Science.gov

Sample records for in-reactor rupture testing

  1. In-reactor creep rupture properties of 20% CW modified 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Mizuta, S.; Kaito, T.; Okada, H.

    2000-02-01

    The in-reactor creep rupture tests of 20% cold worked modified 316 stainless steel were conducted in the temperature range from 878 to 1023 K using MOTA of FFTF, and were compared with the out-of-reactor tests. In-reactor creep rupture, lives become shorter than those of the out-of-reactor tests. In-reactor creep strain rate was significantly accelerated, and sufficient ductility appears to be maintained even under the irradiation. Considering 0.2% proof strength after neutron irradiation, sodium exposure or aging, the degraded rupture lives of in-reactor creep are ascribed to the enhanced dislocation recovery due to the neutron irradiation as well as to the solute elements dissolution into sodium under the sodium exposure environment.

  2. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  3. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  4. Composite Overwrapped Pressure Vessel(COPV) Stress Rupture Testing

    NASA Astrophysics Data System (ADS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark, R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-09-01

    This paper reports stress rupture testing of Kevlar® composite overwrapped pressure vessels(COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm(40-in.) diameter Kevlar® COPV was tested to failure(burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  5. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  6. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  7. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect

    Combs, Stephen Kirk; Meitner, Steven J; Baylor, Larry R; Caughman, John B; Commaux, Nicolas JC; Fehling, Dan T; Foust, Charles R; Jernigan, Thomas C; McGill, James M; Parks, P. B.; Rasmussen, David A

    2009-01-01

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  8. Creep-rupture tests of internally pressurized Inconel 702 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  9. Creep-rupture tests of internally pressurized Rene 41 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Weiss, B.

    1972-01-01

    Weld-drawn tubes of Rene 41 with 0.935 centimeter outside diameter and 0.064 centimeter wall thickness were tested to failure at temperatures from 1117 to 1233 K and internal helium pressures from 5.5 to 12.4 meganewtons per square meter. Lifetimes ranged from 5 to 2065 hours. The creep-rupture strength of the tubes was 50 percent lower than that of unwelded, thick sheet specimens, and 20 percent lower than that of unwelded, thin sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  10. Strain Measurement Using FBG on COPV in Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Banks, Curtis; Grant, Joseph

    2007-01-01

    White Sands Test Facility (WSTF) was requested to perform ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-in. Kevlar Composite Overwrapped Pressure Vessel (COPV). The 40-in. vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The NASA Engineering Safety Center (NESC) assembled a team of experts and conducted an assessment that involved a review of national Kevlar COPY data. During the review, the STS COPVs were found to be beyond their original certification of ten years. The team observed that the likelihood of STS COPV Stress rupture, a catastrophic burst before leak failure mode, was greater than previously believed. Consequently, a detailed assessment of remaining stress rupture life became necessary. Prior to STS-114, a certification deviation was written for two flights of OV-103 (Discovery) and OV-104 (Atlantis) per rationale that was based on an extensive review of the Lawrence Livermore National Laboratories, COPV data, and revisions to the STS COPV stress levels. In order to obtain flight rationale to extend the certification deviation through the end of the Program, the Orbiter Project Office has directed an interagency COPV team to conduct further testing and analysis to investigate conservatism in the stress rupture model and evaluate material age degradation. Additional analysis of stress rupture life requires understanding the fiber stresses including stress that occurs due to thru-wall composite compression in COPV components. Data must be obtained at both zero gauge pressure (pre-stress) and at the component operating pressure so that this phenomenon can be properly evaluated. The zero gauge pressure stresses are predominantly a result of the autofrettage process used during vessel manufacture. Determining these pre-stresses and the constitutive behavior of the overwrap at pressure will provide necessary information

  11. Testing of Carbon Fiber Composite Overwrapped Pressure Vessel Stress-Rupture Lifetime

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Phoenix, S. Leigh; Beeson, Harold; Yoder, Tommy; Greene, Nathaniel

    2006-01-01

    This paper contains summaries of testing procedures and analysis of stress rupture life testing for two stress rupture test programs, one for Kevlar COPVs performed at Lawrence Livermore National Laboratory, and the other a joint study between NASA JSC White Sands Test Facility and the Jet Propulsion Laboratory. These will be discussed in detail including test setup and issues encountered during testing. Lessons learned from testing in these two programs will be discussed.

  12. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  13. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  14. Multiloop integral system test (MIST): Test Group 34, Steam generator tube rupture

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility--the Once Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 6 pertains to Test Group 34, Steam Generator Tube Rupture. The specifications, conduct, observations, and results of these tests are described. 6 refs., 189 figs., 16 tabs.

  15. Creep-rupture tests of internally pressurized Hastelloy-X tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Colantino, G. J.

    1973-01-01

    Seamless Hastelloy-X tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1400 to 1650 F and internal helium pressures from 800 to 1800 psi. Lifetimes ranged from 58 to 3600 hr. The creep-rupture strength of the tubes was from 20 to 40 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  16. An experimental method to dynamically test pressure sensors using a rupture disk

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph W.

    2002-02-01

    The response time of a pressure sensor is required when it is used in control systems and in some measurement applications. It is often difficult to measure the response time of a pressure sensor since it is difficult to obtain changes in fluid pressure sufficient to characterize the sensor dynamic response. In this article we describe a relatively simple system for measuring or validating the response time of pressure sensors with fast dynamic response. The system consists of two chambers isolated by a graphite rupture disk, a device that fully and rapidly opens at a known rupture or break pressure. A pressure transient in the second chamber is initiated by slowly increasing the pressure in the first chamber until reaching the nominal break pressure of the rupture disk. Performance of the system was validated by comparing the rise time predicted by a theoretical model with the rise time of the pressure transient measured by a piezoelectric pressure transducer. The method was evaluated by comparing the response to the pressure transient of an optical based pressure transducer with the response of the reference piezoelectric pressure transducer. The time constant of the tested fiber optic pressure sensor was found using the method presented in this article to be 0.488 ms, which is close to the time constant of 0.455 ms measured by a comparison method.

  17. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    SciTech Connect

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  18. Robustness Tests in Determining the Earthquake Rupture Process: The June 23, 2001 Mw 8.4 Peru Earthquake

    NASA Astrophysics Data System (ADS)

    Das, S.; Robinson, D. P.

    2006-12-01

    The non-uniqueness of the problem of determining the rupture process details from analysis of body-wave seismograms was first discussed by Kostrov in 1974. We discuss how to use robustness tests together with inversion of synthetic data to identify the reliable properties of the rupture process obtained from inversion of broadband body wave data. We apply it to the great 2001 Peru earthquake. Twice in the last 200 years, a great earthquake in this region has been followed by a great earthquake in the immediately adjacent plate boundary to the south within about 10 years, indicating the potential for a major earthquake in this area in the near future. By inverting 19 pure SH-seismograms evenly distributed in azimuth around the fault, we find that the rupture was held up by a barrier and then overcame it, thereby producing the world's third largest earthquake since 1965, and we show that the stalling of the rupture in this earthquake is a robust feature. The rupture propagated for ~70 km, then skirted around a ~6000 km2 area of the fault and continued propagating for another ~200 km, returning to rupture this barrier after a ~30 second delay. The barrier has relatively low rupture speed, slip and aftershock density compared to its surroundings, and the time of the main energy release in the earthquake coincides with its rupture. We identify this barrier as a fracture zone on the subducting oceanic plate. Robinson, D. P., S. Das, A. B. Watts (2006), Earthquake rupture stalled by subducting fracture zone, Science, 312(5777), 1203-1205.

  19. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  20. A comparative TEM study of in-reactor and post-irradiation tensile tested copper

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Tähtinen, S.; Singh, B. N.

    2013-11-01

    The deformation microstructures of oxygen-free high-conductivity (OFHC) copper were examined by transmission electron microscopy (TEM) following in-reactor and post-irradiation slow strain rate tensile tests. The TEM results suggest that the main modes of deformation differ between all examined cases. Plastic deformation appeared predominantly localized in the defect-free cleared channels following post-irradiation testing and hardly any dislocations were seen outside the channels. The microstructures following in-reactor tests were characterized by a small amount of cleared channels and a distinct dislocation density within the matrix. However, the dislocations observed following in-reactor testing did not seem to interact with each other, whereas that was the main mode of deformation in the non-irradiated reference sample. The possible mechanisms of plastic deformation are discussed based on the experimental results. Dislocation-dislocation interactions played the major role if irradiation or irradiation damage is not present. As a result of the interactions, the microstructure of non-irradiated reference copper was characterized by a well-defined cellularized dislocation microstructure. Dynamic dislocation-displacement cascade interactions dominated the deformation process at the in-reactor tensile tests. As a result, the formation of defect-free cleared channels was delayed, dislocations were found from the matrix between the channels, and a clear strain hardening was observed after the yield point. No clear difference between accumulated irradiation damage at in-reactor and post-irradiation samples was found, which may be due to localized nature of SFT evolution in displacement cascades at copper. In the post-irradiation experiments, dislocations were confined to slip planes and annihilate irradiation defects, while moving on the planes and creating defect-free cleared channels. The plastic deformation is localized into these channels, causing a decrease in

  1. Testing Friction Laws by Comparing Simulation Results With Experiments of Spontaneous Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Lu, X.; Lapusta, N.; Rosakis, A. J.

    2005-12-01

    Friction laws are typically introduced either based on theoretic ideas or by fitting laboratory experiments that reproduce only a small subset of possible behaviors. Hence it is important to validate the resulting laws by modeling experiments that produce spontaneous frictional behavior. Here we simulate experiments of spontaneous rupture transition from sub-Rayleigh to supershear done by Xia et al. (Science, 2004). In the experiments, two thin Homalite plates are pressed together along an inclined interface. Compressive load P is applied to the edges of the plates and the rupture is triggered by an explosion of a small wire. Xia et al. (2004) link the transition in their experiments to the Burridge-Andrews mechanism (Andrews, JGR, 1976) which involves initiation of a daughter crack in front of the main rupture. Xia et al. have measured transition lengths for different values of the load P and compared their results with numerical simulations of Andrews who used linear slip-weakening friction. They conclude that to obtain a good fit they need to assume that the critical slip of the slip-weakening law scales as P-1/2, as proposed by Ohnaka (JGR, 2003). Hence our first goal is to verify whether the dependence of the critical slip on the compressive load P is indeed necessary for a good fit to experimental measurements. To test that, we conducted simulations of the experiments by using boundary integral methodology in its spectral formulation (Perrin et al., 1995; Geubelle and Rice, 1995). We approximately model the wire explosion by temporary normal stress decrease in the region of the interface comparable to the size of the exploding wire. The simulations show good agreement of the transition length with the experimental results for different values of the load P, even though we keep the critical slip constant. Hence the dependence of the critical slip on P is not necessary to fit the experimental measurements. The inconsistency between Andrews' numerical results

  2. Real-time Imaging of Earthquake Rupture Process: Offline Tests for the 2011 Mw9.0 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, R.; Zschau, J.; Chen, Y. T.; Parolai, S.; Dahm, T.

    2014-12-01

    Lack of the knowledge on rupture process in earthquake early warning (EEW) caused serious underestimations on tsunami disaster of the 2011 Tohoku earthquake. Based on the newly developed iterative deconvolution and stacking (IDS) method for automatic source imaging, we demonstrate an offline test for real-time analysis on the rupture process of the 2011 Tohoku earthquake by using the high-rate GPS measurements. It is shown that, we had been theoretically able to image the complex ongoing rupture process, even with some instabilities of fault slips which depend on the detected moment growth rate (see image uploaded). We also investigate the influences of station density and maximum epicentral distance of the network on real-time source imaging. It is found that, for the case of the 2011 Tohoku earthquake, station spacing within 100 km do not significantly disturb the real-time imaging; and small maximum epicentral distances make real-time estimated magnitudes converge earlier.

  3. Ruptured eardrum

    MedlinePlus

    Tympanic membrane perforation; Eardrum - ruptured or perforated; Perforated eardrum ... Buttaravoli P, Leffler SM. Perforated tympanic membrane (ruptured eardrum). ... PA: Mosby Elsevier; 2012:chap 37. Kerschner JE. Otitis ...

  4. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  5. Microballoon Occlusion Test to Predict Colonic Ischemia After Transcatheter Embolization of a Ruptured Aneurysm of the Middle Colic Artery

    SciTech Connect

    Tajima, Tsuyoshi Yoshimitsu, Kengo; Inokuchi, Hiroyuki; Irie, Hiroyuki; Nishie, Akihiro; Hirakawa, Masakazu; Ishigami, Kousei; Ushijima, Yasuhiro; Okamoto, Daisuke; Honda, Hiroshi; Itoh, Hiroyuki; Morita, Masaru; Kakeji, Yoshihiro

    2008-07-15

    A 76-year-old woman presented with sudden massive melena, and superior mesenteric arteriography showed an aneurysm in the middle colic artery (MCA). Because she had a history of right hemicolectomy and ligation of the inferior mesenteric artery (IMA) during open abdominal aortic aneurysm repair, embolization of the MCA aneurysm was considered to pose a risk comparable to that of colonic ischemia. A microballoon occlusion test during occlusion of the MCA confirmed retrograde visualization of the IMA branches through the collateral arteries by way of the left internal iliac artery, and embolization was successfully performed using microcoils. No colonic ischemia or aneurysm rupture occurred after embolization.

  6. The Microstructure Degradation of the IN 713C Nickel-Based Superalloy After the Stress Rupture Tests

    NASA Astrophysics Data System (ADS)

    Matysiak, Hubert; Zagorska, Malgorzata; Balkowiec, Alicja; Adamczyk-Cieslak, Boguslawa; Cygan, Rafal; Cwajna, Jan; Nawrocki, Jacek; Kurzydłowski, Krzysztof J.

    2014-09-01

    The aim of the work was to examine the degradation phenomena taking place in the microstructure of the as-cast IN 713C superalloy after stress rupture tests, performed at T = 980 °C under a tensile stress of 150 MPa. A directional growth of γ' phase (rafting) and decomposition of the NbC primary carbides accompanied by the precipitation of M23C6 secondary carbides rich in chromium and of γ' phase were observed. It was also indicated that the decomposition of the NbC primary carbides may be accompanied by the precipitation of M3B2 borides rich in Mo.

  7. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV Using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessels (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Flight certification is dependent on the reliability analysis to quantify the risk of stress rupture failure in existing flight vessels. Full certification of this reliability model would require a statistically significant number of lifetime tests to be performed and is impractical given the cost and limited flight hardware for certification testing purposes. One approach to confirm the reliability model is to perform a stress rupture test on a flight COPV. Currently, testing of such a Kevlar49 (Dupont)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the database and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio model is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one "nine," that is, reducing the predicted probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several vessels would be necessary.

  8. Rupture disc

    DOEpatents

    Newton, Robert G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.

  9. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  10. Stress Rupture Testing and Analysis of the NASA WSTF-JPL Carbon Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Yoder, Tommy; Saulsberry, Regor; Grimes, Lorie; Thesken, John; Phoenix, Leigh

    2007-01-01

    Carbon composite overwrapped pressure vessels (COPVs) are widely used in applications from spacecraft to life support. COPV technology provides a pressurized media storage advantage over amorphous technology with weight savings on the order of 30 percent. The National Aeronautics and Space Administration (NASA) has been supporting the development of this technology since the early 1970's with an interest in safe application of these components to reduce mass to orbit. NASA White Sands Test Facility (WSTF) has been testing components in support of this objective since the 1980s and has been involved in test development and analysis to address affects of impact, propellant and cryogenic fluids exposure on Kevlar and carbon epoxy. The focus of this paper is to present results of a recent joint WSTF-Jet Propulsion Laboratories (JPL) effort to assess safe life of these components. The WSTF-JPL test articles consisted of an aluminum liner and a carbon fiber overwrap in an industry standard epoxy resin system. The vessels were specifically designed with one plus-minus helical wrap and one hoop wrap over the helical and they measured 4.23 x 11.4 in. long. 120 test articles were manufactured in August of 1998 of one lot fiber and resin and the 110 test articles were delivered to WSTF for test. Ten of the 120 test articles were burst tested at the manufacturer to establish the delivered fiber stress. Figure 1 shows a test article in a pre burst condition and with a hoop fiber failure (no leak of pressurized media) and post burst (failure of liner and loss of pressurized media).

  11. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    SciTech Connect

    Garbett, K; Mendler, O J; Gardner, G C; Garnsey, R; Young, M Y

    1987-03-01

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faults and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.

  12. Dynamic parameters test of Haiyang Nuclear Power Engineering in reactor areas, China

    NASA Astrophysics Data System (ADS)

    Zhou, N.; Zhao, S.; Sun, L.

    2012-12-01

    Haiyang Nuclear Power Project is located in Haiyang city, China. It consists of 6×1000MW AP1000 Nuclear Power generator sets. The dynamic parameters of the rockmass are essential for the design of the nuclear power plant. No.1 and No.2 reactor area are taken as research target in this paper. Sonic logging, single hole and cross-hole wave velocity are carried out respectively on the site. There are four types of rock lithology within the measured depth. They are siltstone, fine sandstone, shale and allgovite. The total depth of sonic logging is 409.8m and 2049 test points. The sound wave velocity of the rocks are respectively 5521 m/s, 5576m/s, 5318 m/s and 5576 m/s. Accroding to the statistic data, among medium weathered fine sandstone, fairly broken is majority, broken and relatively integrity are second, part of integrity. Medium weathered siltstone, relatively integrity is mojority, fairly broken is second. Medium weathered shale, fairly broken is majority, broken and relatively integrity for the next and part of integrity. Slight weathered fine sandstone, siltstone, shale and allgovite, integrity is the mojority, relatively integrity for the next, part of fairly broken.The single hole wave velocity tests are set in two boreholesin No.1 reactor area and No.2 reactor area respectively. The test depths of two holes are 2-24m, and the others are 2-40m. The wave velocity data are calculated at different depth in each holes and dynamic parameters. According to the test statistic data, the wave velocity and the dynamic parameter values of rockmass are distinctly influenced by the weathering degree. The test results are list in table 1. 3 groups of cross hole wave velocity tests are set for No.1 and 2 reactor area, No.1 reactor area: B16, B16-1, B20(Direction:175°, depth: 100m); B10, B10-1, B11(269°, 40m); B21, B21-1, B17(154°, 40m); with HB16, HB10, HB21 as trigger holes; No.2 reactor area: B47, B47-1, HB51(176°, 100m); B40, B40-1, B41(272°, 40m); B42, B42-1, B

  13. Creep-rupture and fractographic analysis of Stirling engine superalloys tested in air and 15 MPa hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Titran, R. H.

    1986-01-01

    A brief comparative analytical and microstructural evaluation of creep-rupture performance of two iron-base superalloys in air and 15 MPa of hydrogen, is presented. Creep rupture data are presented for the sheet alloy 19-9DL and the cast alloy XF-818, including temperature, initial stress, rupture life, minimum creep rate, time to reach one percent creep strain, and total elongation. In 19-9DL, both rupture life and minimum creep rate are more sharply dependent on small stress changes than in XF-818 in the given environment, and 19-9DL appears to become a more creep-resistant material with increasing Q (apparent activation energy) while the opposite is noted for XF-818. There appears to be no environmental effect on minimum creep rate for 19-9DL, whereas Q becomes less negative for XF-818 for 15 MPa of H2. Multiple cracks leading to rupture are observed on the fracture surfaces, with sheet specimens showing many more cracks close to the fracture surface than cast specimens.

  14. Quality-assurance tests of five Y-12 Kevlar-49 spools used to fabricate strands and reliability specimens for stress-rupture tests

    SciTech Connect

    Caley, L.E.; Ambalal, P.K.; Carley, J.F.; Ford, T.S.; Moore, R.L.; Noecker, D.J.; Ross, M.E.; Sherry, R.J.; Yoshiyama, J.M.

    1984-05-07

    An important component of the composite reliability program is the assurance of quality of Kevlar 49, 380-denier yarn and epoxy-impregnated yarn. This yarn, which is used in the fabrication of W-82 components from Kevlar 49/epoxy composites, is also formed into test specimens for long-term, stress-rupture studies and reliability studies. The QA work covered in this report encompasses preparation of impregnated-yarn specimens, examination of the yarn itself and individual fibers therefrom, tensile testing of bare and impregnated yarns and heat-degraded yarns. The yarn samples were all drawn from spools of 380-denier Kevlar 49 shipped to LLNL from Y-12. The resin matrix is an amine-hardened epoxy with low viscosity and long pot life, intended for filament winding. The components are Dow epoxy resin (DER) 332 and Jeffamine T-403 triamine hardener. The stoichiometric combining ratio, which we used in our work, is 100 parts by weight resin to 44 parts hardener. Quality-assurance testing not only verifies that the yarns actually meet the manufacturer's specifications, but also provides data on the relationships between fiber characteristics and the lifetime reliability of fabricated items.

  15. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  16. Discrimination of DPRK M5.1 February 12th, 2013 Earthquake as Nuclear Test Using Analysis of Magnitude, Rupture Duration and Ratio of Seismic Energy and Moment

    NASA Astrophysics Data System (ADS)

    Salomo Sianipar, Dimas; Subakti, Hendri; Pribadi, Sugeng

    2015-04-01

    On February 12th, 2013 morning at 02:57 UTC, there had been an earthquake with its epicenter in the region of North Korea precisely around Sungjibaegam Mountains. Monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) and some other seismic network detected this shallow seismic event. Analyzing seismograms recorded after this event can discriminate between a natural earthquake or an explosion. Zhao et. al. (2014) have been successfully discriminate this seismic event of North Korea nuclear test 2013 from ordinary earthquakes based on network P/S spectral ratios using broadband regional seismic data recorded in China, South Korea and Japan. The P/S-type spectral ratios were powerful discriminants to separate explosions from earthquake (Zhao et. al., 2014). Pribadi et. al. (2014) have characterized 27 earthquake-generated tsunamis (tsunamigenic earthquake or tsunami earthquake) from 1991 to 2012 in Indonesia using W-phase inversion analysis, the ratio between the seismic energy (E) and the seismic moment (Mo), the moment magnitude (Mw), the rupture duration (To) and the distance of the hypocenter to the trench. Some of this method was also used by us to characterize the nuclear test earthquake. We discriminate this DPRK M5.1 February 12th, 2013 earthquake from a natural earthquake using analysis magnitude mb, ms and mw, ratio of seismic energy and moment and rupture duration. We used the waveform data of the seismicity on the scope region in radius 5 degrees from the DPRK M5.1 February 12th, 2013 epicenter 41.29, 129.07 (Zhang and Wen, 2013) from 2006 to 2014 with magnitude M ≥ 4.0. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminate from a natural or tectonic earthquake. Keywords: North Korean nuclear test, magnitude mb, ms, mw, ratio between seismic energy and moment, ruptures duration

  17. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.

    2012-12-01

    Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.

  18. A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler

    SciTech Connect

    Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

    2011-02-27

    Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and η phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

  19. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  20. Premature rupture of membranes

    MedlinePlus

    ... When the water breaks early, it is called premature rupture of membranes (PROM). Most women will go ... th week of pregnancy, it is called preterm premature rupture of membranes (PPROM). The earlier your water ...

  1. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  2. Ruptured tubal molar pregnancy.

    PubMed

    Yakasai, I A; Adamu, N; Galadanchi, H S

    2012-01-01

    Molar pregnancies in most instances develop within the uterine cavity, but may occur at any site. Ectopic molar pregnancy is a rare event. The objective of this study was to present a case of ruptured tubal molar gestation, discuss its clinical features and ways to improve diagnostic accuracy. A 35-year-old woman presented with features suggestive of ruptured tubal ectopic pregnancy. There was neither any evidence at the time of presentation to suspect a molar gestation, nor β human chorionic gonadotrophin (βhCG) hormone estimation was done, but only a clearview pregnancy test was carried out. She had total left salpingectomy and histological evaluation of the specimen revealed complete hydatidiform mole. The hCG level normalized within 3 weeks of follow-up. Clinical features of ectopic molar pregnancy may be indistinguishable from non-molar ectopic pregnancy. We recommend βhCG estimation as well as histological examination of the surgical specimen for all patients coming with features suggestive of ectopic pregnancy. PMID:23238205

  3. Radiation thermal processes in Cr13Mo2NbVB steel - the material of the fuel assembly shell in reactor BN-350 under mechanical tests

    NASA Astrophysics Data System (ADS)

    Larionov, A. S.; Dikov, A. S.; Poltavtseva, V. P.; Kislitsin, S. B.; Kuimova, M. V.; Chernyavskii, A. V.

    2015-04-01

    Regularities of changes of structural-phase state and mechanical properties of steel 13Mo2NbVB - the material of the fuel assembly shell in reactor BN-350 after various mechanical tests at 350°C are experimentally studied. The formation of microprecipitations FeMo, enriched or depleted with molybdenum was found in the short-time mechanical tests, which is the cause of thermal hardening of irradiated Cr13Mo2NbVB steel and its destruction by the ductile-brittle mechanism. On the basis of long-time creep tests it was shown that the material of the spent fuel assembly shell has sufficient resource for long-time storage in the temperature and force conditions simulating long-time storage of spent nuclear fuel.

  4. A unique case of ruptured ectopic pregnancy in a patient with negative preg-nancy test - a case report and brief review of the literature

    PubMed Central

    Daniilidis, A; Pantelis, A; Makris, V; Balaouras, D; Vrachnis, N

    2014-01-01

    Introduction: Despite the major advances made in the diagnosis and management of ectopic pregnancies in the last two decades, an accurate diagnosis can sometimes still be quite challenging, since it relies on the combination of ultrasound findings and serial serum beta-human chorionic gonadotrophin (β-hCG) measurements. Case presentation: This paper describes the case of a 36-year-old woman of Caucasian origin who was admitted to the emergency department of our clinic with clinical symptoms of hemorrhagic shock in combination with two negative pregnancy tests done by her at home and a negative urine test which was performed on her admission to the hospital. Quantitative measurement of β-hCG in the serum of the patient was 13 mIU/mL. On admission, right tubal pregnancy was diagnosed on ultrasound and she underwent an emergency laparotomy due to signs of hemodynamic shock. Conclusion: It is sometimes a considerable challenge to identify a patient with an ectopic pregnancy at risk of rupture. This case of ectopic pregnancy which was followed by a negative pregnancy test illustrates the magnitude of the difficulties involved in the diagnosis of ectopic pregnancy. It also demonstrates the need to maintain a high clinical index of suspicion and to undertake careful clinical examination of the patient on the basis of the clinician's diagnostic research. Hippokratia 2014; 18 (3): 282-284. PMID:25694767

  5. [Comparison of immunochromatographic tests Actim(®) Prom and Amnioquick(®) Duo for the rapid detection of premature rupture of membranes].

    PubMed

    Deckmyn, Benjamin; Chieux, Vincent; Ammeux, Franck; Houze De L'Aulnoit, Denis; Forzy, Gérard

    2015-01-01

    Premature rupture of membranes (PRM) affects 5 to 15% of pregnancies, leading to prematurity and neonatal infection. PRM can be identified by through various amniotic fluid proteins in vaginal secretions. The aim of this study is to compare two immunochromatographic tests based on the detection of insulin-like growth factor binding protein (IGFBP-1) and alpha-foeto protein (AFP) for one of the two tests in cervico-vaginal secretions. Two tests, Actim(®) Prom and Amnioquick(®) Duo were performed on 80 pregnant women with suspected PRM. Amnioquick(®) Duo allows the simultaneous detection of IGFBP-1 and AFP with an automated incubation and reading. The number of positive results is similar (Khi-deux = 0.173, p = 0.6773) for IGFBP-1 between the two tests and there is a good agreement (K = 0.621), with a proportion of negative results of 86%. The number of positive results for AFP is more important in comparison to IGFBP-1. Results positive/positive (Actim(®) Prom/Amnioquick(®)) for IGFBP-1 seems to be related to the time when tests have been performed, that is to say in the last weeks of pregnancy. In conclusion, both tests have similar performance, but there is a risk of false positive results with AFP, this can be explained by the presence of non-visible blood in samples. An automated incubation and reading allows a good reproducibility. Moreover, the computer data storage improve the post-analytical quality. PMID:26411907

  6. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary.

  7. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    PubMed

    Polzer, Stanislav; Gasser, T Christian

    2015-12-01

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. PMID:26631334

  8. High-Temperature Oxidation of Cr-Mo Steels and Its Relevance to Accelerated Rupture Testing and Life Assessment of In-Service Components

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Al-Mazrouee, A.

    2007-08-01

    Use of accelerated creep rupture testing to assess the remaining life of components operating at elevated temperatures, such as pipes and tubes, is a common practice. At high temperatures, oxide growth can affect the creep results by diameter reduction and thus can increase the stress. However, the nature of oxide layer and hence oxidation behavior can be affected by minor changes in alloying composition of steels. This article presents the study of oxide-scale growth and specimen diameter reduction kinetics during oxidation of two Cr-Mo steels used in the manufacture of boiler tubing. Oxidation tests were carried out on 1.25Cr-0.5Mo and 2.25Cr-1Mo steels at 600 °C and 700 °C for times up to 1000 hours, using cylindrical specimens (similar to those used for creep testing). At 600 °C, the oxidation resistance of 2.25Cr-1Mo steel was superior to 1.25Cr-0.5Mo steel. However, the oxidation resistance of the two steels at 700 °C was similar in spite of the difference in their Cr contents. Multilayer oxide scales of oxides with various compositions were observed to have formed over the two steels. The similarity in oxidation kinetics of the two steels at 700 °C (in spite of differences in Cr contents) is ascribed to their Si contents and the predominant role of Si in oxidation at this temperature. The article also discusses implications of the variation in the oxidation kinetics to the stress enhancement in creep specimens due to scaling losses, and possible inaccuracies in creep data, as a result of minor variations in alloying composition.

  9. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    USGS Publications Warehouse

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for ruptures with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.

  10. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  11. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  12. Incomplete Cesarean Scar Rupture

    PubMed Central

    Ahmadi, Firoozeh; Siahbazi, Shiva; Akhbari, Farnaz

    2013-01-01

    Background Uterine rupture at the site of a previous cesarean scar is an uncommon but catastrophic complication of pregnancy, which is associated with significant maternal and fetal morbidity and mortality. Case Presentation A 30-year old woman at 24th week of gestation and complaint of pain, contractions and spotting was admitted in Royan Institute in Tehran, Iran. She had a past medical history of an EP and a cesarean section delivery, respectively 4 and 2 years before hospitalization. Herniation of an amniotic membrane into the maternal bladder was found on ultrasound examination. Conclusion Risk factors of cesarean scar rupture should be considered in women undergoing subsequent pregnancies as they need extra care. Ultrasonography can be used to evaluate women with previous cesarean section to assess the risks of scar rupture during subsequent pregnancies. PMID:23926561

  13. Arachnoid cyst spontaneous rupture.

    PubMed

    Marques, Inês Brás; Vieira Barbosa, José

    2014-01-01

    Arachnoid cysts are benign congenital cerebrospinal fluid collections, usually asymptomatic and diagnosed incidentally in children or adolescents. They may become symptomatic after enlargement or complications, frequently presenting with symptoms of intracranial hypertension. We report an unusual case of progressive refractory headache in an adult patient due to an arachnoid cyst spontaneous rupture. Although clinical improvement occurred with conservative treatment, the subdural hygroma progressively enlarged and surgical treatment was ultimately needed. Spontaneous rupture is a very rare complication of arachnoid cysts. Accumulation of cerebrospinal fluid accumulation in the subdural space causes sustained intracranial hypertension that may be life-threatening and frequently requires surgical treatment. Patients with arachnoid cysts must be informed on their small vulnerability to cyst rupture and be aware that a sudden and severe headache, especially if starting after minor trauma or a Valsalva manoeuvre, always requires medical evaluation. PMID:24581205

  14. Rupture dimensions and rupture processes of fluid-induced microcracks in salt rock

    NASA Astrophysics Data System (ADS)

    Dahm, T.

    2001-08-01

    We developed and applied a simple empirical Green function method to study induced microcracks observed during hydraulic fracturing experiments in salt rock. Either unidirectional ruptures on rectangular faults or allround ruptures on elliptical faults are tested to explain the observed directivity effects in body-wave amplitude spectra. Mostly, the rectangular rupture model and horizontal fault planes are favored. The average rupture lengths are between 15 and 27 mm, the average rupture durations between 14 and 26 μs. Small average rupture velocities of 30% of the S-wave velocity of the rock are indicated. The dispersive low-frequency coda-waves present in the data look similar to coda-waves observed during other hydraulic fracturing experiments and to long-period events from some volcanoes, which have been explained by the resonance of a fluid-filled crack. The radiation pattern of first motion amplitudes of most events is dominated by a dip-slip double-couple indicating slip on horizontal or vertical planes. We cannot distinguish whether the observed low-frequency coda-waves are influenced by a source effect or by a possible sensor-borehole coupling. However, a simple method using Gauss filter at different center frequencies and relocation is tested to analyze the low-frequency coda-waves in terms of source models.

  15. Primary obstructive megaureter with ruptured kidney.

    PubMed

    Chung, Shiu-Dong; Sun, Hsu-Dong; Yang, Den-Kai; Liao, Chun-Hou

    2009-01-01

    A 17-year-old boy presented to the emergency department for severe left flank pain and gross hematuria 1 hour after playing basketball without significant collision. Laboratory tests showed normal renal function and massive hematuria. Abdominal computed tomography scan disclosed a primary megaureter with ruptured kidney. We successfully treated him with ureteral stenting followed by endoscopic ureterotomy and ureteroneocystostomy. PMID:19041564

  16. Blunt cardiac rupture.

    PubMed

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  17. Premature rupture of membranes.

    PubMed Central

    Poma, P. A.

    1996-01-01

    The management of patients with premature rupture of membranes has changed markedly in the past several years. The basis for this is a combination of a better understanding of newborn physiology, improved neonatal care, refinements in antibiotic therapy, and the widespread use of maternal and fetal monitoring. The best outcome for both mother and infant undoubtedly reflects data based on a combination of factors, among which are gestational age survival, evidence of fetal distress, presence or absence of labor and sepsis, and of course, the cervical condition as it is related to labor-readiness. An important recent advance is the recognition that an active observation management program is associated with less morbidity and mortality than the classic management course of delivery within 12 hours of membrane rupture. The fact that preterm premature rupture of membranes tends to recur in subsequent pregnancies offers an opportunity for prevention. Moreover, advances in perinatal and neonatal care will continue to improve the outcomes of these women and their children. PMID:8583489

  18. In vitro analysis of localized aneurysm rupture.

    PubMed

    Romo, Aaron; Badel, Pierre; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2014-02-01

    In this study, bulge inflation tests were used to characterize the failure response of 15 layers of human ascending thoracic aortic aneurysms (ATAA). Full field displacement data were collected during each of the mechanical tests using a digital image stereo-correlation (DIS-C) system. Using the collected displacement data, the local stress fields at burst were derived and the thickness evolution was estimated during the inflation tests. It was shown that rupture of the ATAA does not systematically occur at the location of maximum stress, but in a weakened zone of the tissue where the measured fields show strain localization and localized thinning of the wall. Our results are the first to show the existence of weakened zones in the aneurysmal tissue when rupture is imminent. An understanding these local rupture mechanics is necessary to improve clinical assessments of aneurysm rupture risk. Further studies must be performed to determine if these weakened zones can be detected in vivo using non-invasive techniques. PMID:24406100

  19. Experimental Investigation of the Shuttle Transportation System Composite Overwrapped Pressure Vessels for Stress Rupture Life

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Carillo, Marlene; Thesken, John

    2006-01-01

    A viewgraph presentation describing stress rupture testing on Composite Overwrapped Pressure Vessels (COPV) is shown. The topics include: 1) Purpose for Testing; 2) NASA WSTF COPV Test Program; 3) NASA WSTF Test Facilities; 4) COPV Impact Study; 5) Fluids Compatibility Testing; 6) Stress Rupture Testing; and 7) COPV Lifting.

  20. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault

    NASA Astrophysics Data System (ADS)

    Elliott, Austin J.; Oskin, Michael E.; Liu-Zeng, Jing; Shao, Yanxiu

    2015-04-01

    Strike-slip rupture propagation falters where changes in fault strike increase Coulomb failure stress. Numerical models of this phenomenon offer predictions of rupture extent based on bend geometry, but have not been verified with field data. To test model predictions of rupture barriers, we examine rupture extent along a section of the sinistral Altyn Tagh Fault punctuated by three major double bends. We measure 3-8 m offsets and map >95 km of continuous scarps that define the most recent surface rupture. We document the eastern terminus of this rupture within the Aksay bend, where an undeformed Pleistocene alluvial fan we mapped and dated overlaps the fault. We conclude, based on this geomorphologic evidence, that multiple Holocene ruptures have stopped in the Aksay bend. Our field data validate model predictions of rupture termination at a >18° restraining bend and support use of geometric parameters to define expected earthquake sizes in seismic hazard models.

  1. Patient specific stress and rupture analysis of ascending thoracic aneurysms.

    PubMed

    Trabelsi, Olfa; Davis, Frances M; Rodriguez-Matas, Jose F; Duprey, Ambroise; Avril, Stéphane

    2015-07-16

    An ascending thoracic aortic aneurysm (ATAA) is a serious medical condition which, more often than not, requires surgery. Aneurysm diameter is the primary clinical criterion for determining when surgical intervention is necessary but, biomechanical studies have suggested that the diameter criterion is insufficient. This manuscript presents a method for obtaining the patient specific wall stress distribution of the ATAA and the retrospective rupture risk for each patient. Five human ATAAs and the preoperative dynamic CT scans were obtained during elective surgeries to replace each patient's aneurysm with a synthetic graft. The material properties and rupture stress for each tissue sample were identified using bulge inflation tests. The dynamic CT scans were used to generate patient specific geometries for a finite element (FE) model of each patient's aneurysm. The material properties from the bulge inflation tests were implemented in the FE model and the wall stress distribution at four different pressures was estimated. Three different rupture risk assessments were compared: the maximum diameter, the rupture risk index, and the overpressure index. The peak wall stress values for the patients ranged from 28% to 94% of the ATAA's failure stress. The rupture risk and overpressure indices were both only weakly correlated with diameter (ρ=-0.29, both cases). In the future, we plan to conduct a large experimental and computational study that includes asymptomatic patients under surveillance, patients undergoing elective surgery, and patients who have experienced rupture or dissection to determine if the rupture risk index or maximum diameter can meaningfully differentiate between the groups. PMID:25979384

  2. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  3. SORD: A New Rupture Dynamics Modeling Code

    NASA Astrophysics Data System (ADS)

    Ely, G.; Minster, B.; Day, S.

    2005-12-01

    We report on our progress in validating our rupture dynamics modeling code, capable of dealing with nonplanar faults and surface topography. The method uses a "mimetic" approach to model spontaneous rupture on a fault within a 3D isotropic anelastic solid, wherein the equations of motion are approximated with a second order Support-Operator method on a logically rectangular mesh. Grid cells are not required to be parallelepipeds, however, so that non-rectangular meshes can be supported to model complex regions. However, for areas in the mesh which are in fact rectangular, the code uses a streamlined version of the algorithm that takes advantage of the simplifications of the operators in such areas. The fault itself is modeled using a double node technique, and the rheology on the fault surface is modeled through a slip-weakening, frictional, internal boundary condition. The Support Operator Rupture Dynamics (SORD) code, was prototyped in MATLAB, and all algorithms have been validated against known (including analytical solutions, eg Kostrov, 1964) solutions or previously validated solutions. This validation effort is conducted in the context of the SCEC Dynamic Rupture model validation effort led by R. Archuleta and R. Harris. Absorbing boundaries at the model edges are handled using the perfectly matched layers method (PML) (Olsen & Marcinkovich, 2003). PML is shown to work extremely well on rectangular meshes. We show that our implementation is also effective on non-rectangular meshes under the restriction that the boundary be planar. For validation of the model we use a variety of test cases using two types of meshes: a rectangular mesh and skewed mesh. The skewed mesh amplifies any biases caused by the Support-Operator method on non-rectangular elements. Wave propagation and absorbing boundaries are tested with a spherical wave source. Rupture dynamics on a planar fault are tested against (1) a Kostrov analytical solution, (2) data from foam rubber scale models

  4. Prediction of Severe Eye Injuries in Automobile Accidents: Static and Dynamic Rupture Pressure of the Eye

    PubMed Central

    Kennedy, Eric A.; Voorhies, Katherine D.; Herring, Ian P.; Rath, Amber L.; Duma, Stefan M.

    2004-01-01

    The purpose of this paper is to determine the static and dynamic rupture pressures of 20 human and 20 porcine eyes. This study found the static test results show an average rupture pressure for porcine eyes of 1.00 ± 0.18 MPa while the average rupture pressure for human eyes was 0.36 ± 0.20 MPa. For dynamic loading, the average porcine rupture pressure was 1.64 ± 0.32 MPa, and the average rupture pressure for human eyes was 0.91 ± 0.29 MPa. Significant differences are found between average rupture pressures from all four groups of tests (p = 0.01). A risk function has been developed and predicts a 50% risk of globe rupture at 1.02 MPa, 1.66 MPa, 0.35 MPa, and 0.90 MPa internal pressure for porcine static, porcine dynamic, human static, and human dynamic loading conditions, respectively. PMID:15319124

  5. Spontaneous Iliac Vein Rupture

    PubMed Central

    Kim, Dae Hwan; Park, Hyung Sub; Lee, Taeseung

    2015-01-01

    Spontaneous iliac vein rupture (SIVR) is a rare entity, which usually occurs without a precipitating factor, but can be a life-threatening emergency often requiring an emergency operation. This is a case report of SIVR in a 62-year-old female who presented to the emergency room with left leg swelling. Workup with contrast-enhanced computed tomography revealed a left leg deep vein thrombosis with May-Thurner syndrome and a hematoma in the pelvic cavity without definite evidence of arterial bleeding. She was managed conservatively without surgical intervention, and also underwent inferior vena cava filter insertion and subsequent anticoagulation therapy for pulmonary thromboembolism. This case shows that SIVR can be successfully managed with close monitoring and conservative management, and anticoagulation may be safely applied despite the patient presenting with venous bleeding. PMID:26217647

  6. Short-lived Supershear Rupture

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Xu, S.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2015-12-01

    Fukuyama and Olsen (2002) computed the supershear rupture initiation, propagation and termination process due to a passage of high stress drop area (called asperity) using a boundary integral equation method. They found that supershear rupture continued to propagate after the passage through high stress drop area but it died after a certain propagation distance, which depends on the elastic energy released at the high stress drop area. Here, we could reproduce a similar phenomenon in the laboratory. We conducted large-scale biaxial friction experiments using a pair of meter-scaled metagabbro rock specimens (VP=6.9km/s, VS=3.6km/s) at the National Research institute for Earth Science and Disaster Prevention (NIED). We observed several stick slip rupture events that initiated close to an asperity and immediately became supershear ruptures. But after propagating certain distance they died out and co-existing subshear ruptures became prominent. If we look into details, during the supershear rupture, we could see a sequence of rupture acceleration, its short rest and re-acceleration. This feature reminds us of a sequential breakage of small high stress patches as predicted by Fukuyama and Madariaga (2000). These observations might be interpreted under a concept of energy balance where the energy transmission from strain energy released by the asperity to fracture energy consumed at the crack tip was not instantaneously balanced in space. This could be related to the fact that earthquake rupture velocity is rather smooth reported from the finite fault analysis of large earthquakes with seismic waveforms. References Fukuyama, E. and R. Madariaga (2000) Dynamic propagation and interaction of a rupture front on a planar fault, PAGEOPH, 257, 1959-1979. Fukuyama, E. and K.B. Olsen (2002) A condition for super-shear rupture propagation in a heterogeneous stress field, PAGEOPH, 159, 2047-2056.

  7. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  8. Ruptured thought: rupture as a critical attitude to nursing research.

    PubMed

    Beedholm, Kirsten; Lomborg, Kirsten; Frederiksen, Kirsten

    2014-04-01

    In this paper, we introduce the notion of ‘rupture’ from the French philosopher Michel Foucault, whose studies of discourse and governmentality have become prominent within nursing research during the last 25 years. We argue that a rupture perspective can be helpful for identifying and maintaining a critical potential within nursing research. The paper begins by introducing rupture as an inheritance from the French epistemological tradition. It then describes how rupture appears in Foucault's works, as both an overall philosophical approach and as an analytic tool in his historical studies. Two examples of analytical applications of rupture are elaborated. In the first example, rupture has inspired us to make an effort to seek alternatives to mainstream conceptions of the phenomenon under study. In the second example, inspired by Foucault's work on discontinuity, we construct a framework for historical epochs in nursing history. The paper concludes by discussing the potential of the notion of rupture as a response to the methodological concerns regarding the use of Foucault-inspired discourse analysis within nursing research. We agree with the critique of Cheek that the critical potential of discourse analysis is at risk of being undermined by research that tends to convert the approach into a fixed method. PMID:24741691

  9. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  10. Achilles tendon rupture rehabilitation

    PubMed Central

    Kearney, R. S.; Parsons, N.; Underwood, M.; Costa, M. L.

    2015-01-01

    Objectives The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research. Methods We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area. Results The survey showed wide variations in practice, with patients being managed in plaster cast alone (13%), plaster cast followed by orthoses management (68%), and orthoses alone (19%). Within these categories, further variation existed regarding the individual rehabilitation facets, such as the length of time worn, the foot position within them and weight-bearing status. The subsequent interviews reflected this clinical uncertainty and the pressing need for definitive research. Conclusions The gap in evidence in this area has resulted in practice in the United Kingdom becoming varied and based on individual opinion. Future high-quality randomised trials on this subject are supported by the clinical community. Cite this article: Bone Joint Res 2015;4:65–9 PMID:25868938

  11. The ruptured PIP breast implant.

    PubMed

    Helyar, V; Burke, C; McWilliams, S

    2013-08-01

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant. PMID:23622796

  12. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  13. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  14. Single Event Gate Rupture in EMCCD technology

    NASA Astrophysics Data System (ADS)

    Evagora, A. M.; Murray, N. J.; Holland, A. D.; Burt, D.

    2012-12-01

    The high electric fields (typically 3 MV/cm2 interpoly field) utilised in Electron Multiplying Charged Coupled Devices (EMCCDs) reveal a potential vulnerability from Single Event Phenomena (SEP), in particular Single Event Gate Rupture (SEGR). SEGR is where a conduction path between two conductive areas of the CCD is produced, causing device failure. If EMCCDs are to be used for space applications the susceptibility to these events needs to be explored. A positive result from such an investigation can increase the technology readiness level of the device moving it another step closer to being used in space. Testing undertaken at the CYClotron of LOuvain la NEuve (CYCLONE), using the Heavy Ion Facility (HIF), conclusively showed EMCCD technology to have resilience to heavy ions that surpassed initial expectations. The simulations undertaken prior to experiment suggested gate rupture would occur at 20-40 MeV cm2/mg, however Linear Energy Transfers (LETs) greater than 100 MeV cm2/mg proved to not cause a rupture event. Within the radiation belts heavy ions with an LET greater than 60 MeV cm2/mg are not very common when compared to the fluxes used at the HIF. Possible reasons for this result are discussed in this work, leading to a conclusion that EMCCD technology is a secure choice for space flight.

  15. Array Measurements of Earthquake Rupture.

    NASA Astrophysics Data System (ADS)

    Goldstein, Peter

    Accurate measurements of earthquake rupture are an essential step in the development of an understanding of the earthquake source process. In this dissertation new array analysis techniques are developed and used to make the first measurements of two-dimensional earthquake rupture propagation. In order to measure earthquake rupture successfully it is necessary to account for the nonstationary behavior of seismic waves and nonplanar wavefronts due to time delays caused by local heterogeneities. Short time windows are also important because they determine the precision with which it is possible to measure rupture times of earthquake sources. The subarray spatial averaging and seismogram alignment methods were developed for these reasons. The basic algorithm which is used to compute frequency-wavenumber power spectra is the multiple signal characterization (MUSIC) method. Although a variety of methods could be applied with subarray spatial averaging and seismogram alignment, MUSIC is used because it has better resolution of multiple sources than other currently available methods and it provides a unique solution. Power spectra observed at the array are converted into source locations on the fault plane by tracing rays through a layered medium. A dipping layer correction factor is introduced to account for a laterally varying basin structure such as that found beneath the SMART 1 array in Taiwan. A framework is presented that allows for the estimation of precision and resolution of array measurements of source locations and can be used to design an optimum array for a given source. These methods are used to show that the November 14th 1986, M_{L} = 7.0 Hualien, Taiwan earthquake began as a shallow event with unilateral rupture from southwest to northeast. A few seconds later a second, deeper and larger event began rupturing from below the hypocentral region from southwest to northeast slightly down-dip. Energy density estimates indicate larger energy sources at greater

  16. Rupture of the tracheobronchial tree.

    PubMed Central

    Roxburgh, J C

    1987-01-01

    Eleven cases of tracheobronchial rupture are described. Nine were the result of external non-penetrating trauma and all but three had other serious injuries. The remaining two were caused by endobronchial intubation. Of the cases caused by external injury, respiratory tract injury was confined to the cervical trachea in three. Two required tracheostomy and repair and the third was managed conservatively; all made satisfactory recoveries. Intrathoracic rupture was recognised on or soon after admission in three cases. One patient died of uncontrollable pulmonary haemorrhage before he could be operated on; immediate repair gave good long term results in the other two. In three cases rupture of the main bronchus was not recognised until complete obstruction developed three, five, and 12 weeks after the accidents. The strictures were resected and the lung re-expanded. Robertshaw endobronchial tubes ruptured the left main bronchus in two patients undergoing oesophageal surgery. Uneventful recovery followed immediate repair. The difficulty of confirming rupture of a major airway is discussed and the importance of conserving the lung when the diagnosis has been missed is emphasised. Images PMID:3317977

  17. Creep Rupture Properties of Welded Joints of Heat Resistant Steels

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masayoshi; Watanabe, Takashi; Hongo, Hiromichi; Tabuchi, Masaaki

    In this study, the high-temperature mechanical and creep rupture properties of Grade 91/Grade 91 (Mod. 9Cr-Mo) similar welded joints and Grade 91/Inconel 82/SUS304 dissimilar welded joints were examined. The effects of temperature and stress on the failure location in the joints were also investigated. Creep rupture tests were conducted at 823, 873, and 923 K; the applied stress ranges were 160-240, 80-160, and 40-80 MPa, respectively. The creep rupture strengths of the specimens with welded joints were lower than those of the specimens of the base metal at all temperature levels; in addition, these differences in creep strength increased with temperature. After being subjected to long-term creep rupture tests, the fracture type exhibited by the dissimilar welded joints was transformed from Types V and VII to Type IV. It was estimated that the fracture type exhibited by the dissimilar welded joints after 100,000-h rupture strength tests at 823 K and 873 K was Type IV fracture.

  18. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  19. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  20. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  1. Rupture interaction with fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Propagation of moderate to large earthquake ruptures within major transcurrent fault systems is affected by their large-scale brittle infrastructure, comprising echelon segmentation and curvature of principal slip surfaces (PSS) within typically ˜1 km wide main fault zones. These PSS irregularities are classified into dilational and antidilational fault jogs depending on the tendency for areal increase or reduction, respectively, across the jog structures. High precision microearthquake studies show that the jogs often extend throughout the seismogenic regime to depths of around 10 km. On geomorphic evidence, the larger jogs may persist for periods >105 years. While antidilational jogs form obstacles to both short- and long-term displacements, dilational jogs appear to act as kinetic barriers capable of perturbing or arresting earthquake ruptures, but allowing time-dependent slip transfer. In the case of antidilational jogs slip transfer is accommodated by widespread subsidiary faulting, but for dilational jogs it additionally involves extensional fracture opening localized in the echelon stepover. In fluid-saturated crust, the rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures is opposed by induced suctions which scale with the width of the jog. Rupture arrest at dilational jogs may then be followed by delayed slip transfer as fluid pressures reequilibrate by diffusion. Aftershock distributions associated with the different fault jogs reflect these contrasts in their internal structure and mechanical response.

  2. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Trylesinski, Gabriel

    Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with

  3. Quadriceps Tendon Rupture due to Postepileptic Convulsion

    PubMed Central

    Erkut, Adem; Guvercin, Yilmaz; Sahin, Rifat; Keskin, Davut

    2014-01-01

    We present a case of quadriceps tendon (QT) rupture. QT ruptures can occur in all ages. The cause is mostly traumatic in origin. Spontaneous ruptures that are thought to result from predisposing conditions are rare. Post-convulsion QT ruptures lacking traumas in their history can be overlooked in clinical examinations. This should be born in mind by the attending physician, as early diagnosis and treatment of the condition can lead to satisfactory outcomes. PMID:24944977

  4. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  5. A Retrospective Analysis of Ruptured Breast Implants

    PubMed Central

    Baek, Woo Yeol; Lew, Dae Hyun

    2014-01-01

    Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188

  6. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  7. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  8. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  9. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  10. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  11. [Uterine rupture. A case of spontaneous rupture in a thirty week primiparous gestation ].

    PubMed

    Bretones, S; Cousin, C; Gualandi, M; Mellier, G

    1997-01-01

    Uterine rupture is one of the major complications of pregnancy. Most spontaneous uterine ruptures occur during labor in parturients with a scarred uterus. Spontaneous rupture where the uterus is unscarred are more rare and occur more frequently in older multiparous patients. Starting from a case of uterine rupture occurring in a 40 year-old primiparous women, we will present a review of the literature concerning cases of rupture in healthy uteri with no obvious cause. PMID:9265057

  12. Rupture and dewetting of water films on solid surfaces.

    PubMed

    Mulji, Neil; Chandra, Sanjeev

    2010-12-01

    An experimental study was conducted to observe rupture and dewetting of water films, 0.5-2mm thick, on solid surfaces. The effects of surface roughness, wettability, protrusions on surfaces, and air entrapment between films and surfaces were studied. Film thickness measurements were made and film rupture and surface dewetting photographed. Experiments showed that liquid films ruptured first along the highest edges of test surfaces. Placing a protrusion on the surface had no effect-the liquid film continued to rupture along the edges. A thermodynamic model was developed to show that protrusions lower the surface energy of the system and promote wetting. Increasing surface roughness therefore increases film stability by resisting rupture and dewetting. Water films could be punctured by introducing an air bubble that burst and created a hole. The hole would close if the film was thick and the solid-liquid contact angle was either small or large; the hole would grow larger if the film was thin and the contact angle was in the mid-range (∼80°). An analytical model that calculates the difference between the surface energies of the two states can be used to predict whether a hole would lead to surface dewetting or not. PMID:20817200

  13. Rare presentation of ruptured syphilitic aortic aneurysm with pseudoaneurysm.

    PubMed

    de Almeida Feitosa, Israel Nilton; Dantas Leite Figueiredo, Magda; de Sousa Belem, Lucia; Evelin Soares Filho, Antônio Wilon

    2015-11-01

    We report the interesting case of a rare form of presentation of rupture of the ascending aorta with formation of a pseudoaneurysm, diagnosed following the development of a large mass on the surface of the chest over a period of about eight months. Serological tests were positive for syphilis. Echocardiography and computed tomography angiography were essential to confirm the diagnosis and therapeutic management. Cardiovascular syphilis is a rare entity since the discovery of penicillin. Rupture of an aortic aneurysm with formation of a pseudoaneurysm is a potentially fatal complication. The postoperative period was uneventful and the patient was discharged from hospital within days of surgery. PMID:26481180

  14. Space qualification of the ISO cryogenic rupture discs

    NASA Astrophysics Data System (ADS)

    Ettlinger, E.; Ruediger, H.; Wanner, M.

    1990-03-01

    Space cryostats, like the model to be used in the Infrared Space Observatory (ISO), require safety components to protect the satellite, the launcher, and the personnel against overpressure in the helium system. The ISO cryostat, which carries 2250 cu dm of liquid helium, will be equipped with a rupture disk as the ultimate safety component in case of loss of the insulation vacuum. Because it will have to operate under conditions of zero gravity and low pressure drop, the rupture disk has to be located directly on the helium tank and may thus release up to 5 kg/s of helium at a differential pressure of 2.6 bar directly into the insulation vacuum space. The selection and design of the rupture disk, as well as the test and qualification philosophy, are described.

  15. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  16. PROTOTYPE SYSTEM FOR PLUGGING LEAKS IN RUPTURED CONTAINERS

    EPA Science Inventory

    A development program was performed successfully to develop and test a prototype system for temporarily stopping the flow of hazardous materials spilling on land or underwater from ruptured or damaged containers. The prototype system is portable, integrated, and field-operable by...

  17. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  18. Predicting the endpoints of earthquake ruptures.

    PubMed

    Wesnousky, Steven G

    2006-11-16

    The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate. PMID:17108963

  19. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  20. Renal failure after ruptured aneurysm.

    PubMed

    Abbott, W M; Abel, R M; Beck, C H; Fischer, J E

    1975-09-01

    The effectiveness of an intravenous nutritional program plus aggressive dialysis was studied in 32 patients with renal failure following ruptured abdominal aortic aneurysm. Each patient was managed postoperatively with a renal failure fluid regimen, consisting of the eight essential amino acids plus dextrose in conjunction with peritoneal dialysis and hemodialysis. This regimen induced salutary metabolic effects temporarily improving the patient's condition in most instances. No technical or septic complications associated with the intravenous dietary therapy occurred. However, the incidence of recovery of renal function was low, and the overall patient survival was only 12.5%. The experience indicates that although this program has been shown to be efficacious in some patients with acute renal failure, it seems of little benefit in those whose renal failure follows ruptured aortic aneurysm. PMID:808197

  1. Oesophageal rupture masquerading as STEMI.

    PubMed

    Skaug, Brian; Taylor, Kenneth R; Chandrasekaran, Somya

    2016-01-01

    A 67-year-old man presented to the emergency department, with acute onset of chest pain. Based on ECG changes suggestive of ST elevation myocardial infarction (STEMI), he was taken emergently to the cardiac catheterisation laboratory for coronary angiography. There he was found to have only non-obstructive coronary disease. Subsequent physical examination and review of his chest radiograph revealed subcutaneous emphysema, and CT scan revealed a distal oesophageal rupture and pneumomediastinum. After stabilisation in the intensive care unit (ICU), he was taken to the operating room for thoracotomy, chest tube placement and stenting of his oesophagus. He survived the incident and, after several weeks of ICU stay, recovered to a large extent. His case highlights the importance of considering oesophageal rupture in the differential diagnosis for acute onset of chest pain. PMID:27068730

  2. Spontaneous mid-oesophageal rupture.

    PubMed

    Holt, S; Millar, J W; Heading, R C; Charles, R G

    1978-08-01

    The clinical presentation and management of spontaneous rupture of the middle third of the oesophagus is described in two patients. Early presentation and treatment in one case led to uncomplicated recovery. In the other patient late presentation and diagnosis resulted in delayed surgical intervention with an unsuccessful outcome. The nature of this rare lesion is discussed and nine previously described cases are reviewed. PMID:733690

  3. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  4. Tibiofibular screw fixation for syndesmotic ruptures: a biomechanical analysis.

    PubMed

    Stein, G; Eichler, C; Ettmann, L; Koebke, J; Müller, L P; Thelen, U; Skouras, E

    2012-09-01

    The mechanisms of injuries to the tibiofibular syndesmosis include isolated rupture and rupture in combination with ankle fractures. Current concepts of surgical treatment are fixation using bioabsorbable screws, syndesmotic stapling, syndesmotic hooks, and the widely used screw fixation. Postoperative care utilises passive motion of the ankle joint either with or without axial weight-bearing. The aim of our investigation was to quantify the motion of the mortise during axial load. Therefore, photoelastic tests, on the one hand, and biomechanical tests of cadaveric specimens, on the other, using axial loads of up to 2,000 N were used. Our photoelastic investigations showed force distribution through the screw into the cranial and caudal parts of the distal fibula. Biomechanical testing showed a progressive dehiscence in both ruptured and fixated specimens up to 2.89 (ruptured) and 2.42 mm (despite screw). Our findings strongly suggest a concept of partial weight-bearing at most to support regeneration of scar tissue and to prevent the appearance of instability in the ankle joint. PMID:22415030

  5. Ground motion hazard from supershear rupture

    USGS Publications Warehouse

    Andrews, D.J.

    2010-01-01

    An idealized rupture, propagating smoothly near a terminal rupture velocity, radiates energy that is focused into a beam. For rupture velocity less than the S-wave speed, radiated energy is concentrated in a beam of intense fault-normal velocity near the projection of the rupture trace. Although confined to a narrow range of azimuths, this beam diverges and attenuates. For rupture velocity greater than the S-wave speed, radiated energy is concentrated in Mach waves forming a pair of beams propagating obliquely away from the fault. These beams do not attenuate until diffraction becomes effective at large distance. Events with supershear and sub-Rayleigh rupture velocity are compared in 2D plane-strain calculations with equal stress drop, fracture energy, and rupture length; only static friction is changed to determine the rupture velocity. Peak velocity in the sub-Rayleigh case near the termination of rupture is larger than peak velocity in the Mach wave in the supershear case. The occurrence of supershear rupture propagation reduces the most intense peak ground velocity near the fault, but it increases peak velocity within a beam at greater distances. ?? 2010.

  6. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    SciTech Connect

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-02-14

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours.

  7. Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment

    PubMed Central

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H.; Hopkins, L. Nelson; Meng, Hui

    2008-01-01

    OBJECTIVE The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. METHODS For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P < 0.05) were further examined by multivariate logistic regression analysis. Additionally, receiver operating characteristic analyses were performed on each parameter. RESULTS Statistically significant differences were found between mean values in ruptured and unruptured groups for size ratio, undulation index, nonsphericity index, ellipticity index, aneurysm angle, and aspect ratio. Logistic regression analysis further revealed that size ratio (odds ratio, 1.41; 95% confidence interval, 1.03−1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08−2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. CONCLUSION Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies. PMID:18797347

  8. Assessing magnitude probability distribution through physics-based rupture scenarios

    NASA Astrophysics Data System (ADS)

    Hok, Sébastien; Durand, Virginie; Bernard, Pascal; Scotti, Oona

    2016-04-01

    When faced with complex network of faults in a seismic hazard assessment study, the first question raised is to what extent the fault network is connected and what is the probability that an earthquake ruptures simultaneously a series of neighboring segments. Physics-based dynamic rupture models can provide useful insight as to which rupture scenario is most probable, provided that an exhaustive exploration of the variability of the input parameters necessary for the dynamic rupture modeling is accounted for. Given the random nature of some parameters (e.g. hypocenter location) and the limitation of our knowledge, we used a logic-tree approach in order to build the different scenarios and to be able to associate them with a probability. The methodology is applied to the three main faults located along the southern coast of the West Corinth rift. Our logic tree takes into account different hypothesis for: fault geometry, location of hypocenter, seismic cycle position, and fracture energy on the fault plane. The variability of these parameters is discussed, and the different values tested are weighted accordingly. 64 scenarios resulting from 64 parameter combinations were included. Sensitivity studies were done to illustrate which parameters control the variability of the results. Given the weight of the input parameters, we evaluated the probability to obtain a full network break to be 15 %, while single segment rupture represents 50 % of the scenarios. These rupture scenario probability distribution along the three faults of the West Corinth rift fault network can then be used as input to a seismic hazard calculation.

  9. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  10. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  11. Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture

    PubMed Central

    Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.

    2013-01-01

    Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140

  12. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  13. Development of cryogenic rupture discs for the space borne CRISTA project

    NASA Astrophysics Data System (ADS)

    Trant, R.; Neusser, C.; Offermann, D.; Kesting, F.

    Space cryostats require safety components to protect the cryogenic system against overpressure. The CRISTA cryostat (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere), which contains 725 1 supercritical helium, will have a three stage safety system. A cryogenic rupture disc mounted directly on the helium tank will be the ultimate safety component. For qualifying cryogenic rupture discs a low temperature test facility was developed. The batch qualification of the cryogenic rupture disc, which is of the reserve buckling type, shows a standard deviation comparable with that at ambient temperature. The design of the rupture disc as well as test program and test results of the successfully performed qualification are described. Furthermore, design and performance of the low temperature test facility are treated.

  14. Spontaneous rupture of uterine leiomyoma during labour

    PubMed Central

    Ramskill, Nikki; Hameed, Aisha; Beebeejaun, Yusuf

    2014-01-01

    Uterine rupture in labour requires an emergency caesarean section. In women with a uterine scar, either from gynaecological surgery or from a previous caesarean section, it is well documented that the risk of rupture is higher than in those without. Spontaneous uterine rupture in a uterus with fibroids during pregnancy or labour is extremely rare. We present a case of a 33-year-old, unbooked pregnant woman from Nigeria who had a uterine rupture secondary to fibroids. She required an emergency caesarean section in labour. The fibroids were not removed. Her baby was born alive and in good condition and she made an uneventful recovery. PMID:25199188

  15. Tendon Ruptures Associated With Corticosteroid Therapy

    PubMed Central

    Halpern, Alan A.; Horowitz, Bruce G.; Nagel, Donald A.

    1977-01-01

    In five patients, tendon ruptures occurred in association with corticosteroid therapy, either systemic or local infiltration. The chronic nature of the pain in all of these patients suggests that what we often call tendinitis may in fact be early or partial ruptures of tendons. Patients who receive local infiltration of corticosteroids should perhaps be advised of the risk of a ruptured tendon. In addition, particularly when the Achilles tendon is involved, immobilization should be utilized initially for a presumed tendinitis or early rupture, to protect the tendon from further injury. ImagesFigure 1.Figure 2. PMID:919538

  16. Acute Pectoralis Major Rupture Captured on Video

    PubMed Central

    Valencia Mora, María

    2016-01-01

    Pectoralis major (PM) ruptures are uncommon injuries, although they are becoming more frequent. We report a case of a PM rupture in a young male who presented with axillar pain and absence of the anterior axillary fold after he perceived a snap while lifting 200 kg in the bench press. Diagnosis of PM rupture was suspected clinically and confirmed with imaging studies. The patient was treated surgically, reinserting the tendon to the humerus with suture anchors. One-year follow-up showed excellent results. The patient was recording his training on video, so we can observe in detail the most common mechanism of injury of PM rupture. PMID:27595030

  17. Rupture dynamics in model polymer systems.

    PubMed

    Borah, Rupam; Debnath, Pallavi

    2016-05-11

    In this paper we explore the rupture dynamics of a model polymer system to capture the microscopic mechanism during relative motion of surfaces at the single polymer level. Our model is similar to the model for friction introduced by Filippov, Klafter, and Urbakh [Filippov et al., Phys. Rev. Lett., 2004, 92, 135503]; but with an important generalization to a flexible transducer (modelled as a bead spring polymer) which is attached to a fixed rigid planar substrate by interconnecting bonds (modelled as harmonic springs), and pulled by a constant force FT. Bonds are allowed to rupture stochastically. The model is simulated, and the results for a certain set of parameters exhibit a sequential rupture mechanism resulting in rupture fronts. A mean field formalism is developed to study these rupture fronts and the possible propagating solutions for the coupled bead and bond dynamics, where the coupling excludes an exact analytical treatment. Numerical solutions to mean field equations are obtained by standard numerical techniques, and they agree well with the simulation results which show sequential rupture. Within a travelling wave formalism based on the Tanh method, we show that the velocity of the rupture front can be obtained in closed form. The derived expression for the rupture front velocity gives good agreement with the stochastic and mean field results, when the rupture is sequential, while propagating solutions for bead and bond dynamics are shown to agree under certain conditions. PMID:27087684

  18. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  19. A Reliable Way to Track Rupture Process of Earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ge, Z.

    2014-12-01

    Compressive sensing (CS) is an algorithm which could find the solution to a sparse linear problem, which is physically consist with inversion problem of rupture process. Because relative to the whole fault plane, the seismic power radiation area is sparse in a specific moment during a great earthquake. CS method is used to invert the rupture process from teleseismic P wave data recorded by multiple seismic arrays with different azimuths and epicentral distances. Synthetic tests illustrate that, our method can suppress the artifacts caused by interference phases ( eg. PcP ) thus we can obtain a more reliable result than using the data from a single array. Moreover, the "swimming effect" in traditional back-projection method can be reduced due to the better azimuth coverage. Then the rupture process of the Mw7.9 earthquake in the Aleutian Islands, occurred at June 23, 2014 20:53 UTC is inverted. The results show that the rupture is along the subduction zone, which can be used to locate the primary fault plane combined with central moment tensor. In addition, where the released power concentrates in the earthquake is also given, which could help us determine which area is effected by the earthquake most heavily, thus the rescue operation can be effective. In conclusion, different from traditional beamforming method, CS can offer a high-resolution solution.

  20. Spontaneous postpartum rupture of an intact uterus: a case report.

    PubMed

    Mavromatidis, George; Karavas, George; Margioula-Siarkou, Chrysoula; Petousis, Stamatios; Kalogiannidis, Ioannis; Mamopoulos, Apostolos; Rousso, David

    2015-01-01

    Rupture of uterus is an obstetrical complication characterized by a breach in the uterine wall and the overlying serosa. We report an unusual case of spontaneous rupture of an unscarred uterus in a 33-year-old woman, a day after her third successful vaginal delivery. A 33-year-old pregnant woman, gravid 3, para 3, was referred to our department at 39 gestational week because of rupture of membranes. Despite tocolysis administration, her pregnancy was delivered vaginally after 2 days, giving birth to a male neonate of 3,020 g with normal Apgar scores at first and fifth minute. Her uterus was intact and gynecological examination after delivery was normal without any potential signs or symptoms of pathology. However, the day following her labor, patient complained of left iliac fossa pain. Her blood tests revealed a CRP value at 27.6 mg/L, whereas the X-rays revealed an extensive impacted fecal mass in the colon. MRI revealed that the left lower myometrial part of the uterus was depicted abrupt, with simultaneous presence of hemorrhagic stuff. The decision of laparotomy was therefore made in order to further evaluate rupture of uterus and properly treat patient. And subtotal hysterectomy was performed. Postoperative follow-up period was not characterized by any complications and patient was finally discharged 4 days after hysterectomy. PMID:25368704

  1. Soft, Brown Rupture: Clinical Signs and Symptoms Associated with Ruptured PIP Breast Implants

    PubMed Central

    Duncan, Robert T.; Feig, Christine; Reintals, Michelle; Hill, Sarah

    2014-01-01

    Background: Preoperative signs and symptoms of patients with Poly Implant Prothese (PIP) implants could be predictive of device failure. Based on clinical observation and intraoperative findings 4 hypotheses were raised: (1) Preoperative clinical signs including acquired asymmetry, breast enlargement, fullness of the lower pole, decreased mound projection, and change in breast consistency could be indicative of implant rupture. (2) Device failure correlates with a low preoperative Baker grade of capsule. (3) Brown-stained implants are more prone to implant failure. (4) The brown gel could be indicative of iodine ingression through a substandard elastomer shell. Methods: Preoperative clinical signs were compared with intraoperative findings for 27 patients undergoing PIP implant explantation. Results: Acquired asymmetry (P = 0.0003), breast enlargement (P = 0.0002), fuller lower pole (P < 0.0001), and loss of lateral projection (P < 0.0001) were all significantly predictive of device failure. Capsule Baker grade was lower preoperatively for ruptured implants. The lack of palpable and visible preoperative capsular contracture could be secondary to the elastic nature of the capsular tissue found. Brown implants failed significantly more often than white implants. Analysis of brown gel revealed the presence of iodine, suggesting povidone iodine ingression at implantation. Conclusions: Preoperative signs can be predictive of PIP implant failure. Brown-stained implants are more prone to rupture. The presence of iodine in the gel suggests unacceptable permeability of the shell early in the implant’s life span. A noninvasive screening test to detect brown implants in situ could help identify implants at risk of failure in those who elect to keep their implants. PMID:25506532

  2. [Tendinosis and ruptures of the Achilles tendon].

    PubMed

    Amlang, M H; Zwipp, H

    2012-02-01

    Tendinosis of the Achilles tendon is a degenerative-reparative structural change of the tendon with microdefects, increases in cross-section due to cicatricial tendon regeneration, neoangiogenesis and reduction of elasticity. The previously used term tendinitis is only rarely used for the chronic form since signs of inflammation such as redness and hyperthermia or elevated levels of inflammatory parameters on laboratory testing are generally absent. Duplex sonography with visualization of the neovascularization has become a valuable supplement not only for diagnostics but also for therapy planning. The classic, conservative therapy for painful tendinosis consists of oral anti-inflammatory drugs, pain-adapted load reduction, raising the heel, stretching the calf musculature, and various physiotherapeutic interventions. When conservative treatment over a period of 4 - 6 months fails to produce any or non-adequate pain relief, an indication for surgical treatment should be considered. In the therapy for fresh ruptures of the Achilles tendon further developments in minimally invasive techniques have led to a worldwide paradigm change over the past 10 years. The decisive advantage of minimally invasive surgical techniques is the lower risk of wound infection as compared to the sutures of the open technique. When compared with conservative functional therapy the minimally invasive repair has the advantage of being less dependent on the compliance of the patient since, in the early phase of tendon healing the suture prevents a separation of the tendon ends upon controlled movements. However, not every patient with a ruptured Achilles tendon should be treated with a minimally invasive repair. Open tendon reconstruction and functional conservative therapy are still justified when the correct indication is given. PMID:22344862

  3. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    PubMed

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin. PMID:22561379

  4. Myocardial infarction complicated by ventricular septal rupture.

    PubMed

    Sahjian, Michael; Ventriglia, Rich; Bolton, Lauri

    2012-01-01

    Transporting patients with an ST segment elevation myocardial infarction (STEMI) is a fairly common practice for most critical care transport teams. When a STEMI is complicated by ventricular septal rupture, the care can become more challenging, especially if the rupture is not yet diagnosed. This article describes such a transport and reviews the pathophysiology of the process along with treatment options. PMID:22225564

  5. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  6. Second-Trimester Uterine Rupture: Lessons Learnt

    PubMed Central

    F. ABDULWAHAB, Dalia; ISMAIL, Hamizah; NUSEE, Zalina

    2014-01-01

    Uterine rupture is a rare life-threatening complication. It mainly occurs in the third trimester of pregnancy and is rarely seen during the first or second trimesters. Our centre experienced three important cases of uterine rupture. First case: spontaneous uterine rupture at 14 weeks of pregnancy, which was diagnosed at autopsy. It was misled by the ultrasound finding of an intrauterine pregnancy, and searching for other non-gynaecological causes delayed the urgent obstetric surgical management. Second case: ruptured uterus at 24 weeks following medical termination due to foetal anomaly. It was diagnosed only at laparotomy indicated for failed medical termination and chorioamnionitis. Third case: uterine rupture at 21 weeks of pregnancy in a patient with gastroenterology symptoms. In these reports, we have discussed the various risk factors, presentations, course of events and difficulties in diagnosing uterine rupture. The study concludes that the clinical presentation of uterine ruptures varies. It occurs regardless of gestational age. Ultrasound findings of intrauterine pregnancy with free fluid do not exclude uterine rupture or ectopic pregnancy. Searching for non-gynaecological causes in such clinical presentations might delay crucial surgical intervention, which leads to unnecessary morbidity, mortality or loss of obstetrics function. PMID:25977625

  7. [Bilateral bronchial rupture: problems of respiratory management].

    PubMed

    Sztark, F; Thicoïpé, M; Favarel-Garrigues, J F; Velly, J F; Lassié, P

    1995-01-01

    The authors report the case of bilateral bronchial rupture in a 39-year-old multiple trauma patient. During the thoracotomy for right main bronchus repair, a partial left bronchial rupture was recognized because of severe hypoxaemia after left selective intubation. PMID:7486281

  8. Madelung Deformity and Extensor Tendon Rupture.

    PubMed

    Shahcheraghi, Gholam Hossain; Peyman, Maryam; Mozafarian, Kamran

    2015-07-01

    Extensor tendon rupture in chronic Madelung deformity, as a result of tendon attrition on the dislocated distal ulna, is a rare occurrence. It is, however, seen more often in rheumatoid arthritis. There are few case reports in the English-language literature on this issue. We report a case of multiple tendon ruptures in a previously undiagnosed Madelung deformity. PMID:26161772

  9. Turning points in reactor design

    SciTech Connect

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  10. The effects of barriers on supershear rupture

    NASA Astrophysics Data System (ADS)

    Xu, Jiankuan; Zhang, Zhenguo; Chen, Xiaofei

    2016-07-01

    A barrier may induce a supershear rupture transition in some cases, whereas it may prevent the further propagation of a supershear rupture in other cases. We investigate the effects of a barrier on the supershear rupture propagation on a planar fault in a 3-D half-space. Our results show that the effect of a barrier on supershear is strongly dependent on its size, strength, and location. For larger sizes, shallower buried depths, and relatively higher strengths, the barrier tends to prevent supershear propagation more strongly. When the barrier is located on the free surface and near the critical distance, it prevents the further propagation of supershear rupture. If a barrier is located far from the critical distance, the first supershear daughter crack is slowed down and a new supershear daughter crack is generated after the rupture front passes through the barrier. This mechanism greatly lengthens the supershear transition distance.

  11. Stress-rupture strength and microstructural stability of W-HF-C wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    W-Hf-C/superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100-and 1000-hour rupture strengths obtained for 70 volume percent fiber composites tested at 1090 C were 420 and 280 MN/sq m (61,000 and 41,000 psi). The investigation indicated that with better quality fibers, composites having 100- and 1000-hour rupture strengths of 570 and 370 MN/sq m (82,000 and 54,000 psi) may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for long time applications at 1090 C for 1000 hours or more.

  12. Reconstruction of chronic patellar tendon rupture with contralateral BTB autograft: a case report.

    PubMed

    Milankov, Miroslav Z; Miljkovic, Natasa; Stankovic, Milan

    2007-12-01

    Chronic patellar tendon rupture is a rare disabling injury that is technically difficult to repair. Many different surgical methods have been reported for the reconstruction of chronic patellar tendon ruptures. We are reporting the use of contralateral bone-tendon-bone (BTB) autograft for chronic patellar tendon rupture reconstruction followed by double-wire loop reinforcement and without postoperative immobilization. One year after the operation, our patient had full knee extension and up to 130 degrees of flexion. He had good quadriceps strength, and isokinetic muscle testing showed no deficit comparing to his right leg. Patient returned to playing basketball in his spare time, without having any limitation. PMID:17579835

  13. Do buried-rupture earthquakes trigger less landslides than surface-rupture earthquakes for reverse faults?

    NASA Astrophysics Data System (ADS)

    Xu, Chong

    2014-07-01

    Gorum et al. (2013, Geomorphology 184, 127-138) carried out a study on inventory compilation and statistical analyses of landslides triggered by the 2010 Mw 7.0 Haiti earthquake. They revealed that spatial distribution patterns of these landslides were mainly controlled by complex rupture mechanism and topography. They also suggested that blind-rupture earthquakes trigger fewer landslides than surface-rupture earthquakes on thrust reverse faults. Although a few lines of evidence indicate that buried-rupture earthquakes might trigger fewer landslides than surface-rupture earthquakes on reverse faults, more careful comparisons and analyses indicate that it is not always true. Instead, some cases show that a buried-rupture earthquake can trigger a larger quantity of landslides that are distributed in a larger area, whereas surface-rupture earthquakes can trigger larger but a fewer landslides distributed in a smaller area.

  14. Effect of heating method on stress-rupture life

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  15. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  16. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  17. Spontaneous rupture of the spleen operated in gynecological unit mistaken for ruptured hemorrhagic ovarian cyst: total splenectomy

    PubMed Central

    Eko, Filbert Eko; Fouelifack, Florent Ymele; de Paul, Elanga Vincent

    2014-01-01

    Spontaneous splenic rupture is always neglected when consulting acute abdominal pains in gynecological emergencies. It constitutes about 1% of all splenic ruptures and can be managed by abstention, surgery or embolization. We present the case of a young lady who was diagnosed of spontaneous rupture during surgery that was mistaken for ruptured hemorrhagic ovarian cyst and finally treated by total splenectomy. The pre-operative work up was absolute for a rupturred hemorrhagic cyst and secondariy for a ruptured ectopic gestation. PMID:25918564

  18. Lithological and rheological constraints on fault rupture scenarios for ground motion hazard prediction. Revision 1

    SciTech Connect

    Foxall, W.; Hutchings, L.; Jarpe, S.

    1994-09-01

    This paper tests a new approach to predict a range of ground motion hazard at specific sites generated by earthquakes on specific faults. The approach utilizes geodynamics to link structural, lithological and Theological descriptions of the fault zones to development of fault rupture scenarios and computation of synthetic seismograms. Faults are placed within a regional geomechanical model that is used to calculate stress conditions along the fault. The approach is based upon three hypothesis: (1) An exact solution of the representation relation that u@s empirical. Green`s functions enables very accurate computation of ground motions generated by a given rupture scenario; (2) a general description of the rupture is sufficient; and (3) the structural, lithological and Theological characteristics of a fault can be used to constrain, in advance, possible future rupture histories. Ground motion hazard here refers to three-component, full wave train descriptions of displacement, velocity, and acceleration over the frequency band 0.01 to 25 Hz. Corollaries to these hypotheses are that the range of possible fault rupture histories is narrow enough to functionally constrain the range of strong ground motion predictions, and that a discreet set of rupture histories is sufficient to span the infinite combinations possible from a given range of rupture parameters.

  19. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.

  20. Ruptured rudimentary horn pregnancy at sixteen weeks.

    PubMed

    Zeqiri, Fehmi; Paçarada, Myrvete; Kongjeli, Niltene; Zeqiri, Vlora; Kongjeli, Gyltene; Krasniqi, Burim

    2010-01-01

    Pregnancy in a non-communicating rudimentary horn is very difficult to diagnose before it ruptures, leading to life -threatening intraperitoneal hemorrhage. A 22-year-old second gravida patient presented at the Emergency Center of the University Clinical Center of Kosova with a 16-week history of amenorrhea and acute onset of severe abdominal pain. She was resuscitated and taken for an emergency laparotomy under general anesthesia. Intraoperatively, there was a massive hemoperitoneum with a ruptured right rudimentary horn Given their rarity, ruptured rudimentary horn pregnancies are of interest. PMID:24591927

  1. Chronic rupture of abdominal aortic aneurysm.

    PubMed

    Kotsis, Thomas; Thomas, Kotsis; Tympa, Aliki; Aliki, Tympa; Kalinis, Aris; Aris, Kalinis; Vasilopoulos, Ioannis; Ioannis, Vasilopoulos; Theodoraki, Kassiani; Kassiani, Theodoraki

    2011-10-01

    Although the mortality rate after abdominal aortic aneurysm rupture approximates 90% despite the urgent management, a few cases of chronic rupture and delayed repair have been reported in the world literature; anatomic and hemodynamic reasons occasionally allow for the fortunate course of these patients. We report in this article the case of 76-year-old man with a ruptured abdominal aortic aneurysm who was transferred to our facility 4 weeks after his initial hospitalization in a district institution and who finally had a successful open repair. PMID:21620664

  2. Misdiagnosed Chest Pain: Spontaneous Esophageal Rupture

    PubMed Central

    Inci, Sinan; Gundogdu, Fuat; Gungor, Hasan; Arslan, Sakir; Turkyilmaz, Atila; Eroglu, Atila

    2013-01-01

    Chest pain is one of themost common complaints expressed by patients presenting to the emergency department, and any initial evaluation should always consider life-threatening causes. Esophageal rupture is a serious condition with a highmortality rate. If diagnosed, successful therapy depends on the size of the rupture and the time elapsed between rupture and diagnosis.We report on a 41-year-old woman who presented to the emergency department complaining of left-sided chest pain for two hours. PMID:27122690

  3. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  4. Spontaneous rupture of uterine vein in twin pregnancy.

    PubMed

    Doger, Emek; Cakiroglu, Yigit; Yildirim Kopuk, Sule; Akar, Bertan; Caliskan, Eray; Yucesoy, Gulseren

    2013-01-01

    Objective. Aim of our study is to present a case of a twin pregnancy following invitro fertilization cycle complicated with hemoperitoneum at third trimester. Case. A 26-year-old nulliparous pregnant woman at 32 weeks of gestation with twin pregnancy following invitro fertilization cycle complained of abdominal pain. After 48 hours of admission, laparotomy was performed with indications of aggravated abdominal pain and decreased hemoglobin levels. Utero-ovarian vein branch rupture was detected on the right posterior side of uterus and bleeding was stopped by suturing the vein. Etiopathogenesis of the present case still remains unclear. Conclusion. Spontaneous rupture of the uterine vessels during pregnancy is a rare complication and may lead to maternal and fetal morbidity and mortality. Diagnosis and treatment are based on the clinical symptoms of acute abdominal pain and laboratory tests of hypovolemic shock signs. PMID:24455353

  5. Spontaneous Rupture of Uterine Vein in Twin Pregnancy

    PubMed Central

    Doger, Emek; Cakiroglu, Yigit; Yildirim Kopuk, Sule; Akar, Bertan; Caliskan, Eray; Yucesoy, Gulseren

    2013-01-01

    Objective. Aim of our study is to present a case of a twin pregnancy following invitro fertilization cycle complicated with hemoperitoneum at third trimester. Case. A 26-year-old nulliparous pregnant woman at 32 weeks of gestation with twin pregnancy following invitro fertilization cycle complained of abdominal pain. After 48 hours of admission, laparotomy was performed with indications of aggravated abdominal pain and decreased hemoglobin levels. Utero-ovarian vein branch rupture was detected on the right posterior side of uterus and bleeding was stopped by suturing the vein. Etiopathogenesis of the present case still remains unclear. Conclusion. Spontaneous rupture of the uterine vessels during pregnancy is a rare complication and may lead to maternal and fetal morbidity and mortality. Diagnosis and treatment are based on the clinical symptoms of acute abdominal pain and laboratory tests of hypovolemic shock signs. PMID:24455353

  6. Polyarteritis Nodosa-Induced Pancreaticoduodenal Artery Aneurysmal Rupture

    PubMed Central

    Levin, Steven; Graber, John; Ehrenwald, Eduardo; Skeik, Nedaa

    2013-01-01

    Polyarteritis nodosa (PAN) is a systemic, necrotizing vasculitis of small- and medium-sized arteries typically with multiorgan involvement. Most cases of PAN are idiopathic, although hepatitis B or C virus infections and hairy cell leukemia are important in the pathogenesis of some cases. PAN is characterized as segmental transmural inflammation of muscular arteries. Diagnosis is based on clinical suspicion, a negative immunofluorescence test for antineutrophil cytoplasmic antibodies, and whenever possible, biopsy conformation. Angiographic images may reveal microaneurysms affecting the renal, hepatic, or mesenteric vasculature. Aneurysmal formation and rupture are important complications that can be fatal. Treatment may warrant immunosuppression with steroids and cyclophosphamide. If left untreated, PAN can be fatal. To our knowledge, we report the second documented case of PAN-induced ruptured inferior pancreaticoduodenal artery aneurysm. PMID:25780330

  7. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  8. Articular cartilage surface failure: an investigation of the rupture rate and morphology in relation to tissue health and hydration.

    PubMed

    Fick, James M; Espino, Daniel M

    2012-05-01

    This study investigates the rupture rate and morphology of articular cartilage by altering the bathing environments of healthy and degenerate bovine cartilage. Soaking tissues in either distilled water or 1.5 M NaCI saline was performed in order to render the tissues into a swollen or dehydrated state, respectively. Creep compression was applied using an 8 mm flat-ended polished indenter that contained a central pore of 450 microm in diameter, providing a consistent region for rupture to occur across all 105 tested specimens. Rupture rates were determined by varying the nominal compressive stress and the loading time. Similar rupture rates were observed with the swollen healthy and degenerate specimens, loaded with either 6 or 7MPa of nominal compressive stress over 11 and 13 min. The observed rupture rates for the dehydrated specimens loaded with 7 MPa over 60 and 90s were 20% versus 40% and 20% versus 60% for healthy and degenerate tissues, respectively. At 8 MPa of nominal compressive stress over 60 and 90s the observed rupture rates were 20% versus 60% and 40% versus 80% for healthy and degenerate tissues, respectively; with all dehydrated degenerate tissues exhibiting a greater tendency to rupture (Barnard's exact test, p < 0.05). Rupture morphologies were only different in the swollen degenerate tissues (p < 0.05). The mechanisms by which dehydration and swelling induce initial surface rupture of mildly degenerate articular cartilage differ. Dehydration increases the likelihood that the surface will rupture, however, swelling alters the observed rupture morphology. PMID:22720392

  9. Spontaneous rupture of ovarian cystadenocarcinoma: pre- and post-rupture computed tomography evaluation*

    PubMed Central

    Salvadori, Priscila Silveira; Bomfim, Lucas Novais; von Atzingen, Augusto Castelli; D’Ippolito, Giuseppe

    2015-01-01

    Epithelial ovarian tumors are the most common malignant ovarian neoplasms and, in most cases, eventual rupture of such tumors is associated with a surgical procedure. The authors report the case of a 54-year-old woman who presented with spontaneous rupture of ovarian cystadenocarcinoma documented by computed tomography, both before and after the event. In such cases, a post-rupture staging tends to be less favorable, compromising the prognosis. PMID:26543286

  10. Spontaneous rupture of ovarian cystadenocarcinoma: pre- and post-rupture computed tomography evaluation.

    PubMed

    Salvadori, Priscila Silveira; Bomfim, Lucas Novais; von Atzingen, Augusto Castelli; D'Ippolito, Giuseppe

    2015-01-01

    Epithelial ovarian tumors are the most common malignant ovarian neoplasms and, in most cases, eventual rupture of such tumors is associated with a surgical procedure. The authors report the case of a 54-year-old woman who presented with spontaneous rupture of ovarian cystadenocarcinoma documented by computed tomography, both before and after the event. In such cases, a post-rupture staging tends to be less favorable, compromising the prognosis. PMID:26543286

  11. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy.

    PubMed

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  12. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy

    PubMed Central

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Abstract Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  13. The SCEC-USGS Dynamic Earthquake Rupture Code Verification Exercise: Regular and Extreme Ground Motion

    NASA Astrophysics Data System (ADS)

    Harris, R.; Barall, M.; Archuleta, R. J.; Aagaard, B.; Ampuero, J. P.; Andrews, D. J.; Cruz-Atienza, V. M.; Dalguer Gudiel, L. A.; Day, S. M.; Duan, B.; Dunham, E. M.; Ely, G. P.; Gabriel, A. A.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Ma, S.; Noda, H.; Oglesby, D. D.; Olsen, K. B.; Roten, D.; Song, S.

    2010-12-01

    We summarize recent progress by the SCEC-USGS Dynamic Rupture Code Verification Group, that examines if SCEC and USGS researchers’ spontaneous-rupture computer codes agree when computing benchmark scenarios for dynamic earthquake rupture. Our latest benchmarks are ‘regular’ dynamic ruptures on a vertical strike-slip fault and on a normal fault, at a range of resolutions, and, ‘extreme’ dynamic ruptures on a normal fault. The ‘extreme’ dynamic ruptures were designed as complete stress-drop, supershear ruptures that would be most likely to produce maximum possible ground motions. These simulated ruptures could be thought of as very unlikely, but still possible. Among the 2009 ‘extreme’ dynamic rupture benchmarks were those targeted to test two simplified versions of the Andrews et al. [BSSA, 2007] numerical simulations for hypothesized maximum-possible ground motion at a site near Yucca Mountain. To test the Andrews et al. methodology, we constructed a benchmark for a planar dipping normal-fault set in a medium where the off-fault response was designated to be elastic (TPV12), and another benchmark where the off-fault response was designated to be plastic (TPV13). Although most of our group’s previous benchmarks have concentrated on 3D solutions, both the TPV12 and TPV13 benchmarks were offered with both 2D and 3D options, partly because the Andrews et al. study was conducted in 2D, and partly because it is important to understand the differences and similarities among 2D and 3D rupture propagation and ground motion predictions. Seven researchers’ codes participated in the TPV12 2D benchmark test, seven participated in the TPV12 3D test, six participated in the TPV13 2D benchmark test, and four participated in the TPV13 3D test. Our findings were similar to those hypothesized in the Andrews et al. publication. At a proposed site for a nuclear waste repository, that was modeled to be 1-km from the fault, at 300 m depth, our 2D elastic benchmark

  14. Dynamic rupture activation of backthrust fault branching

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Ben-Zion, Yehuda; Ampuero, Jean-Paul

    2015-03-01

    We perform dynamic rupture simulations to investigate the possible reactivation of backthrust branches triggered by ruptures along a main thrust fault. Simulations with slip-weakening fault friction and uniform initial stress show that fast propagation speed or long propagation distance of the main rupture promotes reactivation of backthrust over a range of branch angles. The latter condition may occur separately from the former if rupture speed is limited by an increasing slip-weakening distance towards the junction direction. The results suggest a trade-off between the amplitude and duration of the dynamic stress near the main rupture front for backthrust reactivation. Termination of the main rupture by a barrier can provide enhanced loading amplitude and duration along a backthrust rooted near the barrier, facilitating its reactivation especially with a high frictional resistance. The free surface and depth-dependent initial stress can have several additional effects. The sign of the triggered motion along the backthrust can be reversed from thrust to normal if a deeply nucleated main rupture breaks the free surface, while it is preserved as thrust if the main rupture is terminated by a barrier at depth. The numerical results are discussed in relation to several recent megathrust earthquakes in Sumatra, Chile, and Japan, and related topics such as branch feedbacks to the main fault. The dynamic view on backthrust fault branching provided by the study fills a gap not covered by quasi-static models or observations. A specific examined case of antithetic fault branching may be useful for indicating a barrier-like behavior along the main fault.

  15. [Centralisation of treatment of ruptured aneurysm].

    PubMed

    Akkersdijk, Willem L; Akkersdijk, George J M; Akkersdijk, George P

    2014-01-01

    In the future, patients with a ruptured aneurysm will be treated at fewer hospitals in the Netherlands. Although there is a search for scientific support for this, the reason for centralisation is obvious: reduction of costs and reduction of workload for vascular surgeons during night and weekend shifts. Already there are a number of examples of regionally organised vascular surgeons who treat their patients with a ruptured aneurysm with great satisfaction and with good results. PMID:25563776

  16. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  17. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  18. Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium-water reaction

    SciTech Connect

    Sudha, C.; Parameswaran, P. Kishore, S.; Murthy, C. Meikanda; Rajan, M.; Vijayalakshmi, M.; Raghunathan, V.S.

    2008-08-15

    This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium-water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the 'self wastage' of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as {>=} 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium-water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.

  19. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    NASA Astrophysics Data System (ADS)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  20. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  1. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  2. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  3. Spontaneous Rupture of Hepatic Metastasis from Pancreatic Adenocarcinoma.

    PubMed

    Rahul, Anil; Robin, Fernandes; Adarsh, Hiremath

    2016-01-01

    A 58-year-old man with advanced-stage pancreatic adenocarcinoma presented with fatigue and dyspnea. Examination revealed tachycardia (102 b/min) with mild tenderness in right upper quadrant. His hemoglobin (Hb) was 7.9 g/dL (10 days prior to presentation 12.2 g/dL), International normalized ratio (INR), platelet count was normal, and the stool guaiac test was negative. On admission, abdominal computed tomography (CT) scan showed hepatic metastatic lesion with a rupture and hemoperitoneum communicating to the subdiaphragmatic space. This rapid progression of anemia along with presenting symptoms and CT imaging were attributed to diagnosis of spontaneous rupture of liver metastasis from pancreatic adenocarcinoma. Patient received blood transfusion and hemoglobin was monitored in successive intervals. His general condition and anemia improved with conservative management and he was discharged in 3 days. Repeated CT after 4 months showed resolving hemoperitoneum and stable hemoglobin levels. The patient deceased 9 months after being diagnosed. A literature search revealed limited data regarding the incidence and management of spontaneous rupture of metastatic lesion secondary to pancreatic adenocarcinoma which has been managed conservatively and thus we are reporting our experience. PMID:27597912

  4. Geomorphic Signals for Preferred Propagation Direction of Earthquake Ruptures on North Anatolian Fault System, TURKEY

    NASA Astrophysics Data System (ADS)

    Yildirim, C.; Dor, O.; Rockwell, T.; Emre, O.; Ben-Zion, Y.; Sisk, M.; Duman, T.

    2005-12-01

    The North Anatolian Fault ruptured in a sequence of large earthquakes between 1939 and 1999, generally progressing from east to west. The 1943 and 1944 ruptures propagated unilateraly in opposite directions. Preliminary analysis of the geomorphology along these ruptures shows distinct differences that may reflect repeated ruptures with similar propagation directions. A persistent preferred propagation direction should produce asymmetric damage across the fault that may have goemorphic manifestations. Here we analyze geomorphic signals along the 43 and 44 ruptures to test whether correlative rock bodies across the fault have similar or distinct expression. We made observations at three scales: 1) small scale (< 100m) damage zone, generally expressed as localized badlands due to extremely high drainage density; 2) medium scale data of standard morphometric analyses (drainage density, stream frequency, ruggednes number, bifurcation ratio, landslide density, stream power index, slope length index, curvature and longitudinal profiles) on basins with same lithology; and 3) large scale on major rivers that display different adjustments. At two locations along the 43 rupture, highly eroded badlands south of the rupture have a higher gully density and frequency compared to the north. Drainage density gradually decreases as a function of distance from fault. On the 44 rupture, two sites near Ismetpasa were compared with one north and one south of the fault in the same lithology and with similar morphometric controls (elevation, relief and climate are very similar). Bifurcation ratios are 3.7 for the S side and 3.4 for the N, revealing the general homogeniety of the lithology. Morphometric analysis shows that the N area has higher drainage density, stream frequency, ruggedness number and landslide density. Stream power index , slope length index and curvature analysis are erosion-related parameters that indicate distinctive differences between the two sides of the fault

  5. General Considerations of Ruptured Abdominal Aortic Aneurysm: Ruptured Abdominal Aortic Aneurysm

    PubMed Central

    Lee, Chung Won; Bae, Miju; Chung, Sung Woon

    2015-01-01

    Although development of surgical technique and critical care, ruptured abdominal aortic aneurysm still carries a high mortality. In order to obtain good results, various efforts have been attempted. This paper reviews initial management of ruptured abdominal aortic aneurysm and discuss the key point open surgical repair and endovascular aneurysm repair. PMID:25705591

  6. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  7. A Rare Case of Simultaneous Acute Bilateral Quadriceps Tendon Rupture and Unilateral Achilles Tendon Rupture

    PubMed Central

    Leong, Wei Yee; Gheorghiu, Daniel; Rao, Janardhan

    2013-01-01

    Introduction: There have been multiple reported cases of bilateral quadriceps tendon ruptures (QTR) in the literature. These injuries frequently associated with delayed diagnosis, which results in delayed surgical treatment. In very unusual cases, bilateral QTRs can be associated with other simultaneous tendon ruptures. Case Report: We present a rare case of bilateral QTR with a simultaneous Achilles Tendon Rupture involving a 31 years old Caucasian man who is a semi-professional body builder taking anabolic steroids. To date bilateral QTR with additional TA rupture has only been reported once in the literature and to our knowledge this is the first reported case of bilateral QTR and simultaneous TA rupture in a young, fit and healthy individual. Conclusion: The diagnosis of bilateral QTR alone can sometimes be challenging and the possibility of even further tendon injuries should be carefully assessed. A delay in diagnosis could result in delay in treatment and potentially worse outcome for the patient. PMID:27298913

  8. Spontaneous rupture of unscarred uterus in a primigravida with preterm prelabour rupture of membranes.

    PubMed

    Mourad, Wael Sayed; Bersano, Debbra J; Greenspan, Peter B; Harper, Diane Medved

    2015-01-01

    Intrapartum uterine rupture is a true obstetrical emergency. Uterine rupture is associated with severe maternal and fetal morbidity and mortality. It is rare in the unscarred uterus of a primigravida. A 23-year-old primigravida with an unscarred uterus was admitted with preterm prelabour rupture of membranes at 36(+4) weeks of gestation. Abnormal fetal heart monitoring, associated with acute onset of severe abdominopelvic pain, developed on admission. Rupture occurred prior to onset of regular uterine contractions and in the absence of any interventional oxytocin. The neonate had evidence of severe acidosis despite emergency caesarean delivery. This case highlights the importance of maintaining a high index of suspicion for uterine rupture, even in the unlikely setting of a primigravida with an unscarred uterus. PMID:26055584

  9. Microstructural aspects of creep-rupture life of Type 316L(N) stainless steel in liquid sodium environment

    NASA Astrophysics Data System (ADS)

    Mishra, M. P.; Borgstedt, H. U.; Frees, G.; Seith, B.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of flowing sodium on creep-rupture properties of AISI Type 316L(N) stainless steel base material has been investigated at 550 and 600°C. In sodium test results were compared with reference creep-rupture data generated in air. The creep-rupture lives were longer in air than in sodium environment at 550°C, however, at 600°C, creep-rupture lives were longer in the latter than in the former environment. Microstructural studies showed the presence of sensitization and χ phase on longer duration test specimens at both temperatures. Surface cracks in sodium tested specimens were sharp and relatively more in numbers than in air where cracks were blunted. Cracks seem to follow the intergranular mode. Cavities were formed in long duration tests and propagated ahead of the χ phase.

  10. Dynamic rupture processes inferred from laboratory microearthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, François. X.; Schubnel, Alexandre; Nielsen, Stefan; Bhat, Harsha S.; Deldicque, Damien; Madariaga, Raúl

    2016-06-01

    We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high-frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane is almost total in the breakdown zone (for normal stress >75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our postmortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop, and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over 8 orders of magnitude in slip, from a few microns to tens of meters.

  11. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  12. Anterior cruciate ligament rupture and osteoarthritis progression.

    PubMed

    Wong, James Min-Leong; Khan, Tanvir; Jayadev, Chethan S; Khan, Wasim; Johnstone, David

    2012-01-01

    Anterior Cruciate Ligament (ACL) rupture is a common sporting injury that frequently affects young, athletic patients. Apart from the functional problems of instability, patients with ACL deficient knees also develop osteoarthritis. Although this is frequently cited as an indication for ACL reconstruction, the relationship between ACL rupture, reconstruction and the instigation and progression of articular cartilage degenerative change is controversial.The purpose of this paper is to review the published literature with regards ACL rupture and the multifactorial causes for osteoarthritis progression, and whether or not this is slowed or stopped by ACL reconstruction.There is no evidence in the published literature to support the view that ACL reconstruction prevents osteoarthritis, although it may prevent further meniscal damage. It must be recognised that this conclusion is based on the current literature which has substantial methodological limitations. PMID:22896777

  13. Postmyomectomic Uterine Rupture Despite Cesarean Section.

    PubMed

    Kacperczyk, Joanna; Bartnik, Paweł; Romejko-Wolniewicz, Ewa; Dobrowolska-Redo, Agnieszka

    2016-03-01

    Uterine fibroids (leiomyomas) are benign smooth muscle tumors of the uterus. Fibroids can develop anywhere within the muscular wall. Leiomyomas may be associated with infertility. Laparoscopic myomectomy is often used to remove symptomatic intramural or subserosal fibroids. Advantages of the procedure include short recovery time and minimal perioperative morbidity. At the same time, the multilayer suture technique is more complicated during laparoscopy. A rare but serious complication of laparoscopic myomectomies is uterine rupture. A brief review of the literature and a clinical example of a 33-year-old woman with history of infertility, laparoscopic myomectomies and uterine rupture followed by peripartum hemorrhage is presented. The treatment of leiomyomas is a challenge not only because of possible recurrence but also due to long-term consequences following successful myomectomy. Management of patients with uterine scars should include careful planning of the route of delivery, as the risk of rupture may be increased. PMID:26976991

  14. Component external leakage and rupture frequency estimates

    SciTech Connect

    Eide, S.A.; Khericha, S.T.; Calley, M.B.; Johnson, D.A.; Marteeny, M.L.

    1991-11-01

    In order to perform detailed internal flooding risk analyses of nuclear power plants, external leakage and rupture frequencies are needed for various types of components - piping, valves, pumps, flanges, and others. However, there appears to be no up-to-date, comprehensive source for such frequency estimates. This report attempts to fill that void. Based on a comprehensive search of Licensee Event Reports (LERs) contained in Nuclear Power Experience (NPE), and estimates of component populations and exposure times, component external leakage and rupture frequencies were generated. The remainder of this report covers the specifies of the NPE search for external leakage and rupture events, analysis of the data, a comparison with frequency estimates from other sources, and a discussion of the results.

  15. Right ventricular hydatid cyst ruptured to pericardium

    PubMed Central

    Sabzi, Feridoun; Vaziri, Siavoosh; Faraji, Reza

    2015-01-01

    Cardiac hydatidosis is rare presentation of body hydatidosis. Incidence of cardiac involvements range from 5% to 5% of patients with hydatid disease. Most common site of hydatid cyst in heart is interventricular septum and left ventricular free wall. Right ventricular free wall involvement by cyst that ruptured to pericardial cavity is very rare presentation of hydatid cyst. Cardiac involvement may have serious consequences such as rupture to blood steam or pericardial cavity. Both the disease and its surgical treatment carry a high complication rate, including rupture leading to cardiac tamponade, anaphylaxis and also death. In the present report, a 43-year-old man with constrictive pericarditis secondary to a pericardial hydatid cyst is described. PMID:26139761

  16. Ruptured, Intracranial Dermoid Cyst - A Visual Diagnosis?

    PubMed Central

    Scheer, Fabian; Andresen, Reimer

    2016-01-01

    Dermoid cysts are a very rare entity of intracranial tumours. The traumatic or non-traumatic rupture of the cyst wall is a serious complication that can be treated surgically or conservatively depending on the clinical symptoms. However, more common entities have to be considered as a differential diagnosis. We report on a female patient who was admitted with complaints of significant, prolonged headache and diffuse pain. Analysis of her blood and cerebrospinal fluid indicated no clear pathology. A CT examination of the head revealed a ruptured dermoid cyst adjacent to the left sphenoidal bone. An additional MRI was conducted to confirm the CT findings and rule out an intracranial ischemia or vasospasms. A conservative therapy was scheduled and the patient recovered well. Using current imaging techniques, especially magnetic resonance imaging, it is possible to identify a ruptured dermoid cyst by its pathognomonic signal behavior and rule out potentially life threatening complications. PMID:27190918

  17. A Late Presentation of Spontaneous Bladder Rupture During Labor.

    PubMed

    Farahzadi, A; Mohammadipour, S

    2016-09-01

    Spontaneous bladder rupture is usually due to bladder diseases. Bladder rupture during labor or postpartum is extremely rare. Acute abdomen is the usual presentation of spontaneous bladder rupture. Patients may complain of suprapubic pain, anuria and hematuria. Some patients with intraperitoneal bladder rupture may have no abdominal pain and can pass urine without any symptoms so the diagnosis of intraperitoneal rupture may be difficult in these situations. We report a nulliparous woman with abdominal pain and distension about 20 days after normal vaginal delivery. There was intraperitoneal rupture of bladder in dome of bladder which was sealed by jejunum. PMID:27313990

  18. Consequences of expansion joint bellows rupture

    SciTech Connect

    Daugherty, W.L.; Miller, R.F.; Cramer, D.S.

    1992-01-01

    Expansion joints are used in piping systems to accommodate pipe deflections during service and to facilitate fitup. Typically, the expansion joint bellows is the thinnest part of the pressure boundary, bellows rupture frequencies are typically several orders of magnitude higher than pipe rupture frequencies. This paper reviews an effort to estimate the flow rates associated with bellows rupture. The Level I PRA (probabilistic risk assessment) for the Savannah River Site production reactors made the bounding assumption that bellows rupture would produce the maximum possible leakage - that of a double-ended guillotine break (DEGB). This assumption resulted in predictions of flooding of the reactor building with a high conditional probability that a Loss of Pumping Accident and core melting would follow. This paper describes analyses that were performed to develop a realistic break area and leak rate resulting from bellows rupture and therefore reduce the impact that bellows rupture can have on the estimated total core melt frequency. In the event of a 360 degree circumferential break of the bellows the resulting two sections will separate to the point where the force from the internal pressure acting to push the bellows open is just balanced by the spring force of the bellows itself. For the bellows addressed in this analysis, the equilibrium separation distance is 0.7 inches with normal pump lineup. The opening area is influenced by any initial compression or extension due to installation alignment, and by any operational displacements such as thermal expansion of the adjoining pipe. The influence of such factors is considered and the impact on the flooding rate and, hence, core melt frequency is reviewed.

  19. Consequences of expansion joint bellows rupture

    SciTech Connect

    Daugherty, W.L.; Miller, R.F.; Cramer, D.S.

    1992-11-01

    Expansion joints are used in piping systems to accommodate pipe deflections during service and to facilitate fitup. Typically, the expansion joint bellows is the thinnest part of the pressure boundary, bellows rupture frequencies are typically several orders of magnitude higher than pipe rupture frequencies. This paper reviews an effort to estimate the flow rates associated with bellows rupture. The Level I PRA (probabilistic risk assessment) for the Savannah River Site production reactors made the bounding assumption that bellows rupture would produce the maximum possible leakage - that of a double-ended guillotine break (DEGB). This assumption resulted in predictions of flooding of the reactor building with a high conditional probability that a Loss of Pumping Accident and core melting would follow. This paper describes analyses that were performed to develop a realistic break area and leak rate resulting from bellows rupture and therefore reduce the impact that bellows rupture can have on the estimated total core melt frequency. In the event of a 360 degree circumferential break of the bellows the resulting two sections will separate to the point where the force from the internal pressure acting to push the bellows open is just balanced by the spring force of the bellows itself. For the bellows addressed in this analysis, the equilibrium separation distance is 0.7 inches with normal pump lineup. The opening area is influenced by any initial compression or extension due to installation alignment, and by any operational displacements such as thermal expansion of the adjoining pipe. The influence of such factors is considered and the impact on the flooding rate and, hence, core melt frequency is reviewed.

  20. Thoracic Outlet Syndrome Following Breast Implant Rupture

    PubMed Central

    Caplash, Yugesh; Giri, Pratyush; Kearney, Daniel; Wagstaff, Marcus

    2015-01-01

    Summary: We present a patient with bilateral breast implant rupture who developed severe locoregional silicone granulomatous lymphadenopathy. Poly Implant Prothese silicone implants had been used for bilateral breast augmentation 5 years prior. Extracapsular implant rupture and bilateral axillary lymphadenopathy indicated explantation, capsulectomy, and selective lymph node excision. Histology demonstrated silicone lymphadenopathy with no evidence of malignancy. Over the subsequent 12 months, she developed progressive locoregional lymphadenopathy involving bilateral cervical, axillary, and internal mammary groups, resulting in bilateral thoracic outlet syndrome. We report the unusual presentation, progression, and the ultimate surgical management of this patient. PMID:25878942

  1. Ruptured rudimentary horn at 22 weeks.

    PubMed

    Dhar, Hansa

    2012-07-01

    Rudimentary horn is a developmental anomaly of the uterus. Pregnancy in a non-communicating rudimentary horn is very difficult to diagnose before it ruptures. A case of undiagnosed rudimentary horn pregnancy at 22 weeks presented to Nizwa regional referral hospital in shock with features of acute abdomen. Chances of rupture in first or second trimester are increased with catastrophic haemorrhage leading to increased maternal and perinatal morbidity and mortality. Management of such cases is a challenge till today due to diagnostic dilemma. Expertise in ultrasonography and early resort to surgical management is life saving in such cases. PMID:23293421

  2. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    SciTech Connect

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  3. Pectoralis major tendon rupture. Surgical procedures review.

    PubMed Central

    Merolla, Giovanni; Paladini, Paolo; Campi, Fabrizio; Porcellini, Giuseppe

    2012-01-01

    Summary Pectoralis major (PM) muscle is the powerful dynamic stabiliser of the shoulder that acts as a flexor, adductor and internal rotator. The rupture of the PM tendon is a relatively rare injury that was firstly described in a French boy by Patissier in 1822 and later, in 1861, by Letenneur who reported another similiar case. To date, over 200 cases have been published. In this article we describe the clinical anatomy and the mechanism of injuries of PM and we review the surgical procedures for acute and chronic ruptures. PMID:23738281

  4. [Traumatic diaphragmatic rupture with delayed unusual disclosure].

    PubMed

    Thicoïpé, M; Sztark, F; Lassié, P; Tueux, O; Dabadie, P

    1995-01-01

    The authors report the case of a delayed presentation of a traumatic diaphragmatic rupture in a 22-year-old patient admitted to hospital for a minor surgical procedure under general anaesthesia. Nine months before, he had a road traffic accident with a minor thoracic trauma. Three days after surgery, the patient was readmitted for a tension hydrothorax due to the herniation and the perforation of the stomach into the left pleural cavity. Such a delayed presentation of a traumatic diaphragmatic rupture remains uncommon. The peroperative ventilatory factors involved in the development of the hernia are discussed. PMID:8572411

  5. [Gastric rupture after ingestion of liquid nitrogen].

    PubMed

    Knudsen, Anders Riegels; Nielsen, Casper; Christensen, Peter

    2009-02-01

    A 28-year-old male was admitted to hospital with severe abdominal distension and subcutaneous emphysema after ingesting 15 ml liquid nitrogen to produce an impressive burp. A rupture of the stomach at the lesser curvature was sutured by laparotomy. Peroperative gastroscopy showed no signs of cold-induced lesions. Liquid nitrogen boils at -196 degrees C. When heated to body temperature, it instantly expands 700 times, in this case predictably leading to gastric rupture. Therefore, any oral intake of even small amounts of liquid nitrogen should be avoided. PMID:19210943

  6. Spontaneous Achilles tendon rupture in alkaptonuria

    PubMed Central

    Alajoulin, Omar A.; Alsbou, Mohammed S.; Ja’afreh, Somayya O.; Kalbouneh, Heba M.

    2015-01-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  7. Experimental Investigation of Thrust Fault Rupture Mechanics

    NASA Astrophysics Data System (ADS)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  8. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  9. Creep-rupture behavior of iron superalloys in high pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1981-01-01

    Two cast alloys (CRM-6D and XF-818) and four sheet alloys (A-26, Incoloy 800H, N-155, and 19-9DL) in the thickness range of 0.79 to 0.99 mm were evaluated for use in the Stirling engine. The creep rupture behavior of these iron base high temperature alloys is being determined in air for 10 hr to 3,00 hr, and in 20.7 MPa (3,000 psi) H2 for 10 to 300 hr at temperatures of 650 deg to 925 deg. Material procurement, preparation and air creep rupture testing are described and existing data is analyzed. Systems for the high pressure hydrogen testing are discussed. Statistical analysis of temperature-compensated rupture data for each alloy is included.

  10. Stress-rupture strength and microstructural stability of W-HF-C wire-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    W-Hf-C superalloy composites were found to be potentially useful for turbine-blade applications on the basis of stress-rupture strength. The 100- and 1000-hour rupture strengths obtained for 70 volume percent fiber composites tested at 1090 C were 420 and 280 MN/sq m. The investigation indicated that with better quality fibers, composites having 100- and 1000-hour rupture strengths of 570 and 370 MN/sq m may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for long-term applications at 1090 C for 1000 hours or more.

  11. Primary gastric rupture in 47 horses (1995–2011)

    PubMed Central

    Winfield, Laramie S.; Dechant, Julie E.

    2015-01-01

    The purpose of this retrospective case-control study was to identify factors associated with primary gastric rupture and to investigate if there were differences between etiologies of primary gastric rupture. Compared to the general colic population, Quarter horses were under-represented and Friesians and draft breeds were over-represented in 47 cases of primary gastric ruptures. Horses with primary gastric rupture typically presented with severe clinical and clinicopathological derangements. There were 24 idiopathic gastric ruptures, 20 gastric impaction associated ruptures, and 3 perforating gastric ulcers. Thoroughbred horses were over-represented in the idiopathic gastric rupture group compared to other breeds and etiologies. This study suggests the presence of important breed predispositions for development of gastric rupture. Further study is necessary to identify if these predispositions are associated with management factors or breed-specific disorders. PMID:26345205

  12. D-Zero Cryostat Supplemental Rupture Disc

    SciTech Connect

    Mulholland, G.T.; /Fermilab

    1987-08-03

    The common relief and rupture disc vent line requires a double disc assembly with vented interspace for accurate disc burst pressures. The first disc must take pump and purge vacuum loading, but be set to operate at 110% of the MAWP, 18.3 psig (ASME code). The available solution is 18.3 psig with a burst tolerance of +/- psig. The interspace should be locally vented by a flow limiting vent valve to decouple the vent line backpressure from the vessel rupture disc. The second disc must take the worst case vent line backpressure, the steady state value found in D-Zero engineering note 3740.000-EN-63 with all three cryostats simultaneously venting at the fire condition into the 4-inch x 6-inch and 6-inch x 8-inch sections. This value is less than 2 psid. The maximum rupture value for the second disc must be less than the minimum rupture value for the first disc less 2 psid i.e. < 16.3.

  13. Spontaneous rupture of fetal hydronephrosis: case report.

    PubMed

    Kosus, A; Kosus, N; Duran, M; Turhan, N

    2011-08-01

    Hydronephrosis is the most common congenital anomaly observed with prenatal ultrasonography. Ureteropelvic junction obstruction (UPJO) is the most common cause of prenatal hydronephrosis. Spontaneous rupture has been reported in adults with severe hydronephrosis. There is no reported spontaneous rupture case in the fetus in the literature. A spontaneous ureteral rupture due to severe UPJO was reported in this case report. Prenatal ultrasound at 33 week gestation in a 21-year-old pregnant woman, revealed a female fetus with grade IV hydronephrosis of the right kidney, suggestive of a UPJO. During the follow-up at XXXVIII week, 5 cm cystic structure was not observed in right kidney. Mild ectasia was present in pelvicalyciel part which make us think about spontaneous rupture. Ultrasonographic examination after a week post-delivery revealed 15 mm pelvicalyciel ectasia on right side which persisted during the second control after 1 month. Vesicoureteral reflux was not detected during voiding cystourethrogram. Diuretic renography revealed loss of right renal function completely. Because there was not any complain or any clinical sign, surgery was not thought. Spontaneous follow-up was recommended. PMID:21959707

  14. An Uncommon Presentation of Breast Implant Rupture

    PubMed Central

    Watson, David I.; Dean, Nicola R.

    2016-01-01

    Summary: Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  15. Star polymers rupture induced by constant forces

    NASA Astrophysics Data System (ADS)

    García, N. A.; Febbo, M.; Vega, D. A.; Milchev, A.

    2014-10-01

    In this work, we study the breakage process of an unknotted three-arm star-shaped polymer when it is pulled from its free ends by a constant force. The star polymer configuration is described through an array of monomers coupled by anharmonic bonds, while the rupture process is tracked in three-dimensional space by means of Langevin Molecular Dynamics simulations. The interaction between monomers is described by a Morse potential, while a Weeks-Chandler-Anderson energetic contribution accounts for the excluded volume interaction. We explore the effect of the molecular architecture on the distributions of rupture times over a broad interval of pulling forces and star configurations. It was found that the rupture time distribution of the individual star arms is strongly affected by the star configuration imposed by the pulling forces and the length of the arms. We also observed that for large pulling forces the rupture time distributions resemble the dominant features observed for linear polymer chains. The model introduced here provides the basic ingredients to describe the effects of tensile forces on stress-induced degradation of branched macromolecules and polymer networks.

  16. Active diaphragm rupture with laser beam irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Torikai, H.; Yang, Q. S.; Watanabe, K.; Sasoh, A.

    We performed shock tube operations with a layer of diaphragm being ruptured by laser beam irradiation. Mylar or Cellophane was examined as the diaphragm material. It has been demonstrated that shock tube can be operated with this new technique. The absorbed energy depends on the material and thickness of the diaphragm and is an important control parameter.

  17. Traumatic rupture of the right subclavian artery

    PubMed Central

    Girdwood, Robert W.; Holden, Michael P.; Ionescu, Marian I.

    1972-01-01

    The case report of a patient who sustained a traumatic rupture of the right subclavian artery in a motor vehicle accident is presented. The preoperative diagnosis, surgical approach, postoperative management, and indications for angiography in traumatic lesions of the thoracic aorta and great vessels are discussed. The relevant literature is reviewed. Images PMID:5034604

  18. An Uncommon Presentation of Breast Implant Rupture.

    PubMed

    Koh, Eugene; Watson, David I; Dean, Nicola R

    2016-05-01

    Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  19. Pancreatic pseudocyst rupture into the portal vein.

    PubMed

    Dawson, Brian C; Kasa, David; Mazer, Mark A

    2009-07-01

    A patient with a pancreatic pseudocyst rupture into the portal vein with a resultant noninfectious systemic inflammatory response syndrome and subsequent portal vein thrombosis diagnosed by computed tomography and ultrasonography is reported. A review of the existing English literature on this rare complication is also provided. PMID:19561436

  20. Fatigue crack propagation analysis of plaque rupture.

    PubMed

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data. PMID:23897295

  1. Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture?

    NASA Astrophysics Data System (ADS)

    Tanaka, Miho; Asano, Kimiyuki; Iwata, Tomotaka; Kubo, Hisahiko

    2014-12-01

    The 2011 Fukushima-ken Hamadori earthquake (MW 6.6) occurred about a month after the 2011 Great Tohoku earthquake (MW 9.0), and it is thought to have been induced by the 2011 Tohoku earthquake. After the 2011 Hamadori earthquake, two subparallel faults (the Itozawa and Yunodake faults) were identified by field surveys. The hypocenter was located nearby the Itozawa fault, and it is probable that the Itozawa fault ruptured before the Yunodake fault rupture. Here, we estimated the source rupture process of the 2011 Hamadori earthquake using a model with two subparallel faults based on strong motion data. The rupture starting point and rupture delay time of the Yunodake fault were determined based on Akaike's Bayesian Information Criterion (ABIC). The results show that the Yunodake fault started to rupture from the northern deep point 4.5 s after the Itozawa fault started to rupture. The estimated slip distribution in the shallow part is consistent with the surface slip distribution identified by field surveys. Time-dependent Coulomb failure function changes (ΔCFF) were calculated using the stress change from the Itozawa fault rupture in order to evaluate the effect of the rupture on the Yunodake fault. The ΔCFF is positive at the rupture starting point of the Yunodake fault 4.5 s after the Itozawa fault started to rupture; therefore, it is concluded that during the 2011 Hamadori earthquake, the Yunodake fault rupture was triggered by the Itozawa fault rupture.

  2. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  3. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    PubMed Central

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD. PMID:25552833

  4. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  5. Simultaneous rupture of the quadriceps tendon with contralateral rupture of the patellar tendon in an otherwise healthy athlete.

    PubMed Central

    Munshi, N I; Mbubaegbu, C E

    1996-01-01

    A case of a healthy athlete with simultaneous rupture of quadriceps tendon and rupture of the contralateral patella tendon is reported. Both tendons rupturing in the same patient is rare and this is the first reported case in a previously healthy person. Different mechanisms are implicated in the different ruptures. The rarity is because the simultaneous presence of contributory factors for either injury in the same person is uncommon. Images Fig. 2 PMID:8799608

  6. Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Yin, J.; Yao, H.

    2014-12-01

    Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake

  7. Rupture Paths in Kappa-Maps: Quantitative Insights on Heterogeneous Earthquake Ruptures From Energy Arguments.

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Ripperger, J.; Mai, M.

    2005-12-01

    Earthquake rupture is a notoriously complex process, at all observable scales. Although heterogeneities of strength and initial stress contribute to this rupture complexity, a systematic approach to quantify their effect has not yet been attempted. For instance, little is known about the relation between the final size of an earthquake and the statistical properties of initial strength excess fields. Canonical cases of dynamic rupture (e.g. uniform initial stress and friction properties), can be characterized by two non-dimensional numbers: the S-parameter (ratio of strength excess to stress drop) and the Kappa-parameter (ratio of static energy release rate to fracture energy, Madariaga and Olsen, 2000). The latter was introduced as a global parameter, involving the fault depth or asperity size as the fundamental scale. However, because faults contain heterogeneities at all scales it is not clear how a single scale-length may be relevant to define Kappa. We define here a scale-dependent Kappa-map, based on classical energy concepts in fracture mechanics. In 2D these maps can be defined exactly, and their efficient computation is implemented as a series of FFT-convolutions, by scaled analytical filters related to stress intensity factor weight functions. For given heterogeneous stress drop and fracture energy, such Kappa-maps are useful to predict nucleation properties and final moment, as we illustrate through increasingly complex examples complemented by dynamic rupture simulations. Other properties that can be derived from the 2D Kappa-maps, with additional assumptions, include radiated energy and rupture directivity. In 3D, the shape of the rupture front is unknown a priori and the energy release rate G might be non-uniform along the front. We therefore propose an approximate definition of Kappa in which G is estimated on circular patches. Comparisons with 3D dynamic rupture simulations on highly heterogeneous initial stress fields show that the final moment can

  8. Two strategies to better constrain physics-based rupture scenarios and their uncertainties

    NASA Astrophysics Data System (ADS)

    Hok, Sébastien

    2016-04-01

    Physics-based rupture modelling needs some estimates of the physical parameters controlling the rupture mechanics, such as stresses, friction properties, fault geometries, as well as their variability in space. Given the lack of knowledge and direct way to infer the physical parameters controlling the rupture, these parameters come with uncertainties. To go further toward physics-based source models, we need to find strategies both for improving constraints on the input parameters, especially their variability along the fault plane, and for taking into account the uncertainties in the models. Here I present two interesting ways to improve our prediction capabilities. First, to reduce the uncertainties on the models, new strategies need to be tested for a better estimation of the input friction and stress parameters. In this framework, I will show examples of using interseismic coupling maps (Japan, Chile) as a proxy for the variability of stress drop along the fault plane. This strategy is an efficient way to introduce independent external constraint on the modelling, reducing the total uncertainty of the scenarios. Second, in order to quantify the final uncertainty of the results, we need to choose an appropriate way to handle of the variability of the input parameters. One way is to use logic trees. In this way the final results (rupture scenarios or ground motions) will come with an estimation of the uncertainty. I will illustrate this point with an application to the segmentation of rupture in the Corinth rift and magnitude probabilistic estimation.

  9. Derivative spectrophotometric analysis of cerebrospinal fluid for the detection of a ruptured cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Bhadri, P. R.; Majumder, A.; Morgan, C. J.; Pyne, G. J.; Zuccarello, M.; Jauch, E.; Wagner, K. R.; Clark, J. F.; Caffery, J., Jr.; Beyette, Fred R., Jr.

    2003-11-01

    A cerebral aneurysm is a weakened portion of an artery in the brain. When a cerebral aneurysm ruptures, a specific type of bleeding known as a subarachnoid hemorrhage (SAH) occurs. No test exists currently to screen people for the presence of an aneurysm. The diagnosis of a SAH is made after an aneurysm ruptures, and the literature indicates that nearly one-third of patients with a SAH are initially misdiagnosed and subjected to the risks associated with aneurysm re-rupture. For those individuals with a suspected SAH, a computerized tomography (CT) scan of the brain usually demonstrates evidence of the bleeding. However, in a considerable portion of people, the CT scan is unable to detect the blood that has escaped from the blood vessel. For circumstances when a SAH is suspected despite a normal CT scan, physicians make the diagnosis of SAH by performing a spinal tap. A spinal tap uses a needle to sample the cerebrospinal fluid (CSF) collected from the patient"s back; CSF is tainted with blood after the aneurysm ruptures. To distinguish between a common headache and a SAH, a fast and an effective solution is required. We describe the development of an effective detection system integrating hardware and a powerful software interface solution. Briefly, CSF from the patient is aspirated and excited with an appropriate wavelength of light. The software employs spectrophotometric analysis of the output spectra and lays the foundation for the development of portable and user-friendly equipment for detection of a ruptured cerebral aneurysm.

  10. DIRDOP: a directivity approach to determining the seismic rupture velocity vector

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-07-01

    Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811-1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru ( M w = 8.4, June 23, 2001); Denali, AK, USA ( M w = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria ( M w = 6.8, May 21, 2003); and Sumatra, Indonesia ( M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.

  11. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  12. Dynamic Rupture Processes during Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, F. X.; Schubnel, A.; Nielsen, S. B.; Bhat Suresh, H.; Madariaga, R. I.

    2014-12-01

    Since the proposal by Brace and Byerlee [1966] that the mechanism of stick-slip is similar to earthquakes, many experimental studies have been conducted in order to improve the understanding of rupture mechanics. Here, we report the results of macroscopic stick-slip events in saw-cut samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial laoding (σ1>σ2=σ3) at confining pressures ranging from 10 to 100 MPa. Usual a dual gain system, a high frequency monitoring array recorded the microseismicity during stick-slip sequences and the particle accelerations during macroscopic instabilities. While strain, stress and axial shortening were measured until 10 Hz sampling rate, we also recorded for the first time the dynamic stress changes during macroscopic rupture using dynamic strain gages located close to the fault plane (10 MHz sampling rate). We show that increasing the normal stress acting on the fault plane (i) increases the intensity of foreshock activity prior to the main rupture, (ii) increases the friction along the fault plane, (iii) increases the seismic slip, and (iv) induces the transition from sub-Rayleigh to supershear ruptures [Passelègue et al., 2013]. In addition, after demonstrating that our stick-slip instabilities exhibit a purely slip weakening behavior, we estimated the rupture processes parameters including the size of the breakdown zone (R), the slip-weakening distance (Dc), the energy rate (F) and the fracture energy (G). We compare our results with linear elastic fracture mechanics and previous experimental studies. Finally, the dynamic stress drop is almost complete at high normal stresses with dynamic friction drop ranging from 0.4 to 0.6. These results are consistent with the onset of melting, which was confirmed by our post mortem microstructural analysis (XRD, SEM, TEM). These results show that weakening mechanisms are activated after only 80 μm of slip, suggesting

  13. Isolated Total Rupture of Extraocular Muscles.

    PubMed

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-09-01

    Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2-60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of -3 to -4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for an early surgical

  14. Isolated Total Rupture of Extraocular Muscles

    PubMed Central

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-01-01

    Abstract Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2–60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of −3 to −4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for

  15. Complete rupture of the anterolateral papillary muscle caused by coronary spasm.

    PubMed

    Yamazaki, Masataka; Fukui, Toshihiro; Mahara, Keitaro; Takanashi, Shuichiro

    2015-12-01

    Papillary muscle rupture usually occurs as a catastrophic complication of acute myocardial infarction in patients with coronary artery stenosis; it is therefore less common in patients without coronary artery stenosis. We report the case of a 67-year old woman without coronary artery stenosis who suffered an acute anterolateral papillary muscle rupture and was successfully treated with mitral valve replacement. Evidence of coronary spasm was found on a coronary vasomotion test, suggesting that a high sensitivity to coronary spasm may explain a mechanism of isolated papillary muscle infarction. PMID:26330339

  16. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  17. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  18. Time-Temperature Superposition to Determine the Stress-Rupture of Aramid Fibres

    NASA Astrophysics Data System (ADS)

    Alwis, K. G. N. C.; Burgoyne, C. J.

    2006-07-01

    Conventional creep testing takes a long time to obtain stress-rupture data for aramid fibres at the low stress levels likely to be used in practical applications. However, the rate of creep of aramid can be accelerated by a thermally activated process to obtain the failure of fibres within a few hours. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve know as a master curve, from which stress-rupture data can be obtained. This technique is known as the time-temperature superposition principle and will be applied to Kevlar 49 yarns. Important questions relating to the techniques needed to obtain smooth master curves will be discussed, as will the validity the resulting curves and the corresponding stress-rupture lifetime.

  19. Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes

    NASA Astrophysics Data System (ADS)

    Okuwaki, Ryo; Yagi, Yuji; Aránguiz, Rafael; González, Juan; González, Gabriel

    2016-04-01

    We constructed a seismic source model for the 2015 M W 8.3 Illapel, Chile earthquake, which was carried out with the kinematic waveform inversion method adopting a novel inversion formulation that takes into account the uncertainty in the Green's function, together with the hybrid backprojection method enabling us to track the spatiotemporal distribution of high-frequency (0.3-2.0 Hz) sources at high resolution by using globally observed teleseismic P-waveforms. A maximum slip amounted to 10.4 m in the shallow part of the seismic source region centered 72 km northwest of the epicenter and generated a following tsunami inundated along the coast. In a gross sense, the rupture front propagated almost unilaterally to northward from the hypocenter at <2 km/s, however, in detail the spatiotemporal slip distribution also showed a complex rupture propagation pattern: two up-dip rupture propagation episodes, and a secondary rupture episode may have been triggered by the strong high-frequency radiation event at the down-dip edge of the seismic source region. High-frequency sources tends to be distributed at deeper parts of the slip area, a pattern also documented in other subduction zone megathrust earthquakes that may reflect the heterogeneous distribution of fracture energy or stress drop along the fault. The weak excitation of high-frequency radiation at the termination of rupture may represent the gradual deceleration of rupture velocity at the transition zone of frictional property or stress state between the megathrust rupture zone and the swarm area.

  20. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  1. An unusual presentation of recurrent uterine rupture during pregnancy

    PubMed Central

    Tan, Shu Qi; Thia, Edwin Wee Hong; Tee, Chee Seng John; Yeo, George Seow Heong

    2015-01-01

    We describe a case of recurrent uterine rupture at the site of a previous rupture. Our patient had a history of right interstitial pregnancy with spontaneous uterine fundal rupture at 18 weeks of pregnancy. During her subsequent pregnancy, she was monitored closely by a senior consultant obstetrician. The patient presented at 34 weeks with right hypochondriac pain. She was clinically stable and fetal monitoring showed no signs of fetal distress. Ultrasonography revealed protrusion of the intact amniotic membranes in the abdominal cavity at the uterine fundus. Uterine rupture is a rare but hazardous obstetric complication. High levels of caution should be exercised in patients with a history of prior uterine rupture, as they may present with atypical symptoms. Ultrasonography could provide valuable information in such cases where there is an elevated risk of uterine rupture at the previous rupture site. PMID:26106245

  2. Stopping of earthquake ruptures at dilational fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1985-07-01

    Palaeoseismic studies over the past several years have indicated that segments of certain major faults tend to rupture at fairly regular intervals in characteristic earthquakes of about the same size1. This implies the presence of local structural controls which govern the nucleation and stopping of ruptures. Understanding rupture arrest is important, not only because it governs the size of characteristic earthquakes, but also because deceleration of ruptures results in the radiation of high-frequency energy leading to strong ground motion2. I show here that rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures through dilational fault jogs in fluid-saturated crusts is opposed by transient suctional forces induced near the rupture tips3. Rupture arrest may then be followed by delayed slip transfer as fluid pressures re-equilibrate by diffusion.

  3. Recurrent spontaneous scleral rupture in Marfan's syndrome.

    PubMed

    Turaga, Kiranmaye; Senthil, Sirisha; Jalali, Subhadra

    2016-01-01

    The ocular manifestations of Marfan's syndrome (MS) range from ectopia lentis, microspherophakia, myopia, glaucoma and retinal detachment. Spontaneous scleral rupture is a rare complication and recurrent scleral perforation is extremely rare. We report a rare case of a 26-year-old male with MS who had sequential recurrent spontaneous scleral rupture which required surgical repair. He suffered from a similar problem 4 years later in both eyes in a different location, with overlying thin cystic blebs and hypotony maculopathy. Surgical repair with preserved scleral donor patch graft and conjunctival autograft in one eye, and conjunctival advancement in the other eye was performed. This helped stabilise the eyes, and resulted in complete visual recovery in both eyes. PMID:27199441

  4. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  5. Megakaryocyte rupture for acute platelet needs

    PubMed Central

    Stritt, Simon

    2015-01-01

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1α (IL-1α) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  6. Megakaryocyte rupture for acute platelet needs.

    PubMed

    Nieswandt, Bernhard; Stritt, Simon

    2015-05-11

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1α (IL-1α) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  7. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  8. Functional orthosis post pectoralis muscle rupture.

    PubMed

    Moore, Jodi

    2015-01-01

    This author described her success at fabricating a chest compression orthosis for a patient who underwent repair of a pectoralis major muscle rupture. The repair occurred nine months prior to orthotic fabrication, but the patient continued to experience weakness and pain which limited motion. The design of the orthotic allowed him increased mobility and functional use. - Victoria Priganc, PhD, OTR, CHT, CLT, Practice Forum Editor. PMID:26043967

  9. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  10. An unusual presentation of bronchial rupture.

    PubMed

    Goktalay, Tugba; Yaldiz, Sadik; Ozgen Alpaydin, Aylin; Goktan, Cihan; Celik, Pinar

    2011-06-01

    Persistent hydropneumothorax was diagnosed in a 62-year-old female with a history of blunt trauma, although she was treated with chest tube and closed underwater seal drainage. Computed tomography and fiberoptic bronchoscopy findings were consistent with "fallen lung" syndrome. Fiberoptic bronchoscopy also found a cavitary lesion at the right tracheobronchial angle. Forceps biopsy of the cavitary lesion indicated bronchogenic carcinoma. Our final diagnosis was tracheobronchial complete rupture and fallen lung syndrome secondary to malignancy. PMID:21333086

  11. Rupture directivity of moderate earthquakes in northern California

    USGS Publications Warehouse

    Seekins, Linda C.; Boatwright, John

    2010-01-01

    We invert peak ground velocity and acceleration (PGV and PGA) to estimate rupture direction and rupture velocity for 47 moderate earthquakes (3.5≥M≥5.4) in northern California. We correct sets of PGAs and PGVs recorded at stations less than 55–125 km, depending on source depth, for site amplification and source–receiver distance, then fit the residual peak motions to the unilateral directivity function of Ben-Menahem (1961). We independently invert PGA and PGV. The rupture direction can be determined using as few as seven peak motions if the station distribution is sufficient. The rupture velocity is unstable, however, if there are no takeoff angles within 30° of the rupture direction. Rupture velocities are generally subsonic (0.5β–0.9β); for stability, we limit the rupture velocity at v=0.92β, the Rayleigh wave speed. For 73 of 94 inversions, the rupture direction clearly identifies one of the nodal planes as the fault plane. The 35 strike-slip earthquakes have rupture directions that range from nearly horizontal (6 events) to directly updip (5 events); the other 24 rupture partly along strike and partly updip. Two strike-slip earthquakes rupture updip in one inversion and downdip in the other. All but 1 of the 11 thrust earthquakes rupture predominantly updip. We compare the rupture directions for 10 M≥4.0 earthquakes to the relative location of the mainshock and the first two weeks of aftershocks. Spatial distributions of 8 of 10 aftershock sequences agree well with the rupture directivity calculated for the mainshock.

  12. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  13. Rupture of plasma membrane under tension.

    PubMed

    Tan, Samuel Chun Wei; Yang, Tianyi; Gong, Yingxue; Liao, Kin

    2011-04-29

    We present a study on the rupture behavior of single NIH 3T3 mouse fibroblasts under tension using micropipette aspiration. Membrane rupture was characterized by breaking and formation of an enclosed membrane linked to a tether at the cell apex. Three different rupture modes, namely: single break, initial multiple breaks, and continuous multiple breaks, were observed under similar loading condition. The measured mean tensile strengths of plasma membrane were 3.83 ± 1.94 and 3.98 ± 1.54mN/m for control cells and cells labeled with TubulinTracker, respectively. The tensile strength data was described by Weibull distribution. For the control cells, the Weibull modulus and characteristic strength were 1.86 and 4.40 mN/m, respectively; for cells labeled with TubulinTracker, the Weibull modulus and characteristic strength were 2.68 and 4.48 mN/m, respectively. Based on the experimental data, the estimated average transmembrane proteins-lipid cleavage strength was 2.64 ± 0.64 mN/m. From the random sampling of volume ratio of transmembrane proteins in cell membrane, we concluded that the Weibull characteristic of plasma membrane strength was likely to be originated from the variation in transmembrane proteins-lipid interactions. PMID:21288526

  14. [Traumatic rupture of the thoracic aorta].

    PubMed

    Glock, Y; Roux, D; Soula, P; Cerene, A; Fournial, G

    1996-01-01

    This is a retrospective analysis of 50 postraumatic aortic rupture (1968-1996, 39 males, mean age: 34.5). Group A is composed of 35 patients with an acute aortic rupture and a prompt diagnosis. Group B includes 13 patients with a chronic rupture. All patients from group A had a severe politraumatism with abdominal, cranial, extremities or hip fractures. Mediastinal thickening with or without hemothorax indicated an angiography or a transesophageal echocardiography lately. In group A, 36 patients have been operated on urgently (12-24 hours); cardiopulmonary bypass was performed on 20 patients; an aorto-aortical bypass was done in 27 cases and a direct suture in the remaining 9. In group B, cardiopulmonary bypass was performed on 9 patients; a aorto-aortical bypass was done in 11 cases and a direct suture in 2. Overall hospital mortality was 16%; 19% in group A and 7.6% in group B. Ischemic paraplejia appeared in 5 patients (10%), all from group A. No false aneurysm developed after 4.5 years of follow-up (3-135 months) in the 38 survivors. The usefulness of transesophageal echocardiography, the importance of medular protection and the utility of several interventionist radiologic techniques are discussed. PMID:9053930

  15. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  16. Ruptured aneurysms of sinuses of Valsalva

    PubMed Central

    Jugdutt, B. I.; Fraser, R. S.; Rossall, R. E.; Lee, S. J. K.

    1974-01-01

    At least one additional cardiac lesion was present in 18 consecutive patients with ruptured aneurysms of the sinuses of Valsalva who were investigated between 1956 and 1973 at the University of Alberta Hospital. Clinical diagnosis was made in 78% (14/18) of the patients. Confirmation at cardiac catheterization, operation or autopsy was obtained in all but one. The main sites of rupture were the right ventricle (seven cases), right atrium (five) and left ventricle (five). Fifty percent (9/18) are alive and well following prompt operative repair, an average of 8.2 years later (range, six months to 15 years). Replacement of the aortic valve was associated with a high mortality (50% early, 13% late, total 63%) which could be explained by the higher operative risk in this group of very ill patients. Eight patients (44.4%) had had bacterial endocarditis prior to presentation and this may have played a significant role in the rupture of the sinus of Valsalva aneurysm. ImagesFIG. 4FIG. 5 PMID:4278257

  17. Carotid artery rupture and cervicofacial actinomycosis.

    PubMed

    Kummer, Anne; Lhermitte, Benoît; Ödman, Micaela; Grabherr, Silke; Mangin, Patrice; Palmiere, Cristian

    2012-11-01

    Cervicofacial actinomycosis is an uncommon, progressive infection caused by bacilli of the Actinomyces genus. Actinomyces are common commensal saprophytes in the oral cavity which may have medical importance as facultative pathogens. Subsequent to local injuries to the oral mucosa, they may penetrate the deep tissues and be responsible for suppurative or granulomatous infections. We herein report a case of a 65-year-old man who underwent surgery followed by chemotherapy and radiotherapy for a tonsillar carcinoma. An ulcerous lesion in the base of the tongue developed and spread to the carotid artery wall. The man died of a massive hemorrhage due to left carotid artery rupture. Postmortem computed tomography angiography performed prior to autopsy allowed the precise localization of the source of bleeding to be detected. Postmortem biochemical investigations confirmed the presence of inflammation associated with local bacterial infection. Histological investigations revealed the rupture of the left carotid artery surrounded by numerous colonies of Actinomyces. Acute and chronic inflammation with tissue necrosis as well as post-actinic, fibrotic changes were also found in the tissues surrounding the ruptured artery wall. PMID:22819527

  18. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  19. Intersonic and Supersonic ruptures in a model of dynamic rupture in a layered medium

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.

    2014-12-01

    The velocity structure in the lithosphere is quite complex and is rarely homogeneous. Wave reflection, transmission, and diffraction from the boundaries of the different layers and inclusions are expected to lead to a rich dynamic response and significantly affect rupture propagation on embedded faults. Here, we report our work on modeling dynamic rupture in an elastic domain with an embedded soft (stiff) layer as a first step towards modeling rupture propagation in realistic velocity structures. We use the Finite Element method (Pylith) to simulate rupture on a 2D in-plane fault embedded in an elastic full space. The simulated domain is 30 km wide and 100km long. Absorbing boundary conditions are used around the edges of the domain to simulate an infinite extension in all directions. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We consider embedded soft/stiff layers with 20% to 60% reduction/increase of wave velocity respectively. The embedded layers are placed at different distances from the fault surface. We observed that the existence of a soft layer significantly shortens the transition length to supershear propagation through the Burridge-Andrews mechanism. The higher the material contrast, the shorter the transition length to supershear propagation becomes. We also observe that supershear rupture could be generated at pretress values that are lower than what is theoretically predicted for a homogeneous medium. We find that the distance from the lower boundary of the soft layer to the fault surface has a stronger influence on the supershear transition length as opposed to the thickness of the soft layer. In the existence of an embedded stiffer layer we found that rupture could propagate faster than the fault zone P-wave speed. In this case, the propagating rupture generate two Mach cones; one is associated with the shear wave, and the

  20. Investigating rupture process of Parkfield seismicity

    NASA Astrophysics Data System (ADS)

    Kim, Ah Yi

    In this dissertation the result of four studies regarding earthquake source parameter determination, and three-dimensional (3D) wave propagation are presented. I have developed finite-source models for the September 28, 2004 M6 Parkfield earthquake using GPS and InSAR geodetic data, and seismic strong motion waveform data inverted both separately and jointly. The preferred model from the joint inversion shows that the rupture is predominantly unilateral to the NW with a small component to the SE. There are two primary high slip asperities one around the hypocenter and the other between 10 and 23 km to the NW both within the depth range of 5--13 km. The results from detailed sensitivity analyses indicate that the developed finite-source slip model is stable and the kinematic parameters are well resolved. I also examined the effect of the assumed velocity structure and corresponding Green's functions on the finite source inversion for the 2004 Parkfield earthquake using near-fault strong motion data with 1D and 3D velocity models. Using either the 1D or 3D velocity structures produce similar results, however there are significant differences in detail, where slip using 3D Green's functions is more compact, and the peak slip occurs in the hypocentral asperity in contrast to the 1D case where peak slip is located in the NW asperity. A comparison of seismic waveform derived slip models reveals that the 3D Green's function model predicts the GPS data significantly better. Both 1D and 3D Green's function models failed to model the strong motion waveform data from stations located very close to or within the fault-zone. Forward modeling revealed that accounting for a narrow low-velocity zone improves the fit to the data from these near-fault sites. Synthetic tests show that the influence of such fault-zone structure decreases rapidly with distance suggesting that excluding fault-zone stations from inversions and focusing on data from more distant stations may lead to less

  1. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    SciTech Connect

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  2. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  3. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  4. Utilisation of thorium in reactors

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  5. Coupling geodynamic earthquake cycles and dynamic ruptures

    NASA Astrophysics Data System (ADS)

    van Zelst, Iris; van Dinther, Ylona; Gabriel, Alice-Agnes; Heuret, Arnauld

    2016-04-01

    Studying the seismicity in a subduction zone and its effects on tsunamis requires diverse modelling methods that span spatial and temporal scales. Hundreds of years are necessary to build the stresses and strengths on a fault, while consequent earthquake rupture propagation is determined by both these initial fault conditions and the feedback of seismic waves over periods of seconds up to minutes. This dynamic rupture displaces the sea floor, thereby causing tsunamis. The aim of the ASCETE (Advanced Simulations of Coupled Earthquake and Tsunami Events) project is to study all these aspects and their interactions. Here, we present preliminary results of the first aspects in this modelling chain: the coupling of a seismo-thermo-mechanical (STM) code to the dynamic rupture model SeisSol. STM models of earthquake cycles have the advantage of solving multiple earthquake events in a self-consistent manner concerning stress, strength and geometry. However, the drawback of these models is that they often lack in spatial or temporal resolution and do not include wave propagation. In contrast, dynamic rupture models solve for frictional failure coupled to seismic wave propagation. We use the software package SeisSol (www.seissol.org) based on an ADER-DG discretization allowing high-order accuracy in space and time as well as flexible tetrahedral meshing. However, such simulations require assumptions on the initial fault stresses and strengths and its geometry, which are hard to constrain due to the lack of near-field observations and the complexity of coseismic conditions. By adapting the geometry as well as the stress and strength properties of the self-consistently developing non-finite fault zones from the geodynamic models as initial conditions for the dynamic rupture models, the advantages of both methods are exploited and modelling results may be compared. Our results show that a dynamic rupture can be triggered spontaneously and that the propagating rupture is

  6. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model

    PubMed Central

    2014-01-01

    Background Occlusion of blood vessels using high-intensity focused ultrasound (HIFU) is a potential treatment for arteriovenous malformations and other neurovascular disorders. However, attempting HIFU-induced vessel occlusion can also cause vessel rupture, resulting in hemorrhage. Possible rupture mechanisms include mechanical effects of acoustic cavitation and heating of the vessel wall. Methods HIFU exposures were performed on 18 ex vivo porcine femoral arteries with simultaneous passive cavitation detection. Vessels were insonified by a 3.3-MHz focused source with spatial-peak, temporal-peak focal intensity of 15,690–24,430 W/cm2 (peak negative-pressure range 10.92–12.52 MPa) and a 50% duty cycle for durations up to 5 min. Time-dependent acoustic emissions were recorded by an unfocused passive cavitation detector and quantified within low-frequency (10–30 kHz), broadband (0.3–1.1 MHz), and subharmonic (1.65 MHz) bands. Vessel rupture was detected by inline metering of saline flow, recorded throughout each treatment. Recorded emissions were grouped into ‘pre-rupture’ (0–10 s prior to measured point of vessel rupture) and ‘intact-vessel’ (>10 s prior to measured point of vessel rupture) emissions. Receiver operating characteristic curve analysis was used to assess the ability of emissions within each frequency band to predict vessel rupture. Based on these measurements associating acoustic emissions with vessel rupture, a real-time feedback control module was implemented to monitor acoustic emissions during HIFU treatment and adjust the ultrasound intensity, with the goal of maximizing acoustic power delivered to the vessel while avoiding rupture. This feedback control approach was tested on 10 paired HIFU exposures of porcine femoral and subclavian arteries, in which the focal intensity was stepwise increased from 9,117 W/cm2 spatial-peak temporal-peak (SPTP) to a maximum of 21,980 W/cm2, with power modulated based on the measured subharmonic

  7. Low footwall accelerations and variable surface rupture behavior on the Fort Sage Mountains fault, northeast California

    USGS Publications Warehouse

    Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon

    2013-01-01

    The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6  ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5  ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6  ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.

  8. Constraints Imposed by the Wilshire Methodology on Creep Rupture Data and Procedures for Testing the Validity of Such Constraints: Illustration Using 1Cr-1Mo-0.25V Steel

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2015-02-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately life materials operating at in service conditions from accelerated test results lasting no more than 5000 hours. These Wilshire equations contain discontinuities that have in the literature been interpreted either in terms of changing deformation mechanisms or changes in where deformation occurs within a material ( i.e., within boundaries or crystals). This paper demonstrates that the rather restrictive nature of these discontinuities within the Wilshire equations can lead to problems in identifying an appropriate model for long-term life prediction. An alternative framework is developed that removes these restrictions but still maintains the fundamental nature and characteristics of the Wilshire methodology. Further, when this alternative structure is applied to 1Cr-1Mo-0.25V steel, it produces more accurate and realistic looking long-term predictions of the time to failure.

  9. The effectiveness of 3D animations to enhance understanding of cranial cruciate ligament rupture.

    PubMed

    Clements, Dylan N; Broadhurst, Henry; Clarke, Stephen P; Farrell, Michael; Bennett, David; Mosley, John R; Mellanby, Richard J

    2013-01-01

    Cranial cruciate ligament (CCL) rupture is one of the most important orthopedic diseases taught to veterinary undergraduates. The complexity of the anatomy of the canine stifle joint combined with the plethora of different surgical interventions available for the treatment of the disease means that undergraduate veterinary students often have a poor understanding of the pathophysiology and treatment of CCL rupture. We designed, developed, and tested a three dimensional (3D) animation to illustrate the pertinent clinical anatomy of the stifle joint, the effects of CCL rupture, and the mechanisms by which different surgical techniques can stabilize the joint with CCL rupture. When compared with a non-animated 3D presentation, students' short-term retention of functional anatomy improved although they could not impart a better explanation of how different surgical techniques worked. More students found the animation useful than those who viewed a comparable non-animated 3D presentation. Multiple peer-review testing is required to maximize the usefulness of 3D animations during development. Free and open access to such tools should improve student learning and client understanding through wide-spread uptake and use. PMID:23475409

  10. Bilateral patellar tendon rupture associated with statin use.

    PubMed

    Kearns, Marie C; Singh, Vinay K

    2016-01-01

    Patellar tendon rupture is an uncommon clinical presentation, which generally affects the under 40s who are active in sport. Bilateral rupture of both tendons is much rarer. It occurs most frequently in patients with predisposing factors such as corticosteroid use or systemic diseases. The authors present the case of a 56-year-old male on long-term statin therapy who sustained this injury following a fall on ice. He had no known risk factors for tendon rupture. Surgical treatment involved tendon repair using Krakow suture via bony tunnels in the patella. Statins have previously been associated with tendon ruptures at other sites but there have been no published cases of bilateral patellar tendon rupture linked to statin use. We review the literature regarding the association between statins and tendon rupture. PMID:27165749