrical contact with them. It has been synthetically challenging to prepare transparent TiO{sub 2} NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because it is difficult to control the synthetic conditions. National Renewable Energy Laboratory (NREL) researchers have developed a general synthetic strategy for fabricating transparent TiO{sub 2} NT films on TCO substrates. With the aid of a conducting Nb-doped TiO{sub 2} (NTO) layer between the Ti film and TCO substrate, the Ti film can be anodized completely without degrading the TCO. The NTO layer protects the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. NREL researchers found that the illumination direction and wavelength of the light incident on the DSSCs strongly influenced the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film thickness on the properties and performance of DSSCs and found that illuminating the cell from the photoelectrode side substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side. This method solves a key challenge in fabricating

  18. Nanosphere lithography for improved absorption in thin crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Yuanchih; Payne, David N. R.; Pollard, Michael E.; Pillai, Supriya; Bagnall, Darren M.

    2015-12-01

    Over the last decade, plasmonic nanoparticle arrays have been extensively studied for their light trapping potential in thin film solar cells. However, the commercial use of such arrays has been limited by complex and expensive fabrication techniques such as e-beam lithography. Nanosphere lithography (NSL) is a promising low-cost alternative for forming regular arrays of nanoscale features. Here, we use finite-difference time-domain (FDTD) simulations to determine the optical enhancement due to nanosphere arrays embedded at the rear of a complete thin film device. Array parameters including the nanosphere pitch and diameter are explored, with the FDTD model itself first validated by comparing simulations of Ag nanodisc arrays with optical measurements of pre-existing e-beam fabricated test structures. These results are used to guide the development of a nanosphere back-reflector for 20 μm thin crystalline silicon cells. The deposition of polystyrene nanosphere monolayers is optimized to provide uniform arrays, which are subsequently incorporated into preliminary, proof of concept device structures. Absorption and photoluminescence measurements clearly demonstrate the potential of nanosphere arrays for improving the optical response of a solar cell using economical and scalable methods.

  19. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  20. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%. PMID:26457966

  1. Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response

    NASA Astrophysics Data System (ADS)

    Sai, Hitoshi; Kanamori, Yoshiaki; Kondo, Michio

    2011-03-01

    Surface texturing is a technique commonly used to enhance light absorption in thin film silicon solar cells; it should be noted that highly textured substrates often induce structural defects in the active layer, which deteriorates the photovoltaic performance. In this paper, we propose a flattened light-scattering substrate (FLiSS) with a large refractive index contrast in plane as an approach to overcome this trade-off. A FLiSS composed of a two-dimensional ZnO grating and a Ag reflector is applied to μc-Si:H cells, in order to improve the spectral response in the infrared region while maintaining a high VOC and FF.

  2. Modified surface loading process for achieving improved performance of the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Jin, Zhongxiu; Zhu, Jun; Xu, Yafeng; Zhou, Li; Dai, Songyuan

    2016-06-01

    Achieving high surface coverage of the colloidal quantum dots (QDs) on TiO2 films has been challenging for quantum dot-sensitized solar cells (QDSCs). Herein, a general surface engineering approach was proposed to increase the loading of these QDs. It was found that S2- treatment/QD re-uptake process can significantly improve the attachment of the QDs on TiO2 films. Surface concentration of the QDs was improved by ∼60%, which in turn greatly enhances light absorption and decreases carrier recombination in QDSCs. Ensuing QDSCs with optimized QD loading exhibit a power conversion efficiency of 3.66%, 83% higher than those fabricated with standard procedures.

  3. Unravelling the working junction of aqueous-processed polymer-nanocrystal solar cells towards improved performance.

    PubMed

    Chen, Zhaolai; Du, Xiaohang; Jin, Gan; Zeng, Qingsen; Liu, Fangyuan; Yang, Bai

    2016-06-21

    Hybrid solar cells (HSCs) based on aqueous polymers and nanocrystals are attractive due to their environmental friendliness and cost effectiveness. In this study, HSCs are fabricated from a series of water-soluble polymers with different highest occupied molecular orbital (HOMO) levels and nanocrystals with different Fermi levels. We demonstrate that the working principle of the aqueous-processed HSCs follows a p-n junction instead of a type-II heterojunction. The function of the polymer is to provide an interface dipole which can improve the build-in potential of the HSCs. Subsequently, the aqueous-processed HSCs are optimized following a p-n junction and an improved PCE of 5.41% is achieved, which is the highest for aqueous-processed HSCs. This study will provide instructive guidelines for the development of aqueous-processed HSCs. PMID:27229447

  4. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  5. A study of improvements in silicon solar cell efficiency due to various geometrical and doping modifications

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    This paper presents the results of continued studies of silicon solar cell operation and limitations. The objective of this paper is to report on geometrical and doping changes in silicon solar cells which result in predictions of high efficiencies. Efficiencies as high as 20 per cent (uncorrected for metal coverage and ohmic sheet resistance) have been calculated for optimized cells. The conditions required to achieve these efficiency values are discussed.

  6. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    PubMed

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only. PMID:27253082

  7. Improved radiation resistant properties of electron irradiated c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ali, Khuram; Khan, Sohail A.; MatJafri, M. Z.

    2016-08-01

    This work investigates the radiation tolerance of c-Si solar cells under electron energy of 9 MeV with fluence of 5.09×1016 cm-2. The solar cells were fabricated and characterized before and after electron irradiation through current-voltage (I-V), capacitance-voltage (C-V), and frequency dependent conductance (Gp) measurements. The results revealed that all the output parameters such as short circuit current (Isc), open circuit voltage (Voc), series resistance (Rs), and efficiency (η) were degraded after electron irradiation. Capacitance-Voltage measurements show that there is a slight decrease in the base carrier concentration (ND), while a small increase in depletion layer width (WD) was due to an increase in the base carrier concentration. Enhancements in the density of interface states (Nss), and trap time constant (τ) have been observed after electron irradiation. The results has revealed that back surface field (BSF) solar cell with front surface passivation (FSP) presented lowest efficiency degradation ratio of 11.3% as compared to 15.3% of the solar cell without FSP. The subsequent annealing of irradiated Si solar cell devices revealed that the Si solar cell with FSP demonstrated high efficiency recovery ratio of 94% as compared to non-FSP solar cell.

  8. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging

    NASA Astrophysics Data System (ADS)

    Pedersen, E. B. L.; Angmo, D.; Dam, H. F.; Thydén, K. T. S.; Andersen, T. R.; Skjønsfjell, E. T. B.; Krebs, F. C.; Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Breiby, D. W.; Andreasen, J. W.

    2015-08-01

    Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing

  9. Role of hydrogen plasma pretreatment in improving passivation of the silicon surface for solar cells applications.

    PubMed

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yanjian; Wei, Changchun; Sun, Jian; Zhao, Ying

    2014-09-10

    We have investigated the role of hydrogen plasma pretreatment in promoting silicon surface passivation, in particular examining its effects on modifying the microstructure of the subsequently deposited thin hydrogenated amorphous silicon (a-Si:H) passivation film. We demonstrate that pretreating the silicon surface with hydrogen plasma for 40 s improves the homogeneity and compactness of the a-Si:H film by enhancing precursor diffusion and thus increasing the minority carrier lifetime (τ(eff)). However, excessive pretreatment also increases the density of dangling bond defects on the surface due to etching effects of the hydrogen plasma. By varying the duration of hydrogen plasma pretreatment in fabricating silicon heterojunction solar cells based on textured substrates, we also demonstrate that, although the performance of the solar cells shows a similar tendency to that of the τ(eff) on polished wafers, the optimal duration is prolonged owing to the differences in the surface morphology of the substrates. These results suggest that the hydrogen plasma condition must be carefully regulated to achieve the optimal level of surface atomic hydrogen coverage and avoid the generation of defects on the silicon wafer. PMID:25141300

  10. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  11. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance.

    PubMed

    Desta, Derese; Ram, Sanjay K; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R; Jensen, Pia B; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles. PMID:27244247

  12. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  13. Efficiency Improvement of Crystalline Solar Cells: Final Subcontract Report, 1 January 2002 - 30 September 2006

    SciTech Connect

    Weber, E. R.

    2007-11-01

    UC-Berkeley study of transition metal related defects in PV-grade mc-Si to understand their pathways into solar cells; chemical state/distribution; interaction with structural defects; defect engineering.

  14. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  15. Improve the operational stability of the inverted organic solar cells using bilayer metal oxide structure.

    PubMed

    Chang, Jingjing; Lin, Zhenhua; Jiang, Changyun; Zhang, Jie; Zhu, Chunxiang; Wu, Jishan

    2014-11-12

    Operational stability is a big obstacle for the application of inverted organic solar cells (OSCs), however, less talked about in the research reports. Due to photoinduced degradation of the metal oxide interlayer, which can cause shunts generation and degeneration in ZnO interlayer, a significant degradation of open circuit voltage (Voc) and fill factor (FF) has been observed by in situ periodic measurements of the device current density-voltage (J-V) curves with light illumination. By combining TiOx and ZnO to form bilayer structures on ITO, the photovoltaic performance is improved and the photoinduced degradation is reduced. It was found that the device based on ZnO/TiOx bilayer structure achieved better operational stability as compared to that with ZnO or TiOx interlayer. PMID:25299062

  16. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  17. Simulation of high-efficiency n[sup +]p indium phosphide solar cell results and future improvements

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1994-12-01

    A simulation of the highest efficiency (19.1% AM0) n[sup +]p indium phosphide (InP) solar cell was made using a computer code PC-1D in order to understand it and suggest future improvements to it. Available cell design and process data was used in the simulation. Minority carrier diffusion lengths in the emitter and base have been varied to match the experimental cell I-V characteristics with the calculated results. To further understand and improve the InP cell efficiency, simulations were performed using improved values of cell material and process parameters. The authors show that the efficiency of this cell could be increased to more than 23% AM0 by incorporating the suggested cell material, design and process improvements. At these high efficiencies InP cell technology will be very attractive for space use.

  18. Improving solar cell efficiencies by up-conversion of sub-band-gap light

    NASA Astrophysics Data System (ADS)

    Trupke, T.; Green, M. A.; Würfel, P.

    2002-10-01

    A system for solar energy conversion using the up-conversion of sub-band-gap photons to increase the maximum efficiency of a single-junction conventional, bifacial solar cell is discussed. An up-converter is located behind a solar cell and absorbs transmitted sub-band-gap photons via sequential ground state absorption/excited state absorption processes in a three-level system. This generates an excited state in the up-converter from which photons are emitted which are subsequently absorbed in the solar cell and generate electron-hole pairs. The solar energy conversion efficiency of this system in the radiative limit is calculated for different cell geometries and different illumination conditions using a detailed balance model. It is shown that in contrast to an impurity photovoltaic solar cell the conditions of photon selectivity and of complete absorption of high-energy photons can be met simultaneously in this system by restricting the widths of the bands in the up-converter. The upper limit of the energy conversion efficiency of the system is found to be 63.2% for concentrated sunlight and 47.6% for nonconcentrated sunlight.

  19. Application of Vacancy Injection Gettering to Improve Efficiency of Solar Cells Produced by Millinet Solar: Cooperative Research and Development Final Report, CRADA Number CRD-10-417

    SciTech Connect

    Sopori, B.

    2012-07-01

    NREL will apply vacancy injection gettering (VIG) to Millinet solar cells and evaluate the performance improvement produced by this process step. The VIG will be done in conjunction with the formation of a back, Al-alloyed, contact. Millinet Solar will provide NREL with cells having AR coating on the front side and screen-printed Al on the backside, which will be processed in the NREL's optical furnace to perform simultaneous VIG and back contact alloying with deep BSF. These cells will be sent back to Millinet solar for a screen-printed front/side contact mask, followed by a second firing at NREL. Detailed analyses will be performed to determine improvements due to BSF and VIG.

  20. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

    NASA Astrophysics Data System (ADS)

    Tan, Hairen; Sivec, Laura; Yan, Baojie; Santbergen, Rudi; Zeman, Miro; Smets, Arno H. M.

    2013-04-01

    We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (μc-Si:H) solar cells can be enhanced by 4.5 mA/cm2 with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The μc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm2 which is comparable to the state-of-the-art textured Ag/ZnO BR. The commonly observed deterioration of fill factor is avoided by using μc-SiOx:H as the n-layer for solar cells deposited on plasmonic BR.

  1. Polymer Solar Cells: Understanding Solvent Interactions and Morphology, and Strategies for Efficiency Improvements

    NASA Astrophysics Data System (ADS)

    Chang, Lilian

    Organic solar cells have the potential to be unrivaled in terms of processing cost, speed, and simplicity. The simplest of such devices consists of a single bulk-heterojunction (BHJ) active layer, in which the electron donor (conjugated polymer) and electron acceptor (fullerene) are deposited from a common solvent. The performance of BHJ solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g. by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. An understanding of the role of residual solvent in the BHJ layer is imperative in order to develop strategies for morphology stabilization and preserve the longevity of the device. This work highlights the effect of residual solvents on acceptor, (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) diffusion and ultimately the stability of the morphology. We first show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation between poly(3-hexylthiophene) (P3HT) and PCBM. We then show that the addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the film and improves the fill factor of the BHJ device without further tempering. Other commonly used additives for morphology improvement were also investigated, i.e. 1,8-diiodooctane and 1-chloronaphthalene. We show that the choice of solvent additives has direct implications on morphological evolution, i.e. P3HT:PCBM BHJ films processed with a small amount of 1,8-diiodooctane or 1-chloronaphthalene have more crystalline PCBM domains compared to crystalline P3HT domains, while the opposite is true for films cast with nitrobenzene additive and films cast purely from chlorobenzene. The BHJ film cross-links when annealed at 300°C in the presence of 1,8-diiodooctane. Cross-linking is found to

  2. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  3. Efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Ye, Xiaojun; Zhu, Jian; Zhang, Zhen; Yang, Junkun; Wu, Xuemei; Qiu, Bocang; Zhang, Ruiying

    2015-05-01

    We report on the experimental demonstration of the efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures. The structures, which are composed of SiNx nanodome structures and a thin SiNx film that is underneath the nanodome structures, were implemented via sequential processes using inductance-coupled plasma chemical vapor deposition (ICP-CVD), nanosphere lithography (NSL), and reactive ion etching (RIE). Compared with the a-SiGe:H solar cells without the SiNx composite nanostructures, solar cells with SiNx composite nanostructures exhibit that the surface reflectivity reduces down to less than 5% over the spectrum range of 200-700 nm, and the open circuit voltage (Voc) and fill factor (FF) increase up to 0.76 V from 0.70 V and 52.4% from 38.4% respectively, although the short circuit current density (Jsc) reduces down to 11.6 mA/cm2 from 14.7 mA/cm2. The improvement for Voc and FF indicates that a-SiGe:H solar cells were well passivated by using such SiNx composite structures, which results in the overall enhancement of the conversion efficiency from 4.38% to 5.13% finally. If the absorption of the dielectric composite nanostructures decreases, the higher conversion efficiency should be promisingly achieved in these Si-based thin film solar cells decorated by dielectric composite nanostructures.

  4. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    SciTech Connect

    Shen, L.; Liang, Z. C. Liu, C. F.; Long, T. J.; Wang, D. L.

    2014-02-15

    Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 10{sup 20} cm{sup −3} and 7.78 × 10{sup 20} cm{sup −3} and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 Ω/□ sheet resistance.

  5. Improved defect analysis of Gallium Arsenide solar cells using image enhancement

    NASA Technical Reports Server (NTRS)

    Kilmer, Louis C.; Honsberg, Christiana; Barnett, Allen M.; Phillips, James E.

    1989-01-01

    A new technique has been developed to capture, digitize, and enhance the image of light emission from a forward biased direct bandgap solar cell. Since the forward biased light emission from a direct bandgap solar cell has been shown to display both qualitative and quantitative information about the solar cell's performance and its defects, signal processing techniques can be applied to the light emission images to identify and analyze shunt diodes. Shunt diodes are of particular importance because they have been found to be the type of defect which is likely to cause failure in a GaAs solar cell. The presence of a shunt diode can be detected from the light emission by using a photodetector to measure the quantity of light emitted at various current densities. However, to analyze how the shunt diodes affect the quality of the solar cell the pattern of the light emission must be studied. With the use of image enhancement routines, the light emission can be studied at low light emission levels where shunt diode effects are dominant.

  6. Improvement of Charge Transportation in Si Quantum Dot-Sensitized Solar Cells Using Vanadium Doped TiO2.

    PubMed

    Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo

    2016-05-01

    The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells. PMID:27483838

  7. Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells.

    PubMed

    Kang, Seong Min; Jang, Segeun; Lee, Jong-Kwon; Yoon, Jungjin; Yoo, Dong-Eun; Lee, Jin-Wook; Choi, Mansoo; Park, Nam-Gyu

    2016-05-01

    A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time. Power conversion efficiency of the moth-eye patterned perovskite solar cell is improved by ≈11%, which mainly results from increasing light harvesting efficiency by structural optical property. PMID:26990492

  8. Circle chain embracing donor-acceptor organic dye: simultaneous improvement of photocurrent and photovoltage for dye-sensitized solar cells.

    PubMed

    Liu, Jian; Numata, Youhei; Qin, Chuanjiang; Islam, Ashraful; Yang, Xudong; Han, Liyuan

    2013-09-01

    We demonstrate for the first time that employing a circle chain embracing π-conjugated backbone is a promising strategy to construct superior organic sensitizers for dye-sensitized solar cells (DSCs), with simultaneous improvement of photocurrent and photovoltage. A DSC based on one circle chain embracing dye produced a high conversion efficiency of 8.34%. PMID:23604204

  9. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    SciTech Connect

    Mohamed, Norani Muti; Zaine, Siti Nur Azella

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  10. Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Lu, Ronghua; Xu, Ling; Ge, Zhaoyun; Li, Rui; Xu, Jun; Yu, Linwei; Chen, Kunji

    2016-03-01

    Silicon is the most widely used material for solar cells due to its abundance, non-toxicity, reliability, and mature fabrication process. In this paper, we fabricated silicon nanoholes (SiNHS)/gold nanoparticles (AuNPS)/organic hybrid solar cells and investigated their spectral and opto-electron conversion properties. SiNHS nanocomposite films were fabricated by metal-assisted electroless etching (EE) method. Then, we modified the surface of the nanocomposite films by exposing the samples in the air. After that, polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) blended with AuNPS were spin-coated on the surface of the SiNHS nanocomposite films as a hole-transporting layer. The external quantum efficiency (EQE) values of the solar cells with AuNPS are higher than that of the samples without AuNPS in the spectral region of 600-1000 nm, which were essential to achieve high performance photovoltaic cells. The power conversion efficiency (PCE) of the solar cells incorporating AuNPS exhibited an enhancement of 27 %, compared with that of the solar cells without AuNPS. We thought that the improved efficiency were attributed to localized surface plasmon resonance (LSPR) triggered by gold nanoparticles in SiNHS nanocomposite films.

  11. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Griffini, Gianmarco; Gerosa, Matteo; Turri, Stefano; Bongiovanni, Roberta

    2015-06-01

    Here we present how the sunlight radiation incident on a dye-sensitized solar cell (DSSC) can be shifted of a few tens of nanometers by means of an economical, easy to prepare and multifunctional photocurable fluoropolymeric light-shifting (LS) coating, to achieve both improved efficiency and device stability. By the introduction of a very small amount of a luminescent agent in the LS coating, the down-shifting of near-UV photons to higher wavelengths easily harvestable by the organic dye of a DSSC is successfully demonstrated. This optical effect not only results in an over 60% improvement of the power conversion efficiency of DSSC devices, but the UV light filtering action promoted by the luminescent agent also provides protection to the photosensitive DSSC components. This aspect, combined with a potential thermal shielding effect and the easy-cleaning behavior imparted to the coating by its fluorinated nature, leads to excellent device stability as evidenced from an aging test performed outdoors under real operating conditions for more than 2000 h. Our study demonstrates that the use of light-cured multifunctional coatings with light management characteristics at the nanometer scale represents a new promising strategy to simultaneously increase the performance and durability of DSSC devices.

  12. Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both.

    PubMed

    Winans, Joshua D; Hungerford, Chanse; Shome, Krishanu; Rothberg, Lewis J; Fauchet, Philippe M

    2015-02-01

    Thin-film hydrogenated amorphous silicon (a-Si:H) solar cells that are free-standing over a 2x2 mm area have been fabricated with thicknesses of 150 nm, 100 nm, and 60 nm. Silver nanoparticles (NPs) created on the front and/or back surfaces of the solar cells led to improvement in performance measures such as current density, overall efficiency, and external quantum efficiency. The effect of changing silver nanoparticle size and incident light angle was tested. Finite-Difference Time-Domain simulations are presented as a way to understand the experimental results as well as guide future research efforts. PMID:25836257

  13. Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at Al cathode

    NASA Astrophysics Data System (ADS)

    Wang, Mingdong; Xie, Fangyan; Xie, Weiguang; Zheng, Shizhao; Ke, Ning; Chen, Jian; Zhao, Ni; Xu, J. B.

    2011-05-01

    Organic solar cells are commonly susceptible to degradation in air. We present that insertion of a thin layer of thermally evaporated copper oxide (CuOx) between the organic active layer and the Al cathode can greatly extend the lifetime of P3HT:PCBM based bulk heterojunction solar cells. The performance can be further improved by applying an interfacial bilayer of CuOx/LiF. Our results suggest that the CuOx functions not only as a charge transport layer but also as a protection layer, which prevents formation of thick organic-Al interdiffusion area. This leads to a more air-resistive cathode/organic interface.

  14. Role of 2-D periodic symmetrical nanostructures in improving efficiency of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Liyong; Li, Xiangyin

    2016-01-01

    We systematically investigated several different nanostructures in crystalline silicon (c-Si) thin film solar cells and then proposed a brand-new structure with two dimensional (2-D) periodic dielectric cylinders on the top and annular metal columns on bottom surface to enhance the optical harvesting. The periodic symmetrical nanostructures affect the solar cell efficiency due to the grating diffraction effect of dielectric columns and surface plasmon polaritons (SPPs) effect induced by metal nanostructures at the dielectric-metal interface. About 52.1% more optical absorption and 33.3% more power conversion efficiency are obtained, and the maximum short current reaches to 33.24 mA/cm2.

  15. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  16. Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering

    PubMed Central

    Jung, Min-Cherl; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing

    2015-01-01

    We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the valence band maximum of perovskite for efficient hole extraction while maintaining a high open circuit voltage. Time-dependent solar cell performance measurements revealed significantly improved air stability for perovskite solar cells with the n-i-p structured spiro-OMeTAD HTL showing sustained efficiencies even after 840 h of air exposure. PMID:25985417

  17. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes.

    PubMed

    Li, Luping; Xu, Cheng; Zhao, Yang; Chen, Shikai; Ziegler, Kirk J

    2015-06-17

    Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended. PMID:26010178

  18. Improvement of device performance by using zinc oxide in hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Hayakawa, Akinobu; Sagawa, Takashi

    2016-02-01

    Zinc oxide (ZnO) nanopowder was applied to hybrid solar cells in combination with poly(3-hexylthiophene). Stability tests of the hybrid solar cell with or without encapsulation with glass and UV cut-off films were performed under 1 sun at 63 °C at a relative humidity of 50%. It was found that the sealed cell showed worse device performance in terms of the loss of the open-circuit voltage (Voc), whereas the unsealed cell exposed to air retained an almost constant Voc for more than 3 d under dark and atmospheric conditions. Placement in O2 atmosphere in the dark led to the recovery of Voc. Cation (Sn4+) doping into ZnO was performed, and the loss of Voc was effectively suppressed through the restraint of the supply of the excited electron from the valence band to the conduction band.

  19. Disorder improves nanophotonic light trapping in thin-film solar cells

    SciTech Connect

    Paetzold, U. W. Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U.; Michaelis, D.; Waechter, C.

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  20. Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability.

    PubMed

    Lu, Yunzhang; Alexander, Clement; Xiao, Zhengguo; Yuan, Yongbo; Zhang, Runyu; Huang, Jinsong

    2012-08-31

    Roll-to-roll lamination is one promising technique to produce large-area organic electronic devices such as solar cells with a large through output. One challenge in this process is the frequent electric point shorting of the cathode and anode by the excess or concentrated applied stress from many possible sources. In this paper, we report a method to avoid electric point shorting by incorporating insulating and hard barium titanate (BaTiO(3)) nanoparticles (NPs) into the active layer to work as a spacer. It has been demonstrated that the incorporated BaTiO(3) NPs in poly(3-hexylthiophene):[6,6]-phenyl-c-61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction solar cells cause no deleterious effect to the power conversion process of this type of solar cell. The resulting laminated devices with NPs in the active layer display the same efficiency as the devices without NPs, while the laminated devices with NPs can sustain a ten times higher lamination stress of over 6 MPa. The flexible polymer solar cell device with incorporated NPs shows a much smaller survivable curvature radius of 4 mm, while a regular flexible device can only sustain a bending curvature radius of 8 mm before fracture. PMID:22886059

  1. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  2. Improved Performance of Electroplated CZTS Thin-Film Solar Cells with Bifacial Configuration.

    PubMed

    Ge, Jie; Yu, Yue; Ke, Weijun; Li, Jian; Tan, Xinxuan; Wang, Zhiwei; Chu, Junhao; Yan, Yanfa

    2016-08-23

    Annealing in S vapor greatly improves the performance of electroplated Cu2 ZnSnS4 (CZTS) solar cells based on the bifacial configuration of Al-doped ZnO (AZO, front contact)/ZnO/CdS/CZTS/indium tin oxide (ITO, back contact), as compared to H2 S annealing in our previous works. S-vapor annealing does not cause severe damage to the conductivity of the ITO back contact. The highest device efficiency of 5.8 % was reached under 1 sun illumination from the AZO side. The well-preformed devices based on the ITO back contact demonstrate smaller series resistances and better fill factors, as compared to our substrate-type devices using Mo back contacts. An interfacial reaction at the ITO back contact has been revealed in experiments, which contributes to the formation of SnO2 -enriched interfacial layer and diffusion of In from ITO into CZTS through the Sn sites. Incorporation of In does not significantly change the optical and structural properties or the grain size of CZTS absorbers. PMID:27400033

  3. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    DOE PAGESBeta

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; Hurd, Olivia K.; Webb, Joseph A.; Puretzky, Alexander A.; Geohegan, David B.; Bardhan, Rizia

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particlemore » density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.« less

  4. Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Colina, M.; Morales-Vilches, A.; Voz, C.; Martín, I.; Ortega, P.; Orpella, A.; López, G.; Alcubilla, R.

    2015-05-01

    In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064 nm, lamp-pumped system, working at pulse durations of 100 and 400 ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n + p local junctions were created by LIFT and the resulting J-V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency.

  5. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  6. Thin, Lightweight Solar Cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  7. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-01

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs. PMID:26900763

  8. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  9. Improved performance and stability in quantum dot solar cells through band alignment engineering

    NASA Astrophysics Data System (ADS)

    Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir; Bawendi, Moungi G.

    2014-08-01

    Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.

  10. Improved performance and stability in quantum dot solar cells through band alignment engineering.

    PubMed

    Chuang, Chia-Hao M; Brown, Patrick R; Bulović, Vladimir; Bawendi, Moungi G

    2014-08-01

    Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates. PMID:24859641

  11. Investigation of the magnetic nickel nanoparticle on performance improvement of P3HT:PCBM solar cell

    NASA Astrophysics Data System (ADS)

    Gong, Xiu; Jiang, Yurong; Zhang, Congcong; Yang, Lei; Li, Meng; Ma, Heng

    2016-04-01

    This work reports an investigation on the performance improvement of bulk heterojunction polymer solar cells made of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) blend system by introducing nickel nanoparticles (Ni NPs). Using the simplest cell structure, the addition ratio of 2 % of Ni NPs results in a remarkable increase in the light absorption and the short current, which brings an enhancement on power conversion efficiency with 25 % compared with the reference device. The analysis indicates that the electromagnetic surface wave generated from Ni NPs coupled with the photoactive layer forms surface plasmon resonance, which can result in a light trapping effect to increase the light absorption. As a conclusion, the inexpensive Ni NPs may provide an effect and alternative process on the performance improvement of the polymer solar devices.

  12. Improvement in the performance of inverted organic solar cell using electric field assisted spray deposited ZnO layer

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2015-06-01

    ZnO film was deposited using spray technique. The application of electric field (applying a DC voltage = 700V to the nozzle) during spray deposition provide compact nanostructured film of ZnO as compared to agglomerated ZnO film deposited using spray process. The ZnO film deposited after applying DC voltage during spray process showed good crystallinity as well as transmittance in the visible range. Use of this crystalline, compact layer of ZnO in inverted organic solar cell (ITO/ZnO/P3HT: PCBM/Ag) provide improved efficiency of 2.8% with JSC of 14.0 mA/cm2, VOC of 0.55V and FF of 36%. Thus the process remove the need of any post deposition treatment to improve the film quality as well as solar cell performance.

  13. Improvement in open circuit voltage of MEHPPV-FeS2 nanoparticle based organic inorganic hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Layek, Animesh; Middya, Somnath; Ray, Partha Pratim

    2013-02-01

    In this study we have synthesized high quality FeS2 nanoparticles by solvothermal route and was applied as semiconducting acceptor in MEHPPV:FeS2 nanoparticle based organic inorganic hybrid solar cells. The open circuit voltage improved from 0.64V to 0.72V of the device due to modification of band gap of donor material by introducing nanoparticles.

  14. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?

    PubMed Central

    Yang, L.; Pillai, S.; Green, M. A.

    2015-01-01

    Plasmonic nanoparticles located on the illuminated surface of a solar cell can perform the function of an antireflection layer, as well as a scattering layer, facilitating light-trapping. Al nanoparticles have recently been proposed to aid photocurrent enhancements in GaAs photodiodes in the wavelength region of 400–900 nm by mitigating any parasitic absorption losses. Because this spectral region corresponds to the top and middle sub-cell of a typical GaInP/GaInAs/Ge triple junction solar cell, in this work, we investigated the potential of similar periodic Al nanoparticles placed on top of a thin SiO2 spacer layer that can also serve as an antireflection coating at larger thicknesses. The particle period, diameter and the thickness of the oxide layers were optimised for the sub-cells using simulations to achieve the lowest reflection and maximum external quantum efficiencies. Our results highlight the importance of proper reference comparison, and unlike previously published results, raise doubts regarding the effectiveness of Al plasmonic nanoparticles as a suitable front-side scattering medium for broadband efficiency enhancements when compared to standard single-layer antireflection coatings. However, by embedding the nanoparticles within the dielectric layer, they have the potential to perform better than an antireflection layer and provide enhanced response from both the sub-cells. PMID:26138405

  15. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?

    NASA Astrophysics Data System (ADS)

    Yang, L.; Pillai, S.; Green, M. A.

    2015-07-01

    Plasmonic nanoparticles located on the illuminated surface of a solar cell can perform the function of an antireflection layer, as well as a scattering layer, facilitating light-trapping. Al nanoparticles have recently been proposed to aid photocurrent enhancements in GaAs photodiodes in the wavelength region of 400-900 nm by mitigating any parasitic absorption losses. Because this spectral region corresponds to the top and middle sub-cell of a typical GaInP/GaInAs/Ge triple junction solar cell, in this work, we investigated the potential of similar periodic Al nanoparticles placed on top of a thin SiO2 spacer layer that can also serve as an antireflection coating at larger thicknesses. The particle period, diameter and the thickness of the oxide layers were optimised for the sub-cells using simulations to achieve the lowest reflection and maximum external quantum efficiencies. Our results highlight the importance of proper reference comparison, and unlike previously published results, raise doubts regarding the effectiveness of Al plasmonic nanoparticles as a suitable front-side scattering medium for broadband efficiency enhancements when compared to standard single-layer antireflection coatings. However, by embedding the nanoparticles within the dielectric layer, they have the potential to perform better than an antireflection layer and provide enhanced response from both the sub-cells.

  16. Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint

    SciTech Connect

    Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

    2011-07-01

    This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600˚C-650˚C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.218% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

  17. Indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving

    1991-01-01

    The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

  18. Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Chen, Dong-Sheng; Yang, Jie; Xu, Fei; Zhou, Ping-Hua; Du, Hui-Wei; Shi, Jian-Wei; Yu, Zheng-Shan; Zhang, Yu-Hong; Brian, Bartholomeusz; Ma, Zhong-Quan

    2013-01-01

    In this paper, we investigated the effect of rapid thermal annealing (RTA) on solar cell performance. An opto-electric conversion efficiency of 11.75% (Voc = 0.64 V, Jsc = 25.88 mA/cm2, FF=72.08%) was obtained under AM 1.5G when the cell was annealed at 300 °C for 30 s. The annealed solar cell showed an average absolute efficiency 1.5% higher than that of the as-deposited one. For the microstructure analysis and the physical phase confirmation, X-ray diffraction (XRD), Raman spectra, front surface reflection (FSR), internal quantum efficiency (IQE), and X-ray photoelectron spectroscopy (XPS) were respectively applied to distinguish the causes inducing the efficiency variation. All experimental results implied that the RTA eliminated recombination centers at the p-n junction, reduced the surface optical losses, enhanced the blue response of the CdS buffer layer, and improved the ohmic contact between Mo and Cu(In, Ga)Se2 (CIGS) layers. This leaded to the improved performance of CIGS solar cell.

  19. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  20. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency.

    PubMed

    Funde, Adinath M; Nasibulin, Albert G; Syed, Hashmi Gufran; Anisimov, Anton S; Tsapenko, Alexey; Lund, Peter; Santos, J D; Torres, I; Gandía, J J; Cárabe, J; Rozenberg, A D; Levitsky, Igor A

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics. PMID:27005494

  1. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency

    NASA Astrophysics Data System (ADS)

    Funde, Adinath M.; Nasibulin, Albert G.; Gufran Syed, Hashmi; Anisimov, Anton S.; Tsapenko, Alexey; Lund, Peter; Santos, J. D.; Torres, I.; Gandía, J. J.; Cárabe, J.; Rozenberg, A. D.; Levitsky, Igor A.

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  2. Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications

    NASA Astrophysics Data System (ADS)

    Gu, Jin-Hua; Si, Jia-Le; Wang, Jiu-Xiu; Feng, Ya-Yang; Gao, Xiao-Yong; Lu, Jing-Xiao

    2015-11-01

    The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4×10-4 Ω·m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H. Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050501).

  3. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  4. Comprehensive Insights into Charge Dynamics and Improved Photoelectric Properties of Well-Designed Solar Cells.

    PubMed

    Liu, Xiangyang; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong

    2016-08-17

    Here, Zn2SnO4 nanorods/Cu4Bi4S9 (ZTO/CBS) and ZTO nanorods/CBS-graphene nanosheets (ZTO/CBS-GNs), as well as two types of bulk heterojunction (BHJ) solar cells with high flexibility were fabricated on stainless steel meshes (SSMs). The excellent photovoltaic responses of CBS-GNs and ZTO/CBS-GNs with incorporation of GNs were determined using surface photovoltage spectroscopy (SPS). The signals of time-resolved fluorescence response (TFR) and transient surface photovoltage (TPV) can provide more detailed information for transition, separation, and transport of photoinduced carriers. Besides, the ZTO nanorods/CBS-GNs cell exhibits the superior performance and the highest efficiency is 11.2%. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZTO. The multi-interfacial recombination is the major carrier loss with electrical impedance spectroscopy (EIS) and the hole selective NiO can efficiently accelerate the charge extraction to the external circuit. The comprehensive signals of SPS, EIS, TFR, and TPV provide insights into transition, separation, recombination and shifting of carriers. Importantly, the BHJ flexible solar cells with high efficiency and facile, scalable production present a potential for application. PMID:27455131

  5. Improving Performance of Dye-Sensitized Solar Cell by Multi-Emission Effect of Phosphors.

    PubMed

    Kim, Young Moon; Kim, Chang Seob; Choi, Hyung Wook

    2015-10-01

    Generally, the N-719 dye, used in dye-sensitized solar cells (DSSCs), only absorbs visible light in the wavelength range from 400 to 700 nm. Consequently, most of the ultraviolet and infrared rays from the sun are not utilized by this dye. However, ultraviolet and infrared rays can be converted to visible light by upconversion luminescence. Such visible light can then be reabsorbed by the dye, allowing for a larger range of solar irradiation to be utilized in DSSCs. Phosphor (ZnGa2O4, Y2O3:Er(3+)), acting as a luminescence medium, was added to the TiO2 electrode of DSSCs, and owing to the effect of upconversion, it increased their photocurrent density and efficiency. Phosphor (ZnGa2O4, Y2O3:Er(3+)) co-doped TiO2 electrode cells showed better performance than phosphor-free cells. In fact, the highest efficiency observed for a DSSC containing five phosphor layers was 7.03% with a short-circuit current density (Jsc) of 15.62 mA/cm2, an open circuit voltage (Voc) of 0.661 V, and a fill factor (FF) of 68.17%. PMID:26726482

  6. Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Yurong; Yang, Haigang; Cao, Weiwei; Wang, Guangna; Ma, Heng; Chang, Fanggao

    2014-09-01

    A simple, low-cost, post-black etching process atop the random pyramidal emitter has been proposed and investigated. The multi-scale texture is achieved by combining nanoporous layer formed by the post-black etching with micron-scale pyramid texture. Compared to the pre-black etched Si solar cells, our experiments clearly show the advantage of post-black etched texturing: it enables high blue response and improved conversion efficiency. As a result, the enhancement of 7.1 mA/cm2 on the short-circuit current density and improvement of 31 % in the conversion efficiency have been reached.

  7. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells

    PubMed Central

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (Jsc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres. PMID:24982606

  8. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  9. Improvement of power efficiency of polymer solar cell based on P3HT: PCBM blends

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Guo, Jinchuan; Sun, Xiuquan; Zhou, Bin

    2008-03-01

    The effect of interlayer on the performance of a poly[2-methoxy-5-(3',7'-dimethylocty)-1,4-phenylenevinylene] (MDMO-PPV)/1-(3-methoxycarbony 1)-propy1-1 phney1-(6-6)C 61 (PCBM) composite solar cell device has been reported recently. Herein we report bulk heterojunction organic solar cell with efficiency enhanced by interlayer made from blend film of regioregular poly(3-hexylthiophene)(P3HT) and PCBM. The interlayer, poly(9,9-dioctylfluorene)-co-N-(1,4-butylphenyl)diphenylamine)(TFB), was inserted between the poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonic acid)(PEDOT:PPS) and the active layer. With the interlayer, the efficiency was enhanced due to the increased short circuit current density (Jsc), open circuit voltage (Voc) and fill factor (FF) obtained from testing and calculation. According to the analysis, the interlayer TFB, acting as an effective exciton-blocking layer, prevented the severe quenching of radiative excitons between the interface of PEDOT:PSS. In the study, the interlayer increased Jsc from 0.891 mA/cm2 to 1.025 mA/cm -2, Voc from 0.478 V to 0.526 V, and FF from 0.327 to 0.416, under illumination by white light from a solar simulator with an incident intensity of 80mW/cm2; the power conversion efficiency of the device reached higher value 0.280% comparing with 0.174% with no interlayer.

  10. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.

    PubMed

    Yang, Lijun; Leung, Wallace Woon-Fong; Wang, Jingchuan

    2013-08-21

    Dye sensitized solar cells (DSSCs) offer the potential of being low-cost, high-efficiency photovoltaic devices. However, the power conversion efficiency is limited as they cannot utilize all photons of the visible solar spectrum. A novel design of a core-shell photoanode is presented herein where a thin shell of infrared dye is deposited over the core of a sensitized TiO2 nanofiber. Specifically, a ruthenium based dye (N719) sensitized TiO2 nanofiber is wrapped by a thin shell of copper phthalocyanine (CuPc). In addition to broadening the absorption spectrum, this core-shell configuration further suppresses the electron-hole recombination process. Instead of adopting the typical Förster resonance energy transfer, upon photons being absorbed by the infrared dye, electrons are transferred efficiently through a cascade process from the CuPc to the N719 dye, the conduction band of TiO2, the FTO electrode and finally the external circuit. Concurrently, photons are also absorbed by the N719 dye with electrons being transferred in the cell. These additive effects result in a high power conversion efficiency of 9.48% for the device. The proposed strategy provides an alternative method for enhancing the performance of DSSCs for low-cost renewable energy in the future. PMID:23831867

  11. Material growth and characterization directed toward improving III-V heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.

    1979-01-01

    In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.

  12. Toward Better Understanding and Improved Performance of Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect

    Wang, T. H.; Page, M. R.; Iwaniczko, E.; Levi, D. H.; Yan, Y.; Branz, H. M.; Yelundur, V.; Rohatgi, A.; Bunea, G.; Terao, A.; Wang, Q.

    2004-08-01

    The double-sided silicon heterojunction (SHJ) solar cell is more appropriate for n-type crystal silicon (c-Si) wafers than for p-type c-Si wafers because there is a larger band offset to the valence band edge of hydrogenated amorphous silicon than to the conduction band edge. Thin intrinsic and doped hydrogenated amorphous silicon (a Si:H) double layers by hot-wire chemical vapor deposition (HWCVD) are investigated as passivation layers, emitters, and back-surface-field (BSF) contacts to both p- and n-type wafers. Passivation quality is studied by characterizing the SHJ solar cells and by photoconductive decay (PCD) minority-carrier lifetime measurements. The crystal-amorphous heterointerface is studied with real-time spectroscopic ellipsometry (RTSE) and high-resolution transmission electron microscopy (HRTEM) to detect phase change and material evolution, with a focus on better understanding the factors determining passivation effectiveness. A common feature in effective passivation, emitter, and BSF layers is immediate a-Si:H deposition and an abrupt and flat interface to the c-Si substrate. In this case, good wafer passivation or an excellent heterojunction is obtained, with a low interface recombination velocity (S) or a high open-circuit voltage (Voc). Voc greater than 640 mV, S less than 15 cm/sec, and efficiency of 14.8% have been achieved on polished p type Czochralski-grown (CZ) Si wafers. Collaboration between NREL and Georgia Tech resulted in a 15.7%-efficient HWCVD-deposited SHJ cell on non-textured FZ-Si with a screen-printed Al back surface field (BSF), the highest reported HWCVD SHJ cell. Collaboration between NREL and SunPower demonstrated that HWCVD a-Si:H passivation can be better than the conventional oxides, with a low surface recombination velocity of 42 cm/sec on textured n-type FZ-Si.

  13. Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2011-08-01

    The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

  14. New strategies in laser processing of TCOs for light management improvement in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Lauzurica, S.; Lluscà, M.; Canteli, D.; Sánchez-Aniorte, M. I.; López-Vidrier, J.; Hernández, S.; Bertomeu, J.; Molpeceres, C.

    2014-10-01

    Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.

  15. Catalytic Improvement on Counter Electrode of Dye-Sensitized Solar Cells Using Electrospun Pt Nano-Fibers.

    PubMed

    Seol, Hyunwoong; Shiratani, Masaharu; Seneekatima, Kannanut; Pornprasertsuk, Rojana

    2016-04-01

    A dye-sensitized solar cell is one of cost-competitive photovoltaic devices. For higher performance, all components have been actively studied and improved. However, Pt is still a dominant catalyst since first development although some catalytic materials were studied so far. Catalytic materials of counter electrode play an important role in the performance because it supplies electrons from counter electrode to electrolyte. Therefore, the catalytic activation of counter electrode is closely connected with the performance enhancement. In this work, Pt nano-fiber was fabricated by electrospinning and applied for the counter electrode. Its wide surface area is advantageous for good conductivity and catalytic activation. Morphological characteristics of nano-fibers were analyzed according to electrospinning conditions. Photovoltaic properties, cyclic voltammetry, impedance analysis verified the catalytic activation. Consequently, dye-sensitized solar cell with Pt nano-fiber electrospun at 5.0 kV of applied voltage had higher performance than conventional dye-sensitized solar cell with Pt thin film. This work is significant for related researches because all nano-fibers counter electrode material proposed so far never exceeded the performance of conventional Pt counter electrode. PMID:27451627

  16. p-n junction improvements of Cu2ZnSnS4/CdS monograin layer solar cells

    NASA Astrophysics Data System (ADS)

    Kauk-Kuusik, M.; Timmo, K.; Danilson, M.; Altosaar, M.; Grossberg, M.; Ernits, K.

    2015-12-01

    In this work we studied the influence of oxidative etching of CZTS monograin surface to the performance of CZTS monograin layer solar cells. The chemistry of CZTS monograin powder surfaces submitted to bromine in methanol and KCN aqueous solutions was investigated by X-ray photoelectron spectroscopy. After bromine etching, elemental sulfur, Sn-O and/or Sn-Br species are formed on the CZTS crystal surface. Sulfur is completely removed by subsequent KCN etching, but oxides and bromides remained on the surface until CdS deposition. These species dissolve in alkaline solution and influence properties of CdS. The conversion efficiency of solar cells improved after the chemical etching prior to CdS deposition and the effect can be attributed to the change of the absorber material crystals surface composition and properties suitable for the effective p-n junction formation. The best CZTS monograin layer solar cell showed conversation efficiency of 7.04% (active area 9.38%).

  17. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  18. Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage

    SciTech Connect

    Kekuda, Dhananjaya; Chu, Chih-Wei

    2011-10-20

    We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

  19. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively. PMID:26413646

  20. Thylakoid direct photobioelectrocatalysis: utilizing stroma thylakoids to improve bio-solar cell performance.

    PubMed

    Rasmussen, Michelle; Minteer, Shelley D

    2014-08-28

    Thylakoid membranes from spinach were separated into grana and stroma thylakoid fractions which were characterized by several methods (pigment content, protein gel electrophoresis, photosystem activities, and electron microscopy analysis) to confirm that the intact thylakoids were differentiated into the two domains. The results of photoelectrochemical experiments showed that stroma thylakoid electrodes generate photocurrents more than four times larger than grana thylakoids (51 ± 4 nA cm(-2) compared to 11 ± 1 nA cm(-2)). A similar trend was seen in a bio-solar cell configuration with stroma thylakoids giving almost twice the current (19 ± 3 μA cm(-2)) as grana thylakoids (11 ± 2 μA cm(-2)) with no change in open circuit voltage. PMID:25019197

  1. Improved efficiency of electrodeposited p-CuO/n-Cu2O heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Jayathilaka, Charith; Kapaklis, Vassilios; Siripala, Withana; Jayanetti, Sumedha

    2015-06-01

    We report electrodeposition of n-type cuprous oxide (Cu2O) films on p-type CuO films electrodeposited on Ti substrates for forming p-CuO/n-Cu2O heterostructures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis revealed that the films had good structural quality, with substrates being well-covered by the films. The p-CuO/n-Cu2O heterojunctions exhibited good photovoltaic properties and diode characteristics. The surfaces of Cu2O films subject to ammonium sulfide treatment exhibited enhanced photocurrents. Under AM 1.5 illumniation, the obtained sulfur-treated and annealed Ti/p-CuO/n-Cu2O/Au solar cell structure yielded energy conversion efficiency of 0.64%, with Voc = 220 mV and Jsc = 6.8 mA cm-2.

  2. Improved performance of carbon nanotubes—manganese doped cadmium sulfide quantum dot nanocomposite based solar cell

    NASA Astrophysics Data System (ADS)

    Kaur, Rajnish; Priya, Nidhi; Deep, Akash

    2016-01-01

    The nanocomposites of carbon nanotubes with quantum dots (MWCNT-QDS) display the capability of light induced charge dissociation and transport, which make them suitable for photovoltaic applications. The present work reports the coupling of multiwalled CNT (MWCNT) with L-cysteine (2-amino 3-mercaptopropionic acid) capped manganese doped cadmium sulfide QDs (CdS:Mn). The confirmation of the MWCNT-CdS:Mn nanocomposite formation is done with various instrumental techniques. Current-voltage studies of the MWCNT-CdS:Mn thin film indicate their semiconducting behavior. Further, cyclic voltammetry and frequency response analyses of the above MWCNT-CdS:Mn thin film have highlighted their potential application as a photoanode material in dye sanitized solar cells. It has been demonstrated that the use of MWCNT-CdS:Mn nanocomposite as a photoanode material offer better photocurrent characteristics as compared to QDS alone.

  3. Improvements in contact resistivity and thermal stability of Au-contacted InP solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    Specific contact resistivities for as-fabricated Au contacts on n-p InP solar cells are typically in the 10(exp -3) ohm/sq cm range, but contact resistivities in the 10(exp -6) ohm/sq cm range can be obtained if the cells are heat treated at 400 C for a few minutes. This heat treatment, however, results in a dramatic drop in the open circuit voltage of the cell due to excessive dissolution of the emitter into the metallization. It was found that low values of contact resistivity can be secured without the accompanying drop in the open circuit voltage by adding Ga and In in the Au metallization. It is shown that Au contacts containing as little as 1 percent atomic Ga can suppress the reaction that takes place at the metal-InP interface during heat treatment, while exhibiting contact resistivity values in the low 10(exp -5) ohm/sq cm. Detailed explanations for the observed superior thermal stability of these contacts are presented.

  4. Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance.

    PubMed

    Miao, Chuang; Chen, Cong; Dai, Qilin; Xu, Lin; Song, Hongwei

    2015-02-15

    In this work, rare earth (RE) ion RE(3+) (RE(3+)=Dy(3+), Ho(3+) and Er(3+)) doped and undoped In2O3 nanotubes are synthesized by the electrospinning method and the band gap of In2O3 is systemically controlled, depending on the order of doped elements. Dye-sensitized solar cells (DSSCs) based on In2O3:RE(3+) nanotubes are also fabricated, and significantly improved performance of In2O3-DSSC is observed due to the modulation of the band gap, larger recombination charge transfer resistance and longer electron lifetime. PMID:25460702

  5. Highly Asymmetric n(+) -p Heterojunction Quantum-Dot Solar Cells with Significantly Improved Charge-Collection Efficiencies.

    PubMed

    Choi, Min-Jae; Kim, Sunchuel; Lim, Hunhee; Choi, Jaesuk; Sim, Dong Min; Yim, Soonmin; Ahn, Byung Tae; Kim, Jin Young; Jung, Yeon Sik

    2016-03-01

    The depletion region width of metal-oxide/quantum-dot (QD) heterojunction solar cells is increased by a new method in which heavily boron-doped n(+) -ZnO is employed. It is effectively increased in the QD layer by 30% compared to the counterpart with conventional n-ZnO, and provides 41% and 37% improvement of Jsc (16.7 mA cm(-2) to 23.5 mA cm(-2) ) and power conversion efficiency (5.52% to 7.55%), respectively. PMID:26689133

  6. Solar cell device

    SciTech Connect

    Nishiura, M.; Haruki, H.; Miyagi, M.; Sakai, H.; Uchida, Y.

    1984-06-26

    A solar cell array is equipped with serially or parallel connected reverse polarity diodes formed simultaneously with the array. The diodes are constituted by one or more solar cells of the array which may be shaded to prevent photoelectric conversion, and which are electrically connected in reverse polarity with respect to the remaining cells.

  7. Heterojunction solar cell

    DOEpatents

    Olson, Jerry M.

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  8. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  9. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  10. Interfacial quality improvement of Cu(In,Ga)Se2 thin film solar cells by Cu-depletion layer formation

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahito; Toki, Soma; Sugiura, Hiroki; Nakada, Kazuyoshi; Yamada, Akira

    2016-09-01

    Se irradiation with time, t Se, was introduced after the second stage of a three-stage process to control the Cu2Se layer during Cu(In,Ga)Se2 (CIGS) deposition. Open circuit voltage and fill factor of CIGS solar cells could be improved by introducing Se irradiation. We concluded that the control of the Cu2Se layer led to the formation of a Cu-depletion CIGS layer (CDL), which improved conversion efficiency owing to suppression of interfacial recombination by a valence band offset formed between CIGS and the CDL. Finally, highest efficiency of 19.8% was achieved with t Se of 5 min. This very simple and new technique is promising for the improvement of photovoltaic performance.

  11. Improved amorphous Si solar cells. Quarterly progress report No. 5, February 1-April 30, 1981

    SciTech Connect

    Dalal, V.

    1981-11-01

    Both n and p-type a-Si:H films with very high conductivities have been grown by diluting SiH/sub 4/ in Ar or H/sub 2/. These films have Fermi levels close to the conduction and valence bands (0.03 eV). The use of these heavily doped films as p/sup +/ and n/sup +/ junction layers in a p/sup +/in/sup +/ cell should increase the diffusion voltage of the diode, thereby increasing both J/sub sc/ and V/sub oc/. The analysis of conductivity and thermoelectric power on films of diverse thickness have revealed no systematic changes. However, the drift mobility shows a systematic increase with thickness. The analysis of cells by studying quantum efficiency vs. applied voltage has revealed the electron (..mu.. tau) product is limiting transport in nip cells and not the hole (..mu.. tau) product. Analysis reveals that typically (..mu.. tau)/sub eta/ = 10/sup -9/ cm/sup 2//V. A new device design, Tandem parallel-connected cells, has been evolved to improve the current collection in a-Si cells. This design may help increase J/sub sc/ to 15 to 16 mA/cm/sup 2/ in a-Si:H.

  12. Lanthanum Hexaboride As Novel Interlayer for Improving the Thermal Stability of P3HT:PCBM Organic Solar Cells.

    PubMed

    Chambon, Sylvain; Murat, Yolande; Wantz, Guillaume; Hirsch, Lionel; Tardy, Pascal

    2015-11-18

    For efficient organic photovoltaic (OPV) solar cells, a low work function electrode is necessary to enhance the built-in voltage of the active layer, thereby improving the overall efficiency. Calcium is often used for this purpose in the laboratory; however, its development on a larger scale is impaired by its high reactivity with oxygen and water and the resulting low stability of solar cells under operation. The influence of a novel interlayer, lanthanum hexaboride (LaB6), on the electronic properties of OPV is studied in this work. Similarly to calcium, when LaB6 is used as an interlayer, it enhances the built-in voltage in the device, leading to a higher fill factor (FF) and optimal open circuit voltage (V(oc)). As a result, optimized LaB6-based devices present significantly improved power conversion efficiencies. More importantly, while calcium/aluminum (Ca/Al) and aluminum (Al) cathodes lose their capacity to enhance the internal electrical field during thermal aging, the LaB6/aluminum (LaB6/Al) electrode remains stable. This remarkable effect results in a highly stable V(oc) and flat-band potential during aging. PMID:26540482

  13. Improvement of performance of InAs quantum dot solar cell by inserting thin AlAs layers

    PubMed Central

    2011-01-01

    A new measure to enhance the performance of InAs quantum dot solar cell is proposed and measured. One monolayer AlAs is deposited on top of InAs quantum dots (QDs) in multistack solar cells. The devices were fabricated by molecular beam epitaxy. In situ annealing was intended to tune the QD density. A set of four samples were compared: InAs QDs without in situ annealing with and without AlAs cap layer and InAs QDs in situ annealed with and without AlAs cap layer. Atomic force microscopy measurements show that when in situ annealing of QDs without AlAs capping layers is investigated, holes and dashes are present on the device surface, while capping with one monolayer AlAs improves the device surface. On unannealed samples, capping the QDs with one monolayer of AlAs improves the spectral response, the open-circuit voltage and the fill factor. On annealed samples, capping has little effect on the spectral response but reduces the short-circuit current, while increasing the open-circuit voltage, the fill factor and power conversion efficiency. PMID:21711628

  14. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  15. Improved Performance in CuInSe2 and Surface-Modified CuGaSe2 Solar Cells

    SciTech Connect

    AbuShama, J.; Noufi, R.; Johnston, S.

    2005-01-01

    In this paper, we present an update and review on the progress made in the development of low-bandgap CuInSe2 (CIS) and wide-bandgap CuGaSe2 (CGS) solar cells. Our research project is primarily concerned with the optimization of the bottom and top cells of the tandem solar cell. This past year, we achieved new world record total-area efficiencies of 15.0% and 10.2% for CIS and surface-modified CGS solar cells, respectively. These achievements were possible by modifying the growth process for CIS and CGS absorbers. We attempt to modify the surface region of the CGS absorber to be CIGS-like in composition. In the mean time, we are designing a mechanical-stacked tandem solar cell where the CIS cell serves as the bottom cell.

  16. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    NASA Technical Reports Server (NTRS)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  17. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  18. Improvement in passivation quality and open-circuit voltage in silicon heterojunction solar cells by the catalytic doping of phosphorus atoms

    NASA Astrophysics Data System (ADS)

    Tsuzaki, Shogo; Ohdaira, Keisuke; Oikawa, Takafumi; Koyama, Koichi; Matsumura, Hideki

    2015-07-01

    We apply phosphorus (P) doping to amorphous silicon (a-Si)/crystalline silicon (c-Si) heterojunction solar cells realized by exposing c-Si to P-related radicals generated by the catalytic cracking of PH3 molecules (Cat-doping). An ultrathin n+-layer formed by P Cat-doping acts to improve the effective minority carrier lifetime (τeff) and implied open-circuit voltage (implied Voc) owing to its field effect by which minority holes are sent back from an a-Si/c-Si interface. An a-Si/c-Si heterojunction solar cell with a P Cat-doped layer shows better solar cell performance, particularly in Voc, than the cell without P Cat-doping. This result demonstrates the feasibility of applying Cat-doping to a-Si/c-Si heterojunction solar cells, owing to the advantage of the low-temperature (<200 °C) process of Cat-doping.

  19. Improving efficiency of silicon solar cells using europium-doped silicate-phosphor layer by spin-on film coating

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Yang, Guo-Chang; Shen, Yu-Tang; Deng, Yu-Jie

    2016-03-01

    This paper reports impressive enhancements in the efficiency of crystalline silicon solar cells through the application of a Eu-doped silicate phosphor luminescent downshifting (LDS) layer controlled by spin-on film technique. Surface morphology was examined using scanning electron microscope (SEM), chemical composition was analyzed using energy dispersive spectroscopy (EDS), and fluorescence emission was characterized using photoluminescence (PL) measurements at room temperature. The optical reflectance, absorbance, and external quantum efficiency (EQE) response of SiO2-coated cells with and without Eu-doped silicate phosphor were measured and compared. An 18.77% improvement in efficiency was achieved, as determined by photovoltaic current-voltage measurement under one-sun AM 1.5 G illuminations.

  20. Heterostructure solar cells

    NASA Technical Reports Server (NTRS)

    Chang, K. I.; Yeh, Y. C. M.; Iles, P. A.; Morris, R. K.

    1987-01-01

    The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed.

  1. Development of large area nanostructured silicon-hydrogen alloy material with improved stability for solar cell application by argon dilution method

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Das, Mrinmay; Datta, Joydeep; Jana, Rajkumar; Dhar, Joydeep; Sil, Sayantan; Biswas, Debasish; Banerjee, Chandan; Ray, Partha Pratim

    2016-07-01

    Here we have presented the results of large area (30 × 30 cm2) silicon-hydrogen alloy material and solar cell by argon dilution method. As an alternative to hydrogen dilution, argon dilution method has been applied to develop single junction solar cell with appreciable stability. Optimization of deposition conditions revealed that 95% argon dilution gives a nanostructured material with improved transport property and less light induced degradation. The minority carrier diffusion length (L d ) and mobility-lifetime (μτ) product of the material with 95% argon dilution degrades least after light soaking. Also the density of states (DOS) below conduction level reveals that this material is less defective. Solar cell with this argon diluted material has been fabricated with all the layers deposited by argon dilution method. Finally we have compared the argon diluted solar cell results with the optimized hydrogen diluted solar cell. Light soaking study proves that it is possible to develop stable solar cell on large area by argon dilution method and that the degradation of argon diluted solar cell is less than that of hydrogen diluted one. [Figure not available: see fulltext.

  2. Carbon Nanotube Solar Cells

    PubMed Central

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  3. Eutectic Contact Inks for Solar Cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1985-01-01

    Low-resistance electrical contacts formed on solar cells by melting powders of eutectic composition of semiconductor and dopant. Process improves cell performance without subjecting cell to processing temperatures high enough to degrade other characteristics.

  4. Efficiency-improvement study for GaAs solar cells. Final report, March 31, 1980-September 30, 1981

    SciTech Connect

    Cape, J.A.; Oliver, J.R.; Zehr, S.W.

    1982-04-01

    High-yield fabrication of good quality AlGaAs/GaAs concentration solar cells has been a limiting factor in widespread utilization of these high conversion efficiency (22 to 24%) photovoltaic cells. Reported is a series of investigations to correlate solar cell yield with substrate quality, growth techniques, layer composition, and metallization processes. In addition, several diagnostic techniques are described to aid in device characterization.

  5. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  6. Improved conversion efficiency of InN/p-GaN heterostructure solar cells with embedded InON quantum dots

    NASA Astrophysics Data System (ADS)

    Ke, Wen-Cheng; Liang, Zhong-Yi; Yang, Cheng-Yi; Chan, Yu-Teng; Jiang, Chi-Yung

    2016-02-01

    An indium oxynitride (InON) quantum dot (QD) layer was inserted between the indium nitride (InN) and p-type gallium nitride (GaN) films for improving the conversion efficiency of the heterostructure solar cells. The InN/InON QD/p-GaN heterostructure solar cells exhibited a high open-circuit voltage of 2.29 V, short-circuit current density of 1.64 mA/cm2, and conversion efficiency of 1.12% under AM 1.5G illumination. Compared with samples without InON QDs, the power conversion efficiency of sample with InON QDs increased twofold; this increase was attributed to the increase in short-current density. The external quantum efficiency of 250-nm-thick InN/p-GaN heterostructure solar cells has a highest value of 6.5% in the wavelength range of 700-1100 nm. The photogenerated holes separated in the depletion region of InN thin films is difficult to transport across the energy barrier between the InN and p-GaN layers. The oxygen vacancy assisted carrier transport in the InN/InON QD/p-GaN sample, which was evidenced in its current-voltage (I-V) and capacitance-voltage (C-V) characteristics. The dark I-V characteristic curves in the bias range of -2 to 2 V exhibited ohmic behavior, which indicated the absence of a transport barrier between the InN and p-GaN layers. In addition, a shoulder peak at -0.08 V was observed in the high-frequency (60-100 kHz) C-V characteristic curves corresponding to carrier capture and emission in the shallow defect state of oxygen vacancy in the InON QDs. The oxygen vacancy exists inside the InON QDs and generates the interface states in the InON QD/p-GaN interface to form a carrier transport path. Thus, more photogenerated holes can transport via the InON QDs into the p-GaN layer, contributing to the photocurrent and resulting in high conversion efficiency for the InN/InON QD/p-GaN heterostructure solar cells.

  7. Efficiency Improvement by Transparent Contact Layer in InGaN-Based p-i-n Solar Cells

    NASA Astrophysics Data System (ADS)

    Shim, J. P.; Jeon, S. R.; Lee, D. S.

    2011-12-01

    InGaN/GaN p-i-n solar cells with 10.8% indium composition were fabricated with different current spreading layers and metal-grid electrodes. Ni/Au (5nm/5nm) and ITO (150 nm) were used as a spreading layer for comparison. The solar cell with the ITO current spreading layer showed better results than Ni/Au, a 79.5% fill factor and 1% conversion efficiency. Optimization of the metal-gird electrodes also affected on solar cell efficiency.

  8. Design and development of back reflectors for improved light coupling and absorption enhancement in thin MQW solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Freundlich, Alex

    2015-03-01

    Optimization of non-planar antireflective coating and back- (or front-) surface texturing are widely studied to further reduce the reflection losses and increase the sunlight absorption path in solar cells. Back reflectors have been developed from perfect mirror to textured mirror in order to further increase light path, which can significantly improve the efficiency and allow for much thinner devices. A Lambertian surface, which has the most random texture, can theoretically raise the light path to 4n2 times that of a smooth surface. It's a challenge however to fabricate ideal Lambertian texture, especially in a fast and low cost way. In this work we have developed a method to overcome this challenge that combines the use of laser interference lithography (LIL) and selective wet etching. The approach allows for a rapid wafer scale texture processing with sub-wavelength (nano)- scale control of the pattern and the pitch. The technique appears as being particularly attractive for the development of ultra-thin III-V devices, or in overcoming the weak sub-bandgap absorption in devices incorporating quantum dots or quantum wells. Preliminary results on the application of the technique for the development of back reflector for 1-1.3 eV (MQW bearing) GaAs solar cells are presented.

  9. Perovskite Solar Cells: Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells (Small 18/2016).

    PubMed

    Kang, Seong Min; Jang, Segeun; Lee, Jong-Kwon; Yoon, Jungjin; Yoo, Dong-Eun; Lee, Jin-Wook; Choi, Mansoo; Park, Nam-Gyu

    2016-05-01

    A moth-eye patterned mesoporous (mp) TiO2 layer is fabricated in the form of submicron scale by using lithography, nano-imprinting and polydimethyl siloxane (PDMS) stamping methods. On page 2443, M. Choi, N.-G. Park, and co-workers demonstrate an excellent light harvesting property of perovskite solar cell by employing the moth-eye nanostructured mp-TiO2 film. These novel fabrication methods are expected to be optically beneficial to opto-electronic devices. PMID:27151831

  10. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells.

    PubMed

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-09-01

    Hydrogenated amorphous Si (a-Si:H) solar cells are strongly affected by the well known Staebler-Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a-Si:H and to the stability and motion of H-related species in the a-Si:H lattice. This work has been designed in support of the research article entitled "Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells" in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results. PMID:26966715

  11. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-10-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  12. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    PubMed Central

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-01-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions. PMID:26468676

  13. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  14. Improved efficiency and stability of flexible dye sensitized solar cells on ITO/PEN substrates using an ionic liquid electrolyte.

    PubMed

    Han, Yu; Pringle, Jennifer M; Cheng, Yi-Bing

    2015-01-01

    Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination. PMID:25476521

  15. Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jinlei; Wu, Shufang; Ri, Jin Hyok; Jin, Jingpeng; Peng, Tianyou

    2016-09-01

    A novel bilayer brookite TiO2 film photoanode consisting of quasi nanocube film as underlayer and rice-like submicrometer particle film as overlayer are fabricated for improving the photovoltaic properties of the pure brookite-based dye-sensitized solar cells (DSSCs). The brookite TiO2 nanocubes have a mean size of ∼50 nm, and the brookite TiO2 rice-like particles have diameter of ∼600 nm and length of ∼1100 nm. An optimal photovoltaic conversion efficiency of 5.51% is obtained from the bilayer brookite-based solar cell, with ∼41% improvement in the efficiency as compared to the single brookite nanocube film-based one (3.91%) under AM 1.5G one sun irradiation. The bilayer brookite-based solar cell shows not only reduced charge recombination and dark current, but also prolonged electron lifetime compared to the single brookite nanocube film-based one. All these lead to a higher photocurrent and voltage, and then to the improved efficiency of the brookite-based solar cell. The present results demonstrate a clear advance towards efficient improvement of the photovoltaic performance of pure brookite-based solar cells.

  16. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  17. Crystalline Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Overview * Silicon cell development * Substrate production * Cell processing * Cell costs * Opportunities for improvement * Silicon-supported thin films * Summary * Acknowledgement * References

  18. Towards stable silicon nanoarray hybrid solar cells

    PubMed Central

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells. PMID:24430057

  19. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  20. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  1. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  2. Solar cell radiation handbook

    SciTech Connect

    Tada, H.Y.; Carter, J.R. Jr.; Anspaugh, B.E.

    1982-11-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  3. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells

    PubMed Central

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-01-01

    Hydrogenated amorphous Si (a­Si:H) solar cells are strongly affected by the well known Staebler–Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a­Si:H and to the stability and motion of H­related species in the a­Si:H lattice. This work has been designed in support of the research article entitled “Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells” in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results. PMID:26966715

  4. Improvement of Si Adhesion and Reduction of Electron Recombination for Si Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Wang, Yuting; Sato, Muneharu; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-01-01

    Quantum dots (QDs) based on multiple exciton generation have attracted much attention. They are capable of generating multiple electrons by single-photon absorption. Si is one of the good QD sources and its nontoxicity and abundance are advantageous for photovoltaics. In this work, Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition, and they were applied to Si QD-sensitized solar cells. Their initial performance was poor because of the weak adhesion of Si and charge recombination. In this work, we solved these problems through the functionalization of Si QDs and a ZnO barrier. Functionalized Si QDs were more adsorbed on TiO2 with strengthened adhesion and the ZnO barrier prevented the contact between TiO2 and the redox electrolyte. Consequently, the improved adhesion and the reduced electron recombination led to the enhancement of overall photovoltaic characteristics.

  5. Dye decorated ZnO-NWs /CdS-NPs heterostructures for efficiency improvement of quantum dots sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Nayeri, Fatemeh Dehghan; Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Soleimani, Ebrahim Asl; Hashemizadeh, S. A.

    2016-03-01

    High density vertically aligned ZnO nanowire was coated with CdS nanocrystals of different thicknesses by the RF magnetron sputtering process and applied as photoanode in CdS quantum dot sensitized solar cells. Field emission scanning electron microscopy (FESEM), photoluminescence, and X-Ray diffraction (XRD) were utilized to characterize the samples and study their properties. Results demonstrated that, after dye decoration co-sensitized process, the ZnO/CdS heterostructures showed an overall power conversion efficiency of 2.68%, which is 76.3% improvement over that of pristine ZnO/CdS-QDSSC. Thereby, the QDSSC was assembled with modified ZnO/CdS heterostructures by Dye exhibited high performance.

  6. Improved hole mobility and suppressed trap density in polymer-polymer dual donor based highly efficient organic solar cells

    NASA Astrophysics Data System (ADS)

    Bharti, Vishal; Sharma, Abhishek; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh

    2016-02-01

    Here we report, the charge transport properties of polymer-polymer dual donor blended film, viz., polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) and poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'benzothiadiazole) (PCDTBT) in the optimized concentration. Trap density and hole mobility in polymer-polymer (PTB7-PCDTBT) dual donor system have been studied by means of current density-voltage (J-V) characteristics at various temperatures, i.e., 280 K-120 K in hole only device configuration, i.e., indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS)/Polymer film/gold (Au). The J-V curves exhibit the space charge limited conduction behavior. The corresponding hole mobility for PTB7 and PCDTBT are 3.9 × 10-4 cm2 V-1 s-1 and 2.1 × 10-4 cm2 V-1 s-1, respectively, whereas it is 9.1 × 10-4 cm2 V-1 s-1 in the polymer-polymer blend of PTB7:PCDTBT (0.7:0.3). This enhancement in mobility can be attributed to the suppressed trap density in PTB7:PCDTBT (0.7:0.3) of 7.4 × 1016 cm-3, as compared to the trap density of 1.1 × 1017 cm-3 for PTB7 and 1.6 × 1017 cm-3 for PCDTBT. Atomic force microscopy shows an improvement in the morphology of the blend. The J-V characteristic at various light intensities in the bulk heterojunction (BHJ) solar cell reveals that the blending of PCDTBT in PTB7 suppressed the trap-assisted recombination. The corresponding power conversion efficiencies for PTB7:PC71BM, PCDTBT:PC71BM and PTB7:PCDTBT:PC71BM BHJ solar cells are 6.9%, 6.1% and 9.0%, respectively. This work unravels that the enhanced mobility and suppressed trap density play a significant role in the improvement of efficiency in dual donor based organic solar cells.

  7. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  8. Current status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1975-01-01

    In quest of higher efficiency, major progress has occurred in solar cell technology. Cell efficiency has climbed about 50 percent. Technical approaches leading to increased output include back surface fields, shallow junctions, improved antireflection coatings, surface texturizing, and fine grid patterns on the cell surface. The status of current solar cell technology and its incorporation into cell production is discussed. Research and development leading to improved performance and reduced cost are also described.

  9. N/P GaAs concentrator solar cells with an improved grid and bushbar contact design

    NASA Technical Reports Server (NTRS)

    Desalvo, G. C.; Mueller, E. H.; Barnett, A. M.

    1985-01-01

    The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency.

  10. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  11. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  13. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  14. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  15. Lightweight solar cell

    SciTech Connect

    Hotaling, S.P.

    1993-06-22

    A lightweight solar cell is described comprising: (a) an LD aerogel substrate having a density of between 10-1,000 mg/cc, the surface of the substrate being polished (b) a dielectric planarization layer being applied to the polished surface, and (c) at least one layer of PV material deposited thereon. The solar cell having a plurality of PV layers deposited on the planarization layer.

  16. Photoelectrochemical Solar Cells.

    ERIC Educational Resources Information Center

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  17. Sliver solar cells

    NASA Astrophysics Data System (ADS)

    Franklin, Evan; Blakers, Andrew; Everett, Vernie; Weber, Klaus

    2007-12-01

    Sliver solar cells are thin, mono-crystalline silicon solar cells, fabricated using micro-machining techniques combined with standard solar cell fabrication technology. Sliver solar modules can be efficient, low cost, bifacial, transparent, flexible, shadow-tolerant, and lightweight. Sliver modules require only 5 to 10% of the pure silicon and less than 5% of the wafer starts per MW p of factory output when compared with conventional photovoltaic modules. At ANU, we have produced 20% efficient Sliver solar cells using a robust, optimised cell fabrication process described in this paper. We have devised a rapid, reliable and simple method for extracting Sliver cells from a Sliver wafer, and methods for assembling modularised Sliver cell sub-modules. The method for forming these Sliver sub-modules, along with a low-cost method for rapidly forming reliable electrical interconnections, are presented. Using the sub-module approach, we describe low-cost methods for assembling and encapsulating Sliver cells into a range of module designs.

  18. Screening of solar cells

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Chait, A.; Thompson, D. A.

    1993-01-01

    Because solar cells in a production batch are not identical, screening is performed to obtain similar cells for aggregation into arrays. A common technique for screening is based on a single operating point of the I-V characteristic of the cell, usually the maximum power point. As a result, inferior cell matching may occur at the actual operating points. Screening solar cells based on the entire I-V characteristic will inherently result in more similar cells in the array. An array consisting of more similar cells is likely to have better overall characteristics and more predictable performance. Solar cell screening methods and cell ranking are discussed. The concept of a mean cell is defined as a cell 'best' representing all the cells in the production batch. The screening and ranking of all cells are performed with respect to the mean cell. The comparative results of different screening methods are illustrated on a batch of 50 silicon cells of the Space Station Freedom.

  19. Screening of solar cells

    SciTech Connect

    Appelbaum, J.; Chait, A.; Thompson, D.A.

    1993-07-01

    Because solar cells in a production batch are not identical, screening is performed to obtain similar cells for aggregation into arrays. A common technique for screening is based on a single operating point of the I-V characteristic of the cell, usually the maximum power point. As a result, inferior cell matching may occur at the actual operating points. Screening solar cells based on the entire I-V characteristic will inherently result in more similar cells in the array. An array consisting of more similar cells is likely to have better overall characteristics and more predictable performance. Solar cell screening methods and cell ranking are discussed. The concept of a mean cell is defined as a cell 'best' representing all the cells in the production batch. The screening and ranking of all cells are performed with respect to the mean cell. The comparative results of different screening methods are illustrated on a batch of 50 silicon cells of the Space Station Freedom.

  20. Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Jing; Mo, Shiguang; Jing, Xiaojing; Yin, Jun; Li, Jing; Zheng, Nanfeng

    2016-02-01

    Surface-clean Pd nanosheets were synthesized and embedded in a hole transport material (HTM) matrix to improve the conductivity of the HTM layer. Applying only a trace amount of Pd nanosheets readily led to a remarkably enhanced performance of perovskite solar cells (PSCs). This finding provides an effective strategy to build efficient charge-transport materials for improving the overall performance of PSCs.Surface-clean Pd nanosheets were synthesized and embedded in a hole transport material (HTM) matrix to improve the conductivity of the HTM layer. Applying only a trace amount of Pd nanosheets readily led to a remarkably enhanced performance of perovskite solar cells (PSCs). This finding provides an effective strategy to build efficient charge-transport materials for improving the overall performance of PSCs. Electronic supplementary information (ESI) available: Details of the XRD, UV-vis spectra, cross-sectional SEM images and the EQE spectra of the cells. See DOI: 10.1039/c5nr07789c

  1. Silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R.

    1993-06-01

    This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

  2. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  3. Development of concentrator solar cells

    SciTech Connect

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  4. Density-controlled ZnO/TiO2 nanocomposite photoanode for improving dye-sensitized solar cells performance

    NASA Astrophysics Data System (ADS)

    Yao, Jimmy; Lin, Chih-Min; Yin, Stuart (.

    2015-03-01

    Dye-sensitized solar cells (DSSCs) via ZnO/TiO2 nanocomposite photoanode with density-controlled abilities are presented in this paper. This nanocomposite photoanode is composed of TiO2 nanoparticles dispersed into densitycontrolled vertically aligned ZnO-TiO2 core-shell nanorod arrays. The density-controlled ZnO-TiO2 core-shell nanorod arrays were synthesized directly onto fluorine-doped tin oxide (FTO) substrates using an innovative two-step wet chemical route. First, the density-controlled ZnO nanorod arrays were formed by applying a ZnO hydrothermal process from a TiO2 nanocrystals template. Second, the ZnO-TiO2 core-shell nanorod arrays were formed by depositing a TiO2 shell layer from a sol-gel process. The major advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode include (1) providing a better diffusion path from ZnO nanorod arrays and (2) reducing the recombination loss by introducing an energy barrier layer TiO2 conformal shell coating. To validate the advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode, DSSCs based on a ZnO/TiO2 nanocomposite photoanode were fabricated, in which N719 dye was used. The average dimensions of the ZnO nanorod arrays were 20 μm and 650 nm for the length and the diameter, respectively, while the designated spacing between each nanorod was around 5 μm. The performance of the solar cell was tested by using a standard AM 1.5 solar simulator from Newport Corporation. The experimental results confirmed that an open-circuit voltage, 0.93 V, was achieved, which was much higher than the conventional TiO2 nanoparticles thin film structure for the same thickness. Thus, density-controlled ZnO/TiO2 nanocomposite photoanodes could improve the performance of DSSCs by offering a better electron diffusion path.

  5. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.

    PubMed

    Chang, Jia-Yaw; Lin, Jie-Mo; Su, Li-Fong; Chang, Chia-Fu

    2013-09-11

    This article describes a CuInS2 quantum dot (QD)-sensitized solar cell (QDSSC) with a multilayered architecture and a cascaded energy-gap structure fabricated using a successive ionic-layer adsorption and reaction process. We initially used different metal chalcogenides as interfacial buffer layers to improve unmatched band alignments between the TiO2 and CuInS2 QD sensitizers. In this design, the photovoltaic performance, in terms of the short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE), was significantly improved. Both JSC and VOC were improved in CuInS2-based QDSSCs in the presence of interfacial buffer layers because of proper band alignment across the heterointerface and the negative band edge movement of TiO2. The PCE of CuInS2-based QDSSCs containing In2Se3 interfacial buffer layers was 1.35%, with JSC=5.83 mA/cm2, VOC=595 mV, and FF=39.0%. We also examined the use of alternative CdS and CdSe hybrid-sensitized layers, which were sequentially deposited onto the In2Se3/CuInS2 configuration for creating favorable cascaded energy-gap structures. Both JSC (11.3 mA cm(-2)) and FF (47.3%) for the CuInS2/CdSe hybrid-sensitized cells were higher than those for CuInS2-based cells (JSC=5.83 mA cm(-2) and FF=39.0%). In addition, the hybrid-sensitized cells had PCEs that were 1.3 times those of cells containing identically pretreated In2Se3 interfacial buffer layers. Additionally, we determined that ZnSe served as a good passivation layer on the surface of CuInS2/CdSe hybrid-sensitized QDs, prevented current leakage from the QDs to electrolytes, and lowered interfacial charge recombination. Under simulated illumination (AM 1.5, 100 mW cm(-2)), multilayered QDSSCs with distinct architectures delivered a maximum external quantum efficiency of 80% at 500 nm and a maximum PCE of 4.55%, approximately 9 times that of QDSSCs fabricated with pristine CuInS2. PMID:23937511

  6. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Le Donne, A.; Dilda, M.; Crippa, M.; Acciarri, M.; Binetti, S.

    2011-05-01

    This work reports on the optical and electrical characterization of crystalline silicon based solar modules encapsulated with ethylene-vinyl-acetate layers (that is the encapsulating matrix used nowadays by the photovoltaic industry) doped with a single europium complex whose sensitized region is broadened due to the presence of a co-ligand. Such europium doped EVA layers are able to realize down-shifting of photons with wavelength lower than 460 nm without introducing modifications of the industrial process leading to the fabrication of the photovoltaic modules. This effect has been proven under Air Mass 1.5 conditions (simulating terrestrial applications), where a 2.9% relative increase of the total power delivered by the encapsulated modules has been observed, allowing a reduction in the watt-peak price.

  7. Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States.

    PubMed

    Wu, Bo; Wu, Zhenghui; Yang, Qingyi; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Cheung, Sin-Hang; So, Shu-Kong

    2016-06-15

    Organic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs. In this work, we demonstrate that suppression of the ZnO subgap states by modification of its surface with an ultrathin Al layer significantly improves the charge extraction and performance reproducibility, achieving PCE of 8.0%, which is ∼15% higher than that of a structurally identical control cell made with a pristine ZnO interlayer. Light intensity-dependent current density-voltage characteristic, photothermal deflection spectroscopy, and X-ray photoelectron spectroscopy measurements point out the enhancement of charge collection efficiency at the organic/cathode interface, due to the suppression of the subgap states in the ZnO interlayer. PMID:27224960

  8. The improved efficiency of low molecular weight organic solar cells doped with a Cu(I) triplet material

    NASA Astrophysics Data System (ADS)

    Su, Bin; Gao, Lin; Li, Xiuying; Che, Guangbo; Zhu, Enwei; Wang, Bo; Yan, Yongsheng

    2016-08-01

    We developed a method to improve the performance of the copper phthalocyanine (CuPc)/fullerene (C60) organic solar cells (OSCs) by doping CuPc with a long triplet lifetime material. By doping [Cu(bis[2-(diphenylphosphino)phenyl]ether)(benzo[i]dipyrido[3,2-a:2',3'-c]phenazine)]BF4 (CuDB) into CuPc, the enhanced short-circuit current density ( J SC) of 6.213 mA/cm2, open-circuit voltage ( V OC) of 0.39 V and a peak power conversion efficiency (PCE) of 0.92% compared to 0.79% of the standard CuPc/C60 OSCs are achieved under 1 sun AM 1.5 G illumination at an intensity of 100 mW/cm2. The performance improvement is mainly attributed to the long triplet lifetime of CuDB (τ = 70.05 μs) which leads to more effective exciton dissociation.

  9. An organosilane self-assembled monolayer incorporated into polymer solar cells enabling interfacial coherence to improve charge transport.

    PubMed

    Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Li, Shujun; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-06-21

    The reproducible silylation of titanium oxide (TiO2) with small molecular (dichloromethyl) dimethylchlorosilane (DCS) as the cathode buffer layer was developed to improve electron extraction. Through incorporating the DCS capping layer into polymer solar cells (PSCs), the interfacial coherence of devices could be enhanced, leading to a shift in nanocrystallite size and a smaller internal charge transport resistance. Furthermore, a TiO2/DCS combined interfacial layer could serve as both an exciton dissociation center and a charge transfer channel, which results in a reduction in the energy barrier and electron loss, improving hole-blocking and surface-state passivation in the TiO2 interfacial layer. The Kelvin probe measurements demonstrate that the employment of the DCS nanolayer decreases conduction band energy of TiO2via forming a dipole layer at the interface of TiO2 and the DCS nanolayer, which tunes the work-function of the device and ulteriorly enhances charge carrier transfer between the electrode and the active layer. As a result, the photocurrent and the fill factor of the PSCs are both increased, resulting in an increased power conversion efficiency (PCE) of 6.959%. PMID:27242077

  10. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  11. Parameterization of solar cells

    NASA Astrophysics Data System (ADS)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-10-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  12. Parameterization of solar cells

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-01-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  13. Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Weilong; Chen, Huajie; Lv, Junjie; Chen, Youchun; Zhang, Weifeng; Yu, Gui; Li, Fenghong

    2015-09-01

    We present a furan-flanked DPP copolymer, poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4-dione-altthienylenevinylene} (PDVF-8), and highlight the improvement in the power conversion efficiency (PCE) of polymer solar cells (PSCs) based on the PDVF-8 as an electron donor via solvent additive and methanol treatment. When 3 vol% 1,8-diiodooctane (DIO) or 1-chloronaphthalene (CN) were used as a solvent additive to the PDVF-8:PC71BM solution in chloroform (CF), the PCE can increase from 0.79% to 3.73% or 4.26%. Methanol treatment (MT) can further enhance the PCE to 4.03% (DIO) and 4.69% (CN). The effect of the solvent additives (DIO and CN) and MT on the phase separation of the PDVF-8:PC71BM thin film has been investigated in detail using atomic force microscopy, transmission electron microscopy (TEM), TEM-energy dispersive spectroscopy and X-ray photoemission spectroscopy depth profiling.We present a furan-flanked DPP copolymer, poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4-dione-altthienylenevinylene} (PDVF-8), and highlight the improvement in the power conversion efficiency (PCE) of polymer solar cells (PSCs) based on the PDVF-8 as an electron donor via solvent additive and methanol treatment. When 3 vol% 1,8-diiodooctane (DIO) or 1-chloronaphthalene (CN) were used as a solvent additive to the PDVF-8:PC71BM solution in chloroform (CF), the PCE can increase from 0.79% to 3.73% or 4.26%. Methanol treatment (MT) can further enhance the PCE to 4.03% (DIO) and 4.69% (CN). The effect of the solvent additives (DIO and CN) and MT on the phase separation of the PDVF-8:PC71BM thin film has been investigated in detail using atomic force microscopy, transmission electron microscopy (TEM), TEM-energy dispersive spectroscopy and X-ray photoemission spectroscopy depth profiling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04393j

  14. Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers

    NASA Astrophysics Data System (ADS)

    Baktash, Ardeshir; Amiri, Omid; Sasani, Alireza

    2016-05-01

    Here the effect of Magnesium doped TiO2 and ZnO as hole blocking layers (HBLs) are investigated by using solar cell capacitance simulator (SCAPS). The Impact of Magnesium concentration into the TiO2 and ZnO and effect of operating temperature on the performance of the perovskite solar cell are investigated. Best cell performance for both TiO2 and ZnO HBLs (with cell efficiencies of 19.86% and 19.57% respectively) are concluded for the doping level of 10% of Mg into the structure of HBLs. Increase in operating temperature from 300 K to 400 K are decreased the performance of the perovskite solar cell with both pure and Mg-doped HBLs. However, the cells with pure ZnO layer and with Zn0.9 Mg0.1O layer show the highest (with a decline of 8.88% in efficiency) and the lowest stability (with a decline of 50.49% in efficiency) at higher temperatures respectively. Moreover, the cell with Ti0.9 Mg0.1O2 layer shows better stability (with 21.85% reduction in efficiency) than the cell with pure TiO2 compact layer (with 23.28% reduction in efficiency) at higher operating temperatures.

  15. Improved Ga grading of sequentially produced Cu(In,Ga)Se{sub 2} solar cells studied by high resolution X-ray fluorescence

    SciTech Connect

    Schöppe, Philipp; Schnohr, Claudia S.; Oertel, Michael; Kusch, Alexander; Johannes, Andreas; Eckner, Stefanie; Reislöhner, Udo; Ronning, Carsten; Burghammer, Manfred; Martínez-Criado, Gema

    2015-01-05

    There is particular interest to investigate compositional inhomogeneity of Cu(In,Ga)Se{sub 2} solar cell absorbers. We introduce an approach in which focused ion beam prepared thin lamellas of complete solar cell devices are scanned with a highly focused synchrotron X-ray beam. Analyzing the resulting fluorescence radiation ensures high resolution compositional analysis combined with high spatial resolution. Thus, we are able to detect subtle variations of the Ga/(Ga + In) ratio down to 0.01 on a submicrometer scale. We observed that for sequentially processed solar cells a higher selenization temperature leads to absorbers with almost homogenous Ga/(Ga + In) ratio, which significantly improved the conversion efficiency.

  16. Towards a CdS/Cu{sub 2}ZnSnS{sub 4} solar cell efficiency improvement: A theoretical approach

    SciTech Connect

    Courel, Maykel Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2014-12-08

    In this work, a device model for Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cell with certified world record efficiency is presented. A study of the most important loss mechanisms and its effect on solar cell performance was carried out. The trap-assisted tunneling and CdS/CZTS interface recombination are introduced as the most important loss mechanisms. Detailed comparison of the simulation results to the measured device parameters shows that our model is able to reproduce the experimental observations (quantum efficiency, efficiency, J{sub sc}, FF, and V{sub oc}) reported under normal operating conditions. Finally, a discussion about a further solar cell efficiency improvement is addressed.

  17. Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Wu, Zhongwei; Fang, Xiao; Wang, Fei; Geng, Dongping; Yang, Tieying; Li, Xiaolong; Sun, Baoquan; Gao, Xingyu

    2015-11-11

    11-Mercaptoundecanoic acid (MUA)-stabilized gold nanoparticles (AuNPs) embedded in copper phthalocyanine (CuPc) were used as a buffer layer between a poly(3-hexyl-thiophene) (P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction and anodic indium-tin oxide (ITO) substrate. As systematic synchrotron-based grazing incidence X-ray diffraction (GIXRD) experiments demonstrated that the AuNPs present in the buffer layer can improve the microstructure of the active layer with a better lamella packing of P3HT from the surface to the interior, UV-visible absorption spectrum measurements revealed enhanced optical absorption due to the localized surface plasma resonance (LSPR) generated by the AuNPs. The device of ITO/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/CuPc:MUA-stabilized AuNPs/P3HT:PCBM/LiF/Al was found with over 24% enhancement of power conversion efficiency (PCE) in comparison with reference devices without AuNPs. This remarkable improvement in PCE should be partially attributed to LSPR generated by the AuNPs and partially to improved crystallization as well as preferred orientation order of P3HT due to the presence of the AuNPs, which would promote more applications of metal NPs in the organic photovoltaic devices and other organic multilayer devices. PMID:26477556

  18. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  19. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  20. Flexible Solar Cells

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  1. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    NASA Astrophysics Data System (ADS)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due

  2. Improvement of Thiolate/Disulfide Mediated Dye-Sensitized Solar Cells through Supramolecular Lithium Cation Assembling of Crown Ether

    PubMed Central

    Liu, Linfeng; Li, Xiong; Chen, Jiangzhao; Rong, Yaoguang; Ku, Zhiliang; Han, Hongwei

    2013-01-01

    A supramolecular lithium cation assemblies of crown ether, [Li⊂12-crown-4]+, has been used to replace conventional tetraalkylammonium counterion in thiolate/disulfide (ET−/BET) mediated dye-sensitized solar cells (DSCs), which exhibit high stability and efficiency of 6.61% under 100 mW·cm−2 simulated sunlight illumination. PMID:23933601

  3. Making Ultrathin Solar Cells

    NASA Technical Reports Server (NTRS)

    Cogan, George W.; Christel, Lee A.; Merchant, J. Thomas; Gibbons, James F.

    1991-01-01

    Process produces extremely thin silicon solar cells - only 50 micrometers or less in thickness. Electrons and holes have less opportunity to recombine before collected at cell surfaces. Efficiency higher and because volume of silicon small, less chance of radiation damage in new cells. Initial steps carried out at normal thickness to reduce breakage and avoid extra cost of special handling. Cells then thinned mechanically and chemically. Final cell includes reflective layer on back surface. Layer bounces unabsorbed light back into bulk silicon so it absorbs and produces useful electrical output.

  4. Charge Photogeneration Experiments and Theory in Aggregated Squaraine Donor Materials for Improved Organic Solar Cell Efficiencies

    NASA Astrophysics Data System (ADS)

    Spencer, Susan Demetra

    Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

  5. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  6. TJ Solar Cell

    SciTech Connect

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  7. Improved quantum efficiency of highly efficient perovskite BaSnO₃-based dye-sensitized solar cells.

    PubMed

    Shin, Seong Sik; Kim, Ju Seong; Suk, Jae Ho; Lee, Kee Doo; Kim, Dong Wook; Park, Jong Hoon; Cho, In Sun; Hong, Kug Sun; Kim, Jin Young

    2013-02-26

    Ternary oxides are potential candidates as an electron-transporting material that can replace TiO₂ in dye-sensitized solar cells (DSSCs), as their electronic/optical properties can be easily controlled by manipulating the composition and/or by doping. Here, we report a new highly efficient DSSC using perovskite BaSnO₃ (BSO) nanoparticles. In addition, the effects of a TiCl₄ treatment on the physical, chemical, and photovoltaic properties of the BSO-based DSSCs are investigated. The TiCl₄ treatment was found to form an ultrathin TiO₂ layer on the BSO surface, the thickness of which increases with the treatment time. The formation of the TiO₂ shell layer improved the charge-collection efficiency by enhancing the charge transport and suppressing the charge recombination. It was also found that the TiCl₄ treatment significantly reduces the amount of surface OH species, resulting in reduced dye adsorption and reduced light-harvesting efficiency. The trade-off effect between the charge-collection and light-harvesting efficiencies resulted in the highest quantum efficiency (i.e., short-circuit photocurrent density), leading to the highest conversion efficiency of 5.5% after a TiCl₄ treatment of 3 min (cf. 4.5% for bare BSO). The conversion efficiency could be increased further to 6.2% by increasing the thickness of the BSO film, which is one of the highest efficiencies from non-TiO₂-based DSSCs. PMID:23316913

  8. Improved performance of polymer solar cells using PBDTT-F-TT:PC71BM blend film as active layer

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Gao, Xiumin; Lu, Xinmiao; Xin, Qing; Lin, Jun; Zhao, Jufeng

    2016-07-01

    A detailed study of high-efficiency polymer solar cells (PSCs) based on a low bandgap polymer PBDTT-F-TT and PC71BM as the bulk heterojunction (BHJ) layer is carried out. By using 1,8-diiodooctane (DIO) as solvent additive to control the morphology of active layer and comparing different device architecture to optimize the optical field distribution, the power conversion efficiency (PCE) of the resulted devices can be reached as high as 9.34%. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of DIO and device geometry on photovoltaic performance. It was found that the addition of DIO can significantly improve the nanoscale morphology and increased electron mobility in the BHJ layer. The inverted device architecture was chosen because the results from optical modeling shows that it offers better optical field distribution and exciton generation profile. Based on these results, a low-temperature processed ZnO was finally introduced as an electron transport layer to facility the fabrication on flexible substrates and showed comparable performance with the device based on conventional ZnO interlayer prepared by sol-gel process.

  9. Low-Reflectance Surfaces For Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Fatemi, Navid; Jenkins, Phillip P.

    1994-01-01

    Improved method for increasing solar cell efficiency has potential application for space-based and terrestrial solar power systems and optoelectronic devices. Etched low-angle grooves help recover reflected light. Light reflected from v-grooved surface trapped in cover glass and adhesive by total internal reflection. Reflected light redirected onto surface, and greater fraction of incident light absorbed, producing more electrical energy in InP solar photovoltaic cell.

  10. Improved Charge-Collection Efficiency in PCDTBT:PC71BM-Based Solar Cells via CS2 Solvent Vapor Annealing

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Wu, Jiang; Fu, Ying-Ying; Meng, Bin; Xie, Zhi-Yuan; Guo, Shi-Jie

    2013-06-01

    Photo-generated charge collection is strongly correlated with the alignment and connectivity of the individual domains of donor and acceptor in bulk heterojunction polymer solar cells. It is found that CS2 vapor annealing on PCDTBT:PC71BM (1:4) blend effectively improves the hole-transport pathways of PCDTBT domains, which reduces accumulation of photo-generated charges and improves charge collection efficiency. The PCDTBT:PC71BM-based solar cells with the active layer subjected to CS2 vapor annealing demonstrate a high fill factor of 0.71-0.73 and a power conversion efficiency of 6.68%, about a 10% increase in comparison with the control cell.

  11. Fundamental Research and Development for Improved Crystalline Silicon Solar Cells: Final Subcontract Report, March 2002 - July 2006

    SciTech Connect

    Rohatgi, A.

    2007-11-01

    This report summarizes the progress made by Georgia Tech in the 2002-2006 period toward high-efficiency, low-cost crystalline silicon solar cells. This program emphasize fundamental and applied research on commercial substrates and manufacturable technologies. A combination of material characterization, device modeling, technology development, and complete cell fabrication were used to accomplish the goals of this program. This report is divided into five sections that summarize our work on i) PECVD SiN-induced defect passivation (Sections 1 and 2); ii) the effect of material inhomogeneity on the performance of mc-Si solar cells (Section 3); iii) a comparison of light-induced degradation in commercially grown Ga- and B-doped Czochralski Si ingots (Section 4); and iv) the understanding of the formation of high-quality thick-film Ag contacts on high sheet-resistance emitters (Section 5).

  12. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  13. NASA Facts, Solar Cells.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  14. Schottky barrier solar cell

    SciTech Connect

    Cohen, M.J.; Harris, J.S.

    1980-10-14

    A solar cell is constructed by coating an n-type conductivity semiconductor with a thin layer of bromine doped, polymeric sulfur-nitride, (SnBr/sub 0/ /sub 4/)/sub x/. Metal deposits are provided on both materials for making electrical contact to the cell. In a preferred embodiment, the semiconductor is silicon. In a second preferred embodiment, the semiconductor is GaAs on an n+-type conductivity GaAs substrate.

  15. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  16. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique

    PubMed Central

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C.-N.

    2013-01-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120–130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6–10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching. PMID:23847751

  17. Improvement of power conversion efficiency of phthalocyanine/C60 heterojunction solar cells by inserting a lithium phthalocyanine layer at the indium-tin oxide/phthalocyanine interface

    NASA Astrophysics Data System (ADS)

    Tanaka, Senku; Hanada, Toshiyuki; Ono, Koji; Watanabe, Kazuya; Yoshino, Katsumi; Hiromitsu, Ichiro

    2010-12-01

    Improvement of power conversion efficiency of a zinc phthalocyanine (ZnPc)/C60 heterojunction solar cell was achieved by inserting a lithium phthalocyanine (LiPc) layer at the indium-tin oxide (ITO)/ZnPc interface. The results of photoelectron spectroscopy suggest that the barrier height for the hole transport at the ITO/ZnPc interface is reduced by the LiPc layer. A similar improvement of the power conversion efficiency by the insertion of a LiPc layer was also observed in M-phthalocyanine (M=H2, Cu, and TiO)/C60 cells.

  18. Double-sided solar cell package

    NASA Technical Reports Server (NTRS)

    Shelpuk, B. (Inventor)

    1979-01-01

    In a solar cell array of terrestrial use, an improved double-sided solar cell package, consisting of a photovoltaic cell having a metallized P-contact strip and an N-contact grid, provided on opposite faces of the cell, a transparent tubular body forming an enclosure for the cell. A pedestal supporting the cell from within the enclosure comprising an electrical conductor connected with the P-contact strip provided for each face of the cell, and a reflector having an elongated reflective surface disposed in substantially opposed relation with one face of the cell for redirecting light were also included.

  19. Solvent-treated PEDOT:PSS on the improvement PTB7 based on polymer solar cells performance

    NASA Astrophysics Data System (ADS)

    Huang, Di; Xu, Zheng; Zhao, Suling; Li, Yang; Zhao, Ling; Jin, Shi Qi

    2015-10-01

    In this manuscript, the effect of the 2-propanol(IPA)-treated poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) on the performance enhancement of polymer solar cells(PSCs) based on poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  20. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells.

    PubMed

    Sheng, Jiang; Fan, Ke; Wang, Dan; Han, Can; Fang, Junfeng; Gao, Pingqi; Ye, Jichun

    2014-09-24

    Interfacial properties currently hinder the performance of Si/organic heterojunction solar cells for an alternative to high-efficiency and low-cost photovoltaics. Here, we present a simple and repeatable wet oxidation method for developing the surface passivation layer, SiOx, on the Si surface for the fabrication of high-efficiency Si/poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) heterojunction solar cells. The uniform and dense SiOx thin layer introduced by the oxidizing aqueous solution of H2O2 or HNO3 provided the better surface passivation and stronger wettability of the Si surface, compared to those in the native oxide case. These two types of progress helped create a lower defect density at the Si/PEDOT:PSS interface and thus a high-quality p-n junction with a lower interface recombination velocity. As a result, the HNO3-oxidized device displayed better performance with a power conversion efficiency (PCE) of 11%, representing a 28.96% enhancement from the PCE of 8.53% in the native oxide case. The effects on the performance of the Si/PEDOT:PSS hybrid solar cells of the wet oxidation treatment procedure, including the differences in surface roughness and wettability of the Si substrate, the quality and thickness of the SiOx, etc., were explored extensively. Such a simple and controllable oxidizing treatment could be an effective way to promote the interfacial properties that are an important cornerstone for more efficient Si/organic hybrid solar cells. PMID:25157634

  1. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  2. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  3. Improvement of the self-cleaning capabilities and transparency of cover glasses for solar cell applications by modification with atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Han, Duksun; Ahn, Seoung Kyu; Park, Sangho; Moon, Se Youn

    2016-07-01

    Using a cover glass is indispensable for protecting solar cells in photovoltaic systems. Herein, the surface of the cover glass was modified by atmospheric pressure plasma to enhance the self-cleaning effect without degrading the transmittance. A lower surface energy was achieved by depositing fluorocarbon polymers, and a micro-nano multi-scale morphology was built on the cover glass within 50 s. These two properties led to an increase in the hydrophobicity, which enhanced the self-cleaning effect of the surface. The morphology of the surface also helped to improve the transparency by reducing reflections. Both the enhanced self-cleaning effect and the improved transparency induced by the atmospheric pressure plasma treatment were confirmed by analyzing the total conversion efficiency of a solar cell by outdoor field testing.

  4. Improving Electron Transfer from Dye to TiO2 by Using CdTe Nanostructure Layers in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Beshkar, Farshad; Sabet, Mohammad; Salavati-Niasari, Masoud

    2015-08-01

    In this work, TiO2 P25 was deposited successfully on the FTO glass by electrophoresis method. Different chemical methods were served for deposition of nanosized CdTe such as successive ion layer adsorption and reaction (SILAR) and drop-cast. Dye-sensitized solar cells were fabricated from prepared electrodes, Pt as a counter electrode, dye solution, and electrolyte. The effects of chemical deposition methods were investigated on the surface quality, optical properties, and solar cell efficiency. It was observed that deposition method has an important role on the solar cell performance. It was also seen that deposition method affects directly on surface thickness and the amount of dye adsorption. In fact, each deposition method creates different surfaces, and hence, they act variously in electron transfer across the electrode surface. Among different deposition methods that were used in this experimental work, SILAR method showed the best performance and the surface that was created by this method could transfer the electrons across the electrode faster than the other ones. But this chemical method cannot improve solar cell efficiency due to some different reasons that we mentioned in this paper.

  5. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  6. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    NASA Astrophysics Data System (ADS)

    Fakharuddin, Azhar; Ahmed, Irfan; Khalidin, Zulkeflee; Yusoff, Mashitah M.; Jose, Rajan

    2014-02-01

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (˜14 μm) and show lower current density (JSC) compared with their single cells. We found out that the key to achieving higher JSC in large area devices is optimized photoelectrode volume (VD), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased JSC and ˜60% increment in photoelectric conversion efficiency in photoelectrodes of similar VD (˜3.36 × 10-4 cm3) without using any metallic grid or a special interconnections.

  7. Does the Donor-π-Acceptor Character of Dyes Improve the Efficiency of Dye-Sensitized Solar Cells?

    PubMed

    Ip, Chung Man; Troisi, Alessandro

    2016-08-01

    We quantified the donor-π-acceptor (D-π-A) character of a large number of dyes (116) used in dye-sensitized solar cells (DSSCs) and correlated them with the power conversion efficiency of the corresponding cell. The result indicates that there is no correlation between different measures of D-π-A strength and efficiency; that is, the effect of the D-π-A character is completely washed out by other effects. We propose that other design rules should be identified by statistically testing them against the now rich set of experimentally available data. PMID:27434300

  8. Improving battery charging with solar panels

    NASA Astrophysics Data System (ADS)

    Boico, Florent Michael

    Recent technological developments in thin-film photovoltaics, such as amorphous silicon and hybrid dye sensitized photovoltaic (PV) cells are leading to new generations of portable solar arrays. These new arrays are lightweight, durable, flexible, and have been reported to achieve power efficiencies of up to 10%. Already, commercial-off-the-shelf arrays exist that have panels embedded in fabric that can be folded to dimensions of less than 12" x 12", yet are able to produce up to 50Watts of power at 12V. These new products make solar power available to various types of applications. In particular, military applications are emerging to give soldier a source of power that can always be at reach. In parallel with these developments, NiMH and Li-ion batteries are increasingly being used to power various equipment. Currently, the military is field testing solar charging of its batteries with portable solar arrays. However, so far, all known charge control algorithm have failed as they commonly falsely detect overcharge at random times in the charging and leave the battery partially charged. The goal of our research is to investigate the origins of failure in existing charge control algorithms and to propose adequate algorithms that would improve the battery charging. Additionally, ways to optimize the generated photovoltaic power is critical for portable solar application as the energy produced is limited. It is known that the use of a DC-DC converter between the solar panel and the load allows optimization of the power delivered by the solar panel when "Maximum Power Point Tracking" is utilized. Therefore we are developing new solutions that address the specific problem of Maximum Power Point Tracking for modular solar panels.

  9. Silicon solar cell process. Development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.

  10. Very high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana

    2006-08-01

    The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

  11. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  12. Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-10-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  13. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  14. Novel chlorophyll solar cell

    SciTech Connect

    Ludlow, J.C.

    1981-01-01

    A novel solar battery is being developed which uses chlorophyll a for the generation of a voltage. The battery consists of platinum foil electrode, onto which a mixture of chlorophyll a and lipoic acid is deposited, and a platinum current collector. With such a device, voltages greater than 0.35 volts can reproducibly generated. The dependence of the output of the cell as a function of chlorophyll levels and light intensity has been determined. 9 refs.

  15. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  16. Solar-cell defect analyzer

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Miller, E. L.; Shumka, A.

    1980-01-01

    Laser-Scanning System pinpoints imperfections in solar cells. Entire solar panels containing large numbers of cells can be scanned. Although technique is similar to use of scanning electron microscope (SEM) to locate microscopic imperfections, it differs in that large areas may be examined, including entire solar panels, and it is not necessary to remove cover glass or encapsulants.

  17. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  18. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGESBeta

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; Chen, Jihua; Adhikari, Nirmal; Dubey, Ashish; Mitul, Abu Farzan; Mohammed, Lal; Qiao, Qiquan

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer and increasedmore » solubility of PC70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC70BM than PC60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC70BM and PC60BM based active layers was observed. Photo-CELIV experiment

  19. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    SciTech Connect

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; Chen, Jihua; Adhikari, Nirmal; Dubey, Ashish; Mitul, Abu Farzan; Mohammed, Lal; Qiao, Qiquan

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer and increased solubility of PC70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC70BM than PC60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC70

  20. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  1. EVA thin film with thermo- and moisture-stable luminescent copolymer beads composed of Eu(III) complexes for improvement of energy conversion efficiency on silicon solar cell

    NASA Astrophysics Data System (ADS)

    Kataoka, Hisataka; Omagari, Shun; Nakanishi, Takayuki; Hasegawa, Yasuchika

    2015-04-01

    Luminescent beads composed of Eu(hfa)3(TPPO)2 (hfa: hexafluoroacetylacetonate, TPPO: triphenylphosphine oxide) in PMMA copolymer (polymethylmethacrylate- styrene and polymethylmethacrylate-trifluoromethylmethacrylate copolymers), PMMA-St-Eu and PMMA-TF-Eu have been reported for improvement of energy conversion efficiency on silicon solar cell. The PMMA-St-Eu and PMMA-TF-Eu beads are prepared using radical initiator AIBN (2,2-azobisisobutyronitrile) without BPO (Benzoyl peroxide) which promotes decomposition of Eu(hfa)3(TPPO)2. The emission properties of EVA (ethylene vinyl acetate) film with PMMA-St-Eu or PMMA-TF-Eu beads are characterized by the emission spectra and lifetimes. Thermo- and moisture-stabilities of the EVA films are performed under high temperature and high moisture condition (85°C85%RH). Increase percentage the solar cell short circuit current efficiency in the solar cell modulation using with EVA film containing PMMA-St-Eu beads with size in 70 μm was estimated to 1.2%. Thermo- and moisture-stable PMMA-St-Eu and PMMA-TF-Eu beads for solar sealing film are demonstrated for the first time.

  2. Refined nano-textured surface coupled with SiNx layer on the improved photovoltaic properties of multi-crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Jianwei; Xu, Fei; Zhou, Pinghua; Yang, Jie; Yang, Zuobao; Chen, Dongsheng; Yin, Yefei; Chen, Dandan; Ma, Zhongquan

    2013-07-01

    Nano-porous silicon (NP-Si) and nano-inverted-pyramid silicon (NIP-Si) structures have been formed by Ag-catalyzed chemical etching without and with NaOH modification on solar-grade multi-crystalline silicon substrates, respectively. The influence of nano-structured morphology (NSM) and SiNx layer (SL) on effective reflectance (Reff) has been investigated through measurement and simulation. For typical NP-Si and NIP-Si samples, the NSM alone can suppress Reff of NP-Si sample to the lowest degree (5.87%), and the combination of NSM and SL is favorable to gain the lowest optical loss for NIP-Si sample (Reff = 7.31%). Compared with NP-Si solar cell, the fabricated NIP-Si solar cells have hugely improved photovoltaic properties, resulting from reduced reflectance in visible and near-infrared wavelength, enhanced short-wavelength spectral responses and good diode parameters. Finally, an optimum design strategy of NSM and SL has been suggested to gain potentially better properties for nano-structured solar cells.

  3. Silicon Solar Cell Turns 50

    SciTech Connect

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  4. Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures.

    PubMed

    Wang, Hsin-Ping; Lin, Tzu-Yin; Tsai, Meng-Lin; Tu, Wei-Chen; Huang, Ming-Yi; Liu, Chee-Wee; Chueh, Yu-Lun; He, Jr-Hau

    2014-03-25

    We demonstrated that hierarchical structures combining different scales (i.e., pyramids from 1.5 to 7.5 μm in width on grooves from 40 to 50 μm in diameter) exhibit excellent broadband and omnidirectional light-trapping characteristics. These microscaled hierarchical structures could not only improve light absorption but prevent poor electrical properties typically observed from nanostructures (e.g., ultra-high-density surface defects and nonconformal deposition of following layers, causing low open-circuit voltages and fill factors). The microscaled hierarchical Si heterojunction solar cells fabricated with hydrogenated amorphous Si layers on as-cut Czochralski n-type substrates show a high short-circuit current density of 36.4 mA/cm(2), an open-circuit voltage of 607 mV, and a conversion efficiency of 15.2% due to excellent antireflection and light-scattering characteristics without sacrificing minority carrier lifetimes. Compared to cells with grooved structures, hierarchical heterojunction solar cells exhibit a daily power density enhancement (69%) much higher than the power density enhancement at normal angle of incidence (49%), demonstrating omnidirectional photovoltaic characteristics of hierarchical structures. Such a concept of hierarchical structures simultaneously improving light absorption and photocarrier collection efficiency opens avenues for developing large-area and cost-effective solar energy devices in the industry. PMID:24548164

  5. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells.

    PubMed

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-21

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells. PMID:27124650

  6. Performance improvement of P3HT/TiO{sub 2} coaxial heterojunction polymer solar cells by introducing a CdS interface modifier

    SciTech Connect

    Li, Yan; Wang, Cheng-Wei; Zhao, Yun; Wang, Jian; Zhou, Feng

    2012-12-15

    Coaxial heterojunction polymer solar cells consisting of vertical aligned crystalline TiO{sub 2} nanotube arrays transferred onto FTO-coated glass and ordered interpenetrating poly(3-hexylthiophene-2,5-diyl) (P3HT) have been fabricated through interface sensitization of CdS quantum dots on TiO{sub 2} nanotube walls. The performances of structurally identical polymer solar cells with and without CdS quantum dots sensitization were investigated and compared. The sensitized P3HT/CdS-TiO{sub 2} cell demonstrated an open-circuit photovoltage of 0.72 V and a short-circuit current of 8.29 mA/cm{sup 2} while the P3HT/TiO{sub 2} cell was 0.41 V and 5.64 mA/cm{sup 2}. The efficiency of this sensitized cell represents a more than four-fold improvement compared to the non-sensitized cell. By probing the charge transport characteristics at interfaces and the mechanism of photoelectric conversion, it is found the moderately interfacial CdS QDs plays the role of assisting charge separation and suppression of back recombination at interfaces, which accounts for the observed enhanced J{sub sc} and V{sub oc} in photovoltaic performance. - Graphical abstract: Schematic illustration of the Au/P3HT/CdS-TiO{sub 2}/FTO coaxial heterojunction polymer solar cell and its photovoltaic property compared with Au/P3HT/TiO{sub 2}/FTO cell. Highlights: Black-Right-Pointing-Pointer CdS QDs sensitized P3HT/TiO{sub 2} solid coaxial heterojunction solar cells are fabricated. Black-Right-Pointing-Pointer The V{sub oc} of such sensitized polymer solar cell reaches the value as high as 0.72 V. Black-Right-Pointing-Pointer 4.5 times higher PCE obtains as compared with the non-sensitized cell. Black-Right-Pointing-Pointer The dominate roles of CdS QDs sensitization on the PCE enhancement are investigated.

  7. Improved blue response and efficiency of A-Si:H solar cells deposited from disilane using a dual-chamber plasma system

    SciTech Connect

    Rajeswaran, G.; Vanier, P.E.; Corderman, R.R.; Kampas, F.J.

    1985-01-01

    Thin film amorphous silicon solar cells with glass/SnO/sub 2//p/i/n/Al structures and 6 to 7% AM1 conversion efficiencies were fabricated at rapid deposition rates in a newly constructed dual-chamber glow discharge deposition system. The 500 nm thick intrinsic layer was deposited at the rate of 1.7 nm/s using disilane (Si/sub 2/H/sub 6/)-helium mixtures. This deposition rate is an order of magnitude greater than conventional high efficiency amorphous silicon solar cell depositions. Residual boron doping effects at the p/i interface can severely degrade cell performance particularly when the intrinsic layer is deposited in one chamber of the dual-chamber system and the intrinsic layer is deposited in the other chamber that is free of boron contaminants. Parameters such as electrode spacing, Si/sub 2/H/sub 6/ partial pressure and flow rate were optimized to produce uniform deposition over large areas. At the substrate temperature T/sub s/ selected for solar cell intrinsic layer deposition, the spin density was measured to be a minimum at 5 x 10/sup 15//cm/sup 3/. For a given T/sub s/, an intrinsic layer deposited from Si/sub 2/H/sub 6/ absorbs fewer photons and can generate less current under solar simulation than a similar film produced from monosilane. Identical solar cells were deposited in either the single-chamber mode or the dual-chamber mode for comparison. Single-chamber mode cells perform poorly over the visible wavelengths and hence produce low short circuit currents. The dual-chamber mode cells show a significant improvement in blue response and a factor of two increase in short circuit current over the single-chamber mode cells. Under short circuit conditions, 15 mA/cm/sup 2/ was generated from rapidly deposited (1.7 nm/s) cells from disilane and 18 mA/cm/sup 2/ from low deposition rate (0.18 nm/s) monosilane cells. These values are comparable to or better than those reported for similar cells by other groups.

  8. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation

    NASA Astrophysics Data System (ADS)

    Xie, H.; Prioli, R.; Fischer, A. M.; Ponce, F. A.; Kawabata, R. M. S.; Pinto, L. D.; Jakomin, R.; Pires, M. P.; Souza, P. L.

    2016-07-01

    The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plastically relaxed QDs.

  9. Solar Cells With Multiple Small Junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1985-01-01

    Concept for improving efficiency of photovoltaic solar cells based on decreasing p/n junction area in relation to total surface area of cell. Because of reduced junction area, surface leakage drops and saturation current density decreases. Surface passivation helps to ensure short-circuit current remains at high value and response of cells to blue light increases.

  10. Coatings Boost Solar-Cell Outputs

    NASA Technical Reports Server (NTRS)

    Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.

    1988-01-01

    Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.

  11. Research on crystalline silicon solar cells

    SciTech Connect

    Milstein, J.B.; Tsuo, Y.S.

    1984-06-01

    Since the 16th IEEE Photovoltaic Specialists Conference, the focus of the Crystalline Silicon Solar Cell Task at the Solar Energy Research Institute (SERI) has narrowed somewhat. Responsibility for silicon material preparation and ribbon growth were consolidated at the Jet Propulsion Laboratory (JPL) at the end of FY 1983. Five subcontracts were awarded under RFP No. RB-2-02090, Research on Basic Understanding of High Efficiency in Silicon Solar Cells. JPL and Oak Ridge National Laboratory are also working on high-efficiency solar cell research under SERI subcontract. Reports of past solar cell improvements have prompted appreciable interest in the physical, chemical, and electrical transport properties of grain boundaries and other electrically active defects. Studies to achieve better understanding of the hydrogen passivation process are being conducted at various subcontractors, and our in-house research continues. This paper presents the results of these efforts as well as future directions.

  12. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  13. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    SciTech Connect

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan E-mail: joserajan@gmail.com; Khalidin, Zulkeflee

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic grid or a special interconnections.

  14. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  15. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications. PMID:26301766

  16. Improvement of Electrochemically Deposited Cu2O/ZnO Heterojunction Solar Cells by Modulation of Deposition Current

    NASA Astrophysics Data System (ADS)

    Song, Ying; Ichimura, Masaya

    2012-10-01

    Cu2O thin films were deposited on indium-tin-oxide-coated glass from an aqueous solution containing CuSO4, lactic acid and KOH by the galvanostatic electrochemical deposition at 40 °C with several different current densities. The photo-absorption of Cu2O was increased and the conduction type was changed from weak p-type to clear p-type by raising the current value. Cu2O(2)/Cu2O(1)/ZnO three-layer heterojunctions were fabricated electrochemically by modulation of deposition current density of Cu2O. The first Cu2O layer Cu2O(1) was deposited at a lower deposition current, and the second one Cu2O(2) at a higher current. Under the optimized condition, the conversion efficiency of a Cu2O(2)/Cu2O(1)/ZnO solar cell was found to be higher than that of a Cu2O(1)/ZnO solar cell.

  17. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  18. Improved performance of dye-sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong Minh; Nghia Nguyen, Duc; Kim, Nakjoong

    2010-06-01

    Three heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxy-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-anisyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-1), 4-(4-(N,N-di-(p-hexyloxyphenyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-2) or 4-(5-(N,N-di-(p-hexyloxyphenyl)-amino)-thiophene-2-yl-ethenyl)-4'-methyl-2,2'-bipyridine (Dye-3) have been synthesized and characterized. The influence of differently conjugated bipyridine ligands on these complexes was studied using UV-Vis spectroscopy and cyclic voltammetry. These heteroleptic complexes show appreciably broad absorption ranges and quite high extinction coefficients. These new dyes were used as photosensitizers in nanocrystalline TiO2 dye-sensitized solar cells. It was found that the difference in light-harvesting property between Dye-1, Dye-2 and Dye-3 is associated mainly with molar extinction coefficients and alignment of the HOMO–LUMO energy levels. The power conversion efficiencies of solar cells based on Dye-1 and Dye-2 are 4.21% and 4.41%, while Dye-3 delivered a lower efficiency of 2.88% under the same device fabrication and measurement conditions.

  19. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  20. Solar cell module lamination process

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Aceves, Randy C.

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  1. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  2. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  3. Photoelectric solar cell array

    SciTech Connect

    Lidorenko, N.S.; Afian, V.V.; Martirosian, R.G.; Ryabikov, S.V.; Strebkov, D.S.; Vartanian, A.V.

    1983-11-29

    A photoelectric solar cell device comprises a dispersing element exposed to the sun's radiation and followed in the optical path by photocells having different spectral sensitivities. Each photocell has its working surface so oriented that the light beam with the wavelength corresponding to the maximum spectral sensitivity of that photocell impinges on its working surface. The dispersing element is a hologram representing light sources with different wavelengths. The photocells are positioned in the image planes of the light sources producing the light beams of the corresponding wavelengths.

  4. Improving the efficiency of solar photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Aribisala, Henry A.

    As the local and national clamor for foreign energy independent United States continues to grow unabated; renewable energy has been receiving increased focus and it's widely believed that it's not only the answer to ever increasing demand for energy in this country, but also the environmentally friendly means of meeting such demand. During the spring of 2010, I was involved with a 5KW solar power system design project; the project involved designing and building solar panels and associated accessories like the solar array mounts and Solar Inverter system. One of the key issues we ran into during the initial stage of the project was how to select efficient solar cells for panel building at a reasonable cost. While we were able to purchase good solar cells within our allocated budget, the issue of design for efficiency was not fully understood , not just in the contest of solar cells performance , but also in the overall system efficiency of the whole solar power system, hence the door was opened for this thesis. My thesis explored and expanded beyond the scope of the aforementioned project to research different avenues for improving the efficiency of solar photo-voltaic power system from the solar cell level to the solar array mounting, array tracking and DC-AC inversion system techniques.

  5. Singlet fission: Towards efficient solar cells

    NASA Astrophysics Data System (ADS)

    Havlas, Zdeněk; Wen, Jin; Michl, Josef

    2015-12-01

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  6. Singlet fission: Towards efficient solar cells

    SciTech Connect

    Havlas, Zdeněk; Wen, Jin; Michl, Josef

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  7. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  8. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Venkata-Haritha, M.; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-07-01

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm-2. Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an

  9. "Pelled-film" solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1980-01-01

    Cells are lighter and less expensive than conventional cells. GaAs cells are deposited on GaAs substrate coated with thin etchable layer that allows completed cell film to be peeled away from substrate. At estimated conversion of 18 percent, array of cells delivers about 1 kW of electricity per kilogram of cell material. Blanket of cells delivers energy at power-to-weight ratio about 4 times that of conventional 2-mil (0.5-mm) silicon solar cells. GaAs solar cells have better radiation resistance than silicon cells.

  10. Luminescent solar concentrator improvement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W.; Schmidt, Timothy W.; Argyros, Alexander

    2015-12-01

    Luminescent solar concentrators (LSCs) offer the prospect of reducing the cost of solar energy, and are a promising candidate for building integrated photovoltaic (PV) structures. However, the realization of commercially viable efficiency of LSCs is currently hindered by reabsorption losses. In this work, a method is introduced for reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire length of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption, and directed by the seed laser towards a small target PV cell. A mathematical model of such a system is presented which identifies different physical parameters responsible for the power conversion efficiency and gives the net effective output power.

  11. Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells

    PubMed Central

    2014-01-01

    CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells. PMID:24910576

  12. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  13. Schottky barrier solar cell

    SciTech Connect

    Stirn, R.J.; Yeh, Y.C.M.

    1981-07-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. Official Gazette of the U.S. Patent and Trademark Office

  14. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834

  15. Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters.

    PubMed

    Bera, Ashok; Sheikh, Arif D; Haque, Md Azimul; Bose, Riya; Alarousu, Erkki; Mohammed, Omar F; Wu, Tom

    2015-12-30

    Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simple one-step spin coating of CH3NH3PbI3-xClx on Zn2SnO4 is found to lead to rapidly crystallized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn2SnO4/perovskite interface. Most importantly, solar cells with Zn2SnO4 as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn2SnO4 as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance. PMID:26633572

  16. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.

    PubMed

    Saha, Sudip K; Bera, Abhijit; Pal, Amlan J

    2015-04-29

    We introduce dopants in lead sulfide (PbS) quantum dots (QDs) in forming hybrid bulk-heterojunction (BHJ) solar cells. Because an increase in the content of bismuth as dopants in PbS QDs transforms the intrinsic p-type semiconductor into an n-type one, the band alignment between a conjugated polymer and the doped QDs changes upon doping affecting performance of BHJ solar cells. From scanning tunneling spectroscopy (STS) of the doped QDs, we observe a shift in their Fermi energy leading to formation of a type II band alignment in the polymer:doped-QD interface. We also show that the dopants improve electron-conduction process through the QDs. With the dopants controlling both band alignments at the interface and the conduction process, we show that the dopant concentration in QDs influences open-circuit voltage unfavorably and short-circuit current in a beneficial manner. The device performance of hybrid BHJ solar cells is hence maximized at an optimum concentration of bismuth in PbS QDs. PMID:25853277

  17. Silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.; Addis, F. W.; Miller, W. A.

    1985-01-01

    The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.

  18. Material and Device Analysis for Efficiency Improvement in Epitaxial Crystalline Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-11-433

    SciTech Connect

    Sopori, B.

    2014-01-01

    Crystal Solar has a novel approach for producing low-cost, monocrystalline silicon wafers that are capable of yielding high-efficiency solar cells. The approach involves epitaxial growth of the substrate and a proprietary lift-off technology. Crystal Solar will send selected wafers and cells to NREL for characterization and analyses. NREL will apply a variety of techniques to help identify mechanism(s) that limit the cell efficiency and suggest suitable approaches for mitigation.

  19. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    SciTech Connect

    Junhom, W.; Magaraphan, R.

    2015-05-22

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  20. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    NASA Astrophysics Data System (ADS)

    Junhom, W.; Magaraphan, R.

    2015-05-01

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  1. Improvement in performance of dye-sensitized solar cells with porous TiO2 electrodes using squid ink particles

    NASA Astrophysics Data System (ADS)

    Matsuura, Toshihiko; Nagai, Sakura; Ogasawara, Kou; Minato, Ken-ichi; Sakai, Mitsuo; Ueno, Takashi

    2016-06-01

    A potentially appealing alternative to the traditional fabrication process of TiO2 film electrodes for dye-sensitized solar cells (DSSCs) was presented by utilizing water-soluble TiO2 composite pastes containing size-controlled ink particles (SIPs) isolated from the squid. The mixture ratios of SIPs in the paste formulations affected the photoelectric conversion efficiency (PCE). The highest PCE was achieved when the mixture ratio of SIPs was 20%. The process is highly reproducible and leads to a 35% increase in PCE compared with that in the DSSC without SIP addition. The utilization of SIPs in the fabrication of TiO2 film electrodes enhanced the performance of DSSCs.

  2. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tan, Zhan'ao; Yang, Chunhe; Zhou, Erjun; Wang, Xiang; Li, Yongfang

    2007-07-01

    A solution processible titanium chelate, titanium (diisopropoxide) bis (2,4-pentanedionate) (TIPD), was used as the cathode buffer layer in the polymer solar cells (PSCs) based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] and [6,6]-phenyl-C61-butyric acid methyl ester. Introducing TIPD buffer layer reduced the interface resistance between the active layer and Al electrode, leading to a lower device resistance. The power conversion efficiency of the PSC with TIPD buffer layer reached 2.52% under the illumination of AM1.5, 100mW/cm2, which is increased by 51.8% in comparison with that (1.66%) of the device without TIPD buffer layer under the same experimental conditions.

  3. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    SciTech Connect

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  4. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    In the past decade, research on organic solar cells has gone through an important development stage leading to major enhancements in power conversion efficiency, from 4% to 9% in single-junction devices. During this period, there are many novel processing techniques and device designs that have been proposed and adapted in organic solar-cell devices. One well-known device architecture that helps maximize the solar cell efficiency is the multi-junction tandem solar-cell design. Given this design, multiple photoactive absorbers as subcells are stacked in a monolithic fashion and assembled via series connection into one complete device, known as the tandem solar cell. Since multiple absorbers with different optical energy bandgaps are being applied in one tandem solar-cell device, the corresponding solar cell efficiency is maximized through expanded absorption spectrum and reduced carrier thermalization loss. In Chapter 3, the architecture of solution-processible, visibly transparent solar cells is introduced. Unlike conventional organic solar-cell devices with opaque electrodes (such as silver, aluminum, gold and etc.), the semi-transparent solar cells rely on highly transparent electrodes and visibly transparent photoactive absorbers. Given these two criteria, we first demonstrated the visibly transparent single-junction solar cells via the polymer absorber with near-infrared absorption and the top electrode based on solution-processible silver nanowire conductor. The highest visible transparency (400 ˜ 700 nm) of 65% was achieved for the complete device structure. More importantly, power conversion efficiency of 4% was also demonstrated. In Chapter 4, we stacked two semi-transparent photoactive absorbers in the tandem architecture in order to realize the semi-transparent tandem solar cells. A noticeable performance improvement from 4% to 7% was observed. More importantly, we modified the interconnecting layers with the incorporation of a thin conjugated

  5. Lunar production of solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Perino, Maria Antonietta

    1989-01-01

    The feasibility of manufacturing of solar cells on the moon for spacecraft applications is examined. Because of the much lower escape velocity, there is a great advantage in lunar manufacture of solar cells compared to Earth manufacture. Silicon is abundant on the moon, and new refining methods allow it to be reduced and purified without extensive reliance on materials unavailable on the moon. Silicon and amorphous silicon solar cells could be manufactured on the moon for use in space. Concepts for the production of a baseline amorphous silicon cell are discussed, and specific power levels are calculated for cells designed for both lunar and Earth manufacture.

  6. Inversion layer MOS solar cells

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1986-01-01

    Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

  7. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  8. An Introduction to Solar Cells

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  9. Facility for testing solar cells

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1974-01-01

    Primary components of facility are test chamber and external solar simulator. Voltage--current performance characteristics of solar cells at various combinations of temperature and light intensity are plotted on X-Y recorder. Data are fed into computer for calculation of maximum power, curve shape factor, cell efficiency, and averages of each parameter.

  10. V-Grooved GaAs Solar Cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Landis, G. R.; Wilt, D. M.; Thomas, R. D.; Arrison, A.; Fatemi, N. S.

    1991-01-01

    V-grooved GaAs solar photovoltaic cells increase optical coupling and greater conversion of light into electricity. Increases both trapping of incident light and lengths of optical paths in cell material. Net effect increases in total absorptivity, tolerance to damage by energetic particles, and short-circuit current. These improvements expected to follow from similar improvements obtained in silicon solar cells.

  11. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  12. Amorphous Silicon-Carbon Nanostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Schriver, Maria; Regan, Will; Loster, Matthias; Zettl, Alex

    2011-03-01

    Taking advantage of the ability to fabricate large area graphene and carbon nanotube networks (buckypaper), we produce Schottky junction solar cells using undoped hydrogenated amorphous silicon thin films and nanostructured carbon films. These films are useful as solar cell materials due their combination of optical transparency and conductance. In our cells, they behave both as a transparent conductor and as an active charge separating layer. We demonstrate a reliable photovoltaic effect in these devices with a high open circuit voltage of 390mV in buckypaper devices. We investigate the unique interface properties which result in an unusual J-V curve shape and optimize fabrication processes for improved solar conversion efficiency. These devices hold promise as a scalable solar cell made from earth abundant materials and without toxic and expensive doping processes.

  13. Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen

    NASA Astrophysics Data System (ADS)

    Zhuo, Zu-Liang; Wang, Yong-Sheng; He, Da-Wei; Fu, Ming

    2014-09-01

    The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca)3phen ultrathin films. The modification of the Tb(aca)3phen ultrathin film between the indium tin oxide (ITO) anode and the PE-DOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (Jsc). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca)3phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca)3phen ultrathin film. The ultraviolent—visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca)3phen in P3HT:PCBM solar cells led to about a 12% PCE increase.

  14. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  15. Perovskite solar cells: High voltage from ordered fullerenes

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa

    2016-01-01

    The open-circuit voltage is one of the parameters determining the efficiency of solar cells in converting solar radiation to electricity. Reducing the structural disorder in fullerene electron-transport layers is now shown to significantly improve the open-circuit voltage of perovskite solar cells.

  16. Controlled reflectance solar cell

    SciTech Connect

    Dill, H.G.; Lillington, D.R.

    1989-06-13

    A solar cell is described comprising: A semiconductor body having a front layer of a first conductivity type and an adjacent back layer of a second conductivity type opposite of the first conductivity type. The front and back layers form front and back major surfaces, respectively the semiconductor body further having openings through the back major surface and back layer which form recesses extending to the front layer. The recesses having walls which are doped to the first conductivity type; a first electrical contact disposed in the recesses making electrical contact the first conductivity type layer; and a second electrical contact disposed on the back major surface making electrical contact to the second conductivity type layer.

  17. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  18. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  19. Upconversion in solar cells

    PubMed Central

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  20. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron

  1. Silicon solar cell process development, fabrication, and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Leung, D. C.

    1980-01-01

    Solar cells from HEM, Dendritic Webs, and EFG ribbons were fabricated and characterized. The HEM solar cells showed only slight enhancement in cell performance after gettering steps (diffusion glass) were added. Dendritic webs from various growth runs indicated that performance of solar cells made from the webs was not as good as that of the conventional CZ cells. The EFG ribbons grown in CO ambient showed significant improvement in silicon quality.

  2. Nanophotonic front electrodes for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Paetzold, Ulrich Wilhelm; Qiu, Weiming; Finger, Friedhelm; Poortmans, Jef; Cheyns, David

    2015-04-01

    In less than 3 years' time, a vast progress in power conversion efficiencies of organometal halide perovskite solar cells has been achieved by optimization of the device architecture, charge transport layers, and interfaces. A further increase in these efficiencies is expected from an improvement in the optical properties via anti-reflection coatings and nanophotonic light management concepts. In this contribution, we report on the development and implementation of a nanophotonic front electrode for perovskite solar cells. The nanostructures were replicated via the versatile and large-area compatible UV-nanoimprint lithography. The shallow design of the used transparent and conductive nanostructures enabled easy integration into our solution-based baseline process. Prototype methylammonium lead iodide perovskite solar cells show an improvement of 5% in short-circuit current density and an improvement from 9.6% to 9.9% in power conversion efficiency compared to the flat reference device.

  3. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  4. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability. PMID:27349330

  5. Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells

    SciTech Connect

    Xiao, Teng; Cui, Weipan; Cai, Min; Liu, Rui; Anderegg, James W.; Shinar, Joseph; Shinar, Ruth

    2012-03-12

    Alkali fluorides, mostly LiF and CsF, are well-known to improve electron injection/extraction in organic light-emitting diodes (OLEDs) and organic solar cells (OSCs). They are also utilized, though to a lesser extent, for hole injection in OLEDs. Here we demonstrate a new role for such fluorides in enhancing OSCs’ hole extraction.We show that an ultrathin air-plasmatreated alkali fluoride layer between the indium tin oxide (ITO) anode and the active layer in copper phthalocyanine ðCuPcÞ∕C70-based OSCs increases the short circuit current by up to ∼17% for cells with LiF and ∼7% for cells with NaF or CsF. The effects of the fluoride layer thickness and treatment duration were evaluated, as were OSCs with oxidized and plasma-treated Li and UV-ozone treated LiF. Measurements included current voltage, absorption, external quantum efficiency (EQE), atomic force microscopy, and x-ray photoelectron spectroscopy, which showed the presence of alkali atoms F and O at the treated ITO/fluoride surface. The EQE of optimized devices with LiF increased at wavelengths >560 nm, exceeding the absorption increase. Overall, the results indicate that the improved performance is due largely to enhanced hole extraction, possibly related to improved energy-level alignment at the fluorinated ITO/CuPc interface, reduced OSC series resistance, and in the case of LiF, improved absorption.

  6. Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting.

    PubMed

    Chen, Po-Yen; Dang, Xiangnan; Klug, Matthew T; Qi, Jifa; Dorval Courchesne, Noémie-Manuelle; Burpo, Fred J; Fang, Nicholas; Hammond, Paula T; Belcher, Angela M

    2013-08-27

    By genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dye-sensitized solar cells (DSSCs). This has been accomplished by binding gold nanoparticles (AuNPs) to the virus proteins and encapsulating the AuNP-virus complexes in TiO2 to produce a plasmon-enhanced and nanowire (NW)-based photoanode. The NW morphology exhibits an improved electron diffusion length compared to traditional nanoparticle-based DSSCs, and the AuNPs increase the light absorption of the dye-molecules through the phenomenon of localized surface plasmon resonance. Consequently, we report a virus-templated and plasmon-enhanced DSSC with an efficiency of 8.46%, which is achieved through optimizing both the NW morphology and the concentration of AuNPs loaded into the solar cells. In addition, we propose a theoretical model that predicts the experimentally observed trends of plasmon enhancement. PMID:23808626

  7. A Versatile Three-Dimensional Virus-Based Template for Dye-Sensitized Solar Cells with Improved Electron Transport and Light Harvesting

    PubMed Central

    Chen, Po-Yen; Dang, Xiangnan; Klug, Matthew T.; Qi, Jifa; Courchesne, Noémie-Manuelle D.; Burpo, Fred J.; Fang, Nicholas; Hammond, Paula T.; Belcher, Angela M.

    2014-01-01

    By genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dye-sensitized solar cells (DSSCs). This has been accomplished by binding gold nanoparticles (AuNPs) to the virus proteins and encapsulating the AuNP-virus complexes in TiO2 to produce a plasmon-enhanced and nanowire (NW)-based photoanode. The NW morphology exhibits an improved electron diffusion length compared to traditional nanoparticle-based DSSCs and the AuNPs increase the light absorption of the dye-molecules through the phenomenon of localized surface plasmon resonance. Consequently, we report a virus-templated and plasmon-enhanced DSSC with an efficiency of 8.46%, which is achieved through optimizing both the NW morphology and the concentration of AuNPs loaded into the solar cells. In addition, we propose a theoretical model that predicts the experimentally observed trends of plasmon-enhancement. PMID:23808626

  8. Performance improvement of flexible bulk heterojunction solar cells using PTB7:PC71BM by optimizing spin coating and drying processes

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masaya; Fujii, Shunjiro; Arai, Yuki; Yanagidate, Tatsuki; Yanagi, Yuichiro; Okukawa, Takanori; Yoshida, Akira; Kataura, Hiromichi; Nishioka, Yasushiro

    2014-02-01

    Bulk-heterojunction solar cells were fabricated using a dichlorobenzene solution of poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) on a flexible indium-tin-oxide-coated polyethylene terephthalate substrate. It was found that the performance of the solar cells could be markedly improved by minimizing the spin coating time of a blend of PTB7 and PC71BM to 10 s and maximizing the successive drying and solidification time up to 30 min in a confined Petri dish. As a result, a short-circuit current density of 14.5 mA/cm2, an open-circuit voltage of 0.62 V, and a power conversion efficiency of 3.67% were obtained. These improvements are attributed to the growth of favorable nanostructures during the slow drying process that increased the photocarrier collection efficiency while simultaneously increasing the performance fluctuations of each device.

  9. Improvement of light scattering capacity in dye-sensitized solar cells by doping with SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jun; Park, Jun-Yong; Kim, Chan-Soo; Okuyama, Kikuo; Lee, Sung-Eun; Kim, Tae-Oh

    2016-09-01

    N-doped TiO2 was further doped with SiO2 to prepare SiO2/N-doped TiO2 photoelectrodes with high activity in the visible region. A sol-gel process was employed to produce nanoparticles of SiO2/N-doped TiO2. The addition of SiO2 to the metal oxide enhanced charge transfer and reduced charge recombination. With the addition of sufficient amounts of SiO2 and N, the photoelectrodes exhibited a high surface area and strong absorption of light because of their altered absorptivity in the visible wavelength region. These characteristics enabled the production of photoelectrodes with increased charge transfer and reduced charge recombination, resulting in dye-sensitized solar cells (DSSCs) with enhanced Jsc values. The SiO2/N-doped TiO2 photoelectrodes were characterized using a range of analysis techniques. After the J-V curve measurements, the DSSCs fabricated with the 0.1 mM SiO2/N-doped TiO2 photoelectrodes exhibited the highest energy conversion efficiency of 8.68%, which was approximately 3% higher than that of the N-doped TiO2 control groups. This high energy efficiency with the addition of SiO2 might be due to the enhanced surface area of the photoelectrodes, allowing more dye absorption, and a decrease in electron recombination.

  10. Module level solutions to solar cell polarization

    DOEpatents

    Xavier, Grace , Li; Bo

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  11. An interim report on the NTS-2 solar cell experiment

    NASA Technical Reports Server (NTRS)

    Statler, R. L.; Walker, D. H.

    1979-01-01

    Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.

  12. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-06-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage ( V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PEDOT:PSS, rear-SiNx:H, front PEDOT:PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  13. Bifacial space silicon solar cell

    NASA Astrophysics Data System (ADS)

    Strobl, G.; Kasper, C.; Rasch, K.-D.; Roy, K.

    A bifacial light sensitive solar cell for use in space solar generators is presented. A bifacial cell is almost transparent for infrared radiation, resulting in a low solar absorptance (0.63 for a bare cell). The operating temperature in space is estimated to be 10-20 C lower than for BSR cells. This advantage holds for both LEO and GEO missions. In addition to the direct sun radiation the bifacial cell converts the albedo radiation reflected by the earth and illuminates the back side of the bifacial cell. This is particularly important for LEO missions. The efficiency of experimental cells, 50 to 180 microns thick, was found to be up to 40 percent higher than for conventional BSFR cells.

  14. Nanoparticle Solar Cell Final Technical Report

    SciTech Connect

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  15. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    PubMed

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry. PMID:24571825

  16. MoO3 as a Cathode Buffer Layer Material for the Improvement of Planar pn-Heterojunction Organic Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kageyama, Hiroshi; Kajii, Hirotake; Ohmori, Yutaka; Shirota, Yasuhiko

    2011-03-01

    The use of MoO3 as a cathode buffer layer inserted between LiF and Al improved the power conversion efficiency (PCE) of planar pn-heterojunction organic solar cells (OSCs) by reducing exciton quenching at the interface between the n-type organic active layer and the electrode. The cell using an amorphous molecular material, tris[4-(5-phenylthiophen-2-yl)phenyl]amine, as a p-type organic semiconductor, C70 as an n-type organic semiconductor and MoO3 as a cathode buffer layer exhibited a PCE of 3.3% under AM1.5G illumination (100 mW cm-2), which is of the highest level among those for planar pn-heterojunction OSCs using amorphous molecular materials as donor materials.

  17. Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells.

    PubMed

    Fairbrother, Andrew; García-Hemme, Eric; Izquierdo-Roca, Victor; Fontané, Xavier; Pulgarín-Agudelo, Fabián A; Vigil-Galán, Osvaldo; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2012-05-16

    Improvement of the efficiency of Cu(2)ZnSnS(4) (CZTS)-based solar cells requires the development of specific procedures to remove or avoid the formation of detrimental secondary phases. The presence of these phases is favored by the Zn-rich and Cu-poor conditions that are required to obtain device-grade layers. We have developed a selective chemical etching process based on the use of hydrochloric acid solutions to remove Zn-rich secondary phases from the CZTS film surface, which are partly responsible for the deterioration of the series resistance of the cells and, as a consequence, the conversion efficiency. Using this approach, we have obtained CZTS-based devices with 5.2% efficiency, which is nearly twice that of the devices we have prepared without this etching process. PMID:22545682

  18. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  19. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  20. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  1. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.

    PubMed

    Gopi, Chandu V V M; Venkata-Haritha, Mallineni; Seo, Hyunwoong; Singh, Saurabh; Kim, Soo-Kyoung; Shiratani, Masaharu; Kim, Hee-Je

    2016-05-28

    To make quantum dot-sensitized solar cells (QDSSCs) competitive, we investigated the effect of Ni(2+) ion incorporation into a CdS layer to create long-lived charge carriers and reduce the electron-hole recombination. The Ni(2+)-doped CdS (simplified as CdNiS) QD layer was introduced to a TiO2 surface via the simple successive ionic layer adsorption and reaction (SILAR) method in order to introduce intermediate-energy levels in the QDs. The effects of different Ni(2+) concentrations (5, 10, 15, and 20 mM) on the physical, chemical, and photovoltaic properties of the QDSSCs were investigated. The Ni(2+) dopant improves the light absorption of the device, accelerates the electron injection kinetics, and reduces the charge recombination, which results in improved charge transfer and collection. The 15% CdNiS cell exhibits the best photovoltaic performance with a power conversion efficiency (η) of 3.11% (JSC = 8.91 mA cm(-2), VOC = 0.643 V, FF = 0.543) under one full sun illumination (AM 1.5 G). These results are among the best achieved for CdS-based QDSSCs. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements confirm that the Ni(2+) dopant can suppress charge recombination, prolong the electron lifetime, and improve the power conversion efficiency of the cells. PMID:27111597

  2. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  3. Fundamentals of thin solar cells

    SciTech Connect

    Yablonovitch, E.

    1995-08-01

    It is now widely recognized that thin solar cells can present certain advantages for performance and cost. This is particularly the case when light trapping in the semiconductor film is incorporated, as compensation for the diminished single path thickness of the solar cell. In a solar cell thinner than a minority carrier diffusion length, the current collection is of course very easy. More importantly the concentration of an equivalent number of carriers in a thinner volume results in a higher Free Energy, or open circuit voltage. This extra Free Energy may be regarded as due to the concentration factor, just as it would be for photons, electrons, or for any chemical species. The final advantage of a thin solar cell is in the diminished material usage, a factor of considerable importance when we consider the material cost of the high quality semiconductors which we hope to employ.

  4. Review on the application of nanostructure materials in solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Xosrovashvili, Georgi; Rouhi, Rasoul; Gorji, Nima E.

    2015-07-01

    In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.

  5. CZTSSe thin film solar cells: Surface treatments

    NASA Astrophysics Data System (ADS)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  6. Dust removal from solar cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2011-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  7. Dust Removal from Solar Cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  8. Solar cell with back side contacts

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  9. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Wei, Liguo; Yang, Yulin; Xia, Xue; Wang, Ping; Yu, Jia; Luan, Tianzhu

    2016-08-01

    Cu-doped TiO2 nanoparticles are prepared and used as semiconductor materials of photoanode to improve the performance of dye sensitized solar cells (DSSCs). UV-Vis spectroscopy and variable temperature spectroelectrochemistry study are used to characterize the influence of copper dopant with different concentrations on the band gap energies of TiO2 nanoparticles. The prepared Cu-doped TiO2 semiconductor has avoided the formation of CuO during hydrothermal process and lowered the conduction band position of TiO2, which contribute to increase the short circuit current density of DSSCs. At the optimum Cu concentration of 1.0 at.%, the short circuit current density increased from 12.54 to 14.98 mA cm-2, full sun solar power conversion efficiencies increased from 5.58% up to 6.71% as compared to the blank DSSC. This showed that the presence of copper in DSSCs leads to improvements of up to 20% in the conversion efficiency of DSSCs.

  10. Improvement of background solar wind predictions

    NASA Astrophysics Data System (ADS)

    Dálya, Zsuzsanna; Opitz, Andrea

    2016-04-01

    In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.

  11. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    NASA Astrophysics Data System (ADS)

    Long, Yongbing; Li, Yuanxing; Su, Runmei

    2014-08-01

    Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE) polarized and transverse-magnetic(TM) polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  12. Terrestrial concentrator solar cell module

    SciTech Connect

    Fraas, L.M.; Mansoori, N.; Kim, N.B.; Avery, J.E.

    1992-06-02

    This patent describes a solar cell module having a plurality of discrete cell units wherein each cell unit constitutes a tandem cell comprising an upper cell of a first semiconductive material and a lower cell of a second semiconductive material. It comprises a housing having a base and an upper portion; primary outer lens elements supported by the housing upper portion; a secondary radiant energy concentrating element associated with each primary lens element for protecting the carrier tape against incident light; each of the solar cell units being thermally coupled to the base; and parallel spaced strips of conductive material carried by the tape with means for separately connecting the strips to predetermined contact surfaces of the upper and lower cells of each cell unit.

  13. Silicon solar cell

    SciTech Connect

    Hovel, H.J.

    1983-03-01

    A high efficiency silicon solar cell may be constructed by providing a two-stage drift field emitter with a 1 micron thickness on a drift field base region with a back surface field region. The stage of the drift field emitter adjacent to the junction is moderately doped from 1018 to 1016 atoms/cc adjacent the junction to minimize bandgap shrin and to maximize carrier lifetime while the stage of the emitter adjacent the surface is highly doped at 1019 atoms/cc to minimize sheet resistance. The drift field is aiding in both the emitter and base regions. The size of the base is less than an effective diffusion length. There is a difference in doping level in the base depending on the conductivity type of the silicon. For n-conductivity type the base is doped 1013 atoms/cc at the pn junction, increasing to 1016 atoms/cc in the drift field region. For p-conductivity type the base is doped 1016 at the junction, increasing to 1018 atoms/cc in the drift field. A back surface field is provided adjacent the ohmic contact on the part of the base remote from the junction by doping to 1020 to 1021 atoms/cc. A passivating antireflective layer is added to the light incident surface. The 1 micron emitter region contains a 0.1 to 0.2 mu m thick high conducting region adjacent the antireflective coating on the light incident surface and a drift field region 0.3 to 0.9 mu m thick. The base region has a drift field region 20 to 100 mu m thick and the overall base region is 50 to 450 mu m thick. The back surface field region is 1 mu m thick.

  14. Low-Temperature Boron Gettering for Improving the Carrier Lifetime in Fe-Contaminated Bifacial Silicon Solar Cells with n+pp+ Back-Surface-Field Structure

    NASA Astrophysics Data System (ADS)

    Joge, Toshio; Araki, Ichiro; Uematsu, Tsuyoshi; Warabisako, Terunori; Nakashima, Hiroshi; Matsukuma, Kunihiro

    2003-09-01

    Gettering kinetics of Fe contaminant by doped boron during low-temperature annealing is discussed to improve the minority carrier lifetime in bifacial silicon solar cells with an n+pp+ back surface field (BSF) structure composed of a boron-doped p-base and a boron diffused p+ layer. A model for Fe-gettering by boron is introduced and computer simulations are carried out for the change in minority carrier lifetime along the thermal process in cell fabrication. Lifetime behavior shows good consistency with experimental results when “Fe-behavior parameters” and proper boundary conditions of the initial Fe concentration being higher than the solubility limit at the gettering temperature are taken into account. As a consequence, low-temperature boron gettering employed after boron diffusion for BSF fabrication is found to markedly improve the carrier lifetime cooperating with the phosphorous gettering associated with the pn junction formation, and can recover the initial high lifetimes before cell fabrication. Additionally, a certain condition of short-time heat treatment at higher temperature is found for firing which does not deteriorate the recovered lifetimes.

  15. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  16. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  17. Measurement and Characterization of Concentrator Solar Cells II

    NASA Technical Reports Server (NTRS)

    Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave

    2005-01-01

    Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].

  18. Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes.

    PubMed

    Nagaoka, Hirokazu; Ma, Fei; deQuilettes, Dane W; Vorpahl, Sarah M; Glaz, Micah S; Colbert, Adam E; Ziffer, Mark E; Ginger, David S

    2015-02-19

    We investigate zirconium (Zr) incorporation into the titanium dioxide (TiO2) electron-transporting layer used in organometal halide perovskite photovoltaics. Compared to Zr-free controls, solar cells employing electrodes containing Zr exhibit increased power conversion efficiency (PCE) and decreased hysteresis. We use transient photovoltage and photocurrent extraction to measure carrier lifetimes and densities and observe longer carrier lifetimes and higher charge densities in devices on Zr-containing electrodes at microsecond times as well as longer persistent photovoltages extending from ∼milliseconds to tens of seconds. We characterize the surface stoichiometry and change in work function and reduction potential of the TiO2 upon incorporation of Zr and discuss the charge recombination at the TiO2 interface in the context of these variables. Finally, we show that the combination of Zr-TiO2 electrode modification with device pyridine treatment leads to a cumulative improvement in performance. PMID:26262483

  19. Improved Open- Circuit Voltage in ZnO–PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail

    PubMed Central

    Hoye, Robert L Z; Ehrler, Bruno; Böhm, Marcus L; Muñoz-Rojas, David; Altamimi, Rashid M; Alyamani, Ahmed Y; Vaynzof, Yana; Sadhanala, Aditya; Ercolano, Giorgio; Greenham, Neil C; Friend, Richard H; MacManus-Driscoll, Judith L; Musselman, Kevin P

    2014-01-01

    Colloidal quantum dot solar cells (CQDSCs) are attracting growing attention owing to significant improvements in efficiency. However, even the best depleted-heterojunction CQDSCs currently display open-circuit voltages (VOCs) at least 0.5 V below the voltage corresponding to the bandgap. We find that the tail of states in the conduction band of the metal oxide layer can limit the achievable device efficiency. By continuously tuning the zinc oxide conduction band position via magnesium doping, we probe this critical loss pathway in ZnO–PbSe CQDSCs and optimize the energetic position of the tail of states, thereby increasing both the VOC (from 408 mV to 608 mV) and the device efficiency. PMID:26225131

  20. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    SciTech Connect

    Jäger, Timo Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  1. Status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1976-01-01

    Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.

  2. Multicrystalline silicon bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Jimeno, J. C.; Luque, A.

    The results of several batches of multicrystalline silicon bifacial solar cells (HEM and cast) are analyzed. I-V curves are measured under front and back illuminations and also in the dark, at several temperatures. It is concluded that HEM wafers might be used to manufacture commercial bifacial cells, while the high base recombination prevents the use of cast wafers for this purpose.

  3. Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO3/Ag/MoO3 anode

    NASA Astrophysics Data System (ADS)

    Tian, Ximin; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Shi, Fang; Wang, Hua; Wei, Bin; Huang, Wei

    2015-01-01

    We demonstrate an inverted low bandgap semitransparent organic solar cell with improved absorption as well as reasonable transparency perception based on a nanopatterned MoO3/Ag/MoO3 (MAM) multilayer film as the transparent anode under illumination from the MAM side. The integrated absorption efficiency of the active layer at normal hybrid-polarized incidence considering an AM 1.5G solar spectrum is up to 51.69%, increased by 18.53% as compared to that of the equivalent planar device (43.61%) and reaching 77.3% of that of the corresponding opaque nanopatterned device (66.90%). Detailed investigations reveal that the excitation of plasmonic waveguide modes (at transverse magnetic polarization) and photonic modes (at transverse electric polarization) are responsible for the observed enhancement in absorption. Importantly, the proposed device exhibits an average transmittance of up to 28.4% and an average transparency perception of 26.3% for the human eyes under hybrid-polarized light illumination along with a good color rendering property. Additionally, our proposal works very well over a fairly wide angular range.

  4. Solar cells composed of semiconductive materials

    SciTech Connect

    Hezel, R.

    1981-03-03

    A solar cell is composed of a semiconductive material having an active zone in which charge carriers are produced by photons which strike and penetrate into the solar cell. The cell is comprised of a semiconductive body having an electrically insulating laminate with metal contacts therein positioned on the semiconductor body in the active zone thereof. The insulating laminate is composed of a double layer of insulating material, with the layer in direct contact with the semiconductive surface being composed of SiO2 which is either natural or is produced at temperatures below 800/sup 0/ C. And the layer superimposed above the SiO2 layer being composed of a different insulating material, such as plasma-produced Si3N4. In certain embodiments of the invention, a whole-area pn-junction is provided parallel to the semiconductive surface. The solar cells of the invention exhibit a higher degree of efficiency due to a higher fixed interface charged density, and low surface recombination velocity, an increased UV sensitivity, improved surface protection and passivation and improved anti-reflection characteristics relative to prior art solar cell devices.

  5. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  6. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  7. Recent developments in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    The present status of the development of thin film solar cells is reviewed, with emphasis on important areas for further research. The following aperture-area efficiencies were measured for thin film modules: a-Si:H, 9.8 percent, 933 sq cm; CuIn(Ga)Se2, 11.1 percent, 938 sq cm; and CdTe, 7.3 percent, 838 sq cm. CuIn(Ga)Se2 cells and modules demonstrated excellent efficiencies and stability. The cost advantage of thin film modules and the higher efficiency and improved stability resulting from multijunctions are shown. Engineering solutions are found to minimize light-induced degradation of a-Si:H solar cells. CdTe cells and modules, and cleaved epitaxial thin film III-V compound cells showed remarkable efficiencies.

  8. InP concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.; Osterwald, C. R.

    1991-01-01

    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells are described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy. A preliminary assessment of the effects of grid-collection distance and emitter-sheet resistance on cell performance is presented. At concentration ratios of around 100, cells with efficiencies of 21.4 percent AM0 (24.3 percent direct) at 25 C are fabricated. These are the highest efficiencies yet reported for single-junction InP solar cells. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined. Application of these results to other InP-based photovoltaic devices is discussed.

  9. Nanocrystal-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Huynh, Wendy Uyen

    The ability to structure materials on a nanometer dimension enables the processes of solar energy conversion to be optimized at their most fundamental length scale. In semiconducting nanocrystals, optical absorption and electrical transport can be tailored by changing their radius and length, respectively. The unique features of quantum confinement and shape manipulation characteristic for inorganic nanocrystals can be utilized to fabricate solar cells with properties not observed in organic or conventional inorganic solar cells. Furthermore, their solution processibility provides fabrication advantages in the production of low cost, large area, and flexible solar cells. By blending organic conjugated polymers with CdSe nanocrystals efficient thin film solar cells have been constructed. Intimate contact for efficient charge transfer between the polymer and nanocrystal components of the blend was achieved by removing the organic ligands on the surface of the nanocrystal and by using solvent mixtures. Control of the nanocrystal length and therefore the distance on which electrons are transported directly through a thin film device enabled the creation of direct pathways for the transport of electrons. In addition, tuning the band gap by altering the nanocrystal radius as well as using alternate materials such as CdTe the overlap between the absorption spectrum of the cell and the solar emission spectrum could be optimized. A photovoltaic device consisting of 7nm by 60nm CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of up to 7% under illumination at low light intensity. Under AM 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  10. The role of buffer layer between TCO and p-layer in improving series resistance and carrier recombination of a-Si:H solar cells

    SciTech Connect

    Yoon, Kichan; Shin, Chonghoon; Lee, Youn-Jung; Kim, Youngkuk; Park, Hyeongsik; Baek, Seungsin; Yi, Junsin

    2012-10-15

    The properties of the window layer and transparent conducting oxide (TCO)/p interface in silicon based thin-film solar cells are important factors in determining the cell efficiency. As the potential barrier got larger at the interface, the transmission of photo-generated holes were impeded and the recombination of photo-generated electrons diffusing back toward the TCO interface were enhanced leading to a deterioration of the fill factor. In this paper different p-layers were studied. It was found that using p-type hydrogenated amorphous silicon oxide (a-SiO{sub x}:H) layer as the window layer along with a 5 nm buffer layer which reduced the barrier at the fluorine doped tin oxide (SnO{sub 2}:F) TCO/p-layer interface, improved the cell efficiency. a-SiO{sub x}:H was used as the buffer layer. With the buffer layer between TCO and p-type a-SiO{sub x}:H, the potential barrier dropped from 0.506 eV to 0.472 eV. This lowered barrier results in increased short circuit current density (J{sub sc}) and fill factor (FF). With the buffer layer, J{sub sc} increased from 11.9 mA/cm{sup 2} to 13.35 mA/cm{sup 2} and FF increased from 73.22% to 74.91%.

  11. Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency

    NASA Astrophysics Data System (ADS)

    Pellé, F.; Ivanova, S.; Guillemoles, J.-F.

    2011-10-01

    Upconverted emission from erbium ions in fluoride materials (glass and disordered crystal of the system CaF2-YF3) are observed in a wide spectral range (from the visible to the near infrared) under infrared excitation at 1.54 μm. In both cases, the upconverted emission in the near infrared (~1 μm) dominates the spectrum. Absolute UC efficiency defined as the ratio between the UC luminescence power and the absorbed pump power has been experimentally measured. The NIR (~1 μm) luminescence energy yield for the glass and the disordered crystal varies from 2.4 to 11.5% for the glass and from 7.7 to 16% for the crystal for an infrared excitation power density ranging from 2 W/cm2 to 100 W/cm2. This is of a particular interest for their use as upconverter to improve the c-Si cells quantum efficiency since the energy of the excitation lies below the c-Si absorption edge (1.12 eV at 300 K) and is well located compared to the AM1.5G solar spectrum, outside of the absorption lines due to different atmospheric gases. Furthermore, the most efficient upconverted emission recorded in the investigated materials occurs at an energy just above the gap. A current generated in a bifacial c- Si solar cell is observed when the Er3+ doped material (1.55 mA and 2.15 mA for the glass and the crystal respectively), placed at the rear face of the cell, is excited at 1.54 μm. The current dependence as a function of the sub-bandgap excitation power has been measured and modelled. Finally the EQE of the complete device is deduced from the measured short-circuit current and the incident photon flux on the cell. An increase of the cell quantum efficiency of 2.4% and 1.7% is obtained at 1.54 μm with adding the glass and the crystal respectively at the rear face of the c-Si cell. The results are compared to those already obtained with Er: NaYF4 known as the most efficient upconverter.

  12. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  13. Space solar cell research - Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.

  14. Space solar cell research: Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

  15. Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency to an NREL-Certified 4.4% (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metal electrode eliminates the Schottky barrier that impedes efficient hole extraction and thereby improves the overall conversion efficiency. This allows for inexpensive metals such as Al to be employed without loss of performance. n-type TMOs consisting of molybdenum oxide (MoO{sub x}) and vanadium oxide (V{sub 2}O{sub x}) were used as an efficient hole extraction layer (HEL) in heterojunction ZnO/PbS QD solar cells. A 4.4% NREL-certified device was reported based on the MoO{sub x} HEL with Al as the back contact material, representing a more than 65% efficiency improvement compared with the case of Au contacting the PbS QD layer directly. The team finds the acting mechanism of the HEL to be a dipole formed at the MoO{sub x} and PbS interface, which enhances band bending to allow efficient hole extraction from the valence band of the PbS layer by MoO{sub x}. The carrier transport to the metal anode is likely enhanced through shallow gap states in the MoO{sub x} layer.

  16. Electrodeposited ZnS Precursor Layer with Improved Electrooptical Properties for Efficient Cu2ZnSnS4 Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-10-01

    Zinc sulfide (ZnS) thin films were prepared on indium tin oxide-coated glass by electrodeposition using aqueous zinc sulfate, thiourea, and ammonia solutions at 80°C. The effects of sulfurization at temperatures of 350°C, 400°C, 450°C, and 500°C on the morphological, structural, optical, and electrical properties of the ZnS thin films were investigated. X-ray diffraction analysis showed that the ZnS thin films exhibited cubic zincblende structure with preferred (111) orientation. The film crystallization improved with increasing annealing temperature. Field-emission scanning electron microscopy images showed that the film morphology became more compact and uniform with increasing annealing temperature. The percentage of sulfur in the ZnS thin films increased after sulfurization until a stoichiometric S/Zn ratio was achieved at 500°C. The annealed films showed good adhesion to the glass substrates, with moderate transmittance (85%) in the visible region. Based on absorption measurements, the direct bandgap increased from 3.71 eV to 3.79 eV with annealing temperature, which is attributed to the change of the buffer material composition and suitable crystal surface properties for effective p- n junction formation. The ZnS thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 1.86%.

  17. Solar cell spectral response characterization

    NASA Technical Reports Server (NTRS)

    Zalewski, E. F.; Geist, J.

    1979-01-01

    The absolute spectral response of solar cells is reported in the 400-1000-nm spectral region. Measurements were performed using two different types of monochromatic sources: amplitude-stabilized CW laser lines and interference filters with an incandescent lamp. Both types of calibration procedures use electrical substitution radiometry as the basis of traceability to absolute SI units. The accuracy of the calibration is shown to be limited by the nonideal characteristics of the solar cells themselves, specifically spatial nonuniformities and nonlinearities induced by high light levels.

  18. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  19. Solar cell circuit and method for manufacturing solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  20. Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment

    SciTech Connect

    Yun Sining; Lim, Sangwoo

    2011-02-15

    The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency ({eta}) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), indicating a massive improvement of {eta} in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate. -- Graphical abstract: The poor adhesion between electrospun nanofibers and substrate is improved by a simple and facile seed layer (SD) treatment. The energy conversion efficiency of AZO nanofiber-based DSSCs has been greatly increased by SD-treatment of the FTO substrate. Display Omitted Research highlights: {yields} A simple and facile method (SD-treatment) has been demonstrated. {yields} The poor adhesion between electrospun nanofibers and substrate is improved by the SD-treatment. {yields} The {eta} of AZO nanofiber-based DSSCs has been greatly improved by SD-treatment of the FTO substrate.

  1. Coupling light to solar cells

    SciTech Connect

    Luque, A. |

    1993-11-01

    Efficiencies of more than 33% have been achieved today in the photovoltaic conversion of solar energy into electricity. Part of this achievement is due to a effective coupling of sunlight to the solar cell. In particular three aspects of light-cell coupling are studied here: (a) the achievement of high irradiance on the cell; that is, the study of concentration; (b) the increase of the absorption in the cell and (c) the matching of the sun spectrum to the cell, with the use of several cells or thermo-photovoltaic devices. Finally, the ultimate limits of the efficiency of solar cells, and photovoltaic devices in general, are studied. It is found that efficiencies in the range of 85% (depending on the spectrum of the sun) are theoretically possible. Also the conditions for thermodynamically reversible operation are analyzed. Some laboratory results are presented and the role of the light-cell coupling in the achievement of this high efficiency is stressed. 70 refs., 30 figs., 6 tabs.

  2. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  3. Direct-Write Contacts for Solar Cells

    SciTech Connect

    Kaydanova, T.; van Hest, M.F.A.M.; Miedaner, A.; Curtis, C. J.; Alleman, J. L.; Dabney, M. S.; Garnett, E.; Shaheen, S.; Ginley, D. S.; Smith, L.; Collins, R.; Hanoka, J. I.; Gabor, A. M.

    2005-01-01

    We report on our project to develop inkjet printable contacts for solar cells. Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. Thick, highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and PCB have been printed at 100-200 C in air and N2, respectively. Ag grids were inkjet-printed on Si solar cells and fired through silicon nitride AR layer at 850 C resulting in 8% cells. Next-generation multicomponent inks (including etching agents) have also been developed with improved fire-through contacts leading to higher cell efficiencies. The approach developed can be easily extended to other conductors such as Pt, Pd, and Au, etc. In addition, PEDOT-PSS polymer-based conductors were inkjet-printed with the conductivity as good or better than those of polymer-based conductors.

  4. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials

    NASA Astrophysics Data System (ADS)

    Nadarajah, A.; Smith, T.; Könenkamp, R.

    2012-12-01

    We report a nanowire-quantum-dot-polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm-2 illumination.

  5. Improved performance of dye-sensitized solar cells with TiO 2/alumina core-shell formation using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ganapathy, V.; Karunagaran, B.; Rhee, Shi-Woo

    Alumina (Al 2O 3) shell formation on TiO 2 core nanoparticles by atomic layer deposition (ALD) is studied to suppress the recombination of charge carriers generated in a dye-sensitized solar cell (DSSC). It is relatively easy to control the shell thickness using the ALD method by controlling the number of cycles. An optimum thickness can be identified, which allows tunneling of the forward current while suppressing recombination. High-resolution TEM measurements show that a uniform Al 2O 3 shell is formed around the TiO 2 core particles and elemental mapping of the porous TiO 2 layer reveals that the Al 2O 3 distribution is uniform throughout the layer. The amount of dye absorption is increased with increase in the shell thickness but electrochemical impedance spectroscopic (EIS) measurement shows a drastic increase in the resistance. With an optimum Al 2O 3 thickness of 2 nm deposited by ALD, a 35% improvement in the cell efficiency (from 6.2 to 8.4%) is achieved.

  6. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    PubMed

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications. PMID:26646647

  7. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  8. Inverted organic solar cells using a solution-processed TiO2/CdSe electron transport layer to improve performance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Xiong, Zhicheng; Wang, Wen; Zhang, Luming; Wu, Sujuan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Liu, Jun-Ming

    2016-04-01

    In the present work, cadmium selenide (CdSe) nanoparticles are deposited directly on TiO2 film to fabricate the TiO2/CdSe interlayer by a chemical bath deposition method. The inverted organic solar cells using poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction as an active layer and TiO2/CdSe interlayer as an electron transport layer (ETL) are fabricated in air. A series of microstructural, photo-electronic, and electrochemical characterizations on these cells are performed. The TiO2/CdSe structure with respect to either the TiO2 layer or the CdSe layer as the ETL exhibits significantly enhanced external quantum efficiency (EQE) in the visible region. The photoluminescence (PL) measurement shows that the exciton dissociation in the TiO2/CdSe structure is more effective than that in either the TiO2 or CdSe structure. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) implies that the charge recombination in the TiO2/CdSe structure can be suppressed with respect to that in either the CdSe or TiO2 structure. The photovoltaic performances of the cells with the TiO2/CdSe ETL are clearly improved compared with the reference cells only with the TiO2 layer or CdSe layer as the ETL.

  9. Alining Solder Pads on a Solar Cell

    NASA Technical Reports Server (NTRS)

    Lazzery, A. G.

    1984-01-01

    Mechanism consisting of stylus and hand-operated lever incorporated into screening machine to precisely register front and back solder pads during solar-cell assembly. Technique may interest those assembling solar cells manually for research or prototype work.

  10. Improving the conductivity of PEDOT:PSS hole transport layer in polymer solar cells via copper(II) bromide salt doping.

    PubMed

    Zhao, Zhiqiang; Wu, Qiliang; Xia, Fei; Chen, Xiang; Liu, Yawei; Zhang, Wenfeng; Zhu, Jun; Dai, Songyuan; Yang, Shangfeng

    2015-01-28

    Copper(II) bromide (CuBr2) salt has been applied to dope poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole transport layer (HTL) in polymer solar cells (PSCs), improving dramatically the conductivity of PEDOT:PSS film and consequently the device power conversion efficiency (PCE). Under the optimized doping concentration of CuBr2 of 10 mmol·L(-1), PCE of the CuBr2:PEDOT:PSS HTL-incorporated BHJ-PSC device based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5- (4',7'-di-2-thienyl-2',1',3'- benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (PCDTBT:PC71BM) reaches 7.05%, which is improved by ∼20.7% compared to that of the reference device based on pristine PEDOT:PSS HTL (5.84%) and represents the highest PCE for PCDTBT:PC71BM-based PSC devices without an electron transport layer (ETL) reported so far. The dramatic improvement of the conductivity of PEDOT:PSS film is interpreted by the weakening of the Coulombic attractions between PEDOT and PSS components. The work function of CuBr2:PEDOT:PSS slightly increases compared to that of the undoped PEDOT:PSS as inferred from scanning Kelvin probe microscopy (SKPM) measurements, contributing to the improved PCE due to the increases of the open-current voltage (Voc) and fill factor (FF). PMID:25536017

  11. Solar-Cell Slide Rule

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.

    1983-01-01

    Slide rule relates efficiency, impurity types, impurity concentrations, and process types. Solar cell slide rule calculations are determination of allowable impurity concentration for nonredistributive process, determination of impurity buildup factor for redistributive process and determination of allowable impurity concentration for redistributive process.

  12. Organic solar cells: Going green

    NASA Astrophysics Data System (ADS)

    Luo, Guoping; Wu, Hongbin

    2016-02-01

    High-performance polymer solar cells are normally processed with halogenated solvents, which are toxic and hazardous. Now, high power-conversion efficiency in bulk-heterojunction devices is achieved by using a non-toxic hydrocarbon solvent through an environmentally friendly processing route.

  13. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  14. Application of ZnO nanoparticles to enhance photoluminescence in porous silicon and its possible utilization for improving the short wavelength quantum efficiency of silicon solar cell

    NASA Astrophysics Data System (ADS)

    Verma, Daisy; Kharkwal, Aneeta; Singh, S. N.; Singh, P. K.; Sharma, S. N.; Mehdi, S. S.; Husain, M.

    2014-11-01

    We have formed photoluminescent porous silicon (PS) layers and over which a ZnO layer (hereafter called ZnOPS layers) is deposited. We studied the photoluminescent properties of individual layers as well as the composite layer under excitation with 405 nm wavelength. Using the data of PL a theoretical analysis of a solar cell having such a composite layer of a given photoluminescent conversion efficiency ηPL on the front surface has been done. The condition of a photoluminescent composite layer (ZnOPS) useful for enhancing the spectral response of n+-p-p+ structured silicon solar cell has been identified.

  15. Low cost solar cell arrays

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Mclennan, H.

    1975-01-01

    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given.

  16. Demonstration of the feasibility of automated silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.; Schwartz, F. M.

    1975-01-01

    A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.

  17. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  18. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  19. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.

    PubMed

    Zhao, Yixin; Swierk, John R; Megiatto, Jackson D; Sherman, Benjamin; Youngblood, W Justin; Qin, Dongdong; Lentz, Deanna M; Moore, Ana L; Moore, Thomas A; Gust, Devens; Mallouk, Thomas E

    2012-09-25

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794

  20. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator

    PubMed Central

    Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.

    2012-01-01

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794

  1. NASA objectives for improved solar power plants

    NASA Technical Reports Server (NTRS)

    Cohn, E. M.

    1974-01-01

    The present work describes the principal goals for the main effort of NASA's research and development of solar photovoltaic cells and arrays. These are (1) to reduce array costs from $270/watt to $90/watt (no change in volume) or to $41/watt (high volume production), (2) raise power density from 66 watts/kg to 110 watts/kg, and (3) minimize dynamic interaction problems. The first two goals can be accomplished by increased cell efficiency, reduced cell thickness, the development of a multiple ribbon growth process, and automation of cell production. To minimize dynamic interaction between array and spacecraft, module flexibility will be increased.

  2. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect

    Xiao, Teng

    2012-01-01

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A

  3. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    NASA Astrophysics Data System (ADS)

    Xiao, Teng

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxy-thiophene):polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3-hexylthiophene) (P3HT):phenyl-C 61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A

  4. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  5. Sheet plastic filters for solar cells

    NASA Technical Reports Server (NTRS)

    Wizenick, R. J.

    1972-01-01

    Poly(vinylidene fluoride) (PVF) film protects solar cells on Mars surface from radiation and prevents degradation of solar cell surfaces by Martian dust storms. PVF films may replace glass or quartz windows on solar cell arrays used to generate power on earth.

  6. Silicon solar cells: Physical metallurgy principles

    NASA Astrophysics Data System (ADS)

    Mauk, Michael G.

    2003-05-01

    This article reviews the physical metallurgy aspects of silicon solar cells. The production of silicon solar cells relies on principles of thermochemical extractive metallurgy, phase equilibria, solidification, and kinetics. The issues related to these processes and their impact on solar cell performance and cost are discussed.

  7. Inverted colloidal quantum dot solar cells.

    PubMed

    Kim, Gi-Hwan; Walker, Bright; Kim, Hak-Beom; Kim, Jin Young; Sargent, Edward H; Park, Jongnam; Kim, Jin Young

    2014-05-28

    An inverted architecture of quantum dot solar cells is demonstrated by introducing a novel ZnO method on top of the PbS CQD film. Improvements in device characteristics stem from constructive optical interference from the ZnO layer that enhances absorption in the PbS CQD layer. Outstanding diode characteristics arising from a superior PbS/ZnO junction provide a further electronic advantage. PMID:24677118

  8. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  9. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  10. Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se₂/CdS) solar cell interfaces and implications for improving performance.

    PubMed

    Xiao, Hai; Goddard, William A

    2014-09-01

    The laboratory performance of CIGS (Cu(In,Ga)Se2) based solar cells (20.8% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use density functional theory with the B3PW91 hybrid functional that we validate to provide very accurate descriptions of the band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the conduction band offset (CBO) of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the valence band offset, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. PMID:25194380

  11. Gallium compounds in solar cells. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of gallium compounds in solar cells to increase solar cell efficiency. Computer models, theories, and performance tests are included. Gallium compounds used in thin film cells, cascade solar cells, large area solar cells, cells designed for industrial and space applications, and as antireflection coatings are discussed. Resistance to radiation damage, cooling to improve efficiency, grain boundary behavior, and economic considerations are also covered. (Contains 250 citations and includes a subject term index and title list.)

  12. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  13. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  14. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    SciTech Connect

    Chen, D.S.; Yang, J.; Yang, Z.B.; Xu, F.; Du, H.W.; Ma, Z.Q.

    2014-06-01

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reduce the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.

  15. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time. PMID:26754938

  16. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer.

    PubMed

    Kim, Jun Young; Cho, Eunae; Kim, Jaehoon; Shin, Hyeonwoo; Roh, Jeongkyun; Thambidurai, Mariyappan; Kang, Chan-mo; Song, Hyung-Jun; Kim, SeongMin; Kim, Hyeok; Lee, Changhee

    2015-09-21

    We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10(-3) Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC(70)BM), the power conversion efficiency increased from 3.7 to 5.6%. PMID:26406762

  17. Improving charge transport of P3HT:PCBM organic solar cell using MoO3 nanoparticles as an interfacial buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hyoung; Park, Eung-Kyu; Kim, Ji-Hwan; Cho, Hyeong Jun; Lee, Dong-Hoon; Kim, Yong-Sang

    2016-05-01

    In this work, P3HT:PCBM based organic solar cells (OSCs) were fabricated. We investigated the protection of PEDOT:PSS from active layer using the solution processed molybdenum oxide nanoparticles layer (MoO3 NPs, ≤100 nm). The device structure was ITO/ZnO/P3HT: PCBM/MoO3/PEDOT:PSS/Ag. A thin film MoO3 NPs was spin-coated and it acts as a hole transporting layer between the active layer and PEDOT:PSS. The MoO3 NPs based device showed an improved short circuit current compared without MoO3 NP layer. The pristine OSCs showed short circuit current density ( J sc ) of 11.56 mA/cm2 and PCE of 3.70% under AM 1.5G (100 mW/cm2). MoO3 NPs based device showed an increased PCE of 4.11% with J sc of 12.74 mA/cm2. MoO3 NPs also decreased the charge recombination and resistance of the OSCs. [Figure not available: see fulltext.

  18. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  19. Improved performance of dye-sensitized solar cells with novel conjugated organic dye using aluminum oxide-coated nanoporous titanium oxide films

    NASA Astrophysics Data System (ADS)

    Jo, Hyo Jeong; Nam, Jung Eun; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-03-01

    This work introduces the TiO2/dye/electrolyte interface in the recombination and offers an interface treatment method using solution process for dye-sensitized solar cells (DSSCs). Solution-processed ultra-thin metal oxides introduce to treat the surface of mesoporous TiO2 to reduce the defect density and improve the electronic quality. Among the metal oxides, an Al2O3 barrier is incorporated into DSSCs as a carrier-recombination blocking layer. In all instances, the short-circuit current density increase and the dark current is suppressed after Al2O3 deposition. The impact of the Al2O3 barriers is also studied in devices employing different dyes. To compare the behavior of metal-free organic dyes and Ru dyes when Al2O3 barrier layers are involved, the charge transfer between the dye and TiO2 electrodes, associated with interfacial electron injection, is investigated by Raman spectroscopy. The metal-free organic dye had a high molar extinction coefficient and better adsorption properties compare to Ru dye, which resulted in higher charge-collection efficiency. To verify the strategy, the DSSCs photovoltaic performances containing these dyes are compared using their current-voltage curves. Electrochemical impedance spectroscopy (EIS), Intensity Modulated Photocurrent Spectroscopy (IMPS), and Intensity Modulated photoVoltage Spectroscopy (IMVS) were used to further investigate the kinetics process of the TiO2 film electrodes.

  20. Tb3+/Yb3+ codoped silica-hafnia glass and glass-ceramic waveguides to improve the efficiency of photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Bouajaj, A.; Belmokhtar, S.; Britel, M. R.; Armellini, C.; Boulard, B.; Belluomo, F.; Di Stefano, A.; Polizzi, S.; Lukowiak, A.; Ferrari, M.; Enrichi, F.

    2016-02-01

    In this paper we present the investigation of the energy transfer efficiency between Tb3+ and Yb3+ ions in silica-hafnia waveguides. Cooperative energy transfer between these two ions allows to cut one 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Previous works revealed that for a given concentration of donors (Tb3+), increasing the number of acceptors (Yb3+) located near to the Tb3+ ion can increase the Tb-Yb transfer probability. However, when increasing the density of active ions, some detrimental effects due to cross-relaxation mechanisms become relevant. On the basis of this observation the sample doping was chosen keeping constant the molar ratio [Yb]/[Tb] = 4 and the total rare earths contents were [Tb + Yb]/[Si + Hf] = 5%, 7%, 9%. The choice of the matrix is another crucial point to obtain an efficient down conversion processes with rare earth ions. To this respect a 70SiO2-30HfO2 waveguide composition was chosen. The comparison between the glass and the glass-ceramic structures demonstrated that the latter is more efficient since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration.

  1. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.

    PubMed

    Thuy, Chau Thi Thanh; Park, Ji Young; Lee, Seung Woo; Suresh, Thogiti; Kim, Jae Hong

    2016-05-01

    In our present study, polypyrrole-1 (PPy1), polypyrrole-2 (PPy2), and polypyrrole-2/multi wall carbon nanotube composite film (PPy2/MWCNT) were proposed as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) to replace the precious Pt CE. These films were fabricated on fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CEs in DSSCs. It is shown that the introduction of anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the catalytic activity, thus leading to an improvement in the performance of PPy2. Further, introduction of MWCNT resulted in increase in conversion efficiency of DSSCs with PPy2/MWCNT composite film. The Tafel and electrochemical impedance analysis revealed that the PPy2 and PPy2/MWCNT CEs prepared with anionic surfactant possessed more catalytic activity and lower charge transfer resistance in comparison with PPy1 -based CE. This resulted in a better conversion efficiency of 5.88% for PPy2/MWCNT-based DSSC under 1 sun condition, reaching 86% of the DSSC based on reference Pt counter electrode (6.86%). These results indicate that the composite film with high catalytic properties for I3- reduction can potentially be used as the CE in a high-performance DSSC. PMID:27483912

  2. Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO.

    PubMed

    Ievskaya, Yulia; Hoye, Robert L Z; Sadhanala, Aditya; Musselman, Kevin P; MacManus-Driscoll, Judith L

    2016-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics. PMID:27500923

  3. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements. PMID:24457831

  4. Effective End Group Modification of Poly(3-hexylthiophene) with Functional Electron-Deficient Moieties for Performance Improvement in Polymer Solar Cell.

    PubMed

    Chen, Chi-Min; Jen, Tzu-Hao; Chen, Show-An

    2015-09-23

    A series of end-functionalized poly(3-hexylthiophene)s (P3HTs) were synthesized by end-capping with electron-deficient moieties (EDMs, oxadiazole (OXD) and triazole (TAZ)) to prevent the negative influence of bromine chain ends in the common uncapped P3HT in polymer solar cell (PSC) applications. On the basis of the electron-withdrawing capability of the planar OXD end groups, P3HT-end-OXD relative to the uncapped P3HT exhibits a raised absorption coefficient, extended exciton lifetime, and increased crystalline order in the blend with PCBM, leading to an effectual improvement in photovoltaic parameters. However, P3HT-end-TAZ has an opposite result even worse than that of the uncapped P3HT, arising from bulky TAZ end groups. As a consequence, P3HT-end-OXD gives a power conversion efficiency (PCE) of 4.24%, which is higher than those of the uncapped P3HT (3.28%) and P3HT-end-TAZ (0.50%). The result demonstrates that the EDM modification is a valuable method to tailor the structural defect of polymer chain ends. However, the efficacy is dependent on the structure of EDM. PMID:26302457

  5. Improved performance of dye-sensitized solar cells using TiO2 nanotubes infiltrated by TiO2 nanoparticles using a dipping-rinsing-hydrolysis process

    NASA Astrophysics Data System (ADS)

    Lin, Lu-Yin; Chen, Chia-Yuan; Yeh, Min-Hsin; Tsai, Keng-Wei; Lee, Chuan-Pei; Vittal, R.; Wu, Chun-Guey; Ho, Kuo-Chuan

    2013-12-01

    An efficient back-illuminated dye-sensitized solar cell (DSSC) is made with a flexible Ti-foil based photoanode composed of a composite TiO2 film with TiO2 nanotubes (TNT) and TiO2 nanoparticles (TNP). The composite TiO2 film is fabricated through a novel dipping-rinsing-hydrolysis (DRH) process by inserting TiO2 into TNT and sintering the product to form TNP inside TNT. By directly placing TiO2 nanoparticles into TNT, the former grow internally from the base of TNT to occupy it completely. This solves previous problems of incomplete filling of TNP into TNT, which used partial penetration of TiCl4 reactant from the top of the TNT. In the present case, the TNP are grown from the base of TNT. A DSSC containing TNT and TNP prepared in this way shows a photoelectric efficiency of 6.45%, which is much higher than that (4.21%) of a DSSC with untreated TNT. The films are characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The improvement in the photoelectric efficiency is explained by using electrochemical impedance spectroscopy (EIS), incident photon-to-current conversion efficiency (IPCE) analysis, and UV-absorption spectra analysis.

  6. Improvement in light harvesting of dye-sensitized solar cells with antireflective and hydrophobic textile PDMS coating by facile soft imprint lithography.

    PubMed

    Lim, Joo Ho; Ko, Yeong Hwan; Leem, Jung Woo; Yu, Jae Su

    2015-02-01

    We demonstrated the improved conversion efficiency (η) of dye-sensitized solar cells (DSSCs) using the textile-patterned polydimethylsiloxane (PDMS) antireflection layers prepared by metal-coated textile master molds by a simple soft imprint lithography. When light propagates through the textile-patterned surface of PDMS (i.e., textile PDMS) laminated on the outer glass surface deposited with fluorine-doped tin oxide (i.e., FTO/glass), both the transmitted and diffused lights into the photo-anode of DSSCs were simultaneously enhanced. Compared to the bare FTO/glass, the textile PDMS increased the total transmittance from 82.3 to 85.1% and its diffuse transmittance was significantly increased from 5.9 to 78.1% at 550 nm of wavelength. The optical property of textile PDMS was also theoretically analyzed by the finite-difference time-domain simulation. By laminating the textile PDMS onto the outer glass surface of DSSCs, the η was enhanced from 6.04 to 6.51%. Additionally, the fabricated textile PDMS exhibited a hydrophobic surface with water contact angle of ~123.15°. PMID:25836246

  7. Environmental testing of block 2 solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  8. Double-sided solar-cell package

    NASA Technical Reports Server (NTRS)

    Shelpuk, B.

    1978-01-01

    Cost-effective solar-cell package is proposed for development of practical solar-cell system. Since cells are enclosed in inexpensive plastic tubes, forced-air-cooling loop is proposed to maintain cell temperature at adequate levels. Loop must include desiccant to remove moisture from hermetic enclosures to prevent cell corrosion.

  9. Design Rules for Efficient Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Mühlbacher, D.; Morana, M.; Koppe, M.; Scharber, M. C.; Waller, D.; Dennler, G.; Brabec, C. J.

    There has been an intensive search for cost-effective photovoltaics since the development of the first solar cells in the 1950s [1-3]. Among all the alternative technologies to silicon-based pn-junction solar cells, organic solar cells are the approach that could lead to the most significant cost reduction [4]. The field of organic photovoltaics (OPV) is composed of organic/inorganic nanostructures, like the dyesensitized solar cell, multilayers of small organic molecules and mixtures of organic materials (bulk-heterojunction solar cell). A review of several so-called organic photovoltaic (OPV) technologies was recently presented [5].

  10. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  11. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  12. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    PubMed

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future. PMID:26693798

  13. Improving the layer morphology of solution-processed perylene diimide organic solar cells with the use of a polymeric interlayer

    NASA Astrophysics Data System (ADS)

    Singh, Ranbir; Mróz, Marta M.; Di Fonzo, Fabio; Cabanillas-Gonzalez, Juan; Marchi, Enrico; Bergamini, Giacomo; Müllen, Klaus; Jacob, Josemon; Keivanidis, Panagiotis E.

    2013-10-01

    Herein we demonstrate a method to improve the power conversion efficiency (PCE) parameter of organic photovoltaic (OPV) devices based on the electron acceptor N,N'-bis(1- ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) blended with the electron donor poly(indenofluorene)-aryloctyl (PIF-Aryl). The device parameters of the short-circuit current, open-circuit voltage and fill factor are found increased after the insertion of a thin poly [9, 9-dioctylfluorene-co-N- [4-(3-methylpropyl)]-diphenylamine] (TFB) photoactive interlayer between the hole-collecting electrode and the photoactive layer of the device. Unlike to most of the cases where interlayers serve as charge extractors, in our system the polymeric interlayer serves as a morphology modifying agent that drives the PDI component to segregate better at the interface with the device cathode; that is at the carrier-collecting electrode interface, which is not in physical contact with the interlayer. The processes of energy/charge transfer of the TFB excitons to/with the PIF-Aryl:PDI top-layer are also addressed. Charge transfer reactions dominate at the TFB/PIF-Aryl:PDI interface but no significant contribution in the photocurrent generation is seen in the photoaction spectra of the bilayer device.

  14. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Meng, Fanli; Zhao, Erfei; Zheng, Yan-Zhen; Zhou, Yali; Tao, Xia

    2016-04-01

    The ability to prepare high coverage and compact perovskite films via solution-based crystallization manipulation processes still represents a vital issue towards improving the ultimate photoelectric conversion efficiency of devices. In this work, we prepare the active perovskite layer by means of sequential deposition crystallization process i.e. dipping PbI2-infiltrated TiO2 film within CH3NH3I solution from 20s to 60s. The morphology and thickness of the as-prepared perovskite layer, and its overall performance superiority are investigated. X-ray diffraction (XRD) reveals that a maximum conversion of PbI2 to perovskite is completed upon applying a sequential deposition crystallization process of 40s. Field emission scanning electron microscope (FESEM) demonstrates that the coverage of the perovskite capping layer exhibits a trend from rise to decline in the whole dipping time from 20s to 60s. By fine control of the dipping time, a 620 nm-thickness compact perovskite active layer is obtained at the optimized dipping time of 40s and is verified to possess strong light absorption and high electron extraction efficiency, leading to a higher photocurrent. By further optimizing the mesoporous TiO2 film thickness, a high photocurrent of 23.98 mA cm-2 and an efficiency of 13.47% are achieved.

  15. 22. 8% efficient silicon solar cell

    SciTech Connect

    Blakers, A.W.; Wang, A.; Milne, A.M.; Zhao, J.; Green, M.A. )

    1989-09-25

    A new silicon solar cell structure, the passivated emitter and rear cell, is described. The cell structure has yielded independently confirmed efficiencies of up to 22.8%, the highest ever reported for a silicon cell.

  16. Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material.

    PubMed

    Chen, Lei; Du, Donghe; Sun, Kuan; Hou, Jianhui; Ouyang, Jianyong

    2014-12-24

    Improving device efficiency and stability of polymer solar cells (PSCs) is crucial for their practical application. Although graphene oxide (GO) could replace the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-collection material and improve the photovoltaic stability of PSCs, the power conversion efficiency is moderate because of its insulating nature. In this article, nanocomposites of two-dimensional reduced graphene oxide (rGO) and GO are used to replace the acidic PEDOT:PSS as the hole-collection material of PSCs. The nanocomposites are formed by dispersing rGO into aqueous solution of GO. GO serves as a surfactant, and it can stabilize rGO. The presence of rGO can quench the photoluminescence of GO in water. The nanocomposite films exhibit higher conductivity than GO films without rGO. They are used as the hole-collection material of PSCs. The optimal PSCs with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester exhibit such photovoltaic performances: short-circuit current density of 10.37 mA cm(-2), open-circuit voltage of 0.60 V, fill factor of 67.66%, and power conversion efficiency of 4.21%. The photovoltaic efficiency is much higher than that of the control devices with GO only (3.36%) as the hole-collection material. In addition, the presence of rGO in GO gives rise to better stability for the PSCs in air than that of the devices with GO only. The devices with rGO:GO composites as the hole-collection materials exhibit much better stability in power conversion efficiency than the control devices with PEDOT:PSS. PMID:25415184

  17. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

    PubMed

    Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao

    2016-09-01

    A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs. PMID:27525544

  18. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    SciTech Connect

    Lee, Yi-Mu; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possess highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.

  19. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  20. Silicon solar cells: Past, present and the future

    NASA Astrophysics Data System (ADS)

    Lee, Youn-Jung; Kim, Byung-Sung; Ifitiquar, S. M.; Park, Cheolmin; Yi, Junsin

    2014-08-01

    There has been a great demand for renewable energy for the last few years. However, the solar cell industry is currently experiencing a temporary plateau due to a sluggish economy and an oversupply of low-quality cells. The current situation can be overcome by reducing the production cost and by improving the cell is conversion efficiency. New materials such as compound semiconductor thin films have been explored to reduce the fabrication cost, and structural changes have been explored to improve the cell's efficiency. Although a record efficiency of 24.7% is held by a PERL — structured silicon solar cell and 13.44% has been realized using a thin silicon film, the mass production of these cells is still too expensive. Crystalline and amorphous silicon — based solar cells have led the solar industry and have occupied more than half of the market so far. They will remain so in the future photovoltaic (PV) market by playing a pivotal role in the solar industry. In this paper, we discuss two primary approaches that may boost the silicon — based solar cell market; one is a high efficiency approach and the other is a low cost approach. We also discuss the future prospects of various solar cells.

  1. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  2. Solar Cells for Lunar Application

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Ignatiev, Alex

    1997-01-01

    In this work a preliminary study of the vacuum evaporation of silicon extracted from the lunar regolith has been undertaken. An electron gun vacuum evaporation system has been adapted for this purpose. Following the calibration of the system using ultra high purity silicon deposited on Al coated glass substrates, thin films of lunar Si were evaporated on a variety of crystalline substrates as well as on glass and lightweight 1 mil (25 microns) Al foil. Extremely smooth and featureless films with essentially semiconducting properties were obtained. Optical absorption analysis sets the bandgap (about 1.1 eV) and the refractive index (n=3.5) of the deposited thin films close to that of crystalline silicon. Secondary ion mass spectroscopy and energy dispersive spectroscopy analysis indicated that these films are essentially comparable to high purity silicon and that the evaporation process resulted in a substantial reduction of impurity levels. All layers exhibited a p-type conductivity suggesting the presence of a p-type dopant in the fabricated layers. While the purity of the 'lunar waste material' is below that of the 'microelectronic-grade silicon', the vacuum evaporated material properties seems to be adequate for the fabrication of average performance Si-based devices such as thin film solar cells. Taking into account solar cell thickness requirements (greater than 10 microns) and the small quantities of lunar material available for this study, solar cell fabrication was not possible. However, the high quality of the optical and electronic properties of evaporated thin films was found to be similar to those obtained using ultra-high purity silicon suggest that thin film solar cell production on the lunar surface with in situ resource utilization may be a viable approach for electric power generation on the moon.

  3. Comparative modeling of InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  4. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  5. Exploiting nanocarbons in dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost. PMID:23729170

  6. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    PubMed

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-01-01

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells. PMID:27077835

  7. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Solar cells and mesa diodes were fabricated by the implantation of zinc or beryllium ions into n-type gallium arsenide. Annealing temperatures above 750 C (zinc) or 650 C (beryllium) were found to produce 50% to 100% activation of the implanted ions. Junction depths of about 0.4 micron were produced by 600 keV zinc implants or 70 keV beryllium implants. P-layer sheet resistance was about 150 ohms for 2 x 10 to the 15th power cm/2 zinc or 1 x 10 to the 15th power cm/2 beryllium implants. This is sufficiently low for efficient solar cell fabrication. Contacting procedures were improved to yield reproducibly adherent, low resistance front and back contacts.

  8. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  9. Noise Diagnostics of Solar Cells

    NASA Astrophysics Data System (ADS)

    Koktavy, Pavel; Raska, Michal; Sadovsky, Petr; Krcal, Ondrej

    2007-07-01

    This paper deals with the use of micro-plasma noise for solar cells diagnostic purposes. When a high electric field is applied to a PN junction containing some technological imperfections, enhanced impact ionization arises in micro-sized regions, thus producing so-called micro-plasmas, which in turn can lead to the deterioration in quality or destruction of the PN junction. It is therefore advisable to use methods which can indicate the presence of micro-plasma in the junction and make the quality assessment and quantitative description of the tested cells possible.

  10. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  11. Reduction of Cu-rich interfacial layer and improvement of bulk CuO property through two-step sputtering for p-CuO/n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, Saeid; Dalapati, Goutam Kumar; Radhakrishnan, K.; Kumar, Avishek; Tan, Hui Ru

    2014-08-01

    Copper-rich interfacial-layer (Cu-rich IL) is formed during sputter deposition of cupric oxide (CuO) layer on silicon (Si). It has significant impact on the performance of p-CuO/n-Si heterojunction solar cells. In this report, CuO films deposited on Si at different RF-power levels using single and two-step RF-sputtering techniques and p-CuO/n-Si heterojunction solar cells have been investigated. Systematic characterization using XPS, AFM, XRD, Raman, and HR-TEM reveal that two-step RF-sputtering technique offers better crystal quality CuO film with thinner Cu-rich IL layer. Photovoltaic (PV) properties with an open-circuit voltage (Voc) of 421 mV, short circuit current (Jsc) of 4.5 mA/cm2, and a photocurrent of 8.3 mA/cm2 have been achieved for the cells prepared using two-step sputtering method, which are significantly higher than that for the solar cells fabricated using a single-step sputtering. The PV properties were further improved by depositing CuO films at higher working pressure with nitrogen doping. The efficiency of the best device achieved is approximately 1.21%, which is the highest value reported for p-CuO/n-Si heterojunction based solar cells.

  12. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  13. Spectral sensitization of nanocrystalline solar cells

    DOEpatents

    Spitler, Mark T.; Ehret, Anne; Stuhl, Louis S.

    2002-01-01

    This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

  14. Solar Coronal Cells as Seen by STEREO

    NASA Video Gallery

    The changes of a coronal cell region as solar rotation carries it across the solar disk as seen with NASA's STEREO-B spacecraft. The camera is fixed on the region (panning with it) and shows the pl...

  15. Crystalline silicon solar cells with micro/nano texture

    NASA Astrophysics Data System (ADS)

    Dimitrov, Dimitre Z.; Du, Chen-Hsun

    2013-02-01

    Crystalline silicon solar cells with two-scale texture consisting of random upright pyramids and surface nanotextured layer directly onto the pyramids are prepared and reflectance properties and I-V characteristics measured. Random pyramids texture is produced by etching in an alkaline solution. On top of the pyramids texture, a nanotexture is developed using an electroless oxidation/etching process. Solar cells with two-scale surface texturization are prepared following the standard screen-printing technology sequence. The micro/nano surface is found to lower considerably the light reflectance of silicon. The short wavelengths spectral response (blue response) improvement is observed in micro/nano textured solar cells compared to standard upright pyramids textured cells. An efficiency of 17.5% is measured for the best micro/nano textured c-Si solar cell. The efficiency improvement is found to be due to the gain in both Jsc and Voc.

  16. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.

    PubMed

    Zhang, Yu; Yam, ChiYung; Schatz, George C

    2016-05-19

    Detailed balance between photon-absorption and energy loss constrains the efficiency of conventional solar cells to the Shockley-Queisser limit. However, if solar illumination can be absorbed over a wide spectrum by plasmonic structures, and the generated hot-carriers can be collected before relaxation, the efficiency of solar cells may be greatly improved. In this work, we explore the opportunities and limitations for making plasmonic solar cells, here considering a design for hot-carrier solar cells in which a conventional semiconductor heterojunction is attached to a plasmonic medium such as arrays of gold nanoparticles. The underlying mechanisms and fundamental limitations of this cell are studied using a nonequilibrium Green's function method, and the numerical results indicate that this cell can significantly improve the absorption of solar radiation without reducing open-circuit voltage, as photons can be absorbed to produce mobile carriers in the semiconductor as long as they have energy larger than the Schottky barrier rather than above the bandgap. However, a significant fraction of the hot-carriers have energies below the Schottky barrier, which makes the cell suffer low internal quantum efficiency. Moreover, quantum efficiency is also limited by hot-carrier relaxation and metal-semiconductor coupling. The connection of these results to recent experiments is described, showing why plasmonic solar cells can have less than 1% efficiency. PMID:27136049

  17. The advanced solar cell orbital test

    NASA Technical Reports Server (NTRS)

    Marvin, D. C.; Gates, M.

    1991-01-01

    The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year.

  18. Work Station For Inverting Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  19. Status of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chu, C. L.

    1996-01-01

    This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.

  20. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques. PMID:27216604

  1. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-05-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  2. Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Hieu Nguyen, Van; Nguyen, Bich Ha; Vu, Dinh Lam

    2016-03-01

    The efficiency of a solar cell depends on both the quality of its semiconductor active layer, as well as on the presence of other dielectric and metallic structural components which improve light trapping and exploit plasmonic enhancement. The purpose of this work is to review the results of recent research on light trapping and plasmonic enhancement in three types of solar cells: thin-film silicon solar cells, dye-sensitized solar cells and solid-state titania solar cells. The results of a study on modeling and the design of light trapping components in solar cells are also presented.

  3. An efficient light trapping scheme based on textured conductive photonic crystal back reflector for performance improvement of amorphous silicon solar cells

    SciTech Connect

    Chen, Peizhuan; Hou, Guofu Huang, Qian; Zhao, Jing; Zhang, Jianjun Ni, Jian; Zhang, Xiaodan; Zhao, Ying; Fan, QiHua

    2014-08-18

    An efficient light trapping scheme named as textured conductive photonic crystal (TCPC) has been proposed and then applied as a back-reflector (BR) in n-i-p hydrogenated amorphous silicon (a-Si:H) solar cell. This TCPC BR combined a flat one-dimensional photonic crystal and a randomly textured surface of chemically etched ZnO:Al. Total efficiency enhancement was obtained thanks to the sufficient conductivity, high reflectivity and strong light scattering of the TCPC BR. Unwanted intrinsic losses of surface plasmon modes are avoided. An initial efficiency of 9.66% for a-Si:H solar cell was obtained with short-circuit current density of 14.74 mA/cm{sup 2}, fill factor of 70.3%, and open-circuit voltage of 0.932 V.

  4. An efficient light trapping scheme based on textured conductive photonic crystal back reflector for performance improvement of amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Peizhuan; Hou, Guofu; Fan, QiHua; Huang, Qian; Zhao, Jing; Zhang, Jianjun; Ni, Jian; Zhang, Xiaodan; Zhao, Ying

    2014-08-01

    An efficient light trapping scheme named as textured conductive photonic crystal (TCPC) has been proposed and then applied as a back-reflector (BR) in n-i-p hydrogenated amorphous silicon (a-Si:H) solar cell. This TCPC BR combined a flat one-dimensional photonic crystal and a randomly textured surface of chemically etched ZnO:Al. Total efficiency enhancement was obtained thanks to the sufficient conductivity, high reflectivity and strong light scattering of the TCPC BR. Unwanted intrinsic losses of surface plasmon modes are avoided. An initial efficiency of 9.66% for a-Si:H solar cell was obtained with short-circuit current density of 14.74 mA/cm2, fill factor of 70.3%, and open-circuit voltage of 0.932 V.

  5. Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Liu, Jian; Lu, Xinrong; Gao, Yandong; You, Xiaozeng; Xu, Xiangxing

    2015-12-01

    Perovskite-structured organic-inorganic materials such as CH3NH3PbI3 are attracting much interest in the scientific community because of their abilities to function as revolutionary light harvesters and charge transfer materials for solar cells. To achieve high power conversion efficiency (PCE), it is critical to optimize the perovskite film layer. This paper reports the temperature and concentration controls on the two-step solution process. A diffusion-controlled growth mechanism is proposed for this process in tuning the morphology and purity of the perovskite film, which are proven to be important factors contributing to the photovoltaic performance. The highest PCE of 11.92% is achieved with an optimized perovskite crystal size of ∼150 nm and an appropriate amount of residual PbI2. This study sheds light on the design and fabrication of highly efficient, low-cost, solution-processed perovskite solar cells.

  6. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies. PMID:10932106

  7. Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011

    SciTech Connect

    Kurtin, J.

    2011-05-01

    This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

  8. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-02-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb

  9. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Zhi; Gu, Shu-Duo; Shen, Dan; Yuan, Yang; Zhang, Mingdao

    2016-08-01

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen-2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are -3.55 and -5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (-49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  10. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  11. Development of high efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  12. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  13. Energy Conversion: Nano Solar Cell

    NASA Astrophysics Data System (ADS)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  14. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  15. Transparent antennas for solar cell integration

    NASA Astrophysics Data System (ADS)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  16. Silicon Solar Cell Process Development, Fabrication and Analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Ribbon to Ribbon (RTR) solar cells processed from polycrystalline feedstock showed maximum AMO efficiency of 5.6%. Solar cells from single crystalline feedstock showed slightly higher efficiency than those from polycrystalline feedstock, indicating maximum efficiency of about 6.6% with SiO AR coating. Single crystalline control cells gave 11-12% AMO efficiencies demonstrating that the poor performance of the RTR solar was due to the low quality of material itself. Dendritic web solar cells from the standard process showed maximum AMO efficiency of 9.8% while efficiency of control solar cells were around 11-12%. Web solar cells from back surface field (BSF) process indicated maximum AMO efficiency of 10.9%. Some improvement in open circuit voltage was noticed from the BSF process. Small light spot scanning experiments were carried out on the solar cells from Wacker Silso, EFG, RTR, and dendritic web ribbons. Photoresponse results provided information on localized cell performance and grain size in polycrystalline material, and agreed quite well with the cell performance data, such as efficiency, minority carrier diffusion length, and spectral response.

  17. Analytical modeling of the radial pn junction nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Ali, Nouran M.; Allam, Nageh K.; Abdel Haleem, Ashraf M.; Rafat, Nadia H.

    2014-07-01

    In photovoltaic solar cells, radial p-n junctions have been considered a very promising structure to improve the carrier collection efficiency and accordingly the conversion efficiency. In the present study, the semiconductor equations, namely Poisson's and continuity equations for a cylindrical p-n junction solar cell, have been solved analytically. The analytical model is based on Green's function theory to calculate the current density, open circuit voltage, fill factor, and conversion efficiency. The model has been used to simulate p-n and p-i-n silicon radial solar cells. The validity and accuracy of the present simulator were confirmed through a comparison with previously published experimental and numerical reports.

  18. Recombination imaging of III-V solar cells

    NASA Technical Reports Server (NTRS)

    Virshup, G. F.

    1987-01-01

    An imaging technique based on the radiative recombination of minority carriers in forward-biased solar cells has been developed for characterization of III-V solar cells. When used in mapping whole wafers, it has helped identify three independent loss mechanisms (broken grid lines, shorting defects, and direct-to-indirect bandgap transitions), all of which resulted in lower efficiencies. The imaging has also led to improvements in processing techniques to reduce the occurrence of broken gridlines as well as surface defects. The ability to visualize current mechanisms in solar cells is an intuitive tool which is powerful in its simplicity.

  19. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  20. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.