Science.gov

Sample records for in-depth transcriptome analysis

  1. In-Depth Transcriptome Analysis of the Red Swamp Crayfish Procambarus clarkii

    PubMed Central

    Shen, Huaishun; Hu, Yacheng; Ma, Yuanchao; Zhou, Xin; Xu, Zenghong; Shui, Yan; Li, Chunyan; Xu, Peng; Sun, Xiaowen

    2014-01-01

    The red swamp crayfish Procambarus clarkii is a highly adaptable, tolerant, and fecund freshwater crayfish that inhabits a wide range of aquatic environments. It is an important crustacean model organism that is used in many research fields, including animal behavior, environmental stress and toxicity, and studies of viral infection. Despite its widespread use, knowledge of the crayfish genome is very limited and insufficient for meaningful research. This is the use of next-generation sequencing techniques to analyze the crayfish transcriptome. A total of 324.97 million raw reads of 100 base pairs were generated, and a total of 88,463 transcripts were assembled de novo using Trinity software, producing 55,278 non-redundant transcripts. Comparison of digital gene expression between four different tissues revealed differentially expressed genes, in which more overexpressed genes were found in the hepatopancreas than in other tissues, and more underexpressed genes were found in the testis and the ovary than in other tissues. Gene ontology (GO) and KEGG enrichment analysis of differentially expressed genes revealed that metabolite- and immune-related pathway genes were enriched in the hepatopancreas, and DNA replication-related pathway genes were enriched in the ovary and the testis, which is consistent with the important role of the hepatopancreas in metabolism, immunity, and the stress response, and with that of the ovary and the testis in reproduction. It was also found that 14 vitellogenin transcripts were highly expressed specifically in the hepatopancreas, and 6 transcripts were highly expressed specifically in the ovary, but no vitellogenin transcripts were highly expressed in both the hepatopancreas and the ovary. These results provide new insight into the role of vitellogenin in crustaceans. In addition, 243,764 SNP sites and 43,205 microsatellite sequences were identified in the sequencing data. We believe that our results provide an important genome resource

  2. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV

    PubMed Central

    Du, Zhiqiang; Jin, Yanhui; Ren, Daming

    2016-01-01

    Crayfish has become one of the most important farmed aquatic species in China due to its excellent disease resistance against bacteria and viruses. However, the antiviral mechanism of crayfish is still not very clear. In the present study, many high-quality sequence reads from crayfish intestine were obtained using Illumina-based transcriptome sequencing. For the normal group (GN), 44,600,142 high-quality clean reads were randomly assembled to produce 125,394 contigs. For the WSSV-challenged group (GW), 47,790,746 high-quality clean reads were randomly assembled to produce 148,983 contigs. After GO annotation, 39,482 unigenes were annotated into three ontologies: biological processes, cellular components, and molecular functions. In addition, 15,959 unigenes were mapped to 25 different COG categories. Moreover, 7,000 DEGs were screened out after a comparative analysis between the GN and GW samples, which were mapped into 250 KEGG pathways. Among these pathways, 36 were obviously changed (P-values < 0.05) and 28 pathways were extremely significantly changed (P-values < 0.01). Finally, five key DEGs involved in the JAK-STAT signaling pathway were chosen for qRT-PCR. The results showed that these five DEGs were obviously up-regulated at 36 h post WSSV infection in crayfish intestine. These results provide new insight into crayfish antiviral immunity mechanisms. PMID:27283359

  3. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV.

    PubMed

    Du, Zhiqiang; Jin, Yanhui; Ren, Daming

    2016-01-01

    Crayfish has become one of the most important farmed aquatic species in China due to its excellent disease resistance against bacteria and viruses. However, the antiviral mechanism of crayfish is still not very clear. In the present study, many high-quality sequence reads from crayfish intestine were obtained using Illumina-based transcriptome sequencing. For the normal group (GN), 44,600,142 high-quality clean reads were randomly assembled to produce 125,394 contigs. For the WSSV-challenged group (GW), 47,790,746 high-quality clean reads were randomly assembled to produce 148,983 contigs. After GO annotation, 39,482 unigenes were annotated into three ontologies: biological processes, cellular components, and molecular functions. In addition, 15,959 unigenes were mapped to 25 different COG categories. Moreover, 7,000 DEGs were screened out after a comparative analysis between the GN and GW samples, which were mapped into 250 KEGG pathways. Among these pathways, 36 were obviously changed (P-values < 0.05) and 28 pathways were extremely significantly changed (P-values < 0.01). Finally, five key DEGs involved in the JAK-STAT signaling pathway were chosen for qRT-PCR. The results showed that these five DEGs were obviously up-regulated at 36 h post WSSV infection in crayfish intestine. These results provide new insight into crayfish antiviral immunity mechanisms. PMID:27283359

  4. Transcriptome analysis of the parasite Encephalitozoon cuniculi: an in-depth examination of pre-mRNA splicing in a reduced eukaryote

    PubMed Central

    2013-01-01

    Background The microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes. Reduction in this intracellular parasite has affected major cellular machinery, including the loss of over fifty core spliceosomal components compared to S. cerevisiae. To identify expression changes throughout the parasite’s life cycle and also to assess splicing in the context of this reduced system, we examined the transcriptome of E. cuniculi using Illumina RNA-seq. Results We observed that nearly all genes are expressed at three post-infection time-points examined. A large fraction of genes are differentially expressed between the first and second (37.7%) and first and third (43.8%) time-points, while only four genes are differentially expressed between the latter two. Levels of intron splicing are very low, with 81% of junctions spliced at levels below 50%. This is dramatically lower than splicing levels found in two other fungal species examined. We also describe the first case of alternative splicing in a microsporidian, an unexpected complexity given the reduction in spliceosomal components. Conclusions Low levels of splicing observed are likely the result of an inefficient spliceosome; however, at least in one case, splicing appears to be playing a functional role. Although several RNA decay genes are encoded in E. cuniculi, the lack of a few key players could be reducing decay levels and therefore increasing the proportion of unspliced transcripts. Significant proportions of genes are differentially expressed in the first forty-eight hours but not after, indicative of genetic changes that precede the intracellular to infective stage transition. PMID:23537046

  5. In-Depth Characterization of microRNA Transcriptome in Melanoma

    PubMed Central

    Fleming, Elizabeth; Duggan, Tatiana; Wu, Rong; Shin, Dong-Guk; Dadras, Soheil S.

    2013-01-01

    The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic) (n = 28). From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n = 101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC = 0.933), melanoma in situ (AUC = 0.933) and dysplastic (atypical) nevi (AUC = 0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs) and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics. PMID:24023765

  6. New in-depth rainbow trout transcriptome reference and digital atlas of gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing the rainbow trout genome is underway and a transcriptome reference sequence is required to help in genome assembly and gene discovery. Previously, we reported a transcriptome reference sequence using a 19X coverage of 454-pyrosequencing data. Although this work added a great wealth of ann...

  7. Transcriptome Analysis of the Capra hircus Ovary

    PubMed Central

    Zhao, Zhong Quan; Wang, Li Juan; Sun, Xiao Wei; Zhang, Jiao Jiao; Zhao, Yong Ju; Na, Ri Su; Zhang, Jia Hua

    2015-01-01

    Background Capra hircus is an important economic livestock animal, and therefore, it is necessary to discover transcriptome information about their reproductive performance. In this study, we performed de novo transcriptome sequencing to produce the first transcriptome dataset for the goat ovary using high-throughput sequencing technologies. The result will contribute to research on goat reproductive performance. Method and Results RNA-seq analysis generated more than 38.8 million clean paired end (PE) reads, which were assembled into 80,069 unigenes (mean size = 619 bp). Based on sequence similarity searches, 64,824 (60.6%) genes were identified, among which 29,444 and 11,271 unigenes were assigned to Gene Ontology (GO) categories and Clusters of Orthologous Groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) showed that 27,766 (63.4%) unigenes were mapped to 258 KEGG pathways. Furthermore, we investigated the transcriptome differences of goat ovaries at two different ages using a tag-based digital gene expression system. We obtained a sequencing depth of over 5.6 million and 5.8 million tags for the two ages and identified a large number of genes associated with reproductive hormones, ovulatory cycle and follicle. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and metabolic pathways were revealed for the first time with regard to the differentially expressed genes. Conclusions The transcriptome provides invaluable new data for a functional genomic resource and future biological research in Capra hircus, and it is essential for the in-depth study of candidate genes in breeding programs. PMID:25822507

  8. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq.

    PubMed

    Yi, Guoqiang; Yuan, Jingwei; Bi, Huijuan; Yan, Wei; Yang, Ning; Qu, Lujiang

    2015-01-01

    Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens. PMID:26418546

  9. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia

    PubMed Central

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches’ broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches’ broom disease. PMID:26132073

  10. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq

    PubMed Central

    Yan, Wei; Yang, Ning; Qu, Lujiang

    2015-01-01

    Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens. PMID:26418546

  11. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia.

    PubMed

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease. PMID:26132073

  12. [Transcriptome analysis of Dunaliella viridis].

    PubMed

    Zhu, Shuaiqi; Gong, Yifu; Hang, Yuqing; Liu, Hao; Wang, Heyu

    2015-08-01

    In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis. PMID:26266786

  13. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  14. In-Depth Tanscriptomic Analysis on Giant Freshwater Prawns

    PubMed Central

    Mohd-Shamsudin, Maizatul Izzah; Kang, Yi; Lili, Zhao; Tan, Tian Tian; Kwong, Qi Bin; Liu, Hang; Zhang, Guojie; Othman, Rofina Yasmin; Bhassu, Subha

    2013-01-01

    Gene discovery in the Malaysian giant freshwater prawn (Macrobrachium rosenbergii) has been limited to small scale data collection, despite great interest in various research fields related to the commercial significance of this species. Next generation sequencing technologies that have been developed recently and enabled whole transcriptome sequencing (RNA-seq), have allowed generation of large scale functional genomics data sets in a shorter time than was previously possible. Using this technology, transcriptome sequencing of three tissue types: hepatopancreas, gill and muscle, has been undertaken to generate functional genomics data for M. rosenbergii at a massive scale. De novo assembly of 75-bp paired end Ilumina reads has generated 102,230 unigenes. Sequence homology search and in silico prediction have identified known and novel protein coding candidate genes (∼24%), non-coding RNA, and repetitive elements in the transcriptome. Potential markers consisting of simple sequence repeats associated with known protein coding genes have been successfully identified. Using KEGG pathway enrichment, differentially expressed genes in different tissues were systematically represented. The functions of gill and hepatopancreas in the context of neuroactive regulation, metabolism, reproduction, environmental stress and disease responses are described and support relevant experimental studies conducted previously in M. rosenbergii and other crustaceans. This large scale gene discovery represents the most extensive transcriptome data for freshwater prawn. Comparison with model organisms has paved the path to address the possible conserved biological entities shared between vertebrates and crustaceans. The functional genomics resources generated from this study provide the basis for constructing hypotheses for future molecular research in the freshwater shrimp. PMID:23734171

  15. Comparative transcriptome analysis of four prymnesiophyte algae.

    PubMed

    Koid, Amy E; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C; Caron, David A; Heidelberg, Karla B

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  16. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  17. Will solid-state drives accelerate your bioinformatics? In-depth profiling, performance analysis and beyond.

    PubMed

    Lee, Sungmin; Min, Hyeyoung; Yoon, Sungroh

    2016-07-01

    A wide variety of large-scale data have been produced in bioinformatics. In response, the need for efficient handling of biomedical big data has been partly met by parallel computing. However, the time demand of many bioinformatics programs still remains high for large-scale practical uses because of factors that hinder acceleration by parallelization. Recently, new generations of storage devices have emerged, such as NAND flash-based solid-state drives (SSDs), and with the renewed interest in near-data processing, they are increasingly becoming acceleration methods that can accompany parallel processing. In certain cases, a simple drop-in replacement of hard disk drives by SSDs results in dramatic speedup. Despite the various advantages and continuous cost reduction of SSDs, there has been little review of SSD-based profiling and performance exploration of important but time-consuming bioinformatics programs. For an informative review, we perform in-depth profiling and analysis of 23 key bioinformatics programs using multiple types of devices. Based on the insight we obtain from this research, we further discuss issues related to design and optimize bioinformatics algorithms and pipelines to fully exploit SSDs. The programs we profile cover traditional and emerging areas of importance, such as alignment, assembly, mapping, expression analysis, variant calling and metagenomics. We explain how acceleration by parallelization can be combined with SSDs for improved performance and also how using SSDs can expedite important bioinformatics pipelines, such as variant calling by the Genome Analysis Toolkit and transcriptome analysis using RNA sequencing. We hope that this review can provide useful directions and tips to accompany future bioinformatics algorithm design procedures that properly consider new generations of powerful storage devices. PMID:26330577

  18. In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays

    PubMed Central

    Soldà, Giulia; Merlino, Giuseppe; Fina, Emanuela; Brini, Elena; Moles, Anna; Cappelletti, Vera; Daidone, Maria Grazia

    2016-01-01

    Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment. PMID:26556871

  19. In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.

    PubMed

    Callari, Maurizio; Guffanti, Alessandro; Soldà, Giulia; Merlino, Giuseppe; Fina, Emanuela; Brini, Elena; Moles, Anna; Cappelletti, Vera; Daidone, Maria Grazia

    2016-01-01

    Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment. PMID:26556871

  20. Global meta-analysis of transcriptomics studies.

    PubMed

    Caldas, José; Vinga, Susana

    2014-01-01

    Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy), based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF) model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons. PMID:24586684

  1. Strategies for transcriptome analysis in nonmodel plants.

    PubMed

    Ward, Judson A; Ponnala, Lalit; Weber, Courtney A

    2012-02-01

    Even with recent reductions in sequencing costs, most plants lack the genomic resources required for successful short-read transcriptome analyses as performed routinely in model species. Several approaches for the analysis of short-read transcriptome data are reviewed for nonmodel species for which the genome of a close relative is used as the reference genome. Two approaches using a data set from Phytophthora-challenged Rubus idaeus (red raspberry) are compared. Over 70000000 86-nt Illumina reads derived from R. idaeus roots were aligned to the Fragaria vesca genome using publicly available informatics tools (Bowtie/TopHat and Cufflinks). Alignment identified 16956 putatively expressed genes. De novo assembly was performed with the same data set and a publicly available transcriptome assembler (Trinity). A BLAST search with a maximum e-value threshold of 1.0 × 10(-3) revealed that over 36000 transcripts had matches to plants and over 500 to Phytophthora. Gene expression estimates from alignment to F. vesca and de novo assembly were compared for raspberry (Pearson's correlation = 0.730). Together, alignment to the genome of a close relative and de novo assembly constitute a powerful method of transcriptome analysis in nonmodel organisms. Alignment to the genome of a close relative provides a framework for differential expression testing if alignments are made to the predefined gene-space of a close relative and de novo assembly provides a more robust method of identifying unique sequences and sequences from other organisms in a system. These methods are considered experimental in nonmodel systems, but can be used to generate resources and specific testable hypotheses. PMID:22301897

  2. Dog Tear Film Proteome In-Depth Analysis

    PubMed Central

    Winiarczyk, Mateusz; Winiarczyk, Dagmara; Banach, Tomasz; Adaszek, Lukasz; Madany, Jacek; Mackiewicz, Jerzy; Pietras-Ozga, Dorota; Winiarczyk, Stanislaw

    2015-01-01

    In this study, mass spectrometry was used to explore the canine tear proteome. Tear samples were obtained from six healthy dogs, and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used as a first step to separate intact proteins into 17 bands. Each fraction was then trypsin digested and analysed by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) to characterize the protein components in each fraction. In total, 125 tear proteins were identified, with MCA (Major Canine Allergen), Serum albumin, UPF0557 protein C10orf119 homolog, Collagen alpha-2(I) chain, Tyrosine -protein kinase Fer, Keratine type II cytoskeletal, Beta-crystallin B2, Interleukin-6 and Desmin occuring as the most confident ones with the highest scores. The results showed that the proteomic strategy used in this study was successful in the analysis of the dog tear proteome. To the best of our knowledge, this study is the first to report the comprehensive proteome profile of tears from healthy dogs by 1D SDS PAGE and MALDI-TOF. Data are available via ProteomeXchange with identifier PXD003124. PMID:26701646

  3. Transcriptome analysis of embryo maturation in maize

    PubMed Central

    2013-01-01

    Background Maize is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of maize grain (as well as rice, wheat and other grains) will be critical. Maize grain development is understood from the perspective of morphology, hormone responses, and storage reserve accumulation. This includes various studies on gene expression during embryo development and maturation but a global study of gene expression of the embryo has not been possible until recently. Transcriptome analysis is a powerful new tool that can be used to understand the genetic basis of embryo maturation. Results We undertook a transcriptomic analysis of normal maturing embryos at 15, 21 and 27 days after pollination (DAP), of one elite maize germplasm line that was utilized in crosses to transgenic plants. More than 19,000 genes were analyzed by this method and the challenge was to select subsets of genes that are vitally important to embryo development and maturation for the initial analysis. We describe the changes in expression for genes relating to primary metabolic pathways, DNA synthesis, late embryogenesis proteins and embryo storage proteins, shown through transcriptome analysis and confirmed levels of transcription for some genes in the transcriptome using qRT-PCR. Conclusions Numerous genes involved in embryo maturation have been identified, many of which show changes in expression level during the progression from 15 to 27 DAP. An expected array of genes involved in primary metabolism was identified. Moreover, more than 30% of transcripts represented un-annotated genes, leaving many functions to be discovered. Of particular interest are the storage protein genes, globulin-1, globulin-2 and an unidentified cupin family gene. When expressing foreign proteins in maize, the globulin-1 promoter is most often used, but this cupin family gene has much higher expression and may be a

  4. A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat.

    PubMed

    Yu, Yao; Ping, Jie; Chen, Hui; Jiao, Longxian; Zheng, Siyuan; Han, Ze-Guang; Hao, Pei; Huang, Jian

    2010-11-01

    The human liver plays a vital role in meeting the body's metabolic needs and maintaining homeostasis. To address the molecular mechanisms of liver function, we integrated multiple gene expression datasets from microarray, MPSS, SAGE and EST platforms to generate a transcriptome atlas of the normal human liver. Our results show that 17396 genes are expressed in the human liver. 238 genes were identified as liver enrichment genes, involved in the functions of immune response and metabolic processes, from the MPSS and EST datasets. A comparative analysis of liver transcriptomes was performed in humans, mice and rats with microarray datasets shows that the expression profile of homologous genes remains significantly different between mouse/rat and human, suggesting a functional variance and regulation bias of genes expressed in the livers. The integrated liver transcriptome data should provide a valuable resource for the in-depth understanding of human liver biology and liver disease. PMID:20800674

  5. Transcriptome analysis of sika deer in China.

    PubMed

    Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He

    2016-10-01

    Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development. PMID:27423230

  6. Applications of new sequencing technologies for transcriptome analysis.

    PubMed

    Morozova, Olena; Hirst, Martin; Marra, Marco A

    2009-01-01

    Transcriptome analysis has been a key area of biological inquiry for decades. Over the years, research in the field has progressed from candidate gene-based detection of RNAs using Northern blotting to high-throughput expression profiling driven by the advent of microarrays. Next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution. PMID:19715439

  7. Transcriptome analysis of Ginkgo biloba kernels

    PubMed Central

    He, Bing; Gu, Yincong; Xu, Meng; Wang, Jianwen; Cao, Fuliang; Xu, Li-an

    2015-01-01

    Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics; however, genomic resources for this species are limited. In this study, we performed the first transcriptome sequencing for Ginkgo kernels at five time points using Illumina paired-end sequencing. Approximately 25.08-Gb clean reads were obtained, and 68,547 unigenes with an average length of 870 bp were generated by de novo assembly. Of these unigenes, 29,987 (43.74%) were annotated in publicly available plant protein database. A total of 3,869 genes were identified as significantly differentially expressed, and enrichment analysis was conducted at different time points. Furthermore, metabolic pathway analysis revealed that 66 unigenes were responsible for terpenoid backbone biosynthesis, with up to 12 up-regulated unigenes involved in the biosynthesis of ginkgolide and bilobalide. Differential gene expression analysis together with real-time PCR experiments indicated that the synthesis of bilobalide may have interfered with the ginkgolide synthesis process in the kernel. These data can remarkably expand the existing transcriptome resources of Ginkgo, and provide a valuable platform to reveal more on developmental and metabolic mechanisms of this species. PMID:26500663

  8. Comparative analysis of de novo transcriptome assembly.

    PubMed

    Clarke, Kaitlin; Yang, Yi; Marsh, Ronald; Xie, Linglin; Zhang, Ke K

    2013-02-01

    The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully used for genome DNA de novo assembly; nevertheless, its performance for transcriptome assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads were selected from the External RNA Control Consortium (ERCC) data and human chromosome 22. A number of statistics were then calculated for the resulting contigs from each assembler. Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate. Trinity had relative good performance for both ERCC and human data, but it may not consistently generate full length transcripts. ABySS was the fastest method but its assembly quality was low. Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique. PMID:23393031

  9. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...

  10. In-depth Proteomic Analysis of Nonsmall Cell Lung Cancer to Discover Molecular Targets and Candidate Biomarkers*

    PubMed Central

    Kikuchi, Takefumi; Hassanein, Mohamed; Amann, Joseph M.; Liu, Qinfeng; Slebos, Robbert J. C.; Rahman, S. M. Jamshedur; Kaufman, Jacob M.; Zhang, Xueqiong; Hoeksema, Megan D.; Harris, Bradford K.; Li, Ming; Shyr, Yu; Gonzalez, Adriana L.; Zimmerman, Lisa J.; Liebler, Daniel C.; Massion, Pierre P.; Carbone, David P.

    2012-01-01

    Advances in proteomic analysis of human samples are driving critical aspects of biomarker discovery and the identification of molecular pathways involved in disease etiology. Toward that end, in this report we are the first to use a standardized shotgun proteomic analysis method for in-depth tissue protein profiling of the two major subtypes of nonsmall cell lung cancer and normal lung tissues. We identified 3621 proteins from the analysis of pooled human samples of squamous cell carcinoma, adenocarcinoma, and control specimens. In addition to proteins previously shown to be implicated in lung cancer, we have identified new pathways and multiple new differentially expressed proteins of potential interest as therapeutic targets or diagnostic biomarkers, including some that were not identified by transcriptome profiling. Up-regulation of these proteins was confirmed by multiple reaction monitoring mass spectrometry. A subset of these proteins was found to be detectable and differentially present in the peripheral blood of cases and matched controls. Label-free shotgun proteomic analysis allows definition of lung tumor proteomes, identification of biomarker candidates, and potential targets for therapy. PMID:22761400

  11. Integrative analysis of the mouse embryonic transcriptome.

    PubMed

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  12. Integrative analysis of the mouse embryonic transcriptome

    PubMed Central

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  13. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  14. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  15. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  16. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  17. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  18. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

    PubMed Central

    Jayakodi, Murukarthick; Lee, Sang-Choon; Park, Hyun-Seung; Jang, Woojong; Lee, Yun Sun; Choi, Beom-Soon; Nah, Gyoung Ju; Kim, Do-Soon; Natesan, Senthil; Sun, Chao; Yang, Tae-Jin

    2014-01-01

    Background Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results Assemblies were generated from ∼85 million and ∼77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases. We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use. PMID:25379008

  19. Transcriptome analysis of aging mouse meibomian glands

    PubMed Central

    Parfitt, Geraint J.; Brown, Donald J.

    2016-01-01

    Purpose Dry eye disease is a common condition associated with age-related meibomian gland dysfunction (ARMGD). We have previously shown that ARMGD occurs in old mice, similar to that observed in human patients with MGD. To begin to understand the mechanism underlying ARMGD, we generated transcriptome profiles of eyelids excised from young and old mice of both sexes. Methods Male and female C57BL/6 mice were euthanized at ages of 3 months or 2 years and their lower eyelids removed, the conjunctival epithelium scrapped off, and the tarsal plate, containing the meibomian glands, dissected from the overlying muscle and lid epidermis. RNA was isolated, enriched, and transcribed into cDNA and processed to generate four non-stranded libraries with distinct bar codes on each adaptor. The libraries were then sequenced and mapped to the mm10 reference genome, and expression results were gathered as reads per length of transcript in kilobases per million mapped reads (RPKM) values. Differential gene expression analyses were performed using CyberT. Results Approximately 55 million reads were generated from each library. Expression data indicated that about 15,000 genes were expressed in these tissues. Of the genes that showed more than twofold significant differences in either young or old tissue, 698 were identified as differentially expressed. According to the Gene Ontology (GO) analysis, the cellular, developmental, and metabolic processes were found to be highly represented with Wnt function noted to be altered in the aging mouse. Conclusions The RNA sequencing data identified several signaling pathways, including fibroblast growth factor (FGF) and Wnt that were altered in the meibomian glands of aging mice. PMID:27279727

  20. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    PubMed Central

    2010-01-01

    Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3)-β-linked glucose with a (1 → 6)-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and oxalate synthesis and to

  1. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  2. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with

  3. Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns.

    PubMed

    Pepe, Alberto; Rodriguez, Marko A

    2010-09-01

    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research centerin the development and application of wireless and sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers' propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration. PMID:20700373

  4. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    SciTech Connect

    Rodriguez, Marko A; Pepe, Alberto

    2009-01-01

    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  5. Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns

    PubMed Central

    Rodriguez, Marko A.

    2009-01-01

    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research centerin the development and application of wireless and sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers’ propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration. PMID:20700373

  6. Comparative analysis of the transcriptomes of Populus

    SciTech Connect

    Tuskan, Gerald A; Davis, John M

    2008-01-01

    Sequencing of the Populus trichocarpa genome creates an opportunity to describe the transcriptome of a woody perennial species and establish an atlas of gene expression. A comparison with the transcriptomes of other species can also define genes that are conserved or diverging in plant species. Here, the transcriptome in vegetative organs of the P. trichocarpa reference genotype Nisqually-1 was characterized. A comparison with Arabidopsis thaliana orthologs was used to distinguish gene functional categories that may be evolving differently in a woody perennial and an annual herbaceous species. A core set of genes expressed in common among vegetative organs was detected, as well as organ-specific genes. Statistical tests identified chromatin domains, where adjacent genes were expressed more frequently than expected by chance. Extensive divergence was detected in the expression patterns of A. thaliana and P. trichocarpa orthologs, but transcription of a small number of genes appeared to have remained conserved in the two species. Despite separation of lineages for over 100 million yr, these results suggest that selection has limited transcriptional divergence of genes associated with some essential functions in A. thaliana and P. trichocarpa. However, extensive remodeling of transcriptional networks indicates that expression regulation may be a key determinant of plant diversity.

  7. Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome.

    PubMed

    Shanku, Alexander G; McPeek, Mark A; Kern, Andrew D

    2013-03-11

    In this paper we present a de novo assembly of the transcriptome of the damselfly, Enallagma hageni, through the use of 454 pyrosequencing. E. hageni is a member of the suborder Zygoptera within the order Odonata, and the Odonata are the basal lineage of the winged insects (Pterygota). To date, sequence data used in phylogenetic analysis of Enallagma species have been derived from either mtDNA or ribosomal nuclear DNA. This transcriptome contained 31,661 contigs that were assembled and translated into 14,813 individual open reading frames. Using these data, we constructed an extensive dataset of 634 orthologous nuclear protein-coding genes across 11 species of Arthropoda, and used Bayesian techniques to elucidate Enallagma's place in the Arthropod phylogenetic tree. Additionally, we demonstrate that the Enallagma transcriptome contains 169 genes that are evolving at rates that differ relative to the rest of the transcriptome (29 accelerated and 140 decreased), and through multiple Gene Ontology searches and clustering methods, we present the first functional-annotation of any palaeopteran's transcriptome in the literature. PMID:23550132

  8. Analysis of the Thinopyrum elongatum Transcriptome under Water Deficit Stress

    PubMed Central

    Shu, Yongjun; Zhang, Jun; Ao, You; Song, Lili; Guo, Changhong

    2015-01-01

    The transcriptome of Thinopyrum elongatum under water deficit stress was analyzed using RNA-Seq technology. The results showed that genes involved in processes of amplification of stress signaling, reductions in oxidative damage, creation of protectants, and roots development were expressed differently, which played an important role in the response to water deficit. The Th. elongatum transcriptome research highlights the activation of a large set of water deficit-related genes in this species and provides a valuable resource for future functional analysis of candidate genes in the water deficit stress response. PMID:25722968

  9. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  10. Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR)

    PubMed Central

    Peng, Xinxia; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Nishida, Andrew; Pipes, Lenore; Bozinoski, Marjan; Thomas, Matthew J.; Kelly, Sara; Weiss, Jeffrey M.; Raveendran, Muthuswamy; Muzny, Donna; Gibbs, Richard A.; Rogers, Jeffrey; Schroth, Gary P.; Katze, Michael G.; Mason, Christopher E.

    2015-01-01

    The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis. PMID:25392405

  11. In-depth micro-spectrochemical analysis of archaeological Egyptian pottery shards

    NASA Astrophysics Data System (ADS)

    Khedr, A.; Harith, M. A.

    2013-12-01

    Old Egyptian pottery samples have been in-depth microchemically analyzed using laser induced breakdown spectroscopy (LIBS), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. Samples from two different ancient Islamic eras, Mamluk (1250-1517 AD), Fatimid (969-1169 AD) in addition to samples from the Roman period (30 BC-395 AD) were investigated. LIBS provided the analytical data necessary to study in micrometric steps the depth profiling of various elements in each sample. Common elements such as silicon, calcium, and aluminum relevant to the originally manufactured and processed clay, showed up in all the investigated samples. EDX and XRD techniques that have been used in the present work provided important chemical insight about the structure of the samples. The obtained analytical results demonstrated the possibility of using LIBS technique in performing in situ spectrochemical analysis of archaeological pottery. This leads to fast in-depth spatial characterization of the samples in the micron range with nearly invisible surface destructive effects. There is no doubt that this can help in restoration and conservation of such precious objects.

  12. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation

    PubMed Central

    Zhang, Ji-Gang; Tan, Li-Jun; Xu, Chao; He, Hao; Tian, Qing; Zhou, Yu; Qiu, Chuan; Chen, Xiang-Ding; Deng, Hong-Wen

    2015-01-01

    Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology. PMID:26390436

  13. Undiagnosed genetic muscle disease in the north of England: an in depth phenotype analysis.

    PubMed

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk. PMID:23788081

  14. Undiagnosed Genetic Muscle Disease in the North of England: an in Depth Phenotype Analysis

    PubMed Central

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk PMID:23788081

  15. An in-depth analysis of pharmaceutical regulation in the Republic of Moldova

    PubMed Central

    2014-01-01

    Objective Regulation of the pharmaceutical system is a crucial, yet often neglected, component in ensuring access to safe and effective medicines. The aim of this study was to provide an in-depth analysis of the existing pharmaceutical regulation, including recent changes, in the Republic of Moldova. Methods Data from field work conducted by the World Health Organization (WHO) together with a review of policy documents and quantitative secondary data analysis was used to achieve this aim. Results This analysis identified several ways in which pharmaceutical regulation affects availability of quality medicines in the Republic of Moldova. These include lack of full implementation bioequivalence requirements for generics registration, incomplete implementation of good manufacturing practices and no implementation of good distribution practices, use of quality control instead of quality assurance as a method to ensure quality of medicines, frequent change of power within the Medicines and Medical Devices Agency (MMDA) leading to lack of long-term strategy and plans, conflict of interest between the different functions of the MMDA, the lack of sufficient funding for the MMDA to conduct its activities and to invest in continuous training of its staff (particularly inspectors) and very weak post-marketing control. Notably, several improvements have been recently introduced, including a roadmap for change for the MMDA, the introduction of good manufacturing practices and the drafting of a quality manual for the Agency. Conclusion Based on these findings the authors propose a set of priority actions to address existing gaps and draw lessons learned from other countries. PMID:25848544

  16. Transcriptome analysis of sarracenia, an insectivorous plant.

    PubMed

    Srivastava, Anuj; Rogers, Willie L; Breton, Catherine M; Cai, Liming; Malmberg, Russell L

    2011-08-01

    Sarracenia species (pitcher plants) are carnivorous plants which obtain a portion of their nutrients from insects captured in the pitchers. To investigate these plants, we sequenced the transcriptome of two species, Sarracenia psittacina and Sarracenia purpurea, using Roche 454 pyrosequencing technology. We obtained 46 275 and 36 681 contigs by de novo assembly methods for S. psittacina and S. purpurea, respectively, and further identified 16 163 orthologous contigs between them. Estimation of synonymous substitution rates between orthologous and paralogous contigs indicates the events of genome duplication and speciation within the Sarracenia genus both occurred ∼2 million years ago. The ratios of synonymous and non-synonymous substitution rates indicated that 491 contigs have been under positive selection (K(a)/K(s) > 1). Significant proportions of these contigs were involved in functions related to binding activity. We also found that the greatest sequence similarity for both of these species was to Vitis vinifera, which is most consistent with a non-current classification of the order Ericales as an asterid. This study has provided new insights into pitcher plants and will contribute greatly to future research on this genus and its distinctive ecological adaptations. PMID:21676972

  17. In-depth Analysis and Evaluation of GSFC GRAIL Gravity Field Models

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Sabaka, T. J.; Nicholas, J. B.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched on September 10, 2011, and conducted their primary mapping mission from March 1 until May 29, 2012. Primary mission data have been processed at NASA/GSFC using the GEODYN software, resulting in high-resolution (degree and order 420 in spherical harmonics) gravity field models of high accuracy. Here, we present an in-depth analysis of the GRAIL gravity field determination at GSFC. We especially focus on the Ka-band range-rate (KBRR) data, and on the use of GRAIL gravity models on tracking data of other spacecraft. We also investigate to what extent the addition of other tracking data (especially Lunar Prospector data) can help to further enhance the lunar gravity field models. Since the orbit of the GRAIL spacecraft was not constant during the primary mission and sensibly elliptical at the beginning and end of the science phase (20 by 80 kilometers, in altitude above lunar surface), there are areas on the Moon where the spacecraft altitude was relatively low compared to the global average. This results in remaining signal in especially the KBRR data that is not necessarily captured by the global models expressed in spherical harmonics. We explore the performance of the GRAIL gravity field models over certain regions with low-altitude KBRR data, and we also investigate analysis methods to estimate local adjustments to the gravity field models.

  18. In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering.

    PubMed

    Becherer, Tobias; Heinen, Silke; Wei, Qiang; Haag, Rainer; Weinhart, Marie

    2015-10-01

    Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates. PMID:26143602

  19. Quantification problems in depth profiling of pwr steels using Ar+ ion sputtering and XPS analysis.

    PubMed

    Ignatova, Velislava A; Van Den Berghe, Sven; Van Dyck, Steven; Popok, Vladimir N

    2006-10-01

    The oxide scales of AISI 304 formed in boric acid solutions at 300 degrees C and pH = 4.5 have been studied using X-ray photoelectron spectroscopy (XPS) depth profiling. The present focus is depth profile quantification both in depth and chemical composition on a molecular level. The roughness of the samples is studied by atomic force microscopy before and after sputtering, and the erosion rate is determined by measuring the crater depth with a surface profilometer and vertical scanning interferometry. The resulting roughness (20-30 nm), being an order of magnitude lower than the crater depth (0.2-0.5 microm), allows layer-by-layer profiling, although the ion-induced effects result in an uncertainty of the depth calibration of a factor of 2. The XPS spectrum deconvolution and data evaluation applying target factor analysis allows chemical speciation on a molecular level. The elemental distribution as a function of the sputtering time is obtained, and the formation of two layers is observed-one hydroxide (mainly iron-nickel based) on top and a second one deeper, mainly consisting of iron-chromium oxides. PMID:16984670

  20. Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis

    PubMed Central

    Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses

  1. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    PubMed

    Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they

  2. Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    PubMed Central

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands

  3. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  4. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  5. Transcriptome Analysis of the Asian Honey Bee Apis cerana cerana

    PubMed Central

    Huang, Zachary Y.; Wu, Xiao Bo; Yan, Wei Yu; Zeng, Zhi Jiang

    2012-01-01

    Background The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE) analysis. Results Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG) with a cut-off E-value of 10−5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. Conclusions Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes. PMID:23112877

  6. Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

    PubMed Central

    Costa, Valerio; Angelini, Claudia; D'Apice, Luciana; Mutarelli, Margherita; Casamassimi, Amelia; Sommese, Linda; Gallo, Maria Assunta; Aprile, Marianna; Esposito, Roberta; Leone, Luigi; Donizetti, Aldo; Crispi, Stefania; Rienzo, Monica; Sarubbi, Berardo; Calabrò, Raffaele; Picardi, Marco; Salvatore, Paola; Infante, Teresa; De Berardinis, Piergiuseppe; Napoli, Claudio; Ciccodicola, Alfredo

    2011-01-01

    Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders. PMID:21533138

  7. An Analysis of "In-Depth" Schools Conducted by Area Extension Agents in the Agricultural Industry.

    ERIC Educational Resources Information Center

    Cunningham, Clarence J.

    The Ohio Extension Service conducted "in-depth" schools on Dairy Genetics and Reproduction, Beef Cattle, Capital Management, and Fertilizer and Lime at area centers in Wooster, Defiance and Fremont, Washington Court House, and McConnellsville. Two thirds of the instructional staff were area agents; others were specialists, resident staff, research…

  8. In-Depth Analysis of Handwriting Curriculum and Instruction in Four Kindergarten Classrooms

    ERIC Educational Resources Information Center

    Vander Hart, Nanho; Fitzpatrick, Paula; Cortesa, Cathryn

    2010-01-01

    The quality of handwriting curriculum and instructional practices in actual classrooms was investigated in an in-depth case study of four inner city kindergarten classrooms using quantitative and qualitative methods. The handwriting proficiency of students was also evaluated to assess the impact of the instructional practices observed. The…

  9. Team Regulation in a Simulated Medical Emergency: An In-Depth Analysis of Cognitive, Metacognitive, and Affective Processes

    ERIC Educational Resources Information Center

    Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin

    2015-01-01

    This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…

  10. Defense In-Depth Accident Analysis Evaluation of Tritium Facility Bldgs. 232-H, 233-H, and 234-H

    SciTech Connect

    Blanchard, A.

    1999-05-10

    'The primary purpose of this report is to document a Defense-in-Depth (DID) accident analysis evaluation for Department of Energy (DOE) Savannah River Site (SRS) Tritium Facility Buildings 232-H, 233-H, and 234-H. The purpose of a DID evaluation is to provide a more realistic view of facility radiological risks to the offsite public than the bounding deterministic analysis documented in the Safety Analysis Report, which credits only Safety Class items in the offsite dose evaluation.'

  11. Hydrated silica on Mars: Global comparison and in-depth analysis at Antoniadi Crater

    NASA Astrophysics Data System (ADS)

    Smith, Matthew R.

    ---has also been found at nearby exposures at Nili Fossae and Toro Crater, suggesting a widespread sequence of alteration. The two sections of this dissertation provide a global and in-depth view of Martian hydrated silica deposits, thereby broadening and refining our search for past water on Mars.

  12. Transcriptome sequencing goals, assembly, and assessment.

    PubMed

    Wheat, Christopher W; Vogel, Heiko

    2011-01-01

    Transcriptome sequencing provides quick, direct access to the mRNA. With this information, one can design primers for PCR of thousands of different genes, SNP markers, probes for microarrays and qPCR, or just use the sequence data itself in comparative studies. Transcriptome sequencing, while getting cheaper, is still an expensive endeavor, with an examination of data quality and its assembly infrequently performed in depth. Here, we outline many of the important issues we think need consideration when starting a transcriptome sequencing project. We also walk the reader through a detailed analysis of an example transcriptome dataset, highlighting the importance of both within-dataset analysis and comparative inferences. Our hope is that with greater attention focused upon assessing assembly performance, advances in transcriptome assembly will increase as prices continue to drop and new technologies, such as Illumina sequencing, start to be used. PMID:22065435

  13. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)

    PubMed Central

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  14. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells. PMID:26331465

  15. Quantitative transcriptome analysis using RNA-seq.

    PubMed

    Külahoglu, Canan; Bräutigam, Andrea

    2014-01-01

    RNA-seq has emerged as the technology of choice to quantify gene expression. This technology is a convenient accurate tool to quantify diurnal changes in gene expression, gene discovery, differential use of promoters, and splice variants for all genes expressed in a single tissue. Thus, RNA-seq experiments provide sequence information and absolute expression values about transcripts in addition to relative quantification available with microarrays or qRT-PCR. The depth of information by sequencing requires careful assessment of RNA intactness and DNA contamination. Although the RNA-seq is comparatively recent, a standard analysis framework has emerged with the packages of Bowtie2, TopHat, and Cufflinks. With rising popularity of RNA-seq tools have become manageable for researchers without much bioinformatical knowledge or programming skills. Here, we present a workflow for a RNA-seq experiment from experimental planning to biological data extraction. PMID:24792045

  16. Transcriptome Analysis of Human Diabetic Kidney Disease

    PubMed Central

    Woroniecka, Karolina I.; Park, Ae Seo Deok; Mohtat, Davoud; Thomas, David B.; Pullman, James M.; Susztak, Katalin

    2011-01-01

    OBJECTIVE Diabetic kidney disease (DKD) is the single leading cause of kidney failure in the U.S., for which a cure has not yet been found. The aim of our study was to provide an unbiased catalog of gene-expression changes in human diabetic kidney biopsy samples. RESEARCH DESIGN AND METHODS Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. DKD samples were significant for their racial diversity and decreased glomerular filtration rate (~25–35 mL/min). Stringent statistical analysis, using the Benjamini-Hochberg corrected two-tailed t test, was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. Two different web-based algorithms were used to define differentially regulated pathways. RESULTS We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli, and 330 probesets were commonly differentially expressed in both compartments. Pathway analysis highlighted the regulation of Ras homolog gene family member A, Cdc42, integrin, integrin-linked kinase, and vascular endothelial growth factor signaling in DKD glomeruli. The tubulointerstitial compartment showed strong enrichment for inflammation-related pathways. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in a different set of DKD samples. CONCLUSIONS Our studies have cataloged gene-expression regulation and identified multiple novel genes and pathways that may play a role in the pathogenesis of DKD or could serve as biomarkers. PMID:21752957

  17. Transcriptome-wide analysis of exosome targets.

    PubMed

    Schneider, Claudia; Kudla, Grzegorz; Wlotzka, Wiebke; Tuck, Alex; Tollervey, David

    2012-11-01

    The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of non-coding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome indicating that substrates follow multiple pathways to the nucleases. PMID:23000172

  18. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis

    PubMed Central

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers. PMID:27222053

  19. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L.

    PubMed Central

    Luo, Zhonglai; Hu, Jin; Zhao, Zhongtao; Zhang, Dianxiang

    2016-01-01

    Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or “heteranthery”, a phenomenon intrigued scientists since the 18th century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy. PMID:27527392

  20. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L.

    PubMed

    Luo, Zhonglai; Hu, Jin; Zhao, Zhongtao; Zhang, Dianxiang

    2016-01-01

    Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or "heteranthery", a phenomenon intrigued scientists since the 18(th) century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy. PMID:27527392

  1. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis.

    PubMed

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers. PMID:27222053

  2. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis.

    PubMed

    Forestan, Cristian; Aiese Cigliano, Riccardo; Farinati, Silvia; Lunardon, Alice; Sanseverino, Walter; Varotto, Serena

    2016-01-01

    Plant's response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses. PMID:27461139

  3. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis

    PubMed Central

    Forestan, Cristian; Aiese Cigliano, Riccardo; Farinati, Silvia; Lunardon, Alice; Sanseverino, Walter; Varotto, Serena

    2016-01-01

    Plant’s response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses. PMID:27461139

  4. In-depth analysis of ITER-like samples composition using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mercadier, L.; Semerok, A.; Kizub, P. A.; Leontyev, A. V.; Hermann, J.; Grisolia, C.; Thro, P.-Y.

    2011-07-01

    Laser-induced breakdown spectroscopic in-depth measurements were undertaken for two ITER-like calibrated multi-layered samples made of W-Mo or W/C layers on Ti-substrates. The samples were previously characterized by glow discharge optical emission spectroscopy. For laser-induced breakdown spectroscopic measurements, pulses generated by Nd:YAG laser sources with 1064 nm, 532 nm, 355 nm and 266 nm wavelengths were applied. The effects of laser beam shaping, fluence and wavelength as well as the gas nature (air, Ar, He) and pressure were investigated. The results obtained with laser-induced breakdown spectroscopic in-depth measurements were compared to those obtained with glow discharge optical emission spectroscopy and found to be in agreement. However, a mixing of the layers was observed and attributed to diffusion through the melted material and to the non-homogeneity of the laser beam spatial distribution. The depth resolution was found of the order of several thermal diffusion lengths but should be improved by using picosecond laser pulse duration. The results promote applications to tritium concentration measurements with depth resolution in the deposited layers of Tokamak first walls, as in the case of the future fusion reactor ITER.

  5. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  6. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    PubMed Central

    Zhang, Xiaoshen; Deng, Minjie; Fan, Guoqiang

    2014-01-01

    Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx). About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST) search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI) non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization. PMID:24663058

  7. Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid.

    PubMed

    Zhang, Xiaoshen; Deng, Minjie; Fan, Guoqiang

    2014-01-01

    Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx). About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST) search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI) non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization. PMID:24663058

  8. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.

    PubMed

    Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W

    2015-08-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  9. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  10. Integrative analysis of independent transcriptome data for rare diseases

    PubMed Central

    Zhang, Zhe; Hailat, Zeyad; Falk, Marni J.; Chen, Xue–wen

    2016-01-01

    High–throughput technologies used to interrogate transcriptomes have been generating a great amount of publicly available gene expression data. For raw diseases that lack of clinical samples and research funding, there is a practical benefit to jointly analyze existing datasets commonly related to a specific rare disease. In this study, we collected a number of independently generated transcriptome data sets from four species: Human, Fly, Mouse and Worm. All data sets included samples with both normal and abnormal mitochondrial functions. We reprocessed each data set to standardize format, scale and gene annotation and used HomoloGene database to map genes between species. Standard procedure was also applied to compare gene expression profiles of normal and abnormal mitochondrial functions to identify differentially expressed genes. We further used meta–analysis and other integrative analyses to recognize patterns across data sets and species. Novel insights related to mitochondrial dysfunctions was revealed via these analyses, such as a group of genes consistently dysregulated by impaired mitochondrial function in multiple species. This study created a template for the study of rare diseases using genomic technologies and advanced statistical methods. All data and results generated by this study are freely available and stored at http://goo.gl/nOGWC2, to support further data mining. PMID:24981076

  11. Transcriptomic analysis of the myometrium during peri-implantation period and luteolysis--the study on the pig model.

    PubMed

    Franczak, Anita; Wojciechowicz, Bartosz; Kolakowska, Justyna; Zglejc, Kamila; Kotwica, Genowefa

    2014-12-01

    In pigs, implantation begins with the attachment of embryos to the endometrium. As the process is regulated by the expression of numerous genes, endometrial transcriptomic profiles have been extensively studied in early gravid pigs. However, the myometrium, a secretory tissue, should not be neglected, as it can also participate in the regulation of implantation in early pregnant pigs. To clarify this issue, the transcriptomic profile of the porcine myometrium during the peri-implantation period (i.e. on days 15 to 16 of pregnancy) was compared with the profile observed during luteolysis (i.e. on days 15 to 16 of the oestrous cycle) with an Agilent's Porcine (V2) Two-Colour Gene Expression Microarray 4 × 44 (Agilent, USA). Analysis of the microarray data revealed that of 526 unique, accurately annotated genes, the expression of 271 unique genes was upregulated, while the expression of 255 genes was downregulated in pregnant versus cyclic myometrium. The in-depth data analysis revealed differential expression of genes encoding for factors involved in immunomodulation, tissue growth and differentiation, and prostaglandin and steroid biosynthesis and action. Moreover, the comparison of the obtained data on the myometrial transcriptome with our previously published results on the endometrial transcriptome allowed us to determine substantial differences in the regulatory function of both tissues. The new insights into the function of the myometrium of early pregnant pigs obtained here are in agreement with our previous results that suggest that this tissue plays an important role in providing optimal conditions for developing embryos. Therefore, the importance of the myometrium as an active embryo signal-responsive tissue during early pregnancy cannot be underestimated. PMID:25240502

  12. Single-cell transcriptome analysis of endometrial tissue

    PubMed Central

    Krjutškov, K.; Katayama, S.; Saare, M.; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603

  13. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software

    PubMed Central

    Yang, In Seok

    2015-01-01

    RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification. PMID:26865842

  14. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software.

    PubMed

    Yang, In Seok; Kim, Sangwoo

    2015-12-01

    RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification. PMID:26865842

  15. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  16. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala

    PubMed Central

    Zhang, Lijing; Hu, Xiaowei; Miao, Xiumei; Chen, Xiaolong; Nan, Shuzhen; Fu, Hua

    2016-01-01

    Background Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. Results Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. Conclusion The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the

  17. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development. PMID:25251848

  18. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system. PMID:23161558

  19. Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data

    PubMed Central

    Hartmann, Stefanie; Helm, Conrad; Nickel, Birgit; Meyer, Matthias; Struck, Torsten H.; Tiedemann, Ralph; Selbig, Joachim; Bleidorn, Christoph

    2012-01-01

    Background In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. Methodology Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. PMID:22276131

  20. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  1. Applying thiouracil (TU)-tagging for mouse transcriptome analysis

    PubMed Central

    Gay, Leslie; Karfilis, Kate V.; Miller, Michael R.; Doe, Chris Q.; Stankunas, Kryn

    2014-01-01

    Transcriptional profiling is a powerful approach to study mouse development, physiology, and disease models. Here, we describe a protocol for mouse thiouracil-tagging (TU-tagging), a transcriptome analysis technology that includes in vivo covalent labeling, purification, and analysis of cell type-specific RNA. TU-tagging enables 1) the isolation of RNA from a given cell population of a complex tissue, avoiding transcriptional changes induced by cell isolation trauma, and 2) the identification of actively transcribed RNAs and not pre-existing transcripts. Therefore, in contrast to other cell-specific transcriptional profiling methods based on purification of tagged ribosomes or nuclei, TU-tagging provides a direct examination of transcriptional regulation. We describe how to: 1) deliver 4-thiouracil to transgenic mice to thio-label cell lineage-specific transcripts, 2) purify TU-tagged RNA and prepare libraries for Illumina sequencing, and 3) follow a straight-forward bioinformatics workflow to identify cell type-enriched or differentially expressed genes. Tissue containing TU-tagged RNA can be obtained in one day, RNA-Seq libraries generated within two days, and, following sequencing, an initial bioinformatics analysis completed in one additional day. PMID:24457332

  2. Insights From Cerebellar Transcriptomic Analysis Into the Pathogenesis of Ataxia

    PubMed Central

    Bettencourt, Conceição; Ryten, Mina; Forabosco, Paola; Schorge, Stephanie; Hersheson, Joshua; Hardy, John; Houlden, Henry

    2015-01-01

    IMPORTANCE The core clinical and neuropathological feature of the autosomal dominant spinocerebellar ataxias (SCAs) is cerebellar degeneration. Mutations in the known genes explain only 50% to 60% of SCA cases. To date, no effective treatments exist, and the knowledge of drug-treatable molecular pathways is limited. The examination of overlapping mechanisms and the interpretation of how ataxia genes interact will be important in the discovery of potential disease-modifying agents. OBJECTIVES To address the possible relationships among known SCA genes, predict their functions, identify overlapping pathways, and provide a framework for candidate gene discovery using whole-transcriptome expression data. DESIGN, SETTING, AND PARTICIPANTS We have used a systems biology approach based on whole-transcriptome gene expression analysis. As part of the United Kingdom Brain Expression Consortium, we analyzed the expression profile of 788 brain samples obtained from 101 neuropathologically healthy individuals (10 distinct brain regions each). Weighted gene coexpression network analysis was used to cluster 24 SCA genes into gene coexpression modules in an unsupervised manner. The overrepresentation of SCA transcripts in modules identified in the cerebellum was assessed. Enrichment analysis was performed to infer the functions and molecular pathways of genes in biologically relevant modules. MAIN OUTCOMES AND MEASURES Molecular functions and mechanisms implicating SCA genes, as well as lists of relevant coexpressed genes as potential candidates for novel SCA causative or modifier genes. RESULTS Two cerebellar gene coexpression modules were statistically enriched in SCA transcripts (P = .021 for the tan module and P = 2.87 × 10−5 for the light yellow module) and contained established granule and Purkinje cell markers, respectively. One module includes genes involved in the ubiquitin-proteasome system and contains SCA genes usually associated with a complex phenotype, while the

  3. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells.

    PubMed

    Lauber, C; Vieyres, G; Terczyńska-Dyla, E; Anggakusuma; Dijkman, R; Gad, H H; Akhtar, H; Geffers, R; Vondran, F W R; Thiel, V; Kaderali, L; Pietschmann, T; Hartmann, R

    2015-09-01

    The IFNL4 gene is negatively associated with spontaneous and treatment-induced clearance of hepatitis C virus infection. The activity of IFNλ4 has an important causal role in the pathogenesis, but the molecular details are not fully understood. One possible reason for the detrimental effect of IFNλ4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium. PMID:26066369

  4. Transcriptome Sequencing and Positive Selected Genes Analysis of Bombyx mandarina

    PubMed Central

    Wu, Yuqian; Long, Renwen; Liu, Chun; Xia, Qingyou

    2015-01-01

    The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research. PMID:25806526

  5. Transcriptome meta-analysis reveals dysregulated pathways in nasopharyngeal carcinoma.

    PubMed

    Tulalamba, Warut; Larbcharoensub, Noppadol; Sirachainan, Ekaphop; Tantiwetrueangdet, Aunchalee; Janvilisri, Tavan

    2015-08-01

    Nasopharyngeal carcinoma (NPC) is a malignant cancer arising from the epithelial surface of the nasopharynx that mostly appears in advanced stages of the disease, leading to a poor prognosis. To date, a number of mRNA profiling investigations on NPC have been reported in order to identify suitable biomarkers for early detection. However, the results may be specific to each study with distinct sample types. In this study, an integrative meta-analysis of NPC transcriptome data was performed to determine dysregulated pathways, potentially leading to identification of molecular markers. Ten independent NPC gene expression profiling microarray datasets, including 135 samples from NPC cell lines, primary cell lines, and tissues were assimilated into a meta-analysis and cross-validation to identify a cohort of genes that were significantly dysregulated in NPC. Bioinformatics analyses of these genes revealed the significant pathways and individual players involving in cellular metabolism, cell cycle regulation, DNA repair, as well as ErbB pathway. Altogether, we propose that dysregulation of these molecular pathways in NPC might play a role in the NPC pathogenesis, providing clues, which could eventually translate into diagnostic and therapeutic approaches. PMID:25724187

  6. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm.

    PubMed

    Liu, Peigang; Wang, Yongqiang; Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis. PMID:26274803

  7. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation

    PubMed Central

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12–30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  8. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina.

    PubMed

    Cheng, Tingcai; Fu, Bohua; Wu, Yuqian; Long, Renwen; Liu, Chun; Xia, Qingyou

    2015-01-01

    The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research. PMID:25806526

  9. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation.

    PubMed

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12-30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  10. Density of points clustering, application to transcriptomic data analysis

    PubMed Central

    Wicker, Nicolas; Dembele, Doulaye; Raffelsberger, Wolfgang; Poch, Olivier

    2002-01-01

    With the increasing amount of data produced by high-throughput technologies in many fields of science, clustering has become an integral step in exploratory data analysis in order to group similar elements into classes. However, many clustering algorithms can only work properly if aided by human expertise. For example, one parameter which is crucial and often manually set is the number of clusters present in the analyzed set. We present a novel stopping rule to find the optimal number of clusters based on the comparison of the density of points inside the clusters and between them. The method is evaluated on synthetic as well as on real transcriptomic data and compared with two current methods. Finally, we illustrate its usefulness in the analysis of the expression profiles of promyelocytic cells before and after treatment with all-trans retinoic acid. Simultaneous clustering for gene regulation and absolute initial expression levels allowed the identification of numerous genes associated with signal transduction revealing the complexity of retinoic acid signaling. PMID:12235383

  11. Function-informed transcriptome analysis of Drosophila renal tubule

    PubMed Central

    Wang, Jing; Kean, Laura; Yang, Jingli; Allan, Adrian K; Davies, Shireen A; Herzyk, Pawel; Dow, Julian AT

    2004-01-01

    Background Comprehensive, tissue-specific, microarray analysis is a potent tool for the identification of tightly defined expression patterns that might be missed in whole-organism scans. We applied such an analysis to Drosophila melanogaster Malpighian (renal) tubule, a defined differentiated tissue. Results The transcriptome of the D. melanogaster Malpighian tubule is highly reproducible and significantly different from that obtained from whole-organism arrays. More than 200 genes are more than 10-fold enriched and over 1,000 are significantly enriched. Of the top 200 genes, only 18 have previously been named, and only 45% have even estimates of function. In addition, 30 transcription factors, not previously implicated in tubule development, are shown to be enriched in adult tubule, and their expression patterns respect precisely the domains and cell types previously identified by enhancer trapping. Of Drosophila genes with close human disease homologs, 50 are enriched threefold or more, and eight enriched 10-fold or more, in tubule. Intriguingly, several of these diseases have human renal phenotypes, implying close conservation of renal function across 400 million years of divergent evolution. Conclusions From those genes that are identifiable, a radically new view of the function of the tubule, emphasizing solute transport rather than fluid secretion, can be obtained. The results illustrate the phenotype gap: historically, the effort expended on a model organism has tended to concentrate on a relatively small set of processes, rather than on the spread of genes in the genome. PMID:15345053

  12. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm

    PubMed Central

    Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis. PMID:26274803

  13. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  14. Effect-directed analysis supporting monitoring of aquatic environments - An in-depth overview

    EPA Science Inventory

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that...

  15. In-depth analysis of the critical genes and pathways in colorectal cancer

    PubMed Central

    LIU, FUGUO; JI, FENGZHI; JI, YULING; JIANG, YUEPING; SUN, XUEGUO; LU, YANYAN; ZHANG, LINGYUN; HAN, YUE; LIU, XISHUANG

    2015-01-01

    The present study aimed to investigate the molecular targets for colorectal cancer (CRC). Differentially expressed genes (DEGs) were screened between CRC and matched adjacent noncancerous samples. GENETIC_ASSOIATION_DB_DISEASE analysis was performed to identify CRC genes from the identified DEGs using the Database for Annotation, Visualization and Integrated Discovery, followed by Gene Οntology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis for the CRC genes. A protein-protein interaction (PPI) network was constructed for the CRC genes, followed by determination and analysis of the hub genes, in terms of the protein domains and spatial structure. In total, 35 CRC genes were determined, including 19 upregulated and 16 downregulated genes. Downregulated N-acetyltransferase (NAT)1 and NAT2 were enriched in the caffeine metabolism pathway. The down-regulated and upregulated genes were enriched in a number of GO terms and pathways, respectively. Cyclin D1 (CCND1) and proliferating cell nuclear antigen (PCNA) were identified as the hub genes in the PPI network. The C-terminal and N-terminal domains were similar in PCNA, but different in CCND1. The results suggested PCNA, CCND1, NAT1 and NAT2 for use as biomarkers to enable early diagnosis and monitoring of CRC. These results form a basis for developing therapies, which target the unique protein domains of PCNA and CCND1. PMID:26239303

  16. ExPASy: The proteomics server for in-depth protein knowledge and analysis.

    PubMed

    Gasteiger, Elisabeth; Gattiker, Alexandre; Hoogland, Christine; Ivanyi, Ivan; Appel, Ron D; Bairoch, Amos

    2003-07-01

    The ExPASy (the Expert Protein Analysis System) World Wide Web server (http://www.expasy.org), is provided as a service to the life science community by a multidisciplinary team at the Swiss Institute of Bioinformatics (SIB). It provides access to a variety of databases and analytical tools dedicated to proteins and proteomics. ExPASy databases include SWISS-PROT and TrEMBL, SWISS-2DPAGE, PROSITE, ENZYME and the SWISS-MODEL repository. Analysis tools are available for specific tasks relevant to proteomics, similarity searches, pattern and profile searches, post-translational modification prediction, topology prediction, primary, secondary and tertiary structure analysis and sequence alignment. These databases and tools are tightly interlinked: a special emphasis is placed on integration of database entries with related resources developed at the SIB and elsewhere, and the proteomics tools have been designed to read the annotations in SWISS-PROT in order to enhance their predictions. ExPASy started to operate in 1993, as the first WWW server in the field of life sciences. In addition to the main site in Switzerland, seven mirror sites in different continents currently serve the user community. PMID:12824418

  17. ExPASy: the proteomics server for in-depth protein knowledge and analysis

    PubMed Central

    Gasteiger, Elisabeth; Gattiker, Alexandre; Hoogland, Christine; Ivanyi, Ivan; Appel, Ron D.; Bairoch, Amos

    2003-01-01

    The ExPASy (the Expert Protein Analysis System) World Wide Web server (http://www.expasy.org), is provided as a service to the life science community by a multidisciplinary team at the Swiss Institute of Bioinformatics (SIB). It provides access to a variety of databases and analytical tools dedicated to proteins and proteomics. ExPASy databases include SWISS-PROT and TrEMBL, SWISS-2DPAGE, PROSITE, ENZYME and the SWISS-MODEL repository. Analysis tools are available for specific tasks relevant to proteomics, similarity searches, pattern and profile searches, post-translational modification prediction, topology prediction, primary, secondary and tertiary structure analysis and sequence alignment. These databases and tools are tightly interlinked: a special emphasis is placed on integration of database entries with related resources developed at the SIB and elsewhere, and the proteomics tools have been designed to read the annotations in SWISS-PROT in order to enhance their predictions. ExPASy started to operate in 1993, as the first WWW server in the field of life sciences. In addition to the main site in Switzerland, seven mirror sites in different continents currently serve the user community. PMID:12824418

  18. Simulated flight through JAWS wind shear - In-depth analysis results. [Joint Airport Weather Studies

    NASA Technical Reports Server (NTRS)

    Frost, W.; Chang, H.-P.; Elmore, K. L.; Mccarthy, J.

    1984-01-01

    The Joint Airport Weather Studies (JAWS) field experiment was carried out in 1982 near Denver. An analysis is presented of aircraft performance in the three-dimensional wind fields. The fourth dimension, time, is not considered. The analysis seeks to prepare computer models of microburst wind shear from the JAWS data sets for input to flight simulators and for research and development of aircraft control systems and operational procedures. A description is given of the data set and the method of interpolating velocities and velocity gradients for input to the six-degrees-of-freedom equations governing the motion of the aircraft. The results of the aircraft performance analysis are then presented, and the interpretation classifies the regions of shear as severe, moderate, or weak. Paths through the severe microburst of August 5, 1982, are then recommended for training and operational applications. Selected subregions of the flow field defined in terms of planar sections through the wind field are presented for application to simulators with limited computer storage capacity, that is, for computers incapable of storing the entire array of variables needed if the complete wind field is programmed.

  19. In-depth performance analysis of an EEG based neonatal seizure detection algorithm

    PubMed Central

    Mathieson, S.; Rennie, J.; Livingstone, V.; Temko, A.; Low, E.; Pressler, R.M.; Boylan, G.B.

    2016-01-01

    Objective To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. Methods EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated by an expert and characterized using a novel set of 10 criteria. ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure characteristics between groups were compared using univariate and multivariate analysis. False detections were characterized. Results The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45% of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly rhythmic background, often during intermediate sleep. Conclusion This rigorous analysis allows estimation of how key seizure features are exploited by SDAs. Significance This study resulted in a beta version of ANSeR with significantly improved performance. PMID:27072097

  20. Transcriptome-wide profiling and posttranscriptional analysis of hematopoietic stem/progenitor cell differentiation toward myeloid commitment.

    PubMed

    Klimmeck, Daniel; Cabezas-Wallscheid, Nina; Reyes, Alejandro; von Paleske, Lisa; Renders, Simon; Hansson, Jenny; Krijgsveld, Jeroen; Huber, Wolfgang; Trumpp, Andreas

    2014-11-11

    Hematopoietic stem cells possess lifelong self-renewal activity and generate multipotent progenitors that differentiate into lineage-committed and subsequently mature cells. We present a comparative transcriptome analysis of ex vivo isolated mouse multipotent hematopoietic stem/progenitor cells (Lin(neg)SCA-1(+)c-KIT(+)) and myeloid committed precursors (Lin(neg)SCA-1(neg)c-KIT(+)). Our data display dynamic transcriptional networks and identify a stem/progenitor gene expression pattern that is characterized by cell adhesion and immune response components including kallikrein-related proteases. We identify 498 expressed lncRNAs, which are potential regulators of multipotency or lineage commitment. By integrating these transcriptome with our recently reported proteome data, we found evidence for posttranscriptional regulation of processes including metabolism and response to oxidative stress. Finally, our study identifies a high number of genes with transcript isoform regulation upon lineage commitment. This in-depth molecular analysis outlines the enormous complexity of expressed coding and noncoding RNAs and posttranscriptional regulation during the early differentiation steps of hematopoietic stem cells toward the myeloid lineage. PMID:25418729

  1. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    PubMed

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. PMID:26779957

  2. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    SciTech Connect

    Samih, Y.; Beausir, B.; Bolle, B.; Grosdidier, T.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustrated through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.

  3. Improving wavelet denoising based on an in-depth analysis of the camera color processing

    NASA Astrophysics Data System (ADS)

    Seybold, Tamara; Plichta, Mathias; Stechele, Walter

    2015-02-01

    While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.

  4. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  5. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  6. Chestnut resistance to the blight disease: insights from transcriptome analysis

    PubMed Central

    2012-01-01

    Background A century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified. Results Over one and a half million cDNA reads were assembled into 34,800 transcript contigs from American chestnut and 48,335 transcript contigs from Chinese chestnut. Chestnut cDNA showed higher coding sequence similarity to genes in other woody plants than in herbaceous species. The number of genes tagged, the length of coding sequences, and the numbers of tagged members within gene families showed that the cDNA dataset provides a good resource for studying the American and Chinese chestnut transcriptomes. In silico analysis of transcript abundance identified hundreds of GDTA in canker versus healthy stem tissues. A significant number of additional DTA genes involved in the defense-response not reported in a previous study were identified here. These DTA genes belong to various pathways involving cell wall biosynthesis, reactive oxygen species (ROS), salicylic acid (SA), ethylene, jasmonic acid (JA), abscissic acid (ABA), and hormone signalling. DTA genes were also identified in the hypersensitive response and programmed cell death (PCD) pathways. These DTA genes are candidates

  7. FINDING PERSISTENT SOURCES WITH THE BeppoSAX/WIDE FIELD CAMERA: AN IN-DEPTH ANALYSIS

    SciTech Connect

    Capitanio, F.; Fiocchi, M.; Ubertini, P.; Bird, A. J.; Scaringi, S.

    2011-07-01

    During the operational life of the Italian/Dutch X-ray satellite (1996-2002), BeppoSAX, its two Wide Field Cameras (WFCs) performed observations that covered the full sky at different epochs. Although the majority of analysis performed on BeppoSAX WFC data concentrated on the detection of transient sources, we have now applied the same techniques developed for the INTEGRAL/IBIS survey to produce the same work with the BeppoSAX WFC data. This work represents the first unbiased source list compilation produced from the overall WFC data set optimized for faint persistent source detection. This approach recovered 182 more sources compared to the previous WFC catalog reported in Verrecchia et al. The catalog contains 404 sources detected between 3 and 17 keV, 10 of which are yet to be seen by the new generation of telescopes.

  8. Transcriptome analysis of wheat inoculated with Fusarium graminearum.

    PubMed

    Erayman, Mustafa; Turktas, Mine; Akdogan, Guray; Gurkok, Tugba; Inal, Behcet; Ishakoglu, Emre; Ilhan, Emre; Unver, Turgay

    2015-01-01

    Plants are frequently exposed to microorganisms like fungi, bacteria, and viruses that cause biotic stresses. Fusarium head blight (FHB) is an economically risky wheat disease, which occurs upon Fusarium graminearum (Fg) infection. Moderately susceptible (cv. "Mizrak 98") and susceptible (cv. "Gun 91") winter type bread wheat cultivars were subjected to transcriptional profiling after exposure to Fg infection. To examine the early response to the pathogen in wheat, we measured gene expression alterations in mock and pathogen inoculated root crown of moderately susceptible (MS) and susceptible cultivars at 12 hours after inoculation (hai) using 12X135K microarray chip. The transcriptome analyses revealed that out of 39,179 transcripts, 3668 genes in microarray were significantly regulated at least in one time comparison. The majority of differentially regulated transcripts were associated with disease response and the gene expression mechanism. When the cultivars were compared, a number of transcripts and expression alterations varied within the cultivars. Especially membrane related transcripts were detected as differentially expressed. Moreover, diverse transcription factors showed significant fold change values among the cultivars. This study presented new insights to understand the early response of selected cultivars to the Fg at 12 hai. Through the KEGG analysis, we observed that the most altered transcripts were associated with starch and sucrose metabolism and gluconeogenesis pathways. PMID:26539199

  9. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum

    PubMed Central

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E.M.; Mongan, Arthur E.; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef

    2014-01-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions. PMID:25091627

  10. Comparative transcriptome analysis of grapevine in response to copper stress

    PubMed Central

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  11. Comparative transcriptome analysis of grapevine in response to copper stress.

    PubMed

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  12. Whole transcriptome data analysis of zebrafish mutants affecting muscle development.

    PubMed

    Armant, Olivier; Gourain, Victor; Etard, Christelle; Strähle, Uwe

    2016-09-01

    Formation of the contractile myofibril of the skeletal muscle is a complex process which when perturbed leads to muscular dystrophy. Herein, we provide a mRNAseq dataset on three different zebrafish mutants affecting muscle organization during embryogenesis. These comprise the myosin folding chaperone unc45b (unc45b-/-), heat shock protein 90aa1.1 (hsp90aa1.1-/-) and the acetylcholine esterase (ache-/-) gene. The transcriptome analysis was performed in duplicate experiments at 72 h post-fertilization (hpf) for all three mutants, with two additional times of development (24 hpf and 48 hpf) for unc45b-/-. A total of 20 samples were analyzed by hierarchical clustering for differential gene expression. The data from this study support the observation made in Etard et al. (2015) [1] (http://dx.doi.org/10.1186/s13059-015-0825-8) that a failure to fold myosin activates a unique transcriptional program in the skeletal muscles that is different from that induced in stressed muscle cells. PMID:27274534

  13. VarifocalReader--In-Depth Visual Analysis of Large Text Documents.

    PubMed

    Koch, Steffen; John, Markus; Wörner, Michael; Müller, Andreas; Ertl, Thomas

    2014-12-01

    Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches' problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies. PMID:26356886

  14. Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis.

    PubMed

    Chen, Rui; Zou, Hanfa; Figeys, Daniel

    2016-06-01

    Large-scale N-glycoproteome studies have been hindered by poor solubility of hydrophobic membrane proteins and the complexity of proteome samples. Herein, we developed a detergent-assisted glycoprotein capture method to reduce these issues by conducting hydrazide chemistry-based glycoprotein capture in the presence of strong detergents such as sodium dodecyl sulfate and Triton X-100. The strong detergents helped to solubilize hydrophobic membrane proteins and then increased the access of hydrazide groups to oxidized glycoproteins, thus increasing the coverage of the N-glycoproteome. Compared with the conventional glycopeptide capture method, the detergent-assisted glycoprotein capture approach nearly doubled the number of N-glycosylation sites identified from HEK 293T cells with improved specificity. Application of this approach in the larger scale N-glycoproteomics analysis of the HEK 293T cell membrane led to the identification of 2253 unique N-glycosites from 953 proteins. Furthermore, the application of this approach to human serum resulted in the identification of 850 N-glycosylation sites without any immunodepletion or fractionation. Overall, the detergent-assisted glycoprotein capture method simplified the capture process, and it increased the number of sites observed on both hydrophobic membrane proteins and hydrophilic secreted proteins. PMID:27147131

  15. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata

    PubMed Central

    Liu, Chuang; Li, Shiguo; Kong, Jingjing; Liu, Yangjia; Wang, Tianpeng; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment. PMID:26608573

  16. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    NASA Astrophysics Data System (ADS)

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-05-01

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method [2] to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  17. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    SciTech Connect

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-05-20

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  18. Gonadal Transcriptome Analysis in Sterile Double Haploid Japanese Flounder

    PubMed Central

    Wang, Guixing; Jiang, Hongbo; Wang, Yufen; Sun, Zhaohui; Jiang, Xiufeng; Yu, Qinghai; Liu, Haijin

    2015-01-01

    Sterility is a serious problem that can affect all bionts. In teleosts, double haploids (DHs) induced by mitogynogenesis are often sterile. This sterility severely restricts the further application of DHs for production of clones, genetic analysis, and breeding. However, sterile DH individuals are good source materials for investigation of the molecular mechanisms of gonad development, especially for studies into the role of genes that are indispensable for fish reproduction. Here, we used the Illumina sequencing platform to analyze the transcriptome of sterile female DH Japanese flounder in order to identify major genes that cause sterility and to provide a molecular basis for an intensive study of gonadal development in teleosts. Through sequencing, assembly, and annotation, we obtained 52,474 contigs and found that 60.7% of these shared homologies with existing sequences. A total of 1225 differentially expressed unigenes were found, including 492 upregulated and 733 downregulated genes. Gene Ontology and KEGG analyses showed that genes showing significant upregulation, such as CYP11A1, CYP11B2, CYP17, CYP21, HSD3β, bcl2l1, and PRLR, principally correlated with sterol metabolic process, steroid biosynthetic process, and the Jak-stat signaling pathway. The significantly downregulated genes were primarily associated with immune response, antigen processing and presentation, cytokine–cytokine receptor interaction, and protein digestion and absorption. Using a co-expression network analysis, we conducted a comprehensive comparison of gene expression in the gonads of fertile and sterile female DH Japanese flounder. Identification of genes showing significantly different expression will provide further insights into DH reproductive dysfunction and oocyte maturation processes in teleosts. PMID:26580217

  19. Transcriptomic analysis of cyclic AMP response in bovine cumulus cells.

    PubMed

    Khan, D R; Guillemette, C; Sirard, M A; Richard, F J

    2015-09-01

    Acquisition of oocyte developmental competence needs to be understood to improve clinical outcomes of assisted reproduction. The stimulation of cumulus cell concentration of cyclic adenosine 3'5'-monophosphate (cAMP) by pharmacological agents during in vitro maturation (IVM) participates in improvement of oocyte quality. However, precise coordination and downstream targets of cAMP signaling in cumulus cells are largely unknown. We have previously demonstrated better embryo development after cAMP stimulation for first 6 h during IVM. Using this model, we investigated cAMP signaling in cumulus cells through in vitro culture of cumulus-oocyte complexes (COCs) in the presence of cAMP raising agents: forskolin, IBMX, and dipyridamole (here called FID treatment). Transcriptomic analysis of cumulus cells indicated that FID-induced differentially expressed transcripts were implicated in cumulus expansion, steroidogenesis, cell metabolism, and oocyte competence. Functional genomic analysis revealed that protein kinase-A (PKA), extracellular signal regulated kinases (ERK1/2), and calcium (Ca(2+)) pathways as key regulators of FID signaling. Inhibition of PKA (H89) in FID-supplemented COCs or substitution of FID with calcium ionophore (A23187) demonstrated that FID activated primarily the PKA pathway which inhibited ERK1/2 phosphorylation and was upstream of calcium signaling. Furthermore, inhibition of ERK1/2 phosphorylation by FID supported a regulation by dual specific phosphatase (DUSP1) via PKA. Our findings imply that cAMP (FID) regulates cell metabolism, steroidogenesis, intracellular signaling and cumulus expansion through PKA which modulates these functions through optimization of ERK1/2 phosphorylation and coordination of calcium signaling. These findings have implications for development of new strategies for improving oocyte in vitro maturation leading to better developmental competence. PMID:26082143

  20. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica

    PubMed Central

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-01-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J2) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen. PMID:22802712

  1. Whole-transcriptome RNAseq analysis from minute amount of total RNA

    PubMed Central

    Tariq, Muhammad A.; Kim, Hyunsung J.; Jejelowo, Olufisayo; Pourmand, Nader

    2011-01-01

    RNA sequencing approaches to transcriptome analysis require a large amount of input total RNA to yield sufficient mRNA using either poly-A selection or depletion of rRNA. This feature makes it difficult to miniaturize transcriptome analysis for greater efficiency. To address this challenge, we devised and validated a simple procedure for the preparation of whole-transcriptome cDNA libraries from a minute amount (500 pg) of total RNA. We compared a single-sample library prepared by this Ovation® RNA-Seq system with two available methods of mRNA enrichment (TruSeq™ poly-A enrichment and RiboMinus™ rRNA depletion). Using the Ovation® preparation method for a set of eight mouse tissue samples, the RNA sequencing data obtained from two different next-generation sequencing platforms (SOLiD and Illumina Genome Analyzer IIx) yielded negligible rRNA reads (<3.5%) while retaining transcriptome sequencing fidelity. We further validated the Ovation® amplification technique by examining the resulting library complexity, reproducibility, evenness of transcript coverage, 5′ and 3′ bias and platform-specific biases. Notably, in this side-by-side comparison, SOLiD sequencing chemistry is biased toward higher GC content of transcriptome and Illumina Genome analyzer IIx is biased away from neutral to lower GC content of the transcriptomics regions. PMID:21737426

  2. Comparative Analysis of Transcriptomes from Secondary Reproductives of Three Reticulitermes Termite Species

    PubMed Central

    Dedeine, Franck; Weinert, Lucy A.; Bigot, Diane; Josse, Thibaut; Ballenghien, Marion; Cahais, Vincent; Galtier, Nicolas; Gayral, Philippe

    2015-01-01

    Termites are eusocial insects related to cockroaches that feed on lignocellulose. These insects are key species in ecosystems since they recycle a large amount of nutrients but also are pests, exerting major economic impacts. Knowledge on the molecular pathways underlying reproduction, caste differentiation or lignocellulose digestion would largely benefit from additional transcriptomic data. This study focused on transcriptomes of secondary reproductive females (nymphoid neotenics). Thirteen transcriptomes were used: 10 of Reticulitermes flavipes and R. grassei sequenced from a previous study, and two transcriptomes of R. lucifugus sequenced for the present study. After transcriptome assembly and read mapping, we examined interspecific variations of genes expressed by termites or gut microorganisms. A total of 18,323 orthologous gene clusters were detected. Functional annotation and taxonomic assignment were performed on a total of 41,287 predicted contigs in the three termite species. Between the termite species studied, functional categories of genes were comparable. Gene ontology (GO) terms analysis allowed the discovery of 9 cellulases and a total of 79 contigs potentially involved in 11 enzymatic activities used in wood metabolism. Altogether, results of this study illustrate the strong potential for the use of comparative interspecific transcriptomes, representing a complete resource for future studies including differentially expressed genes between castes or SNP analysis for population genetics. PMID:26698123

  3. Comparative Analysis of Transcriptomes from Secondary Reproductives of Three Reticulitermes Termite Species.

    PubMed

    Dedeine, Franck; Weinert, Lucy A; Bigot, Diane; Josse, Thibaut; Ballenghien, Marion; Cahais, Vincent; Galtier, Nicolas; Gayral, Philippe

    2015-01-01

    Termites are eusocial insects related to cockroaches that feed on lignocellulose. These insects are key species in ecosystems since they recycle a large amount of nutrients but also are pests, exerting major economic impacts. Knowledge on the molecular pathways underlying reproduction, caste differentiation or lignocellulose digestion would largely benefit from additional transcriptomic data. This study focused on transcriptomes of secondary reproductive females (nymphoid neotenics). Thirteen transcriptomes were used: 10 of Reticulitermes flavipes and R. grassei sequenced from a previous study, and two transcriptomes of R. lucifugus sequenced for the present study. After transcriptome assembly and read mapping, we examined interspecific variations of genes expressed by termites or gut microorganisms. A total of 18,323 orthologous gene clusters were detected. Functional annotation and taxonomic assignment were performed on a total of 41,287 predicted contigs in the three termite species. Between the termite species studied, functional categories of genes were comparable. Gene ontology (GO) terms analysis allowed the discovery of 9 cellulases and a total of 79 contigs potentially involved in 11 enzymatic activities used in wood metabolism. Altogether, results of this study illustrate the strong potential for the use of comparative interspecific transcriptomes, representing a complete resource for future studies including differentially expressed genes between castes or SNP analysis for population genetics. PMID:26698123

  4. In-Depth Analysis of Selected Topics Related to the Quality Assessment of E-Commerce Systems

    NASA Astrophysics Data System (ADS)

    Stefani, Antonia; Stavrinoudis, Dimitris; Xenos, Michalis

    This paper provides an in-depth analysis of selected important topics related to the quality assessment of e-commerce systems. It briefly introduces to the reader a quality assessment model based on Bayesian Networks and presents in detail the practical application of this model, highlighting practical issues related to the involvement of human subjects, conflict resolution, and calibration of the measurement instruments. Furthermore, the paper presents the application process of the model for the quality assessment of various e-commerce systems; it also discusses in detail how particular features (data) of the assessed e-commerce systems can be identified and, using the described automated assessment process, lead to higher abstraction information (desiderata) regarding the quality of the assessed e-commerce systems.

  5. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate

    PubMed Central

    Ye, Xin; Sun, Qi; Yuan, Hai-Lan; Liang, Nan; Fang, Wen-Hong; Li, Hao-Ran; Yang, Xian-Le

    2016-01-01

    Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism. PMID:26895329

  6. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction

    PubMed Central

    2014-01-01

    Background Higher plants exhibit a remarkable phenotypic plasticity to adapt to adverse environmental changes. The Greater Duckweed Spirodela, as an aquatic plant, presents exceptional tolerance to cold winters through its dormant structure of turions in place of seeds. Abundant starch in turions permits them to sink and escape the freezing surface of waters. Due to their clonal propagation, they are the fastest growing biomass on earth, providing yet an untapped source for industrial applications. Results We used next generation sequencing technology to examine the transcriptome of turion development triggered by exogenous ABA. A total of 208 genes showed more than a 4-fold increase compared with 154 down-regulated genes in developing turions. The analysis of up-regulated differential expressed genes in response to dormancy exposed an enriched interplay among various pathways: signal transduction, seed dehydration, carbohydrate and secondary metabolism, and senescence. On the other side, the genes responsible for rapid growth and biomass accumulation through DNA assembly, protein synthesis and carbon fixation are repressed. Noticeably, three members of late embryogenesis abundant protein family are exclusively expressed during turion formation. High expression level of key genes in starch synthesis are APS1, APL3 and GBSSI, which could artificially be reduced for re-directing carbon flow from photosynthesis to create a higher energy biomass. Conclusions The identification and functional annotation of differentially expressed genes open a major step towards understanding the molecular network underlying vegetative frond dormancy. Moreover, genes have been identified that could be engineered in duckweeds for practical applications easing agricultural production of food crops. PMID:24456086

  7. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  8. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve.

    PubMed

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  9. Embryonic transcriptome analysis of the Caribbean fruit fly, Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The embryonic transcriptome of the Caribbean fruit fly, Anastrepha suspensa, was sequenced by 454 pyrosequencing in an effort to isolate embryonic promoters and genes involved in programmed cell death. A cDNA library was constructed from total RNA pooled from various time points in embryogenesis usi...

  10. A comprehensive analysis of the human placenta transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 ...

  11. Analysis, annotation, and profiling of the oat seed transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  12. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

    PubMed

    Prashanth, Jutty Rajan; Lewis, Richard J

    2015-12-01

    Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence architecture-based elimination and similarity searching using BLAST to improve the accuracy of sequence identification and classification, while reducing requirements for manual intervention. As a proof-of-concept, we used this approach reanalysed three previously published cone snail transcriptomes from diverse dietary groups. Our pipeline method generated similar results to the published studies with significantly less manual intervention. We additionally found undiscovered sequences in the piscovorous Conus geographus and vermivorous Conus miles and identified sequences in incorrect superfamilies in the molluscivorus Conus marmoreus and C. geographus transcriptomes. Our results indicate that this method can improve toxin detection without extending analysis time. While this method was evaluated on cone snail transcriptomes it can be easily optimised to retrieve toxins from other venomous animals. PMID:26376071

  13. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    SciTech Connect

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott

    2014-06-01

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.

  14. Aerospace Toolbox--a flight vehicle design, analysis, simulation, and software development environment II: an in-depth overview

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.

    2002-07-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).

  15. Large-Scale Transcriptome Analysis of Retroelements in the Migratory Locust, Locusta migratoria

    PubMed Central

    Guo, Wei; Wang, Xianhui; Kang, Le

    2012-01-01

    Background Retroelements can successfully colonize eukaryotic genome through RNA-mediated transposition, and are considered to be some of the major mediators of genome size. The migratory locust Locusta migratoria is an insect with a large genome size, and its genome is probably subject to the proliferation of retroelements. An analysis of deep-sequencing transcriptome data will elucidate the structure, diversity and expression characteristics of retroelements. Results We performed a de novo assembly from deep sequencing RNA-seq data and identified 105 retroelements in the locust transcriptome. Phylogenetic analysis of reverse transcriptase sequences revealed 1 copia, 1 BEL, 8 gypsy and 23 non-long terminal repeat (LTR) retroelements in the locust transcriptome. A novel approach was developed to identify full-length LTR retroelements. A total of 5 full-length LTR retroelements and 2 full-length non-LTR retroelements that contained complete structures for retrotransposition were identified. Structural analysis indicated that all these retroelements may have been activated or deprived of retrotransposition activities very recently. Expression profiling analysis revealed that the retroelements exhibited a unique expression pattern at the egg stage and showed differential expression profiles between the solitarious and gregarious phases at the fifth instar and adult stage. Conclusion We hereby present the first de novo transcriptome analysis of retroelements in a species whose genome is not available. This work contributes to a comprehensive understanding of the landscape of retroelements in the locust transcriptome. More importantly, the results reveal that non-LTR retroelements are abundant and diverse in the locust transcriptome. PMID:22792363

  16. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.

    PubMed

    Ståhl, Patrik L; Salmén, Fredrik; Vickovic, Sanja; Lundmark, Anna; Navarro, José Fernández; Magnusson, Jens; Giacomello, Stefania; Asp, Michaela; Westholm, Jakub O; Huss, Mikael; Mollbrink, Annelie; Linnarsson, Sten; Codeluppi, Simone; Borg, Åke; Pontén, Fredrik; Costea, Paul Igor; Sahlén, Pelin; Mulder, Jan; Bergmann, Olaf; Lundeberg, Joakim; Frisén, Jonas

    2016-07-01

    Analysis of the pattern of proteins or messengerRNAs (mRNAs) in histological tissue sections is a cornerstone in biomedical research and diagnostics. This typically involves the visualization of a few proteins or expressed genes at a time. We have devised a strategy, which we call "spatial transcriptomics," that allows visualization and quantitative analysis of the transcriptome with spatial resolution in individual tissue sections. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, we demonstrate high-quality RNA-sequencing data with maintained two-dimensional positional information from the mouse brain and human breast cancer. Spatial transcriptomics provides quantitative gene expression data and visualization of the distribution of mRNAs within tissue sections and enables novel types of bioinformatics analyses, valuable in research and diagnostics. PMID:27365449

  17. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  18. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    PubMed

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A Lane; Voigt, Thomas; Lee, D K

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  19. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  20. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history

  1. In-depth analysis of the genome sequence of a clinical, extensively drug-resistant Mycobacterium bovis strain.

    PubMed

    Sagasti, Sara; Millán-Lou, María Isabel; Soledad Jiménez, María; Martín, Carlos; Samper, Sofía

    2016-09-01

    Although human-to-human transmission of Mycobacterium bovis strains and other members of the animal lineage of the tubercle bacilli is a rare event, an extensively drug resistant (XDR) strain, named M. bovis B strain, caused a lethal outbreak in the nineties in Spain. The genome of M. bovis B strain was re-sequenced by SOLiD platform and mapped to the reference M. bovis AF2122/97. The genetic polymorphisms detected have been analysed in depth. One hundred and fifty-eight specific non-synonymous SNPs were detected; ninety-two of these were non-conservative. In addition, one specific 3195-bp insertion could be identified as an ABC transporter gene by homology with tbd2 gene, which was found to be present in other clinical M. bovis strains. Its peculiar phenotype profile of resistance was explained by molecular characteristics, including a 5685-bp specific deletion that revealed a novel polymorphism associated with resistance to paraminosalicilic acid. From a phylogenetical point of view, according to the SNPs detected, M. bovis B could be included into the clonal complex M. bovis European 2. This is the first time that a deep analysis of the whole-genome sequencing of an extensively drug-resistant M. bovis strain is detailed. It offers the explanation for the resistance and found several data to be incorporated for future research. PMID:27553409

  2. In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Speicher, David W.

    2011-01-01

    Comprehensive proteomic analysis of human plasma or serum has been a major strategy used to identify biomarkers that serve as indicators of disease. However, such in-depth proteomic analyses are challenging due to the complexity and extremely large dynamic range of protein concentrations in plasma. Therefore, reduction in sample complexity through multidimensional pre-fractionation strategies is critical, particularly for the detection of low-abundance proteins that have the potential to be the most specific disease biomarkers. We describe here a 4D protein profiling method that we developed for comprehensive proteomic analyses of both plasma and serum. Our method consists of abundant protein depletion coupled with separation strategies – microscale solution isoelectrofocusing and 1D SDS-PAGE – followed by reversed-phase separation of tryptic peptides prior to LC–MS/MS. Using this profiling strategy, we routinely identify a large number of proteins over nine orders of magnitude, including a substantial number of proteins at the low ng/mL or lower levels from approximately 300 μL of plasma sample. PMID:21468940

  3. Placental transcriptome in development and pathology: expression, function, and methods of analysis.

    PubMed

    Cox, Brian; Leavey, Katherine; Nosi, Ursula; Wong, Frances; Kingdom, John

    2015-10-01

    The placenta is the essential organ of mammalian pregnancy and errors in its development and function are associated with a wide range of human pathologies of pregnancy. Genome sequencing has led to methods for investigation of the transcriptome (all expressed RNA species) using microarrays and next-generation sequencing, and implementation of these techniques has identified many novel species of RNA including: micro-RNA, long noncoding RNA, and circular RNA. These species can physically interact with both each other and regulatory proteins to modify gene expression and messenger RNA to protein translation. Transcriptome analysis is actively used to investigate placental development and dysfunction in pathologies ranging from preeclampsia and fetal growth restriction to preterm labor. Genome-wide gene expression analysis is also being applied to identify prognostic and diagnostic biomarkers of these disorders. In this comprehensive review we summarize transcriptome biology, methods of isolation and analysis, application to placental development and pathology, and use in diagnostic analysis in maternal blood. Key information for analysis methods is organized into quick reference tables where current analysis techniques and tools are cited and compared. We have created this review as a practical guide and starting reference for those interested in beginning an investigation into the transcriptome of the placenta. PMID:26428493

  4. A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes.

    PubMed

    Avraham, Roi; Haseley, Nathan; Fan, Amy; Bloom-Ackermann, Zohar; Livny, Jonathan; Hung, Deborah T

    2016-08-01

    The ability to simultaneously characterize the bacterial and host expression programs during infection would facilitate a comprehensive understanding of pathogen-host interactions. Although RNA sequencing (RNA-seq) has greatly advanced our ability to study the transcriptomes of prokaryotes and eukaryotes separately, limitations in existing protocols for the generation and analysis of RNA-seq data have hindered simultaneous profiling of host and bacterial pathogen transcripts from the same sample. Here we provide a detailed protocol for simultaneous analysis of host and bacterial transcripts by RNA-seq. Importantly, this protocol details the steps required for efficient host and bacteria lysis, barcoding of samples, technical advances in sample preparation for low-yield sample inputs and a computational pipeline for analysis of both mammalian and microbial reads from mixed host-pathogen RNA-seq data. Sample preparation takes 3 d from cultured cells to pooled libraries. Data analysis takes an additional day. Compared with previous methods, the protocol detailed here provides a sensitive, facile and generalizable approach that is suitable for large-scale studies and will enable the field to obtain in-depth analysis of host-pathogen interactions in infection models. PMID:27442864

  5. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis.

    PubMed

    Tu, Qiang; Cameron, R Andrew; Worley, Kim C; Gibbs, Richard A; Davidson, Eric H

    2012-10-01

    A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus, including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in the genome of this recently sequenced model system. The genome had initially been annotated by use of computational gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we discovered that more than half the computational gene model predictions were imperfect, containing errors such as missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and prediction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence. We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition, we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24 functional classes. Strong correlations became evident between given functional ontology classes and structural properties, including gene size, exon number, and exon and intron size. PMID:22709795

  6. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    PubMed Central

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  7. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes. PMID:25060758

  8. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1

    PubMed Central

    Bai, Xiaodong; Adams, Byron J; Ciche, Todd A; Clifton, Sandra; Gaugler, Randy; Hogenhout, Saskia A; Spieth, John; Sternberg, Paul W; Wilson, Richard K; Grewal, Parwinder S

    2009-01-01

    , RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis. PMID:19405965

  9. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii.

    PubMed

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20-25 day-old adult males and 20-25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  10. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  11. Comprehensive analysis of transcriptome and metabolome analysis in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma

    PubMed Central

    Murakami, Yoshiki; Kubo, Shoji; Tamori, Akihiro; Itami, Saori; Kawamura, Etsushi; Iwaisako, Keiko; Ikeda, Kazuo; Kawada, Norifumi; Ochiya, Takahiro; Taguchi, Y-h

    2015-01-01

    Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are liver originated malignant tumors. Of the two, ICC has the worse prognosis because it has no reliable diagnostic markers and its carcinogenic mechanism is not fully understood. The aim of this study was to integrate metabolomics and transcriptomics datasets to identify variances if any in the carcinogenic mechanism of ICC and HCC. Ten ICC and 6 HCC who were resected surgically, were enrolled. miRNA and mRNA expression analysis were performed by microarray on ICC and HCC and their corresponding non-tumor tissues (ICC_NT and HCC_NT). Compound analysis was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Principle component analysis (PCA) revealed that among the four sample groups (ICC, ICC_NT, HCC, and HCC_NT) there were 14 compounds, 62 mRNAs and 17 miRNAs with two distinct patterns: tumor and non-tumor, and ICC and non-ICC. We accurately (84.38%) distinguished ICC by the distinct pattern of its compounds. Pathway analysis using transcriptome and metabolome showed that several pathways varied between tumor and non-tumor samples. Based on the results of the PCA, we believe that ICC and HCC have different carcinogenic mechanism therefore knowing the specific profile of genes and compounds can be useful in diagnosing ICC. PMID:26538415

  12. Comprehensive analysis of transcriptome and metabolome analysis in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma.

    PubMed

    Murakami, Yoshiki; Kubo, Shoji; Tamori, Akihiro; Itami, Saori; Kawamura, Etsushi; Iwaisako, Keiko; Ikeda, Kazuo; Kawada, Norifumi; Ochiya, Takahiro; Taguchi, Y-h

    2015-01-01

    Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are liver originated malignant tumors. Of the two, ICC has the worse prognosis because it has no reliable diagnostic markers and its carcinogenic mechanism is not fully understood. The aim of this study was to integrate metabolomics and transcriptomics datasets to identify variances if any in the carcinogenic mechanism of ICC and HCC. Ten ICC and 6 HCC who were resected surgically, were enrolled. miRNA and mRNA expression analysis were performed by microarray on ICC and HCC and their corresponding non-tumor tissues (ICC_NT and HCC_NT). Compound analysis was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Principle component analysis (PCA) revealed that among the four sample groups (ICC, ICC_NT, HCC, and HCC_NT) there were 14 compounds, 62 mRNAs and 17 miRNAs with two distinct patterns: tumor and non-tumor, and ICC and non-ICC. We accurately (84.38%) distinguished ICC by the distinct pattern of its compounds. Pathway analysis using transcriptome and metabolome showed that several pathways varied between tumor and non-tumor samples. Based on the results of the PCA, we believe that ICC and HCC have different carcinogenic mechanism therefore knowing the specific profile of genes and compounds can be useful in diagnosing ICC. PMID:26538415

  13. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

    PubMed

    Kolbusz, Magdalena Anna; Di Falco, Marcos; Ishmael, Nadeeza; Marqueteau, Sandrine; Moisan, Marie-Claude; Baptista, Cassio da Silva; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources. PMID:24881579

  14. Transcriptome Analysis of Early Fruit Development in Three Seedy Citrus Genotypes and Their Seedless Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedlessness is desirable for most citrus fruit, and identification of spontaneous or irradiated seedless mutants is important in developing citrus cultivars. We conducted a transcriptome analysis in early fruit development of three seedy citrus types (‘Fallglo’, a largely C. reticulata hybrid; ‘Pi...

  15. Transcriptome and genome size analysis of the Venus flytrap.

    PubMed

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations. PMID:25886597

  16. Plectreurys tristis venome: A proteomic and transcriptomic analysis

    PubMed Central

    Zobel-Thropp, Pamela A; Thomas, Emily Z; David, Cynthia L; Breci, Linda A; Binford, Greta J

    2014-01-01

    Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U1-PLTX-Pt1a, U3-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U1- and ω-PLTX families and adding U4-through U9-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm. PMID:25400903

  17. Transcriptome and Genome Size Analysis of the Venus Flytrap

    PubMed Central

    Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin’s studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations. PMID:25886597

  18. Comparative analysis of the transcriptome across distant species.

    PubMed

    Gerstein, Mark B; Rozowsky, Joel; Yan, Koon-Kiu; Wang, Daifeng; Cheng, Chao; Brown, James B; Davis, Carrie A; Hillier, LaDeana; Sisu, Cristina; Li, Jingyi Jessica; Pei, Baikang; Harmanci, Arif O; Duff, Michael O; Djebali, Sarah; Alexander, Roger P; Alver, Burak H; Auerbach, Raymond; Bell, Kimberly; Bickel, Peter J; Boeck, Max E; Boley, Nathan P; Booth, Benjamin W; Cherbas, Lucy; Cherbas, Peter; Di, Chao; Dobin, Alex; Drenkow, Jorg; Ewing, Brent; Fang, Gang; Fastuca, Megan; Feingold, Elise A; Frankish, Adam; Gao, Guanjun; Good, Peter J; Guigó, Roderic; Hammonds, Ann; Harrow, Jen; Hoskins, Roger A; Howald, Cédric; Hu, Long; Huang, Haiyan; Hubbard, Tim J P; Huynh, Chau; Jha, Sonali; Kasper, Dionna; Kato, Masaomi; Kaufman, Thomas C; Kitchen, Robert R; Ladewig, Erik; Lagarde, Julien; Lai, Eric; Leng, Jing; Lu, Zhi; MacCoss, Michael; May, Gemma; McWhirter, Rebecca; Merrihew, Gennifer; Miller, David M; Mortazavi, Ali; Murad, Rabi; Oliver, Brian; Olson, Sara; Park, Peter J; Pazin, Michael J; Perrimon, Norbert; Pervouchine, Dmitri; Reinke, Valerie; Reymond, Alexandre; Robinson, Garrett; Samsonova, Anastasia; Saunders, Gary I; Schlesinger, Felix; Sethi, Anurag; Slack, Frank J; Spencer, William C; Stoiber, Marcus H; Strasbourger, Pnina; Tanzer, Andrea; Thompson, Owen A; Wan, Kenneth H; Wang, Guilin; Wang, Huaien; Watkins, Kathie L; Wen, Jiayu; Wen, Kejia; Xue, Chenghai; Yang, Li; Yip, Kevin; Zaleski, Chris; Zhang, Yan; Zheng, Henry; Brenner, Steven E; Graveley, Brenton R; Celniker, Susan E; Gingeras, Thomas R; Waterston, Robert

    2014-08-28

    The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters. PMID:25164755

  19. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  20. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.

    PubMed

    Suárez-Vega, A; Gutiérrez-Gil, B; Arranz, J J

    2016-08-01

    Because ewe milk is principally used for cheese making, its quality is related to its content of total solids and the way in which milk constituents influence cheese yield and determine the technological and organoleptic characteristics of dairy products. Therefore, an in-depth knowledge of the expression levels of milk genes influencing cheese-related traits is essential. In the present study, the milk transcriptome data set of 2 dairy sheep breeds, Assaf and Spanish Churra, was used to evaluate the expression levels of 77 transcripts related to cheese yield and quality traits. For the comparison between both breeds, we selected the RNA sequencing (RNA-Seq) data at d 10 of lactation because this is the time point at which within and between breed differences due to lactation length are minimal. The evaluated genes encode major milk proteins (caseins and whey proteins), endogenous proteases, and enzymes related to fatty acid metabolism and citrate content. Through this analysis, we identified the genes predominantly expressed in each of the analyzed pathways that appear to be key genes for traits related to sheep milk cheese. Among the highly expressed genes in both breeds were the genes encoding caseins and whey proteins (CSN2, CSN3, CSN1S1, ENSOARG00000005099/PAEP, CSN1S2, LALBA), genes related to lipid metabolism (BTN1A1, XDH, FASN, ADFP, SCD, H-FABP, ACSS2), and one endogenous protease (CTSB). Moreover, a differential expression analysis between Churra and Assaf sheep allowed us to identify 7 genes that are significantly differentially expressed between the 2 breeds. These genes were mainly linked to endogenous protease activity (CTSL, CTSK, KLK10, KLK6, SERPINE2). Additionally, there were 2 differentially expressed genes coding for an intracellular fatty acid transporter (FABP4), an intermediate molecule of the citric acid cycle (SUCNR1), and 2 heat shock proteins (HSP70, HSPB8) that could be related to high protein production. The differential expression of

  1. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    PubMed Central

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were

  2. Comparative Transcriptome Analysis of Climacteric Fruit of Chinese Pear (Pyrus ussuriensis) Reveals New Insights into Fruit Ripening

    PubMed Central

    Tan, Dongmei; Jiang, Zhongyu; Wei, Yun; Li, Juncai; Wang, Aide

    2014-01-01

    The fruit of Pyrus ussuriensis is typically climacteric. During ripening, the fruits produce a large amount of ethylene, and their firmness drops rapidly. Although the molecular basis of climacteric fruit ripening has been studied in depth, some aspects remain unclear. Here, we compared the transcriptomes of pre- and post-climacteric fruits of Chinese pear (P. ussuriensis c.v. Nanguo) using RNA-seq. In total, 3,279 unigenes were differentially expressed between the pre- and post-climacteric fruits. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis, and 31 categories were significantly enriched in the groups ‘biological process’, ‘molecular function’ and ‘cellular component’. The DEGs included genes related to plant hormones, such as ethylene, ABA, auxin, GA and brassinosteroid, and transcription factors, such as MADS, NAC, WRKY and HSF. Moreover, genes encoding enzymes related to DNA methylation, cytoskeletal proteins and heat shock proteins (HSPs) showed differential expression between the pre- and post-climacteric fruits. Select DEGs were subjected to further analysis using quantitative RT-PCR (qRT-PCR), and the results were consistent with those of RNA-seq. Our data suggest that in addition to ethylene, other hormones play important roles in regulating fruit ripening and may interact with ethylene signaling during this process. DNA methylation-related methyltransferase and cytoskeletal protein genes are also involved in fruit ripening. Our results provide useful information for future research on pear fruit ripening. PMID:25215597

  3. Transcriptomic and Proteomic Analysis of Arion vulgaris—Proteins for Probably Successful Survival Strategies?

    PubMed Central

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J.; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  4. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae)

    PubMed Central

    Xie, Wen; Wu, Qingjun; Wang, Shaoli; Jiao, Xiaoguo; Guo, Litao; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    Host-associated differentiation is one of the driving forces behind the diversification of phytophagous insects. In this study, host induced transcriptomic differences were investigated in the sweetpotato whitefly Bemisia tabaci, an invasive agricultural pest worldwide. Comparative transcriptomic analyses using coding sequence (CDS), 5′ and 3′ untranslated regions (UTR) showed that sequence divergences between the original host plant, cabbage, and the derived hosts, including cotton, cucumber and tomato, were 0.11–0.14%, 0.19–0.26%, and 0.15–0.21%, respectively. In comparison to the derived hosts, 418 female and 303 male transcripts, respectively, were up-regulated in the original cabbage strain. Among them, 17 transcripts were consistently up-regulated in both female and male whiteflies originated from the cabbage host. Specifically, two ESTs annotated as Cathepsin B or Cathepsin B-like genes were significantly up-regulated in the original cabbage strain, representing a transcriptomic response to the dietary challenges imposed by the host shifting. Results from our transcriptome analysis, in conjunction with previous reports documenting the minor changes in their reproductive capacity, insecticide susceptibility, symbiotic composition and feeding behavior, suggest that the impact of host-associated differentiation in whiteflies is limited. Furthermore, it is unlikely the major factor contributing to their rapid range expansion/invasiveness. PMID:25540625

  5. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674

  6. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies?

    PubMed

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  7. An integrated transcriptome-wide analysis of cave and surface dwelling Astyanax mexicanus.

    PubMed

    Gross, Joshua B; Furterer, Allison; Carlson, Brian M; Stahl, Bethany A

    2013-01-01

    Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F(2) pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected

  8. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation

    PubMed Central

    Mashima, Tetsuo; Ushijima, Masaru; Matsuura, Masaaki; Tsukahara, Satomi; Kunimasa, Kazuhiro; Furuno, Aki; Saito, Sakae; Kitamura, Masami; Soma-Nagae, Taeko; Seimiya, Hiroyuki; Dan, Shingo; Yamori, Takao; Tomida, Akihiro

    2015-01-01

    Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds. PMID:25911996

  9. Transcriptome network analysis reveals potential candidate genes for squamous lung cancer.

    PubMed

    Bai, Jing; Hu, Sheng

    2012-01-01

    Squamous lung cancer is a common type of lung cancer; however, its mechanism of oncogenesis is still unknown. The aim of this study was to screen candidate genes of squamous lung cancer using a bioinformatics strategy and elucidate the mechanism of squamous lung cancer. Published microarray data of the GSE3268 series was obtained from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using the software R, and differentially expressed genes by R analysis were harvested. The relationship between transcription factors and target genes in cancer were collected from the Transcriptional regulatory element database. A transcriptome network analysis method was used to construct gene regulation networks and select the candidate genes for squamous lung cancer. SPI1, FLI1, FOS, ETS2, EGR1 and PPARG were defined as candidate genes for squamous lung cancer by the transcriptome network analysis method. Among them, 5 genes had been reported to be involved in lung cancer, except SPI1 and FLI1. Effective recall on previous knowledge conferred strong confidence in these methods. It is demonstrated that transcriptome network analysis is useful in the identification of candidate genes in disease. PMID:21922129

  10. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  11. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases

    PubMed Central

    Sang, Jian; He, Xuelian; Liu, Mingying; Qiao, Guirong; Hu, Jianjun

    2016-01-01

    Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications. PMID:27330860

  12. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

    PubMed Central

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-01-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family. PMID:26743902

  13. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa.

    PubMed

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-02-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family. PMID:26743902

  14. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles.

    PubMed

    Lefebvre, Fabio Alexis; Benoit Bouvrette, Louis Philip; Perras, Lilyanne; Blanchet-Cohen, Alexis; Garnier, Delphine; Rak, Janusz; Lécuyer, Éric

    2016-01-01

    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila. PMID:27282340

  15. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles

    PubMed Central

    Lefebvre, Fabio Alexis; Benoit Bouvrette, Louis Philip; Perras, Lilyanne; Blanchet-Cohen, Alexis; Garnier, Delphine; Rak, Janusz; Lécuyer, Éric

    2016-01-01

    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila. PMID:27282340

  16. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development

    PubMed Central

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids. PMID:25300304

  17. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development.

    PubMed

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids. PMID:25300304

  18. Functional analysis of the microtubule-interacting transcriptome

    PubMed Central

    Sharp, Judith A.; Plant, Joshua J.; Ohsumi, Toshiro K.; Borowsky, Mark; Blower, Michael D.

    2011-01-01

    RNA localization is an important mechanism for achieving precise control of posttranscriptional gene expression. Previously, we demonstrated that a subset of cellular mRNAs copurify with mitotic microtubules in egg extracts of Xenopus laevis. Due to limited genomic sequence information available for X. laevis, we used RNA-seq to comprehensively identify the microtubule-interacting transcriptome of the related frog Xenopus tropicalis. We identified ∼450 mRNAs that showed significant enrichment on microtubules (MT-RNAs). In addition, we demonstrated that the MT-RNAs incenp, xrhamm, and tpx2 associate with spindle microtubules in vivo. MT-RNAs are enriched with transcripts associated with cell division, spindle formation, and chromosome function, demonstrating an overrepresentation of genes involved in mitotic regulation. To test whether uncharacterized MT-RNAs have a functional role in mitosis, we performed RNA interference and discovered that several MT-RNAs are required for normal spindle pole organization and γ-tubulin distribution. Together, these data demonstrate that microtubule association is one mechanism for compartmentalizing functionally related mRNAs within the nucleocytoplasmic space of mitotic cells and suggest that MT-RNAs are likely to contribute to spindle-localized mitotic translation. PMID:21937723

  19. Comprehensive serial analysis of gene expression of the cervical transcriptome

    PubMed Central

    Shadeo, Ashleen; Chari, Raj; Vatcher, Greg; Campbell, Jennifer; Lonergan, Kim M; Matisic, Jasenka; van Niekerk, Dirk; Ehlen, Thomas; Miller, Dianne; Follen, Michele; Lam, Wan L; MacAulay, Calum

    2007-01-01

    Background More than half of the approximately 500,000 women diagnosed with cervical cancer worldwide each year will die from this disease. Investigation of genes expressed in precancer lesions compared to those expressed in normal cervical epithelium will yield insight into the early stages of disease. As such, establishing a baseline from which to compare to, is critical in elucidating the abnormal biology of disease. In this study we examine the normal cervical tissue transcriptome and investigate the similarities and differences in relation to CIN III by Long-SAGE (L-SAGE). Results We have sequenced 691,390 tags from four L-SAGE libraries increasing the existing gene expression data on cervical tissue by 20 fold. One-hundred and eighteen unique tags were highly expressed in normal cervical tissue and 107 of them mapped to unique genes, most belong to the ribosomal, calcium-binding and keratinizing gene families. We assessed these genes for aberrant expression in CIN III and five genes showed altered expression. In addition, we have identified twelve unique HPV 16 SAGE tags in the CIN III libraries absent in the normal libraries. Conclusion Establishing a baseline of gene expression in normal cervical tissue is key for identifying changes in cancer. We demonstrate the utility of this baseline data by identifying genes with aberrant expression in CIN III when compared to normal tissue. PMID:17543121

  20. Comparative, transcriptome analysis of self-organizing optic tissues

    PubMed Central

    Andrabi, Munazah; Kuraku, Shigehiro; Takata, Nozomu; Sasai, Yoshiki; Love, Nick R.

    2015-01-01

    Embryonic stem (ES) cells have a remarkable capacity to self-organize complex, multi-layered optic cups in vitro via a culture technique called SFEBq. During both SFEBq and in vivo optic cup development, Rax (Rx) expressing neural retina epithelial (NRE) tissues utilize Fgf and Wnt/β-catenin signalling pathways to differentiate into neural retina (NR) and retinal-pigmented epithelial (RPE) tissues, respectively. How these signaling pathways affect gene expression during optic tissue formation has remained largely unknown, especially at the transcriptome scale. Here, we address this question using RNA-Seq. We generated Rx+ optic tissue using SFEBq, exposed these tissues to either Fgf or Wnt/β-catenin stimulation, and assayed their gene expression across multiple time points using RNA-Seq. This comparative dataset will help elucidate how Fgf and Wnt/β-catenin signaling affect gene expression during optic tissue differentiation and will help inform future efforts to optimize in vitro optic tissue culture technology. PMID:26110066

  1. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma.

    PubMed

    Duconseil, Pauline; Gilabert, Marine; Gayet, Odile; Loncle, Celine; Moutardier, Vincent; Turrini, Olivier; Calvo, Ezequiel; Ewald, Jacques; Giovannini, Marc; Gasmi, Mohamed; Bories, Erwan; Barthet, Marc; Ouaissi, Mehdi; Goncalves, Anthony; Poizat, Flora; Raoul, Jean Luc; Secq, Veronique; Garcia, Stephane; Viens, Patrice; Iovanna, Juan; Dusetti, Nelson

    2015-04-01

    A major impediment to the effective treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is the molecular heterogeneity of this disease, which is reflected in an equally diverse pattern of clinical outcome and in responses to therapies. We developed an efficient strategy in which PDAC samples from 17 consecutive patients were collected by endoscopic ultrasound-guided fine-needle aspiration or surgery and were preserved as breathing tumors by xenografting and as a primary culture of epithelial cells. Transcriptomic analysis was performed from breathing tumors by an Affymetrix approach. We observed significant heterogeneity in the RNA expression profile of tumors. However, the bioinformatic analysis of these data was able to discriminate between patients with long- and short-term survival corresponding to patients with moderately or poorly differentiated PDAC tumors, respectively. Primary culture of cells allowed us to analyze their relative sensitivity to anticancer drugs in vitro using a chemogram, similar to the antibiogram for microorganisms, establishing an individual profile of drug sensitivity. As expected, the response was patient dependent. We also found that transcriptomic analysis predicts the sensitivity of cells to the five anticancer drugs most frequently used to treat patients with PDAC. In conclusion, using this approach, we found that transcriptomic analysis could predict the sensitivity to anticancer drugs and the clinical outcome of patients with PDAC. PMID:25765988

  2. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    PubMed

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa. PMID:27272950

  3. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus

    PubMed Central

    Kozlov, Sergey A.; Lazarev, Vassili N.; Kostryukova, Elena S.; Selezneva, Oksana V.; Ospanova, Elena A.; Alexeev, Dmitry G.; Govorun, Vadim M.; Grishin, Eugene V.

    2014-01-01

    A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2–261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found. PMID:25977780

  4. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes

  5. Application of femtosecond laser ablation time-of-flight mass spectrometry to in-depth multilayer analysis.

    PubMed

    Margetic, Vanja; Niemax, Kay; Hergenröder, Roland

    2003-07-15

    A femtosecond laser system was used in combination with a time-of-flight mass spectrometer (TOF-MS) for in-depth profiling of semiconductor and metal samples. The semiconductor sample was a Co-implanted (10(17) ions/cm3) silicon wafer that had been carefully characterized by other established techniques. The total depth of the shallow implanted layer was 150 nm. As a second sample, a thin film metal standard had been used (NIST 2135c). This standard consisted of a silicon wafer with nine alternating Cr and Ni layers, each having a thickness of 56 and 57 nm, respectively. An orthogonal TOF-MS setup was implemented. This configuration was optimized until a sufficient mass resolution of 300 (m/delta m) and sensitivity was achieved. The experiments revealed that femtosecond-laser ablation TOF-MS is capable of resolving the depth profiles of these demanding samples. The poor precision of the measurements is discussed, and it is shown that this is due to pulse-to-pulse stability of the current laser system. Femtosecond-laser ablation TOF-MS is shown to be a promising technique for rapid in-depth profiling with a good lateral resolution of various multilayer thin film samples. PMID:14570194

  6. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  7. Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus

    PubMed Central

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L.; Becerril, Baltazar; Possani, Lourival D.; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist’s attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family. PMID:25659089

  8. A preliminary transcriptomic analysis of lichen Dirinaria sp.

    NASA Astrophysics Data System (ADS)

    Nurhani, A. R. Siti; Munir, A. M. Abdul; Wahid, S. Mohd; Diba, A. B. Farah

    2013-11-01

    Lichen is a slow-growing symbiotic organism that consists of a fungus and a photobiont, comprising either an algae or a cyanobacterium living together in a single composite body, known as a thallus. Lichens have a remarkable ability to survive in extreme environmental conditions on earth that makes them a great biological indicator of air quality. The primary goal of this study is to discover the genes that may unravel the mechanism behind the tolerance of this lichen towards air pollution. Lichen samples of Dirinaria sp. were collected from two sites - Jerantut (J) as having a relatively good air quality and Klang (K), an area of bad air quality. Total RNA extraction was carried out, followed by sample preparation prior to transcriptomic sequencing. Altogether 21.7 million and 30.5 million high quality sequence reads from samples J and K, respectively were de novo assembled into 106884 and 88116 transcripts. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 59403 sequences (67.4%) of sample K and 68972 sequences (64.5%) of sample J had a match in the database with a cut-off value of 1e-06. A total of 42175 sequences (47.8%) of sample K and 25648 sequences (24%) of sample J had a Gene Ontology term match. The sequences were assigned to Kyoto Encyclopedia of Genes and Genome (KEGG) pathways, resulting in 129 KEGG pathways generated from sample K, whilst 123 KEGG pathways were produced from sample J.

  9. Transcriptome analysis of scorpion species belonging to the Vaejovis genus.

    PubMed

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L; Becerril, Baltazar; Possani, Lourival D; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family. PMID:25659089

  10. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    PubMed

    Verma, Mohit; Ghangal, Rajesh; Sharma, Raghvendra; Sinha, Alok K; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  11. Transcriptome Analysis of Catharanthus roseus for Gene Discovery and Expression Profiling

    PubMed Central

    Sharma, Raghvendra; Sinha, Alok K.; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  12. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection

    PubMed Central

    Liu, Tingting; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2015-01-01

    Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea–cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen–host interaction. PMID:26536465

  13. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques.

    PubMed

    Virtaneva, Kimmo; Porcella, Stephen F; Graham, Morag R; Ireland, Robin M; Johnson, Claire A; Ricklefs, Stacy M; Babar, Imran; Parkins, Larye D; Romero, Romina A; Corn, G Judson; Gardner, Don J; Bailey, John R; Parnell, Michael J; Musser, James M

    2005-06-21

    Identification of the genetic events that contribute to host-pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen-host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research. PMID:15956184

  14. Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection.

    PubMed

    Graham, Morag R; Virtaneva, Kimmo; Porcella, Stephen F; Gardner, Donald J; Long, R Daniel; Welty, Diane M; Barry, William T; Johnson, Claire A; Parkins, Larye D; Wright, Fred A; Musser, James M

    2006-09-01

    Molecular mechanisms mediating group A Streptococcus (GAS)-host interactions remain poorly understood but are crucial for diagnostic, therapeutic, and vaccine development. An optimized high-density microarray was used to analyze the transcriptome of GAS during experimental mouse soft tissue infection. The transcriptome of a wild-type serotype M1 GAS strain and an isogenic transcriptional regulator knockout mutant (covR) also were compared. Array datasets were verified by quantitative real-time reverse transcriptase-polymerase chain reaction and in situ immunohistochemistry. The results unambiguously demonstrate that coordinated expression of proven and putative GAS virulence factors is directed toward overwhelming innate host defenses leading to severe cellular damage. We also identified adaptive metabolic responses triggered by nutrient signals and hypoxic/acidic conditions in the host, likely facilitating pathogen persistence and proliferation in soft tissues. Key discoveries included that oxidative stress genes, virulence genes, genes related to amino acid and maltodextrin utilization, and several two-component transcriptional regulators were highly expressed in vivo. This study is the first global analysis of the GAS transcriptome during invasive infection. Coupled with parallel analysis of the covR mutant strain, novel insights have been made into the regulation of GAS virulence in vivo, resulting in new avenues for targeted therapeutic and vaccine research. PMID:16936267

  15. Analysis of the Female Gametophyte Transcriptome of Arabidopsis by Comparative Expression Profiling1[W

    PubMed Central

    Yu, Hee-Ju; Hogan, Pat; Sundaresan, Venkatesan

    2005-01-01

    The extensive data on the transcription of the plant genome are derived primarily from the sporophytic generation. There currently is little information on genes that are expressed during female gametophyte development in angiosperms, and it is not known whether the female gametophyte transcriptome contains a major set of genes that are not expressed in the sporophyte or whether it is primarily a subset of the sporophytic transcriptome. Because the embryo sac is embedded within the maternal ovule tissue, we have utilized the Arabidopsis (Arabidopsis thaliana) mutant sporocyteless that produces ovules without embryo sacs, together with the ATH1 Arabidopsis whole-genome oligonucleotide array, to identify genes that are preferentially or specifically expressed in female gametophyte development. From analysis of the datasets, 225 genes are identified as female gametophyte genes, likely a lower limit as stringent criteria were used for the analysis, eliminating many low expressed genes. Nearly 45% of the identified genes were not previously detected by sporophytic expression profiling, suggesting that the embryo sac transcriptome may contain a significant fraction of transcripts restricted to the gametophyte. Validation of six candidate genes was performed using promoter∷β-glucuronidase fusions, and all of these showed embryo sac-specific expression in the ovule. The unfiltered expression data from this study can be used to evaluate the possibility of female gametophytic expression for any gene in the ATH1 array, and contribute to identification of the functions of the component of the Arabidopsis genome not represented in studies of sporophytic expression and function. PMID:16299181

  16. Deep Sequencing of Porphyromonas gingivalis and Comparative Transcriptome Analysis of a LuxS Mutant

    PubMed Central

    Hirano, Takanori; Beck, David A. C.; Demuth, Donald R.; Hackett, Murray; Lamont, Richard J.

    2012-01-01

    Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve non-coding RNAs were identified, including 11 small RNAs and one cobalamin riboswitch. Fifty-seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor) to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen. PMID:22919670

  17. Analysis of upland cotton (Gossypium hirsutum) response to Verticillium dahliae inoculation by transcriptome sequencing.

    PubMed

    Shao, B X; Zhao, Y L; Chen, W; Wang, H M; Guo, Z J; Gong, H Y; Sang, X H; Cui, Y L; Wang, C H

    2015-01-01

    Verticillium wilt is one of the main diseases in cotton (Gossypium hirsutum), severely reduces yield and fiber quality, and is difficult to be con-trolled effectively. At present, the molecular mechanism that confers resistance to this disease is unclear. Transcriptome sequencing is an important method to detect resistance genes, explore metabolic pathways, and study resistance mechanisms. In this study, the transcriptome of a disease-resistant inbred cot-ton line inoculated with Verticillium dahliae was sequenced. A total of 126,402 unigenes were obtained using de novo assembly and data analysis, 99,712 (78.88%) of which were annotated into the Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. The expression patterns of 16 candidate disease-resis-tance genes showed that some genes were upregulated soon after V. dahliae inoculation and others were upregulated later, which may indicate instanta-neous basal defense and lagged specific defense, respectively. We conducted a preliminary analysis of the transcriptome database, which will contribute to further research regarding the cloning of disease-resistance genes. PMID:26535625

  18. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism. PMID:26193085

  19. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    PubMed Central

    Zhang, Xi; Zhang, Cheng; Li, Zhongjun; Zhong, Jiangjian; Weiner, Leslie P.; Zhong, Jiang F.

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cell population contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-cell transcriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies. PMID:23706768

  20. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    PubMed

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae. PMID:27161450

  1. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism

    PubMed Central

    Guo, Weihua; Feng, Xueyang

    2016-01-01

    Constraint-based metabolic modeling such as flux balance analysis (FBA) has been widely used to simulate cell metabolism. Thanks to its simplicity and flexibility, numerous algorithms have been developed based on FBA and successfully predicted the phenotypes of various biological systems. However, their phenotype predictions may not always be accurate in FBA because of using the objective function that is assumed for cell metabolism. To overcome this challenge, we have developed a novel computational framework, namely omFBA, to integrate multi-omics data (e.g. transcriptomics) into FBA to obtain omics-guided objective functions with high accuracy. In general, we first collected transcriptomics data and phenotype data from published database (e.g. GEO database) for different microorganisms such as Saccharomyces cerevisiae. We then developed a “Phenotype Match” algorithm to derive an objective function for FBA that could lead to the most accurate estimation of the known phenotype (e.g. ethanol yield). The derived objective function was next correlated with the transcriptomics data via regression analysis to generate the omics-guided objective function, which was next used to accurately simulate cell metabolism at unknown conditions. We have applied omFBA in studying sugar metabolism of S. cerevisiae and found that the ethanol yield could be accurately predicted in most of the cases tested (>80%) by using transcriptomics data alone, and revealed valuable metabolic insights such as the dynamics of flux ratios. Overall, omFBA presents a novel platform to potentially integrate multi-omics data simultaneously and could be incorporated with other FBA-derived tools by replacing the arbitrary objective function with the omics-guided objective functions. PMID:27100883

  2. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications

    SciTech Connect

    Nie, Lei; Wu, Gang; Culley, David E.; Scholten, Johannes C.; Zhang, Weiwen

    2007-04-01

    Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms areDNA microarrays to measure messenger RNA transcript levels, and gel-free proteomic analyses to determine protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or have only observed a weak correlation. It is evident that this failure is not biologically based, but rather is related the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop more sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these investigations is to enhance our understanding of the relationship between transcriptome and proteome data so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary solutions based on progress being made in recent years. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation will also be discussed.

  3. RNA-seq transcriptome analysis of extensor digitorum longus and soleus muscles in large white pigs.

    PubMed

    Zhu, Jiayu; Shi, Xin'e; Lu, Hongzhao; Xia, Bo; Li, Yuefeng; Li, Xiao; Zhang, Qiangling; Yang, Gongshe

    2016-04-01

    Skeletal muscle fibers are mainly categorized into red and white fiber types, and the ratio of red/white fibers within muscle mass plays a crucial role in meat quality such as tenderness and flavor. To better understand the molecular difference between the two muscle fibers, this study takes advantage of RNA-seq to compare differences in the transcriptome between extensor digitorum longus (EDL; white fiber) and soleus (Sol; red fiber) muscles of large white pigs. In total, 89,658,562 and 46,723,568 raw reads from EDL and Sol were generated, respectively. Comparison between the two transcriptomes revealed 561 differentially expressed genes, with 408 displaying higher and 153 lower levels of expression in Sol. Quantitative real-time polymerase chain reaction validated the differential expression of nine genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis discovered several differentially enriched biological functions and processes of the two muscles. Moreover, transcriptome comparison between EDL and Sol identified many muscle-related genes (CSRP3, ACTN2, MYL1, and MYH6) and pathways related to myofiber formation, such as focal adhesion, tight junction formation, extracellular matrix (ECM)-receptor pathway, calcium signaling, and Wnt signaling. In addition, 58,362 and 58,359 single nucleotide polymorphisms were identified in EDL and Sol, respectively, and the sequence of 9069 genes was refined at the 5', 3' or both ends. Numerous novel transcripts and alternatively spliced RNAs were also identified. Our transcriptome analysis constitutes valuable sequence resource for uncovering important genes and pathways involved in muscle fiber type determination, and might help further our understanding of the molecular mechanisms in different types of muscle. PMID:26520103

  4. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies

    PubMed Central

    Schwarz, Alexandra; von Reumont, Björn M.; Erhart, Jan; Chagas, Andrezza C.; Ribeiro, José M. C.; Kotsyfakis, Michalis

    2013-01-01

    Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.—Schwarz, A., von Reumont, B.M., Erhart, J., Chagas, A.C., Ribeiro, J.M.C., Kotsyfakis, M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. PMID:23964076

  5. Characterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis

    PubMed Central

    Zhang, Chunling; Qi, Feiyan; Li, Xueping; Mu, Shaohua; Peng, Zhenhua

    2014-01-01

    Background As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first time, we investigated the transcriptome of developing flowers in Moso bamboo by using high-throughput Illumina GAII sequencing and mapping short reads to the Moso bamboo genome and reference genes. We performed RNA-seq analysis on four important stages of flower development, and obtained extensive gene and transcript abundance data for the floral transcriptome of this key bamboo species. Results We constructed a cDNA library using equal amounts of RNA from Moso bamboo leaf samples from non-flowering plants (CK) and mixed flower samples (F) of four flower development stages. We generated more than 67 million reads from each of the CK and F samples. About 70% of the reads could be uniquely mapped to the Moso bamboo genome and the reference genes. Genes detected at each stage were categorized to putative functional categories based on their expression patterns. The analysis of RNA-seq data of bamboo flowering tissues at different developmental stages reveals key gene expression properties during the flower development of bamboo. Conclusion We showed that a combination of transcriptome sequencing and RNA-seq analysis was a powerful approach to identifying candidate genes related to floral transition and flower development in bamboo species. The results give a better insight into the mechanisms of Moso bamboo flowering and ageing. This transcriptomic data also provides an important gene resource for improving breeding for Moso bamboo. PMID:24915141

  6. Confounding Factors in the Transcriptome Analysis of an In-Vivo Exposure Experiment

    PubMed Central

    Wackers, Paul F. K.; van Oostrom, Conny; Jonker, Martijs J.; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.

    2016-01-01

    Confounding factors In transcriptomics experimentation, confounding factors frequently exist alongside the intended experimental factors and can severely influence the outcome of a transcriptome analysis. Confounding factors are regularly discussed in methodological literature, but their actual, practical impact on the outcome and interpretation of transcriptomics experiments is, to our knowledge, not documented. For instance, in-vivo experimental factors; like Individual, Sample-Composition and Time-of-Day are potentially formidable confounding factors. To study these confounding factors, we designed an extensive in-vivo transcriptome experiment (n = 264) with UVR exposure of murine skin containing six consecutive samples from each individual mouse (n = 64). Analysis Approach Evaluation of the confounding factors: Sample-Composition, Time-of-Day, Handling-Stress, and Individual-Mouse resulted in the identification of many genes that were affected by them. These genes sometimes showed over 30-fold expression differences. The most prominent confounding factor was Sample-Composition caused by mouse-dependent skin composition differences, sampling variation and/or influx/efflux of mobile cells. Although we can only evaluate these effects for known cell type specifically expressed genes in our complex heterogeneous samples, it is clear that the observed variations also affect the cumulative expression levels of many other non-cell-type-specific genes. ANOVA ANOVA analysis can only attempt to neutralize the effects of the well-defined confounding factors, such as Individual-Mouse, on the experimental factors UV-Dose and Recovery-Time. Also, by definition, ANOVA only yields reproducible gene-expression differences, but we found that these differences were very small compared to the fold changes induced by the confounding factors, questioning the biological relevance of these ANOVA-detected differences. Furthermore, it turned out that many of the differentially expressed

  7. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  8. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  9. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells

    PubMed Central

    Burnik Papler, Tanja; Vrtacnik Bokal, Eda; Maver, Ales; Kopitar, Andreja Natasa; Lovrečić, Luca

    2015-01-01

    Specific gene expression in oocytes and its surrounding cumulus (CC) and granulosa (GC) cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10−4); of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2), higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK), higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology. PMID:26313571

  10. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs. PMID:26099271

  11. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes

    PubMed Central

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37–100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  12. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  13. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  14. Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus.

    PubMed

    Parente, Michael K; Rozen, Ramona; Seeholzer, Steven H; Wolfe, John H

    2016-05-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by the deficiency of β-glucuronidase. In this study, we compared the changes relative to normal littermates in the proteome and transcriptome of the hippocampus in the C57Bl/6 mouse model of MPS VII, which has well-documented histopathological and neurodegenerative changes. A completely different set of significant changes between normal and MPS VII littermates were found in each assay. Nevertheless, the functional annotation terms generated by the two methods showed agreement in many of the processes, which also corresponded to known pathology associated with the disease. Additionally, assay-specific changes were found, which in the proteomic analysis included mitochondria, energy generation, and cytoskeletal differences in the mutant, while the transcriptome differences included immune, vesicular, and extracellular matrix changes. In addition, the transcriptomic changes in the mutant hippocampus were concordant with those in a MPS VII mouse caused by the same mutation but on a different background inbred strain. PMID:27053151

  15. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep.

    PubMed

    Wang, Xiaolong; Zhou, Guangxian; Xu, Xiaochun; Geng, Rongqing; Zhou, Jiping; Yang, Yuxin; Yang, Zhaoxia; Chen, Yulin

    2014-10-10

    Recent studies in domestic animals have used RNA-seq to explore the transcriptome of different tissues in a limited number of individuals. In the present study, de novo transcriptome sequencing was used to compare sheep adipose tissue transcriptome profiles between a fat-tailed breed (Kazak sheep; KS) and a short-tailed (Tibetan sheep; TS). The RNA-seq data from these two groups revealed that 646 genes were differentially expressed between the KS and TS groups, including 280 up-regulated and 366 down-regulated genes. We identified genes relevant to fat metabolism in adipose tissues, including two top genes with the largest fold change (NELL1 and FMO3). Pathway analysis revealed that the differentially expressed genes between the KS and TS breeds belong to fatty acid metabolism relevant pathways (e.g. fat digestion and absorption, glycine, serine, and threonine metabolism) and cell junction-related pathways (e.g. cell adhesion molecules) which contribute to fat deposition. This work highlighted potential genes and gene networks that affect fat deposition and meat quality in sheep. PMID:25088569

  16. Transcriptome Analysis of Purple Pericarps in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Chen, Wenjie; Zhang, Bo; Liu, Dengcai; Liu, Baolong; Zhang, Huaigang

    2016-01-01

    Wheat (Triticum aestivum L.) cultivars possessing purple grain arethought to be more nutritious because of high anthocyanin contents in the pericarp. Comparative transcriptome analysis of purple (cv Gy115) and white pericarps was carried out using next-generation sequencing technology. There were 23,642 unigenes significantly differentially expressed in the purple and white pericarps, including 9945 up-regulated and 13,697 down-regulated. The differentially expressed unigenes were mainly involved in encoding components of metabolic pathways, The flavonoid biosynthesis pathway was the most represented in metabolic pathways. In the transcriptome of purple pericarp in Gy115, most structural and regulatory genes biosynthesizing anthocyanin were identified, and had higher expression levels than in white pericarp. The largestunigene of anthocyanin biosynthesis in Gy115 was longer than the reference genes, which implies that high-throughput sequencing could isolate the genes of anthocyanin biosynthesis in tissues or organs with high anthocyanin content. Based on present and previous results, three unigenes of MYB gene on chromosome 7BL and three unigenes of MYC on chromosome 2AL were predicted as candidate genes for the purple grain trait. This article was the first to provide a systematic overview comparing the transcriptomes of purple and white pericarps in common wheat, which should be very valuable for identifying the key genes for the purple pericarp trait. PMID:27171148

  17. Transcriptome Analysis of Leaf Tissue of Raphanus sativus by RNA Sequencing

    PubMed Central

    Yin, Yongtai; Wu, Gang; Xia, Heng; Wang, Xiaodong; Fu, Chunhua; Li, Maoteng; Wu, Jiangsheng

    2013-01-01

    Raphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R. sativus. In this study, the transcriptome sequencing of leaf tissues in R. sativus was performed for the first time. Approximately 22 million clean reads were generated and used for transcriptome assembly. The generated unigenes were subsequently annotated against gene ontology (GO) database. KEGG analysis further revealed two important pathways in the bolting stage of R.sativus including spliceosome assembly and alkaloid synthesis. In addition, a total of 6,295 simple sequence repeats (SSRs) with various motifs were identified in the unigene library of R. sativus. Finally, four unigenes of R. sativus were selected for alignment with their homologs from other plants, and phylogenetic trees for each of the genes were constructed. Taken together, this study will provide a platform to facilitate gene discovery and advance functional genomic research of R. sativus. PMID:24265813

  18. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes.

    PubMed

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  19. Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea

    PubMed Central

    Lu, Yi-Chien; Horowitz, Michael; Graveley, Brenton R.

    2012-01-01

    The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species. PMID:22496805

  20. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation

    PubMed Central

    2012-01-01

    Background The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG) biofuel precursor. Results After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases—presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and provides a variety of genetic

  1. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development

    PubMed Central

    2010-01-01

    Background Whitefly (Bemisia tabaci) causes extensive crop damage throughout the world by feeding directly on plants and by vectoring hundreds of species of begomoviruses. Yet little is understood about its genes involved in development, insecticide resistance, host range plasticity and virus transmission. Results To facilitate research on whitefly, we present a method for de novo assembly of whitefly transcriptome using short read sequencing technology (Illumina). In a single run, we produced more than 43 million sequencing reads. These reads were assembled into 168,900 unique sequences (mean size = 266 bp) which represent more than 10-fold of all the whitefly sequences deposited in the GenBank (as of March 2010). Based on similarity search with known proteins, these analyses identified 27,290 sequences with a cut-off E-value above 10-5. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. In addition, we investigated the transcriptome changes during whitefly development using a tag-based digital gene expression (DGE) system. We obtained a sequencing depth of over 2.5 million tags per sample and identified a large number of genes associated with specific developmental stages and insecticide resistance. Conclusion Our data provides the most comprehensive sequence resource available for whitefly study and demonstrates that the Illumina sequencing allows de novo transcriptome assembly and gene expression analysis in a species lacking genome information. We anticipate that next generation sequencing technologies hold great potential for the study of the transcriptome in other non-model organisms. PMID:20573269

  2. Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens

    PubMed Central

    2010-01-01

    Background The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the production of specific pheromone components and what controls the variation in their relative frequencies in the pheromone blend. We used a transcriptomic approach to characterize the pheromone gland of the Noctuid moth Heliothis virescens, an important agricultural pest, in order to obtain substantial general sequence information and to identify a range of candidate genes involved in the pheromone biosynthetic pathway. Results To facilitate identifying sets of genes involved in a broad range of processes and to capture rare transcripts, we developed our majority of ESTs from a normalized cDNA library of Heliothis virescens pheromone glands (PG). Combining these with a non-normalized library yielded a total of 17,233 ESTs, which assembled into 2,082 contigs and 6,228 singletons. Using BLAST searches of the NR and Swissprot databases we were able to identify a large number of putative unique gene elements (unigenes), which we compared to those derived from previous transcriptomic surveys of the larval stage of Heliothis virescens. The distribution of unigenes among GO Biological Process functional groups shows an overall similarity between PG and larval transcriptomes, but with distinct enrichment of specific pathways in the PG. In addition, we identified a large number of candidate genes in the pheromone biosynthetic pathways. Conclusion These data constitute one of the first large-scale EST-projects for Noctuidae, a much-needed resource for exploring these pest species. Our analysis shows a surprisingly complex transcriptome and we identified a large number of potential pheromone biosynthetic pathway and immune

  3. Genome-Wide Transcriptome Directed Pathway Analysis of Maternal Pre-Eclampsia Susceptibility Genes

    PubMed Central

    Yong, Hannah E. J.; Melton, Phillip E.; Johnson, Matthew P.; Freed, Katy A.; Kalionis, Bill; Murthi, Padma; Brennecke, Shaun P.; Keogh, Rosemary J.; Moses, Eric K.

    2015-01-01

    Background Preeclampsia (PE) is a serious hypertensive pregnancy disorder with a significant genetic component. Numerous genetic studies, including our own, have yielded many susceptibility genes from distinct functional groups. Additionally, transcriptome profiling of tissues at the maternal-fetal interface has likewise yielded many differentially expressed genes. Often there is little overlap between these two approaches, although genes identified in both approaches are significantly associated with PE. We have thus taken a novel integrative bioinformatics approach of analysing pathways common to the susceptibility genes and the PE transcriptome. Methods Using Illumina Human Ht12v4 and Wg6v3 BeadChips, transcriptome profiling was conducted on n = 65 normotensive and n = 60 PE decidua basalis tissues collected at delivery. The R software package libraries lumi and limma were used to preprocess transcript data for pathway analysis. Pathways were analysed and constructed using Pathway Studio. We examined ten candidate genes, which are from these functional groups: activin/inhibin signalling—ACVR1, ACVR1C, ACVR2A, INHA, INHBB; structural components—COL4A1, COL4A2 and M1 family aminopeptidases—ERAP1, ERAP2 and LNPEP. Results/Conclusion Major common regulators/targets of these susceptibility genes identified were AGT, IFNG, IL6, INHBA, SERPINE1, TGFB1 and VEGFA. The top two categories of pathways associated with the susceptibility genes, which were significantly altered in the PE decidual transcriptome, were apoptosis and cell signaling (p < 0.001). Thus, susceptibility genes from distinct functional groups share similar downstream pathways through common regulators/targets, some of which are altered in PE. This study contributes to a better understanding of how susceptibility genes may interact in the development of PE. With this knowledge, more targeted functional analyses of PE susceptibility genes in these key pathways can be performed to examine their

  4. Transcriptome analysis of the adult rumen fluke Paramphistomum cervi following next generation sequencing.

    PubMed

    Choudhary, Vijayata; Garg, Sweta; Chourasia, Reetika; Hasnani, J J; Patel, P V; Shah, Tejas M; Bhatt, Vaibhav D; Mohapatra, Amitbikram; Blake, Damer P; Joshi, Chaitanya G

    2015-10-01

    Rumen flukes are parasitic trematodes (Platyhelminthes: Digenea) of major socioeconomic importance in many countries. Key representatives, such as Paramphistomum cervi, can cause "Rumen fluke disease" or paramphistomosis and undermine economic animal productivity and welfare. P. cervi is primarily a problem in sheep, goat and buffalo production as a consequence of reduced weight gain and milk production, clinical disease or death. Recent technological advances in genomics and bioinformatics now provide unique opportunities for the identification and pre-validation of drug targets and vaccines through improved understanding of the biology of pathogens such as P. cervi and their relationship with their hosts at the molecular level. Here, we report next generation transcriptome sequencing analysis for P. cervi. RNAseq libraries were generated from RNA extracted from 15 adult P. cervi parasites sampled from each of three different host species (sheep, goat and buffalo) and a reference transcriptome was generated by assembly of all Ion Torrent PGM sequencing data. Raw reads (7,433,721 in total) were initially filtered for host nucleotide contamination and ribosomal RNAs and the remaining reads were assembled into 43,753 high confidence transcript contigs. In excess of 50% of the assembled transcripts were annotated with domain- or protein sequence similarity derived functional information. The reference adult P. cervi transcriptome will serve as a basis for future work on the biology of this important parasite. Using the widely investigated trematode virulence factor and vaccine candidate Cathepsin L as an example, the epitope GPISIAINA was found to be conserved in P. cervi isolated from three different host species supporting its candidacy for vaccine development and illustrating the utility of the adult P. cervi transcriptome. PMID:26049095

  5. Annotation of the Transcriptome from Taenia pisiformis and Its Comparative Analysis with Three Taeniidae Species

    PubMed Central

    Yang, Deying; Fu, Yan; Wu, Xuhang; Xie, Yue; Nie, Huaming; Chen, Lin; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yan, Ning; Zhang, Runhui; Zheng, Wanpeng; Yang, Guangyou

    2012-01-01

    Background Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. Methodology/Principal Findings In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. Conclusion This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and

  6. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq

    PubMed Central

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  7. Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Rocamora-Reverte, Lourdes; Gómez-Martínez, Angeles; Ferragut, José Antonio; Cifuentes, Alejandro

    2013-01-01

    In this work, the effect of rosemary extracts rich on polyphenols obtained using pressurized fluids was investigated on the gene expression of human SW480 and HT29 colon cancer cells. The application of transcriptomic profiling and functional enrichment analysis was done via two computational approaches, Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. These two approaches were used for functional enrichment analysis as a previous step for a reliable interpretation of the data obtained from microarray analysis. Reverse transcription quantitative-PCR was used to confirm relative changes in mRNA levels of selected genes from microarrays. The selection of genes was based on their expression change, adjusted p value, and known biological function. According to genome-wide transcriptomics analysis, rosemary polyphenols altered the expression of ~4 % of the genes covered by the Affymetrix Human Gene 1.0ST chip in both colon cancer cells. However, only ~18 % of the differentially expressed genes were common to both cell lines, indicating markedly different expression profiles in response to the treatment. Differences in induction of G2/M arrest observed by rosemary polyphenols in the two colon adenocarcinoma cell lines suggest that the extract may be differentially effective against tumors with specific mutational pattern. From our results, it is also concluded that rosemary polyphenols induced a low degree of apoptosis indicating that other multiple signaling pathways may contribute to colon cancer cell death. PMID:22923011

  8. Transcriptome Analysis of Epithelial and Stromal Contributions to Mammogenesis in Three Week Prepartum Cows

    PubMed Central

    Casey, Theresa; Dover, Heather; Liesman, James; DeVries, Lindsey; Kiupel, Matti; VandeHaar, Michael; Plaut, Karen

    2011-01-01

    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production. PMID:21829467

  9. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    PubMed Central

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide

  10. Transcriptome Analysis of Pacific White Shrimp (Litopenaeus vannamei) Hepatopancreas in Response to Taura Syndrome Virus (TSV) Experimental Infection

    PubMed Central

    Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan

    2013-01-01

    Background The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. Methodology/Principal Findings We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10−5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. Conclusions/Significance This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp. PMID:23469011