Science.gov

Sample records for in-reactor rupture testing

  1. In-reactor creep rupture properties of 20% CW modified 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Mizuta, S.; Kaito, T.; Okada, H.

    2000-02-01

    The in-reactor creep rupture tests of 20% cold worked modified 316 stainless steel were conducted in the temperature range from 878 to 1023 K using MOTA of FFTF, and were compared with the out-of-reactor tests. In-reactor creep rupture, lives become shorter than those of the out-of-reactor tests. In-reactor creep strain rate was significantly accelerated, and sufficient ductility appears to be maintained even under the irradiation. Considering 0.2% proof strength after neutron irradiation, sodium exposure or aging, the degraded rupture lives of in-reactor creep are ascribed to the enhanced dislocation recovery due to the neutron irradiation as well as to the solute elements dissolution into sodium under the sodium exposure environment.

  2. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  3. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  4. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  5. Composite Overwrapped Pressure Vessel(COPV) Stress Rupture Testing

    NASA Astrophysics Data System (ADS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark, R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-09-01

    This paper reports stress rupture testing of Kevlar® composite overwrapped pressure vessels(COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm(40-in.) diameter Kevlar® COPV was tested to failure(burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  6. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  7. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect

    Combs, Stephen Kirk; Meitner, Steven J; Baylor, Larry R; Caughman, John B; Commaux, Nicolas JC; Fehling, Dan T; Foust, Charles R; Jernigan, Thomas C; McGill, James M; Parks, P. B.; Rasmussen, David A

    2009-01-01

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  8. Creep-rupture tests of internally pressurized Inconel 702 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  9. Creep-rupture tests of internally pressurized Rene 41 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Weiss, B.

    1972-01-01

    Weld-drawn tubes of Rene 41 with 0.935 centimeter outside diameter and 0.064 centimeter wall thickness were tested to failure at temperatures from 1117 to 1233 K and internal helium pressures from 5.5 to 12.4 meganewtons per square meter. Lifetimes ranged from 5 to 2065 hours. The creep-rupture strength of the tubes was 50 percent lower than that of unwelded, thick sheet specimens, and 20 percent lower than that of unwelded, thin sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  10. Strain Measurement Using FBG on COPV in Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Banks, Curtis; Grant, Joseph

    2007-01-01

    White Sands Test Facility (WSTF) was requested to perform ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-in. Kevlar Composite Overwrapped Pressure Vessel (COPV). The 40-in. vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The NASA Engineering Safety Center (NESC) assembled a team of experts and conducted an assessment that involved a review of national Kevlar COPY data. During the review, the STS COPVs were found to be beyond their original certification of ten years. The team observed that the likelihood of STS COPV Stress rupture, a catastrophic burst before leak failure mode, was greater than previously believed. Consequently, a detailed assessment of remaining stress rupture life became necessary. Prior to STS-114, a certification deviation was written for two flights of OV-103 (Discovery) and OV-104 (Atlantis) per rationale that was based on an extensive review of the Lawrence Livermore National Laboratories, COPV data, and revisions to the STS COPV stress levels. In order to obtain flight rationale to extend the certification deviation through the end of the Program, the Orbiter Project Office has directed an interagency COPV team to conduct further testing and analysis to investigate conservatism in the stress rupture model and evaluate material age degradation. Additional analysis of stress rupture life requires understanding the fiber stresses including stress that occurs due to thru-wall composite compression in COPV components. Data must be obtained at both zero gauge pressure (pre-stress) and at the component operating pressure so that this phenomenon can be properly evaluated. The zero gauge pressure stresses are predominantly a result of the autofrettage process used during vessel manufacture. Determining these pre-stresses and the constitutive behavior of the overwrap at pressure will provide necessary information

  11. Testing of Carbon Fiber Composite Overwrapped Pressure Vessel Stress-Rupture Lifetime

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Phoenix, S. Leigh; Beeson, Harold; Yoder, Tommy; Greene, Nathaniel

    2006-01-01

    This paper contains summaries of testing procedures and analysis of stress rupture life testing for two stress rupture test programs, one for Kevlar COPVs performed at Lawrence Livermore National Laboratory, and the other a joint study between NASA JSC White Sands Test Facility and the Jet Propulsion Laboratory. These will be discussed in detail including test setup and issues encountered during testing. Lessons learned from testing in these two programs will be discussed.

  12. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  13. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  14. Multiloop integral system test (MIST): Test Group 34, Steam generator tube rupture

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility--the Once Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 6 pertains to Test Group 34, Steam Generator Tube Rupture. The specifications, conduct, observations, and results of these tests are described. 6 refs., 189 figs., 16 tabs.

  15. Creep-rupture tests of internally pressurized Hastelloy-X tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Colantino, G. J.

    1973-01-01

    Seamless Hastelloy-X tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1400 to 1650 F and internal helium pressures from 800 to 1800 psi. Lifetimes ranged from 58 to 3600 hr. The creep-rupture strength of the tubes was from 20 to 40 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  16. An experimental method to dynamically test pressure sensors using a rupture disk

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph W.

    2002-02-01

    The response time of a pressure sensor is required when it is used in control systems and in some measurement applications. It is often difficult to measure the response time of a pressure sensor since it is difficult to obtain changes in fluid pressure sufficient to characterize the sensor dynamic response. In this article we describe a relatively simple system for measuring or validating the response time of pressure sensors with fast dynamic response. The system consists of two chambers isolated by a graphite rupture disk, a device that fully and rapidly opens at a known rupture or break pressure. A pressure transient in the second chamber is initiated by slowly increasing the pressure in the first chamber until reaching the nominal break pressure of the rupture disk. Performance of the system was validated by comparing the rise time predicted by a theoretical model with the rise time of the pressure transient measured by a piezoelectric pressure transducer. The method was evaluated by comparing the response to the pressure transient of an optical based pressure transducer with the response of the reference piezoelectric pressure transducer. The time constant of the tested fiber optic pressure sensor was found using the method presented in this article to be 0.488 ms, which is close to the time constant of 0.455 ms measured by a comparison method.

  17. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    SciTech Connect

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  18. Robustness Tests in Determining the Earthquake Rupture Process: The June 23, 2001 Mw 8.4 Peru Earthquake

    NASA Astrophysics Data System (ADS)

    Das, S.; Robinson, D. P.

    2006-12-01

    The non-uniqueness of the problem of determining the rupture process details from analysis of body-wave seismograms was first discussed by Kostrov in 1974. We discuss how to use robustness tests together with inversion of synthetic data to identify the reliable properties of the rupture process obtained from inversion of broadband body wave data. We apply it to the great 2001 Peru earthquake. Twice in the last 200 years, a great earthquake in this region has been followed by a great earthquake in the immediately adjacent plate boundary to the south within about 10 years, indicating the potential for a major earthquake in this area in the near future. By inverting 19 pure SH-seismograms evenly distributed in azimuth around the fault, we find that the rupture was held up by a barrier and then overcame it, thereby producing the world's third largest earthquake since 1965, and we show that the stalling of the rupture in this earthquake is a robust feature. The rupture propagated for ~70 km, then skirted around a ~6000 km2 area of the fault and continued propagating for another ~200 km, returning to rupture this barrier after a ~30 second delay. The barrier has relatively low rupture speed, slip and aftershock density compared to its surroundings, and the time of the main energy release in the earthquake coincides with its rupture. We identify this barrier as a fracture zone on the subducting oceanic plate. Robinson, D. P., S. Das, A. B. Watts (2006), Earthquake rupture stalled by subducting fracture zone, Science, 312(5777), 1203-1205.

  19. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  20. A comparative TEM study of in-reactor and post-irradiation tensile tested copper

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Tähtinen, S.; Singh, B. N.

    2013-11-01

    The deformation microstructures of oxygen-free high-conductivity (OFHC) copper were examined by transmission electron microscopy (TEM) following in-reactor and post-irradiation slow strain rate tensile tests. The TEM results suggest that the main modes of deformation differ between all examined cases. Plastic deformation appeared predominantly localized in the defect-free cleared channels following post-irradiation testing and hardly any dislocations were seen outside the channels. The microstructures following in-reactor tests were characterized by a small amount of cleared channels and a distinct dislocation density within the matrix. However, the dislocations observed following in-reactor testing did not seem to interact with each other, whereas that was the main mode of deformation in the non-irradiated reference sample. The possible mechanisms of plastic deformation are discussed based on the experimental results. Dislocation-dislocation interactions played the major role if irradiation or irradiation damage is not present. As a result of the interactions, the microstructure of non-irradiated reference copper was characterized by a well-defined cellularized dislocation microstructure. Dynamic dislocation-displacement cascade interactions dominated the deformation process at the in-reactor tensile tests. As a result, the formation of defect-free cleared channels was delayed, dislocations were found from the matrix between the channels, and a clear strain hardening was observed after the yield point. No clear difference between accumulated irradiation damage at in-reactor and post-irradiation samples was found, which may be due to localized nature of SFT evolution in displacement cascades at copper. In the post-irradiation experiments, dislocations were confined to slip planes and annihilate irradiation defects, while moving on the planes and creating defect-free cleared channels. The plastic deformation is localized into these channels, causing a decrease in

  1. Testing Friction Laws by Comparing Simulation Results With Experiments of Spontaneous Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Lu, X.; Lapusta, N.; Rosakis, A. J.

    2005-12-01

    Friction laws are typically introduced either based on theoretic ideas or by fitting laboratory experiments that reproduce only a small subset of possible behaviors. Hence it is important to validate the resulting laws by modeling experiments that produce spontaneous frictional behavior. Here we simulate experiments of spontaneous rupture transition from sub-Rayleigh to supershear done by Xia et al. (Science, 2004). In the experiments, two thin Homalite plates are pressed together along an inclined interface. Compressive load P is applied to the edges of the plates and the rupture is triggered by an explosion of a small wire. Xia et al. (2004) link the transition in their experiments to the Burridge-Andrews mechanism (Andrews, JGR, 1976) which involves initiation of a daughter crack in front of the main rupture. Xia et al. have measured transition lengths for different values of the load P and compared their results with numerical simulations of Andrews who used linear slip-weakening friction. They conclude that to obtain a good fit they need to assume that the critical slip of the slip-weakening law scales as P-1/2, as proposed by Ohnaka (JGR, 2003). Hence our first goal is to verify whether the dependence of the critical slip on the compressive load P is indeed necessary for a good fit to experimental measurements. To test that, we conducted simulations of the experiments by using boundary integral methodology in its spectral formulation (Perrin et al., 1995; Geubelle and Rice, 1995). We approximately model the wire explosion by temporary normal stress decrease in the region of the interface comparable to the size of the exploding wire. The simulations show good agreement of the transition length with the experimental results for different values of the load P, even though we keep the critical slip constant. Hence the dependence of the critical slip on P is not necessary to fit the experimental measurements. The inconsistency between Andrews' numerical results

  2. Real-time Imaging of Earthquake Rupture Process: Offline Tests for the 2011 Mw9.0 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, R.; Zschau, J.; Chen, Y. T.; Parolai, S.; Dahm, T.

    2014-12-01

    Lack of the knowledge on rupture process in earthquake early warning (EEW) caused serious underestimations on tsunami disaster of the 2011 Tohoku earthquake. Based on the newly developed iterative deconvolution and stacking (IDS) method for automatic source imaging, we demonstrate an offline test for real-time analysis on the rupture process of the 2011 Tohoku earthquake by using the high-rate GPS measurements. It is shown that, we had been theoretically able to image the complex ongoing rupture process, even with some instabilities of fault slips which depend on the detected moment growth rate (see image uploaded). We also investigate the influences of station density and maximum epicentral distance of the network on real-time source imaging. It is found that, for the case of the 2011 Tohoku earthquake, station spacing within 100 km do not significantly disturb the real-time imaging; and small maximum epicentral distances make real-time estimated magnitudes converge earlier.

  3. Ruptured eardrum

    MedlinePlus

    Tympanic membrane perforation; Eardrum - ruptured or perforated; Perforated eardrum ... Buttaravoli P, Leffler SM. Perforated tympanic membrane (ruptured eardrum). ... PA: Mosby Elsevier; 2012:chap 37. Kerschner JE. Otitis ...

  4. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  5. Microballoon Occlusion Test to Predict Colonic Ischemia After Transcatheter Embolization of a Ruptured Aneurysm of the Middle Colic Artery

    SciTech Connect

    Tajima, Tsuyoshi Yoshimitsu, Kengo; Inokuchi, Hiroyuki; Irie, Hiroyuki; Nishie, Akihiro; Hirakawa, Masakazu; Ishigami, Kousei; Ushijima, Yasuhiro; Okamoto, Daisuke; Honda, Hiroshi; Itoh, Hiroyuki; Morita, Masaru; Kakeji, Yoshihiro

    2008-07-15

    A 76-year-old woman presented with sudden massive melena, and superior mesenteric arteriography showed an aneurysm in the middle colic artery (MCA). Because she had a history of right hemicolectomy and ligation of the inferior mesenteric artery (IMA) during open abdominal aortic aneurysm repair, embolization of the MCA aneurysm was considered to pose a risk comparable to that of colonic ischemia. A microballoon occlusion test during occlusion of the MCA confirmed retrograde visualization of the IMA branches through the collateral arteries by way of the left internal iliac artery, and embolization was successfully performed using microcoils. No colonic ischemia or aneurysm rupture occurred after embolization.

  6. The Microstructure Degradation of the IN 713C Nickel-Based Superalloy After the Stress Rupture Tests

    NASA Astrophysics Data System (ADS)

    Matysiak, Hubert; Zagorska, Malgorzata; Balkowiec, Alicja; Adamczyk-Cieslak, Boguslawa; Cygan, Rafal; Cwajna, Jan; Nawrocki, Jacek; Kurzydłowski, Krzysztof J.

    2014-09-01

    The aim of the work was to examine the degradation phenomena taking place in the microstructure of the as-cast IN 713C superalloy after stress rupture tests, performed at T = 980 °C under a tensile stress of 150 MPa. A directional growth of γ' phase (rafting) and decomposition of the NbC primary carbides accompanied by the precipitation of M23C6 secondary carbides rich in chromium and of γ' phase were observed. It was also indicated that the decomposition of the NbC primary carbides may be accompanied by the precipitation of M3B2 borides rich in Mo.

  7. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV Using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessels (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Flight certification is dependent on the reliability analysis to quantify the risk of stress rupture failure in existing flight vessels. Full certification of this reliability model would require a statistically significant number of lifetime tests to be performed and is impractical given the cost and limited flight hardware for certification testing purposes. One approach to confirm the reliability model is to perform a stress rupture test on a flight COPV. Currently, testing of such a Kevlar49 (Dupont)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the database and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio model is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one "nine," that is, reducing the predicted probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several vessels would be necessary.

  8. Rupture disc

    DOEpatents

    Newton, Robert G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.

  9. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  10. Stress Rupture Testing and Analysis of the NASA WSTF-JPL Carbon Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Yoder, Tommy; Saulsberry, Regor; Grimes, Lorie; Thesken, John; Phoenix, Leigh

    2007-01-01

    Carbon composite overwrapped pressure vessels (COPVs) are widely used in applications from spacecraft to life support. COPV technology provides a pressurized media storage advantage over amorphous technology with weight savings on the order of 30 percent. The National Aeronautics and Space Administration (NASA) has been supporting the development of this technology since the early 1970's with an interest in safe application of these components to reduce mass to orbit. NASA White Sands Test Facility (WSTF) has been testing components in support of this objective since the 1980s and has been involved in test development and analysis to address affects of impact, propellant and cryogenic fluids exposure on Kevlar and carbon epoxy. The focus of this paper is to present results of a recent joint WSTF-Jet Propulsion Laboratories (JPL) effort to assess safe life of these components. The WSTF-JPL test articles consisted of an aluminum liner and a carbon fiber overwrap in an industry standard epoxy resin system. The vessels were specifically designed with one plus-minus helical wrap and one hoop wrap over the helical and they measured 4.23 x 11.4 in. long. 120 test articles were manufactured in August of 1998 of one lot fiber and resin and the 110 test articles were delivered to WSTF for test. Ten of the 120 test articles were burst tested at the manufacturer to establish the delivered fiber stress. Figure 1 shows a test article in a pre burst condition and with a hoop fiber failure (no leak of pressurized media) and post burst (failure of liner and loss of pressurized media).

  11. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    SciTech Connect

    Garbett, K; Mendler, O J; Gardner, G C; Garnsey, R; Young, M Y

    1987-03-01

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faults and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.

  12. Dynamic parameters test of Haiyang Nuclear Power Engineering in reactor areas, China

    NASA Astrophysics Data System (ADS)

    Zhou, N.; Zhao, S.; Sun, L.

    2012-12-01

    Haiyang Nuclear Power Project is located in Haiyang city, China. It consists of 6×1000MW AP1000 Nuclear Power generator sets. The dynamic parameters of the rockmass are essential for the design of the nuclear power plant. No.1 and No.2 reactor area are taken as research target in this paper. Sonic logging, single hole and cross-hole wave velocity are carried out respectively on the site. There are four types of rock lithology within the measured depth. They are siltstone, fine sandstone, shale and allgovite. The total depth of sonic logging is 409.8m and 2049 test points. The sound wave velocity of the rocks are respectively 5521 m/s, 5576m/s, 5318 m/s and 5576 m/s. Accroding to the statistic data, among medium weathered fine sandstone, fairly broken is majority, broken and relatively integrity are second, part of integrity. Medium weathered siltstone, relatively integrity is mojority, fairly broken is second. Medium weathered shale, fairly broken is majority, broken and relatively integrity for the next and part of integrity. Slight weathered fine sandstone, siltstone, shale and allgovite, integrity is the mojority, relatively integrity for the next, part of fairly broken.The single hole wave velocity tests are set in two boreholesin No.1 reactor area and No.2 reactor area respectively. The test depths of two holes are 2-24m, and the others are 2-40m. The wave velocity data are calculated at different depth in each holes and dynamic parameters. According to the test statistic data, the wave velocity and the dynamic parameter values of rockmass are distinctly influenced by the weathering degree. The test results are list in table 1. 3 groups of cross hole wave velocity tests are set for No.1 and 2 reactor area, No.1 reactor area: B16, B16-1, B20(Direction:175°, depth: 100m); B10, B10-1, B11(269°, 40m); B21, B21-1, B17(154°, 40m); with HB16, HB10, HB21 as trigger holes; No.2 reactor area: B47, B47-1, HB51(176°, 100m); B40, B40-1, B41(272°, 40m); B42, B42-1, B

  13. Creep-rupture and fractographic analysis of Stirling engine superalloys tested in air and 15 MPa hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Titran, R. H.

    1986-01-01

    A brief comparative analytical and microstructural evaluation of creep-rupture performance of two iron-base superalloys in air and 15 MPa of hydrogen, is presented. Creep rupture data are presented for the sheet alloy 19-9DL and the cast alloy XF-818, including temperature, initial stress, rupture life, minimum creep rate, time to reach one percent creep strain, and total elongation. In 19-9DL, both rupture life and minimum creep rate are more sharply dependent on small stress changes than in XF-818 in the given environment, and 19-9DL appears to become a more creep-resistant material with increasing Q (apparent activation energy) while the opposite is noted for XF-818. There appears to be no environmental effect on minimum creep rate for 19-9DL, whereas Q becomes less negative for XF-818 for 15 MPa of H2. Multiple cracks leading to rupture are observed on the fracture surfaces, with sheet specimens showing many more cracks close to the fracture surface than cast specimens.

  14. Quality-assurance tests of five Y-12 Kevlar-49 spools used to fabricate strands and reliability specimens for stress-rupture tests

    SciTech Connect

    Caley, L.E.; Ambalal, P.K.; Carley, J.F.; Ford, T.S.; Moore, R.L.; Noecker, D.J.; Ross, M.E.; Sherry, R.J.; Yoshiyama, J.M.

    1984-05-07

    An important component of the composite reliability program is the assurance of quality of Kevlar 49, 380-denier yarn and epoxy-impregnated yarn. This yarn, which is used in the fabrication of W-82 components from Kevlar 49/epoxy composites, is also formed into test specimens for long-term, stress-rupture studies and reliability studies. The QA work covered in this report encompasses preparation of impregnated-yarn specimens, examination of the yarn itself and individual fibers therefrom, tensile testing of bare and impregnated yarns and heat-degraded yarns. The yarn samples were all drawn from spools of 380-denier Kevlar 49 shipped to LLNL from Y-12. The resin matrix is an amine-hardened epoxy with low viscosity and long pot life, intended for filament winding. The components are Dow epoxy resin (DER) 332 and Jeffamine T-403 triamine hardener. The stoichiometric combining ratio, which we used in our work, is 100 parts by weight resin to 44 parts hardener. Quality-assurance testing not only verifies that the yarns actually meet the manufacturer's specifications, but also provides data on the relationships between fiber characteristics and the lifetime reliability of fabricated items.

  15. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  16. Discrimination of DPRK M5.1 February 12th, 2013 Earthquake as Nuclear Test Using Analysis of Magnitude, Rupture Duration and Ratio of Seismic Energy and Moment

    NASA Astrophysics Data System (ADS)

    Salomo Sianipar, Dimas; Subakti, Hendri; Pribadi, Sugeng

    2015-04-01

    On February 12th, 2013 morning at 02:57 UTC, there had been an earthquake with its epicenter in the region of North Korea precisely around Sungjibaegam Mountains. Monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) and some other seismic network detected this shallow seismic event. Analyzing seismograms recorded after this event can discriminate between a natural earthquake or an explosion. Zhao et. al. (2014) have been successfully discriminate this seismic event of North Korea nuclear test 2013 from ordinary earthquakes based on network P/S spectral ratios using broadband regional seismic data recorded in China, South Korea and Japan. The P/S-type spectral ratios were powerful discriminants to separate explosions from earthquake (Zhao et. al., 2014). Pribadi et. al. (2014) have characterized 27 earthquake-generated tsunamis (tsunamigenic earthquake or tsunami earthquake) from 1991 to 2012 in Indonesia using W-phase inversion analysis, the ratio between the seismic energy (E) and the seismic moment (Mo), the moment magnitude (Mw), the rupture duration (To) and the distance of the hypocenter to the trench. Some of this method was also used by us to characterize the nuclear test earthquake. We discriminate this DPRK M5.1 February 12th, 2013 earthquake from a natural earthquake using analysis magnitude mb, ms and mw, ratio of seismic energy and moment and rupture duration. We used the waveform data of the seismicity on the scope region in radius 5 degrees from the DPRK M5.1 February 12th, 2013 epicenter 41.29, 129.07 (Zhang and Wen, 2013) from 2006 to 2014 with magnitude M ≥ 4.0. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminate from a natural or tectonic earthquake. Keywords: North Korean nuclear test, magnitude mb, ms, mw, ratio between seismic energy and moment, ruptures duration

  17. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.

    2012-12-01

    Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.

  18. A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler

    SciTech Connect

    Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

    2011-02-27

    Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and η phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

  19. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  20. Premature rupture of membranes

    MedlinePlus

    ... When the water breaks early, it is called premature rupture of membranes (PROM). Most women will go ... th week of pregnancy, it is called preterm premature rupture of membranes (PPROM). The earlier your water ...

  1. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  2. Ruptured tubal molar pregnancy.

    PubMed

    Yakasai, I A; Adamu, N; Galadanchi, H S

    2012-01-01

    Molar pregnancies in most instances develop within the uterine cavity, but may occur at any site. Ectopic molar pregnancy is a rare event. The objective of this study was to present a case of ruptured tubal molar gestation, discuss its clinical features and ways to improve diagnostic accuracy. A 35-year-old woman presented with features suggestive of ruptured tubal ectopic pregnancy. There was neither any evidence at the time of presentation to suspect a molar gestation, nor β human chorionic gonadotrophin (βhCG) hormone estimation was done, but only a clearview pregnancy test was carried out. She had total left salpingectomy and histological evaluation of the specimen revealed complete hydatidiform mole. The hCG level normalized within 3 weeks of follow-up. Clinical features of ectopic molar pregnancy may be indistinguishable from non-molar ectopic pregnancy. We recommend βhCG estimation as well as histological examination of the surgical specimen for all patients coming with features suggestive of ectopic pregnancy. PMID:23238205

  3. Radiation thermal processes in Cr13Mo2NbVB steel - the material of the fuel assembly shell in reactor BN-350 under mechanical tests

    NASA Astrophysics Data System (ADS)

    Larionov, A. S.; Dikov, A. S.; Poltavtseva, V. P.; Kislitsin, S. B.; Kuimova, M. V.; Chernyavskii, A. V.

    2015-04-01

    Regularities of changes of structural-phase state and mechanical properties of steel 13Mo2NbVB - the material of the fuel assembly shell in reactor BN-350 after various mechanical tests at 350°C are experimentally studied. The formation of microprecipitations FeMo, enriched or depleted with molybdenum was found in the short-time mechanical tests, which is the cause of thermal hardening of irradiated Cr13Mo2NbVB steel and its destruction by the ductile-brittle mechanism. On the basis of long-time creep tests it was shown that the material of the spent fuel assembly shell has sufficient resource for long-time storage in the temperature and force conditions simulating long-time storage of spent nuclear fuel.

  4. A unique case of ruptured ectopic pregnancy in a patient with negative preg-nancy test - a case report and brief review of the literature

    PubMed Central

    Daniilidis, A; Pantelis, A; Makris, V; Balaouras, D; Vrachnis, N

    2014-01-01

    Introduction: Despite the major advances made in the diagnosis and management of ectopic pregnancies in the last two decades, an accurate diagnosis can sometimes still be quite challenging, since it relies on the combination of ultrasound findings and serial serum beta-human chorionic gonadotrophin (β-hCG) measurements. Case presentation: This paper describes the case of a 36-year-old woman of Caucasian origin who was admitted to the emergency department of our clinic with clinical symptoms of hemorrhagic shock in combination with two negative pregnancy tests done by her at home and a negative urine test which was performed on her admission to the hospital. Quantitative measurement of β-hCG in the serum of the patient was 13 mIU/mL. On admission, right tubal pregnancy was diagnosed on ultrasound and she underwent an emergency laparotomy due to signs of hemodynamic shock. Conclusion: It is sometimes a considerable challenge to identify a patient with an ectopic pregnancy at risk of rupture. This case of ectopic pregnancy which was followed by a negative pregnancy test illustrates the magnitude of the difficulties involved in the diagnosis of ectopic pregnancy. It also demonstrates the need to maintain a high clinical index of suspicion and to undertake careful clinical examination of the patient on the basis of the clinician's diagnostic research. Hippokratia 2014; 18 (3): 282-284. PMID:25694767

  5. [Comparison of immunochromatographic tests Actim(®) Prom and Amnioquick(®) Duo for the rapid detection of premature rupture of membranes].

    PubMed

    Deckmyn, Benjamin; Chieux, Vincent; Ammeux, Franck; Houze De L'Aulnoit, Denis; Forzy, Gérard

    2015-01-01

    Premature rupture of membranes (PRM) affects 5 to 15% of pregnancies, leading to prematurity and neonatal infection. PRM can be identified by through various amniotic fluid proteins in vaginal secretions. The aim of this study is to compare two immunochromatographic tests based on the detection of insulin-like growth factor binding protein (IGFBP-1) and alpha-foeto protein (AFP) for one of the two tests in cervico-vaginal secretions. Two tests, Actim(®) Prom and Amnioquick(®) Duo were performed on 80 pregnant women with suspected PRM. Amnioquick(®) Duo allows the simultaneous detection of IGFBP-1 and AFP with an automated incubation and reading. The number of positive results is similar (Khi-deux = 0.173, p = 0.6773) for IGFBP-1 between the two tests and there is a good agreement (K = 0.621), with a proportion of negative results of 86%. The number of positive results for AFP is more important in comparison to IGFBP-1. Results positive/positive (Actim(®) Prom/Amnioquick(®)) for IGFBP-1 seems to be related to the time when tests have been performed, that is to say in the last weeks of pregnancy. In conclusion, both tests have similar performance, but there is a risk of false positive results with AFP, this can be explained by the presence of non-visible blood in samples. An automated incubation and reading allows a good reproducibility. Moreover, the computer data storage improve the post-analytical quality. PMID:26411907

  6. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary.

  7. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    PubMed

    Polzer, Stanislav; Gasser, T Christian

    2015-12-01

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. PMID:26631334

  8. High-Temperature Oxidation of Cr-Mo Steels and Its Relevance to Accelerated Rupture Testing and Life Assessment of In-Service Components

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Al-Mazrouee, A.

    2007-08-01

    Use of accelerated creep rupture testing to assess the remaining life of components operating at elevated temperatures, such as pipes and tubes, is a common practice. At high temperatures, oxide growth can affect the creep results by diameter reduction and thus can increase the stress. However, the nature of oxide layer and hence oxidation behavior can be affected by minor changes in alloying composition of steels. This article presents the study of oxide-scale growth and specimen diameter reduction kinetics during oxidation of two Cr-Mo steels used in the manufacture of boiler tubing. Oxidation tests were carried out on 1.25Cr-0.5Mo and 2.25Cr-1Mo steels at 600 °C and 700 °C for times up to 1000 hours, using cylindrical specimens (similar to those used for creep testing). At 600 °C, the oxidation resistance of 2.25Cr-1Mo steel was superior to 1.25Cr-0.5Mo steel. However, the oxidation resistance of the two steels at 700 °C was similar in spite of the difference in their Cr contents. Multilayer oxide scales of oxides with various compositions were observed to have formed over the two steels. The similarity in oxidation kinetics of the two steels at 700 °C (in spite of differences in Cr contents) is ascribed to their Si contents and the predominant role of Si in oxidation at this temperature. The article also discusses implications of the variation in the oxidation kinetics to the stress enhancement in creep specimens due to scaling losses, and possible inaccuracies in creep data, as a result of minor variations in alloying composition.

  9. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    USGS Publications Warehouse

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for ruptures with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.

  10. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  11. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  12. Arachnoid cyst spontaneous rupture.

    PubMed

    Marques, Inês Brás; Vieira Barbosa, José

    2014-01-01

    Arachnoid cysts are benign congenital cerebrospinal fluid collections, usually asymptomatic and diagnosed incidentally in children or adolescents. They may become symptomatic after enlargement or complications, frequently presenting with symptoms of intracranial hypertension. We report an unusual case of progressive refractory headache in an adult patient due to an arachnoid cyst spontaneous rupture. Although clinical improvement occurred with conservative treatment, the subdural hygroma progressively enlarged and surgical treatment was ultimately needed. Spontaneous rupture is a very rare complication of arachnoid cysts. Accumulation of cerebrospinal fluid accumulation in the subdural space causes sustained intracranial hypertension that may be life-threatening and frequently requires surgical treatment. Patients with arachnoid cysts must be informed on their small vulnerability to cyst rupture and be aware that a sudden and severe headache, especially if starting after minor trauma or a Valsalva manoeuvre, always requires medical evaluation. PMID:24581205

  13. Incomplete Cesarean Scar Rupture

    PubMed Central

    Ahmadi, Firoozeh; Siahbazi, Shiva; Akhbari, Farnaz

    2013-01-01

    Background Uterine rupture at the site of a previous cesarean scar is an uncommon but catastrophic complication of pregnancy, which is associated with significant maternal and fetal morbidity and mortality. Case Presentation A 30-year old woman at 24th week of gestation and complaint of pain, contractions and spotting was admitted in Royan Institute in Tehran, Iran. She had a past medical history of an EP and a cesarean section delivery, respectively 4 and 2 years before hospitalization. Herniation of an amniotic membrane into the maternal bladder was found on ultrasound examination. Conclusion Risk factors of cesarean scar rupture should be considered in women undergoing subsequent pregnancies as they need extra care. Ultrasonography can be used to evaluate women with previous cesarean section to assess the risks of scar rupture during subsequent pregnancies. PMID:23926561

  14. Rupture dimensions and rupture processes of fluid-induced microcracks in salt rock

    NASA Astrophysics Data System (ADS)

    Dahm, T.

    2001-08-01

    We developed and applied a simple empirical Green function method to study induced microcracks observed during hydraulic fracturing experiments in salt rock. Either unidirectional ruptures on rectangular faults or allround ruptures on elliptical faults are tested to explain the observed directivity effects in body-wave amplitude spectra. Mostly, the rectangular rupture model and horizontal fault planes are favored. The average rupture lengths are between 15 and 27 mm, the average rupture durations between 14 and 26 μs. Small average rupture velocities of 30% of the S-wave velocity of the rock are indicated. The dispersive low-frequency coda-waves present in the data look similar to coda-waves observed during other hydraulic fracturing experiments and to long-period events from some volcanoes, which have been explained by the resonance of a fluid-filled crack. The radiation pattern of first motion amplitudes of most events is dominated by a dip-slip double-couple indicating slip on horizontal or vertical planes. We cannot distinguish whether the observed low-frequency coda-waves are influenced by a source effect or by a possible sensor-borehole coupling. However, a simple method using Gauss filter at different center frequencies and relocation is tested to analyze the low-frequency coda-waves in terms of source models.

  15. Primary obstructive megaureter with ruptured kidney.

    PubMed

    Chung, Shiu-Dong; Sun, Hsu-Dong; Yang, Den-Kai; Liao, Chun-Hou

    2009-01-01

    A 17-year-old boy presented to the emergency department for severe left flank pain and gross hematuria 1 hour after playing basketball without significant collision. Laboratory tests showed normal renal function and massive hematuria. Abdominal computed tomography scan disclosed a primary megaureter with ruptured kidney. We successfully treated him with ureteral stenting followed by endoscopic ureterotomy and ureteroneocystostomy. PMID:19041564

  16. Blunt cardiac rupture.

    PubMed

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  17. Premature rupture of membranes.

    PubMed Central

    Poma, P. A.

    1996-01-01

    The management of patients with premature rupture of membranes has changed markedly in the past several years. The basis for this is a combination of a better understanding of newborn physiology, improved neonatal care, refinements in antibiotic therapy, and the widespread use of maternal and fetal monitoring. The best outcome for both mother and infant undoubtedly reflects data based on a combination of factors, among which are gestational age survival, evidence of fetal distress, presence or absence of labor and sepsis, and of course, the cervical condition as it is related to labor-readiness. An important recent advance is the recognition that an active observation management program is associated with less morbidity and mortality than the classic management course of delivery within 12 hours of membrane rupture. The fact that preterm premature rupture of membranes tends to recur in subsequent pregnancies offers an opportunity for prevention. Moreover, advances in perinatal and neonatal care will continue to improve the outcomes of these women and their children. PMID:8583489

  18. In vitro analysis of localized aneurysm rupture.

    PubMed

    Romo, Aaron; Badel, Pierre; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2014-02-01

    In this study, bulge inflation tests were used to characterize the failure response of 15 layers of human ascending thoracic aortic aneurysms (ATAA). Full field displacement data were collected during each of the mechanical tests using a digital image stereo-correlation (DIS-C) system. Using the collected displacement data, the local stress fields at burst were derived and the thickness evolution was estimated during the inflation tests. It was shown that rupture of the ATAA does not systematically occur at the location of maximum stress, but in a weakened zone of the tissue where the measured fields show strain localization and localized thinning of the wall. Our results are the first to show the existence of weakened zones in the aneurysmal tissue when rupture is imminent. An understanding these local rupture mechanics is necessary to improve clinical assessments of aneurysm rupture risk. Further studies must be performed to determine if these weakened zones can be detected in vivo using non-invasive techniques. PMID:24406100

  19. Experimental Investigation of the Shuttle Transportation System Composite Overwrapped Pressure Vessels for Stress Rupture Life

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Carillo, Marlene; Thesken, John

    2006-01-01

    A viewgraph presentation describing stress rupture testing on Composite Overwrapped Pressure Vessels (COPV) is shown. The topics include: 1) Purpose for Testing; 2) NASA WSTF COPV Test Program; 3) NASA WSTF Test Facilities; 4) COPV Impact Study; 5) Fluids Compatibility Testing; 6) Stress Rupture Testing; and 7) COPV Lifting.

  20. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault

    NASA Astrophysics Data System (ADS)

    Elliott, Austin J.; Oskin, Michael E.; Liu-Zeng, Jing; Shao, Yanxiu

    2015-04-01

    Strike-slip rupture propagation falters where changes in fault strike increase Coulomb failure stress. Numerical models of this phenomenon offer predictions of rupture extent based on bend geometry, but have not been verified with field data. To test model predictions of rupture barriers, we examine rupture extent along a section of the sinistral Altyn Tagh Fault punctuated by three major double bends. We measure 3-8 m offsets and map >95 km of continuous scarps that define the most recent surface rupture. We document the eastern terminus of this rupture within the Aksay bend, where an undeformed Pleistocene alluvial fan we mapped and dated overlaps the fault. We conclude, based on this geomorphologic evidence, that multiple Holocene ruptures have stopped in the Aksay bend. Our field data validate model predictions of rupture termination at a >18° restraining bend and support use of geometric parameters to define expected earthquake sizes in seismic hazard models.

  1. Patient specific stress and rupture analysis of ascending thoracic aneurysms.

    PubMed

    Trabelsi, Olfa; Davis, Frances M; Rodriguez-Matas, Jose F; Duprey, Ambroise; Avril, Stéphane

    2015-07-16

    An ascending thoracic aortic aneurysm (ATAA) is a serious medical condition which, more often than not, requires surgery. Aneurysm diameter is the primary clinical criterion for determining when surgical intervention is necessary but, biomechanical studies have suggested that the diameter criterion is insufficient. This manuscript presents a method for obtaining the patient specific wall stress distribution of the ATAA and the retrospective rupture risk for each patient. Five human ATAAs and the preoperative dynamic CT scans were obtained during elective surgeries to replace each patient's aneurysm with a synthetic graft. The material properties and rupture stress for each tissue sample were identified using bulge inflation tests. The dynamic CT scans were used to generate patient specific geometries for a finite element (FE) model of each patient's aneurysm. The material properties from the bulge inflation tests were implemented in the FE model and the wall stress distribution at four different pressures was estimated. Three different rupture risk assessments were compared: the maximum diameter, the rupture risk index, and the overpressure index. The peak wall stress values for the patients ranged from 28% to 94% of the ATAA's failure stress. The rupture risk and overpressure indices were both only weakly correlated with diameter (ρ=-0.29, both cases). In the future, we plan to conduct a large experimental and computational study that includes asymptomatic patients under surveillance, patients undergoing elective surgery, and patients who have experienced rupture or dissection to determine if the rupture risk index or maximum diameter can meaningfully differentiate between the groups. PMID:25979384

  2. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  3. SORD: A New Rupture Dynamics Modeling Code

    NASA Astrophysics Data System (ADS)

    Ely, G.; Minster, B.; Day, S.

    2005-12-01

    We report on our progress in validating our rupture dynamics modeling code, capable of dealing with nonplanar faults and surface topography. The method uses a "mimetic" approach to model spontaneous rupture on a fault within a 3D isotropic anelastic solid, wherein the equations of motion are approximated with a second order Support-Operator method on a logically rectangular mesh. Grid cells are not required to be parallelepipeds, however, so that non-rectangular meshes can be supported to model complex regions. However, for areas in the mesh which are in fact rectangular, the code uses a streamlined version of the algorithm that takes advantage of the simplifications of the operators in such areas. The fault itself is modeled using a double node technique, and the rheology on the fault surface is modeled through a slip-weakening, frictional, internal boundary condition. The Support Operator Rupture Dynamics (SORD) code, was prototyped in MATLAB, and all algorithms have been validated against known (including analytical solutions, eg Kostrov, 1964) solutions or previously validated solutions. This validation effort is conducted in the context of the SCEC Dynamic Rupture model validation effort led by R. Archuleta and R. Harris. Absorbing boundaries at the model edges are handled using the perfectly matched layers method (PML) (Olsen & Marcinkovich, 2003). PML is shown to work extremely well on rectangular meshes. We show that our implementation is also effective on non-rectangular meshes under the restriction that the boundary be planar. For validation of the model we use a variety of test cases using two types of meshes: a rectangular mesh and skewed mesh. The skewed mesh amplifies any biases caused by the Support-Operator method on non-rectangular elements. Wave propagation and absorbing boundaries are tested with a spherical wave source. Rupture dynamics on a planar fault are tested against (1) a Kostrov analytical solution, (2) data from foam rubber scale models

  4. Prediction of Severe Eye Injuries in Automobile Accidents: Static and Dynamic Rupture Pressure of the Eye

    PubMed Central

    Kennedy, Eric A.; Voorhies, Katherine D.; Herring, Ian P.; Rath, Amber L.; Duma, Stefan M.

    2004-01-01

    The purpose of this paper is to determine the static and dynamic rupture pressures of 20 human and 20 porcine eyes. This study found the static test results show an average rupture pressure for porcine eyes of 1.00 ± 0.18 MPa while the average rupture pressure for human eyes was 0.36 ± 0.20 MPa. For dynamic loading, the average porcine rupture pressure was 1.64 ± 0.32 MPa, and the average rupture pressure for human eyes was 0.91 ± 0.29 MPa. Significant differences are found between average rupture pressures from all four groups of tests (p = 0.01). A risk function has been developed and predicts a 50% risk of globe rupture at 1.02 MPa, 1.66 MPa, 0.35 MPa, and 0.90 MPa internal pressure for porcine static, porcine dynamic, human static, and human dynamic loading conditions, respectively. PMID:15319124

  5. Spontaneous Iliac Vein Rupture

    PubMed Central

    Kim, Dae Hwan; Park, Hyung Sub; Lee, Taeseung

    2015-01-01

    Spontaneous iliac vein rupture (SIVR) is a rare entity, which usually occurs without a precipitating factor, but can be a life-threatening emergency often requiring an emergency operation. This is a case report of SIVR in a 62-year-old female who presented to the emergency room with left leg swelling. Workup with contrast-enhanced computed tomography revealed a left leg deep vein thrombosis with May-Thurner syndrome and a hematoma in the pelvic cavity without definite evidence of arterial bleeding. She was managed conservatively without surgical intervention, and also underwent inferior vena cava filter insertion and subsequent anticoagulation therapy for pulmonary thromboembolism. This case shows that SIVR can be successfully managed with close monitoring and conservative management, and anticoagulation may be safely applied despite the patient presenting with venous bleeding. PMID:26217647

  6. Short-lived Supershear Rupture

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Xu, S.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2015-12-01

    Fukuyama and Olsen (2002) computed the supershear rupture initiation, propagation and termination process due to a passage of high stress drop area (called asperity) using a boundary integral equation method. They found that supershear rupture continued to propagate after the passage through high stress drop area but it died after a certain propagation distance, which depends on the elastic energy released at the high stress drop area. Here, we could reproduce a similar phenomenon in the laboratory. We conducted large-scale biaxial friction experiments using a pair of meter-scaled metagabbro rock specimens (VP=6.9km/s, VS=3.6km/s) at the National Research institute for Earth Science and Disaster Prevention (NIED). We observed several stick slip rupture events that initiated close to an asperity and immediately became supershear ruptures. But after propagating certain distance they died out and co-existing subshear ruptures became prominent. If we look into details, during the supershear rupture, we could see a sequence of rupture acceleration, its short rest and re-acceleration. This feature reminds us of a sequential breakage of small high stress patches as predicted by Fukuyama and Madariaga (2000). These observations might be interpreted under a concept of energy balance where the energy transmission from strain energy released by the asperity to fracture energy consumed at the crack tip was not instantaneously balanced in space. This could be related to the fact that earthquake rupture velocity is rather smooth reported from the finite fault analysis of large earthquakes with seismic waveforms. References Fukuyama, E. and R. Madariaga (2000) Dynamic propagation and interaction of a rupture front on a planar fault, PAGEOPH, 257, 1959-1979. Fukuyama, E. and K.B. Olsen (2002) A condition for super-shear rupture propagation in a heterogeneous stress field, PAGEOPH, 159, 2047-2056.

  7. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  8. Ruptured thought: rupture as a critical attitude to nursing research.

    PubMed

    Beedholm, Kirsten; Lomborg, Kirsten; Frederiksen, Kirsten

    2014-04-01

    In this paper, we introduce the notion of ‘rupture’ from the French philosopher Michel Foucault, whose studies of discourse and governmentality have become prominent within nursing research during the last 25 years. We argue that a rupture perspective can be helpful for identifying and maintaining a critical potential within nursing research. The paper begins by introducing rupture as an inheritance from the French epistemological tradition. It then describes how rupture appears in Foucault's works, as both an overall philosophical approach and as an analytic tool in his historical studies. Two examples of analytical applications of rupture are elaborated. In the first example, rupture has inspired us to make an effort to seek alternatives to mainstream conceptions of the phenomenon under study. In the second example, inspired by Foucault's work on discontinuity, we construct a framework for historical epochs in nursing history. The paper concludes by discussing the potential of the notion of rupture as a response to the methodological concerns regarding the use of Foucault-inspired discourse analysis within nursing research. We agree with the critique of Cheek that the critical potential of discourse analysis is at risk of being undermined by research that tends to convert the approach into a fixed method. PMID:24741691

  9. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  10. Achilles tendon rupture rehabilitation

    PubMed Central

    Kearney, R. S.; Parsons, N.; Underwood, M.; Costa, M. L.

    2015-01-01

    Objectives The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research. Methods We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area. Results The survey showed wide variations in practice, with patients being managed in plaster cast alone (13%), plaster cast followed by orthoses management (68%), and orthoses alone (19%). Within these categories, further variation existed regarding the individual rehabilitation facets, such as the length of time worn, the foot position within them and weight-bearing status. The subsequent interviews reflected this clinical uncertainty and the pressing need for definitive research. Conclusions The gap in evidence in this area has resulted in practice in the United Kingdom becoming varied and based on individual opinion. Future high-quality randomised trials on this subject are supported by the clinical community. Cite this article: Bone Joint Res 2015;4:65–9 PMID:25868938

  11. The ruptured PIP breast implant.

    PubMed

    Helyar, V; Burke, C; McWilliams, S

    2013-08-01

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant. PMID:23622796

  12. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  13. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  14. Single Event Gate Rupture in EMCCD technology

    NASA Astrophysics Data System (ADS)

    Evagora, A. M.; Murray, N. J.; Holland, A. D.; Burt, D.

    2012-12-01

    The high electric fields (typically 3 MV/cm2 interpoly field) utilised in Electron Multiplying Charged Coupled Devices (EMCCDs) reveal a potential vulnerability from Single Event Phenomena (SEP), in particular Single Event Gate Rupture (SEGR). SEGR is where a conduction path between two conductive areas of the CCD is produced, causing device failure. If EMCCDs are to be used for space applications the susceptibility to these events needs to be explored. A positive result from such an investigation can increase the technology readiness level of the device moving it another step closer to being used in space. Testing undertaken at the CYClotron of LOuvain la NEuve (CYCLONE), using the Heavy Ion Facility (HIF), conclusively showed EMCCD technology to have resilience to heavy ions that surpassed initial expectations. The simulations undertaken prior to experiment suggested gate rupture would occur at 20-40 MeV cm2/mg, however Linear Energy Transfers (LETs) greater than 100 MeV cm2/mg proved to not cause a rupture event. Within the radiation belts heavy ions with an LET greater than 60 MeV cm2/mg are not very common when compared to the fluxes used at the HIF. Possible reasons for this result are discussed in this work, leading to a conclusion that EMCCD technology is a secure choice for space flight.

  15. Array Measurements of Earthquake Rupture.

    NASA Astrophysics Data System (ADS)

    Goldstein, Peter

    Accurate measurements of earthquake rupture are an essential step in the development of an understanding of the earthquake source process. In this dissertation new array analysis techniques are developed and used to make the first measurements of two-dimensional earthquake rupture propagation. In order to measure earthquake rupture successfully it is necessary to account for the nonstationary behavior of seismic waves and nonplanar wavefronts due to time delays caused by local heterogeneities. Short time windows are also important because they determine the precision with which it is possible to measure rupture times of earthquake sources. The subarray spatial averaging and seismogram alignment methods were developed for these reasons. The basic algorithm which is used to compute frequency-wavenumber power spectra is the multiple signal characterization (MUSIC) method. Although a variety of methods could be applied with subarray spatial averaging and seismogram alignment, MUSIC is used because it has better resolution of multiple sources than other currently available methods and it provides a unique solution. Power spectra observed at the array are converted into source locations on the fault plane by tracing rays through a layered medium. A dipping layer correction factor is introduced to account for a laterally varying basin structure such as that found beneath the SMART 1 array in Taiwan. A framework is presented that allows for the estimation of precision and resolution of array measurements of source locations and can be used to design an optimum array for a given source. These methods are used to show that the November 14th 1986, M_{L} = 7.0 Hualien, Taiwan earthquake began as a shallow event with unilateral rupture from southwest to northeast. A few seconds later a second, deeper and larger event began rupturing from below the hypocentral region from southwest to northeast slightly down-dip. Energy density estimates indicate larger energy sources at greater

  16. Rupture of the tracheobronchial tree.

    PubMed Central

    Roxburgh, J C

    1987-01-01

    Eleven cases of tracheobronchial rupture are described. Nine were the result of external non-penetrating trauma and all but three had other serious injuries. The remaining two were caused by endobronchial intubation. Of the cases caused by external injury, respiratory tract injury was confined to the cervical trachea in three. Two required tracheostomy and repair and the third was managed conservatively; all made satisfactory recoveries. Intrathoracic rupture was recognised on or soon after admission in three cases. One patient died of uncontrollable pulmonary haemorrhage before he could be operated on; immediate repair gave good long term results in the other two. In three cases rupture of the main bronchus was not recognised until complete obstruction developed three, five, and 12 weeks after the accidents. The strictures were resected and the lung re-expanded. Robertshaw endobronchial tubes ruptured the left main bronchus in two patients undergoing oesophageal surgery. Uneventful recovery followed immediate repair. The difficulty of confirming rupture of a major airway is discussed and the importance of conserving the lung when the diagnosis has been missed is emphasised. Images PMID:3317977

  17. Creep Rupture Properties of Welded Joints of Heat Resistant Steels

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masayoshi; Watanabe, Takashi; Hongo, Hiromichi; Tabuchi, Masaaki

    In this study, the high-temperature mechanical and creep rupture properties of Grade 91/Grade 91 (Mod. 9Cr-Mo) similar welded joints and Grade 91/Inconel 82/SUS304 dissimilar welded joints were examined. The effects of temperature and stress on the failure location in the joints were also investigated. Creep rupture tests were conducted at 823, 873, and 923 K; the applied stress ranges were 160-240, 80-160, and 40-80 MPa, respectively. The creep rupture strengths of the specimens with welded joints were lower than those of the specimens of the base metal at all temperature levels; in addition, these differences in creep strength increased with temperature. After being subjected to long-term creep rupture tests, the fracture type exhibited by the dissimilar welded joints was transformed from Types V and VII to Type IV. It was estimated that the fracture type exhibited by the dissimilar welded joints after 100,000-h rupture strength tests at 823 K and 873 K was Type IV fracture.

  18. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  19. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  20. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  1. Rupture interaction with fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Propagation of moderate to large earthquake ruptures within major transcurrent fault systems is affected by their large-scale brittle infrastructure, comprising echelon segmentation and curvature of principal slip surfaces (PSS) within typically ˜1 km wide main fault zones. These PSS irregularities are classified into dilational and antidilational fault jogs depending on the tendency for areal increase or reduction, respectively, across the jog structures. High precision microearthquake studies show that the jogs often extend throughout the seismogenic regime to depths of around 10 km. On geomorphic evidence, the larger jogs may persist for periods >105 years. While antidilational jogs form obstacles to both short- and long-term displacements, dilational jogs appear to act as kinetic barriers capable of perturbing or arresting earthquake ruptures, but allowing time-dependent slip transfer. In the case of antidilational jogs slip transfer is accommodated by widespread subsidiary faulting, but for dilational jogs it additionally involves extensional fracture opening localized in the echelon stepover. In fluid-saturated crust, the rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures is opposed by induced suctions which scale with the width of the jog. Rupture arrest at dilational jogs may then be followed by delayed slip transfer as fluid pressures reequilibrate by diffusion. Aftershock distributions associated with the different fault jogs reflect these contrasts in their internal structure and mechanical response.

  2. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Trylesinski, Gabriel

    Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with

  3. Quadriceps Tendon Rupture due to Postepileptic Convulsion

    PubMed Central

    Erkut, Adem; Guvercin, Yilmaz; Sahin, Rifat; Keskin, Davut

    2014-01-01

    We present a case of quadriceps tendon (QT) rupture. QT ruptures can occur in all ages. The cause is mostly traumatic in origin. Spontaneous ruptures that are thought to result from predisposing conditions are rare. Post-convulsion QT ruptures lacking traumas in their history can be overlooked in clinical examinations. This should be born in mind by the attending physician, as early diagnosis and treatment of the condition can lead to satisfactory outcomes. PMID:24944977

  4. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  5. A Retrospective Analysis of Ruptured Breast Implants

    PubMed Central

    Baek, Woo Yeol; Lew, Dae Hyun

    2014-01-01

    Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188

  6. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  7. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  8. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  9. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  10. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  11. [Uterine rupture. A case of spontaneous rupture in a thirty week primiparous gestation ].

    PubMed

    Bretones, S; Cousin, C; Gualandi, M; Mellier, G

    1997-01-01

    Uterine rupture is one of the major complications of pregnancy. Most spontaneous uterine ruptures occur during labor in parturients with a scarred uterus. Spontaneous rupture where the uterus is unscarred are more rare and occur more frequently in older multiparous patients. Starting from a case of uterine rupture occurring in a 40 year-old primiparous women, we will present a review of the literature concerning cases of rupture in healthy uteri with no obvious cause. PMID:9265057

  12. Rupture and dewetting of water films on solid surfaces.

    PubMed

    Mulji, Neil; Chandra, Sanjeev

    2010-12-01

    An experimental study was conducted to observe rupture and dewetting of water films, 0.5-2mm thick, on solid surfaces. The effects of surface roughness, wettability, protrusions on surfaces, and air entrapment between films and surfaces were studied. Film thickness measurements were made and film rupture and surface dewetting photographed. Experiments showed that liquid films ruptured first along the highest edges of test surfaces. Placing a protrusion on the surface had no effect-the liquid film continued to rupture along the edges. A thermodynamic model was developed to show that protrusions lower the surface energy of the system and promote wetting. Increasing surface roughness therefore increases film stability by resisting rupture and dewetting. Water films could be punctured by introducing an air bubble that burst and created a hole. The hole would close if the film was thick and the solid-liquid contact angle was either small or large; the hole would grow larger if the film was thin and the contact angle was in the mid-range (∼80°). An analytical model that calculates the difference between the surface energies of the two states can be used to predict whether a hole would lead to surface dewetting or not. PMID:20817200

  13. Rare presentation of ruptured syphilitic aortic aneurysm with pseudoaneurysm.

    PubMed

    de Almeida Feitosa, Israel Nilton; Dantas Leite Figueiredo, Magda; de Sousa Belem, Lucia; Evelin Soares Filho, Antônio Wilon

    2015-11-01

    We report the interesting case of a rare form of presentation of rupture of the ascending aorta with formation of a pseudoaneurysm, diagnosed following the development of a large mass on the surface of the chest over a period of about eight months. Serological tests were positive for syphilis. Echocardiography and computed tomography angiography were essential to confirm the diagnosis and therapeutic management. Cardiovascular syphilis is a rare entity since the discovery of penicillin. Rupture of an aortic aneurysm with formation of a pseudoaneurysm is a potentially fatal complication. The postoperative period was uneventful and the patient was discharged from hospital within days of surgery. PMID:26481180

  14. Space qualification of the ISO cryogenic rupture discs

    NASA Astrophysics Data System (ADS)

    Ettlinger, E.; Ruediger, H.; Wanner, M.

    1990-03-01

    Space cryostats, like the model to be used in the Infrared Space Observatory (ISO), require safety components to protect the satellite, the launcher, and the personnel against overpressure in the helium system. The ISO cryostat, which carries 2250 cu dm of liquid helium, will be equipped with a rupture disk as the ultimate safety component in case of loss of the insulation vacuum. Because it will have to operate under conditions of zero gravity and low pressure drop, the rupture disk has to be located directly on the helium tank and may thus release up to 5 kg/s of helium at a differential pressure of 2.6 bar directly into the insulation vacuum space. The selection and design of the rupture disk, as well as the test and qualification philosophy, are described.

  15. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  16. PROTOTYPE SYSTEM FOR PLUGGING LEAKS IN RUPTURED CONTAINERS

    EPA Science Inventory

    A development program was performed successfully to develop and test a prototype system for temporarily stopping the flow of hazardous materials spilling on land or underwater from ruptured or damaged containers. The prototype system is portable, integrated, and field-operable by...

  17. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  18. Predicting the endpoints of earthquake ruptures.

    PubMed

    Wesnousky, Steven G

    2006-11-16

    The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate. PMID:17108963

  19. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  20. Renal failure after ruptured aneurysm.

    PubMed

    Abbott, W M; Abel, R M; Beck, C H; Fischer, J E

    1975-09-01

    The effectiveness of an intravenous nutritional program plus aggressive dialysis was studied in 32 patients with renal failure following ruptured abdominal aortic aneurysm. Each patient was managed postoperatively with a renal failure fluid regimen, consisting of the eight essential amino acids plus dextrose in conjunction with peritoneal dialysis and hemodialysis. This regimen induced salutary metabolic effects temporarily improving the patient's condition in most instances. No technical or septic complications associated with the intravenous dietary therapy occurred. However, the incidence of recovery of renal function was low, and the overall patient survival was only 12.5%. The experience indicates that although this program has been shown to be efficacious in some patients with acute renal failure, it seems of little benefit in those whose renal failure follows ruptured aortic aneurysm. PMID:808197

  1. Oesophageal rupture masquerading as STEMI.

    PubMed

    Skaug, Brian; Taylor, Kenneth R; Chandrasekaran, Somya

    2016-01-01

    A 67-year-old man presented to the emergency department, with acute onset of chest pain. Based on ECG changes suggestive of ST elevation myocardial infarction (STEMI), he was taken emergently to the cardiac catheterisation laboratory for coronary angiography. There he was found to have only non-obstructive coronary disease. Subsequent physical examination and review of his chest radiograph revealed subcutaneous emphysema, and CT scan revealed a distal oesophageal rupture and pneumomediastinum. After stabilisation in the intensive care unit (ICU), he was taken to the operating room for thoracotomy, chest tube placement and stenting of his oesophagus. He survived the incident and, after several weeks of ICU stay, recovered to a large extent. His case highlights the importance of considering oesophageal rupture in the differential diagnosis for acute onset of chest pain. PMID:27068730

  2. Spontaneous mid-oesophageal rupture.

    PubMed

    Holt, S; Millar, J W; Heading, R C; Charles, R G

    1978-08-01

    The clinical presentation and management of spontaneous rupture of the middle third of the oesophagus is described in two patients. Early presentation and treatment in one case led to uncomplicated recovery. In the other patient late presentation and diagnosis resulted in delayed surgical intervention with an unsuccessful outcome. The nature of this rare lesion is discussed and nine previously described cases are reviewed. PMID:733690

  3. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  4. Tibiofibular screw fixation for syndesmotic ruptures: a biomechanical analysis.

    PubMed

    Stein, G; Eichler, C; Ettmann, L; Koebke, J; Müller, L P; Thelen, U; Skouras, E

    2012-09-01

    The mechanisms of injuries to the tibiofibular syndesmosis include isolated rupture and rupture in combination with ankle fractures. Current concepts of surgical treatment are fixation using bioabsorbable screws, syndesmotic stapling, syndesmotic hooks, and the widely used screw fixation. Postoperative care utilises passive motion of the ankle joint either with or without axial weight-bearing. The aim of our investigation was to quantify the motion of the mortise during axial load. Therefore, photoelastic tests, on the one hand, and biomechanical tests of cadaveric specimens, on the other, using axial loads of up to 2,000 N were used. Our photoelastic investigations showed force distribution through the screw into the cranial and caudal parts of the distal fibula. Biomechanical testing showed a progressive dehiscence in both ruptured and fixated specimens up to 2.89 (ruptured) and 2.42 mm (despite screw). Our findings strongly suggest a concept of partial weight-bearing at most to support regeneration of scar tissue and to prevent the appearance of instability in the ankle joint. PMID:22415030

  5. Ground motion hazard from supershear rupture

    USGS Publications Warehouse

    Andrews, D.J.

    2010-01-01

    An idealized rupture, propagating smoothly near a terminal rupture velocity, radiates energy that is focused into a beam. For rupture velocity less than the S-wave speed, radiated energy is concentrated in a beam of intense fault-normal velocity near the projection of the rupture trace. Although confined to a narrow range of azimuths, this beam diverges and attenuates. For rupture velocity greater than the S-wave speed, radiated energy is concentrated in Mach waves forming a pair of beams propagating obliquely away from the fault. These beams do not attenuate until diffraction becomes effective at large distance. Events with supershear and sub-Rayleigh rupture velocity are compared in 2D plane-strain calculations with equal stress drop, fracture energy, and rupture length; only static friction is changed to determine the rupture velocity. Peak velocity in the sub-Rayleigh case near the termination of rupture is larger than peak velocity in the Mach wave in the supershear case. The occurrence of supershear rupture propagation reduces the most intense peak ground velocity near the fault, but it increases peak velocity within a beam at greater distances. ?? 2010.

  6. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    SciTech Connect

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-02-14

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours.

  7. Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment

    PubMed Central

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H.; Hopkins, L. Nelson; Meng, Hui

    2008-01-01

    OBJECTIVE The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. METHODS For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P < 0.05) were further examined by multivariate logistic regression analysis. Additionally, receiver operating characteristic analyses were performed on each parameter. RESULTS Statistically significant differences were found between mean values in ruptured and unruptured groups for size ratio, undulation index, nonsphericity index, ellipticity index, aneurysm angle, and aspect ratio. Logistic regression analysis further revealed that size ratio (odds ratio, 1.41; 95% confidence interval, 1.03−1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08−2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. CONCLUSION Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies. PMID:18797347

  8. Assessing magnitude probability distribution through physics-based rupture scenarios

    NASA Astrophysics Data System (ADS)

    Hok, Sébastien; Durand, Virginie; Bernard, Pascal; Scotti, Oona

    2016-04-01

    When faced with complex network of faults in a seismic hazard assessment study, the first question raised is to what extent the fault network is connected and what is the probability that an earthquake ruptures simultaneously a series of neighboring segments. Physics-based dynamic rupture models can provide useful insight as to which rupture scenario is most probable, provided that an exhaustive exploration of the variability of the input parameters necessary for the dynamic rupture modeling is accounted for. Given the random nature of some parameters (e.g. hypocenter location) and the limitation of our knowledge, we used a logic-tree approach in order to build the different scenarios and to be able to associate them with a probability. The methodology is applied to the three main faults located along the southern coast of the West Corinth rift. Our logic tree takes into account different hypothesis for: fault geometry, location of hypocenter, seismic cycle position, and fracture energy on the fault plane. The variability of these parameters is discussed, and the different values tested are weighted accordingly. 64 scenarios resulting from 64 parameter combinations were included. Sensitivity studies were done to illustrate which parameters control the variability of the results. Given the weight of the input parameters, we evaluated the probability to obtain a full network break to be 15 %, while single segment rupture represents 50 % of the scenarios. These rupture scenario probability distribution along the three faults of the West Corinth rift fault network can then be used as input to a seismic hazard calculation.

  9. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  10. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  11. Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture

    PubMed Central

    Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.

    2013-01-01

    Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140

  12. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  13. Development of cryogenic rupture discs for the space borne CRISTA project

    NASA Astrophysics Data System (ADS)

    Trant, R.; Neusser, C.; Offermann, D.; Kesting, F.

    Space cryostats require safety components to protect the cryogenic system against overpressure. The CRISTA cryostat (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere), which contains 725 1 supercritical helium, will have a three stage safety system. A cryogenic rupture disc mounted directly on the helium tank will be the ultimate safety component. For qualifying cryogenic rupture discs a low temperature test facility was developed. The batch qualification of the cryogenic rupture disc, which is of the reserve buckling type, shows a standard deviation comparable with that at ambient temperature. The design of the rupture disc as well as test program and test results of the successfully performed qualification are described. Furthermore, design and performance of the low temperature test facility are treated.

  14. Tendon Ruptures Associated With Corticosteroid Therapy

    PubMed Central

    Halpern, Alan A.; Horowitz, Bruce G.; Nagel, Donald A.

    1977-01-01

    In five patients, tendon ruptures occurred in association with corticosteroid therapy, either systemic or local infiltration. The chronic nature of the pain in all of these patients suggests that what we often call tendinitis may in fact be early or partial ruptures of tendons. Patients who receive local infiltration of corticosteroids should perhaps be advised of the risk of a ruptured tendon. In addition, particularly when the Achilles tendon is involved, immobilization should be utilized initially for a presumed tendinitis or early rupture, to protect the tendon from further injury. ImagesFigure 1.Figure 2. PMID:919538

  15. Acute Pectoralis Major Rupture Captured on Video

    PubMed Central

    Valencia Mora, María

    2016-01-01

    Pectoralis major (PM) ruptures are uncommon injuries, although they are becoming more frequent. We report a case of a PM rupture in a young male who presented with axillar pain and absence of the anterior axillary fold after he perceived a snap while lifting 200 kg in the bench press. Diagnosis of PM rupture was suspected clinically and confirmed with imaging studies. The patient was treated surgically, reinserting the tendon to the humerus with suture anchors. One-year follow-up showed excellent results. The patient was recording his training on video, so we can observe in detail the most common mechanism of injury of PM rupture. PMID:27595030

  16. Spontaneous rupture of uterine leiomyoma during labour

    PubMed Central

    Ramskill, Nikki; Hameed, Aisha; Beebeejaun, Yusuf

    2014-01-01

    Uterine rupture in labour requires an emergency caesarean section. In women with a uterine scar, either from gynaecological surgery or from a previous caesarean section, it is well documented that the risk of rupture is higher than in those without. Spontaneous uterine rupture in a uterus with fibroids during pregnancy or labour is extremely rare. We present a case of a 33-year-old, unbooked pregnant woman from Nigeria who had a uterine rupture secondary to fibroids. She required an emergency caesarean section in labour. The fibroids were not removed. Her baby was born alive and in good condition and she made an uneventful recovery. PMID:25199188

  17. Rupture dynamics in model polymer systems.

    PubMed

    Borah, Rupam; Debnath, Pallavi

    2016-05-11

    In this paper we explore the rupture dynamics of a model polymer system to capture the microscopic mechanism during relative motion of surfaces at the single polymer level. Our model is similar to the model for friction introduced by Filippov, Klafter, and Urbakh [Filippov et al., Phys. Rev. Lett., 2004, 92, 135503]; but with an important generalization to a flexible transducer (modelled as a bead spring polymer) which is attached to a fixed rigid planar substrate by interconnecting bonds (modelled as harmonic springs), and pulled by a constant force FT. Bonds are allowed to rupture stochastically. The model is simulated, and the results for a certain set of parameters exhibit a sequential rupture mechanism resulting in rupture fronts. A mean field formalism is developed to study these rupture fronts and the possible propagating solutions for the coupled bead and bond dynamics, where the coupling excludes an exact analytical treatment. Numerical solutions to mean field equations are obtained by standard numerical techniques, and they agree well with the simulation results which show sequential rupture. Within a travelling wave formalism based on the Tanh method, we show that the velocity of the rupture front can be obtained in closed form. The derived expression for the rupture front velocity gives good agreement with the stochastic and mean field results, when the rupture is sequential, while propagating solutions for bead and bond dynamics are shown to agree under certain conditions. PMID:27087684

  18. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  19. A Reliable Way to Track Rupture Process of Earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ge, Z.

    2014-12-01

    Compressive sensing (CS) is an algorithm which could find the solution to a sparse linear problem, which is physically consist with inversion problem of rupture process. Because relative to the whole fault plane, the seismic power radiation area is sparse in a specific moment during a great earthquake. CS method is used to invert the rupture process from teleseismic P wave data recorded by multiple seismic arrays with different azimuths and epicentral distances. Synthetic tests illustrate that, our method can suppress the artifacts caused by interference phases ( eg. PcP ) thus we can obtain a more reliable result than using the data from a single array. Moreover, the "swimming effect" in traditional back-projection method can be reduced due to the better azimuth coverage. Then the rupture process of the Mw7.9 earthquake in the Aleutian Islands, occurred at June 23, 2014 20:53 UTC is inverted. The results show that the rupture is along the subduction zone, which can be used to locate the primary fault plane combined with central moment tensor. In addition, where the released power concentrates in the earthquake is also given, which could help us determine which area is effected by the earthquake most heavily, thus the rescue operation can be effective. In conclusion, different from traditional beamforming method, CS can offer a high-resolution solution.

  20. Spontaneous postpartum rupture of an intact uterus: a case report.

    PubMed

    Mavromatidis, George; Karavas, George; Margioula-Siarkou, Chrysoula; Petousis, Stamatios; Kalogiannidis, Ioannis; Mamopoulos, Apostolos; Rousso, David

    2015-01-01

    Rupture of uterus is an obstetrical complication characterized by a breach in the uterine wall and the overlying serosa. We report an unusual case of spontaneous rupture of an unscarred uterus in a 33-year-old woman, a day after her third successful vaginal delivery. A 33-year-old pregnant woman, gravid 3, para 3, was referred to our department at 39 gestational week because of rupture of membranes. Despite tocolysis administration, her pregnancy was delivered vaginally after 2 days, giving birth to a male neonate of 3,020 g with normal Apgar scores at first and fifth minute. Her uterus was intact and gynecological examination after delivery was normal without any potential signs or symptoms of pathology. However, the day following her labor, patient complained of left iliac fossa pain. Her blood tests revealed a CRP value at 27.6 mg/L, whereas the X-rays revealed an extensive impacted fecal mass in the colon. MRI revealed that the left lower myometrial part of the uterus was depicted abrupt, with simultaneous presence of hemorrhagic stuff. The decision of laparotomy was therefore made in order to further evaluate rupture of uterus and properly treat patient. And subtotal hysterectomy was performed. Postoperative follow-up period was not characterized by any complications and patient was finally discharged 4 days after hysterectomy. PMID:25368704

  1. Soft, Brown Rupture: Clinical Signs and Symptoms Associated with Ruptured PIP Breast Implants

    PubMed Central

    Duncan, Robert T.; Feig, Christine; Reintals, Michelle; Hill, Sarah

    2014-01-01

    Background: Preoperative signs and symptoms of patients with Poly Implant Prothese (PIP) implants could be predictive of device failure. Based on clinical observation and intraoperative findings 4 hypotheses were raised: (1) Preoperative clinical signs including acquired asymmetry, breast enlargement, fullness of the lower pole, decreased mound projection, and change in breast consistency could be indicative of implant rupture. (2) Device failure correlates with a low preoperative Baker grade of capsule. (3) Brown-stained implants are more prone to implant failure. (4) The brown gel could be indicative of iodine ingression through a substandard elastomer shell. Methods: Preoperative clinical signs were compared with intraoperative findings for 27 patients undergoing PIP implant explantation. Results: Acquired asymmetry (P = 0.0003), breast enlargement (P = 0.0002), fuller lower pole (P < 0.0001), and loss of lateral projection (P < 0.0001) were all significantly predictive of device failure. Capsule Baker grade was lower preoperatively for ruptured implants. The lack of palpable and visible preoperative capsular contracture could be secondary to the elastic nature of the capsular tissue found. Brown implants failed significantly more often than white implants. Analysis of brown gel revealed the presence of iodine, suggesting povidone iodine ingression at implantation. Conclusions: Preoperative signs can be predictive of PIP implant failure. Brown-stained implants are more prone to rupture. The presence of iodine in the gel suggests unacceptable permeability of the shell early in the implant’s life span. A noninvasive screening test to detect brown implants in situ could help identify implants at risk of failure in those who elect to keep their implants. PMID:25506532

  2. [Tendinosis and ruptures of the Achilles tendon].

    PubMed

    Amlang, M H; Zwipp, H

    2012-02-01

    Tendinosis of the Achilles tendon is a degenerative-reparative structural change of the tendon with microdefects, increases in cross-section due to cicatricial tendon regeneration, neoangiogenesis and reduction of elasticity. The previously used term tendinitis is only rarely used for the chronic form since signs of inflammation such as redness and hyperthermia or elevated levels of inflammatory parameters on laboratory testing are generally absent. Duplex sonography with visualization of the neovascularization has become a valuable supplement not only for diagnostics but also for therapy planning. The classic, conservative therapy for painful tendinosis consists of oral anti-inflammatory drugs, pain-adapted load reduction, raising the heel, stretching the calf musculature, and various physiotherapeutic interventions. When conservative treatment over a period of 4 - 6 months fails to produce any or non-adequate pain relief, an indication for surgical treatment should be considered. In the therapy for fresh ruptures of the Achilles tendon further developments in minimally invasive techniques have led to a worldwide paradigm change over the past 10 years. The decisive advantage of minimally invasive surgical techniques is the lower risk of wound infection as compared to the sutures of the open technique. When compared with conservative functional therapy the minimally invasive repair has the advantage of being less dependent on the compliance of the patient since, in the early phase of tendon healing the suture prevents a separation of the tendon ends upon controlled movements. However, not every patient with a ruptured Achilles tendon should be treated with a minimally invasive repair. Open tendon reconstruction and functional conservative therapy are still justified when the correct indication is given. PMID:22344862

  3. Second-Trimester Uterine Rupture: Lessons Learnt

    PubMed Central

    F. ABDULWAHAB, Dalia; ISMAIL, Hamizah; NUSEE, Zalina

    2014-01-01

    Uterine rupture is a rare life-threatening complication. It mainly occurs in the third trimester of pregnancy and is rarely seen during the first or second trimesters. Our centre experienced three important cases of uterine rupture. First case: spontaneous uterine rupture at 14 weeks of pregnancy, which was diagnosed at autopsy. It was misled by the ultrasound finding of an intrauterine pregnancy, and searching for other non-gynaecological causes delayed the urgent obstetric surgical management. Second case: ruptured uterus at 24 weeks following medical termination due to foetal anomaly. It was diagnosed only at laparotomy indicated for failed medical termination and chorioamnionitis. Third case: uterine rupture at 21 weeks of pregnancy in a patient with gastroenterology symptoms. In these reports, we have discussed the various risk factors, presentations, course of events and difficulties in diagnosing uterine rupture. The study concludes that the clinical presentation of uterine ruptures varies. It occurs regardless of gestational age. Ultrasound findings of intrauterine pregnancy with free fluid do not exclude uterine rupture or ectopic pregnancy. Searching for non-gynaecological causes in such clinical presentations might delay crucial surgical intervention, which leads to unnecessary morbidity, mortality or loss of obstetrics function. PMID:25977625

  4. [Bilateral bronchial rupture: problems of respiratory management].

    PubMed

    Sztark, F; Thicoïpé, M; Favarel-Garrigues, J F; Velly, J F; Lassié, P

    1995-01-01

    The authors report the case of bilateral bronchial rupture in a 39-year-old multiple trauma patient. During the thoracotomy for right main bronchus repair, a partial left bronchial rupture was recognized because of severe hypoxaemia after left selective intubation. PMID:7486281

  5. Madelung Deformity and Extensor Tendon Rupture.

    PubMed

    Shahcheraghi, Gholam Hossain; Peyman, Maryam; Mozafarian, Kamran

    2015-07-01

    Extensor tendon rupture in chronic Madelung deformity, as a result of tendon attrition on the dislocated distal ulna, is a rare occurrence. It is, however, seen more often in rheumatoid arthritis. There are few case reports in the English-language literature on this issue. We report a case of multiple tendon ruptures in a previously undiagnosed Madelung deformity. PMID:26161772

  6. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    PubMed

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin. PMID:22561379

  7. Myocardial infarction complicated by ventricular septal rupture.

    PubMed

    Sahjian, Michael; Ventriglia, Rich; Bolton, Lauri

    2012-01-01

    Transporting patients with an ST segment elevation myocardial infarction (STEMI) is a fairly common practice for most critical care transport teams. When a STEMI is complicated by ventricular septal rupture, the care can become more challenging, especially if the rupture is not yet diagnosed. This article describes such a transport and reviews the pathophysiology of the process along with treatment options. PMID:22225564

  8. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  9. The effects of barriers on supershear rupture

    NASA Astrophysics Data System (ADS)

    Xu, Jiankuan; Zhang, Zhenguo; Chen, Xiaofei

    2016-07-01

    A barrier may induce a supershear rupture transition in some cases, whereas it may prevent the further propagation of a supershear rupture in other cases. We investigate the effects of a barrier on the supershear rupture propagation on a planar fault in a 3-D half-space. Our results show that the effect of a barrier on supershear is strongly dependent on its size, strength, and location. For larger sizes, shallower buried depths, and relatively higher strengths, the barrier tends to prevent supershear propagation more strongly. When the barrier is located on the free surface and near the critical distance, it prevents the further propagation of supershear rupture. If a barrier is located far from the critical distance, the first supershear daughter crack is slowed down and a new supershear daughter crack is generated after the rupture front passes through the barrier. This mechanism greatly lengthens the supershear transition distance.

  10. Turning points in reactor design

    SciTech Connect

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  11. Do buried-rupture earthquakes trigger less landslides than surface-rupture earthquakes for reverse faults?

    NASA Astrophysics Data System (ADS)

    Xu, Chong

    2014-07-01

    Gorum et al. (2013, Geomorphology 184, 127-138) carried out a study on inventory compilation and statistical analyses of landslides triggered by the 2010 Mw 7.0 Haiti earthquake. They revealed that spatial distribution patterns of these landslides were mainly controlled by complex rupture mechanism and topography. They also suggested that blind-rupture earthquakes trigger fewer landslides than surface-rupture earthquakes on thrust reverse faults. Although a few lines of evidence indicate that buried-rupture earthquakes might trigger fewer landslides than surface-rupture earthquakes on reverse faults, more careful comparisons and analyses indicate that it is not always true. Instead, some cases show that a buried-rupture earthquake can trigger a larger quantity of landslides that are distributed in a larger area, whereas surface-rupture earthquakes can trigger larger but a fewer landslides distributed in a smaller area.

  12. Reconstruction of chronic patellar tendon rupture with contralateral BTB autograft: a case report.

    PubMed

    Milankov, Miroslav Z; Miljkovic, Natasa; Stankovic, Milan

    2007-12-01

    Chronic patellar tendon rupture is a rare disabling injury that is technically difficult to repair. Many different surgical methods have been reported for the reconstruction of chronic patellar tendon ruptures. We are reporting the use of contralateral bone-tendon-bone (BTB) autograft for chronic patellar tendon rupture reconstruction followed by double-wire loop reinforcement and without postoperative immobilization. One year after the operation, our patient had full knee extension and up to 130 degrees of flexion. He had good quadriceps strength, and isokinetic muscle testing showed no deficit comparing to his right leg. Patient returned to playing basketball in his spare time, without having any limitation. PMID:17579835

  13. Stress-rupture strength and microstructural stability of W-HF-C wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    W-Hf-C/superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100-and 1000-hour rupture strengths obtained for 70 volume percent fiber composites tested at 1090 C were 420 and 280 MN/sq m (61,000 and 41,000 psi). The investigation indicated that with better quality fibers, composites having 100- and 1000-hour rupture strengths of 570 and 370 MN/sq m (82,000 and 54,000 psi) may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for long time applications at 1090 C for 1000 hours or more.

  14. Effect of heating method on stress-rupture life

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  15. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  16. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  17. Spontaneous rupture of the spleen operated in gynecological unit mistaken for ruptured hemorrhagic ovarian cyst: total splenectomy

    PubMed Central

    Eko, Filbert Eko; Fouelifack, Florent Ymele; de Paul, Elanga Vincent

    2014-01-01

    Spontaneous splenic rupture is always neglected when consulting acute abdominal pains in gynecological emergencies. It constitutes about 1% of all splenic ruptures and can be managed by abstention, surgery or embolization. We present the case of a young lady who was diagnosed of spontaneous rupture during surgery that was mistaken for ruptured hemorrhagic ovarian cyst and finally treated by total splenectomy. The pre-operative work up was absolute for a rupturred hemorrhagic cyst and secondariy for a ruptured ectopic gestation. PMID:25918564

  18. Lithological and rheological constraints on fault rupture scenarios for ground motion hazard prediction. Revision 1

    SciTech Connect

    Foxall, W.; Hutchings, L.; Jarpe, S.

    1994-09-01

    This paper tests a new approach to predict a range of ground motion hazard at specific sites generated by earthquakes on specific faults. The approach utilizes geodynamics to link structural, lithological and Theological descriptions of the fault zones to development of fault rupture scenarios and computation of synthetic seismograms. Faults are placed within a regional geomechanical model that is used to calculate stress conditions along the fault. The approach is based upon three hypothesis: (1) An exact solution of the representation relation that u@s empirical. Green`s functions enables very accurate computation of ground motions generated by a given rupture scenario; (2) a general description of the rupture is sufficient; and (3) the structural, lithological and Theological characteristics of a fault can be used to constrain, in advance, possible future rupture histories. Ground motion hazard here refers to three-component, full wave train descriptions of displacement, velocity, and acceleration over the frequency band 0.01 to 25 Hz. Corollaries to these hypotheses are that the range of possible fault rupture histories is narrow enough to functionally constrain the range of strong ground motion predictions, and that a discreet set of rupture histories is sufficient to span the infinite combinations possible from a given range of rupture parameters.

  19. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.

  20. Chronic rupture of abdominal aortic aneurysm.

    PubMed

    Kotsis, Thomas; Thomas, Kotsis; Tympa, Aliki; Aliki, Tympa; Kalinis, Aris; Aris, Kalinis; Vasilopoulos, Ioannis; Ioannis, Vasilopoulos; Theodoraki, Kassiani; Kassiani, Theodoraki

    2011-10-01

    Although the mortality rate after abdominal aortic aneurysm rupture approximates 90% despite the urgent management, a few cases of chronic rupture and delayed repair have been reported in the world literature; anatomic and hemodynamic reasons occasionally allow for the fortunate course of these patients. We report in this article the case of 76-year-old man with a ruptured abdominal aortic aneurysm who was transferred to our facility 4 weeks after his initial hospitalization in a district institution and who finally had a successful open repair. PMID:21620664

  1. Ruptured rudimentary horn pregnancy at sixteen weeks.

    PubMed

    Zeqiri, Fehmi; Paçarada, Myrvete; Kongjeli, Niltene; Zeqiri, Vlora; Kongjeli, Gyltene; Krasniqi, Burim

    2010-01-01

    Pregnancy in a non-communicating rudimentary horn is very difficult to diagnose before it ruptures, leading to life -threatening intraperitoneal hemorrhage. A 22-year-old second gravida patient presented at the Emergency Center of the University Clinical Center of Kosova with a 16-week history of amenorrhea and acute onset of severe abdominal pain. She was resuscitated and taken for an emergency laparotomy under general anesthesia. Intraoperatively, there was a massive hemoperitoneum with a ruptured right rudimentary horn Given their rarity, ruptured rudimentary horn pregnancies are of interest. PMID:24591927

  2. Misdiagnosed Chest Pain: Spontaneous Esophageal Rupture

    PubMed Central

    Inci, Sinan; Gundogdu, Fuat; Gungor, Hasan; Arslan, Sakir; Turkyilmaz, Atila; Eroglu, Atila

    2013-01-01

    Chest pain is one of themost common complaints expressed by patients presenting to the emergency department, and any initial evaluation should always consider life-threatening causes. Esophageal rupture is a serious condition with a highmortality rate. If diagnosed, successful therapy depends on the size of the rupture and the time elapsed between rupture and diagnosis.We report on a 41-year-old woman who presented to the emergency department complaining of left-sided chest pain for two hours. PMID:27122690

  3. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  4. Polyarteritis Nodosa-Induced Pancreaticoduodenal Artery Aneurysmal Rupture

    PubMed Central

    Levin, Steven; Graber, John; Ehrenwald, Eduardo; Skeik, Nedaa

    2013-01-01

    Polyarteritis nodosa (PAN) is a systemic, necrotizing vasculitis of small- and medium-sized arteries typically with multiorgan involvement. Most cases of PAN are idiopathic, although hepatitis B or C virus infections and hairy cell leukemia are important in the pathogenesis of some cases. PAN is characterized as segmental transmural inflammation of muscular arteries. Diagnosis is based on clinical suspicion, a negative immunofluorescence test for antineutrophil cytoplasmic antibodies, and whenever possible, biopsy conformation. Angiographic images may reveal microaneurysms affecting the renal, hepatic, or mesenteric vasculature. Aneurysmal formation and rupture are important complications that can be fatal. Treatment may warrant immunosuppression with steroids and cyclophosphamide. If left untreated, PAN can be fatal. To our knowledge, we report the second documented case of PAN-induced ruptured inferior pancreaticoduodenal artery aneurysm. PMID:25780330

  5. Spontaneous rupture of uterine vein in twin pregnancy.

    PubMed

    Doger, Emek; Cakiroglu, Yigit; Yildirim Kopuk, Sule; Akar, Bertan; Caliskan, Eray; Yucesoy, Gulseren

    2013-01-01

    Objective. Aim of our study is to present a case of a twin pregnancy following invitro fertilization cycle complicated with hemoperitoneum at third trimester. Case. A 26-year-old nulliparous pregnant woman at 32 weeks of gestation with twin pregnancy following invitro fertilization cycle complained of abdominal pain. After 48 hours of admission, laparotomy was performed with indications of aggravated abdominal pain and decreased hemoglobin levels. Utero-ovarian vein branch rupture was detected on the right posterior side of uterus and bleeding was stopped by suturing the vein. Etiopathogenesis of the present case still remains unclear. Conclusion. Spontaneous rupture of the uterine vessels during pregnancy is a rare complication and may lead to maternal and fetal morbidity and mortality. Diagnosis and treatment are based on the clinical symptoms of acute abdominal pain and laboratory tests of hypovolemic shock signs. PMID:24455353

  6. Spontaneous Rupture of Uterine Vein in Twin Pregnancy

    PubMed Central

    Doger, Emek; Cakiroglu, Yigit; Yildirim Kopuk, Sule; Akar, Bertan; Caliskan, Eray; Yucesoy, Gulseren

    2013-01-01

    Objective. Aim of our study is to present a case of a twin pregnancy following invitro fertilization cycle complicated with hemoperitoneum at third trimester. Case. A 26-year-old nulliparous pregnant woman at 32 weeks of gestation with twin pregnancy following invitro fertilization cycle complained of abdominal pain. After 48 hours of admission, laparotomy was performed with indications of aggravated abdominal pain and decreased hemoglobin levels. Utero-ovarian vein branch rupture was detected on the right posterior side of uterus and bleeding was stopped by suturing the vein. Etiopathogenesis of the present case still remains unclear. Conclusion. Spontaneous rupture of the uterine vessels during pregnancy is a rare complication and may lead to maternal and fetal morbidity and mortality. Diagnosis and treatment are based on the clinical symptoms of acute abdominal pain and laboratory tests of hypovolemic shock signs. PMID:24455353

  7. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  8. Articular cartilage surface failure: an investigation of the rupture rate and morphology in relation to tissue health and hydration.

    PubMed

    Fick, James M; Espino, Daniel M

    2012-05-01

    This study investigates the rupture rate and morphology of articular cartilage by altering the bathing environments of healthy and degenerate bovine cartilage. Soaking tissues in either distilled water or 1.5 M NaCI saline was performed in order to render the tissues into a swollen or dehydrated state, respectively. Creep compression was applied using an 8 mm flat-ended polished indenter that contained a central pore of 450 microm in diameter, providing a consistent region for rupture to occur across all 105 tested specimens. Rupture rates were determined by varying the nominal compressive stress and the loading time. Similar rupture rates were observed with the swollen healthy and degenerate specimens, loaded with either 6 or 7MPa of nominal compressive stress over 11 and 13 min. The observed rupture rates for the dehydrated specimens loaded with 7 MPa over 60 and 90s were 20% versus 40% and 20% versus 60% for healthy and degenerate tissues, respectively. At 8 MPa of nominal compressive stress over 60 and 90s the observed rupture rates were 20% versus 60% and 40% versus 80% for healthy and degenerate tissues, respectively; with all dehydrated degenerate tissues exhibiting a greater tendency to rupture (Barnard's exact test, p < 0.05). Rupture morphologies were only different in the swollen degenerate tissues (p < 0.05). The mechanisms by which dehydration and swelling induce initial surface rupture of mildly degenerate articular cartilage differ. Dehydration increases the likelihood that the surface will rupture, however, swelling alters the observed rupture morphology. PMID:22720392

  9. Spontaneous rupture of ovarian cystadenocarcinoma: pre- and post-rupture computed tomography evaluation*

    PubMed Central

    Salvadori, Priscila Silveira; Bomfim, Lucas Novais; von Atzingen, Augusto Castelli; D’Ippolito, Giuseppe

    2015-01-01

    Epithelial ovarian tumors are the most common malignant ovarian neoplasms and, in most cases, eventual rupture of such tumors is associated with a surgical procedure. The authors report the case of a 54-year-old woman who presented with spontaneous rupture of ovarian cystadenocarcinoma documented by computed tomography, both before and after the event. In such cases, a post-rupture staging tends to be less favorable, compromising the prognosis. PMID:26543286

  10. Spontaneous rupture of ovarian cystadenocarcinoma: pre- and post-rupture computed tomography evaluation.

    PubMed

    Salvadori, Priscila Silveira; Bomfim, Lucas Novais; von Atzingen, Augusto Castelli; D'Ippolito, Giuseppe

    2015-01-01

    Epithelial ovarian tumors are the most common malignant ovarian neoplasms and, in most cases, eventual rupture of such tumors is associated with a surgical procedure. The authors report the case of a 54-year-old woman who presented with spontaneous rupture of ovarian cystadenocarcinoma documented by computed tomography, both before and after the event. In such cases, a post-rupture staging tends to be less favorable, compromising the prognosis. PMID:26543286

  11. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy

    PubMed Central

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Abstract Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  12. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy.

    PubMed

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  13. [Centralisation of treatment of ruptured aneurysm].

    PubMed

    Akkersdijk, Willem L; Akkersdijk, George J M; Akkersdijk, George P

    2014-01-01

    In the future, patients with a ruptured aneurysm will be treated at fewer hospitals in the Netherlands. Although there is a search for scientific support for this, the reason for centralisation is obvious: reduction of costs and reduction of workload for vascular surgeons during night and weekend shifts. Already there are a number of examples of regionally organised vascular surgeons who treat their patients with a ruptured aneurysm with great satisfaction and with good results. PMID:25563776

  14. Dynamic rupture activation of backthrust fault branching

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Ben-Zion, Yehuda; Ampuero, Jean-Paul

    2015-03-01

    We perform dynamic rupture simulations to investigate the possible reactivation of backthrust branches triggered by ruptures along a main thrust fault. Simulations with slip-weakening fault friction and uniform initial stress show that fast propagation speed or long propagation distance of the main rupture promotes reactivation of backthrust over a range of branch angles. The latter condition may occur separately from the former if rupture speed is limited by an increasing slip-weakening distance towards the junction direction. The results suggest a trade-off between the amplitude and duration of the dynamic stress near the main rupture front for backthrust reactivation. Termination of the main rupture by a barrier can provide enhanced loading amplitude and duration along a backthrust rooted near the barrier, facilitating its reactivation especially with a high frictional resistance. The free surface and depth-dependent initial stress can have several additional effects. The sign of the triggered motion along the backthrust can be reversed from thrust to normal if a deeply nucleated main rupture breaks the free surface, while it is preserved as thrust if the main rupture is terminated by a barrier at depth. The numerical results are discussed in relation to several recent megathrust earthquakes in Sumatra, Chile, and Japan, and related topics such as branch feedbacks to the main fault. The dynamic view on backthrust fault branching provided by the study fills a gap not covered by quasi-static models or observations. A specific examined case of antithetic fault branching may be useful for indicating a barrier-like behavior along the main fault.

  15. The SCEC-USGS Dynamic Earthquake Rupture Code Verification Exercise: Regular and Extreme Ground Motion

    NASA Astrophysics Data System (ADS)

    Harris, R.; Barall, M.; Archuleta, R. J.; Aagaard, B.; Ampuero, J. P.; Andrews, D. J.; Cruz-Atienza, V. M.; Dalguer Gudiel, L. A.; Day, S. M.; Duan, B.; Dunham, E. M.; Ely, G. P.; Gabriel, A. A.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Ma, S.; Noda, H.; Oglesby, D. D.; Olsen, K. B.; Roten, D.; Song, S.

    2010-12-01

    We summarize recent progress by the SCEC-USGS Dynamic Rupture Code Verification Group, that examines if SCEC and USGS researchers’ spontaneous-rupture computer codes agree when computing benchmark scenarios for dynamic earthquake rupture. Our latest benchmarks are ‘regular’ dynamic ruptures on a vertical strike-slip fault and on a normal fault, at a range of resolutions, and, ‘extreme’ dynamic ruptures on a normal fault. The ‘extreme’ dynamic ruptures were designed as complete stress-drop, supershear ruptures that would be most likely to produce maximum possible ground motions. These simulated ruptures could be thought of as very unlikely, but still possible. Among the 2009 ‘extreme’ dynamic rupture benchmarks were those targeted to test two simplified versions of the Andrews et al. [BSSA, 2007] numerical simulations for hypothesized maximum-possible ground motion at a site near Yucca Mountain. To test the Andrews et al. methodology, we constructed a benchmark for a planar dipping normal-fault set in a medium where the off-fault response was designated to be elastic (TPV12), and another benchmark where the off-fault response was designated to be plastic (TPV13). Although most of our group’s previous benchmarks have concentrated on 3D solutions, both the TPV12 and TPV13 benchmarks were offered with both 2D and 3D options, partly because the Andrews et al. study was conducted in 2D, and partly because it is important to understand the differences and similarities among 2D and 3D rupture propagation and ground motion predictions. Seven researchers’ codes participated in the TPV12 2D benchmark test, seven participated in the TPV12 3D test, six participated in the TPV13 2D benchmark test, and four participated in the TPV13 3D test. Our findings were similar to those hypothesized in the Andrews et al. publication. At a proposed site for a nuclear waste repository, that was modeled to be 1-km from the fault, at 300 m depth, our 2D elastic benchmark

  16. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  17. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  18. Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium-water reaction

    SciTech Connect

    Sudha, C.; Parameswaran, P. Kishore, S.; Murthy, C. Meikanda; Rajan, M.; Vijayalakshmi, M.; Raghunathan, V.S.

    2008-08-15

    This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium-water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the 'self wastage' of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as {>=} 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium-water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.

  19. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    NASA Astrophysics Data System (ADS)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  20. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  1. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  2. Spontaneous Rupture of Hepatic Metastasis from Pancreatic Adenocarcinoma.

    PubMed

    Rahul, Anil; Robin, Fernandes; Adarsh, Hiremath

    2016-01-01

    A 58-year-old man with advanced-stage pancreatic adenocarcinoma presented with fatigue and dyspnea. Examination revealed tachycardia (102 b/min) with mild tenderness in right upper quadrant. His hemoglobin (Hb) was 7.9 g/dL (10 days prior to presentation 12.2 g/dL), International normalized ratio (INR), platelet count was normal, and the stool guaiac test was negative. On admission, abdominal computed tomography (CT) scan showed hepatic metastatic lesion with a rupture and hemoperitoneum communicating to the subdiaphragmatic space. This rapid progression of anemia along with presenting symptoms and CT imaging were attributed to diagnosis of spontaneous rupture of liver metastasis from pancreatic adenocarcinoma. Patient received blood transfusion and hemoglobin was monitored in successive intervals. His general condition and anemia improved with conservative management and he was discharged in 3 days. Repeated CT after 4 months showed resolving hemoperitoneum and stable hemoglobin levels. The patient deceased 9 months after being diagnosed. A literature search revealed limited data regarding the incidence and management of spontaneous rupture of metastatic lesion secondary to pancreatic adenocarcinoma which has been managed conservatively and thus we are reporting our experience. PMID:27597912

  3. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  4. Geomorphic Signals for Preferred Propagation Direction of Earthquake Ruptures on North Anatolian Fault System, TURKEY

    NASA Astrophysics Data System (ADS)

    Yildirim, C.; Dor, O.; Rockwell, T.; Emre, O.; Ben-Zion, Y.; Sisk, M.; Duman, T.

    2005-12-01

    The North Anatolian Fault ruptured in a sequence of large earthquakes between 1939 and 1999, generally progressing from east to west. The 1943 and 1944 ruptures propagated unilateraly in opposite directions. Preliminary analysis of the geomorphology along these ruptures shows distinct differences that may reflect repeated ruptures with similar propagation directions. A persistent preferred propagation direction should produce asymmetric damage across the fault that may have goemorphic manifestations. Here we analyze geomorphic signals along the 43 and 44 ruptures to test whether correlative rock bodies across the fault have similar or distinct expression. We made observations at three scales: 1) small scale (< 100m) damage zone, generally expressed as localized badlands due to extremely high drainage density; 2) medium scale data of standard morphometric analyses (drainage density, stream frequency, ruggednes number, bifurcation ratio, landslide density, stream power index, slope length index, curvature and longitudinal profiles) on basins with same lithology; and 3) large scale on major rivers that display different adjustments. At two locations along the 43 rupture, highly eroded badlands south of the rupture have a higher gully density and frequency compared to the north. Drainage density gradually decreases as a function of distance from fault. On the 44 rupture, two sites near Ismetpasa were compared with one north and one south of the fault in the same lithology and with similar morphometric controls (elevation, relief and climate are very similar). Bifurcation ratios are 3.7 for the S side and 3.4 for the N, revealing the general homogeniety of the lithology. Morphometric analysis shows that the N area has higher drainage density, stream frequency, ruggedness number and landslide density. Stream power index , slope length index and curvature analysis are erosion-related parameters that indicate distinctive differences between the two sides of the fault

  5. General Considerations of Ruptured Abdominal Aortic Aneurysm: Ruptured Abdominal Aortic Aneurysm

    PubMed Central

    Lee, Chung Won; Bae, Miju; Chung, Sung Woon

    2015-01-01

    Although development of surgical technique and critical care, ruptured abdominal aortic aneurysm still carries a high mortality. In order to obtain good results, various efforts have been attempted. This paper reviews initial management of ruptured abdominal aortic aneurysm and discuss the key point open surgical repair and endovascular aneurysm repair. PMID:25705591

  6. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  7. Spontaneous rupture of unscarred uterus in a primigravida with preterm prelabour rupture of membranes.

    PubMed

    Mourad, Wael Sayed; Bersano, Debbra J; Greenspan, Peter B; Harper, Diane Medved

    2015-01-01

    Intrapartum uterine rupture is a true obstetrical emergency. Uterine rupture is associated with severe maternal and fetal morbidity and mortality. It is rare in the unscarred uterus of a primigravida. A 23-year-old primigravida with an unscarred uterus was admitted with preterm prelabour rupture of membranes at 36(+4) weeks of gestation. Abnormal fetal heart monitoring, associated with acute onset of severe abdominopelvic pain, developed on admission. Rupture occurred prior to onset of regular uterine contractions and in the absence of any interventional oxytocin. The neonate had evidence of severe acidosis despite emergency caesarean delivery. This case highlights the importance of maintaining a high index of suspicion for uterine rupture, even in the unlikely setting of a primigravida with an unscarred uterus. PMID:26055584

  8. A Rare Case of Simultaneous Acute Bilateral Quadriceps Tendon Rupture and Unilateral Achilles Tendon Rupture

    PubMed Central

    Leong, Wei Yee; Gheorghiu, Daniel; Rao, Janardhan

    2013-01-01

    Introduction: There have been multiple reported cases of bilateral quadriceps tendon ruptures (QTR) in the literature. These injuries frequently associated with delayed diagnosis, which results in delayed surgical treatment. In very unusual cases, bilateral QTRs can be associated with other simultaneous tendon ruptures. Case Report: We present a rare case of bilateral QTR with a simultaneous Achilles Tendon Rupture involving a 31 years old Caucasian man who is a semi-professional body builder taking anabolic steroids. To date bilateral QTR with additional TA rupture has only been reported once in the literature and to our knowledge this is the first reported case of bilateral QTR and simultaneous TA rupture in a young, fit and healthy individual. Conclusion: The diagnosis of bilateral QTR alone can sometimes be challenging and the possibility of even further tendon injuries should be carefully assessed. A delay in diagnosis could result in delay in treatment and potentially worse outcome for the patient. PMID:27298913

  9. Microstructural aspects of creep-rupture life of Type 316L(N) stainless steel in liquid sodium environment

    NASA Astrophysics Data System (ADS)

    Mishra, M. P.; Borgstedt, H. U.; Frees, G.; Seith, B.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of flowing sodium on creep-rupture properties of AISI Type 316L(N) stainless steel base material has been investigated at 550 and 600°C. In sodium test results were compared with reference creep-rupture data generated in air. The creep-rupture lives were longer in air than in sodium environment at 550°C, however, at 600°C, creep-rupture lives were longer in the latter than in the former environment. Microstructural studies showed the presence of sensitization and χ phase on longer duration test specimens at both temperatures. Surface cracks in sodium tested specimens were sharp and relatively more in numbers than in air where cracks were blunted. Cracks seem to follow the intergranular mode. Cavities were formed in long duration tests and propagated ahead of the χ phase.

  10. Dynamic rupture processes inferred from laboratory microearthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, François. X.; Schubnel, Alexandre; Nielsen, Stefan; Bhat, Harsha S.; Deldicque, Damien; Madariaga, Raúl

    2016-06-01

    We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high-frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane is almost total in the breakdown zone (for normal stress >75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our postmortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop, and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over 8 orders of magnitude in slip, from a few microns to tens of meters.

  11. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  12. Component external leakage and rupture frequency estimates

    SciTech Connect

    Eide, S.A.; Khericha, S.T.; Calley, M.B.; Johnson, D.A.; Marteeny, M.L.

    1991-11-01

    In order to perform detailed internal flooding risk analyses of nuclear power plants, external leakage and rupture frequencies are needed for various types of components - piping, valves, pumps, flanges, and others. However, there appears to be no up-to-date, comprehensive source for such frequency estimates. This report attempts to fill that void. Based on a comprehensive search of Licensee Event Reports (LERs) contained in Nuclear Power Experience (NPE), and estimates of component populations and exposure times, component external leakage and rupture frequencies were generated. The remainder of this report covers the specifies of the NPE search for external leakage and rupture events, analysis of the data, a comparison with frequency estimates from other sources, and a discussion of the results.

  13. Right ventricular hydatid cyst ruptured to pericardium

    PubMed Central

    Sabzi, Feridoun; Vaziri, Siavoosh; Faraji, Reza

    2015-01-01

    Cardiac hydatidosis is rare presentation of body hydatidosis. Incidence of cardiac involvements range from 5% to 5% of patients with hydatid disease. Most common site of hydatid cyst in heart is interventricular septum and left ventricular free wall. Right ventricular free wall involvement by cyst that ruptured to pericardial cavity is very rare presentation of hydatid cyst. Cardiac involvement may have serious consequences such as rupture to blood steam or pericardial cavity. Both the disease and its surgical treatment carry a high complication rate, including rupture leading to cardiac tamponade, anaphylaxis and also death. In the present report, a 43-year-old man with constrictive pericarditis secondary to a pericardial hydatid cyst is described. PMID:26139761

  14. Anterior cruciate ligament rupture and osteoarthritis progression.

    PubMed

    Wong, James Min-Leong; Khan, Tanvir; Jayadev, Chethan S; Khan, Wasim; Johnstone, David

    2012-01-01

    Anterior Cruciate Ligament (ACL) rupture is a common sporting injury that frequently affects young, athletic patients. Apart from the functional problems of instability, patients with ACL deficient knees also develop osteoarthritis. Although this is frequently cited as an indication for ACL reconstruction, the relationship between ACL rupture, reconstruction and the instigation and progression of articular cartilage degenerative change is controversial.The purpose of this paper is to review the published literature with regards ACL rupture and the multifactorial causes for osteoarthritis progression, and whether or not this is slowed or stopped by ACL reconstruction.There is no evidence in the published literature to support the view that ACL reconstruction prevents osteoarthritis, although it may prevent further meniscal damage. It must be recognised that this conclusion is based on the current literature which has substantial methodological limitations. PMID:22896777

  15. Postmyomectomic Uterine Rupture Despite Cesarean Section.

    PubMed

    Kacperczyk, Joanna; Bartnik, Paweł; Romejko-Wolniewicz, Ewa; Dobrowolska-Redo, Agnieszka

    2016-03-01

    Uterine fibroids (leiomyomas) are benign smooth muscle tumors of the uterus. Fibroids can develop anywhere within the muscular wall. Leiomyomas may be associated with infertility. Laparoscopic myomectomy is often used to remove symptomatic intramural or subserosal fibroids. Advantages of the procedure include short recovery time and minimal perioperative morbidity. At the same time, the multilayer suture technique is more complicated during laparoscopy. A rare but serious complication of laparoscopic myomectomies is uterine rupture. A brief review of the literature and a clinical example of a 33-year-old woman with history of infertility, laparoscopic myomectomies and uterine rupture followed by peripartum hemorrhage is presented. The treatment of leiomyomas is a challenge not only because of possible recurrence but also due to long-term consequences following successful myomectomy. Management of patients with uterine scars should include careful planning of the route of delivery, as the risk of rupture may be increased. PMID:26976991

  16. Ruptured, Intracranial Dermoid Cyst - A Visual Diagnosis?

    PubMed Central

    Scheer, Fabian; Andresen, Reimer

    2016-01-01

    Dermoid cysts are a very rare entity of intracranial tumours. The traumatic or non-traumatic rupture of the cyst wall is a serious complication that can be treated surgically or conservatively depending on the clinical symptoms. However, more common entities have to be considered as a differential diagnosis. We report on a female patient who was admitted with complaints of significant, prolonged headache and diffuse pain. Analysis of her blood and cerebrospinal fluid indicated no clear pathology. A CT examination of the head revealed a ruptured dermoid cyst adjacent to the left sphenoidal bone. An additional MRI was conducted to confirm the CT findings and rule out an intracranial ischemia or vasospasms. A conservative therapy was scheduled and the patient recovered well. Using current imaging techniques, especially magnetic resonance imaging, it is possible to identify a ruptured dermoid cyst by its pathognomonic signal behavior and rule out potentially life threatening complications. PMID:27190918

  17. A Late Presentation of Spontaneous Bladder Rupture During Labor.

    PubMed

    Farahzadi, A; Mohammadipour, S

    2016-09-01

    Spontaneous bladder rupture is usually due to bladder diseases. Bladder rupture during labor or postpartum is extremely rare. Acute abdomen is the usual presentation of spontaneous bladder rupture. Patients may complain of suprapubic pain, anuria and hematuria. Some patients with intraperitoneal bladder rupture may have no abdominal pain and can pass urine without any symptoms so the diagnosis of intraperitoneal rupture may be difficult in these situations. We report a nulliparous woman with abdominal pain and distension about 20 days after normal vaginal delivery. There was intraperitoneal rupture of bladder in dome of bladder which was sealed by jejunum. PMID:27313990

  18. Consequences of expansion joint bellows rupture

    SciTech Connect

    Daugherty, W.L.; Miller, R.F.; Cramer, D.S.

    1992-01-01

    Expansion joints are used in piping systems to accommodate pipe deflections during service and to facilitate fitup. Typically, the expansion joint bellows is the thinnest part of the pressure boundary, bellows rupture frequencies are typically several orders of magnitude higher than pipe rupture frequencies. This paper reviews an effort to estimate the flow rates associated with bellows rupture. The Level I PRA (probabilistic risk assessment) for the Savannah River Site production reactors made the bounding assumption that bellows rupture would produce the maximum possible leakage - that of a double-ended guillotine break (DEGB). This assumption resulted in predictions of flooding of the reactor building with a high conditional probability that a Loss of Pumping Accident and core melting would follow. This paper describes analyses that were performed to develop a realistic break area and leak rate resulting from bellows rupture and therefore reduce the impact that bellows rupture can have on the estimated total core melt frequency. In the event of a 360 degree circumferential break of the bellows the resulting two sections will separate to the point where the force from the internal pressure acting to push the bellows open is just balanced by the spring force of the bellows itself. For the bellows addressed in this analysis, the equilibrium separation distance is 0.7 inches with normal pump lineup. The opening area is influenced by any initial compression or extension due to installation alignment, and by any operational displacements such as thermal expansion of the adjoining pipe. The influence of such factors is considered and the impact on the flooding rate and, hence, core melt frequency is reviewed.

  19. Consequences of expansion joint bellows rupture

    SciTech Connect

    Daugherty, W.L.; Miller, R.F.; Cramer, D.S.

    1992-11-01

    Expansion joints are used in piping systems to accommodate pipe deflections during service and to facilitate fitup. Typically, the expansion joint bellows is the thinnest part of the pressure boundary, bellows rupture frequencies are typically several orders of magnitude higher than pipe rupture frequencies. This paper reviews an effort to estimate the flow rates associated with bellows rupture. The Level I PRA (probabilistic risk assessment) for the Savannah River Site production reactors made the bounding assumption that bellows rupture would produce the maximum possible leakage - that of a double-ended guillotine break (DEGB). This assumption resulted in predictions of flooding of the reactor building with a high conditional probability that a Loss of Pumping Accident and core melting would follow. This paper describes analyses that were performed to develop a realistic break area and leak rate resulting from bellows rupture and therefore reduce the impact that bellows rupture can have on the estimated total core melt frequency. In the event of a 360 degree circumferential break of the bellows the resulting two sections will separate to the point where the force from the internal pressure acting to push the bellows open is just balanced by the spring force of the bellows itself. For the bellows addressed in this analysis, the equilibrium separation distance is 0.7 inches with normal pump lineup. The opening area is influenced by any initial compression or extension due to installation alignment, and by any operational displacements such as thermal expansion of the adjoining pipe. The influence of such factors is considered and the impact on the flooding rate and, hence, core melt frequency is reviewed.

  20. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    SciTech Connect

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  1. Pectoralis major tendon rupture. Surgical procedures review.

    PubMed Central

    Merolla, Giovanni; Paladini, Paolo; Campi, Fabrizio; Porcellini, Giuseppe

    2012-01-01

    Summary Pectoralis major (PM) muscle is the powerful dynamic stabiliser of the shoulder that acts as a flexor, adductor and internal rotator. The rupture of the PM tendon is a relatively rare injury that was firstly described in a French boy by Patissier in 1822 and later, in 1861, by Letenneur who reported another similiar case. To date, over 200 cases have been published. In this article we describe the clinical anatomy and the mechanism of injuries of PM and we review the surgical procedures for acute and chronic ruptures. PMID:23738281

  2. [Traumatic diaphragmatic rupture with delayed unusual disclosure].

    PubMed

    Thicoïpé, M; Sztark, F; Lassié, P; Tueux, O; Dabadie, P

    1995-01-01

    The authors report the case of a delayed presentation of a traumatic diaphragmatic rupture in a 22-year-old patient admitted to hospital for a minor surgical procedure under general anaesthesia. Nine months before, he had a road traffic accident with a minor thoracic trauma. Three days after surgery, the patient was readmitted for a tension hydrothorax due to the herniation and the perforation of the stomach into the left pleural cavity. Such a delayed presentation of a traumatic diaphragmatic rupture remains uncommon. The peroperative ventilatory factors involved in the development of the hernia are discussed. PMID:8572411

  3. Thoracic Outlet Syndrome Following Breast Implant Rupture

    PubMed Central

    Caplash, Yugesh; Giri, Pratyush; Kearney, Daniel; Wagstaff, Marcus

    2015-01-01

    Summary: We present a patient with bilateral breast implant rupture who developed severe locoregional silicone granulomatous lymphadenopathy. Poly Implant Prothese silicone implants had been used for bilateral breast augmentation 5 years prior. Extracapsular implant rupture and bilateral axillary lymphadenopathy indicated explantation, capsulectomy, and selective lymph node excision. Histology demonstrated silicone lymphadenopathy with no evidence of malignancy. Over the subsequent 12 months, she developed progressive locoregional lymphadenopathy involving bilateral cervical, axillary, and internal mammary groups, resulting in bilateral thoracic outlet syndrome. We report the unusual presentation, progression, and the ultimate surgical management of this patient. PMID:25878942

  4. Ruptured rudimentary horn at 22 weeks.

    PubMed

    Dhar, Hansa

    2012-07-01

    Rudimentary horn is a developmental anomaly of the uterus. Pregnancy in a non-communicating rudimentary horn is very difficult to diagnose before it ruptures. A case of undiagnosed rudimentary horn pregnancy at 22 weeks presented to Nizwa regional referral hospital in shock with features of acute abdomen. Chances of rupture in first or second trimester are increased with catastrophic haemorrhage leading to increased maternal and perinatal morbidity and mortality. Management of such cases is a challenge till today due to diagnostic dilemma. Expertise in ultrasonography and early resort to surgical management is life saving in such cases. PMID:23293421

  5. Experimental Investigation of Thrust Fault Rupture Mechanics

    NASA Astrophysics Data System (ADS)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  6. [Gastric rupture after ingestion of liquid nitrogen].

    PubMed

    Knudsen, Anders Riegels; Nielsen, Casper; Christensen, Peter

    2009-02-01

    A 28-year-old male was admitted to hospital with severe abdominal distension and subcutaneous emphysema after ingesting 15 ml liquid nitrogen to produce an impressive burp. A rupture of the stomach at the lesser curvature was sutured by laparotomy. Peroperative gastroscopy showed no signs of cold-induced lesions. Liquid nitrogen boils at -196 degrees C. When heated to body temperature, it instantly expands 700 times, in this case predictably leading to gastric rupture. Therefore, any oral intake of even small amounts of liquid nitrogen should be avoided. PMID:19210943

  7. Spontaneous Achilles tendon rupture in alkaptonuria

    PubMed Central

    Alajoulin, Omar A.; Alsbou, Mohammed S.; Ja’afreh, Somayya O.; Kalbouneh, Heba M.

    2015-01-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  8. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  9. Creep-rupture behavior of iron superalloys in high pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1981-01-01

    Two cast alloys (CRM-6D and XF-818) and four sheet alloys (A-26, Incoloy 800H, N-155, and 19-9DL) in the thickness range of 0.79 to 0.99 mm were evaluated for use in the Stirling engine. The creep rupture behavior of these iron base high temperature alloys is being determined in air for 10 hr to 3,00 hr, and in 20.7 MPa (3,000 psi) H2 for 10 to 300 hr at temperatures of 650 deg to 925 deg. Material procurement, preparation and air creep rupture testing are described and existing data is analyzed. Systems for the high pressure hydrogen testing are discussed. Statistical analysis of temperature-compensated rupture data for each alloy is included.

  10. Stress-rupture strength and microstructural stability of W-HF-C wire-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    W-Hf-C superalloy composites were found to be potentially useful for turbine-blade applications on the basis of stress-rupture strength. The 100- and 1000-hour rupture strengths obtained for 70 volume percent fiber composites tested at 1090 C were 420 and 280 MN/sq m. The investigation indicated that with better quality fibers, composites having 100- and 1000-hour rupture strengths of 570 and 370 MN/sq m may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for long-term applications at 1090 C for 1000 hours or more.

  11. Primary gastric rupture in 47 horses (1995–2011)

    PubMed Central

    Winfield, Laramie S.; Dechant, Julie E.

    2015-01-01

    The purpose of this retrospective case-control study was to identify factors associated with primary gastric rupture and to investigate if there were differences between etiologies of primary gastric rupture. Compared to the general colic population, Quarter horses were under-represented and Friesians and draft breeds were over-represented in 47 cases of primary gastric ruptures. Horses with primary gastric rupture typically presented with severe clinical and clinicopathological derangements. There were 24 idiopathic gastric ruptures, 20 gastric impaction associated ruptures, and 3 perforating gastric ulcers. Thoroughbred horses were over-represented in the idiopathic gastric rupture group compared to other breeds and etiologies. This study suggests the presence of important breed predispositions for development of gastric rupture. Further study is necessary to identify if these predispositions are associated with management factors or breed-specific disorders. PMID:26345205

  12. Spontaneous rupture of fetal hydronephrosis: case report.

    PubMed

    Kosus, A; Kosus, N; Duran, M; Turhan, N

    2011-08-01

    Hydronephrosis is the most common congenital anomaly observed with prenatal ultrasonography. Ureteropelvic junction obstruction (UPJO) is the most common cause of prenatal hydronephrosis. Spontaneous rupture has been reported in adults with severe hydronephrosis. There is no reported spontaneous rupture case in the fetus in the literature. A spontaneous ureteral rupture due to severe UPJO was reported in this case report. Prenatal ultrasound at 33 week gestation in a 21-year-old pregnant woman, revealed a female fetus with grade IV hydronephrosis of the right kidney, suggestive of a UPJO. During the follow-up at XXXVIII week, 5 cm cystic structure was not observed in right kidney. Mild ectasia was present in pelvicalyciel part which make us think about spontaneous rupture. Ultrasonographic examination after a week post-delivery revealed 15 mm pelvicalyciel ectasia on right side which persisted during the second control after 1 month. Vesicoureteral reflux was not detected during voiding cystourethrogram. Diuretic renography revealed loss of right renal function completely. Because there was not any complain or any clinical sign, surgery was not thought. Spontaneous follow-up was recommended. PMID:21959707

  13. An Uncommon Presentation of Breast Implant Rupture

    PubMed Central

    Watson, David I.; Dean, Nicola R.

    2016-01-01

    Summary: Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  14. Star polymers rupture induced by constant forces

    NASA Astrophysics Data System (ADS)

    García, N. A.; Febbo, M.; Vega, D. A.; Milchev, A.

    2014-10-01

    In this work, we study the breakage process of an unknotted three-arm star-shaped polymer when it is pulled from its free ends by a constant force. The star polymer configuration is described through an array of monomers coupled by anharmonic bonds, while the rupture process is tracked in three-dimensional space by means of Langevin Molecular Dynamics simulations. The interaction between monomers is described by a Morse potential, while a Weeks-Chandler-Anderson energetic contribution accounts for the excluded volume interaction. We explore the effect of the molecular architecture on the distributions of rupture times over a broad interval of pulling forces and star configurations. It was found that the rupture time distribution of the individual star arms is strongly affected by the star configuration imposed by the pulling forces and the length of the arms. We also observed that for large pulling forces the rupture time distributions resemble the dominant features observed for linear polymer chains. The model introduced here provides the basic ingredients to describe the effects of tensile forces on stress-induced degradation of branched macromolecules and polymer networks.

  15. Active diaphragm rupture with laser beam irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Torikai, H.; Yang, Q. S.; Watanabe, K.; Sasoh, A.

    We performed shock tube operations with a layer of diaphragm being ruptured by laser beam irradiation. Mylar or Cellophane was examined as the diaphragm material. It has been demonstrated that shock tube can be operated with this new technique. The absorbed energy depends on the material and thickness of the diaphragm and is an important control parameter.

  16. D-Zero Cryostat Supplemental Rupture Disc

    SciTech Connect

    Mulholland, G.T.; /Fermilab

    1987-08-03

    The common relief and rupture disc vent line requires a double disc assembly with vented interspace for accurate disc burst pressures. The first disc must take pump and purge vacuum loading, but be set to operate at 110% of the MAWP, 18.3 psig (ASME code). The available solution is 18.3 psig with a burst tolerance of +/- psig. The interspace should be locally vented by a flow limiting vent valve to decouple the vent line backpressure from the vessel rupture disc. The second disc must take the worst case vent line backpressure, the steady state value found in D-Zero engineering note 3740.000-EN-63 with all three cryostats simultaneously venting at the fire condition into the 4-inch x 6-inch and 6-inch x 8-inch sections. This value is less than 2 psid. The maximum rupture value for the second disc must be less than the minimum rupture value for the first disc less 2 psid i.e. < 16.3.

  17. Pancreatic pseudocyst rupture into the portal vein.

    PubMed

    Dawson, Brian C; Kasa, David; Mazer, Mark A

    2009-07-01

    A patient with a pancreatic pseudocyst rupture into the portal vein with a resultant noninfectious systemic inflammatory response syndrome and subsequent portal vein thrombosis diagnosed by computed tomography and ultrasonography is reported. A review of the existing English literature on this rare complication is also provided. PMID:19561436

  18. Traumatic rupture of the right subclavian artery

    PubMed Central

    Girdwood, Robert W.; Holden, Michael P.; Ionescu, Marian I.

    1972-01-01

    The case report of a patient who sustained a traumatic rupture of the right subclavian artery in a motor vehicle accident is presented. The preoperative diagnosis, surgical approach, postoperative management, and indications for angiography in traumatic lesions of the thoracic aorta and great vessels are discussed. The relevant literature is reviewed. Images PMID:5034604

  19. An Uncommon Presentation of Breast Implant Rupture.

    PubMed

    Koh, Eugene; Watson, David I; Dean, Nicola R

    2016-05-01

    Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  20. Fatigue crack propagation analysis of plaque rupture.

    PubMed

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data. PMID:23897295

  1. Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture?

    NASA Astrophysics Data System (ADS)

    Tanaka, Miho; Asano, Kimiyuki; Iwata, Tomotaka; Kubo, Hisahiko

    2014-12-01

    The 2011 Fukushima-ken Hamadori earthquake (MW 6.6) occurred about a month after the 2011 Great Tohoku earthquake (MW 9.0), and it is thought to have been induced by the 2011 Tohoku earthquake. After the 2011 Hamadori earthquake, two subparallel faults (the Itozawa and Yunodake faults) were identified by field surveys. The hypocenter was located nearby the Itozawa fault, and it is probable that the Itozawa fault ruptured before the Yunodake fault rupture. Here, we estimated the source rupture process of the 2011 Hamadori earthquake using a model with two subparallel faults based on strong motion data. The rupture starting point and rupture delay time of the Yunodake fault were determined based on Akaike's Bayesian Information Criterion (ABIC). The results show that the Yunodake fault started to rupture from the northern deep point 4.5 s after the Itozawa fault started to rupture. The estimated slip distribution in the shallow part is consistent with the surface slip distribution identified by field surveys. Time-dependent Coulomb failure function changes (ΔCFF) were calculated using the stress change from the Itozawa fault rupture in order to evaluate the effect of the rupture on the Yunodake fault. The ΔCFF is positive at the rupture starting point of the Yunodake fault 4.5 s after the Itozawa fault started to rupture; therefore, it is concluded that during the 2011 Hamadori earthquake, the Yunodake fault rupture was triggered by the Itozawa fault rupture.

  2. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  3. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    PubMed Central

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD. PMID:25552833

  4. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  5. Simultaneous rupture of the quadriceps tendon with contralateral rupture of the patellar tendon in an otherwise healthy athlete.

    PubMed Central

    Munshi, N I; Mbubaegbu, C E

    1996-01-01

    A case of a healthy athlete with simultaneous rupture of quadriceps tendon and rupture of the contralateral patella tendon is reported. Both tendons rupturing in the same patient is rare and this is the first reported case in a previously healthy person. Different mechanisms are implicated in the different ruptures. The rarity is because the simultaneous presence of contributory factors for either injury in the same person is uncommon. Images Fig. 2 PMID:8799608

  6. Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Yin, J.; Yao, H.

    2014-12-01

    Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake

  7. Rupture Paths in Kappa-Maps: Quantitative Insights on Heterogeneous Earthquake Ruptures From Energy Arguments.

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Ripperger, J.; Mai, M.

    2005-12-01

    Earthquake rupture is a notoriously complex process, at all observable scales. Although heterogeneities of strength and initial stress contribute to this rupture complexity, a systematic approach to quantify their effect has not yet been attempted. For instance, little is known about the relation between the final size of an earthquake and the statistical properties of initial strength excess fields. Canonical cases of dynamic rupture (e.g. uniform initial stress and friction properties), can be characterized by two non-dimensional numbers: the S-parameter (ratio of strength excess to stress drop) and the Kappa-parameter (ratio of static energy release rate to fracture energy, Madariaga and Olsen, 2000). The latter was introduced as a global parameter, involving the fault depth or asperity size as the fundamental scale. However, because faults contain heterogeneities at all scales it is not clear how a single scale-length may be relevant to define Kappa. We define here a scale-dependent Kappa-map, based on classical energy concepts in fracture mechanics. In 2D these maps can be defined exactly, and their efficient computation is implemented as a series of FFT-convolutions, by scaled analytical filters related to stress intensity factor weight functions. For given heterogeneous stress drop and fracture energy, such Kappa-maps are useful to predict nucleation properties and final moment, as we illustrate through increasingly complex examples complemented by dynamic rupture simulations. Other properties that can be derived from the 2D Kappa-maps, with additional assumptions, include radiated energy and rupture directivity. In 3D, the shape of the rupture front is unknown a priori and the energy release rate G might be non-uniform along the front. We therefore propose an approximate definition of Kappa in which G is estimated on circular patches. Comparisons with 3D dynamic rupture simulations on highly heterogeneous initial stress fields show that the final moment can

  8. Two strategies to better constrain physics-based rupture scenarios and their uncertainties

    NASA Astrophysics Data System (ADS)

    Hok, Sébastien

    2016-04-01

    Physics-based rupture modelling needs some estimates of the physical parameters controlling the rupture mechanics, such as stresses, friction properties, fault geometries, as well as their variability in space. Given the lack of knowledge and direct way to infer the physical parameters controlling the rupture, these parameters come with uncertainties. To go further toward physics-based source models, we need to find strategies both for improving constraints on the input parameters, especially their variability along the fault plane, and for taking into account the uncertainties in the models. Here I present two interesting ways to improve our prediction capabilities. First, to reduce the uncertainties on the models, new strategies need to be tested for a better estimation of the input friction and stress parameters. In this framework, I will show examples of using interseismic coupling maps (Japan, Chile) as a proxy for the variability of stress drop along the fault plane. This strategy is an efficient way to introduce independent external constraint on the modelling, reducing the total uncertainty of the scenarios. Second, in order to quantify the final uncertainty of the results, we need to choose an appropriate way to handle of the variability of the input parameters. One way is to use logic trees. In this way the final results (rupture scenarios or ground motions) will come with an estimation of the uncertainty. I will illustrate this point with an application to the segmentation of rupture in the Corinth rift and magnitude probabilistic estimation.

  9. DIRDOP: a directivity approach to determining the seismic rupture velocity vector

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-07-01

    Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811-1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru ( M w = 8.4, June 23, 2001); Denali, AK, USA ( M w = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria ( M w = 6.8, May 21, 2003); and Sumatra, Indonesia ( M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.

  10. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  11. Derivative spectrophotometric analysis of cerebrospinal fluid for the detection of a ruptured cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Bhadri, P. R.; Majumder, A.; Morgan, C. J.; Pyne, G. J.; Zuccarello, M.; Jauch, E.; Wagner, K. R.; Clark, J. F.; Caffery, J., Jr.; Beyette, Fred R., Jr.

    2003-11-01

    A cerebral aneurysm is a weakened portion of an artery in the brain. When a cerebral aneurysm ruptures, a specific type of bleeding known as a subarachnoid hemorrhage (SAH) occurs. No test exists currently to screen people for the presence of an aneurysm. The diagnosis of a SAH is made after an aneurysm ruptures, and the literature indicates that nearly one-third of patients with a SAH are initially misdiagnosed and subjected to the risks associated with aneurysm re-rupture. For those individuals with a suspected SAH, a computerized tomography (CT) scan of the brain usually demonstrates evidence of the bleeding. However, in a considerable portion of people, the CT scan is unable to detect the blood that has escaped from the blood vessel. For circumstances when a SAH is suspected despite a normal CT scan, physicians make the diagnosis of SAH by performing a spinal tap. A spinal tap uses a needle to sample the cerebrospinal fluid (CSF) collected from the patient"s back; CSF is tainted with blood after the aneurysm ruptures. To distinguish between a common headache and a SAH, a fast and an effective solution is required. We describe the development of an effective detection system integrating hardware and a powerful software interface solution. Briefly, CSF from the patient is aspirated and excited with an appropriate wavelength of light. The software employs spectrophotometric analysis of the output spectra and lays the foundation for the development of portable and user-friendly equipment for detection of a ruptured cerebral aneurysm.

  12. Dynamic Rupture Processes during Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, F. X.; Schubnel, A.; Nielsen, S. B.; Bhat Suresh, H.; Madariaga, R. I.

    2014-12-01

    Since the proposal by Brace and Byerlee [1966] that the mechanism of stick-slip is similar to earthquakes, many experimental studies have been conducted in order to improve the understanding of rupture mechanics. Here, we report the results of macroscopic stick-slip events in saw-cut samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial laoding (σ1>σ2=σ3) at confining pressures ranging from 10 to 100 MPa. Usual a dual gain system, a high frequency monitoring array recorded the microseismicity during stick-slip sequences and the particle accelerations during macroscopic instabilities. While strain, stress and axial shortening were measured until 10 Hz sampling rate, we also recorded for the first time the dynamic stress changes during macroscopic rupture using dynamic strain gages located close to the fault plane (10 MHz sampling rate). We show that increasing the normal stress acting on the fault plane (i) increases the intensity of foreshock activity prior to the main rupture, (ii) increases the friction along the fault plane, (iii) increases the seismic slip, and (iv) induces the transition from sub-Rayleigh to supershear ruptures [Passelègue et al., 2013]. In addition, after demonstrating that our stick-slip instabilities exhibit a purely slip weakening behavior, we estimated the rupture processes parameters including the size of the breakdown zone (R), the slip-weakening distance (Dc), the energy rate (F) and the fracture energy (G). We compare our results with linear elastic fracture mechanics and previous experimental studies. Finally, the dynamic stress drop is almost complete at high normal stresses with dynamic friction drop ranging from 0.4 to 0.6. These results are consistent with the onset of melting, which was confirmed by our post mortem microstructural analysis (XRD, SEM, TEM). These results show that weakening mechanisms are activated after only 80 μm of slip, suggesting

  13. Isolated Total Rupture of Extraocular Muscles.

    PubMed

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-09-01

    Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2-60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of -3 to -4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for an early surgical

  14. Isolated Total Rupture of Extraocular Muscles

    PubMed Central

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-01-01

    Abstract Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2–60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of −3 to −4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for

  15. Complete rupture of the anterolateral papillary muscle caused by coronary spasm.

    PubMed

    Yamazaki, Masataka; Fukui, Toshihiro; Mahara, Keitaro; Takanashi, Shuichiro

    2015-12-01

    Papillary muscle rupture usually occurs as a catastrophic complication of acute myocardial infarction in patients with coronary artery stenosis; it is therefore less common in patients without coronary artery stenosis. We report the case of a 67-year old woman without coronary artery stenosis who suffered an acute anterolateral papillary muscle rupture and was successfully treated with mitral valve replacement. Evidence of coronary spasm was found on a coronary vasomotion test, suggesting that a high sensitivity to coronary spasm may explain a mechanism of isolated papillary muscle infarction. PMID:26330339

  16. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  17. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  18. Time-Temperature Superposition to Determine the Stress-Rupture of Aramid Fibres

    NASA Astrophysics Data System (ADS)

    Alwis, K. G. N. C.; Burgoyne, C. J.

    2006-07-01

    Conventional creep testing takes a long time to obtain stress-rupture data for aramid fibres at the low stress levels likely to be used in practical applications. However, the rate of creep of aramid can be accelerated by a thermally activated process to obtain the failure of fibres within a few hours. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve know as a master curve, from which stress-rupture data can be obtained. This technique is known as the time-temperature superposition principle and will be applied to Kevlar 49 yarns. Important questions relating to the techniques needed to obtain smooth master curves will be discussed, as will the validity the resulting curves and the corresponding stress-rupture lifetime.

  19. Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes

    NASA Astrophysics Data System (ADS)

    Okuwaki, Ryo; Yagi, Yuji; Aránguiz, Rafael; González, Juan; González, Gabriel

    2016-04-01

    We constructed a seismic source model for the 2015 M W 8.3 Illapel, Chile earthquake, which was carried out with the kinematic waveform inversion method adopting a novel inversion formulation that takes into account the uncertainty in the Green's function, together with the hybrid backprojection method enabling us to track the spatiotemporal distribution of high-frequency (0.3-2.0 Hz) sources at high resolution by using globally observed teleseismic P-waveforms. A maximum slip amounted to 10.4 m in the shallow part of the seismic source region centered 72 km northwest of the epicenter and generated a following tsunami inundated along the coast. In a gross sense, the rupture front propagated almost unilaterally to northward from the hypocenter at <2 km/s, however, in detail the spatiotemporal slip distribution also showed a complex rupture propagation pattern: two up-dip rupture propagation episodes, and a secondary rupture episode may have been triggered by the strong high-frequency radiation event at the down-dip edge of the seismic source region. High-frequency sources tends to be distributed at deeper parts of the slip area, a pattern also documented in other subduction zone megathrust earthquakes that may reflect the heterogeneous distribution of fracture energy or stress drop along the fault. The weak excitation of high-frequency radiation at the termination of rupture may represent the gradual deceleration of rupture velocity at the transition zone of frictional property or stress state between the megathrust rupture zone and the swarm area.

  20. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  1. Stopping of earthquake ruptures at dilational fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1985-07-01

    Palaeoseismic studies over the past several years have indicated that segments of certain major faults tend to rupture at fairly regular intervals in characteristic earthquakes of about the same size1. This implies the presence of local structural controls which govern the nucleation and stopping of ruptures. Understanding rupture arrest is important, not only because it governs the size of characteristic earthquakes, but also because deceleration of ruptures results in the radiation of high-frequency energy leading to strong ground motion2. I show here that rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures through dilational fault jogs in fluid-saturated crusts is opposed by transient suctional forces induced near the rupture tips3. Rupture arrest may then be followed by delayed slip transfer as fluid pressures re-equilibrate by diffusion.

  2. An unusual presentation of recurrent uterine rupture during pregnancy

    PubMed Central

    Tan, Shu Qi; Thia, Edwin Wee Hong; Tee, Chee Seng John; Yeo, George Seow Heong

    2015-01-01

    We describe a case of recurrent uterine rupture at the site of a previous rupture. Our patient had a history of right interstitial pregnancy with spontaneous uterine fundal rupture at 18 weeks of pregnancy. During her subsequent pregnancy, she was monitored closely by a senior consultant obstetrician. The patient presented at 34 weeks with right hypochondriac pain. She was clinically stable and fetal monitoring showed no signs of fetal distress. Ultrasonography revealed protrusion of the intact amniotic membranes in the abdominal cavity at the uterine fundus. Uterine rupture is a rare but hazardous obstetric complication. High levels of caution should be exercised in patients with a history of prior uterine rupture, as they may present with atypical symptoms. Ultrasonography could provide valuable information in such cases where there is an elevated risk of uterine rupture at the previous rupture site. PMID:26106245

  3. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  4. Recurrent spontaneous scleral rupture in Marfan's syndrome.

    PubMed

    Turaga, Kiranmaye; Senthil, Sirisha; Jalali, Subhadra

    2016-01-01

    The ocular manifestations of Marfan's syndrome (MS) range from ectopia lentis, microspherophakia, myopia, glaucoma and retinal detachment. Spontaneous scleral rupture is a rare complication and recurrent scleral perforation is extremely rare. We report a rare case of a 26-year-old male with MS who had sequential recurrent spontaneous scleral rupture which required surgical repair. He suffered from a similar problem 4 years later in both eyes in a different location, with overlying thin cystic blebs and hypotony maculopathy. Surgical repair with preserved scleral donor patch graft and conjunctival autograft in one eye, and conjunctival advancement in the other eye was performed. This helped stabilise the eyes, and resulted in complete visual recovery in both eyes. PMID:27199441

  5. Megakaryocyte rupture for acute platelet needs

    PubMed Central

    Stritt, Simon

    2015-01-01

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1α (IL-1α) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  6. Megakaryocyte rupture for acute platelet needs.

    PubMed

    Nieswandt, Bernhard; Stritt, Simon

    2015-05-11

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1α (IL-1α) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  7. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  8. Functional orthosis post pectoralis muscle rupture.

    PubMed

    Moore, Jodi

    2015-01-01

    This author described her success at fabricating a chest compression orthosis for a patient who underwent repair of a pectoralis major muscle rupture. The repair occurred nine months prior to orthotic fabrication, but the patient continued to experience weakness and pain which limited motion. The design of the orthotic allowed him increased mobility and functional use. - Victoria Priganc, PhD, OTR, CHT, CLT, Practice Forum Editor. PMID:26043967

  9. An unusual presentation of bronchial rupture.

    PubMed

    Goktalay, Tugba; Yaldiz, Sadik; Ozgen Alpaydin, Aylin; Goktan, Cihan; Celik, Pinar

    2011-06-01

    Persistent hydropneumothorax was diagnosed in a 62-year-old female with a history of blunt trauma, although she was treated with chest tube and closed underwater seal drainage. Computed tomography and fiberoptic bronchoscopy findings were consistent with "fallen lung" syndrome. Fiberoptic bronchoscopy also found a cavitary lesion at the right tracheobronchial angle. Forceps biopsy of the cavitary lesion indicated bronchogenic carcinoma. Our final diagnosis was tracheobronchial complete rupture and fallen lung syndrome secondary to malignancy. PMID:21333086

  10. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  11. Rupture directivity of moderate earthquakes in northern California

    USGS Publications Warehouse

    Seekins, Linda C.; Boatwright, John

    2010-01-01

    We invert peak ground velocity and acceleration (PGV and PGA) to estimate rupture direction and rupture velocity for 47 moderate earthquakes (3.5≥M≥5.4) in northern California. We correct sets of PGAs and PGVs recorded at stations less than 55–125 km, depending on source depth, for site amplification and source–receiver distance, then fit the residual peak motions to the unilateral directivity function of Ben-Menahem (1961). We independently invert PGA and PGV. The rupture direction can be determined using as few as seven peak motions if the station distribution is sufficient. The rupture velocity is unstable, however, if there are no takeoff angles within 30° of the rupture direction. Rupture velocities are generally subsonic (0.5β–0.9β); for stability, we limit the rupture velocity at v=0.92β, the Rayleigh wave speed. For 73 of 94 inversions, the rupture direction clearly identifies one of the nodal planes as the fault plane. The 35 strike-slip earthquakes have rupture directions that range from nearly horizontal (6 events) to directly updip (5 events); the other 24 rupture partly along strike and partly updip. Two strike-slip earthquakes rupture updip in one inversion and downdip in the other. All but 1 of the 11 thrust earthquakes rupture predominantly updip. We compare the rupture directions for 10 M≥4.0 earthquakes to the relative location of the mainshock and the first two weeks of aftershocks. Spatial distributions of 8 of 10 aftershock sequences agree well with the rupture directivity calculated for the mainshock.

  12. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  13. Carotid artery rupture and cervicofacial actinomycosis.

    PubMed

    Kummer, Anne; Lhermitte, Benoît; Ödman, Micaela; Grabherr, Silke; Mangin, Patrice; Palmiere, Cristian

    2012-11-01

    Cervicofacial actinomycosis is an uncommon, progressive infection caused by bacilli of the Actinomyces genus. Actinomyces are common commensal saprophytes in the oral cavity which may have medical importance as facultative pathogens. Subsequent to local injuries to the oral mucosa, they may penetrate the deep tissues and be responsible for suppurative or granulomatous infections. We herein report a case of a 65-year-old man who underwent surgery followed by chemotherapy and radiotherapy for a tonsillar carcinoma. An ulcerous lesion in the base of the tongue developed and spread to the carotid artery wall. The man died of a massive hemorrhage due to left carotid artery rupture. Postmortem computed tomography angiography performed prior to autopsy allowed the precise localization of the source of bleeding to be detected. Postmortem biochemical investigations confirmed the presence of inflammation associated with local bacterial infection. Histological investigations revealed the rupture of the left carotid artery surrounded by numerous colonies of Actinomyces. Acute and chronic inflammation with tissue necrosis as well as post-actinic, fibrotic changes were also found in the tissues surrounding the ruptured artery wall. PMID:22819527

  14. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  15. Ruptured aneurysms of sinuses of Valsalva

    PubMed Central

    Jugdutt, B. I.; Fraser, R. S.; Rossall, R. E.; Lee, S. J. K.

    1974-01-01

    At least one additional cardiac lesion was present in 18 consecutive patients with ruptured aneurysms of the sinuses of Valsalva who were investigated between 1956 and 1973 at the University of Alberta Hospital. Clinical diagnosis was made in 78% (14/18) of the patients. Confirmation at cardiac catheterization, operation or autopsy was obtained in all but one. The main sites of rupture were the right ventricle (seven cases), right atrium (five) and left ventricle (five). Fifty percent (9/18) are alive and well following prompt operative repair, an average of 8.2 years later (range, six months to 15 years). Replacement of the aortic valve was associated with a high mortality (50% early, 13% late, total 63%) which could be explained by the higher operative risk in this group of very ill patients. Eight patients (44.4%) had had bacterial endocarditis prior to presentation and this may have played a significant role in the rupture of the sinus of Valsalva aneurysm. ImagesFIG. 4FIG. 5 PMID:4278257

  16. Rupture of plasma membrane under tension.

    PubMed

    Tan, Samuel Chun Wei; Yang, Tianyi; Gong, Yingxue; Liao, Kin

    2011-04-29

    We present a study on the rupture behavior of single NIH 3T3 mouse fibroblasts under tension using micropipette aspiration. Membrane rupture was characterized by breaking and formation of an enclosed membrane linked to a tether at the cell apex. Three different rupture modes, namely: single break, initial multiple breaks, and continuous multiple breaks, were observed under similar loading condition. The measured mean tensile strengths of plasma membrane were 3.83 ± 1.94 and 3.98 ± 1.54mN/m for control cells and cells labeled with TubulinTracker, respectively. The tensile strength data was described by Weibull distribution. For the control cells, the Weibull modulus and characteristic strength were 1.86 and 4.40 mN/m, respectively; for cells labeled with TubulinTracker, the Weibull modulus and characteristic strength were 2.68 and 4.48 mN/m, respectively. Based on the experimental data, the estimated average transmembrane proteins-lipid cleavage strength was 2.64 ± 0.64 mN/m. From the random sampling of volume ratio of transmembrane proteins in cell membrane, we concluded that the Weibull characteristic of plasma membrane strength was likely to be originated from the variation in transmembrane proteins-lipid interactions. PMID:21288526

  17. [Traumatic rupture of the thoracic aorta].

    PubMed

    Glock, Y; Roux, D; Soula, P; Cerene, A; Fournial, G

    1996-01-01

    This is a retrospective analysis of 50 postraumatic aortic rupture (1968-1996, 39 males, mean age: 34.5). Group A is composed of 35 patients with an acute aortic rupture and a prompt diagnosis. Group B includes 13 patients with a chronic rupture. All patients from group A had a severe politraumatism with abdominal, cranial, extremities or hip fractures. Mediastinal thickening with or without hemothorax indicated an angiography or a transesophageal echocardiography lately. In group A, 36 patients have been operated on urgently (12-24 hours); cardiopulmonary bypass was performed on 20 patients; an aorto-aortical bypass was done in 27 cases and a direct suture in the remaining 9. In group B, cardiopulmonary bypass was performed on 9 patients; a aorto-aortical bypass was done in 11 cases and a direct suture in 2. Overall hospital mortality was 16%; 19% in group A and 7.6% in group B. Ischemic paraplejia appeared in 5 patients (10%), all from group A. No false aneurysm developed after 4.5 years of follow-up (3-135 months) in the 38 survivors. The usefulness of transesophageal echocardiography, the importance of medular protection and the utility of several interventionist radiologic techniques are discussed. PMID:9053930

  18. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  19. Intersonic and Supersonic ruptures in a model of dynamic rupture in a layered medium

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.

    2014-12-01

    The velocity structure in the lithosphere is quite complex and is rarely homogeneous. Wave reflection, transmission, and diffraction from the boundaries of the different layers and inclusions are expected to lead to a rich dynamic response and significantly affect rupture propagation on embedded faults. Here, we report our work on modeling dynamic rupture in an elastic domain with an embedded soft (stiff) layer as a first step towards modeling rupture propagation in realistic velocity structures. We use the Finite Element method (Pylith) to simulate rupture on a 2D in-plane fault embedded in an elastic full space. The simulated domain is 30 km wide and 100km long. Absorbing boundary conditions are used around the edges of the domain to simulate an infinite extension in all directions. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We consider embedded soft/stiff layers with 20% to 60% reduction/increase of wave velocity respectively. The embedded layers are placed at different distances from the fault surface. We observed that the existence of a soft layer significantly shortens the transition length to supershear propagation through the Burridge-Andrews mechanism. The higher the material contrast, the shorter the transition length to supershear propagation becomes. We also observe that supershear rupture could be generated at pretress values that are lower than what is theoretically predicted for a homogeneous medium. We find that the distance from the lower boundary of the soft layer to the fault surface has a stronger influence on the supershear transition length as opposed to the thickness of the soft layer. In the existence of an embedded stiffer layer we found that rupture could propagate faster than the fault zone P-wave speed. In this case, the propagating rupture generate two Mach cones; one is associated with the shear wave, and the

  20. Investigating rupture process of Parkfield seismicity

    NASA Astrophysics Data System (ADS)

    Kim, Ah Yi

    In this dissertation the result of four studies regarding earthquake source parameter determination, and three-dimensional (3D) wave propagation are presented. I have developed finite-source models for the September 28, 2004 M6 Parkfield earthquake using GPS and InSAR geodetic data, and seismic strong motion waveform data inverted both separately and jointly. The preferred model from the joint inversion shows that the rupture is predominantly unilateral to the NW with a small component to the SE. There are two primary high slip asperities one around the hypocenter and the other between 10 and 23 km to the NW both within the depth range of 5--13 km. The results from detailed sensitivity analyses indicate that the developed finite-source slip model is stable and the kinematic parameters are well resolved. I also examined the effect of the assumed velocity structure and corresponding Green's functions on the finite source inversion for the 2004 Parkfield earthquake using near-fault strong motion data with 1D and 3D velocity models. Using either the 1D or 3D velocity structures produce similar results, however there are significant differences in detail, where slip using 3D Green's functions is more compact, and the peak slip occurs in the hypocentral asperity in contrast to the 1D case where peak slip is located in the NW asperity. A comparison of seismic waveform derived slip models reveals that the 3D Green's function model predicts the GPS data significantly better. Both 1D and 3D Green's function models failed to model the strong motion waveform data from stations located very close to or within the fault-zone. Forward modeling revealed that accounting for a narrow low-velocity zone improves the fit to the data from these near-fault sites. Synthetic tests show that the influence of such fault-zone structure decreases rapidly with distance suggesting that excluding fault-zone stations from inversions and focusing on data from more distant stations may lead to less

  1. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    SciTech Connect

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  2. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  3. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  4. Utilisation of thorium in reactors

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  5. Coupling geodynamic earthquake cycles and dynamic ruptures

    NASA Astrophysics Data System (ADS)

    van Zelst, Iris; van Dinther, Ylona; Gabriel, Alice-Agnes; Heuret, Arnauld

    2016-04-01

    Studying the seismicity in a subduction zone and its effects on tsunamis requires diverse modelling methods that span spatial and temporal scales. Hundreds of years are necessary to build the stresses and strengths on a fault, while consequent earthquake rupture propagation is determined by both these initial fault conditions and the feedback of seismic waves over periods of seconds up to minutes. This dynamic rupture displaces the sea floor, thereby causing tsunamis. The aim of the ASCETE (Advanced Simulations of Coupled Earthquake and Tsunami Events) project is to study all these aspects and their interactions. Here, we present preliminary results of the first aspects in this modelling chain: the coupling of a seismo-thermo-mechanical (STM) code to the dynamic rupture model SeisSol. STM models of earthquake cycles have the advantage of solving multiple earthquake events in a self-consistent manner concerning stress, strength and geometry. However, the drawback of these models is that they often lack in spatial or temporal resolution and do not include wave propagation. In contrast, dynamic rupture models solve for frictional failure coupled to seismic wave propagation. We use the software package SeisSol (www.seissol.org) based on an ADER-DG discretization allowing high-order accuracy in space and time as well as flexible tetrahedral meshing. However, such simulations require assumptions on the initial fault stresses and strengths and its geometry, which are hard to constrain due to the lack of near-field observations and the complexity of coseismic conditions. By adapting the geometry as well as the stress and strength properties of the self-consistently developing non-finite fault zones from the geodynamic models as initial conditions for the dynamic rupture models, the advantages of both methods are exploited and modelling results may be compared. Our results show that a dynamic rupture can be triggered spontaneously and that the propagating rupture is

  6. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model

    PubMed Central

    2014-01-01

    Background Occlusion of blood vessels using high-intensity focused ultrasound (HIFU) is a potential treatment for arteriovenous malformations and other neurovascular disorders. However, attempting HIFU-induced vessel occlusion can also cause vessel rupture, resulting in hemorrhage. Possible rupture mechanisms include mechanical effects of acoustic cavitation and heating of the vessel wall. Methods HIFU exposures were performed on 18 ex vivo porcine femoral arteries with simultaneous passive cavitation detection. Vessels were insonified by a 3.3-MHz focused source with spatial-peak, temporal-peak focal intensity of 15,690–24,430 W/cm2 (peak negative-pressure range 10.92–12.52 MPa) and a 50% duty cycle for durations up to 5 min. Time-dependent acoustic emissions were recorded by an unfocused passive cavitation detector and quantified within low-frequency (10–30 kHz), broadband (0.3–1.1 MHz), and subharmonic (1.65 MHz) bands. Vessel rupture was detected by inline metering of saline flow, recorded throughout each treatment. Recorded emissions were grouped into ‘pre-rupture’ (0–10 s prior to measured point of vessel rupture) and ‘intact-vessel’ (>10 s prior to measured point of vessel rupture) emissions. Receiver operating characteristic curve analysis was used to assess the ability of emissions within each frequency band to predict vessel rupture. Based on these measurements associating acoustic emissions with vessel rupture, a real-time feedback control module was implemented to monitor acoustic emissions during HIFU treatment and adjust the ultrasound intensity, with the goal of maximizing acoustic power delivered to the vessel while avoiding rupture. This feedback control approach was tested on 10 paired HIFU exposures of porcine femoral and subclavian arteries, in which the focal intensity was stepwise increased from 9,117 W/cm2 spatial-peak temporal-peak (SPTP) to a maximum of 21,980 W/cm2, with power modulated based on the measured subharmonic

  7. Low footwall accelerations and variable surface rupture behavior on the Fort Sage Mountains fault, northeast California

    USGS Publications Warehouse

    Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon

    2013-01-01

    The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6  ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5  ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6  ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.

  8. Constraints Imposed by the Wilshire Methodology on Creep Rupture Data and Procedures for Testing the Validity of Such Constraints: Illustration Using 1Cr-1Mo-0.25V Steel

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2015-02-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately life materials operating at in service conditions from accelerated test results lasting no more than 5000 hours. These Wilshire equations contain discontinuities that have in the literature been interpreted either in terms of changing deformation mechanisms or changes in where deformation occurs within a material ( i.e., within boundaries or crystals). This paper demonstrates that the rather restrictive nature of these discontinuities within the Wilshire equations can lead to problems in identifying an appropriate model for long-term life prediction. An alternative framework is developed that removes these restrictions but still maintains the fundamental nature and characteristics of the Wilshire methodology. Further, when this alternative structure is applied to 1Cr-1Mo-0.25V steel, it produces more accurate and realistic looking long-term predictions of the time to failure.

  9. The effectiveness of 3D animations to enhance understanding of cranial cruciate ligament rupture.

    PubMed

    Clements, Dylan N; Broadhurst, Henry; Clarke, Stephen P; Farrell, Michael; Bennett, David; Mosley, John R; Mellanby, Richard J

    2013-01-01

    Cranial cruciate ligament (CCL) rupture is one of the most important orthopedic diseases taught to veterinary undergraduates. The complexity of the anatomy of the canine stifle joint combined with the plethora of different surgical interventions available for the treatment of the disease means that undergraduate veterinary students often have a poor understanding of the pathophysiology and treatment of CCL rupture. We designed, developed, and tested a three dimensional (3D) animation to illustrate the pertinent clinical anatomy of the stifle joint, the effects of CCL rupture, and the mechanisms by which different surgical techniques can stabilize the joint with CCL rupture. When compared with a non-animated 3D presentation, students' short-term retention of functional anatomy improved although they could not impart a better explanation of how different surgical techniques worked. More students found the animation useful than those who viewed a comparable non-animated 3D presentation. Multiple peer-review testing is required to maximize the usefulness of 3D animations during development. Free and open access to such tools should improve student learning and client understanding through wide-spread uptake and use. PMID:23475409

  10. Bilateral patellar tendon rupture associated with statin use.

    PubMed

    Kearns, Marie C; Singh, Vinay K

    2016-01-01

    Patellar tendon rupture is an uncommon clinical presentation, which generally affects the under 40s who are active in sport. Bilateral rupture of both tendons is much rarer. It occurs most frequently in patients with predisposing factors such as corticosteroid use or systemic diseases. The authors present the case of a 56-year-old male on long-term statin therapy who sustained this injury following a fall on ice. He had no known risk factors for tendon rupture. Surgical treatment involved tendon repair using Krakow suture via bony tunnels in the patella. Statins have previously been associated with tendon ruptures at other sites but there have been no published cases of bilateral patellar tendon rupture linked to statin use. We review the literature regarding the association between statins and tendon rupture. PMID:27165749

  11. Bilateral patellar tendon rupture associated with statin use

    PubMed Central

    Kearns, Marie C.; Singh, Vinay K.

    2016-01-01

    Patellar tendon rupture is an uncommon clinical presentation, which generally affects the under 40s who are active in sport. Bilateral rupture of both tendons is much rarer. It occurs most frequently in patients with predisposing factors such as corticosteroid use or systemic diseases. The authors present the case of a 56-year-old male on long-term statin therapy who sustained this injury following a fall on ice. He had no known risk factors for tendon rupture. Surgical treatment involved tendon repair using Krakow suture via bony tunnels in the patella. Statins have previously been associated with tendon ruptures at other sites but there have been no published cases of bilateral patellar tendon rupture linked to statin use. We review the literature regarding the association between statins and tendon rupture. PMID:27165749

  12. Missed Iatrogenic Bladder Rupture Following Normal Vaginal Delivery

    PubMed Central

    Baheti, Vidyasagar H; Patwardhan, Sujata K

    2015-01-01

    Bladder rupture following caesarian section is well documented complications. Intraperitoneal bladder rupture following normal vaginal delivery is very rare. Hereby, we present a case report of intraperitoneal bladder rupture presented late following normal vaginal delivery. We report a case of spontaneous intraperitoneal urinary bladder rupture following uneventful outlet forceps delivery in a 22-year-old primi gravid woman with gestational diabetes mellitus and fetal macrosomia who presented with large urinary ascites, anuria and renal failure. Emergent exploratory laparotomy with repair of the intraperitoneal bladder rupture helped to prevent its potential complications. Postpartum patients who undergo episiotomy or perineal repair may land up in unnoticed urinary retention which may rarely terminate in spontaneous urinary bladder rupture. Awareness of its manifestations amongst emergency physician would help to initiate appropriate timely management. PMID:26557563

  13. Missed Iatrogenic Bladder Rupture Following Normal Vaginal Delivery.

    PubMed

    Baheti, Vidyasagar H; Wagaskar, Vinayak G; Patwardhan, Sujata K

    2015-10-01

    Bladder rupture following caesarian section is well documented complications. Intraperitoneal bladder rupture following normal vaginal delivery is very rare. Hereby, we present a case report of intraperitoneal bladder rupture presented late following normal vaginal delivery. We report a case of spontaneous intraperitoneal urinary bladder rupture following uneventful outlet forceps delivery in a 22-year-old primi gravid woman with gestational diabetes mellitus and fetal macrosomia who presented with large urinary ascites, anuria and renal failure. Emergent exploratory laparotomy with repair of the intraperitoneal bladder rupture helped to prevent its potential complications. Postpartum patients who undergo episiotomy or perineal repair may land up in unnoticed urinary retention which may rarely terminate in spontaneous urinary bladder rupture. Awareness of its manifestations amongst emergency physician would help to initiate appropriate timely management. PMID:26557563

  14. [SURGICAL TREATMENT OF PATIENTS WITH URETERAL RUPTURES].

    PubMed

    Komjakov, B K; Guliev, B G

    2015-01-01

    The aim of the study was to analyze the causes of ureteral ruptures and the types surgical procedures used for their management. Over the period from 2006 to 2014, 7 patients with ureteral ruptures underwent surgical treatment in the Mechnikov N-WSMU clinic. All of them were males aged 50 to 71 years. In all cases, the ureter was injured during ureteroscopy and contact lithotripsy. In two patients the right ureter was cut off at the border of the upper and middle third, in four--at 3-4 cm below pyeloureteral segment, one patient diagnosed with a complete separation of the ureter from the kidney pelvis. Patients, who have suffered a detachment of the ureter in other hospitals, previously underwent surgical exploration of the retroperitoneal space, drainage of the kidney by pyelonephrostomy (5) and ureterocutaneostomy (1). In a case of a patient with an injury that occurred in our clinic, laparoscopic nephrectomy with autologous renal transplantation was carried out. Five patients with extended ureter defects underwent ileo-ureteroplasty. The patient with left ureterocutaneostomy underwent nephrovesical bypass. Patency of the upper urinary tract and kidney function were restored in all patients, all of them were relieved from external drains. The duration of the intestinal plastic averaged 160 minutes, laparoscopic nephrectomy with autologous transplantation--210 min and nephrovesical bypass--110 min. Blood transfusion was required only in autologous graft patient. The ureteral rupture is a serious complication of ureteral endourological procedures in upper urinary tract. It requires such complicated reconstructive operations as autologous transplantation of the kidney or intestinal ureteroplasty. PMID:26390553

  15. Isolated unilateral rupture of the alar ligament.

    PubMed

    Wong, Sui-To; Ernest, Kimberly; Fan, Grace; Zovickian, John; Pang, Dachling

    2014-05-01

    Only 6 cases of isolated unilateral rupture of the alar ligament have been previously reported. The authors report a new case and review the literature, morbid anatomy, and pathogenesis of this rare injury. The patient in their case, a 9-year-old girl, fell head first from a height of 5 feet off the ground. She presented with neck pain, a leftward head tilt, and severe limitation of right rotation, extension, and right lateral flexion of the neck. Plain radiographs and CT revealed no fracture but a shift of the dens toward the right lateral mass of C-1. Magnetic resonance imaging of the cervical spine showed signal hyperintensity within the left dens-atlas space on both T1- and T2-weighted sequences and interruption of the expected dark signal representing the left alar ligament, suggestive of its rupture. After 12 weeks of immobilization in a Guilford brace, MRI showed lessened dens deviation, and the patient attained full and painless neck motion. Including the patient in this case, the 7 patients with this injury were between 5 and 21 years old, sustained the injury in traffic accidents or falls, presented with marked neck pain, and were treated with external immobilization. All patients had good clinical outcome. The mechanism of injury is hyperflexion with rotation. Isolated unilateral alar ligament rupture is a diagnosis made by excluding associated fracture, dislocation, or disruption of other major ligamentous structures in the craniovertebral junction. CT and MRI are essential in establishing the diagnosis. External immobilization is adequate treatment. PMID:24679079

  16. Treatment of Ruptured Vertebral Artery Dissecting Aneurysms

    PubMed Central

    Hamasaki, Osamu; Ikawa, Fusao; Hidaka, Toshikazu; Kurokawa, Yasuharu; Yonezawa, Ushio

    2014-01-01

    Summary We evaluated the outcomes of endovascular or surgical treatment of ruptured vertebral artery dissecting aneurysms (VADAs), and investigated the relations between treatment complications and the development and location of the posterior inferior cerebellar artery (PICA). We treated 14 patients (12 men, two women; mean age, 56.2 years) with ruptured VADAs between March 1999 and June 2012 at our hospital. Six and eight patients had Hunt and Hess grades 1-3 and 4-5, respectively. Twelve patients underwent internal endovascular trapping, one underwent proximal endovascular occlusion alone, and one underwent proximal endovascular occlusion in the acute stage and occipital artery (OA)-PICA anastomosis and surgical trapping in the chronic stage. The types of VADA based on their location relative to the ipsilateral PICA were distal, PICA-involved, and non-PICA in nine, two, and three patients, respectively. The types of PICA based on their development and location were bilateral anterior inferior cerebellar artery (AICA)-PICA, ipsilateral AICA-PICA, extradural, and intradural type in one, two, two, and nine patients, respectively. Two patients with high anatomical risk developed medullary infarction, but their midterm outcomes were better than in previous reports. The modified Rankin scale indicated grades 0-2, 3-5, and 6 in eight, three, and three patients, respectively. A good outcome is often obtained in the treatment of ruptured VADA using internal endovascular trapping, except in the PICA-involved type, even with high-grade subarachnoid hemorrhage. Treatment of the PICA-involved type is controversial. The anatomical location and development of PICA may be predicted by complications with postoperative medullary infarction. PMID:24976093

  17. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  18. Kinetics of hole nucleation in biomembrane rupture

    NASA Astrophysics Data System (ADS)

    Evans, Evan; Smith, Benjamin A.

    2011-09-01

    The core component of a biological membrane is a fluid-lipid bilayer held together by interfacial-hydrophobic and van der Waals interactions, which are balanced for the most part by acyl chain entropy confinement. If biomembranes are subjected to persistent tensions, an unstable (nanoscale) hole will emerge at some time to cause rupture. Because of the large energy required to create a hole, thermal activation appears to be requisite for initiating a hole and the activation energy is expected to depend significantly on mechanical tension. Although models exist for the kinetic process of hole nucleation in tense membranes, studies of membrane survival have failed to cover the ranges of tension and lifetime needed to critically examine nucleation theory. Hence, rupturing giant (~20 μm) membrane vesicles ultra-slowly to ultra-quickly with slow to fast ramps of tension, we demonstrate a method to directly quantify kinetic rates at which unstable holes form in fluid membranes, at the same time providing a range of kinetic rates from <0.01 to >100 s-1. Measuring lifetimes of many hundreds of vesicles, each tensed by precision control of micropipette suction, we have determined the rates of failure for vesicles made from several synthetic phospholipids plus 1:1 mixtures of phospho- and sphingo-lipids with cholesterol, all of which represent prominent constituents of eukaryotic cell membranes. Plotted on a logarithmic scale, the failure rates for vesicles are found to rise dramatically with an increase in tension. Converting the experimental profiles of kinetic rates into changes of activation energy versus tension, we show that the results closely match expressions for thermal activation derived from a combination of meso-scale theory and molecular-scale simulations of hole formation. Moreover, we demonstrate a generic approach to transform analytical fits of activation energies obtained from rupture experiments into energy landscapes characterizing the process of hole

  19. The UCERF3 grand inversion: Solving for the long‐term rate of ruptures in a fault system

    USGS Publications Warehouse

    Page, Morgan T.; Field, Edward H.; Milner, Kevin; Powers, Peter M.

    2014-01-01

    We present implementation details, testing, and results from a new inversion‐based methodology, known colloquially as the “grand inversion,” developed for the Uniform California Earthquake Rupture Forecast (UCERF3). We employ a parallel simulated annealing algorithm to solve for the long‐term rate of all ruptures that extend through the seismogenic thickness on major mapped faults in California while simultaneously satisfying available slip‐rate, paleoseismic event‐rate, and magnitude‐distribution constraints. The inversion methodology enables the relaxation of fault segmentation and allows for the incorporation of multifault ruptures, which are needed to remove magnitude‐distribution misfits that were present in the previous model, UCERF2. The grand inversion is more objective than past methodologies, as it eliminates the need to prescriptively assign rupture rates. It also provides a means to easily update the model as new data become available. In addition to UCERF3 model results, we present verification of the grand inversion, including sensitivity tests, tuning of equation set weights, convergence metrics, and a synthetic test. These tests demonstrate that while individual rupture rates are poorly resolved by the data, integrated quantities such as magnitude–frequency distributions and, most importantly, hazard metrics, are much more robust.

  20. Could statin use be associated with reduced recurrence rates following coiling in ruptured intracranial aneurysms?

    PubMed Central

    Brinjikji, Waleed; Shahi, Varun; Cloft, Harry J.; Lanzino, Giuseppe; Kallmes, David F; Kadirvel, Ramanathan

    2015-01-01

    Background and Purpose A number of studies have examined the role of matrix metalloproteinases (MMPs) in aneurysm healing following endovascular coiling. Because ruptured aneurysms are known to express higher levels of MMPs, we hypothesized that subarachnoid hemorrhage patients who were on a statin at the time of coil embolization would have lower aneurysm recanalization and retreatment rates than non-statin patients. Materials and Methods We performed a retrospective chart review of patients who received intrasaccular coil embolization of ruptured intracranial aneurysms≤10mm with at least 6-months of imaging follow-up. Patients were separated into two groups: 1) patients who were on an oral statin medication at the time of coiling and 2) patients who were not on a statin. Outcomes studied were aneurysm recurrence and aneurysm retreatment after endovascular coiling. Student’s t-test and chi-squared tests were used to test statistical significance of differences between groups. Results 132 ruptured aneurysm patients with 132 ruptured aneurysms were included in our study. 16 were on statin (12.1%) and 116 were not (87.9%). Recurrence rate was 6.3% in the statin group (1/16) and 36.2% in the non-statin group (42/107) (P=0.017). Unplanned retreatment rates were 6.3% (1/16) for the statin group and 25.9% (30/116) for the non-statin group (P=0.08). Conclusions Statins were associated with a lower rate of aneurysm recurrence following endovascular coiling of small and medium sized ruptured aneurysms in this small retrospective study. Further studies are needed to confirm this finding to determine if statins can be used to reduce recurrence rates in these aneurysms. PMID:26272974

  1. Smooth Muscle PPARγ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo

    PubMed Central

    Hasan, David M.; Starke, Robert M.; Gu, He; Wilson, Katina; Chu, Yi; Chalouhi, Nohra; Heistad, Donald D.; Faraci, Frank M.; Sigmund, Curt D.

    2015-01-01

    Vascular inflammation plays a critical role in the pathogenesis of cerebral aneurysms. PPARγ protects against vascular inflammation and atherosclerosis, whereas dominant-negative mutations in PPARγ promote atherosclerosis and vascular dysfunction. We tested the role of PPARγ in aneurysm formation and rupture. Aneurysms were induced with a combination of systemic infusion of angiotensin-II and local injection of elastase, in: 1) mice that received the PPARγ antagonist GW9662 or the PPARγ agonist pioglitazone, 2) mice carrying dominant-negative PPARγ mutations in endothelial or smooth muscle cells, and 3) mice that received the Cullin inhibitor MLN4924. Incidence of aneurysm formation, rupture, and mortality were quantified. Cerebral arteries were analyzed for expression of Cullin3, Keap1, Nrf2, NQO-1 and inflammatory marker mRNAs. Neither pioglitazone nor GW9662 altered the incidence of aneurysm formation. GW9662 significantly increased the incidence of aneurysm rupture, whereas pioglitazone tended to decrease the incidence of rupture. Dominant-negative endothelial-specific PPARγ did not alter the incidence of aneurysm formation or rupture. In contrast, dominant-negative smooth muscle-specific PPARγ resulted in an increase in aneurysm formation (p<0.05) and rupture (P=0.05). Dominant-negative smooth muscle-specific PPARγ, but not dominant-negative endothelial-specific PPARγ, resulted in significant decreases in expression of genes encoding Cullin3, Keap1, and Nrf2, along with significant increases in TNF-α, MCP-1, Cxcl1, CD68, MMP-3, -9, and -13. MLN4924 did not alter incidence of aneurysm formation, but increased the incidence of rupture (p<0.05). In summary, endogenous PPARγ, specifically smooth muscle PPARγ, plays an important role in protecting from formation and rupture of experimental cerebral aneurysms in mice. PMID:25916724

  2. Vascular changes in the ruptured Achilles tendon and paratenon.

    PubMed

    Kvist, M; Józsa, L; Järvinen, M

    1992-01-01

    Thirty patients with ruptures of the Achilles tendon were studied. There were 21 men and 9 women with an average age of 36 years. Specimens from the tendon and paratenon in 24 were examined histologically. Tissue samples of 20 were studied by electron microscopy. Marked degenerative, obliterative and/or inflammatory vascular changes were found in all the ruptured tendons and their paratenon. Our findings indicate that poor vascularity play a role in the aetiology of rupture of the Achilles tendon. PMID:1473893

  3. Cohesive Zone Length of Gabbro at Supershear Rupture Velocity

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Xu, S.; Mizoguchi, K.; Yamashita, F.

    2014-12-01

    We investigated the shear strain field ahead of a supershear rupture. The strain data was obtained during large-scale biaxial friction experiments conducted at NIED in March 2013. We conducted friction experiments using a pair of meter-scale gabbro rock specimens whose simulated fault area was 1.5m x 0.1m. We applied 2.6MPa normal stress and loading velocity of 0.1mm/s. At the long side of the fault edge, which is parallel to the slip direction, 32 2-component semi-conductor strain gauges were installed at an interval of 50mm and 10mm off the fault. The data are conditioned by high frequency strain amplifiers (<0.5MHz) and continuously recorded at an interval of 1MHz with 16-bit resolution. Many stick slip events were observed and a unilateral rupture event was chosen in this analysis that propagated with supershear rupture velocity. One of the reasons for this selection was that the strain field ahead of the supershear rupture was not contaminated by elastic waves. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the rupture. We found that the stress concentration becomes mild as the rupture propagates and length of the stress concentration area becomes longer. This observation is quite interesting because in this experiment the rupture propagated at a constant speed close to root two times the shear wave velocity and thus a longer stress concentration region suggests more energy dissipation. We could speculate that such longer stress concentration area suggests longer plastic region ahead of the rupture (or longer cohesive distance). I.e. the cohesive zone length becomes longer as the rupture propagates to maintain constant rupture velocity propagation. We empirically obtained the relation Lc = 1.8x10^-5 L for 0.1ruptured length.

  4. A Rare Case of Adductor Longus Muscle Rupture

    PubMed Central

    van de Kimmenade, R. J. L. L.; van Bergen, C. J. A.; van Deurzen, P. J. E.; Verhagen, R. A. W.

    2015-01-01

    An adductor longus muscle rupture is a rare injury. This case report describes a 32-year-old patient with an adductor longus rupture. The trauma mechanism was a hyperabduction movement during a soccer game. Nonoperative treatment was initiated. After a follow-up of 4 years, the patient was without pain but a small swelling was still visible. This report describes the anatomy, pathophysiology, and evidence-based treatment of adductor longus rupture. PMID:25918663

  5. Rupture of non-communicating rudimentary uterine horn pregnancy.

    PubMed

    Dhar, Hansa

    2008-01-01

    Unicornuate uterus with rudimentary horn is a rare type of uterine malformation associated with obstetrical complications. Rupture of pregnant rudimentary horn is the usual presentation resulting in severe haemoperitoneum with increased maternal morbidity, and at times, mortality. A case of ruptured rudimentary horn pregnancy in a 24-year-old, second gravida, is reported. Exploratory laparotomy revealed a ruptured rudimentary horn pregnancy of 14 weeks gestation with haemoperitoneum. Excision of the rudimentary horn was done and an uneventful recovery followed. PMID:18452672

  6. Experimental observation of ruptures propagating on heterogeneous interfaces

    NASA Astrophysics Data System (ADS)

    Campillo, M.; Latour, S.; Voisin, C.; Catheline, S.; Renard, F.; Larose, E. F.

    2013-12-01

    We present experimental observations of a propagating rupture interacting with one or several mechanical heterogeneities. We developed a friction laboratory experiment where a soft elastic solid slides past a rigid flat plate. The system is coupled to an original medical imaging technique, ultrasound speckle interferometry, that allows observing the rupture dynamics along the interface as well as the emitted elastic shear wavefield into the solid body. We compare the dynamics of propagating rupture for an homogeneous flat interface and for three cases of heterogeneous sliding surfaces: 1) an interface with a single point-like barrier made of a small rock pebble, 2) an interface with a single linear barrier that joins the edges of the faults in a direction perpendicular to slip 3) an interface with multiple barriers disposed on half of its surface area, creating an heterogeneous zone. We obtain experimental observations of dynamic effects that have been predicted by numerical dynamic rupture simulations and provide experimental observations of the following phenomena: a barrier can stop or delay the rupture propagation; a linear single barrier can change the rupture velocity, increasing or decreasing it; we observe transition from subshear to supershear propagation due to the linear barrier; a large heterogeneous area slows down the rupture propagation. We observe a strong variability of the rupture dynamics occurring for identical frictional conditions, that we impute to memory effects caused by the heterogeneity of the stress field due to both the loading conditions and the remaining stress field due to previous rupture events. These experiments therefore confirm previously reported numerical simulations of ruptures along heterogeneous interfaces. When comparing with natural observations or earthquake ruptures, our data provide some phenomenological insights to explain the complexity of the rupture history inferred from the pattern of seismic radiations.

  7. A rare case of adductor longus muscle rupture.

    PubMed

    van de Kimmenade, R J L L; van Bergen, C J A; van Deurzen, P J E; Verhagen, R A W

    2015-01-01

    An adductor longus muscle rupture is a rare injury. This case report describes a 32-year-old patient with an adductor longus rupture. The trauma mechanism was a hyperabduction movement during a soccer game. Nonoperative treatment was initiated. After a follow-up of 4 years, the patient was without pain but a small swelling was still visible. This report describes the anatomy, pathophysiology, and evidence-based treatment of adductor longus rupture. PMID:25918663

  8. Anisotropy in rupture lines of paper sheets

    NASA Astrophysics Data System (ADS)

    Menezes-Sobrinho, I. L.; Couto, M. S.; Ribeiro, I. R. B.

    2005-06-01

    We have experimentally investigated the fracture process in paper samples submitted to a uniaxial force. Five types of paper sheets (newsprint, towel, sulfite, silk, and couche papers) were fractured along two orthogonal orientations. In order to characterize the rupture lines of the paper sheets we utilized the Hurst exponent. Our results indicate a dependence of the Hurst exponent on the orientation of the paper sheets for samples of newsprint and, probably, towel and silk papers. For the other types of paper the Hurst exponent does not depend on the direction of crack propagation.

  9. Anisotropy in rupture lines of paper sheets.

    PubMed

    Menezes-Sobrinho, I L; Couto, M S; Ribeiro, I R B

    2005-06-01

    We have experimentally investigated the fracture process in paper samples submitted to a uniaxial force. Five types of paper sheets (newsprint, towel, sulfite, silk, and couche papers) were fractured along two orthogonal orientations. In order to characterize the rupture lines of the paper sheets we utilized the Hurst exponent. Our results indicate a dependence of the Hurst exponent on the orientation of the paper sheets for samples of newsprint and, probably, towel and silk papers. For the other types of paper the Hurst exponent does not depend on the direction of crack propagation. PMID:16089834

  10. Blunt traumatic rupture of the right ventricle, with intrapericardial rupture of the diaphragm: successful surgical repair.

    PubMed

    Le Treut, Y P; Herve, L; Cardon, J M; Boutboul, R; Bricot, R

    1981-07-01

    The authors report a case of chest injury causing rupture of the right ventricle and diaphragm, discovered during laparotomy for haemoperitoneum. This type of injury to the heart has rarely been cited in the literature since survival rates are low and the diagnosis often overlooked. PMID:7319634

  11. Detection of Preoperative Wilms Tumor Rupture with CT: A Report from the Children’s Oncology Group

    PubMed Central

    Naranjo, Arlene; Hoffer, Fredric; Mullen, Elizabeth; Geller, James; Gratias, Eric J.; Ehrlich, Peter F.; Perlman, Elizabeth J.; Rosen, Nancy; Grundy, Paul; Dome, Jeffrey S.

    2013-01-01

    Purpose: To retrospectively determine the diagnostic performance of computed tomography (CT) in identifying the presence or absence of preoperative Wilms tumor rupture. Materials and Methods: The cohort was derived from the AREN03B2 study of the Children’s Oncology Group. The study was approved by the institutional review board and was compliant with HIPAA. Written informed consent was obtained before enrollment. The diagnosis of Wilms tumor rupture was established by central review of notes from surgery and/or pathologic examination. Seventy Wilms tumor cases with rupture were matched to 70 Wilms tumor controls without rupture according to age and tumor weight (within 6 months and 50 g, respectively). CT scans were independently reviewed by two radiologists, and the following CT findings were assessed: poorly circumscribed mass, perinephric fat stranding, peritumoral fat planes obscured, retroperitoneal fluid (subcapsular vs extracapsular), ascites beyond the cul-de-sac, peritoneal implants, ipsilateral pleural effusion, and intratumoral hemorrhage. All fluids were classified as hemorrhagic or nonhemorrhagic by using a cutoff of 30 HU. The relationship between CT findings and rupture was assessed with logistic regression models. Results: The sensitivity and specificity for detecting Wilms tumor rupture were 54% (36 of 67 cases) and 88% (61 of 69 cases), respectively, for reviewer 1 and 70% (47 of 67 cases) and 88% (61 of 69 cases), respectively, for reviewer 2. Interobserver agreement was substantial (ĸ = 0.76). All imaging signs tested, except peritoneal implants, intratumoral hemorrhage, and subcapsular fluid, showed a significant association with rupture (P ≤ .02). The attenuation of ascitic fluid did not have a significant correlation with rupture (P = .9990). Ascites beyond the cul-de-sac was the single best indicator of rupture for both reviewers, followed by perinephric fat stranding and retroperitoneal fluid for reviewers 1 and 2, respectively (P

  12. Tendon rupture associated with simvastatin/ezetimibe therapy.

    PubMed

    Pullatt, Raja C; Gadarla, Mamatha Reddy; Karas, Richard H; Alsheikh-Ali, Alawi A; Thompson, Paul D

    2007-07-01

    A case of spontaneous biceps tendon rupture in a physician during therapy with the combination of simvastatin and ezetimibe (Vytorin) is reported. Rechallenge produced tendinopathy in the contralateral biceps tendon that abated with drug discontinuation. Tendon rupture generally occurs in injured tendons. Physiological repair of an injured tendon requires degradation and remodeling of the extracellular matrix through matrix metalloproteinases (MMPs). Statins are known to inhibit MMPs. It was hypothesized that statins may increase the risk of tendon rupture by altering MMP activity. In conclusion, statins may increase the risk of tendon rupture by altering MMP activity. PMID:17599460

  13. Closed proximal muscle rupture of the biceps brachii in wakeboarders.

    PubMed

    Pascual-Garrido, Cecilia; Swanson, Britta L; Bannar, Stephen M

    2012-06-01

    Closed proximal muscle rupture of the biceps brachii is a rare injury. In this report, two cases of closed proximal muscle rupture of the biceps brachii after wakeboard traumas are described. Both patients presented with a swollen arm, weakness during flexion, and a mass in the affected forearm. Magnetic resonance imaging showed displacement of the biceps brachii into the forearm. The rupture was successfully treated with muscle removal in one case and muscle repair in the other. In patients with a wakeboard trauma and similar presentations, closed proximal muscle rupture of the biceps brachii should be suspected. PMID:21877295

  14. Risk functions for human and porcine eye rupture based on projectile characteristics of blunt objects.

    PubMed

    Kennedy, Eric A; Ng, Tracy P; McNally, Craig; Stitzel, Joel D; Duma, Stephan M

    2006-11-01

    Eye ruptures are among the most devastating eye injuries and can occur in automobile crashes, sporting impacts, and military events, where blunt projectile impacts to the eye can be encountered. The purpose of this study was to develop injury risk functions for globe rupture of both human and porcine eyes from blunt projectile impacts. This study was completed in two parts by combining published eye experiments with new test data. In the first part, data from 57 eye impact tests that were reported in the literature were analyzed. Projectile characteristics such as mass, cross-sectional area, and velocity, as well as injury outcome were noted for all tests. Data were sorted by species type and areas were identified where a paucity of data existed, based on the kinetic and normalized energy of assaulting objects. For the second part, a total of 126 projectile tests were performed on human and porcine eyes. Projectiles used for these tests included blunt aluminum projectiles, BBs, foam pellets, Airsoft pellets, and paintballs. Data for each projectile were recorded prior to testing and high-speed video was used to determine projectile velocity prior to striking the eye. In part three the data were pooled for a total of 183 eye impact tests, 83 human and 100 porcine, and were analyzed to develop the injury risk criteria. Binary logistic regression was used to develop injury risk functions based on kinetic and normalized energy. Probit analysis was used to estimate confidence intervals for the injury risk functions. Porcine eyes were found to be significantly stronger than human eyes in resisting globe rupture (p=0.01). For porcine eyes a 50% risk of globe rupture was found to be 71,145 J/m2, with a confidence interval of 63,245 J/m2 to 80,390 J/m2. Human eyes were found to have a 50% risk of globe rupture at a lower, 35,519 J/m2, with confidence intervals of 32,018 J/m2 to 40,641 J/m2. The results presented in this paper are useful in estimating the risk of globe

  15. A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture.

    PubMed

    Stitzel, Joel D; Duma, Stefan M; Cormier, Joseph M; Herring, Ian P

    2002-11-01

    Over 2.4 million eye injuries occur each year in the US, with over 30,000 patients left blind as a result of the trauma. The majority of these injuries occur in automobile crashes, military operations and sporting activities. This paper presents a nonlinear finite element model of the eye and the results of 22 experiments using human eyes to validate for globe rupture injury prediction. The model of the human eye consists of the cornea, sclera, lens, ciliary body, zonules, aqueous humor and vitreous body. Lagrangian membrane elements are used for the cornea and sclera, Lagrangian bricks for the lens, ciliary, and zonules, and Eulerian brick elements comprise the aqueous and vitreous. Nonlinear, isotropic material properties of the sclera and cornea were gathered from uniaxial tensile strip tests performed up to rupture. Dynamic modeling was performed using LS-Dyna. Experimental validation tests consisted of 22 tests using three scenarios: impacts from foam particles, BB's, and baseballs onto fresh eyes used within 24 hours postmortem. The energies of the projectiles were chosen so as to provide both globe rupture and no rupture tests. Displacements of the eye were recorded using high speed color video at 7100 frames per second. The matched simulations predicted rupture of the eye when rupture was seen in the BB and baseball tests, and closely predicted displacements of the eye for the foam tests. Globe rupture has previously been shown to occur at peak stresses of 9.4 MPa using the material properties included in the model. Because of dynamic effects and improvements in boundary conditions resulting from a more realistic modeling of the fluid in the anterior and posterior chambers, the stresses can be much higher than those previously predicted, with the globe remaining intact. The model is empirically verified to predict globe rupture for stresses in the corneoscleral shell exceeding 23 MPa, and local dynamic pressures exceeding 2.1 MPa. The model can be used as a

  16. Intermediate Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC Matric Composite in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet; Brewer, David

    1999-01-01

    Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.

  17. Rupture of giant vertebrobasilar aneurysm following flow diversion: mechanical stretch as a potential mechanism for early aneurysm rupture.

    PubMed

    Fox, Benjamin; Humphries, William Edward; Doss, Vinodh T; Hoit, Daniel; Elijovich, Lucas; Arthur, Adam S

    2014-01-01

    A patient with a giant symptomatic vertebrobasilar aneurysm was treated by endoscopic third ventriculostomy for obstructive hydrocephalus followed by treatment of the aneurysm by flow diversion using a Pipeline Embolization Device. After an uneventful procedure and initial periprocedural period, the patient experienced an unexpected fatal subarachnoid hemorrhage 1 week later. Autopsy demonstrated extensive subarachnoid hemorrhage and aneurysm rupture (linear whole wall rupture). The patent Pipeline Embolization Device was in its intended location, as was the persistent coil occlusion of the distal left vertebral artery. The aneurysm appeared to rupture in a linear manner and contained a thick large expansile clot that seemed to disrupt or rupture the thin aneurysm wall directly opposite the basilar artery/Pipeline Embolization Device. We feel the pattern of aneurysm rupture in our patient supports the idea that the combination of flow diversion and the resulting growing intra-aneurysmal thrombus can create a mechanical force with the potential to cause aneurysm rupture. PMID:25355741

  18. Rupture of giant vertebrobasilar aneurysm following flow diversion: mechanical stretch as a potential mechanism for early aneurysm rupture.

    PubMed

    Fox, Benjamin; Humphries, William Edward; Doss, Vinodh T; Hoit, Daniel; Elijovich, Lucas; Arthur, Adam S

    2015-11-01

    A patient with a giant symptomatic vertebrobasilar aneurysm was treated by endoscopic third ventriculostomy for obstructive hydrocephalus followed by treatment of the aneurysm by flow diversion using a Pipeline Embolization Device. After an uneventful procedure and initial periprocedural period, the patient experienced an unexpected fatal subarachnoid hemorrhage 1 week later. Autopsy demonstrated extensive subarachnoid hemorrhage and aneurysm rupture (linear whole wall rupture). The patent Pipeline Embolization Device was in its intended location, as was the persistent coil occlusion of the distal left vertebral artery. The aneurysm appeared to rupture in a linear manner and contained a thick large expansile clot that seemed to disrupt or rupture the thin aneurysm wall directly opposite the basilar artery/Pipeline Embolization Device. We feel the pattern of aneurysm rupture in our patient supports the idea that the combination of flow diversion and the resulting growing intra-aneurysmal thrombus can create a mechanical force with the potential to cause aneurysm rupture. PMID:25361560

  19. [Right atrium rupture due to blunt trauma].

    PubMed

    Suzuki, Kazuhiro; Thuboi, H; Okada, H

    2008-03-01

    We report 2 cases of surgical treatment of blunt cardiac trauma. The postoperative course was uneventful in either case. Pericardial drainage in patients with cardiac rupture should be performed with preparation for thoracotomy. Case 1: A 34-year-old male, hit in the chest by a collapsing 700-kg steel rod, was transported to our hospital via ambulance. The patient was diagnosed as having a cardiac rupture by echocardiography and underwent emergency thoracotomy. The right atrium near the inferior vena cava (IVC) was damaged, though bleeding from the wound had already ceased. No suture hemostusis was needed. Case 2: A 63-year-old female was hit by a car and transported to our hospital due to blunt trauma to the chest. Low blood pressure and chest computed tomography demonstrated cardiac tamponade, and subxiphoid pericardial drainage was performed. Blood pressure was recovered, but persistent hemorrhage necessitated emergency thoracotomy, which revealed a laceration at the right atrium near IVC. The injury was sutured to achieve complete hemostasis. PMID:18323181

  20. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  1. Probability of rupture of multiple fault segments

    USGS Publications Warehouse

    Andrews, D.J.; Schwerer, E.

    2000-01-01

    Fault segments identified from geologic and historic evidence have sometimes been adopted as features limiting the likely extends of earthquake ruptures. There is no doubt that individual segments can sometimes join together to produce larger earthquakes. This work is a trial of an objective method to determine the probability of multisegment ruptures. The frequency of occurrence of events on all conjectured combinations of adjacent segments in northern California is found by fitting to both geologic slip rates and to an assumed distribution of event sizes for the region as a whole. Uncertainty in the shape of the distribution near the maximum magnitude has a large effect on the solution. Frequencies of individual events cannot be determined, but it is possible to find a set of frequencies to fit a model closely. A robust conclusion for the San Francisco Bay region is that large multisegment events occur on the San Andreas and San Gregorio faults, but single-segment events predominate on the extended Hayward and Calaveras strands of segments.

  2. How is a stick slip rupture initiated?

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Mizoguchi, K.; Yamashita, F.; Kawakata, H.; Takizawa, S.

    2013-12-01

    We investigated the initiation process of stick slip events that occurred during large scale rock friction experiments conducted on the large scale shaking table at NIED (Fukuyama et al., 2012, AGU Fall meeting). We used a pair of Indian gabbro rock samples stacked vertically and applied normal and shear forces. The sliding area between the samples is 1.5m in length and 0.1m in width. We conducted a sequence of experiments using the same rock sample, and before each experiment we removed gouge particles created during the previous experiment by a brush and a cleaner. Here, we show the experiments under constant slip velocity of 0.1mm/s with constant normal stress of 2.7MPa (LB04-003) or 6.7MPa (LB04-005); the final displacement reached 0.04m. We used 44 acoustic sensors (PZT, vertical mode, 0.5MHz resonance frequency), 32 2-comp strain gouges (SGs) for shear strain and 16 1-comp SGs for normal strain measurements, with 48 0.5MHz dynamic SG amplifiers. We also used a 2MN load cell for shear force measurement and three 0.4MN load cells for vertical forces. Data are recorded continuously at an interval of 10MHz for PZT and 1MHz for other sensors. Just after the shear force applied, many stick slip events (SEs) occurred at an interval of a few seconds. By looking carefully at the PZT and SG array data during an SE, we found that one SE consists of many micro stick slip events (MSEs), which can be grouped into two (the former and the latter). These two groups correspond to the acceleration and deceleration stage of the SE. In LB04-005 (6.7MPa normal stress), a clear nucleation phase can be detected that initiated at a narrow area, propagate slowly (~20m/s) and accelerated. Then, a seismic rupture started to propagate at a velocity of ~3km/s (subshear) or ~6.5km/s (supershear). Detailed features are shown in Mizoguchi et al. (this meeting). It should be noted that this seismic rupture initiated at a narrow area inside the nucleation zone and sometimes after a certain

  3. Response of rupture discs to sodium-water reaction pulses. Final report

    SciTech Connect

    Cagliostro, D.J.; Desmond, T.P.; Florence, A.L.

    1980-02-01

    A 1/7-scale model of a double rupture disc pressure relief device, designed for the intermediate heat transfer system of a liquid metal fast breeder reactor, was subjected to incident pressure pulses that simulated various sodium-water reaction pulses. General features of the pulses generated were an initial rise in pressure that lasted from 1 to 2 ms followed by a slow decrease in pressure that lasted for more than 50 ms. Pulses with nominal maximum pressures of 50, 100, 150, 200, 400, 600, and 800 psi were generated and transmitted along the pipe to load the rupture discs. The hydrostatic collapse pressure of the spherical cap of the rupture disc, determined by test in the same apparatus, was 250 psi. It is concluded that: (1) incident pressures must exceed half the static collapse pressure to cause rupture and so activate the relief system; and (2) incident pressures above the static collapse pressure result in reflected pressures that are less than the incident pressures.

  4. Rupture of osteocyte processes across microcracks: the effect of crack length and stress.

    PubMed

    Dooley, Clodagh; Tisbo, Pietro; Lee, T Clive; Taylor, David

    2012-07-01

    Bone cells are connected to one another in a network, via their dendritic cellular processes. Previously, we hypothesized that these processes could be ruptured by microcracks. We proposed this as a mechanism by which osteoctyes could detect the presence of microcracks. In order for this mechanism to be effective, the number of ruptured processes would have to increase with microcrack length and also with the applied cyclic stress. This paper presents for the first time experimental data, which shows that this is indeed the case. We examined samples of bovine, ovine and murine bone ex vivo and observed processes passing across crack faces: some were still intact whilst others had ruptured. The number of intact processes per unit crack length decreased significantly with increasing crack length and also decreased in samples, which had been tested in vitro at higher stress levels. A theoretical model that we had developed previously was able to predict the overall magnitude and general trends in the experimental data. This work has provided further support for our "scissors" model, which proposes that microcracks can be detected because they disturb the osteocyte network, specifically by rupturing cellular processes where they pass across the crack faces. PMID:21927824

  5. Vitamins C and E: missing links in preventing preterm premature rupture of membranes?

    PubMed

    Woods, J R; Plessinger, M A; Miller, R K

    2001-07-01

    We propose that generation of reactive oxygen species may be a potentially reversible pathophysiologic pathway leading to preterm premature rupture of the membranes. Reactive oxygen species generated by the body's response to diverse insults such as infection, cigarette smoking, bleeding, or cocaine use can activate collagenolytic enzymes and impair fetal membrane integrity. Vitamin E, a lipid-soluble antioxidant, inhibits membrane-damaging effects of reactive oxygen species-induced lipid peroxidation. Vitamin C, a water-soluble antioxidant in plasma, stimulates and protects collagen synthesis while recycling vitamin E. Prior evidence shows that (1) damage by reactive oxygen species can impair fetal membrane integrity, (2) reduced midgestation levels of vitamin C are associated with preterm premature rupture of membranes, and (3) these vitamins can be safely and effectively absorbed and delivered to gestational tissues. Current prenatal vitamin preparations contain vitamins C and E in concentrations that are less than 1/3 and 1/10, respectively; these levels have been suggested for effective antioxidant protection. We hypothesize that increased dietary consumption or supplementation of vitamins C and E during pregnancy may reduce physiologically the risks of that portion of preterm premature rupture of membranes that is mediated by excessive or undamped peroxidation of fetal membranes. This hypothesis, if confirmed, should stimulate initiation of therapeutic trials to test the efficacy of enhanced supplementation with vitamins C and E during pregnancy to prevent preterm premature rupture of membranes. PMID:11483896

  6. Models of iodine behavior in reactor containments

    SciTech Connect

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1992-10-01

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents.

  7. [Therapeutic strategies for postinfarction left ventricular free wall rupture].

    PubMed

    Koyanagi, Toshiya; Shimokawa, T; Ida, T; Kasegawa, H; Tobaru, T; Sumiyoshi, T

    2005-04-01

    We treated 93 patients who developed left ventricular free wall rupture after acute myocardial infarction. Medical management including pericardial drainage was performed in 78 patients (84%), but 67 of them died. All 11 surviving patients showed an oozing type rupture. Surgical repair was performed in 15 patients (16%). As a result, 9 patients died and 6 survived. All but 1 of the patients who died presented with a blow-out rupture. Blow-out type rupture occurred in 3 and oozing type rupture in 3 of the surviving patients. One patient with blow-out type rupture underwent implantation of a left ventricular assist device following percutaneous cardiopulmonary support (PCPS), because of low output syndrome after the operation. The device was successfully removed 7 days after implantation. In all of the 3 patients with oozing type rupture, sutureless technique was successfully performed using fibrin-glue or fibrin-glue sheet fixation. After a mean follow-up period of 7 years after operation, 5 of 6 are still alive. To improve the clinical outcome of left ventricular free wall rupture, it is important for surgeons to closely liaise with physicians, to perform surgical repair as soon as possible, and to utilize a circulatory support system after operation. Therefore, we developed a new PCPS system compatible with emergency cardiac surgery and a new left ventricular assist system draining via the left ventricle. PMID:15828243

  8. An Epigastric Heteropagus Twin with Ruptured Giant Omphalocele

    PubMed Central

    Dar, Sajid Hameed; Iqbal, Javaid; Latif, Tariq; Iqbal, Asif

    2014-01-01

    We present a case of heteropagus twins attached to the epigastric region. The neonate also had ruptured giant omphalocoele with most of gut and liver lying outside the abdominal cavity. Patient had uneventful surgery for separation of twins and repair of ruptured omphalocoele. PMID:26023494

  9. Ultrasound Diagnosis of Bilateral Quadriceps Tendon Rupture After Statin Use

    PubMed Central

    Nesselroade, Ryan D.; Nickels, Leslie Connor

    2010-01-01

    Simultaneous bilateral quadriceps tendon rupture is a rare injury. We report the case of bilateral quadriceps tendon rupture sustained with minimal force while refereeing a football game. The injury was suspected to be associated with statin use as the patient had no other identifiable risk factors. The diagnosis was confirmed using bedside ultrasound. PMID:21079697

  10. Ruptured bicornuate uterus mimicking ectopic pregnancy: A case report.

    PubMed

    Singh, Nisha; Singh, Uma; Verma, Manju Lata

    2013-01-01

    Ruptured uterus presenting in first trimester of pregnancy is extremely uncommon and should raise the suspicion of uterine malformations. We report a case of a 24-year-old primigravida with 10 weeks of gestation presenting with acute abdomen and hemoperitoneum. Laparotomy revealed bicornuate uterus with ruptured rudimentary horn. The incidence, diagnosis and management of such cases is discussed. PMID:22691311

  11. Simultaneous bilateral quadriceps tendon rupture while playing basketball.

    PubMed

    Shah, M; Jooma, N

    2002-04-01

    Simultaneous bilateral quadriceps tendon rupture is an uncommon injury in healthy people and only a few cases have been reported in athletes. This is the first report of a patient with simultaneous bilateral quadriceps tendon rupture incurred while playing basketball. The injury was surgically repaired and the patient had a good functional outcome. PMID:11916903

  12. Late rupture of extensor pollicis longus after wrist arthroscopy.

    PubMed

    Fortems, Y; Mawhinney, I; Lawrence, T; Trial, I A; Stanley, J K

    1995-06-01

    The first cases of impending rupture of the extensor pollicis longus after wrist arthroscopy are reported and the etiology is compared with extensor pollicis longus ruptures after nondisplaced or minimally displaced Colles fractures. Both cases were treated with extensor indices proprius to extensor pollicis longus transfer with good clinical results. PMID:7632309

  13. The Resolution of Ruptures in the Therapeutic Alliance.

    ERIC Educational Resources Information Center

    Safran, Jeremy D.; Muran, J. Christopher

    1996-01-01

    A rupture in the therapeutic alliance is a deterioration in the quality of the relationship between patient and therapist; it is an interpersonal marker that indicates an opportunity for exploring and understanding the processes that maintain a maladaptive interpersonal schema. Outlines features of a research program on ruptures in the therapeutic…

  14. Diverse rupture processes in the 2015 Peru deep earthquake doublet

    PubMed Central

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie

    2016-01-01

    Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes. PMID:27386585

  15. Diverse rupture processes in the 2015 Peru deep earthquake doublet.

    PubMed

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie

    2016-06-01

    Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes. PMID:27386585

  16. A Three Year Clinicopathological Study of Cases of Rupture Uterus

    PubMed Central

    Rathod, Setu; Swain, Sujata

    2015-01-01

    Introduction Rupture uterus is a life threatening obstetric complication with serious maternal and fetal side-effects. We report a 3 year (2010-2013) retrospective clinical study of pregnancy with rupture uterus cases attending a tertiary care hospital. Aim The aim of the study was to evaluate the incidence of rupture uterus, incidence as per age, parity, clinical presentations, risk factors, complications and management. Materials and Methods Retrospective data of 74 cases of rupture uterus in SCB Medical college, Cuttack was collected from case records of 26,547 deliveries during a 3 year span (2010-2013). Parameters like cause of rupture, type, site of rupture and outcome were recorded. The collected data was analysed by SPSS software v19. Results Out of 26,547 deliveries during the three year period, there were 74 cases of rupture uterus with an incidence of rupture 1 in 359 (0.28%). The mean age of rupture uterus was 27.4 years. 95.8% were multigravida and majority were referred cases from low socioeconomic status. Only 40.5% had the required minimum of four antenatal visits as recommended by WHO (World Health Organisation). A total of 48.6% of cases with rupture uterus had history of previous Caesarean section. Prolonged labour was present in 75.6% of the cases. Only 12.2% of the cases had history of oxytocin use whereas 9.5% had undergone an operative vaginal delivery. Obstructed labour was the cause in 24.3% of cases, 85.1% had complete rupture. Majority had a rupture in the anterior wall (69%) and 81.1% had rupture in lower segment of uterus. Only 17.6% had broad ligament haematoma, 10.8% colporrhexis and 6.8% had associated bladder injury. Repair was possible in only 39.2% of cases, whereas majority landed up in hysterectomy. Internal iliac ligation was done in 2.7% of cases. Perinatal mortality was 90.5% whereas maternal death was seen in 13.5% cases. One patient developed VVF (vesicovaginal fistula). Duration of hospital stay was upto 14 days in 81

  17. Rupture of Right Hepatic Duct into Hydatid Cyst

    PubMed Central

    Laskou, Styliani; Papavramidis, Theodossis S.; Pliakos, Ioannis; Kotidis, Eustathios; Kesisoglou, Isaak; Papavramidis, Spiros T.

    2012-01-01

    Echinococcal disease can develop anywhere in the human body. The liver represents its most frequent location. Hepatic hydatid cysts may rupture into the biliary tract, thorax, peritoneum, viscera, digestive tract or skin. We report a rare case with rupture of the right hepatic duct into a hydatid cyst in a woman with known hydatid disease and choledocholithiasis. The increased intra-luminal pressure in the biliary tree caused the rupture into the adjacent hydatid cyst. The creation of the fistula between the right hepatic duct and the hydatid cyst decompressed the biliary tree, decreased the bilirubin levels and offered a temporary resolution of the obstructive jaundice. Rupture of a hydatid cyst into the biliary tree usually leads to biliary colic, cholangitis and jaundice. However, in case of obstructive jaundice due to choledocholithiasis, it is possible that the cyst may rupture by other way around while offering the patient a temporary relief from his symptoms. PMID:22876065

  18. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  19. [Missed traumatic diaphragmatic rupture--a legal insurance problem].

    PubMed

    Fabian, W; Reimer, H

    1991-08-01

    Even nowadays traumatic ruptures of the diaphragm cause diagnostic difficulties. Especially diaphragmatic ruptures of the so-called "late-type" are accompanied by uncharacteristic abdominal or cardio-respiratory complaints. These complaints depend on the type and the volume of the prolapsed organs. By hearing the classic previous history and symptoms the expert has to consider the diagnosis. Beside the previous history, the clinical evidents, the thoracic as well as the abdominal survey radiography, further informations can be given by Gastrointestinal passage with Gastrographin, by Colon contrast fluid enema and by abdominal CT. If there are no general contraindications, diaphragmatic ruptures have to be treated by surgery. There after patients are usually without complaints. Insurance-law-problems are unnecessarily created by "not identifying" fresh diaphragmatic ruptures and by "not considering" the possibility of "late-type" ruptures. PMID:1949474

  20. Creep and rupture strength of pearlitic and austenitic steels under active proportional loading in a plane stress state

    SciTech Connect

    Mozharovskaya, T.N.

    1985-04-01

    The authors conducted creep and creep-rupture tests of materials on a modernized DST-5 unit with allowance for the type of stress state. Steel 15Kh2MFA was subjected to creep tests at 823/sup 0/K, as was steel 08Kh18N9. It is shown that the minimum creep rate and rupture strength of materials depend significantly on the type of stress state. A universal relation is established between the minimum creep rate and stress intensity under long-term proportional loading with a plane stress state. A generalized rupture-strength criterion is proposed for plane stress under proportional loading and is substantiated on pearlitic and austenitic steels.

  1. Analysis of the dynamic response of a double rupture disc assembly to simulated sodium-water reaction pressure pulses

    SciTech Connect

    Leonard, J.R.

    1980-03-01

    A series of double rupture disc experiments were conducted in 1979 to evaluate the dynamic response characteristics of this pressure relief apparatus. The tests were performed in a facility with water simulating sodium and rising pressure pulses representative of the pressure increase resulting from a water/steam leak from a steam generator into sodium in the intermediate heat transport system of a breeder reactor power plant. Maximum source pressures ranged in magnitude from 50 psi to 800 psi. Dynamic response characteristics of each of the two rupture discs were similar to those observed in larger scale sodium-water experiments conducted in the Series I and Series II Large Leak Test Program at the Energy Technology Engineering Center. The SRI double rupture disc dynamic behavior was found to be consistent and amendable to modelling in the TRANSWRAP II computer code. A series of correlations which represent rupture disc buckling parameters were developed for use in the TRANSWRAP II code. The semi-empirical modeling of the rupture discs in the TRANSWRAP II code showed very good agreement with the experimental results.

  2. Management of distal biceps and triceps ruptures.

    PubMed

    Blackmore, Susan M; Jander, Ryan M; Culp, Randall W

    2006-01-01

    The management of distal biceps and triceps ruptures is reviewed. Epidemiology, clinical presentation, evaluation, surgical management, nonoperative management, and rehabilitation rationale and techniques are presented. Although various surgical repair techniques are used, none has been shown to produce superior clinical outcomes. The literature is lacking information to provide evidence-based decisions regarding rehabilitation strategies. Prospective studies comparing types and timing of repairs and timing and techniques for a postoperative program are needed. As that information is not yet available, the rehabilitation plan outlined in this article is based on timetables for healing tissue, strength of repair, prevention of complications, consideration of patient's medical history and injury history, and review of the literature. Familiarity with the different treatment options assists the surgeon and therapist tailor a therapy program that is optimal for each individual patient. PMID:16713863

  3. Endovascular approach for ruptured abdominal aortic aneursyms.

    PubMed

    Setacci, F; Sirignano, P; De Donato, G; Chisci, E; Galzerano, G; Cappelli, A; Palasciano, G; Setacci, C

    2010-06-01

    The rupture of an abdominal aortic aneurysm (rAAA) causes about 15000 deaths/year in the USA alone. Even though over the last 50 years progress in surgical techniques and in postoperative intensive care have been outstanding, the analysis of registries has shown either no decrease in the mortality rate for surgically treated rAAAs. Some reports asserted better out come for endovascular repair (EVAR) compared with surgery in case of rAAA. Despite this evidence, EVAR for rAAA remains prerogative of few centers worldwide. In conclusion only larger study or registry could assest the real role of EVAR in the management of rAAA. PMID:20523280

  4. Can Severe Kyphoscoliosis Lead to Aorta Rupture?

    PubMed

    Kotopoulos, Constantinos; Karakasi, Maria Valeria; Kapetanakis, Stylianos; Pavlidis, Pavlos

    2016-09-01

    Neurofibromatosis type 1 is a polysystemic disease presenting with a multifaceted clinical picture. Clinical manifestations may present in the skin, as well as in the skeletal and cardiovascular system. The present study aims to describe and examine the case of a 46-year-old woman, who suffered from neurofibromatosis type 1 and died abruptly in the emergency room. The forensic examination attributed her death to traumatic rupture of the thoracic aorta resulting from an acute angulation that her vertebral column formed in the thoracic region (severe kyphosis). Outspread cutaneous neurofibromas, severe scoliosis, and osteoporosis (brittle bones) were observed during the autopsy. No atherosclerotic lesions were detected in the aortic lumen. To the authors' knowledge, no similar case has been reported throughout relevant literature. PMID:27323279

  5. Unresponsive primipara after rupture of membranes.

    PubMed

    Buechel, Johanna; Berset, Andreas; Lehmann, Michael A; Lapaire, Olav

    2015-01-01

    Amniotic fluid embolism, also called anaphylactoid syndrome of pregnancy, is a rare but severe problem in obstetrics. It occurs in 8/100,000 births and the maternal mortality is up to 90%. We report the case of a patient with amniotic fluid embolism who was transferred to our hospital. The initial presentation was an unresponsive patient after spontaneous rupture of the membranes. The massive hypotension and coagulopathy as well as fetal bradycardia of 60 bpm led, after stabilisation of the mother, to an emergency caesarean section. The neonate expired hours later, despite neonatological intensive care. During the operation, we had to deal with massive bleeding due to the coagulopathy. Through interdisciplinary teamwork including Bakri postpartum balloon insertion through the obstetrics team, uterine artery embolism by the interventional radiologists and transfusion of blood products, the maternal life was saved and the patient was discharged 9 days after admission. PMID:25883261

  6. Laminar Plunging Jets - Interfacial Rupture and Inception of Entrainment

    NASA Astrophysics Data System (ADS)

    Kishore, Aravind

    number, Cac = η∣Vc/sigma and viscosity ratio, η0/η in postulating an alternate approach involving scaling of the pertinent physics by using liquids as entrained fluids. The scaling approach is tested using a rotating cylinder placed at the interface between two fluids. A mesh-independence study using successively finer meshes predicted critical entrainment velocity values within about 1% of each other. Numerical predictions compared well with experimental data, with less than 1% difference in the case where exact experimental data was available, and a maximum of 6% difference for cases where experimental data was extrapolated to make the comparison. These results lend credibility to our approach. The effect of densities of the two fluids manifests as buoyancy force at the interfacial cusp. Remarkably, contrary to a priori notions, our simulation results showed that as Deltarho increased, the effect of buoyancy decreased relative to other forces at the interfacial cusp. Finally, we proposed an empirical correlation between Cac and η 0/η which allows extrapolation of critical entrainment conditions between the rotating-cylinder configuration (with liquids being entrained) to the plunging-jet configuration (with air being entrained). The primary contribution of this research is the physics-based scaling approach utilized to overcome the simulation challenges posed by the physics of interface rupture and entrainment.

  7. Bacterial DNA findings in ruptured and unruptured intracranial aneurysms.

    PubMed

    Pyysalo, Mikko J; Pyysalo, Liisa M; Pessi, Tanja; Karhunen, Pekka J; Lehtimäki, Terho; Oksala, Niku; Öhman, Juha E

    2016-05-01

    Objective Chronic inflammation has earlier been detected in ruptured intracranial aneurysms. A previous study detected both dental bacterial DNA and bacterial-driven inflammation in ruptured intracranial aneurysm walls. The aim of this study was to compare the presence of oral and pharyngeal bacterial DNA in ruptured and unruptured intracranial aneurysms. The hypothesis was that oral bacterial DNA findings would be more common and the amount of bacterial DNA would be higher in ruptured aneurysm walls than in unruptured aneurysm walls. Materials and methods A total of 70 ruptured (n = 42) and unruptured (n = 28) intracranial aneurysm specimens were obtained perioperatively in aneurysm clipping operations. Aneurysmal sac tissue was analysed using a real-time quantitative polymerase chain reaction to detect bacterial DNA from several oral species. Both histologically non-atherosclerotic healthy vessel wall obtained from cardiac by-pass operations (LITA) and arterial blood samples obtained from each aneurysm patient were used as control samples. Results Bacterial DNA was detected in 49/70 (70%) of the specimens. A total of 29/42 (69%) of the ruptured and 20/28 (71%) of the unruptured aneurysm samples contained bacterial DNA of oral origin. Both ruptured and unruptured aneurysm tissue samples contained significantly more bacterial DNA than the LITA control samples (p-values 0.003 and 0.001, respectively). There was no significant difference in the amount of bacterial DNA between the ruptured and unruptured samples. Conclusion Dental bacterial DNA can be found using a quantitative polymerase chain reaction in both ruptured and unruptured aneurysm walls, suggesting that bacterial DNA plays a role in the pathogenesis of cerebral aneurysms in general, rather than only in ruptured aneurysms. PMID:26777430

  8. Effects on stress rupture life and tensile strength of tin additions to Inconel 718

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Johnson, W.

    1982-01-01

    Because Inconel 718 represents a major use of columbium and a large potential source of columbium for aerospace alloys could be that of columbium derived from tin slags, the effects of tin additions to Inconel 718 at levels which might be typical of or exceed those anticipated if tin slag derived columbium were used as a melting stock were investigated. Tin was added to 15 pound Inconel 718 heats at levels varying from none added to approximately 10,000 ppm (1 wt%). Limited 1200 F stress rupture testing was performed at stresses from 68,000 to 115,000 psi and a few tensile tests were performed at room temperature, 800 and 1200 F. Additions of tin in excess of 800 ppm were detrimental to ductility and stress rupture life.

  9. Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Käser, M.

    2010-12-01

    We will present recent developments concerning the extensions of the ADER-DG method to solve three dimensional dynamic rupture problems on unstructured tetrahedral meshes. The simulation of earthquake rupture dynamics and seismic wave propagation using a discontinuous Galerkin (DG) method in 2D was recently presented by J. de la Puente et al. (2009). A considerable feature of this study regarding spontaneous rupture problems was the combination of the DG scheme and a time integration method using Arbitrarily high-order DERivatives (ADER) to provide high accuracy in space and time with the discretization on unstructured meshes. In the resulting discrete velocity-stress formulation of the elastic wave equations variables are naturally discontinuous at the interfaces between elements. The so-called Riemann problem can then be solved to obtain well defined values of the variables at the discontinuity itself. This is in particular valid for the fault at which a certain friction law has to be evaluated. Hence, the fault’s geometry is honored by the computational mesh. This way, complex fault planes can be modeled adequately with small elements while fast mesh coarsening is possible with increasing distance from the fault. Due to the strict locality of the scheme using only direct neighbor communication, excellent parallel behavior can be observed. A further advantage of the scheme is that it avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping or filtering of synthetic seismograms. In order to test the accuracy of the ADER-DG method the Southern California Earthquake Center (SCEC) benchmark for spontaneous rupture simulations was employed. Reference: J. de la Puente, J.-P. Ampuero, and M. Käser (2009), Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B10302, doi:10.1029/2008JB006271

  10. Surgical repair of the ruptured Achilles tendon. Analysis of 40 patients treated by the same surgeon.

    PubMed

    Quigley, T B; Scheller, A D

    1980-01-01

    Forty patients with acute ruptures of the Achilles tendon were treated surgically by the same physician (T.B.Q.) during a period of 1947 to 1971. The average followup was 19 years. Ninety percent of the patients were men (average age 37.5 years) who were engaged in recreational sport activities. The majority denied a physical conditioning program. The acute ruptures were treated by a surgical procedure which consisted of a 15-cm incision on the medial aspect of the tendon with either the plantaris muscle being woven through the Achilles tendon in a clockwise fashion or a pull-out wire, supplemented with silk mattress sutures, being used to repair the ruptured tendon. The wound was closed and the patient's leg was immobilized. The wire was removed at 6 weeks. The rehabilitation plan consisted of ambulation with a heel lift and elastic stocking (the height of the lift was gradually reduced) and toe exercises. The patients began walking downstairs backwards at 3 months and continued exercises until full range of motion was attained. Subjectively, the results were excellent as graded by the patients. Objectively, there were some minor deficits but they did not impede the overall function. On a scale of 1 (poor) to 4 (excellent), the clinical results were rated excellent (42%), good (36%), fair (15%), and poor (6%). This review has supported our contention that a positive Thompson test is a reliable indicator for a rupture of the Achilles tendon and that surgical treatment of complete ruptures is a successful mode by the procedure described followed by our rehabilitation program. PMID:7396055

  11. Pre-test evaluation of LLTR Series II Test A-6. [Large Leak Test Facility

    SciTech Connect

    Knittle, D

    1980-11-01

    Purpose of this report is to present pre-test predictions of pressure histories for the A6 test to be conducted in the Large Leak Test Facility (LLTF) at the Energy Technology Engineering Center. A6 is part of a test program being conducted to evaluate the effects of leaks produced by a double-ended guillotine rupture of a single tube. A6 will provide data on the CRBR prototypical double rupture disc performance.

  12. Rupture pressure of wear degraded alloy 600 steam generator tubings

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Namgung, Chan; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2008-02-01

    Fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall thickness (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0° showed a fish mouth fracture, whereas the tube with a 45° wrap angle showed a three way fracture.

  13. Ligament Rupture Pressure of Fretted SG Tubes of PWRs

    SciTech Connect

    Seong Sik Hwang; Man Kyo Jung; Hong Pyo Kim; Joung Soo Kim

    2006-07-01

    A fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show a burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0 deg. showed a fish mouth fracture, whereas the tube with a 45 deg. wrap angle showed a three way fracture. (authors)

  14. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  15. Experimental studies of single-event gate rupture and burnout in vertical power MOSFET`s

    SciTech Connect

    Titus, J.L.; Wheatley, C.F.

    1996-04-01

    Numerous studies have revealed that vertical power MOSFET`s are susceptible to single-event burnout (SEB) and single-event gate rupture (SEGR), resulting in degraded performance or even catastrophic failure when operated in a cosmic-ray environment like space. This paper summarizes many of those experimental studies and examines the problems, test methodologies, and experimental results. Previously unavailable information on SEGR is also provided.

  16. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Oglesby, David D.; Mai, P. Martin

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  17. Experimental study on the hierarchical rupture process of faults having heterogeneous asperities

    NASA Astrophysics Data System (ADS)

    Lei, X.; Kusunose, K.; Satoh, T.; Nishizawa, O.

    2001-12-01

    with a fault of multiple asperities. These facts indicate that detailed time-space distribution of hypocenter and b-value can be used to identify asperities. However, a careful analysis is required since an asperity may show high and low b-values at different stress stages. High-dynamic range waveform data shows microcracking in mm scale has similar dynamic rupture behavior to earthquakes. Initial phase associated with the quasi-static to quasi-dynamic rupture growth were observed for some events. The critical size of the nucleation zone can be estimated from the initial phase or pre-events. The power law relation between the duration of the initial phase and the critical nucleation size is consistent with the data obtained from friction test as well as some large earthquakes. It was found that the quasi-static rupture growth in a specific scale consists of dynamic fractures of asperities in a smaller scale, and so on. Therefore, the rupture process is considered to be hierarchical and it is expected that the dynamic rupture in a small scale can map out the quasi-static nucleation process of the rupture in a larger scale. Since dynamic motions are easier to detect remotely than static ones, the dialectic relationship between _gstatic_h and _gdynamic_h is thus very helpful for understanding the source preparing of large earthquakes. >http://staff.aist.go.jp/xinglin-lei/Studies/Hasperity.htm

  18. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  19. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    SciTech Connect

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S.

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  20. Rupture processes of the 2015 Mw 7.9 Gorkha earthquake and its Mw 7.3 aftershock and their implications on the seismic risk

    NASA Astrophysics Data System (ADS)

    Liu, Chengli; Zheng, Yong; Wang, Rongjiang; Shan, Bin; Xie, Zujun; Xiong, Xiong; Ge, Can

    2016-07-01

    The rupture processes of the 2015 April 25 Gorkha earthquake and its strongest aftershock occurred on May 12 in Nepal are investigated by joint inversion of seismological and geodetic data. Synthetic test shows that the sedimentary layers in the source region play an important role in the rupture process inversion. Our optimized model of the mainshock shows that the rupture has a unilateral propagation pattern. The dominant mechanism is pure thrust with maximum slip of 5.8 m, the rupture scale extends ~ 60 km along dip and ~ 150 km along strike, and the largest static stress change is ~ 7.6 MPa. The total seismic moment is 7.87 × 1020 N m, equivalent to Mw 7.9. Most seismic moment was released within 80 s and the majority seismic moment was released at the first 40 s. The rupture propagated in main slip asperity with a velocity of ~ 3.0 km/s. The strong aftershock magnitude is about Mw 7.3, and the peak slip is about 5.0 m, close to the peak slip of the mainshock. Moreover, the slips of the mainshock and the aftershocks are in good complementary, suggesting a triggering relationship between them. Considering the strain accumulation, the Gorkha earthquake ruptured only part of the seismic gap alone, thus still poses high earthquake risk, especially in the west side of the mainshock rupture zone.

  1. Gastric rupture in horses: 50 cases (1979-1987).

    PubMed

    Kiper, M L; Traub-Dargatz, J; Curtis, C R

    1990-01-15

    A computer-based search was conducted of medical and necropsy records of horses admitted to the teaching hospital from Jan 1, 1979, to Dec 31, 1987, to obtain the records of all horses admitted to the hospital for colic and subsequently found to have gastric rupture. Fifty cases of gastric rupture were found. The records were reviewed to obtain data regarding peritoneal fluid analysis. Cell counts of these samples were often erroneous because debris and clumps of bacteria were counted when most WBC were lysed. A cross-sectional study of gastric rupture cases versus all other colic cases regarding season of admission revealed that there was no association between season and the occurrence of gastric rupture. There was also no increased risk associated with age, gender, breed, and the occurrence of gastric rupture. One hundred colic cases, matched with the gastric rupture cases by year of admission, were randomly selected via a table of random numbers. A questionnaire regarding age, breed, gender, use of the horse, housing, diet, water source, deworming schedule, and medical history was completed from the medical records and phone conversations with the horse owners. The results indicated that horses on a diet of grass hay or grass/alfalfa hay only or those that drank water from a bucket, stream, or pond were at increased risk for having gastric rupture. In contrast, horses fed grain had a reduced risk. PMID:2298661

  2. Perianeurysmal edema as a predictive sign of aneurysmal rupture.

    PubMed

    Pahl, Felix Hendrik; de Oliveira, Matheus Fernandes; Ferreira, Nelson Paes Fortes Diniz; de Macedo, Leonardo Lopes; Brock, Roger Schmidt; de Souza, Valéria Cardoso

    2014-11-01

    Subarachnoid hemorrhage following intracranial aneurysmal rupture is a major cause of morbidity and mortality. Several factors may affect the probability of rupture, such as tobacco and alcohol use; size, shape, and location of the aneurysm; presence of intraluminal thrombus; and even the sex of the patient. However, few data correlate such findings with the timing of aneurysmal rupture. The authors report 2 cases of middle-age women with headache and MRI findings of incidental aneurysms. Magnetic resonance imaging showed evidence of surrounding parenchymal edema, and in one case there was a clear increase in edema during follow-up, suggesting a progressive inflammatory process that culminated with rupture. These findings raise the possibility that bleb formation and an enlargement of a cerebral aneurysm might be associated with an inflammatory reaction of the aneurysm wall resulting in perianeurysmal edema and subsequent aneurysmal rupture. There may be a temporal link between higher degree of edema and higher risk for rupture, including risk for immediate rupture. PMID:25036206

  3. Blunt traumatic cardiac rupture. A 5-year experience.

    PubMed

    Brathwaite, C E; Rodriguez, A; Turney, S Z; Dunham, C M; Cowley, R

    1990-12-01

    Blunt traumatic cardiac rupture is associated with a high rate of mortality. A review of the computerized trauma registry (1983 to 1988) identified 32 patients with this injury (ages 19 to 65 years; mean age, 39.5 years; 21 men and 11 women). Twenty-one patients (65.6%) were injured in vehicular crashes, 3 (9.4%) in pedestrian accidents, 3 (9.4%) in motorcycle accidents; 3 (9.4%) sustained crush injury; 1 (3.1%) was injured by a fall; and 1 (3.1%) was kicked in the chest by a horse. Anatomic injuries included right atrial rupture (13[40.6%]), left atrial rupture (8 [25%]), right ventricular rupture (10[31.3%]), left ventricular rupture (4[12.5%]), and rupture of two cardiac chambers (3 [9.4%]). Diagnosis was made by thoracotomy in all 20 patients presenting in cardiac arrest. In the remaining 12 patients, the diagnosis was established in seven by emergency left anterolateral thoracotomy and in five by subxyphoid pericardial window. Seven of these 12 patients (58.3%) had clinical cardiac tamponade and significant upper torso cyanosis. The mean Injury Severity Score (ISS), Trauma Score (TS), and Glasgow Coma Scale (GCS) score were 33.8, 13.2, and 14.3, respectively, among survivors and 51.5, 8.3, and 7.0 for nonsurvivors. The overall mortality rate was 81.3% (26 of 32 patients), the only survivors being those presenting with vital signs (6 of 12 patients [50%]). All patients with rupture of two cardiac chambers or with ventricular rupture died. The mortality rate from myocardial rupture is very high. Rapid prehospital transportation, a high index of suspicion, and prompt surgical intervention contribute to survival in these patients. PMID:2256761

  4. Clinical assessment is sufficient to allow outcome evaluation following surgical management of Achilles tendon ruptures

    PubMed Central

    Todorov, Atanas; Schaub, Frederic; Blanke, Fabian; Heisterbach, Patricia; Sachser, Franciska; Gösele, Andreas; Majewski, Martin

    2015-01-01

    Summary Study design cross-sectional study in otherwise healthy athletic adults with a unilateral Achilles tendon rupture. Objectives define the relationships of active range of motion, calf circumference or number of heel raises to a full set of isokinetic parameters. Background Achilles tendon ruptures commonly occur during sports and create a considerable amount of morbidity. The benefits of different treatments are difficult to determine. Complex and expensive isokinetic testing is often required. If a simple force measurement could replace this testing, large clinical trials would be more easily feasible. Methods 74 patients with acute Achilles tendon rupture and surgical treatment were evaluated retrospectively. Active range of motion (ROM), ratio of ROM, number of heel raises, ratio of heel raises, calf circumference and isokintetic measurements were recorded. Regression using a Bayesian elastic net showed the most important correlations. Results Active range of motion showed a significant correlation to peak torque angle at flexion and extension as well as increased sports activity. There was a negative correlation to percutaneous therapy. Active Heel raise showed a positive correlation to peak torque at dorsal extension and increased sports activity as well as a negative correlation to high postoperative pain, where as calf circumference was positive correlated to peak torque at dorsal extension and body height as well as negative correlated to female gender. Conclusion device independent measures, like range of Motion, and amount of Heel raise, are an excellent tool providing similar information compared to isokinetic testing and could be used to evaluate clinical outcome after Achilles tendon rupture. PMID:26261784

  5. Economic Analysis of Screening Strategies for Rupture of Silicone Gel Breast Implants

    PubMed Central

    Chung, Kevin C.; Malay, Sunitha; Shauver, Melissa J.; Kim, H. Myra

    2012-01-01

    Background In 2006, the U.S. Food and Drug Administration (FDA) recommended screening of all women with silicone gel breast implants with magnetic resonance imaging (MRI) three years after implantation and every two years thereafter to assess their integrity. The cost for these serial examinations over the lifetime of the breast implants is an added burden to insurance payers and to women. We perform an economic analysis to determine the most optimal screening strategies by considering the diagnostic accuracy of the screening tests, the costs of the tests and subsequent implant removal. Methods We determined aggregate/pooled values for sensitivity and specificity of the screening tests ultrasound (US) and MRI in detecting silicone breast implant ruptures from the data obtained from published literature. We compiled costs, based on Medicare reimbursements for 2011, for the following elements: imaging modalities, anesthesia and 3 surgical treatment options for detected ruptures. We used decision tree to compare three alternate screening strategies of US only, MRI only and US followed by MRI in asymptomatic and symptomatic women. Results The cost per rupture of screening and management of rupture with US in asymptomatic women was $1,090, whereas in symptomatic women it was $1,622. Similar cost for MRI in asymptomatic women was $2,067, whereas in symptomatic women it was $2,143. Similar cost for US followed by MRI in asymptomatic women was $637, whereas in symptomatic women it was $2,908. Conclusion Screening with US followed by MRI was optimal for asymptomatic women and screening with US was optimal for symptomatic women. PMID:22743887

  6. Design prediction for long term stress rupture service of composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Robinson, Ernest Y.

    1992-01-01

    Extensive stress rupture studies on glass composites and Kevlar composites were conducted by the Lawrence Radiation Laboratory beginning in the late 1960's and extending to about 8 years in some cases. Some of the data from these studies published over the years were incomplete or were tainted by spurious failures, such as grip slippage. Updated data sets were defined for both fiberglass and Kevlar composite stand test specimens. These updated data are analyzed in this report by a convenient form of the bivariate Weibull distribution, to establish a consistent set of design prediction charts that may be used as a conservative basis for predicting the stress rupture life of composite pressure vessels. The updated glass composite data exhibit an invariant Weibull modulus with lifetime. The data are analyzed in terms of homologous service load (referenced to the observed median strength). The equations relating life, homologous load, and probability are given, and corresponding design prediction charts are presented. A similar approach is taken for Kevlar composites, where the updated stand data do show a turndown tendency at long life accompanied by a corresponding change (increase) of the Weibull modulus. The turndown characteristic is not present in stress rupture test data of Kevlar pressure vessels. A modification of the stress rupture equations is presented to incorporate a latent, but limited, strength drop, and design prediction charts are presented that incorporate such behavior. The methods presented utilize Cartesian plots of the probability distributions (which are a more natural display for the design engineer), based on median normalized data that are independent of statistical parameters and are readily defined for any set of test data.

  7. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a

  8. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  9. Outcomes of conservative treatment for ruptured lumbar disc herniation.

    PubMed

    Yu, Peng-Fei; Jiang, Fang-Da; Liu, Jin-Tao; Jiang, Hong

    2013-12-01

    The authors set up a prospective study of the effect of conservative treatment on a ruptured lumbar disc herniation in 89 patients, between June 2008 and June 2010. Seventy-two patients (81%) improved, while the other 17 (19%) needed surgery. The JOA score (best possible result: 29) was found to be significantly improved in the 72 patients of the conservative group, at 1 month, 3 months, 6 months, 1 year and 2 years (t-test: p < 0.001). At final follow-up, after 2 years, 84.7% of the patients in the conservative group had a good or excellent result. However, if the 17 surgical cases were included, this proportion dropped to 68.5%. The volume of the protrusion decreased significantly in the 72 patients of the conservative group: from 1422.52 +/- 539.10 mm3 to 102735 +/- 585.51 mm3 (paired t-test: p < 0.001). There was a definite correlation, in the conservative group, between the final resorption rate on the one hand and the percentage of combined excellent and good results on the other hand (72 cases; Spearman rank correlation coefficient: r 0.01 = 0.470, p < 0.001). PMID:24563981

  10. Effect of multiaxial stresses on the high-temperature behavior and rupture of advanced alloys

    NASA Astrophysics Data System (ADS)

    Johnson, Nancy Louise

    1998-05-01

    The evolution and effect of multiaxial stress states on the high temperature deformation and rupture behavior of materials with non-uniform microstructures has been investigated. Through a detailed description of the role that multiaxial stresses play on damage evolution and rupture, the abundant existing data for uniaxial rupture can be used to more successfully design for the life of high temperature components. Three dimensional finite element calculations of primary creep deformation were performed for particulate reinforced metal matrix composites under a variety of multiaxial loading conditions. A quasi-steady state stress distribution develops during primary creep for each of the conditions considered. The results indicate that higher stresses exist in regions above and below the particles and accommodate the development of creep damage. The nature of the stress state within these regions is not significantly altered by the presence of the particles. The strain fields show a distribution similar to the stress fields. Despite significantly large regions of enhanced stress, the overall creep strain rates for all models are decreased by the presence of the particles. The applied effective stress does not have a unique relationship with overall effective strain rate for particulate reinforced composites under different applied stress states. The failure of sections of turbine rotor disks formed from the superalloy V-57 which operate under highly multiaxial stresses has been investigated. Optical microscopy of a turbine rotor disk removed from service after 30,000 hrs showed an intergranular crack that initiated at the root of a fir-tree turbine rotor blade attachment. Transmission electron microscopy studies showed heavy grain boundary oxidation that could account for the cracking and failure of the rotor disks. Heat treatments of a TiAl alloy have been established for producing a microstructure suitable for high temperature multiaxial rupture testing. The

  11. Ruptured ileocolic artery aneurysm: an unusual cause of hemoperitoneum.

    PubMed

    Siddiqui, Zakaur R; Yousif, Omer F; Halliday, Mark W; Hubaishah, Nasser A; Adam, Khalid A

    2012-01-01

    Ruptured aneurysm of a branch of ileocolic artery is a rare finding and is an unusual cause of haemoperitoneum. Rapid diagnosis, and surgical or endovascular intervention are necessary to avoid devastating consequences and high mortality rates following an emergency operation after rupture. Resection is a good choice for surgical intervention for some aneurysms that are not suitable for endovascular repair. This report describes the case of a middle-aged man with a ruptured superior mesenteric artery branch aneurysm and his subsequent surgical management. PMID:23006464

  12. Ruptured Ileocolic Artery Aneurysm: An Unusual Cause of Hemoperitoneum

    PubMed Central

    Siddiqui, Zakaur R.; Yousif, Omer F.; Halliday, Mark W.; Hubaishah, Nasser A.; Adam, Khalid A.

    2012-01-01

    Ruptured aneurysm of a branch of ileocolic artery is a rare finding and is an unusual cause of haemoperitoneum. Rapid diagnosis, and surgical or endovascular intervention are necessary to avoid devastating consequences and high mortality rates following an emergency operation after rupture. Resection is a good choice for surgical intervention for some aneurysms that are not suitable for endovascular repair. This report describes the case of a middle-aged man with a ruptured superior mesenteric artery branch aneurysm and his subsequent surgical management. PMID:23006464

  13. Rupture of the triceps tendon - A case series.

    PubMed

    Jaiswal, Atin; Kacchap, Naiman-Deep; Tanwar, Yashwant-Singh; Kumar, Devendra; Kumar, Birendra

    2016-08-01

    Triceps rupture is the least common among all tendon injuries. The usual mechanism of injury is a fall on an outstretched hand, although direct contact injuries have also been reported to cause this injury. The diagnosis of acute triceps tendon rupture may be missed, which can result in prolonged disability and delayed operative management. We presented three cases of acute triceps tendon rupture each at different site showing the spectrum of injury to the muscle and mechanism of injury and management were also discussed. PMID:27578383

  14. Infective splenic rupture presenting with symptoms of a pulmonary embolism.

    PubMed

    Shah, M; Muquit, S; Azam, B

    2008-12-01

    Splenic rupture following infectious mononucleosis is rare. The case history is presented of a man who presented with sudden onset pleuritic left chest pain. An ultrasound scan of the abdomen showed an enlarged spleen with an abnormal echo pattern and a CT scan of the abdomen showed severe splenic rupture. The patient remembered that he had been unwell 2 weeks earlier with flu-like symptoms and enlarged cervical lymph nodes. Serological examination was positive for Ebstein-Barr virus, confirming the diagnosis of splenic rupture following splenomegaly due to infectious mononucleosis. Management was initially conservative but he became haemodynamically unstable and an emergency splenectomy was performed. PMID:19033515

  15. Frictional melting during the rupture of the 1994 bolivian earthquake

    PubMed

    Kanamori; Anderson; Heaton

    1998-02-01

    The source parameters of the 1994 Bolivian earthquake (magnitude Mw = 8.3) suggest that the maximum seismic efficiency eta was 0.036 and the minimum frictional stress was 550 bars. Thus, the source process was dissipative, which is consistent with the observed slow rupture speed, only 20% of the local S-wave velocity. The amount of nonradiated energy produced during the Bolivian rupture was comparable to, or larger than, the thermal energy of the 1980 Mount St. Helens eruption and was sufficient to have melted a layer as thick as 31 centimeters. Once rupture was initiated, melting could occur, which reduces friction and promotes fault slip. PMID:9452378

  16. The rupture of a single liquid aluminium alloy film.

    PubMed

    Heim, K; García-Moreno, F; Vinod Kumar, G S; Rack, A; Banhart, J

    2014-07-14

    The present study is based on the idea of understanding the rupture of films in metal foams by studying free standing metallic films as a model system. Liquid dynamics, the velocity of the rupturing material as well as the behaviour of ceramic particles inside the melt were analysed optically ex situ and by synchrotron X-ray radiography in situ. It was found that the resistance of films to rupture is mainly based on the interaction between solid particles and an immobile oxide skin, the formation of which depends on the oxygen content of the surrounding atmosphere and the presence of magnesium. PMID:24854899

  17. Spontaneous Uterine Rupture in the First Trimester: A Case Report

    PubMed Central

    Ryu, Ki-Young; Lee, Jong-In; Park, Moon-Il

    2005-01-01

    Uterine rupture is one of the most feared obstetric complications affecting the pregnant woman and fetus. Most of the cases have various risk factors and mainly occur during the second or third trimester. However, spontaneous uterine rupture during the first trimester is extremely rare. We experienced a case of spontaneous uterine rupture in a 36-yr-old multiparous woman without definite risk factors. The initial impression was a hemoperitoneum of an unknown origin with normal early pregnancy. Intensive surgical method would be needed for accurate diagnosis and immediate management in bad situation by hemoperitoneum even though a patient was early pregnancy. PMID:16361828

  18. Spontaneous ruptured dissection of the right common iliac artery in a patient with classic Ehlers-Danlos syndrome phenotype.

    PubMed

    Gaines, Rick; Tinkle, Brad T; Halandras, Pegge M; Al-Nouri, Omar; Crisostomo, Paul; Cho, Jae S

    2015-04-01

    Unlike vascular Ehlers-Danlos syndrome (EDS), classic EDS is rarely associated with vascular manifestation. We report the case of a 39-year-old man who presented with acute abdominal pain. At the time of presentation, the patient was in hypovolemic shock, and computed tomography angiogram demonstrated common iliac artery dissection with rupture. He underwent an attempted endovascular repair that was converted to an open repair of a ruptured right common iliac artery dissection. Subsequent genetic testing revealed a substitution of arginine for cysteine in type I collagen, COL1A1 exon 14 c.934C>T mutation, consistent with a rare variant of classic EDS. PMID:25597651

  19. Spontaneous Healing of the Ruptured Anterior Cruciate Ligament

    PubMed Central

    Roe, Justin; Salmon, Lucy; Waller, Alison; Linklater, James; Pinczewski, Leo

    2016-01-01

    Objectives: It is widely believed that ACL tears are incapable of healing. However, there are anecdotal experiences of the healed ACL and sporadic case reports and series documenting either clinical or radiographic evidence of healed ACL tears. A truly healed ACL would demonstrate a clinically stable knee on Lachman and pivot shift testing, normal return to function and MRI and/or arthroscopic documentation of a continuous ligament. This is in contrast to “copers” who have an ACL deficient knee but lack instability either because of good neuromuscular control or non-participation in activities which are heavily ACL dependent. In this prospective series we report on the presentation and 5 year follow-up of patients with both clinical and radiographically healed ACLs. Methods: 19 patients who presented between July 2007 and April 2010 within 6 weeks of injury with clinical laxity and MRI confirmed ACL rupture. Patients subsequently demonstrated clinical knee stability at 8-12 weeks after pre-habilitation to obtain a pain free mobile joint. Prospective data was collected on these patients with MRI at 12 months, IKDC clinical and subjective scores, KT1000 instrumental laxity testing and Lysholm knee score at 12, 24 and 60 months. Results: At one year follow-up MRI 18/19 patients demonstrated a healed ACL with normal signal, normal trajectory and continuity of fibres. Remainder 1 patient demonstrated bridging of ACL tear with scar tissue and abnormal trajectory of fibers. 5 of 19 patients re-ruptured within 5 years of follow-up. At 5 years follow-up, intact healed ACL patients had a mean IKDC score of 88, mean Lysholm score of 92 and mean KT1000 score of 1.7 mm. 100% reported regular participation in strenuous sport. Conclusion: Although rare, spontaneous healing of the ACL is possible. The mechanism by which this occurs in unknown. It is recommended that reassessment of knee stability should be performed in the non-acute phase after an appropriate prehabilitation

  20. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C. The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C. Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C. The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C ultimate tensile strength of the composites.

  1. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.

  2. Resolving Rupture Directivity of Moderate Strike-Slip Earthquakes in Sparse Network with Ambient Noise Location: A Case Study with the 2011 M5.6 Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Ni, S.

    2015-12-01

    Earthquake rupture directivity is essential for improving reliability of shakemap and understanding seismogenic processes by resolving the ruptured fault. Compared with field geological survey and InSAR technique, rupture directivity analysis based on seismological data provides rapid characterization of the rupture finiteness parameters or is almost the only way for resolving ruptured fault for earthquakes weaker than M5. In recent years, ambient seismic noise has been widely used in tomography and as well as earthquake location. Barmin et al. (2011) and Levshin et al. (2012) proposed to locate the epicenter by interpolating the estimated Green's functions (EGFs) determined by cross-correlation of ambient noise to arbitrary hypothetical event locations. This method does not rely on an earth model, but it requires a dense local array. Zhan et al. (2011) and Zeng et al. (2014) used the EGFs between a nearby station and remote stations as calibration for 3D velocity structure and then obtained the centroid location. In contrast, the hypocenter can be determined by P wave onsets. When assuming unilateral rupture, we can resolve the rupture directivity with relative location of the centroid location and hypocenter. We apply this method to the 2011 M5.6 Oklahoma earthquake. One M4.8 foreshock and one M4+ aftershock are chosen as reference event to calibrate the systematic bias of ambient noise location. The resolved rupture plane strikes southwest-northeast, consistent with the spatial distribution of aftershocks (McNamara et al., 2015) and finite fault inversion result (Sun et al., 2014). This method works for unilaterally ruptured strike-slip earthquakes, and more case studies are needed to test its effectiveness.

  3. Spontaneous subarachnoid hemorrhage due to ruptured cavernous internal carotid artery aneurysm after medical prolactinoma treatment.

    PubMed

    Khalsa, Siri Sahib; Hollon, Todd C; Shastri, Ravi; Trobe, Jonathan D; Gemmete, Joseph J; Pandey, Aditya S

    2016-01-01

    Aneurysms of the cavernous segment of the internal carotid artery (ICA) are believed to have a low risk of subarachnoid haemorrhage (SAH), given the confines of the dural rings and the anterior clinoid process. The risk may be greater when the bony and dural protection has been eroded. We report a case of spontaneous SAH from rupture of a cavernous ICA aneurysm in a patient whose large prolactinoma had markedly decreased in size as the result of cabergoline treatment. After passing a balloon test occlusion, the patient underwent successful endovascular vessel deconstruction. This case suggests that an eroding skull base lesion may distort normal anterior cranial base anatomy and allow communication between the cavernous ICA and subarachnoid space. The potential for SAH due to cavernous ICA aneurysm rupture should be recognised in patients with previous pituitary or other skull base lesions adjacent to the cavernous sinus. PMID:27277584

  4. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  5. Rupture Forces among Human Blood Platelets at different Degrees of Activation.

    PubMed

    Nguyen, Thi-Huong; Palankar, Raghavendra; Bui, Van-Chien; Medvedev, Nikolay; Greinacher, Andreas; Delcea, Mihaela

    2016-01-01

    Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects. PMID:27146004

  6. Rupture Forces among Human Blood Platelets at different Degrees of Activation

    PubMed Central

    Nguyen, Thi-Huong; Palankar, Raghavendra; Bui, Van-Chien; Medvedev, Nikolay; Greinacher, Andreas; Delcea, Mihaela

    2016-01-01

    Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects. PMID:27146004

  7. Pathologic rupture of the spleen as the initial manifestation in acute lymphoblastic leukemia.

    PubMed

    Bernat, S; García Boyero, R; Guinot, M; López, F; Gozalbo, T; Cañigral, G

    1998-08-01

    Pathologic splenic rupture is a rare and life-threatening complication of acute leukemia. It is even more uncommon as the initial manifestation, and only a few cases has been reported in the literature. Early recognition of this complication is vital because the prognosis is fatal without immediate treatment by splenectomy. We report the case of a spontaneous spleen rupture irreversibly complicating the onset of acute lymphoblastic leukemia in a 19-year-old man, in spite of splenectomy. In our case abdominal ultrasound was a good, non-invasive diagnostic test. Therefore, we believe that the course of the underlying disease and the physical condition of the patient dramatically influenced the disease evolution. PMID:9793269

  8. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  9. Bulkhead rupture disc for solid propellant missiles

    SciTech Connect

    Hibler, D.R. Sr.; Sigle, S.P. Jr.

    1988-04-19

    A missile bulkhead rupture disc assembly for disposition between a first stage of propellant and a second stage of propellant and for enabling release of the second stage of propellant subsequent to release of the first stage of propellant is described comprising: a generally circular element comprised of a frangible material and having a first burst pattern with a line of weakness completely circumscribing a central portion of the element. The central portion of the element having structure defines an aperture. The element has a second burst pattern comprising lines of weakness each extending in a substantially radial direction outwardly from the line of weakness of the first burst pattern. Each adjacent pair of the lines of weakness of the second burst pattern is spaced from each other and defines generally sector-shaped segments of the elements. The frangible material of the element has a tensile strength of a certain, first value in the vicinity of the line of weakness of the first burst pattern, and the frangible material of the element has a tensile strength in the vicinity of the lines of weakness of the second burst pattern of a second value which is higher than the first certain value.

  10. Stress-rupture strength of alloy 718

    SciTech Connect

    Kennedy, R.L.; Cao, W.D.; Thomas, W.M.

    1996-03-01

    Alloy 718 is the most widely used of the nickel-base superalloys in aerospace applications such as compressor and turbine disks, cases, compressor blades and fasteners in aircraft gas-turbine engines. Since the development of the superalloy by Inco Alloys International over 30 years ago, researchers have made many slight modifications in chemical composition, and have refined process techniques to achieve further improvements in performance. Relatively little information on the effects of phosphorus has been published, and the available information is contradictory. However, phosphorus in superalloys is generally considered detrimental, and by specification is controlled to a low maximum value (0.015% max, for example, in AMS5662 E). This lack of data is the basis of a study by Teledyne Allvac to determine the effects of the interaction of phosphorus, boron, and carbon on the mechanical properties, processing characteristics, and microstructure of Allvac 718. Results show that a significant improvement in stress-rupture properties over those of a commercial Alloy 718 material is possible by optimizing phosphorus, boron, and carbon additions.

  11. Extracellular Matrix Dynamics and Fetal Membrane Rupture

    PubMed Central

    Strauss,, Jerome F.

    2013-01-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  12. Extracellular matrix dynamics and fetal membrane rupture.

    PubMed

    Strauss, Jerome F

    2013-02-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  13. [Bronchial rupture in blunt thoracic trauma].

    PubMed

    López Espadas, F; Zabalo, M; Encinas, M; Díaz Regañón, G; Pagola, M A; González Fernández, C

    2000-12-01

    In closed chest trauma, bronchial rupture is an unusual but potentially serious complication, with an associated mortality rate of 30%. Recent decades have seen an increase in incidence parallel to greater use of transport. Eighty percent of injuries are located 2.5 cm from the carina. Diagnosis is based on clinical signs, imaging and bronchoscopy. Subcutaneous emphysema and respiratory insufficiency are the most common findings. Images show the presence of pneumothorax, pneumomediastinum or both. Bronchoscopy is the diagnostic method of choice and must be performed early. Treatment consists of reestablishing anatomical continuity of the tracheobronchial tree by surgical repair if the lesion affects more than a third of the circumference and/or pneumothorax is not resolved after two chest drainages. This type of injury should be recognized and treated early, both to restore lung function and to prevent associated complications caused by delay. However, initial findings are seldom specific, requiring the physician to display a high degree of suspicion and explaining why diagnosis often comes late. PMID:11171438

  14. Co-existence of a rare dyspnea with pericardial diaphragmatic rupture and pericardial rupture: a case report.

    PubMed

    Öz, Necdet; Kargı, Ahmet Bülent; Zeybek, Arife

    2015-06-01

    Pericardial-diaphragmatic rupture is a rare condition which occurs after blunt trauma and involves the herniation of abdominal organs into the pericardium. A 77-year-old female patient presenting with complaints of palpitation and difficulty in breathing was admitted to the emergency room. Left lateral thoracotomy revealed the herniation of abdominal organs into the thorax. A pericardial-diaphragmatic rupture and a pericardial rupture were found to co-exist. The diaphragm and the pericardium were repaired primarily. The case is presented here because herniation of abdominal organs into the pleural cavity through the pericardium is a rare condition. PMID:26336505

  15. Co-existence of a rare dyspnea with pericardial diaphragmatic rupture and pericardial rupture: a case report

    PubMed Central

    Kargı, Ahmet Bülent; Zeybek, Arife

    2015-01-01

    Pericardial-diaphragmatic rupture is a rare condition which occurs after blunt trauma and involves the herniation of abdominal organs into the pericardium. A 77-year-old female patient presenting with complaints of palpitation and difficulty in breathing was admitted to the emergency room. Left lateral thoracotomy revealed the herniation of abdominal organs into the thorax. A pericardial-diaphragmatic rupture and a pericardial rupture were found to co-exist. The diaphragm and the pericardium were repaired primarily. The case is presented here because herniation of abdominal organs into the pleural cavity through the pericardium is a rare condition. PMID:26336505

  16. Testing.

    ERIC Educational Resources Information Center

    Killoran, James, Ed.

    1984-01-01

    This journal issue addresses the issue of testing in the social studies classroom. The first article, "The Role of Testing" (Bragaw), focuses on the need for tests to reflect the objectives of the study completed. The varying functions of pop quizzes, weekly tests, and unit tests are explored. "Testing Thinking Processes" (Killoran, Zimmer, and…

  17. Variations in rupture process with recurrence interval in a repeated small earthquake

    USGS Publications Warehouse

    Vidale, J.E.; Ellsworth, W.L.; Cole, A.; Marone, C.

    1994-01-01

    In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and

  18. Multi-Canister overpack necessity of the rupture disk

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The Multi-Canister Overpack (MCO) rupture disk precludes the MCO from pressurization above the design limit during transport from the K Basins to the Cold Vacuum Drying (CVD) Facility and prior to connection of the CVD process piping. Removal of the rupture disk from the MCO design would: (a) result in unacceptable dose consequences in the event a thermal runaway accident occurred; (b) increase residual risk; and (c) remove a degree of specificity from the dose calculations. The potential cost savings of removing the rupture disk from the MCO design is offset by the cost of design modifications, changes to hazard analyses and safety analyses, and changes to existing documentation. Retaining the rupture disk mitigates the consequences of MCO overpressurization, and considering the overall economic impacts to the SNF Project, is the most cost effective approach.

  19. Staged Management of a Ruptured Internal Mammary Artery Aneurysm

    PubMed Central

    Kwon, O Young; Kim, Gun Jik; Oh, Tak Hyuk; Lee, Young Ok; Lee, Sang Cjeol; Cho, Jun Yong

    2016-01-01

    The rupture of an internal mammary artery (IMA) aneurysm in a patient with type 1 neurofibromatosis (NF-1) is a rare but life-threatening complication requiring emergency management. A 50-year-old man with NF-1 was transferred to the emergency department of Kyungpook National University Hospital, where an IMA aneurysmal rupture and hemothorax were diagnosed and drained. The IMA aneurysmal rupture and hemothorax were successfully repaired by staged management combining endovascular treatment and subsequent video-assisted thoracoscopic surgery (VATS). The patient required cardiopulmonary cerebral resuscitation, the staged management of coil embolization, and a subsequent VATS procedure. This staged approach may be an effective therapeutic strategy in cases of IMA aneurysmal rupture. PMID:27066438

  20. [Spontaneous rupture of mediastinal cystic teratoma (case report)].

    PubMed

    Ege, Gürkan; Akman, Haluk; Kuzucu, Kismet; Kalayci, Göksel

    2004-06-01

    Teratomas are rare tumors in the mediastinum. Benign cystic teratomas of anterior mediastinum are rarely complicated by rupture into an adjacent body cavity. Such rupture, however, is usually associated with life-threatening complications. We present a case with spontaneous rupture of mediastinal cystic teratoma. The patient was evaluated with chest radiograph, computed tomography (CT) and magnetic resonance imaging (MRI). A complex mass including predominantly cystic components was detected in the left anterior mediastinum. After surgery, pathologic diagnosis was reported as mature cystic teratoma. High levels of amylase and lipase were detected in both the cystic fluid and serum. This finding supported the hypothesis of autolysis for the explanation of rupture. In addition, carbohydrate antigen (CA) 19-9, CA 125 and carcinoembryonic antigen (CEA) levels were high in the cystic fluid. PMID:15236127

  1. Splenic rupture as a presenting feature of endocarditis.

    PubMed

    Winearls, James Roger; McGloughlin, Steven; Fraser, John F

    2009-04-01

    We describe the first case of infective endocarditis presenting with spontaneous splenic rupture. Our patient, a known intravenous drug user presented with hypovolaemic shock secondary to splenic rupture. The patient was resuscitated and underwent an emergency splenectomy. Subsequent clinical examination revealed a systolic murmur and a diagnosis of mitral valve infective endocarditis was made after echocardiography. Splenic tissue, blood cultures and mitral valve tissue all cultured Enterococcus faecalis. The patient had a successful mitral valve replacement and was discharged home after 44 days. To our knowledge this is the first reported case of enterococcal endocarditis presenting with splenic rupture. This case highlights the need to consider endocarditis in spontaneous splenic rupture particularly in those patients in a high risk group, such as IV drug users, especially if they lack a clear history of trauma. PMID:19217796

  2. Staged Management of a Ruptured Internal Mammary Artery Aneurysm.

    PubMed

    Kwon, O Young; Kim, Gun Jik; Oh, Tak Hyuk; Lee, Young Ok; Lee, Sang Cjeol; Cho, Jun Yong

    2016-04-01

    The rupture of an internal mammary artery (IMA) aneurysm in a patient with type 1 neurofibromatosis (NF-1) is a rare but life-threatening complication requiring emergency management. A 50-year-old man with NF-1 was transferred to the emergency department of Kyungpook National University Hospital, where an IMA aneurysmal rupture and hemothorax were diagnosed and drained. The IMA aneurysmal rupture and hemothorax were successfully repaired by staged management combining endovascular treatment and subsequent video-assisted thoracoscopic surgery (VATS). The patient required cardiopulmonary cerebral resuscitation, the staged management of coil embolization, and a subsequent VATS procedure. This staged approach may be an effective therapeutic strategy in cases of IMA aneurysmal rupture. PMID:27066438

  3. Delayed aortic rupture resulting from postoperative superficial sternal wound infection

    PubMed Central

    Kim, Su Wan; Chang, Jee Won

    2016-01-01

    While deep sternal wound infection (DSWI) after cardiac surgery is a significant contributor to patient morbidity and mortality, superficial sternal wound infection (SSWI) mostly has a benign course. We report a mortality case of aortic rupture resulting from SSWI after cardiac surgery. A 50-year-old male underwent an aortic valve replacement (AVR). Three months after the valve operation, he presented with severe dyspnea, which had never before been observed, and chest computed tomography revealed an ascending aortic rupture with large hematoma compressing the main pulmonary artery. We performed an emergent operation for aortic rupture that possibly originated from the SSWI. Postoperatively, the patient died of hypovolemic shock due to recurrent aortic rupture despite efforts to resuscitate him. PMID:27499988

  4. Subacute cardiac rupture complicating myocardial infarction. A case report.

    PubMed

    Rosato, G; Santomauro, M; Stanco, G; Petillo, F; Sauro, R; Chiariello, M; Spampinato, N; Rotiroti, D

    1996-02-01

    The authors have focused this study on the emergence of subacute ventricular free wall rupture in a seventy-six-year-old patient admitted to hospital for inferior acute myocardial infarction. After six days he showed clinical signs of bradycardia and hypotension evolving to electromechanical dissociation. Given an adequate pharmacologic therapy, the patient was submitted to echocardiography, which was believed to be consistent with myocardial rupture, showing a moderate to large pericardial effusion. Pericardiocentesis of 150 mL of bloody fluid resulted in a further improvement in his hemodynamics. The patient underwent cardiac surgery with repair of the myocardial rupture through a large diaphragmatic infarction by a Dacron polyester fiber graft and pacemaker placement. In conclusion the authors confirm the relevant role of clinical data such as persistent chest pain and hemodynamic instability and the value of echocardiography in identifying subacute myocardial free wall rupture after an episode of acute myocardial infarction. PMID:8595015

  5. Acute Bilateral Traumatic Achilles Tendon Rupture – A Rare Presentation

    PubMed Central

    Jhaveri, Maulik; Golwala, Paresh; Merh, Aditya; Patel, Amit

    2016-01-01

    The Achilles tendon is the strongest tendon in the body, which is commonly ruptured in male athletes. Bilateral rupture of the Achilles tendon is a rare condition with very few reported cases in the literature. It poses a challenge in management, and hence, we report a case with traumatic bilateral Achilles tendon rupture in a young male patient and its management. One side was treated conservatively as the rupture was partial and the other side, which had a complete tear, was operated. At nine months follow-up, the patient has had a satisfactory result and is now bearing full weight without any problems. We suggest this method of treatment to be worthwhile for this unusual entity. PMID:27588227

  6. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    PubMed

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  7. Neglected bilateral rupture of the patellar tendon: A case report.

    PubMed

    Cherrad, Taoufik; Louaste, Jamal; Kasmaoui, El Houcine; Bousbaä, Hicham; Rachid, Khaled

    2015-12-01

    Simultaneous bilateral rupture of the patellar tendon (PT) is extremely rare and is generally associated to some chronic diseases. When the rupture becomes chronic, it is more difficult to repair that as it remained untreated. The diagnosis, which is clinical, is often delayed, guided by standard radiography and confirmed by ultrasound or MRI. The management of a bilateral neglected, chronic patellar tendon rupture must address some serious difficulties: the proximally retracted patella, the reconstruction of the patellar tendon, finally, the temporary protection of this repair. We report a case of neglected bilateral rupture of the patellar tendon in a chronic hemodialysis patient, treated with a plastic surgery of the ipsilateral quadriceps tendon. PMID:26566349

  8. Spontaneous Posterior Uterine Rupture in Twin-Twin Transfusion Syndrome

    PubMed Central

    Smid, Marcela C.; Waltner-Toews, Rebecca; Goodnight, William

    2015-01-01

    Background The maternal and fetal risks of uterine distension in rapidly progressive twin-twin transfusion syndrome (TTTS) in the setting of prior uterine scar are poorly characterized. Case We present the case of a 42-year-old woman, G4P1201, at 21 weeks gestation with stage-1 TTTS who developed a spontaneous posterior uterine rupture necessitating emergent laparotomy and delivery of previable fetuses, possibly due to prior uterine scar from a displaced intrauterine device. Conclusion TTTS may be a risk factor for uterine rupture, including uterine rupture in atypical anatomic locations. Prior unrecognized uterine scars, including perforations, may magnify the risk for atypical uterine rupture in the setting of excessive uterine distension. PMID:26929874

  9. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    PubMed Central

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  10. CT of ruptured aneurysm of aberrant right subclavian artery.

    PubMed

    Vega, A; Ortíz, A; Longo, J M; Pagola, M A

    1987-01-01

    This paper presents the first description of a ruptured aneurysm of an aberrant right subclavian artery. CT clearly demonstrated the vascular malformation as well as the existence of a bilateral hemothorax. PMID:3102065

  11. Acute Patellar Tendon Rupture after Total Knee Arthroplasty Revision

    PubMed Central

    Rhee, Seung Joon; Pham, The Hien

    2015-01-01

    Patellar tendon rupture is a catastrophic complication following total knee arthroplasty (TKA). Though revision TKA has been suspected of being a predisposing factor for the occurrence of patellar tendon rupture, there are few reports on patellar tendon rupture after revision TKA. Here, we present a case of acute patellar tendon rupture that occurred after TKA revision. In the patient, the patellar tendon was so thin and could not be repaired, and accordingly was sutured end to end. We used the anterior tibialis tendon allograft to augment the poor quality patellar tendon tissue. Fixation of the allograft was done by using the bone tunnel created through tibial tuberosity and suturing the allograft to the patellar tendon and quadriceps tendon. The patient was instructed to wear a full extension knee splint and was kept non-weight bearing for 6 weeks after operation. Full knee extension could be achieved 6 weeks postoperatively. PMID:26060612

  12. Retrograde approach for closure of ruptured sinus of Valsalva.

    PubMed

    Jayaranganath, M; Subramanian, Anand; Manjunath, Cholenahally Nanjappa

    2010-07-01

    Though ruptured sinuses of Valsalva have been traditionally managed surgically, they are amenable to transcatheter closure. Various devices have been used for closure of these defects. We describe a novel technique of closure of a ruptured right sinus of Valsalva into the right ventricular outflow tract. A muscular ventricular septal defect occluder was deployed retrogradely, without resorting to the usual antegrade technique involving formation of an arteriovenous loop. PMID:20603510

  13. First report of splenic rupture following deep enteroscopy.

    PubMed

    Girelli, Carlo Maria; Pometta, Roberta; Facciotto, Corinna; Mella, Roberto; Bernasconi, Giordano

    2016-05-10

    Splenic rupture is a rare complication of diagnostic and therapeutic gastrointestinal endoscopy procedures. Herein, we report for the first time a case of splenic rupture following therapeutic retrograde double-balloon enteroscopy, which occurred in an 85-year-old man who was treated for recurrent mid-intestinal bleeding that resulted from ileal angioectasia. This patient promptly underwent an operation and eventually recovered. PMID:27170840

  14. First report of splenic rupture following deep enteroscopy

    PubMed Central

    Girelli, Carlo Maria; Pometta, Roberta; Facciotto, Corinna; Mella, Roberto; Bernasconi, Giordano

    2016-01-01

    Splenic rupture is a rare complication of diagnostic and therapeutic gastrointestinal endoscopy procedures. Herein, we report for the first time a case of splenic rupture following therapeutic retrograde double-balloon enteroscopy, which occurred in an 85-year-old man who was treated for recurrent mid-intestinal bleeding that resulted from ileal angioectasia. This patient promptly underwent an operation and eventually recovered. PMID:27170840

  15. Traumatic rupture of arachnoid cyst with subdural hygroma.

    PubMed

    Rajesh, A; Bramhaprasad, V; Purohit, A K

    2012-01-01

    Intracranial arachnoid cysts developing in relation to the cerebral hemispheres and middle cranial fossa are usually incidental or asymptomatic. However, most of the clinically active cysts present with seizures because of chronic compression. Presentation as raised intracranial pressure due to cyst rupture into the subdural space is a rare clinical entity. We herein present a case of an asymptomatic arachnoid cyst with rupture into the subdural space bilaterally and presenting as raised intracranial pressure. PMID:22837775

  16. A Tuboovarian Abscess Associated with a Ruptured Spleen

    PubMed Central

    Li, Jennifer S.; Sheele, Johnathan Michael

    2016-01-01

    We report the first case of a tuboovarian abscess complicated by a ruptured spleen. Our patient was a 27-year-old female with human immunodeficiency virus (HIV) who presented to the emergency department (ED) with complaints of urinary symptoms and diarrhea. After being diagnosed with a tuboovarian abscess (TOA), she received antibiotics and was admitted to the gynecology service. Shortly thereafter she developed hemorrhagic shock, necessitating a splenectomy and salpingooophorectomy from a ruptured spleen. PMID:26904315

  17. Spontaneous splenic rupture: A rare presentation of dengue fever.

    PubMed

    Mukhopadhyay, Mainak; Chatterjee, Nandini; Maity, Pranab; Patar, Kartik

    2014-02-01

    Spontaneous rupture of the spleen with hemoperitoneum is a very rare, but serious manifestation of dengue fever (DF). We report a case of a young female who was presented with atraumatic abdominal pain, hypovolemic shock, anemia, ascites and hepatosplenomegaly with a recent history of a febrile illness. Subsequent investigations proved the presence of hemoperitoneum with spontaneous splenic rupture with seropositivity for DF. Early diagnosis and conservative management in this case resulted in a favorable outcome. PMID:24678156

  18. Rupture of the stomach following mouth-to-mouth respiration

    PubMed Central

    Solowiejczyk, M.; Wapnick, S.; Koren, E.; Mandelbaum, J.

    1974-01-01

    Successful repair and survival after rupture of the stomach in a patient who received mouth-to-mouth respiration is presented. We were able to find only one report in the literature where rupture of the stomach occurred following this manoeuvre—the patient did not survive. The possible aetiological factors and measures designed to avoid this complication are discussed. ImagesFig. 1 PMID:4469046

  19. Cohesive zone length of metagabbro at supershear rupture velocity

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Xu, Shiqing; Yamashita, Futoshi; Mizoguchi, Kazuo

    2016-06-01

    We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m × 0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than √{2} times the shear wave velocity. This feature is consistent with the theoretical prediction.

  20. Quadricuspid aortic valve with ruptured sinus of Valsalva.

    PubMed

    Akerem Khan, Shamruz Khan; Tamin, Syahidah Syed; Burkhart, Harold M; Araoz, Philip A; Young, Phillip M

    2013-02-01

    We present a case of a 24-year-old woman who was diagnosed with quadricuspid aortic valve with ruptured sinus of Valsalva. Quadricuspid aortic valve is a rare congenital cardiac anomaly. The recognition of quadricuspid aortic valve has clinical significance as it causes aortic valve dysfunction, and is often associated with other congenital cardiac abnormalities. We showed the important role of multimodality imaging in diagnosing a quadricuspid aortic valve associated with ruptured sinus of Valsalva. PMID:22874066

  1. Atraumatic splenic rupture secondary to chronic HIV infection.

    PubMed

    Martin, Thomas C S; Martin, Natasha K; Naresh, Kikkeri N; Nelson, Mark

    2013-12-01

    As patients infected with HIV live longer due to effective anti-retroviral therapy, new disease manifestations are becoming apparent. We describe the case of a 59-year-old patient who presented to our unit with atraumatic splenic rupture secondary to chronic HIV infection. Given the high mortality associated with atraumatic splenic rupture, we believe it should be included in the differential diagnosis of HIV-positive patients presenting with acute abdominal pain. PMID:23970617

  2. Softball injury causing haemoperitoneum due to ruptured Meckel's mesodiverticular band.

    PubMed

    Woodfield, Julie; Barnett, Mark; Shapkov, Peter

    2011-10-14

    A 16-year-old male sustained an intra-abdominal haemorrhage after diving for last base during a softball game. At laparotomy a ruptured patent mesodiverticular band supplying a large Meckel's diverticulum was found. Traumatic rupture of a mesodiverticular band leading to massive intra-abdominal haemorrhage is a rare event, and has never been reported as a single injury or in the context of a sport's injury. PMID:22016169

  3. Complex rupture processes at the Bárðarbunga caldera, Iceland

    NASA Astrophysics Data System (ADS)

    Cesca, Simone; Heimann, Sebastian; Hensch, Martin; Hjörleifsdóttir, Vala; Holohan, Eoghan; Dahm, Torsten

    2015-04-01

    The unrest of the Bárðarbunga volcanic system in summer 2014 has been accompanied by a significant increase in seismicity, which was localized both at the caldera rim and along segments of a major, laterally-propagated dyke. The seismic activity was exceptional for the region, with more than 60 events of magnitude Ml larger than 5.0 recorded in the first three months of activity, which is still ongoing. Our aim here is to provide an explanation of the sustained seismicity at the caldera rim. We rely on regional broadband recordings to perform an inversion of source parameters and to model the source processes for the largest events (above Ml 5.0) in the sequence. Full moment tensor inversion and moment tensor clustering reveal that most events can be classified in two types, which can be well modeled by the superposition of a common sub-vertical compensated linear vector dipole (CLVD) and a normal faulting, which has a different orientation for the two types of events. The analysis of the earthquake source is further extended to smaller magnitudes, by using a waveform correlation approach; this confirms similar rupture processes for weaker events. An apparent discrepancy among seismological observations at local and regional distances, in terms of origin times and radiation patterns, suggest a complex rupture process, composed of different phases. Whereas local data are useful to track the nucleation phase, characterised by a shear failure, regional data can be used to assess the mechanism responsible for the most energetic signal, where the non-DC component becomes more relevant. The combined analysis of local and regional data revealed that, at least during the first phase of the sequence, the type of rupture is conditioned by the location of the rupture nucleation. When the rupture is initiated at the northern rim, the normal faulting component of the moment tensor strikes almost North-South; instead, if the rupture starts at the southern rim, the normal

  4. Fast rupture propagation for large strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Mori, Jim; Koketsu, Kazuki

    2016-04-01

    Studying rupture speeds of shallow earthquakes is of broad interest because it has a large effect on the strong near-field shaking that causes damage during earthquakes, and it is an important parameter that reflects stress levels and energy on a slipping fault. However, resolving rupture speed is difficult in standard waveform inversion methods due to limited near-field observations and the tradeoff between rupture speed and fault size for teleseismic observations. Here we applied back-projection methods to estimate the rupture speeds of 15 Mw ≥ 7.8 dip-slip and 8 Mw ≥ 7.5 strike-slip earthquakes for which direct P waves are well recorded in Japan on Hi-net, or in North America on USArray. We found that all strike-slip events had very fast average rupture speeds of 3.0-5.0 km/s, which are near or greater than the local shear wave velocity (supershear). These values are faster than for thrust and normal faulting earthquakes that generally rupture with speeds of 1.0-3.0 km/s.

  5. Short term creep rupture predictions for tantalum alloy T-111

    SciTech Connect

    Stephens, J.J. )

    1991-01-01

    A knowledge of the short term creep rupture behavior of Tantalum alloy T-111 is necessary to predict device integrity in the heat source section of Radioisotope Thermoelectric Generators (RTGs) at the end of service life, in the event of a fuel fire. High pressures exist in RTGs near the end of service life, these are caused by gas generation resulting from radioactive decay of the nuclear fuel. The internal pressure exerts a significant hoop stress on the T-111 alloy structural containment member. This paper analyses the short term creep behavior (rupture times up to {similar to}2{times}10{sup 3} hrs.) of cold worked (CW) T-111 alloy, using the existing data of Stephenson (1967). Corellations for the time to rupture, time to 1% strain and minimum creep rate have been obtained from this data using multivariable linear regression analysis. These results are compared to other short term rupture data for T-111 alloy. Finally, at the stress/temperature levels relevant to the RTG fuel fire scenario near the end of service life, the rupture time correlation for T-111 alloy predicts a rupture time of approximately 100 hrs.

  6. Short term creep rupture predictions for Tantalum alloy T-3

    SciTech Connect

    Stephens, J.J.

    1991-01-01

    A knowledge of the short term creep rupture behavior of Tantalum alloy T-111 is necessary to predict device integrity in the heat source section of Radioisotope Thermoelectric Generators (RTG's) at the end of service life, in the event of a fuel fire. High pressures exist in RTG's near the end of service life, these are caused by gas generation resulting from radioactive decay of the nuclear fuel. The internal pressure exerts a significant hoop stress on the T-111 alloy structural containment member. This paper analyses the short term creep behavior (rupture times up to {approximately}2 {times} 10{sup 3} hrs.) of cold worked (CW) T-111 alloy, using the existing data of Stephenson (1967). Corellations for the time to rupture, time to 1% strain and minimum creep rate have been obtained from this data using multivariable linear regression analysis. These results are compared to other short term rupture data for T-111 alloy. Finally, at the stress/temperature levels relevant to the RTG fuel fire scenario near the end of service life, the rupture time correlation for T-111 alloy predicts a rupture time of approximately 100 hrs. 10 refs., 3 figs., 1 tab.

  7. Ground-motion signature of dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  8. Sexual intercourse and cerebral aneurysmal rupture: potential mechanisms and precipitants.

    PubMed

    Reynolds, Matthew R; Willie, Jon T; Zipfel, Gregory J; Dacey, Ralph G

    2011-04-01

    Aneurysmal subarachnoid hemorrhage (SAH) is a significant cause of death in young and middle-aged individuals and causes tremendous morbidity in affected patients. Despite the identification of various risk factors, the series of events leading to the formation, growth, and rupture of intracranial aneurysms is poorly understood. Cerebral aneurysm rupture has been associated with sexual intercourse and other forms of physical exercise. In fact, multiple case series reported that coitus was the immediate preceding activity in 3.8-14.5% of patients suffering from aneurysmal SAH. This may be related to the large elevations in mean arterial blood pressure that occur in both males and females during sexual intercourse (130-175 and 125-160 mm Hg, respectively). While coitus and physical exercise share important physiological similarities, each may differentially affect the probability that a preformed aneurysm will rupture. In this literature review and synthesis, the authors analyze the physiological human response to sexual intercourse in an effort to delineate those factors that may precipitate aneurysmal rupture. The authors' analysis is based on the original data collected by Masters and Johnson. To the authors' knowledge, this is the first review to address the link between sexual intercourse and intracranial aneurysmal rupture. While actual measurements of the physiological variables relevant to SAH were not performed in this article, the authors make reasonable assumptions based on the available data to help elucidate the mechanism of sexually induced aneurysmal rupture. PMID:20540599

  9. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  10. Shear rupture under constant normal stiffness boundary conditions

    NASA Astrophysics Data System (ADS)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.

    2014-11-01

    A grain based Distinct Element Method and its embedded Grain Based Method are used to simulate the fracturing processes leading to shear rupture zone creation in a calibrated massive (non-jointed) brittle rock specimen deformed in direct shear under constant normal stiffness boundary conditions. Under these boundary conditions, shear rupture zone creation relative to the shear stress versus applied horizontal displacement (load-displacement) curve occurs pre-peak, before the maximum peak shear strength is reached. This is found to be the result of a normal stress feedback process caused by the imposed shear displacement which couples increases in normal stress, due to rupture zone dilation, with shear stress, producing a complex normal-shear stress-path that reaches and then follows the rock's yield (strength) envelope. While the yield envelope is followed, the shear strength increases further and shear stress oscillations (repeated stress drops followed by re-strengthening periods) in the load-displacement curves occur due to fracture creation as the rupture zone geometry smoothens. Once the maximum peak strength is reached (after a series of shear stress oscillations) the largest stress drops occur as the ultimate or residual shear strength is approached. The simulation results provide insight into the fracturing process during rupture zone creation and improve the understanding of the shear stress versus applied horizontal displacement response, as well as the stick-slip behaviour of shear rupture zones that are being created under constant normal stiffness boundary conditions.

  11. [Ligament ruptures of the lower extremity in the elderly].

    PubMed

    Herbort, M; Raschke, M J

    2011-08-01

    There is an increasing incidence of ligament ruptures of the lower extremities in older patients. This higher incidence is caused by the typical current demographic changes in the population and the higher level of activity and athletic motivation of the older people in our society. In this review we address the most important ligament ruptures of the lower extremity in the old patient. Quadriceps tendon and Achilles tendon ruptures are mostly the result of degenerative and abrasion changes. The ACL rupture on the other hand occurs spontaneously after adequate trauma and without former degenerative changes especially in highly active patients. For a differentiated treatment of the older patient with tendon ruptures, secondary diseases, an increased risk and complication profile and a potentially decreased compliance during rehabilitation must be taken into consideration before indicating operative or conservative therapy. There are no strict age-related limitations for indication of an operative treatment of tendon ruptures in the older patient. In this patient group a differentiated treatment decision is recommended. PMID:21766204

  12. Rupture of a biomembrane under dynamic surface tension

    NASA Astrophysics Data System (ADS)

    Bicout, D. J.; Kats, E.

    2012-03-01

    How long will a fluid membrane vesicle stressed with a steady ramp of micropipette last before rupture? Or conversely, how high should the surface tension be to rupture such a membrane? To answer these challenging questions we developed a theoretical framework that allows for the description and reproduction of dynamic tension spectroscopy (DTS) observations. The kinetics of the membrane rupture under ramps of surface tension is described as a succession of an initial pore formation followed by the Brownian process of the pore radius crossing the time-dependent energy barrier. We present the formalism and a derive (formal) analytical expression of the survival probability describing the fate of the membrane under DTS conditions. Using numerical simulations for the membrane prepared in an initial state with a given distribution of times for pore nucleation, we study the membrane lifetime (or inverse of rupture rate) and distribution of membrane surface tension at rupture as a function of membrane characteristics like pore nucleation rate, the energy barrier to failure, and tension loading rate. It is found that simulations reproduce the main features of DTS experiments, particularly the pore nucleation and pore-size diffusion-controlled limits of membrane rupture dynamics. This approach can be adapted and applied to processes of permeation and pore opening in membranes (electroporation, membrane disruption by antimicrobial peptides, vesicle fusion).

  13. Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet

    NASA Astrophysics Data System (ADS)

    Nissen, E.; Elliott, J. R.; Sloan, R. A.; Craig, T. J.; Funning, G. J.; Hutko, A.; Parsons, B. E.; Wright, T. J.

    2016-04-01

    Earthquake hazard assessments and rupture forecasts are based on the potential length of seismic rupture and whether or not slip is arrested at fault segment boundaries. Such forecasts do not generally consider that one earthquake can trigger a second large event, near-instantaneously, at distances greater than a few kilometres. Here we present a geodetic and seismological analysis of a magnitude 7.1 intracontinental earthquake that occurred in Pakistan in 1997. We find that the earthquake, rather than a single event as hitherto assumed, was in fact an earthquake doublet: initial rupture on a shallow, blind reverse fault was followed just 19 s later by a second rupture on a separate reverse fault 50 km away. Slip on the second fault increased the total seismic moment by half, and doubled both the combined event duration and the area of maximum ground shaking. We infer that static Coulomb stresses at the initiation location of the second earthquake were probably reduced as a result of the first. Instead, we suggest that a dynamic triggering mechanism is likely, although the responsible seismic wave phase is unclear. Our results expose a flaw in earthquake rupture forecasts that disregard cascading, multiple-fault ruptures of this type.

  14. A Unified Simulation Framework for Megathrust Rupture Dynamics and Tsunamis

    NASA Astrophysics Data System (ADS)

    Dunham, E. M.; Lotto, G. C.; Kozdon, J. E.

    2014-12-01

    Many earthquakes, including megathrust events in subduction zones, occur offshore. In addition to seismic waves, such earthquakes also generate tsunamis. We present a methodology for simultaneously investigating earthquake rupture dynamics and tsunamigenesis, based on solution of the elastic and acoustic wave equations, in the solid and fluid portions of the domain, respectively. Surface gravity waves or tsunamis emerge naturally in such a description when gravitational restoring forces are properly taken into account. In our approach, we adopt an Eulerian description of the ocean and within it solve for particle velocities and the perturbation in pressure, Δp, about an initial hydrostatic state. The key step is enforcing the traction-free boundary condition on the moving ocean surface. We linearize this boundary condition, in order to apply it on the initial surface, and express it as Δp-ρgη=0, where -ρg is the initial hydrostatic gradient in pressure and η is the sea surface uplift (obtained, to first order, by integrating vertical particle velocity on the initial ocean surface). We show that this is the only place one needs to account for gravity. Additional terms in the momentum balance and linearized equation of state describing advection of pressure and density gradients can be included to study internal gravity waves within the ocean, but these can be safely neglected for problems of interest to us. We present a range of simulations employing this new methodology. These include test problems used to verify the accuracy of the method for modeling seismic, ocean acoustic, and tsunami waves, as well as more detailed models of megathrust ruptures. Our present work is focused on tsunami generation in models with variable bathymetry, where previous studies have raised questions regarding how horizontal displacement of a sloping seafloor excites tsunamis. Our approach rigorously accounts for time-dependent seafloor motion, horizontal momentum transfer, and

  15. Self-healing pulse-like shear ruptures in the laboratory.

    PubMed

    Lykotrafitis, George; Rosakis, Ares J; Ravichandran, Guruswami

    2006-09-22

    Models predict that dynamic shear ruptures during earthquake faulting occur as either sliding cracks, where a large section of the interface slides behind a fast-moving rupture front, or self-healing slip pulses, where the fault relocks shortly behind the rupture front. We report experimental visualizations of crack-like, pulse-like, and mixed rupture modes propagating along frictionally held, "incoherent" interfaces separating identical solids, and we describe the conditions under which those modes develop. A combination of simultaneously performed measurements via dynamic photoelasticity and laser interferometry reveals the rupture mode type, the exact point of rupture initiation, the sliding velocity history, and the rupture propagation speed. PMID:16990544

  16. The Rupture Characteristic of 1999 Izmit Sequence Using IRIS Data

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Helmberger, D. V.; Ji, C.; Tan, Y.

    2003-12-01

    The standard source studies use teleseismic data (30° to 90° ) to analyze earthquakes. Therefore, only a limited portion of the focal sphere is involved in source determinations. Furthermore, the locations and origin times of events remain incompatible with local determinations. Here, we attempt to resolve such issues by using IRIS data at all distances, leading to more accurate and detailed rupture properties and accurate relative locations. The 1999 Izmit earthquake sequence is chosen to test our method. The challenge of using data outside the conventional teleseismic distance range is that the arrival times and waveforms are affected more by the Earth structure. We overcome this difficulty by calibrating the path effects for the mainshock using the simpler aftershocks. Therefore, it is crucial to determine the source parameters of the aftershock. We constructed a Green's function library from a regionalized 1-D model and performed a grid search to establish the depth and fault parameters based on waveform matching for the Pnl waves between the synthetics and data, allowing the synthetics in each station to shift separately to account for the path effect. Our results show that the earthquake depth was around 7 km, rather than 19 km from local observatory (Kandilli) and 15 km from the Harvard's CMT solution. The best focal mechanism has a strike of 263° , a dip of 65° , and a rake of 180° , which is very close to the Harvard's CMT solution. The waveform fits of this aftershock is then used as a criterion to select useful source-station paths. A path with a cross-correlation value above 90% between data and synthetics is defined as a "good path" and can be used for studying the Izmit and Duzce earthquakes. We find that the stations in Central Europe and some of the Greek Islands are "good paths", while the stations in Northeast Africa and Italy cannot be used. The time shifts that give the best cross-correlation values are used to calibrate the picks of the

  17. Effect of brace design on patients with ACL-ruptures.

    PubMed

    Strutzenberger, G; Braig, M; Sell, S; Boes, K; Schwameder, H

    2012-11-01

    Different designs of functional knee braces for ACL-injury rehabilitation exist. In addition to the mechanical stabilization provided by rigid shell braces, sleeve braces also address proprioceptive mechanisms, but little is known if this leads to benefits for ACL-deficient subjects. Therefore the aim of this study was to investigate the effect of 2 different functional brace designs (shell and sleeve brace) on functional achievements in ACL-deficient patients. 28 subjects with ACL-ruptured knees performed tests for knee joint laxity, joint position sense, static and dynamic balance and isometric and dynamic lower limb extension strength in non-braced, sleeve braced and shell braced condition. The results showed a significant decrease in knee joint laxity for sleeve (33%; p<0.001) and rigid shell bracing (14%, p=0.039). The sleeve brace revealed a significant increase in dynamic balance after perturbation (20%; p=0.024) and a significant increase in dynamic lower limb peak rate of force development (17%; p=0.015) compared to the non-braced condition. The effects might be caused by the flexible area of support and the incorporated mechanisms to address proprioceptive aspects. Braces might not be needed in simple daily life tasks, but could provide beneficial support in more dynamic settings when patients return to sporting activities after an ACL-injury. PMID:22706937

  18. Right ventricular free wall dissection as a rupture tract in left ventricular rupture during acute myocardial infarction.

    PubMed

    Takada, Aya; Saito, Kazuyuki; Murai, Tatsuya; Kurosaki, Kunihiko; Kurihara, Katsuyoshi; Hamamatsu, Akihiko

    2015-11-01

    Three rare cases of cardiac rupture with right ventricular wall dissection during acute myocardial infarction (AMI) were reported. The cases comprised 2% among our 148 previously reported postinfarction cardiac ruptures with sudden death. The dissections occurred in hearts with biventricular inferior wall AMI and developed between the superficial layers and the deeper layers of inferior wall of the right ventricle. All had an endocardial tear at the basal septum where it meets the inferior free wall of the left ventricle, and had an epicardial tear on the middle inferior wall of the right ventricle. Based on the evidence of the ages of the thrombi of the rupture tracts, delayed epicardial rupture was found besides that soon after the right ventricular dissection. PMID:26594003

  19. [Blunt traumatic rupture of the right ventricle, with intrapericardial rupture of the diaphragm. Successful surgical repair (author's transl)].

    PubMed

    Le Treut, Y P; Herve, L; Boutboul, R; Cardon, J M; Bricot, R

    1980-12-01

    The authors report a case of blunt traumatic rupture of the right ventricle, diagnosed during a laparotomy. Similar cases were seldom met: too short a time of spontaneous survival, and difficult challenging diagnosis explain it. PMID:7462357

  20. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses

  1. Endovascular vs open repair for ruptured abdominal aortic aneurysm

    PubMed Central

    Nedeau, April E.; Pomposelli, Frank B.; Hamdan, Allen D.; Wyers, Mark C.; Hsu, Richard; Sachs, Teviah; Siracuse, Jeffrey J.; Schermerhorn, Mark L.

    2014-01-01

    Objective Endovascular repair (EVAR) of ruptured abdominal aortic aneurysm (rAAA) has become first-line therapy at our institution and is performed under a standardized protocol. We compare perioperative mortality, midterm survival, and morbidity after EVAR and open surgical repair (OSR). Methods Records were retrospectively reviewed from May 2000 to September 2010 for repair of infrarenal rAAAs. Primary end points included perioperative mortality and midterm survival. Secondary end points included acute limb ischemia, length of stay, ventilator-dependent respiratory failure, myocardial infarction, renal failure, abdominal compartment syndrome, and secondary intervention. Statistical analysis was performed using the t-test,X2 test, the Fisher exact test, and logistic regression calculations. Midterm survival was assessed with Kaplan-Meier analysis and Cox proportional hazard models. Results Seventy-four infrarenal rAAAs were repaired, 19 by EVAR and 55 by OSR. Despite increased age and comorbidity in the EVAR patients, perioperative mortality was 15.7% for EVAR, which was significantly lower than the 49% for OSR (odds ratio, 0.19; 95% CI, 0.05-0.74; P = .008). Midterm survival also favored EVAR (hazard ratio, 0.40; 95% CI, 0.21-0.77; P = .028, adjusted for age and sex). Mean follow-up was 20 months, and 1-year survival was 60% for EVAR vs 45% for OSR. Mean length of stay for patients surviving >1 day was 10 days for EVAR and 21 days for OSR (P = .004). Ventilator-dependent respiratory failure was 5% in the EVAR group vs 42% for OSR (odds ratio, 0.08; 95% CI, 0.01-0.62; P = .001). Conclusions EVAR of rAAA has a superior perioperative survival advantage and decreased morbidity vs OSR. Although not statistically significant, overall survival favors EVAR. We recommend that EVAR be considered as the first-line treatment of rAAAs and practiced as the standard of care. PMID:22626871

  2. Rupture Propagation of the 2013 Mw7.7 Balochistan, Pakistan, Earthquake Affected by Poroelastic Stress Changes

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, W.; Xiao, J.

    2015-12-01

    The 2013 Mw7.7 Balochistan, Pakistan, earthquake occurred on the curved Hoshab fault. This fault connects with the north-south trending Chaman strike-slip fault to northeast, and with the west-east trending Makran thrust fault system to southwest. Teleseismic waveform inversion, incorporated with coseismic ground surface deformation data, show that the rupture of this earthquake nucleated around northeast segment of the fault, and then propagated southwestward along the northwest dipping Hoshab fault about 200 km, with the maximum coseismic displacement, featured mainly by purely left-lateral strike-slip motion, about 10 meters. In context of the India-Asia collision frame, associating with the fault geometry around this region, the rupture propagation of this earthquake seems to not follow an optimal path along the fault segment, because after nucleation of this event the Hoshab fault on the southwest of hypocenter of this earthquake is clamped by elastic stress change. Here, we build a three-dimensional finite-element model to explore the evolution of both stress and pore-pressure during the rupturing process of this earthquake. In the model, the crustal deformation is treated as undrained poroelastic media as described by Biot's theory, and the instantaneous rupture process is specified with split-node technique. By testing a reasonable range of parameters, including the coefficient of friction, the undrained Poisson's ratio, the permeability of the fault zone and the bulk crust, numerical results have shown that after the nucleation of rupture of this earthquake around the northeast of the Hoshab fault, the positive change of normal stress (clamping the fault) on the fault plane is greatly reduced by the instantaneous increase of pore pressure (unclamping the fault). This process could result in the change of Coulomb failure stress resolved on the Hoshab fault to be hastened, explaining the possible mechanism for southwestward propagation of rupture of the Mw7

  3. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  4. Shear rupture of a directionally solidified eutectic gamma/gamma prime - alpha (Mo) alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1978-01-01

    Directionally solidified Mo alloys are evaluated to determine the shear rupture strength and to possibly improve it by microstructural and heat treatment variations. Bars of the alloy containing nominally 5.7% Al and 33.5% Mo by weight with balance Ni were directionally solidified at rates between 10 and 100 mm per hour in furnaces with thermal gradients at the liquid-solid interface of 250 or 100 C per cm. A limited number of longitudinal shear rupture tests were conducted at 760 C and 207 MPa in the as - solidified and in several heat treated conditions. It is shown that shear rupture failures are partly transgranular and that resistance to failure is prompted by good fiber alignment and a matrix structure consisting mainly of gamma prime. Well aligned as - solidified specimens sustained the shear stress for an average of 81 hours. A simulated coating heat treatment appeared to increase the transformation of gamma to gamma prime and raised the average shear life of aligned specimens to 111 hours. However, heat treatments at 1245 C and especially at 1190 C appeared to be detrimental by causing partial solutioning of the gamma prime, and reducing lives to 47 and 10 hours, respectively.

  5. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  6. Lesions of the tunica media in traumatic rupture of vertebral arteries: histologic and biochemical studies.

    PubMed

    Pollanen, M S; Deck, J H; Boutilier, L; Davidson, G

    1992-02-01

    Discontinuous non-circumferential lesions of tunica media were observed in four cases of traumatic rupture of the vertebral artery. We hypothesize that these lesions were due to mechanical disruption of smooth muscle cells and the liberation of catabolic enzymes with subsequent degradation of the arterial media. To test this hypothesis, healthy vertebral arteries were incubated with crude extracts of bovine smooth muscle cytosol in attempt to reproduce the histological changes of the arterial media in traumatized vertebral arteries. We observed cytosol-induced degradation of tunica media, characterized by pallor of staining with the Masson's Trichrome method, which was due to catabolic enzyme activity that was effectively inhibited by heat inactivation of the cytosol. The cytosol-induced tinctorial changes were similar to the lesions of the tunica media in naturally-occurring cases of traumatic vertebral artery rupture. We conclude that although vertebral arteries can be ruptured by physical distortion alone, associated lesions of the tunica media are due to in situ trauma-associated release of heat-labile catabolic enzymes. PMID:1562907

  7. A generic model for creep rupture lifetime estimation on fibrous ceramic composites

    NASA Technical Reports Server (NTRS)

    Chuang, Tze-Jer

    1992-01-01

    Because of their high strength and toughness at elevated temperatures, fiber reinforced ceramic composites such as SiC(f)/SiC and SiC(f)/Si3N4 have become candidates for next-generation turbine engine materials. A generic model is proposed for assessing the lifetime of this class of materials when subjected to long-term creep rupture conditions. This 2D model consists of interfacial cracks growing between square grains and rectangular fibers in the direction normal to the principal tensile stress axis. Neglecting transient effects, the total lifetime is derived based on the criterion that rupture is due to coalescence of adjacent cracks. Lifetime is inversely proportional to crack growth rate, volume fraction, and aspect ratio of the fibers; but extremely sensitive to the applied stress, due to the high power of the V-K(I) law. This lifetime estimation seems to be in fair agreement with the creep rupture data of SiC(w)/Si3N4 composite with 0 and 30 vol percent reinforcement tested at 1250 C in air. TEM performed on the postcrept specimens revealed that creep damage is predominantly in the form of microcracks at matrix/matrix as well as fiber/matrix interfaces, approximately in accord with the model simulation.

  8. The SCEC-USGS Dynamic Earthquake Rupture Code Verification Exercise - Recent Progress

    NASA Astrophysics Data System (ADS)

    Harris, R.

    2013-12-01

    I summarize recent progress by the SCEC-USGS Dynamic Rupture Code Verification Group, that examines if the results produced by researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. To date we have tested the codes against benchmarks that incorporate a range of features, including a single planar vertical fault, a single planar dipping fault, slip-weakening, rate-state, and thermal pressurization friction, elastic and plastic off-fault behavior, complete stress drops that lead to supershear rupture velocities and extreme ground motion, and, heterogeneous initial stresses. Our most recent benchmarks have involved complexities in fault geometry, with computationally simulated earthquakes spontaneously propagating on parallel non-co-planar vertical strike-slip faults and on branching vertical strike-slip faults. The parallel strike-slip fault case has been discussed in the published literature over the past decades, from both observational and theoretical perspectives, and the results are sometimes used in hazard estimates for multi-fault earthquake ruptures. The branching fault case has been a focus of study due to its potential application to a number of geologically hazardous settings. Group members used their individual computer codes and achieved satisfactory agreement among the codes' results for both sets of these recent benchmarks, the parallel faults and the branched faults. Our next benchmark exercise will continue on the theme of complex fault geometry and investigate the case of a geometrical asperity on an otherwise planar fault. We also plan to work on developing suitable quantitative metrics for our code comparisons. For more information about our group and our work, please see our website and our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011.

  9. The Biceps Crease Interval for Diagnosing Complete Distal Biceps Tendon Ruptures

    PubMed Central

    ElMaraghy, Amr; Tsoi, K.

    2008-01-01

    Complete distal biceps tendon ruptures require prompt surgical management for optimal functional and aesthetic outcome. The need exists for a valid and reliable diagnostic tool to expedite surgical referral. We hypothesized complete distal biceps tendon ruptures result in an objectively measurable anatomic landmark (the distance between the antecubital crease of the elbow and the cusp of distal descent of the biceps muscle, or the biceps crease interval), as a result of proximal retraction of the musculotendinous complex. We established normal biceps crease interval values and biceps crease ratios between dominant and nondominant arms in 80 men with no history of biceps injury (average age, 43 years). The mean (± standard deviation) biceps crease interval for dominant and nondominant arms was 4.8 ± 0.6 cm. The mean biceps crease ratio was 1.0 ± 0.1. We measured the biceps crease interval and biceps crease ratio on 29 consecutive patients presenting with a possible complete distal biceps tendon rupture. Using a diagnostic threshold of a biceps crease interval greater than 6.0 cm or biceps crease ratio greater than 1.2, the biceps crease interval test had a sensitivity of 96% and a diagnostic accuracy of 93% for identifying complete distal biceps tendon ruptures, making it a valid and reliable tool for clinicians to identify cases requiring urgent surgical referral. Level of Evidence: Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18551349

  10. Is Cadmium Exposure Associated with the Burden, Vulnerability and Rupture of Human Atherosclerotic Plaques?

    PubMed Central

    Sallsten, Gerd; Lundh, Thomas; Barregard, Lars

    2015-01-01

    The general population is exposed to cadmium from food and smoking. Cadmium is a widely spread toxic pollutant that seems to be associated with cardiovascular diseases, although little is known if it contributes to the occurrence of atherosclerotic plaques and the process whereby plaques become vulnerable and are prone to rupture. We tested the hypotheses that cadmium exposure is associated not only with an increased subclinical burden of atherosclerotic plaques in different vascular territories and early signs of plaque vulnerability, but also with cadmium content and plaque-rupture in the clinical phase of the disease. Ultrasound technique was used to measure plaque prevalence and echogenicity in the carotid and femoral arteries in a population sample of women (n = 599) in whom blood cadmium was measured. In addition cadmium was measured in snap-frozen endarterectomies and whole blood obtained from patients who were referred to surgery because of symptomatic carotid plaques (n = 37). Sixteen endarterectomies were divided into three parts corresponding to different flow conditions and plaque vulnerability. In the population sample blood cadmium was associated with the number of vascular territories with plaques (p = 0.003 after adjustment for potential confounders). The cadmium concentrations in symptomatic plaques were 50-fold higher in plaque tissue than in blood. Cadmium levels in blood and plaque correlated, also after adjustment for smoking and other cardiovascular risk factors (p<0.001). Compared with the other parts of the plaque, the cadmium content was double as high in the part where plaque rupture usually occurs. In conclusion, the results show that cadmium exposure is associated with the burden of subclinical atherosclerosis in middle-aged women with different degrees of glucose tolerance, and that the content of cadmium in symptomatic plaques in patients is related to that in blood, but much higher, and preferentially located in the part of plaque

  11. Analysis of Creep Rupture Behavior of Cr-Mo Ferritic Steels in the Presence of Notch

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Das, C. R.; Mathew, M. D.

    2015-01-01

    Effect of notch on creep rupture behavior of 2.25Cr-1Mo, 9Cr-1Mo, and modified 9Cr-1Mo ferritic steels has been assessed. Creep tests were carried out on smooth and notched specimens of the steels in the stress ranging 90 to 300 MPa at 873 K (600 °C). Creep rupture lives of the steels increased in the presence of notch over those of smooth specimens, thus exhibiting notch strengthening. The strengthening was comparable for the 9Cr-1Mo and 2.25Cr-1Mo steels and appreciably more in modified 9Cr-1Mo steel. The strengthening effect was found to decrease with the decrease in applied stress and increase in rupture life for all the steels. The presence of notch decreased the creep rupture ductility of the steels significantly and the 2.25Cr-1Mo steel suffered more reduction than in the other two 9Cr-steels. Finite element analysis of stress distribution across the notch was carried out to understand the notch strengthening and its variation in the steels. The variation in fracture appearance has also been corroborated based on finite element analysis. Reduction in von-Mises stress across the notch throat plane resulted in strengthening in the steels. Higher reduction in von-Mises stress in modified 9Cr-1Mo steel than that in 2.25Cr-1Mo and 9Cr-1Mo steels induced more strengthening in modified 9Cr-1Mo steel under multiaxial state of stress.

  12. Simplified Scheme for the Kinematic Inversion of the Rupture Process: Application to Mexican Earthquakes.

    NASA Astrophysics Data System (ADS)

    Castro-Artola, O.; Iglesias Mendoza, A.

    2012-04-01

    Aiming to obtain some information about the rupture process of intermediate to great earthquakes, many waveform inversion schemes have been proposed. Usual methods involve several subfaults on the fault plane to obtain a detailed image of the kinematic rupture process. On the other hand, it has been questioned the resolution over obtained paramters on the inversion process. In the literature contradictory results can be found for the same earthquake, using different schemes. For this reason, recently, simplified schemes of the rupture process have been proposed, while not providing details it can recover their main characteristics. In this work we propose a modification of the Cotton & Campillo (1995) inversion scheme, while unlike considering the problem as a "rupture process tomographic inversion", we invert the main characteristics assuming simplified geometries (ellipses). Based on the work quoted, the direct problem is reparameterized including one or two ellipses in which the maximum displacement is distributed. For the first ellipse, the position of the center within the fault plane, the major and minor semi-axis are inverted. For the second one we invert the position with respect to the first ellipse and the two semi-axis. To avoid the linearization of the problem, we use a simulated annealing scheme for inversion. When there is not enough evidence of the proper fault plane, we perform an inversion for the two nodal planes published to solve the ambiguity between the auxiliary plane and the fault plane that a point source inversion schemes involve. We tested our method for the well studied earthquake September 30th 1999 Oaxaca (Mw=7.5) (e.g. Hernandez et al., 2001) which is one of the intraslab earthquakes within the Northamerican Plate of moderate magnitude and well recorded. The scheme is evaluated as well with the data generated by the "Escenario 2011" framework for an hypothetical earthquake in Guerrero, Mexico. Results will give us the opportunity to

  13. Effect of Environment on the Stress- Rupture Behavior of a C/SiC Composite Studied

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kiser, J. Douglas; Opila, Elizabeth J.; Calomino, Anthony M.

    2002-01-01

    Advanced reusable launch vehicles will likely incorporate fiber-reinforced ceramic matrix composites (CMC's) in critical propulsion and airframe components. The use of CMC's is highly desirable to save weight, improve reuse capability, and increase performance. One of the candidate CMC materials is carbon-fiber-reinforced silicon carbide (C/SiC). In potential propulsion applications, such as turbopump rotors and nozzle exit ramps, C/SiC components will be subjected to a service cycle that includes mechanical loading under complex, high-pressure environments containing hydrogen, oxygen, and steam. Degradation of both the C fibers and the SiC matrix are possible in these environments. The objective of this effort was to evaluate the mechanical behavior of C/SiC in various environments relevant to reusable launch vehicle applications. Stress-rupture testing was conducted at the NASA Glenn Research Center on C/SiC specimens in air and steam-containing environments. Also, the oxidation kinetics of the carbon fibers that reinforce the composite were monitored by thermogravimetric analysis in the same environments and temperatures used for the stress-rupture tests of the C/SiC composite specimens. The stress-rupture lives obtained for C/SiC tested in air and in steam/argon mixtures are shown in the following bar chart. As is typical for most materials, lives obtained at the lower temperature (600 C) are longer than for the higher temperature (1200 C). The effect of environment was most pronounced at the lower temperature, where the average test duration in steam at 600 C was at least 30 times longer than the lives obtained in air. The 1200 C data revealed little difference between the lives of specimens tested in air and steam at atmospheric pressure.

  14. Dynamic rupture in a damage-breakage rheology model

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Ilchev, Assen; Mendecki, Aleksander

    2016-05-01

    We present a thermodynamically-based formulation for modeling dynamic rupture processes in the brittle crust using a continuum damage-breakage rheology. The model combines aspects of a continuum viscoelastic damage framework for brittle solids with a continuum breakage mechanics for granular flow within dynamically generated slip zones. The formulation accounts for the density of distributed cracking and other internal flaws in damaged rocks with a scalar damage parameter, and addresses the grain size distribution of a granular phase in the slip zone with a breakage parameter. A dynamic brittle instability is associated with a critical level of damage in the solid, leading to loss of convexity of the solid strain energy, localization, and transition to a granular phase associated with lower energy level. The continuum damage-breakage rheology model treats the localization to a slip zone at the onset of dynamic rupture and post-failure recovery process as phase transitions between solid and granular states. The model generates sub- and super-shear rupture velocities and pulse-type ruptures seen also in frictional models, and additional important features such as strong dynamic changes of volumetric strain near the rupture front and diversity of nucleation mechanisms. The propagation of rupture front and slip accumulation at a point are correlated with sharp dynamic dilation followed by a gradual decay to a level associated with the final volumetric change associated with the granular phase transition in the slipping zone. The local brittle failure process associated with the solid-granular transition is expected to produce isotropic radiation in addition to the deviatoric terms. The framework significantly extends the ability to model brittle processes in complex geometrical structures and allows analyzing the roles of gouge thickness and other parameters on nucleation, rupture and radiation characteristics.

  15. Dynamic rupture in a damage-breakage rheology model

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Ilchev, Assen; Mendecki, Aleksander

    2016-08-01

    We present a thermodynamically based formulation for modelling dynamic rupture processes in the brittle crust using a continuum damage-breakage rheology. The model combines aspects of a continuum viscoelastic damage framework for brittle solids with a continuum breakage mechanics for granular flow within dynamically generated slip zones. The formulation accounts for the density of distributed cracking and other internal flaws in damaged rocks with a scalar damage parameter, and addresses the grain size distribution of a granular phase in the slip zone with a breakage parameter. A dynamic brittle instability is associated with a critical level of damage in the solid, leading to loss of convexity of the solid strain energy, localization and transition to a granular phase associated with lower energy level. The continuum damage-breakage rheology model treats the localization to a slip zone at the onset of dynamic rupture and post-failure recovery process as phase transitions between solid and granular states. The model generates sub- and supershear rupture velocities and pulse-type ruptures seen also in frictional models, and additional important features such as strong dynamic changes of volumetric strain near the rupture front and diversity of nucleation mechanisms. The propagation of rupture front and slip accumulation at a point are correlated with sharp dynamic dilation followed by a gradual decay to a level associated with the final volumetric change associated with the granular phase transition in the slipping zone. The local brittle failure process associated with the solid-granular transition is expected to produce isotropic radiation in addition to the deviatoric terms. The framework significantly extends the ability to model brittle processes in complex geometrical structures and allows analysing the roles of gouge thickness and other parameters on nucleation, rupture and radiation characteristics.

  16. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  17. Using Dynamic Rupture Models to Explore Physical Controls on the 2011 Mw 9.0 Tohoku-Oki Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Duan, B.

    2011-12-01

    Seismic and geodetic recordings are routinely used to invert for kinematic source models of large earthquakes, which provide us with detailed images of slip distribution and rupture evolution on causative faults. To gain insight into physical conditions that allow a fault to slip and a rupture to propagate in the way they did, we can resort to dynamic source models that obey physical laws in continuum mechanics and rock friction. Published kinematic models of the 2011 Mw 9.0 Tohoku-Oki earthquake reveal several features of the rupture. These features include 1) high static stress drop with large amounts of slip in a small area, 2) a weak initial phase, down-dip rupture for the first 40 seconds, extensive shallow rupture during 60 to 70 seconds, and continuing deeper rupture lasting more than 100 seconds, and 3) systematically down-dip high-frequency radiation with respect to the hypocenter. In this study, we use spontaneous rupture models to explore what physical conditions, including the initial stress state and friction properties on the subducting fault, can reproduce these features, so that we can gain some physical insights into controls on this megathrust earthquake. Dynamic rupture simulations of this shallow dipping megathrust faulting at reasonable spatial and temporal resolutions require parallel computing on supercomputers. Our newly parallelized finite element method algorithm EQdyna allows us to simulate a large suite of spontaneous rupture models to examine the questions. In model setup, we use depth-dependence principal stresses and take into account variations in pore fluid pressure and frictional properties associated with subducted seafloor features such as seamounts. Our preliminary results suggest followings. First, a high strength and high stress drop patch (probably a subducted seamount or seamout chain) just above the hypocenter on the fault plane can delay up-dip rupture and result in a concentrated large slip area. Second, significantly

  18. Increased 18F-FDG Uptake Is Predictive of Rupture in a Novel Rat Abdominal Aortic Aneurysm Rupture Model

    PubMed Central

    English, Sean J.; Piert, Morand R.; Diaz, Jose A.; Gordon, David; Ghosh, Abhijit; D'Alecy, Louis G.; Whitesall, Steven E.; Sharma, Ashish K.; DeRoo, Elise P.; Watt, Tessa; Su, Gang; Henke, Peter K.; Eliason, Jonathan L.; Ailawadi, Gorav; Upchurch, Gilbert R.

    2015-01-01

    Objective To determine whether 18F-fluorodeoxyglucose (18F-FDG) micro–positron emission tomography (micro-PET) can predict abdominal aortic aneurysm (AAA) rupture. Background An infrarenal AAA model is needed to study inflammatory mechanisms that drive rupture. 18F-FDG PET can detect vascular inflammation in animal models and patients. Methods After exposing Sprague-Dawley rats to intra-aortic porcine pancreatic elastase (PPE) (12 U/mL), AAA rupture was induced by daily, subcutaneous, β-aminopropionitrile (BAPN, 300 mg/kg, N = 24) administration. Negative control AAA animals (N = 15) underwent daily saline subcutaneous injection after PPE exposure. BAPN-exposed animals that did not rupture served as positive controls [nonruptured AAA (NRAAA) 14d, N = 9]. Rupture was witnessed using radiotelemetry. Maximum standard uptakes for 18F-FDG micro-PET studies were determined. Aortic wall PAI-1, uPA, and tPA concentrations were determined by western blot analyses. Interleukin (IL)-1β, IL-6, IL-10, and MIP-2 were determined by Bio-Plex bead array. Neutrophil and macrophage populations per high-power field were quantified. Matrix metalloproteinase (MMP) activities were determined by zymography. Results When comparing ruptured AAA (RAAA) to NRAAA 14d animals, increased focal 18F-FDG uptakes were detected at subsequent sites of rupture (P = 0.03). PAI-1 expression was significantly less in RAAA tissue (P = 0.01), with comparable uPA and decreased tPA levels (P = 0.02). IL-1β (P = 0.04), IL-6 (P = 0.001), IL-10 (P = 0.04), and MIP-2 (P = 0.02)expression, neutrophil (P = 0.02) and macrophage presence (P = 0.002), and MMP9 (P < 0.0001) activity were increased in RAAA tissue. Conclusions With this AAA rupture model, increased prerupture 18F-FDG uptake on micro-PET imaging was associated with increased inflammation in the ruptured AAA wall. 18F-FDG PET imaging may be used to monitor inflammatory changes before AAA rupture. PMID:24651130

  19. Modelling of multiple events using empirical Green's functions: method, application to swarm earthquakes and implications for their rupture propagation

    NASA Astrophysics Data System (ADS)

    Fischer, Tomáš

    2005-12-01

    Recent studies of source-time functions (STFs) of small earthquakes have shown that some of the ML < 3 events may display complicated waveforms indicating multiple rupturing episodes. The STFs of such earthquakes consist of several pulses whose relative positions provide information on the mutual position of the subevents. I have used the waveform modelling method to analyse multiple events in order to disclose the geometry of the rupture. The P and S waveforms of multiple events (MEs) are modelled as the sum of waveforms of single subevents with different hypocentre coordinates and scalar moments. To construct the waveform of each single event composing the ME, the waveform of a co-located small event is used as an empirical Green's function (EGF). Assuming similar focal mechanisms of the subevents and of the EGF, the method seeks the coordinates and origin times of the subevents and their relative seismic moments. The non-linear problem is solved using the genetic algorithms method. Synthetic tests have shown that the method is capable of locating reliably up to three subevents with an accuracy better than 40 m. The method was applied to the records of the 2000 earthquake swarm in NW-Bohemia/Vogtland in Central Europe. By the EGF deconvolution, 54 MEs were identified in the magnitude range from 1.2 to 3.3, and 18 of them were successfully modelled as double or triple events with separate rupture positions. The separation of subsources reached 100 ms in time and 320 m in space. The relative positions of the subevents with respect to the orientation of the fault indicate that most of them occurred on a common fault plane. The space-time separation of the subevents corresponds to a speed of 3.0 +/- 0.9 km s-1, a value typical for rupture propagation of large earthquakes. The later subevents occur farther than the nominal rupture radius of the first subevent, and their mutual distance scales with magnitude. These observations suggest that the analysed MEs share a

  20. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Ampuero, J. P.; Dalguer, L. A.; Nissen-Meyer, T.

    2011-12-01

    On March 11th 2011, a Mw 9 earthquake stroke Japan causing 28000 victims and triggering a devastating tsunami that caused severe damage along the Japanese coast. The exceptional amount of data recorded by this earthquake, with thousands of sensors located all over Japan, provides a great opportunity for seismologist and engineers to investigate in detail the rupture process in order to better understand the physics of this type of earthquakes and their associated effects, like tsunamis. Here we investigate, by means of dynamic rupture simulations, a plausible mechanism to explain key observations about the rupture process of the 2011 M9 Tohoku earthquake, including the spatial complementarity between high and low frequency aspects of slip (e.g, Simons et al, Science 2011, Meng et al, GRL 2011). To model the dynamic rupture of this event, we use a realistic non-planar fault geometry of the megathrust interface, using the unstructured 3D spectral element open source code SPECFEM3D-SESAME, in which we recently implemented the dynamic fault boundary conditions. This implementation follows the principles introduced by Ampuero (2002) and Kaneko et al. (2008) and involves encapsulated modules plugged into the code. Our current implementation provides the possibility of modeling dynamic rupture for multiple, non-planar faults governed by slip-weakening friction. We successfully verified the code in several SCEC benchmarks, including a 3D problem with branched faults, as well as modeling the rupture of subduction megathrust with a splay fault, finding results comparable to published results. Our first set of simulations is aimed at testing if the diversity of rupture phenomena during the 2011 M9 Tohoku earthquake (see Ampuero et al in this session) can be overall reproduced by assuming the most basic friction law, linear slip-weakening friction, but prescribing a spatially heterogeneous distribution of the critical slip weakening distance Dc and initial fault stresses. Our

  1. Earthquake Rupture Complexity Evidence from Field Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Fletcher, J. M.; Rockwell, T. K.; Gonzalez-Garcia, J. J.; Teran, O.; Akciz, S. O.

    2010-12-01

    Field observations provide strong evidence for four intriguing aspects of rupture process complexity for the 4 April 2010 El Mayor - Cucapah - Indiviso earthquake. First, the southern “fork” of the rupture exhibits two splays just to the northwest of the event epicenter, both with nearly pure right-lateral faulting. Teleseismic source modeling by others indicates normal slip on deep fault surface preceded the shallow strike-slip faulting, and our field observations from the fork area indicate that the earliest phase of strike-slip faulting did not involve a significant normal faulting component. Second, as rupture propagated to the northwest along the Pescadores fault, slip ended abruptly on this fault and transferred across a complex zone to the Borrego fault (although the Pescadores fault continues farther and would have seemed an easier route to follow). This stepover is called the Puerta Accommodation Zone (PAZ) which extends 11 km along-strike within an elevated portion of the Cucapah massif and accommodates a left step (transpressional) that measures less than 2 km across-strike. Though partly obscured by rockfalls in the steep terrain here, only discontinuous faulting of up to one meter reached the ground surface, yet imagery differencing by others indicates several meters of continuous subsurface slip throughout this section. This 11 km region of reduced and discontinuous slip is one of the longest surface rupture jumps ever observed, with lengthy and continuous surface faulting on either side. The SE end of the stepover coincides spatially with the Canon Rojo embayment where the M7.2 1892 surface rupture propagated onto a second fault forming an abrupt corner in its surface trace. Hence, the surface rupture and slip distribution pattern in 2010 appears to have been influenced by stress changes induced by the 1892 event. Thirdly, from the NW end of the transition section, the Borrego fault continues to the NNW with strong east-down slip obliquity. Along

  2. Radiographic Risk Factors for Contralateral Rupture in Dogs with Unilateral Cranial Cruciate Ligament Rupture

    PubMed Central

    Chuang, Connie; Ramaker, Megan A.; Kaur, Sirjaut; Csomos, Rebecca A.; Kroner, Kevin T.; Bleedorn, Jason A.; Schaefer, Susan L.; Muir, Peter

    2014-01-01

    Background Complete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail. Methodology/Principal Findings We conducted a retrospective longitudinal cohort study of client-owned dogs with unilateral CR to determine how severity of radiographic stifle synovial effusion and osteophytosis influence risk of contralateral CR over time. Detailed survival analysis was performed for a cohort of 85 dogs after case filtering of an initial sample population of 513 dogs. This population was stratified based on radiographic severity of synovial effusion (graded on a scale of 0, 1, and 2) and severity of osteophytosis (graded on a scale of 0, 1, 2, and 3) of both index and contralateral stifle joints using a reproducible scoring method. Severity of osteophytosis in the index and contralateral stifles was significantly correlated. Rupture of the contralateral cranial cruciate ligament was significantly influenced by radiographic OA in both the index and contralateral stifles at diagnosis. Odds ratio for development of contralateral CR in dogs with severe contralateral radiographic stifle effusion was 13.4 at one year after diagnosis and 11.4 at two years. Odds ratio for development of contralateral CR in dogs with severe contralateral osteophytosis was 9.9 at one year after diagnosis. These odds ratios were associated with decreased time to contralateral CR. Breed, age, body weight, gender, and tibial plateau angle did not significantly influence time to contralateral CR. Conclusion Subsequent contralateral CR is significantly influenced by severity of radiographic stifle effusion and osteophytosis in the contralateral stifle, suggesting that synovitis and arthritic joint degeneration are significant factors in the

  3. Rupture Directivity in a Foam Rubber Physical Model

    NASA Astrophysics Data System (ADS)

    Anooshehpoor, R.; Brune, J. N.

    2003-12-01

    Understanding earthquake rupture dynamics, especially forward rupture directivity (focusing of seismic energy in the direction of rupture propagation), is crucial in determining the seismic hazard for critical structures located near major active faults. We use foam rubber modeling experiments to provide constraints on parameters that control rupture dynamics, and consequently, forward directivity effects. Numerical models currently in use have too many unconstrained parameters to allow confidence in predictions, and may not even be realistic from a physical point of view. The foam rubber model allows us to develop a deep physical understanding of an actual physical model. This in turn will allow us to better specify which physical parameters used in numerical models are critical, and establish a realistic range for their values, and to better understand and qualify particular numerical models. Three-dimensional numerical simulations of earlier experiments with excellent results provided incentive for additional funding from PEER to increase the number of recording channels in the model from 32 to 76. In particular, we have increased the number of recording sites on the fault plane from 12 to 35 to provide a better picture of the slip distribution on the fault during rupture. At the time of meeting we will present waveforms for selected events.

  4. Spectral Element Simulations of Rupture Dynamics along kinked faults

    NASA Astrophysics Data System (ADS)

    Vilotte, J.; Festa, G.; Madariaga, R.

    2005-12-01

    Numerical simulation of earthquake source dynamics provides key elements for ground-motion prediction and insights into the physics of dynamic rupture propagation. Faulting is controlled by non-linear frictional interactions and damage within the fault zone. Important features of the earthquakes dynamics, such as rupture velocity, arrest phase and high-frequency radiation are believed to be strongly influenced by the geometry of the faults (kinks, jogs and forks). Data analysis as well as kinematic inversions have pointed out potential links between super-shear and geometry, as in the case of the Denali and Izmit earthquakes. Finally, recent laboratory experiments of sub- and super-shear rupture propagation along kink interfaces have shed new lights on these phenomena. We present here spectral element simulations of the dynamic rupture propagation along kinked and curved fault interfaces, a problem that has been experimentally investigated by Rousseau and Rosakis (2003). Depending on the state of the initial stress, we numerically analyze the mechanics of the dynamical fault branching for sub- and super-shear rupture propagation. Special interest is devoted to source directivity effects and high frequency generation related to the branching process. Implications for strong motion analysis will be discussed. This work was supported by the SPICE - Research and Training project

  5. Relaxation creep rupture of heterogeneous material under constant strain.

    PubMed

    Hao, Sheng-Wang; Zhang, Bao-Ju; Tian, Ji-Feng

    2012-01-01

    We focus on a system consisting of an elastic part and a damageable part in series, to study the relaxation creep rupture of a heterogeneous system subjected to a uniaxial constant strain applied instantaneously. The viscoelastic behavior of the damageable part is modeled by a fiber bundle model consisting of Kelvin-Voigt elements and global load sharing is assumed for the redistribution of load following fiber breaking in the damageable part. Analytical and numerical calculations show that the global relaxation creep rupture appears if the elastic energy stored in the elastic part exceeded the fracture energy of the damageable part. The lifetime of the system strongly depends on the values of the applied external strain and the initial stiffness ratio k between the elastic part and the damageable part. We show that a higher stiffness ratio implies a more brittle system. Prior to complete failure, relaxation creep rupture exhibits a sequence of three stages, similar to creep rupture under constant stress, and the nominal force rate presents a power law singularity with a power index -1/2 near the global rupture time. PMID:22400604

  6. Direct visualization of microalgae rupture by ultrasound-driven bubbles

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Harun, Irina; Pouliopoulos, Antonis; Choi, James J.; Hellgardt, Klaus; Garbin, Valeria

    2015-11-01

    Cell rupture induced by ultrasound is central to applications in biotechnology. For instance, cell disruption is required in the production of biofuels from microalgae (unicellular species of algae). Ultrasound-induced cavitation, bubble collapse and jetting are exploited to induce sufficiently large viscous stresses to cause rupture of the cell membranes. It has recently been shown that seeding the flow with bubbles that act as cavitation nuclei significantly reduces the energy cost for cell processing. However, a fundamental understanding of the conditions for rupture of microalgae in the complex flow fields generated by ultrasound-driven bubbles is currently lacking. We perform high-speed video microscopy to visualize the miscroscale details of the interaction of Chlamydomonas reinhardtii , microalgae of about 10 μm in size, with ultrasound-driven microbubbles of 2-200 μm in diameter. We investigate the efficiency of cell rupture depending on ultrasound frequency and pressure amplitude (from 10 kPa up to 1 MPa), and the resulting bubble dynamics regimes. In particular we compare the efficiency of membrane rupture in the acoustic microstreaming flow induced by linear oscillations, with the case of violent bubble collapse and jetting. V.G. acknowledges partial support from the European Commission (FP7-PEOPLE-2013-CIG), Grant No. 618333.

  7. Spontaneous rupture of hepatic hemangiomas: A review of the literature

    PubMed Central

    Jr, Marcelo AF Ribeiro; Papaiordanou, Francine; Gonçalves, Juliana M; Chaib, Eleazar

    2010-01-01

    Hepatic hemangiomas are congenital vascular malformations, considered the most common benign mesenchymal hepatic tumors, composed of masses of blood vessels that are atypical or irregular in arrangement and size. Hepatic hemangiomas can be divided into two major groups: capillary hemangiomas and cavernous hemangiomas These tumors most frequently affect females (80%) and adults in their fourth and fifth decades of life. Most cases are asymptomatic although a few patients may present with a wide variety of clinical symptoms, with spontaneous or traumatic rupture being the most severe complication. In cases of spontaneous rupture, clinical manifestations consist of sudden abdominal pain, and anemia secondary to a haemoperitoneum. Disseminated intravascular coagulopathy can also occur. Haemodynamic instability and signs of hypovolemic shock appear in about one third of cases. As the size of the hemangioma increases, so does the chance of rupture. Imaging studies used in the diagnosis of hepatic hemangiomas include ultrasonography, dynamic contrast-enchanced computed tomography scanning, magnetic resonance imaging, hepatic arteriography, digital subtraction angiography, and nuclear medicine studies. In most cases hepatic hemangiomas are asymptomatic and should be followed up by means of periodic radiological examination. Surgery should be restricted to specific situations. Absolute indications for surgery are spontaneous or traumatic rupture with hemoperitoneum, intratumoral bleeding and consumptive coagulopathy (Kassabach-Merrit syndrome). In a patient presenting with acute abdominal pain due to unknown abdominal disease, spontaneous rupture of a hepatic tumor such as a hemangioma should be considered as a rare differential diagnosis. PMID:21191518

  8. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  9. Dealing with a penstock rupture: A success story

    SciTech Connect

    Siminski, D.R. )

    1993-08-01

    Speed and safety are important considerations when repairing damaged penstocks. When the Control Gorge penstock in southern California ruptured, quick, successful action prevented complications. In the winter of 1991, a break occurred in the lower portion of the 8-foot-diameter Owens River Gorge penstock. The rupture created a vacuum, which caused about 1,500 feet of the pipe upstream of the break to collapse. Investigations by the Los Angeles Department of Water and Power (LADWP) indicate that pressure surges in the penstock caused by rapid opening and closing of a turbine bypass-relief valve at the Control Gorge hydro plant and a defective weld at a manway (a small access that leads into the penstock) led to the rupture. Quick emergency repairs were required owing to the limited bypass capability around the penstock, the need for water flow for fish habitat in the lower sections of the Owens River, and water needs for Los Angeles. Within ten days, LADWP employees had temporarily repaired the penstock. In less than five months, workers had replaced the collapsed and ruptured sections, and returned the penstock to full service. The penstock rupture at Owens Gorge caused LADWP to recognize that older hydro plants may have hidden defects that would not have been left in place with current construction and inspection methods. Therefore, additional care should be taken during operation of these plants to avoid placing any unnecessary stresses on plant equipment.

  10. Dynamic Rupture Segmentation Along The Nankai Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hok, S.; Fukuyama, E.; Hashimoto, C.

    2010-12-01

    In southwest Japan, large devastating earthquakes (Mw>8) occurred along the Nankai subduction zone every 100-200 years (e.g. Ando, 1975, Tectonophys.; Ishibashi, 2004, Ann. Geophys.). Historical records revealed the segmented nature of the 600 km long seismogenic zone, producing Nankai and Tonankai earthquakes to occur separately or jointly at each cycle. The intersegment zone which separates Nankai and Tonankai source areas, near the Kii Peninsula, should have some special physical properties. In this study, we investigate the dynamic linkage of the coseismic slips on the Nankai and Tonankai segments, by modeling the spontaneous rupture propagation on the subduction interface. To conduct a reliable modeling, the parameters’ lateral variations along the place interface are introduced by combining several geophysical observation data sets. First, we use a large-scale 3D geometry for the plate interface, inferred from seismicity; we also integrate the slip deficit distribution (Hashimoto et al., 2009, SSJ meeting) obtained by inversion of GPS data, to constrain the distribution of stress drop on the interface. This distribution is not uniform, and explains the 1st order asperities of the subduction zone: Hyuga, Nankai, Tonankai and Tokai areas appear clearly as loaded regions. In addition, a constitutive friction law is required to link fault slip and stress release. We compiled regional geophysical information relevant to the segmentation, to infer the distribution of the frictional parameters at seismogenic depths. We focused on areas where the rupture is known to have stopped. The barriers seem to be related to upper plate structure (Wells et al. 2003, JGR, Rosenau and Oncken 2009, JGR). Uplifted areas show common characteristics: end of seismogenic segments, underplating in the wedge, and higher density of the upper old wedge (granitic intrusions). Following above review, we introduced 3 barrier regions delimiting 2 asperity regions (Nankai and Tonankai

  11. Survivors of ruptured abdominal aortic aneurysm: the iceberg's tip.

    PubMed Central

    Armour, R H

    1977-01-01

    In four and a half years 25 patients in one community suffered a ruptured abdominal aortic aneurysm. Eleven died at home, nine died without operation in hospital, and only five had the aneurysm removed. There were four survivors. A further seven patients might have lived had they had a prompt operation. The average operative mortality for ruptured aneurysms among series reported in British journals is 53%, but the survivors are a small minority of the total number of people in the community whose aneurysms rupture. No basis could be found for the view that replacing an aortic aneurysm with a straight graft (while leaving behind aneurysmal common iliac arteries) lowers the operative mortality. On the contrary, oversimplifying the operation may be hazardous. PMID:922418

  12. A Case of Post Myocardial Infarction Papillary Muscle Rupture.

    PubMed

    Anuwatworn, Amornpol; Milnes, Christopher; Kumar, Vishesh; Raizada, Amol; Nykamp, Verlyn; Stys, Adam

    2016-06-01

    Papillary muscle rupture is a rare, life-threatening post myocardial infarction mechanical complication. Without surgical intervention, prognosis is very poor. Clinicians need to recognize this complication early, as prompt therapy is crucial. We present a case of inferior ST elevation myocardial infarction complicated by posteromedial papillary muscle rupture resulting in severe acute mitral regurgitation (flail anterior mitral leaflet), acute pulmonary edema and cardiogenic shock. In our patient, a new mitral regurgitation murmur suggested this mechanical complication. Complete disruption of papillary muscle was visualized by transesophageal echocardiography. This case illustrates the importance of good physical examination for early diagnosis of papillary muscle rupture, so that life-saving treatment can be administered without delay. PMID:27443107

  13. Rupture Zones of Strong Earthquakes In The Corinth Rift

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.; Kouskouna, V.; Plessa, A.

    Ruptures zones of the strong (M 8805; 6) earthquakes that occurred in the Corinth rift in the last three hundred years have been determined on the basis of aftershock epi- central distributions , intensity distributions and observations regarding seismogenic ground failures and tsunamis. The space U time distribution of the rupture zones indi- cates that (1) for time intervals of about 50yrs the rupture zones do not overlap; over- alpping appear, however, in longer time intervals , (2) there is a trend of the seismic activity to decrease westwards , and (3) particular regions constitute potential seis- mic gaps , like the Kiato UXylocastro region in the south coast of the Corinth Gulf, where the large 1402 earthquake occurred, and the Livadia U Desfina region where the A.D.361 and 551 large earthquakes possibly took place.

  14. Emergency Stenting of a Ruptured Infected Anastomotic Femoral Pseudoaneurysm

    SciTech Connect

    Klonaris, Chris Katsargyris, Athanasios; Matthaiou, Alexandros; Giannopoulos, Athanasios; Tsigris, Chris; Papadopouli, Katerina; Tsiodras, Sotiris; Bastounis, Elias

    2007-11-15

    A 74-year-old man presented with a ruptured infected anastomotic femoral pseudoaneurysm. Due to severe medical comorbidities he was considered unsuitable for conventional surgical management and underwent an emergency endovascular repair with a balloon-expandable covered stent. The pseudoaneurysm was excluded successfully and the patient had an uneventful postoperative recovery with long-term suppressive antimicrobials. He remained well for 10 months after the procedure with no signs of recurrent local or systemic infection and finally died from an acute myocardial infarction. To our knowledge, emergency endovascular treatment of a free ruptured bleeding femoral artery pseudoaneurysm has not been documented before in the English literature. This case illustrates that endovascular therapy may be a safe and efficient alternative in the emergent management of ruptured infected anastomotic femoral artery pseudoaneurysms when traditional open surgery is contraindicated.

  15. Late calcification and rupture: a rare complication of ventriculoperitoneal shunting.

    PubMed

    Kural, Cahit; Kirik, Alparslan; Pusat, Serhat; Senturk, Tolga; Izci, Yusuf

    2012-01-01

    A 10-year old boy who had undergone a ventriculoperitoneal (V/P) shunt because of hydrocephalus at 10 days of age was doing well until 20 days ago, when he began to experience headache and seizures. CT scan revealed dilated lateral ventricles and calcification at the shunt site. X-rays showed an unusual calcification pattern around the shunt tube and rupture of the tube between the mastoid bone and clavicle. The patient underwent surgery and the shunt was changed completely. The ventricles became small in the follow-up. Even though V/P shunts may induce fibrous tissue formation and calcification around the tube, there are a few cases of shunt rupture and calcification of shunts in the literature. Possible mechanisms of the rupture and calcification are discussed in this paper. PMID:23208915

  16. Transcatheter Arterial Embolization for Spontaneous Rupture of the Omental Artery

    SciTech Connect

    Matsumoto, Tomohiro; Yamagami, Takuji; Morishita, Hiroyuki; Iida, Shigeharu; Tazoe, Jun; Asai, Shunsuke; Masui, Koji; Ikeda, Jun; Nagata, Akihiro; Sato, Osamu; Nishimura, Tsunehiko

    2011-02-15

    We encountered a rare case of spontaneous rupture of the omental artery. A 25-year-old man without any episode of abdominal trauma or bleeding disorders came to the emergency unit with left upper abdominal pain. Hematoma with extravasation of the greater omentum and a hemoperitoneum was confirmed on abdominal contrast-enhanced computed tomography. Bleeding from the omental artery was suspected based on these findings. Transcatheter arterial embolization was successfully performed after extravasation of the omental artery, which arises from the left gastroepiploic artery, was confirmed on arteriography. Partial ometectomy was performed 10 days after transcatheter arterial embolization, revealing that the hematoma measured 10 cm in diameter in the greater omentum. Pathological examination showed rupture of the branch of an omental artery without abnormal findings, such as an aneurysm or neoplasm. Thus, we diagnosed him with spontaneous rupture of the omental artery. The patient recovered and was discharged from the hospital 10 days after the surgery, with a favorable postoperative course.

  17. Spontaneous common iliac vein rupture: a case report

    PubMed Central

    DePass, Ian E.

    1998-01-01

    A 68-year-old woman, admitted because of acute lower quadrant abdominal pain but no history of trauma, underwent laparotomy for a suspected ruptured aortic aneurysm. Exploration revealed a 20-mm longitudinal tear in the left iliac vein. The vein was repaired primarily. Her postoperative course was complicated by deep vein thrombosis. Spontaneous rupture of the iliac vein without trauma is rare. but occurs predominantly in healthy white women between the ages of 40 and 80 years. Various causative mechanisms have been described: inflammation of the vessel wall secondary to thrombophlebitis, proximal obstruction of the iliac vein and spontaneous rupture without obstruction or thrombosis. In many cases an increase in intra-abdominal pressure is noted. PMID:9854541

  18. Evaluating fault rupture hazard for strike-slip earthquakes

    USGS Publications Warehouse

    Petersen, M.; Cao, T.; Dawson, Tim; Frankel, A.; Wills, C.; Schwartz, D.

    2004-01-01

    We present fault displacement data, regressions, and a methodology to calculate in both a probabilistic and deterministic framework the fault rupture hazard for strike-slip faults. To assess this hazard we consider: (1) the size of the earthquake and probability that it will rupture to the surface, (2) the rate of all potential earthquakes on the fault (3) the distance of the site along and from the mapped fault, (4) the complexity of the fault and quality of the fault mapping, (5) the size of the structure that will be placed at the site, and (6) the potential and size of displacements along or near the fault. Probabilistic fault rupture hazard analysis should be an important consideration in design of structures or lifelines that are located within about 50m of well-mapped active faults.

  19. Complicated malaria and a covert ruptured spleen: a case report.

    PubMed

    Waweru, Peter; Macleod, Jana; Gikonyo, Anthony

    2014-01-01

    Spontaneous splenic rupture in complicated malaria is an uncommon cause of hemoperitoneum in the tropics. The exact incidence of splenic rupture is unknown, largely due to under-reporting, but has been estimated at ∼2%. Its pathophysiology is linked to the formation of a subcapsular hematoma. Upon rupture, patients present with features of shock and peritonitis and in most cases (95%), computed tomography (CT) scan detects the splenic injury. Patients should be managed conservatively with splenectomy reserved for patients with shock and hemoperitoneum due to risk of post-splenectomy sepsis. We report the case of a 38-year-old man with severe malaria who presented with fever, chills and abdominal pains. A CT scan abdomen failed to reveal splenic parenchymal injury or any splenic extravasation of contrast. Conservative management was unsuccessful. Exploratory laparatomy confirmed the spleen as the site of bleeding necessitating a splenectomy. PMID:25395608

  20. Quantifying variability in earthquake rupture models using multidimensional scaling: application to the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Razafindrakoto, Hoby N. T.; Mai, P. Martin; Genton, Marc G.; Zhang, Ling; Thingbaijam, Kiran K. S.

    2015-07-01

    Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique solutions. In addition, various fault parametrizations and input data may have been used by different researchers for the same earthquake. Such variability leads to large intra-event variability in the inferred rupture models. One way to understand this problem is to develop robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS) approach to compare rupture models quantitatively. We consider normalized squared and grey-scale metrics that reflect the variability in the location, intensity and geometry of the source parameters. We test the approach on two-dimensional random fields generated using a von Kármán autocorrelation function and varying its spectral parameters. The spread of points in the MDS solution indicates different levels of model variability. We observe that the normalized squared metric is insensitive to variability of spectral parameters, whereas the grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we formulate a similarity scale to rank the rupture models. As case studies, we examine inverted models from the Source Inversion Validation (SIV) exercise and published models of the 2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known reference model and one with an unknown true solution. The normalized squared and grey-scale metrics are respectively sensitive to the overall intensity and the extension of the three classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional MDS configuration is preferable for models with large variability. We also find that the models for the Tohoku earthquake derived from tsunami data and their corresponding predictions cluster with a systematic deviation from other models. We demonstrate the stability of the MDS point-cloud using a number of realizations and jackknife tests, for

  1. Bacteria Localization and Chorion Thinning among Preterm Premature Rupture of Membranes

    PubMed Central

    Fortner, Kimberly B.; Grotegut, Chad A.; Ransom, Carla E.; Bentley, Rex C.; Feng, Liping; Lan, Lan; Heine, R. Phillips; Seed, Patrick C.; Murtha, Amy P.

    2014-01-01

    Objective Bacterial colonization of the fetal membranes and its role in pathogenesis of membrane rupture is poorly understood. Prior retrospective work revealed chorion layer thinning in preterm premature rupture of membranes (PPROM) subjects. Our objective was to prospectively examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects. Study Design Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects. Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemistry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using Student's t-test, linear mixed effect model, and Poisson regression model (SAS Cary, NC). Results In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site (147.2 vs. 253.7 µm, p<0.0001). Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined, regardless of site sampled [PPROM(114.9) vs. PTL(246.0) vs. PTNL(200.8) vs. TL(217.9) vs. TNL(246.5)]. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection [PPROM(31) vs. PTL(9) vs. PTNL(7) vs. TL(7) vs. TNL(6)]. Among all subjects at both sites, bacterial counts were inversely correlated with chorion thinning, even excluding histologic chorioamnionitis (p<0.0001 and p = 0.05). Conclusions Fetal chorion was uniformly thinner at rupture site compared to distant sites. In PPROM fetal chorion, we demonstrated pronounced global thinning

  2. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation

  3. Correlation of Rupture Dynamics to the Nonlinear Backscatter Response From Polymer-Shelled Ultrasound Contrast Agents

    PubMed Central

    Koppolu, Sujeethraj; Chitnis, Parag V.; Mamou, Jonathan; Allen, John S.; Ketterling, Jeffrey A.

    2016-01-01

    Polymer-shelled ultrasound contrast agents (UCAs) may expel their encapsulated gas subject to ultrasound-induced shell buckling or rupture. Nonlinear oscillations of this gas bubble can produce a subharmonic component in the ultrasound backscatter. This study investigated the relationship between this gas-release mechanism and shell-thickness–to–radius ratios (STRRs) of polymer-shelled UCAs. Three types of polylactide-shelled UCAs with STRRs of 7.5, 40, and 100 nm/µm were studied. Each UCA population had a nominal mean diameter of 2 µm. UCAs were subjected to increasing static overpressure ranging from 2 to 330 kPa over a duration of 2 h in a custom-designed test chamber while being imaged using a 200× magnification video microscope at a frame rate of 5 frames/s. Digitized video images were binarized and processed to obtain the cross-sectional area of individual UCAs. Integration of the normalized cross-sectional area over normalized time, defined as buckling factor (Bf), provided a dimensionless parameter for quantifying and comparing the degree of pre-rupture buckling exhibited by the UCAs of different STRRs in response to overpressure. The UCAs with an STRR of 7.5 nm/µm exhibited a distinct shell-buckling phase before shell rupture (Bf < 1), whereas the UCAs with higher STRRs (40 and 100 nm/µm) did not undergo significant pre-rupture buckling (Bf ≈ 1). The difference in the overpressure response was correlated with the subharmonic response produced by these UCAs. When excited using 20-MHz ultrasound, individual UCAs (N = 3000) in populations that did not exhibit a buckling phase produced a subharmonic response that was an order of magnitude greater than the UCA population with a prominent pre-rupture buckling phase. These results indicate the mechanism of gas expulsion from these UCAs might be a relevant factor in determining the level of subharmonic response in response to high-frequency ultrasound. PMID:25935932

  4. A Rare Case of Bilateral Patellar Tendon Ruptures: A Case Report and Literature Review

    PubMed Central

    Tarazi, Nadim; O'loughlin, Padhraig; Amin, Amin; Keogh, Peter

    2016-01-01

    Bilateral patellar tendon ruptures are rare. The majority of case reports describing bilateral patellar tendon ruptures have occurred in patients with predisposing factors to tendinopathy. We describe a case of bilateral patellar tendon rupture sustained following minimal trauma by a patient with no systemic disease or history of steroid use. Due to the rarity of this injury, clinical suspicion is low. It is reported that 38% of patellar tendon ruptures are misdiagnosed initially. Therefore careful history taking and physical examination is integral in ensuring a diagnosis is achieved for early primary repair. We discuss the aetiology of spontaneous tendon rupture and report a literature review of bilateral patellar tendon ruptures. PMID:27200200

  5. Transcatheter closure of ruptured sinus Valsalva aneurysm with retrograde approach.

    PubMed

    Narin, Nazmi; Ozyurt, Abdullah; Baykan, Ali; Uzüm, Kazım

    2014-04-01

    A three-year-old girl with multiple heart malformations admitted to the pediatric cardiology unit because of excessive sweating and fatigue. Abnormal color Doppler flow was detected into the right atrium from the dilated coronary sinus on the echocardiographic examination, and ruptured sinus Valsalva aneurysm (SVA) was diagnosed. Although in most such cases, an antegrade transcatheter approach has been used, a retrograde approach can be used as a cost-effective treatment modality in those cases with selective high-risk surgery. In this report, we present a patient with ruptured SVA, which was closed via Amplatzer vascular plug-4 by retrograde approach. PMID:24769826

  6. Multiple stage inflation packer with secondary opening rupture disc

    SciTech Connect

    Stepp, L.W.; Giroux, R.L.; Crump, J.B.; Borges, J.F.

    1992-05-05

    This patent describes an inflatable packer apparatus for use in a well bore, it comprises: case means for connecting to a casing string and defining a port therethrough; inflatable packing means, connected to the case means and in communication with the port, for sealingly engaging the well bore when inflated; and rupture means upstream of the inflatable packing means for rupturing in response to a predetermined pressure after inflation of the packing means and thereby placing the port in communication with a well annulus.

  7. Left ventricular rupture postmitral valve replacement: Surviving a catastrophe

    PubMed Central

    Bisoyi, Samarjit; Mohanty, Jitendu; Mohapatra, Raghunath; Nayak, Debashish

    2015-01-01

    One of the dreaded mechanical complications of mitral valve replacement (MVR) is rupture of the left ventricle (LV). This report describes the early diagnosis and successful repair of rupture of posterior wall of LV in an elderly patient who underwent MVR. We have discussed the risk factors and perioperative issues implicated in such complication. The anesthesiologist as an intra-operative echocardiographer can aid in identifying the patient at risk. Though important surgical steps are necessary to prevent the complication; nonetheless, the anesthesiologist needs to take key measures in the perioperative period. PMID:25566717

  8. Analysis of slipstream flow in two ruptured intracranial cerebral aneurysms.

    PubMed

    Imbesi, S G; Kerber, C W

    1999-10-01

    Replicas of ruptured posterior communicating and basilar artery aneurysms were created from cadaveric specimens and then were placed in a circuit of pulsating non-Newtonian fluid. Individual fluid slipstreams were opacified with isobaric dyes, and images were recorded on film. The slipstreams entered the distal aneurysm neck with impact against the distal lateral wall of the aneurysm. They then swirled slowly in a reverse vortical pattern within the aneurysm sac. Fluid exited the aneurysm at the proximal neck. The flow pattern clearly shows the impact zone of entering slipstreams (the point of aneurysm rupture) and provides information pertaining to aneurysm growth and formation. PMID:10543644

  9. Rapid Mapping of Surface Rupture from the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Trexler, C. C.; Morelan, A. E., III; Oskin, M. E.

    2014-12-01

    Rapid documentation (<1 day) of co-seismic surface rupture location and slip is essential for scientific and emergency response. We demonstrate how social media (text messaging and Twitter) and the emerging 3D data collection technique known as Structure from Motion (SfM), used in conjunction with traditional field reconnaissance, enabled us to rapidly locate and document surface ruptures from the Mw 6.0 South Napa earthquake. On the morning of the event, our field team used information available on social media to identify locations with potential surface rupture. Preliminary observations of surface rupture (measurements and geo-tagged photographs) were texted to the office-based team member who created digital maps of the rupture trace and shared them online via Twitter in near-real time. We documented many ephemeral features (such as offset roads, curbs, and driveways) along the rupture trace within 12 hours of the event, before these features were destroyed by road and infrastructure repair. We were able to return to most sites again within several days, allowing us to document continuing slip and create time-series datasets of offset features. After the collection and re-collection of data at selected sites, we made detailed measurements remotely using 3D models constructed with SfM. The ability to quantitatively project features into the fault plane using these models allows for accurate measurements of small features often difficult to observe and quantify in the field. Traditionally, even preliminary maps of rupture extent and offset magnitudes are not available for several days after an event because office-based processing and compilation is required. Because we were able to compile our data in real time, we distributed our results while they were still valuable for ongoing scientific response. Our work helped other science teams efficiently target fieldwork and instrument deployment; for example, one geodetic survey team used our surface rupture map to

  10. Presumed Testicular Rupture During a College Baseball Game

    PubMed Central

    Freehill, Michael T.; Gorbachinsky, Ilya; Lavender, John D.; Davis, Ronald L.; Mannava, Sandeep

    2015-01-01

    Scrotal rupture during athletic competition is considered a rare occurrence; however, blunt trauma to the scrotum is relatively common. Protective athletic cups are strongly recommended for both children and adults engaging in contact sports as they likely limit the amount of serious injury to the scrotal contents. Nonetheless, should the on-field assessment by the athletic trainer, coach, or team physician indicate that the athlete has increased pain, ecchymosis, swelling, and tenderness to palpation after blunt trauma, testicular rupture should be suspected and prompt ultrasound and urologic assessment should be undertaken, as early operative intervention is necessary for testicular preservation. This report reviews testicular trauma during athletic competition. PMID:25984265

  11. Spontaneous Liver Rupture After Treatment With Drug-Eluting Beads

    SciTech Connect

    Ritter, C. O.; Wartenberg, M.; Mottok, A.; Steger, U.; Goltz, J. P.; Hahn, D.; Kickuth, R.

    2012-02-15

    Spontaneous rupture of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE) is a rare and life-threatening complication. Pathophysiologic mechanisms are not yet fully known; it is suggested that rupture is preceded by reactive tissue edema and intratumerous bleeding, leading to a rapid expansion of tumour mass with risk of extrahepatic bleeding in the case of subcapsular localisation. This case report discusses a sudden, unexpected lethal complication in a 74 year-old male patient treated with TACE using DC Bead loaded with doxorubicin (DEBDOX) in a progressive multifocal HCC.

  12. Rupture of ectopic renal arterial pseudoaneurysm after percutaneous nephrolithotomy

    PubMed Central

    Wang, Mingshuai; Zhang, Junhui; Xing, Nianzeng

    2016-01-01

    ABSTRACT A 35-year-old female patient presented with swelling pain at left waist for 1 month. Left renal pelvis stones were found and standard percutaneous nephrolithotomy was successfully performed. Two weeks later, the patient suddenly suffered massive bleeding presented with gross hematuria. Rupture of ectopic renal artery pseudoaneurysm was identified by computed tomography and angiography of the renal artery. Emergency selective angioembolization of one branch of the artery was performed. To our knowledge, this is the first report of ruptured ectopic renal arterial pseudoaneurysm. PMID:27564300

  13. Ruptured ectopic pregnancy in rudimentary horn of the uterus.

    PubMed

    Tufail, Amber; Hashmi, Haleema A

    2007-02-01

    Rudimentary horn is one of the rarest congenital uterine anomalies and consists of a relatively normal appearing uterus on one side with a rudimentary horn on the other side. It is difficult to diagnose before surgery and hazardous to maternal life as rupture of pregnant horn result in severe hemoperitoneum. Case of rudimentary horn pregnancy is reported in a lady with history of habitual abortion and signs and symptoms of acute adnexal pathology. Exploratory laparotomy revealed ruptured rudimentary horn pregnancy. Excision of accessory horn was done. PMID:17288859

  14. Ruptured and unruptured mycotic superior mesenteric artery aneurysms.

    PubMed

    Sharma, Gaurav; Semel, Marcus E; McGillicuddy, Edward A; Ho, Karen J; Menard, Matthew T; Gates, Jonathan D

    2014-11-01

    Aneurysms of the superior mesenteric artery (SMA) and branches thereof are uncommon but have a high rate of rupture and mortality relative to other visceral artery aneurysms. Historically, the predominant etiology has been infectious; with a renewed rise in intravenous drug abuse rates in the last decade, we hypothesize a resurgence in septic embolic complications may occur in the coming years. Here, we describe the presentation and management of 2 cases of intravenous drug users presenting with infectious endocarditis and SMA main trunk and branch aneurysms, one of which was ruptured. In addition, we review the literature on these rare clinical entities. PMID:25017769

  15. Renal allograft transplant recipient with ruptured hydatid native kidney.

    PubMed

    Bhat, Riyaz Ahmad; Wani, Imtiyaz; Khan, Imran; Wani, Muzaffar

    2014-07-01

    Echinococcosis of the kidneys in a renal transplant recipient is extremely rare and its occurrence being related to immunosuppression is a possibility which needs further characterisation. Ruptured renal hydatid in a renal transplant recipient is not reported so far to our best knowledge. We present a 42-year-old renal allograft receipient who presented one year after transplant with left flank pain, palpable left lumbar mass and gross hydatiduria. Investigations revealed a ruptured native hydatid kidney. Patient was managed with a combination of chemotherapy and left native nephrectomy and discharged in a satisfactory condition. PMID:25125908

  16. Umbilical cord rupture: a case report and review of literature.

    PubMed

    Naidu, Madhusudhan; Nama, Vivek; Karoshi, Mahantesh; Kakumani, Vijayasri; Worth, Richard

    2007-01-01

    The umbilical cord acts as a mechanical conduit between the fetus and placenta, allowing movement of water and nutrient substances between the fetal circulation and the amniotic fluid. Complications can occur antenatally or intranatally and are usually acute events that require immediate delivery to prevent intrauterine death. Even though the majority of the cord complications are unpreventable, significant improvement in perinatal mortality and morbidity can be achieved if such an event can be predicted. Umbilical cord rupture is not uncommon, but significantly underreported. We present an unusual cause of umbilical cord rupture and a review of literature. PMID:18320869

  17. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

    USGS Publications Warehouse

    2007 Working Group on California Earthquake Probabilities

    2008-01-01

    California?s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast?a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval. This report describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007).

  18. Investigating the reliability of kinematic source inversion with dynamic rupture models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S.; Dalguer, L. A.; Clinton, J. F.

    2011-12-01

    An essential element of understanding the earthquake source processes is obtaining a reliable source model via geophysical data inversion. However, the epistemic uncertainties in the kinematic source inversion produce a variety of source model estimates for any given event. Thus, as done in the Source Inversion Validation (SIV) project, it is important to validate our inversion methods with synthetic data by testing forward Green's function calculation and comparing various inversion methods. Spontaneous dynamic rupture modeling, which incorporates the conservation laws of continuum mechanics and the constitutive behavior of rocks under frictional sliding, is capable of producing physically self-consistent kinematic description of the fault and its associated seismic wave propagation resulting in ground motions on the surface. Here we develop accurate dynamic rupture simulation of a vertical strike slip fault. Our source model is composed of well-defined asperities (patches of large stress drop) and we assume that fault rupture is governed by the linear slip weakening friction model. The resulting near-source ground motions dominated by low frequency (up to 1Hz) are used for testing our inversion method. We performed various inversion tests and compared estimated solutions with true solutions obtained by the forward dynamic rupture modeling. Our preliminary results show that estimated model spaces could be significantly perturbed, depending on data and modeling schemes used in the inversion, not only in terms of spatial distribution of model parameters, but also in terms of their auto- and cross-correlation structure. The Bayesian approach in source inversion is becoming increasingly popular because of the recent common availability of high performance computing capabilities. We adopted the Bayesian approach in our source inversion test, so that we can more effectively analyze the uncertainty of estimated models and also implement physically guided regularization

  19. Coupling a geodynamic seismic cycling model to rupture dynamic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; van Dinther, Ylona

    2014-05-01

    The relevance and results of dynamic rupture scenarios are implicitly linked to the geometry and pre-existing stress and strength state on a fault. The absolute stresses stored along faults during interseismic periods, are largely unquantifiable. They are, however, pivotal in defining coseismic rupture styles, near-field ground motion, and macroscopic source properties (Gabriel et al., 2012). Obtaining these in a physically consistent manner requires seismic cycling models, which directly couple long-term deformation processes (over 1000 year periods), the self-consistent development of faults, and the resulting dynamic ruptures. One promising approach to study seismic cycling enables both the generation of spontaneous fault geometries and the development of thermo-mechanically consistent fault stresses. This seismo-thermo-mechanical model has been developed using a methodology similar to that employed to study long-term lithospheric deformation (van Dinther et al., 2013a,b, using I2ELVIS of Gerya and Yuen, 2007). We will innovatively include the absolute stress and strength values along physically consistent evolving non-finite fault zones (regions of strain accumulation) from the geodynamic model into dynamic rupture simulations as an initial condition. The dynamic rupture simulations will be performed using SeisSol, an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme (Pelties et al., 2012). The dynamic rupture models are able to incorporate the large degree of fault geometry complexity arising in naturally evolving geodynamic models. We focus on subduction zone settings with and without a splay fault. Due to the novelty of the coupling, we first focus on methodological challenges, e.g. the synchronization of both methods regarding the nucleation of events, the localization of fault planes, and the incorporation of similar frictional constitutive relations. We then study the importance of physically consistent fault stress, strength, and

  20. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  1. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited.

    PubMed

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Redline, Raymond W; Moore, John J

    2016-06-01

    Rupture of the fetal membranes (FM) is precipitated by stretch forces acting upon biochemically mediated, pre-weakened tissue. Term FM develop a para-cervical weak zone, characterized by collagen remodeling and apoptosis, within which FM rupture is thought to initiate. Preterm FM also have a weak region but are stronger overall than term FM. Inflammation/infection and decidual bleeding/abruption are strongly associated with preterm premature FM rupture (pPROM), but the specific mechanisms causing FM weakening-rupture in pPROM are unknown. There are no animal models for study of FM weakening and rupture. Over a decade ago we developed equipment and methodology to test human FM strength and incorporated it into a FM explant system to create an in-vitro human FM weakening model system. Within this model TNF (modeling inflammation) and Thrombin (modeling bleeding) both weaken human FM with concomitant up regulation of MMP9 and cellular apoptosis, mimicking the characteristics of the spontaneous FM rupture site. The model has been enhanced so that test agents can be applied directionally to the choriodecidual side of the FM explant consistent with the in-vivo situation. With this enhanced system we have demonstrated that the pathways involving inflammation/TNF and bleeding/Thrombin induced FM weakening overlap. Furthermore GM-CSF production was demonstrated to be a critical common intermediate step in both the TNF and the Thrombin induced FM weakening pathways. This model system has also been used to test potential inhibitors of FM weakening and therefore pPROM. The dietary supplement α-lipoic acid and progestogens (P4, MPA and 17α-hydroxyprogesterone) have been shown to inhibit both TNF and Thrombin induced FM weakening. The progestogens act at multiple points by inhibiting both GM-CSF production and GM-CSF action. The use of a combined biomechanical/biochemical in-vitro human FM weakening model system has allowed the pathways of fetal membrane weakening to be

  2. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  3. Progressive visual loss following rupture of an intracranial dermoid cyst.

    PubMed

    Skovrlj, Branko; Mascitelli, Justin R; Steinberger, Jeremy M; Weiss, Nirit

    2014-01-01

    A 51-year-old man with several months of headache and progressive visual decline was found to have bilateral optic disc pallor with significant impairment of visual acuity. Despite a thorough ophthalmologic evaluation, the cause of visual loss could not be elucidated. MRI of the brain revealed a lesion in the left anterior Sylvian fissure as well as disseminated foci of subarachnoid fat consistent with a diagnosis of a ruptured dermoid cyst. The decision for open surgical resection was chosen to minimize the risk of cyst re-rupture and further visual or neurologic decline. The diagnosis of dermoid cyst was confirmed at the time of surgery. Vasospasm-induced ischemia of the optic nerves, optic chiasm or bilateral optic tracts secondary to the inflammatory reaction following cyst rupture is the most likely mechanism of visual loss in this patient. To the authors' knowledge, this report represents the first reported case of visual loss secondary to rupture of an intracranial dermoid cyst not related to mass effect of the tumor on the optic apparatus, visual pathways or visual cortex. PMID:23896550

  4. Preterm Delivery in the Setting of Left Calyceal Rupture

    PubMed Central

    Hanson, Brent; Tabbarah, Rami

    2015-01-01

    Spontaneous rupture of the renal collecting system is a rare but serious complication of pregnancy. We report a case of nontraumatic left renal calyceal rupture in a pregnancy which ultimately progressed to preterm delivery. A 29-year-old primigravida with a remote history of urolithiasis presented with left flank pain, suprapubic pain, and signs of preterm labor at 33 weeks of gestation. The patient was believed to have urolithiasis, although initial renal ultrasound failed to demonstrate definitive calculi. After a temporary improvement in flank pain with medication, the patient experienced acute worsening of her left flank pain. Urology was consulted and further imaging was obtained. Magnetic resonance imaging (MRI) was consistent with bilateral hydronephrosis and rupture of the left renal calyx. Given the patient's worsening pain in the setting of left calyceal rupture, the urology team planned for placement of a left ureteral stent. However, before the patient could receive her stent, she progressed to active labor and delivered a viable female infant vaginally. Following delivery, the patient's flank pain resolved rapidly and spontaneously, so no surgical intervention was performed. A summary of the literature and the details of this specific clinical situation are provided. PMID:26483981

  5. Mechanics of shear rupture applied to earthquake zones

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1986-01-01

    The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.

  6. Percutaneous and Endovascular Embolization of Ruptured Hepatic Artery Aneurysm

    SciTech Connect

    Little, Andrew F.; Lee, Wai Kit

    2002-06-15

    A 72-year-old woman presented with an intraperitoneal hemorrhage from a ruptured intrahepatic arteryaneurysm, with an associated pseudoaneurysm developing a high-flow arteriovenous fistula. Persistent coagulopathy and a median arcuate ligament stenosis of the celiac axis further complicated endovascular management. Aneurysm thrombosis required percutaneous embolization with coils, a removable core guidewire and polyvinyl alcohol particles.

  7. Transcatheter closure of ruptured sinus of valsalva to left ventricle

    PubMed Central

    Manuel, Devi A; Lahiri, Anandaroop; George, Oommen K

    2016-01-01

    We report a rare case of ruptured right sinus of valsalva into the left ventricle (LV). Transthoracic echocardiography showed a marked turbulent flow from the right aortic sinus to the LV. We describe a novel technique of closure of this defect with duct occluder, involving the formation of an arterio-arterial loop, without resorting to the usual arteriovenous loop. PMID:27011698

  8. Transcatheter closure of ruptured sinus of valsalva to left ventricle.

    PubMed

    Manuel, Devi A; Lahiri, Anandaroop; George, Oommen K

    2016-01-01

    We report a rare case of ruptured right sinus of valsalva into the left ventricle (LV). Transthoracic echocardiography showed a marked turbulent flow from the right aortic sinus to the LV. We describe a novel technique of closure of this defect with duct occluder, involving the formation of an arterio-arterial loop, without resorting to the usual arteriovenous loop. PMID:27011698

  9. Theory of time-dependent rupture in the Earth

    NASA Technical Reports Server (NTRS)

    Das, S.; Scholz, C. H.

    1980-01-01

    Fracture mechanics is used to develop a theory of earthquake mechanism which includes the phenomenon of subcritical crack growth. The following phenomena are predicted: slow earthquakes, multiple events, delayed multiple events (doublets), postseismic rupture growth and afterslip, foreshocks, and aftershocks. The theory predicts a nucleation stage prior to an earthquake, and suggests a physical mechanism by which one earthquake may 'trigger' another.

  10. Probing voltage induced bond rupture in a molecular junction

    NASA Astrophysics Data System (ADS)

    Li, Haixing; Su, Timothy; Kim, Nathaniel; Darancet, Pierre; Leighton, James; Steigerwald, Michael; Nuckolls, Colin; Venkataraman, Latha

    We use scanning tunneling microscope break junction to study electric field breakdown at the single molecule level. We investigate breakdown phenomena in atomic chains composed of Si--Si, Si--O, Si--C, Ge--Ge and C--C bonds that are commonly found in the low- κ dielectric material. We see different bond rupture behaviors in a range of molecular backbones, and use the results from a statistically large number of measurements to determine which bond breaks. We find that Si--Si and Ge--Ge bonds rupture above a 1V bias. We also find that the Si--C bond is more robust than Si--O or Si--Si bond at above 1V. Finally, we illustrate how an additional conductance pathway in parallel to the Si--Si bond changes bond rupture behavior under an electric field. We carry out ab initio calculations on these systems and demonstrate that the mechanism for bond rupture under electric field involves ``heating'' of the molecule through electron-vibrational mode coupling. Haixing Li is supported by Semiconductor Research Corporation and New York CAIST program. We thank the NSF for the support of these studies under Grant No. CHE-1404922.

  11. Isolated splenic peliosis with spontaneous rupture after a viperine bite.

    PubMed

    Lal, Anupam; Singhal, Manphool; Sharma, Navneet; Bhalla, Ashish; Khandelwal, Niranjan

    2014-02-01

    Isolated splenic peliosis is an extremely uncommon condition that can present with atraumatic rupture and potential fatal outcome. We here report 1 such case that developed after a viperine bite in a 21-year-old woman. The case highlights the diagnostic findings on computed tomographic (CT) scan and its potential complications. PMID:24286667

  12. Earthquake rupturing as a mineralizing agent in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1987-08-01

    Much fault-hosted epithermal mineralization is localized in dilational jogs between en echelon fault segments, as fissure veins or as hydrothermally cemented, high-dilation wall-rock breccias. Jog widths may range from millimetres to kilometres; vein textures record histories of incremental development. Perturbation or arrest of earthquake ruptures at dilational jogs has been observed and is believed to involve extensional fracturing at the rupture tip, locally reducing fluid pressure and inducing suctions opposing rapid slip transfer across the jog. This forced fissuring leads to brecciation by hydraulic implosion and to a concentrated fluid influx, allowing delayed slip transfer accompanied by aftershock activity. Within the southern San Andreas fault system, major dilational jogs extend throughout the seismogenic regime and form loci for magmatic-hydrothermal systems; they act as vertical pipelike conduits for enhanced fluid flow. Rupture termination at these structures has sometimes been followed by hydrothermal eruptions, suggesting that high-level boiling events are triggered by the arrest mechanism. It thus seems probable that episodic mineral deposition in the top 1 2 km of such jogs is induced by the dynamic effects of rupturing on the flanking strike-slip faults.

  13. A rare knee extensor mechanism injury: Vastus intermedius tendon rupture

    PubMed Central

    Cetinkaya, Engin; Aydin, Canan Gonen; Akman, Yunus Emre; Gul, Murat; Arikan, Yavuz; Aycan, Osman Emre; Kabukcuoglu, Yavuz Selim

    2015-01-01

    Introduction Quadriceps tendon injuries are rare. There is a limited number of studies in the literature, reporting partial quadriceps tendon ruptures. We did not find any study reporting an isolated vastus intermedius tendon injury in the literature. Presentation of case A 22 years old professional rugby player with the complaints of pain in the right lower limb, decreased range of motion in right knee and a mass in the mid-anterior of the right thigh applied following an overloading on his hyperflexed knee during a rugby match. T2 sequence magnetic resonance images revealed discontinuity in the vastus intermedius tendon and intramuscular hematoma. The patient has been conservatively treated. Discussion Quadriceps tendon ruptures generally occur after the 4th decade in the presence of degenerative changes. Our case is a young professional rugby player. Isolated vastus intermedius tendon rupture is unusual. Conservative treatment is performed as the intermedius tendon is in the deepest layer of the quadriceps muscle. Conclusion We report the first case of isolated rupture of the vastus intermedius tendon in the literature and we claim that disorder may be succesfully treated with conservative treatment and adequate physiotheraphy. PMID:26298093

  14. Ruptured Liver Abscess in Neonates: Report of Two Cases

    PubMed Central

    Khan, Niyaz Ahmed; Choudhury, SR; Jhanwar, Praveen

    2016-01-01

    Neonatal hepatic abscess is a rare disease seen mainly in preterm following umbilical catheterisation. Liver abscess in term neonates without any predisposing factor is still rarer and only few cases have been reported in the literature. Here we report two cases of liver abscess in term neonates presenting with abdominal mass due to rupture. PMID:27433449

  15. Spontaneous Rupture of Splenic Hemangioma in a Neonate

    PubMed Central

    Martinez-Leo, Bruno; Vidal-Medina, Jorge; Cervantes-Ledezma, Jesús; Díaz De León-Rivera, Arid; Díaz-Velasco, Edith

    2016-01-01

    Spleen vascular tumors such as hemangiomas, albeit rare, can present during neonatal period with unexplained circulatory shock. We present a case of a newborn with refractory hypovolemic shock and acute abdomen that underwent emergency splenectomy due to spontaneous rupture of a splenic hemangioma. PMID:27433454

  16. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  17. Characterization of earthquake rupture characteristics using hydroacoustic data

    NASA Astrophysics Data System (ADS)

    de Groot-Hedlin, C.

    2006-12-01

    Hydroacoustic signals (T-waves) generated by the 2004 Great Sumatra earthquake were recorded by a network of 5 small hydroacoustic arrays located in the Indian Ocean at distances of 2800 to 7000 km from the epicenter. The array configurations allow for accurate determination of the receiver to source azimuth given coherent arrivals. Analysis of a series of short time windows within the T-wave coda shows that the receiver to source azimuth varies smoothly as a function of time, suggesting a non-stationary T-wave source. The data indicate that the rupture proceeded in two distinct phases; initially it progressed northwest at approximately 2.4 km/s along the Sunda trench. At 600km from the epicenter the rupture slowed to approximately 1.5 km/s. However, T-waves generated by small earthquakes are also generated over a wide range of azimuths, reflecting seismic to acoustic over a broad expanse of the seafloor. Although the azimuthal variations for the great Sumatra event are shown to be inconsistent with a small-scale source, it is difficult in general to distinguish between azimuthal variations associated with the physics of T-wave excitation and those associated with an extended rupture zone. A method of determining rupture length based on the apparent motion of the T-wave source location is presented here and applied to several events, including the Great Sumatra earthquake of Dec 26, 2004 and the magnitude 8.6 event of March 28, 2005.

  18. Anthrax toxin-induced rupture of artificial lipid bilayer membranes.

    PubMed

    Nablo, Brian J; Panchal, Rekha G; Bavari, Sina; Nguyen, Tam L; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E; Robertson, Joseph W F; Balijepalli, Arvind; Halverson, Kelly M; Kasianowicz, John J

    2013-08-14

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm. PMID:23947891

  19. Can release of urinary retention trigger abdominal aortic aneurysm rupture?

    PubMed Central

    Luhmann, Andreas; Powell-Bowns, Matilda; Elseedawy, Emad

    2013-01-01

    Only 50% of abdominal aortic aneurysms present with the classic triad of hypotension, back pain and a pulsatile abdominal mass. This variability in symptoms can delay diagnosis and treatment. We present the case of a patient presenting with a unique combination of symptoms suggesting that decompression of urinary retention can lead to abdominal aortic aneurysm rupture. PMID:24964430

  20. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-08-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  1. [Sudden deaths due to non-traumatic aortic aneurysms rupture].

    PubMed

    Bury, Anna; Meissner, Ewa; Szram, Stefan; Berent, Jarosław

    2011-01-01

    In this work we review two cases of ruptured aortic aneurysms which arose from congenital abnormalities of the aortic wall structure. In the first case, a 16-year old, previously untreated boy died, with no previous symptoms of an aortic aneurysm. The boy was suspected of taking drugs and even of committing suicide. A young couple found the boy's body in the wood close to the bus stop. There were no signs of violence on the corpse and the body was fully and properly dressed. The autopsy revealed enlarged (true aneurysm) and ruptured ascending aorta with about 700 ml of blood in the pericardial sac. Toxicological examination was negative. Histopathology showed abnormalities in the structure of the wall of aorta in the place of the rupture. All other body organs and vessels seemed to be normal and properly developed except the thoracic aorta, and no other morphologic abnormalities were present. In the second case, the corpse of a 30-year-old man was found in his apartment (he lived with his parents). The parents claimed he did not use drugs or alcohol. The autopsy, as in the previous case, revealed a ruptured true aneurysm of the ascending aorta with 370 g of blood in the pericardial sac. The concaved thoracic cavity was also observed. After the autopsy, the man's parents reported that in childhood, their son was diagnosed to suffer from Marfan syndrome. PMID:22715682

  2. Spontaneous rupture of the spleen associated with Legionella pneumonia

    PubMed Central

    Casanova-Roman, Manuel; Casas, Javier; Sanchez-Porto, Antonio; Nacle, Belen

    2010-01-01

    Spontaneous rupture of the spleen associated with Legionella pneumonia is a rare and life-threatening complication; only three cases have been reported to date. The authors describe a case of a 47-year-old man who presented with pneumonia and abdominal pain. He underwent a splenectomy, and was successfully treated with clarithromycin and levofloxacin. PMID:21886641

  3. Ruptured saphenous vein graft pseudoaneurysm successfully treated with covered stents.

    PubMed

    Yonezu, Keisuke; Funayama, Hiroshi; Katayama, Takuji; Yamaguchi, Atsushi; Ako, Junya; Momomura, Shin-Ichi

    2016-04-01

    Saphenous vein graft (SVG) pseudoaneurysms are rare complications following coronary bypass graft surgery. A 46-year-old man presented with streptococcal infectious endocarditis and needed sequential operations for aortic root reconstruction. Shortly after the surgeries, a composite SVG on the right coronary artery developed a ruptured pseudoaneurysm, which was successfully treated using covered stents. PMID:25917780

  4. Traumatic ruptured globe eye injuries in a large urban center

    PubMed Central

    Burstein, Eitan S; Lazzaro, Douglas R

    2013-01-01

    Background The purpose of this study was to examine patient characteristics and outcomes in a group of consecutive patients with ruptured globe eye injuries at Kings County Hospital Center, a large, urban, level 1 trauma center. Methods A retrospective chart review was performed to identify all patients with ruptured globe eye injuries seen between January 2009 and October 2011. Thirty-eight patients who sustained ruptured globe eye injuries from all causes were investigated for etiology and final visual outcomes Results Eight eyes in which vision could be assessed were evaluated as having no light perception at presentation and three of these eyes required primary enucleation. Of the 38 eyes, orbit fractures were found in 15 eyes and an intraocular foreign body was found in six eyes. Discussion Our cohort revealed a 37.5% rate of primary enucleation in eyes with no light perception, which we believe to be a reflection of the severity of injury. All three cases were secondary to a gunshot wound. Further, our sample, although small in size, revealed a very high percentage of eyes that were ruptured secondary to violent causes compared with other studies. PMID:23493627

  5. [Proximal and distal ruptures of the biceps brachii tendon].

    PubMed

    Klonz, A; Loitz, D; Reilmann, H

    2003-09-01

    Proximal ruptures. Ruptures of the long head of the M. biceps humeri are commonly caused by degenerative changes within the tendon. Non-operative treatment gives good results, the loss of power regarding elbow flexion and supination amounts to only 8-21%. Refixation may be indicated for cosmetic reasons and offers a small but evident improvement of flexion and supination power. Deformity of the slipped muscle can be corrected effectively. Residual complaints after conservative treatment often result from associated subacromial problems. Distal ruptures. Ruptures of the distal tendon should be treated operatively. The loss of power after conservative treatment is evident (30-40% for flexion, >50% for supination). Extra-anatomical tenodesis to the brachialis muscle or anatomical fixation to the radial tuberosity can be applied. Flexion power and cosmesis can be addressed by both techniques. If supination strength is to be restored, the tendon has to be fixed anatomically. Preparation of the tuberosity bears the risk of heterotopic ossification or nerve damage. Mini-open techniques, using only a limited anterior approach, may decrease risks. PMID:14959750

  6. Analyzing Single-Event Gate Ruptures In Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.

    1993-01-01

    Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.

  7. New finding in the radiographic diagnosis of Achilles tendon rupture

    SciTech Connect

    Newmark, H.; Mellon, W.S. Jr.; Malhotra, A.K.; Olken, S.M.; Halls, J.

    1982-06-01

    The authors describe a new radiographic sign of rupture of the Achilles tendon system. It is a fracture, with separation through an osteophyte at the insertion of this tendon. Previously reported signs are also discussed as well as the present case report.

  8. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-03-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  9. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  10. A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake

    USGS Publications Warehouse

    Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.

    2007-01-01

    We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.

  11. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  12. Slip compensation at fault damage zones along earthquake surface ruptures

    NASA Astrophysics Data System (ADS)

    Choi, J.; Kim, Y.

    2013-12-01

    Surface ruptures associated with earthquake faulting commonly comprise a number of segments, and the discontinuities form tip and linking damage zones, which are deformed regions consisting of secondary features. Stress transferring or releasing, when seismic waves pass through the discontinuities, could produce different slip features depending on rupture propagation or termination. Thus, slip patterns at fault damage zones can be one of the key factors to understand fault kinematics, fault evolution and, hence, earthquake hazard. In some previous studies (e.g. Peacock and Sanderson, 1991; Kim and Sanderson, 2005), slip distribution along faults to understand the connectivity or maturity of segmented faults system have commonly been analyzed based on only the main slip components (dip-slip or strike-slip). Secondary slip components, however, are sometimes dominant at fault damage zones, such as linkage and tip zones. In this study, therefore, we examine slip changes between both main and secondary slip components along unilaterally propagated coseismic strike-slip ruptures. Horizontal and vertical components of slip and the slip compensation patterns at tip and linking damage zones are various from slip deficit (decrease in both slip components) through slip compensation (increase of vertical slip with horizontal slip decrease) to slip neutral. Front and back tip zones, which are classified depending on main propagation direction of earthquake ruptures, show different slip patterns; slip compensation is observed at the frontal tip whilst slip deficit occurs at the back tip zone. Average values of the two slip components and their compensative patterns at linking damage zones are closely related with the ratio of length to width (L/W) of linkage geometry; the horizontal slip is proportional to the ratio of L/W, whilst the vertical slip shows little dependence on the value L/W. When the L/W is greater than ~2, average values of two slip components are almost similar

  13. Kinematic Seismic Rupture Parameters from a Doppler Analysis

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-05-01

    The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining

  14. Silent rupture of unscarred uterus: an unusual presentation at second trimester abortion.

    PubMed

    Malhotra, Neena; Chanana, Charu

    2007-04-01

    Rupture of unscarred uterus during the second trimester is rare. A case of ruptured uterus in a multiparous woman is presented. To our knowledge, this might be the first reported case in the English literature of uterine rupture during second trimester termination of pregnancy using ethacridine lactate. This case is also rare as uterine rupture is presented with an insidious course rather than acute, thus delaying the diagnosis. PMID:16957913

  15. Improved Data Set for the Frequency of Gaps and Steps in Ground Ruptures

    NASA Astrophysics Data System (ADS)

    Biasi, G. P.; Wesnousky, S. G.; Morelan, A. E., III

    2014-12-01

    Observations of actual ground ruptures from moderate and large earthquakes show a wide range of behaviors, including fault-to-fault jumps, branching topologies, and rupture traces with multi-kilometer gaps between them. Seismic hazard assessments have responded to these observations by including increasingly sophisticated scenarios of possible ruptures in their earthquake rate forecasts. The largest of these to date has been the Uniform California Earthquake Forecast 3 (UCERF3), which explicitly included ruptures with fault-to-fault jumps in its rupture rate estimates. High-level site-specific seismic source characterizations such as for the Diablo Canyon Power Plant have also begun including complicated rupture geometries. Systematic collection of observations from ground rupturing earthquakes provide one way to evaluate these seismic source models. We have expanded an initial collection by Wesnousky (2008) with events post-dating that collection and events for which new information is available. New events increase the strike-slip and normal event set by 50% and reverse events by 35%. New data allow us to revise previous estimates for strike-slip rupture of the probability that a step of 1 km or more in width will arrest rupture. Observationally, 65% of strike-slip ruptures include at least one step of 1 km or greater. The number of steps through which ruptures are observed to rupture through can be modeled by a geometric distribution in which steps are crossed about 59% of the time. Steps are slightly more effective at arresting rupture in normal and reverse faulting cases, being crossed 56% and 50%, respectively. New events were also systematically examined for gaps in the mapped rupture trace. We find gaps of 1 km or more in about half of the ruptures of the new event set. These empirical data will compliment new research into rupture propagation across gaps, exemplified by the 2010 El Mayor Cucapah earthquake, which included a gap measured variously at 7 or

  16. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  17. Strain measurement during stress rupture of composite over-wrapped pressure vessel with fiber Bragg gratings sensors

    NASA Astrophysics Data System (ADS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-03-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPVs). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPV liner.

  18. Risk of cerebral arteriovenous malformation rupture during pregnancy and puerperium

    PubMed Central

    Wang, Shuo; Zhao, Yuan-li; Teo, Mario; Guo, Peng; Zhang, Dong; Wang, Rong; Cao, Yong; Ye, Xun; Kang, Shuai

    2014-01-01

    Objective: To determine whether the risk of arteriovenous malformation (AVM) rupture is increased during pregnancy and puerperium. Methods: Participants included 979 female patients with intracranial AVM admitted to Beijing Tiantan Hospital between 1960 and 2010. Two neurosurgery residents reviewed medical records for each case. Of them, 393 patients with ruptured AVM between 18 and 40 years of age were used for case-crossover analysis. Number of children born and clinical information during pregnancy and puerperium were retrieved to identify whether AVM rupture occurred during this period. Results: Of the 979 women, 797 hemorrhages occurred during 25,578 patient-years of follow-up, yielding an annual hemorrhage rate of 3.11%. The annual AVM hemorrhage rate in patients aged 18 to 40 years (n = 579) was 2.78%, lower than the rate in other age groups (odds ratio = 0.75, 95% confidence interval 0.65–0.86, p < 0.05). Of the 393 patients with rupture of AVM aged 18 to 40 years, 12 hemorrhages occurred in 12 patients over 452 pregnancies, yielding a hemorrhage rate of 2.65% per pregnancy or 3.32% per year. Among the remaining 381 patients, 441 hemorrhages occurred during 10,627 patient-years of follow-up, yielding an annual hemorrhage rate of 4.14%. The odds ratio for rupture of AVM during pregnancy and puerperium, compared with the control period, was 0.71 (95% confidence interval 0.61–0.82). Conclusions: No increased risk of hemorrhage was found in patients with cerebral AVM during pregnancy and the puerperium. We therefore would not advise against pregnancy in women with intracranial AVM. PMID:24759847

  19. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.

    PubMed

    Costescu, Bogdan I; Gräter, Frauke

    2014-06-28

    Previous Atomic Force Microscopy (AFM) experiments found single layers of defect-free graphene to rupture at unexpectedly high loads in the micronewton range. Using molecular dynamics simulations, we modeled an AFM spherical tip pressing on a circular graphene sheet and studied the stress distribution during the indentation process until rupture. We found the graphene rupture force to have no dependency on the sheet size and a very weak dependency on the indenter velocity, allowing a direct comparison to experiment. The deformation showed a non-linear elastic behavior, with a two-dimensional elastic modulus in good agreement with previous experimental and computational studies. In line with theoretical predictions for linearly elastic sheets, rupture forces of non-linearly elastic graphene are proportional to the tip radius. However, as a deviation from the theory, the atomic stress concentrates under the indenter tip more strongly than predicted and causes a high probability of bond breaking only in this area. In turn, stress levels decrease rapidly towards the edge of the sheet, most of which thus only serves the role of mechanical support for the region under the indenter. As a consequence, the high ratio between graphene sheets and sphere radii, hitherto supposed to be necessary for reliable deformation and rupture studies, could be reduced to a factor of only 5-10 without affecting the outcome. Our study suggests time-resolved analysis of forces at the atomic level as a valuable tool to predict and interpret the nano-scale response of stressed materials beyond graphene. PMID:24834440

  20. 3-D dynamic rupture simulations by a finite volume method

    NASA Astrophysics Data System (ADS)

    Benjemaa, M.; Glinsky-Olivier, N.; Cruz-Atienza, V. M.; Virieux, J.

    2009-07-01

    Dynamic rupture of a 3-D spontaneous crack of arbitrary shape is investigated using a finite volume (FV) approach. The full domain is decomposed in tetrahedra whereas the surface, on which the rupture takes place, is discretized with triangles that are faces of tetrahedra. First of all, the elastodynamic equations are described into a pseudo-conservative form for an easy application of the FV discretization. Explicit boundary conditions are given using criteria based on the conservation of discrete energy through the crack surface. Using a stress-threshold criterion, these conditions specify fluxes through those triangles that have suffered rupture. On these broken surfaces, stress follows a linear slip-weakening law, although other friction laws can be implemented. For The Problem Version 3 of the dynamic-rupture code verification exercise conducted by the SCEC/USGS, numerical solutions on a planar fault exhibit a very high convergence rate and are in good agreement with the reference one provided by a finite difference (FD) technique. For a non-planar fault of parabolic shape, numerical solutions agree satisfactorily well with those obtained with a semi-analytical boundary integral method in terms of shear stress amplitudes, stopping phases arrival times and stress overshoots. Differences between solutions are attributed to the low-order interpolation of the FV approach, whose results are particularly sensitive to the mesh regularity (structured/unstructured). We expect this method, which is well adapted for multiprocessor parallel computing, to be competitive with others for solving large scale dynamic ruptures scenarios of seismic sources in the near future.