Science.gov

Sample records for in-situ electric field

  1. In situ electric fields causing electro-stimulation from conductor contact of charged human.

    PubMed

    Nagai, Toshihiro; Hirata, Akimasa

    2010-08-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength-duration curves with parameters used in previous studies. PMID:20382974

  2. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  3. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    PubMed Central

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  4. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Tu, Weichao; Li, Xinlin; Sarris, Theodore; Khotyaintsev, Yuri; Fu, Huishan; Zhang, Hui; Shi, Quanqi

    2016-02-01

    Based on 7 years' observations from Time History of Events and Macroscale Interactions during Substorms (THEMIS), we investigate the statistical distribution of electric field Pc5 ULF wave power under different geomagnetic activities and calculate the radial diffusion coefficient due to electric field, , for outer radiation belt electrons. A simple empirical expression of is also derived. Subsequently, we compare to previous DLL models and find similar Kp dependence with the model, which is also based on in situ electric field measurements. The absolute value of is constantly higher than , probably due to the limited orbital coverage of CRRES. The differences between and the commonly used and models are significant, especially in Kp dependence and energy dependence. Possible reasons for these differences and their implications are discussed. The diffusion coefficient provided in this paper, which also has energy dependence, will be an important contributor to quantify the radial diffusion process of radiation belt electrons.

  5. Formation of electroactive colloids via in situ coprecipitation under electric field: erbium chloride alkaline aqueous pseudocapacitor.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2014-09-15

    For the first time, a new ErCl3 alkaline aqueous pseudocapacitor system was demonstrated by designing commercial ErCl3 salt electrode in alkaline aqueous electrolyte, where the materials synthesis and subsequently integrating into practical electrode structures occur at the same spatial and temporal scale. Highly electroactive ErOOH colloids were in-situ crystallized via electric field assisted chemical coprecipitation of ErCl3 in KOH aqueous electrolyte. These electroactive ErOOH colloids absorbed by carbon black and PVDF matrix were highly redox-reactive with higher cation utilization ratio of 86 % and specific capacitance values of 1811F/g, exceeding the one-electron redox theoretical capacitance (Er(3+)↔Er(2+)). We believe that additional two-electron (Er(2+)↔Er) or three-electron (Er(3+)↔Er) reactions can occur in our designed ErCl3 alkaline aqueous pseudocapacitor system. The specific electrode configuration with ErOOH colloids grown among the carbon black/PVDF matrix can create short ion diffusion and electron transfer length to enable the fast and reversible Faradaic reactions. This work shows promising for finding high-performance electrical energy storage systems via designing the colloidal state of electroactive cations with the utilization of in-situ crystallization route. PMID:24973700

  6. In-situ observation of electric-field-induced acceleration in crystal growth of tetrathiafulvalene-tetracyanoquinodimethane

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro

    2013-04-01

    In-situ observations of vapor-phase growth of tetrathiafulvalene (TTF)-tetracyanoquinodimethane (TCNQ) crystals under an electric field were conducted without influencing the actual crystal growth process. The shortest incubation time of TTF-TCNQ nuclei and the highest initial growth rate of the crystals are obtained on the anode side and in high electric field regions. It is demonstrated that the distribution of molecules thermally diffusing on the substrate surface is controlled by an external electric field. These results indicate the potential for selective growth of highly conductive organic wires for micro- and nanoscale wiring in organic nanodevices.

  7. In situ study of electric field-induced magnetization in multiferroic BiFeO(3) nanowires.

    PubMed

    Prashanthi, K; Thundat, T

    2014-01-01

    In this work, we have studied electric field-induced magnetization effect of multiferroic BiFeO3 (BFO) nanowires in situ using magnetic force microscopy (MFM). Changes in magnetic domain contrast have been observed in the MFM phase images under applied electric potential, which indicate local magnetoelectric (ME) coupling in the nanowires. The values of saturation and magnetization at different applied electric fields were evaluated. These results suggest that one-dimensional multiferroic BFO nanowires are potential candidates for realizing multiferroic devices at nanoscale with unique functionalities. PMID:23637049

  8. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    PubMed

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm. PMID:25479377

  9. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle

    NASA Astrophysics Data System (ADS)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver’s seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  10. In-situ Visualization and Two Dimensional Mapping of Local Electric Field at Probe Apex Using Scanning Electron Optical System

    NASA Astrophysics Data System (ADS)

    Fujita, Jun-ichi; Ikeda, Yuta; Suzuki, Ikumi

    2009-06-01

    We demonstrate an in-situ visualization of electric field distribution and the two-dimensional (2D) mapping of a local field by using a conventional scanning electron microscopy (SEM) system combined with a grid detector. The deflection of the primary electron that obeys Rutherford scattering projects a cross grid shape to a shadow constructed by concentric rings and radial spokes that appear to superimpose immediately behind the conventional SEM image. The correlation of the beam scanning position with the deflection position gives the true local field intensity, and thus, the 2D electric field distribution is obtained. The resulting 2D field distribution agrees well with the field element method (FEM) simulation.

  11. A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements.

    PubMed

    Hossain, Mohammad J; Wang, Lijun; Wang, Zhiyang; Khansur, Neamul H; Hinterstein, Manuel; Kimpton, Justin A; Daniels, John E

    2016-05-01

    When studying electro-mechanical materials, observing the structural changes during the actuation process is necessary for gaining a complete picture of the structure-property relationship as certain mechanisms may be meta-stable during actuation. In situ diffraction methods offer a powerful and direct means of quantifying the structural contributions to the macroscopic strain of these materials. Here, a sample cell is demonstrated capable of measuring the structural variations of electro-mechanical materials under applied electric potentials up to 10 kV. The cell is designed for use with X-ray scattering techniques in reflection geometry, while simultaneously collecting macroscopic strain data using a linear displacement sensor. The results show that the macroscopic strain measured using the cell can be directly correlated with the microscopic response of the material obtained from diffraction data. The capabilities of the cell have been successfully demonstrated at the Powder Diffraction beamline of the Australian Synchrotron and the potential implementation of this cell with laboratory X-ray diffraction instrumentation is also discussed. PMID:27140148

  12. In-situ lattice-strain analysis of a ferroelectric thin film under an applied pulse electric field

    SciTech Connect

    Sakata, O.; Yasui, S.; Yamada, T.; Funakubo, H.; Yabashi, M.

    2010-06-23

    We developed an in-situ measurement system for characterizing the relationship between ferroelectricity and lattice distortion of a ferroelectric thin film at BL13XU, SPring-8. The dielectric polarization obtained and the lattice strain evaluated provide us with the electrostrictive coefficient of the film. The system for the method consists of a refractive lens for two dimensional micron focusing, ferroelectric characterization system, high-precision four-circle diffractometer, and time-resolved photon counting system. It enables in-situ measurements of the electric polarization of the film and an electric-field-induced strain using nano-second order time-resolved synchrotron diffraction. We applied the method to determining the lattice constant distorted by the electric field and the polarization value of a 410 nm-thick BiFeO{sub 3} thin film. The piezoelectric constant d{sub 33} evaluated was about 28 pm/V. The polarization observed allowed us to evaluate an electrostrictive coefficient Q of 1{center_dot}4x10{sup -2} m{sup 4}/C{sup 2}.

  13. In situ transmission electron microscopy study of the electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic

    NASA Astrophysics Data System (ADS)

    He, H.; Tan, X.

    2004-10-01

    Electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic was investigated with an electric field in situ transmission electron microscopy technique. It is found that the spacing between the (1/x){110} satellite spots and the fundamental reflections do not change with external electric field, indicating that the modulation wavelength stays constant under applied field. The intensity of these satellites starts to decrease when the field level reaches a critical value. Further increase in the field strength eventually leads to the complete disappearance of the satellite reflections. In addition, the 1/2 {111}-type superlattice reflections showed no response to electrical stimuli.

  14. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios.

    PubMed

    Schmid, Gernot; Hirtl, Rene

    2016-06-21

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  15. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  16. In-situ measurements of wave electric fields in the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Kelley, M. C.; Fejer, B. G.; Maynard, N. C.; Baker, K. D.

    1982-01-01

    Electric field wave measurements have been performed on two sounding rockets in the equatorial ionosphere. During a daytime flight from Chilca, Peru, intense electrostatic waves were detected on the upward-directed electron density gradient. During a nighttime flight from Kwajalein Atoll, similar waves were detected on a downward directed gradient. These results are in agreement with a gradient drift instability explanation of the generation of the waves. The wave amplitudes were as high as 5 mV/m, implying perturbation drifts comparable to the driving drift velocities. Power spectra from the turbulent region show a peak at long wavelengths, followed by a nearly flat spectral region before breaking into a power law form with negative index of 3.6-3.7 for wavelengths not greater than 30 m. Similarities between the spectra of the two flights suggest that the fundamental processes of the instabilities are the same in the day and nighttime conditions. The rocket data are consistent with radar results presented in a companion paper which show coherent, kilometer scale waves present in the electrojet.

  17. In-situ measurements of wave electric fields in the equatorial electrojet

    SciTech Connect

    Pfaff, R.F.; Kelley, M.C.; Fejer, B.G.; Maynard, N.C.; Baker, K.D.

    1982-06-01

    Electric field wave measurements have been performed on two sounding rockets in the equatorial ionosphere. During a daytime flight from Chilca, Peru, intense electrostatic waves were detected on the upward directed electron density gradient. During a nighttime flight from Kwajalein Atoll, similar waves were detected on a downward directed gradient. These results are in agreement with a gradient drift instability explanation of the generation of the waves. The wave amplitudes were as high as 5 mV/m implying perturbation drifts comparable to the driving drift velocities. Power spectra from the turbulent region show a peak at long wavelengths, followed by a nearly flat spectral region before breaking into a power law form with negative index of 3.6--3.7 for lambda< or =30 m. Similarities between the spectra of the two flights suggest that the fundamental processes of the instabilities are the same in the day and nighttime conditions. The rocket data are consistent with radar results presented in a companion paper which show coherent, kilometer scale waves present in the electrojet.

  18. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some well-accepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated. For the initial poling process, microstructural origins for the piezoelectricity development in the three most promising lead-free piezoceramic systems were investigated. For the non-ergodic relaxor ferroelectric compositions ( x = 6% - 9%) in the (1-x)(Bi1/2Na 1/2)TiO3-xBaTiO3 system, well-developed piezoelectricity was realized at poling fields far below the coercive field and phase transition field. Such

  19. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.

    PubMed

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-21

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines. PMID:24936747

  20. A binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Yin, Shu; Xue, Dongfeng

    2014-12-01

    A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems.A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems. Electronic supplementary

  1. Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, H. L.; Chou, W. Y.; Kuo, C. W.; Tang, F. C.; Wang, Y. W.

    2006-04-01

    We have investigated the electric field-induced microscopic structural changes in polycrystalline pentacene-based organic transistors by using in situ micro-Raman spectroscopy. Extra vibrational modes resulting from molecular coupling effect in pentacene film were studied. The herringbone packing of pentacene molecules in solid film is affected by external field and the process is proven to be partially irreversible. In the meantime, in-phase coupling of the C-H bending mode was found to be highly related to the carrier transport of pentacene film. Obtained results suggest that optimal intermolecular π-orbital overlap of pentacene molecules is still a critical factor impacting the carrier transportation for pentacene film featuring polycrystalline morphology.

  2. Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing

    PubMed Central

    Saito, Yoshitaro; Imai, Kazuhiro; Nakamura, Ryuta; Nanjo, Hiroshi; Terata, Kaori; Konno, Hayato; Akagami, Yoichi; Minamiya, Yoshihiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20–22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status. PMID:27443187

  3. Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing.

    PubMed

    Saito, Yoshitaro; Imai, Kazuhiro; Nakamura, Ryuta; Nanjo, Hiroshi; Terata, Kaori; Konno, Hayato; Akagami, Yoichi; Minamiya, Yoshihiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20-22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status. PMID:27443187

  4. Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields

    SciTech Connect

    Langerman, M.A.

    1990-09-01

    Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

  5. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    PubMed Central

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  6. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics.

    PubMed

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K W

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  7. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-06-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  8. In Situ Field Testing of Processes

    SciTech Connect

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  9. ALTAIR Radar Plasma Drifts and in situ Electric and Magnetic Field Measurements on Two Sounding Rockets and the C/NOFS Satellite in the Low Latitude Ionosphere at Sunset

    NASA Astrophysics Data System (ADS)

    Kudeki, Erhan; Pfaff, Robert; Rowland, Douglas; Klenzing, Jeffrey; Freudenreich, Henry

    2016-07-01

    We present ALTAIR incoherent scatter radar plasma drifts and in situ electric field, magnetic field, and plasma density measurements made simultaneously with probes on two sounding rockets and the C/NOFS satellite in the low latitude ionosphere in the vicinity of Kwajalein Atoll. The coincident data were gathered during sunset conditions prior to a spread-F event during the NASA EVEX Campaign. The sounding rocket apogees were 180 km and 330 km, while the C/NOFS altitude in this region was ~ 390 km. Electric field data from all three platforms display upwards vertical plasma drifts, while the zonal drifts change direction as a function of altitude and/or local time. The variable drifts provide evidence of a dynamic plasma environment which may contribute to the unstable conditions necessary for spread-F instabilities to form.

  10. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    SciTech Connect

    Zinkle, S.J.; White, D.P.; Snead, L.L.

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  11. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and

  12. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  13. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  14. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling.

    PubMed

    Wang, Yun-Kun; Li, Wen-Wei; Sheng, Guo-Ping; Shi, Bing-Jing; Yu, Han-Qing

    2013-10-01

    How to mitigate membrane fouling remains a critical challenge for widespread application of membrane bioreactors. Herein, an antifouling electrochemical membrane bioreactor (EMBR) was developed based on in-situ utilization of the generated electricity for fouling control. In this system, a maximum power density of 1.43 W/m(3) and a current density of 18.49 A/m(3) were obtained. The results demonstrate that the formed electric field reduced the deposition of sludge on membrane surface by enhancing the electrostatic repulsive force between them. The produced H2O2 at the cathode also contributed to the fouling mitigation by in-situ removing the membrane foulants. In addition, 93.7% chemical oxygen demand (COD) removal and 96.5% NH4(+)-N removal in average as well as a low effluent turbidity of below 2 NTU were achieved, indicating a good wastewater treatment performance of the EMBR. This work provides a proof-of-concept study of an antifouling MBR with high wastewater treatment efficiency and electricity recovery, and implies that electrochemical control might provide another promising avenue to in-situ suppress the membrane fouling in MBRs. PMID:23886542

  15. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  16. An integrated approach to monitoring a field test of in situ contaminant destruction

    SciTech Connect

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Elsholtz, A; Hudson, G B; Leif, R; Newmark, R L

    1998-12-01

    The development of in situ thermal remediation techniques requires parallel development of techniques capable of monitoring the physical and chemical changes for purposes of process control. Recent research indicates that many common contaminants can be destroyed in situ by hydrous pyrolysis/oxidation (HPO), eliminating the need for costly surface treatment and disposal. Steam injection, combined with supplemental air, can create the conditions in which HP0 occurs. Field testing of this process, conducted in the summer of 1997, indicates rapid destruction of polycyclic aromatic hydrocarbons (PAHs). Previous work established a suite of underground geophysical imaging techniques capable of providing sufficient knowledge of the physical changes in the subsurface during thermal treatment at sufficient frequencies to be used to monitor and guide the heating and extraction processes. In this field test, electrical resistance tomography (ERT) and temperature measurements provided the primary information regarding the temporal and spatial distribution of the heated zones. Verifying the in situ chemical destruction posed new challenges. We developed field methods for sampling and analyzing hot water for contaminants, oxygen, intermediates and products of reaction. Since the addition of air or oxygen to the contaminated region is a critical aspect of HPO, noble gas tracers were used to identify fluids from different sources. The combination of physical monitoring with noble gas identification of the native and injected fluids and accurate fluid sampling resulted in an excellent temporal and spatial evaluation of the subsurface processes, from which the amount of in situ destruction occurring in the treated region could be quantified. The experimental field results constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 400,000 kg (900

  17. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  18. Electrical signatures of hypervelocity impact plasma with applications in in-situ particle detection

    NASA Astrophysics Data System (ADS)

    Rudolph, M.; Schimmerohn, M.; Osterholz, J.; Schäfer, F.

    2014-08-01

    Hypervelocity impacts of micrometeoroid and space debris particles can produce a highly transient plasma cloud that shows a spectrum of distinct electrical phenomena ranging from charge production to electrostatic field and electromagnetic wave generation. The coupling of these effects to electrical probes can be used as a means of in-situ debris detection to monitor the polluted orbits around the Earth. In the past, some detectors were built mainly for the detection of natural dust populations in space, such as a long heritage of charge collection detectors. In addition, several radio astronomy and ambient plasma instruments that were not specifically dedicated to particle detection revealed impact-induced anomalies during interplanetary missions. Most of them were explained by the interaction of electrically sensitive probes with free charges produced upon impact. For the application in low Earth orbits, one needs to take into account, that the man-made debris population differs from natural populations in many regards, as does the plasma environment between interplanetary space and in orbits close to Earth. The paper at hand gives a summary of detectors with flight heritage and devises a first concept for in situ space debris detectors in low Earth orbit by exploiting past experience with dust detectors in deep space.

  19. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  20. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    SciTech Connect

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.; Fritz, Brad G.; Mendoza, Donaldo P.; Mackley, Rob D.; Wietsma, Thomas W.; Sandberg, Greg; Powell, Thomas; Powers, Jeff; Pitre, Emile; Michalsen, Mandy M.; Ballock-Dixon, Sage; Zhong, Lirong; Oostrom, Martinus

    2011-06-27

    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.

  1. In Situ Magnetic Field Measurement using the Hanle Effect

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2016-05-01

    We have developed a simple method of in situ magnetic field mapping near zero points in magnetic fields. It is ideal for measuring trapping parameters such the field gradient and curvature, and should be applicable in most experiments with a magneto-optical trap (MOT) or similar setup. This method works by probing atomic transitions in a vacuum, and is based on the Hanle effect, which alters the polarization of spontaneous emission in the presence of a magnetic field. Unlike most techniques based on the Hanle effect, however, we look only at intensity. Instead of measuring polarization we use the change in directional radiation patterns caused by a magnetic field. Using one of the cooling beams for our MOT, along with a linear polarizer, a narrow slit, and an inexpensive webcam, we measure the three dimensional position of a magnetic field zero point within our vacuum to within +/-1 mm and the gradient through the zero point to an accuracy of 4%. This work was supported by NSF Grant Number PHY-1205736.

  2. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    DOEpatents

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  3. In situ determination of slurry nutrient content by electrical conductivity.

    PubMed

    Provolo, G; Martínez-Suller, L

    2007-12-01

    Land application of animal slurries has both agronomic and environmental implications. It can be supported by the quantification of available nutrients in the field. A prototype device for indirect measurement of the nutrient content of slurry based on electrical conductivity (EC) was calibrated on manure samples collected from farms with different livestock typologies. The resulting correlations between EC and nutrient contents of slurries from laboratory analyses have shown good agreement (r(2) from 0.73 to 0.95) with total and ammoniacal nitrogen and, with some exception, Potassium, but failed to demonstrate any significant relationship with total phosphorous. The mean errors obtained using the device in field conditions for nitrogen content were always lower or equal to 10%, while the standard deviations were 12-13% for pig and calf slurries, and 20-21% for dairy cow slurry. The results obtained suggest that the equipment, provided the regression line used to convert EC readings to nutrient contents is related to the livestock typology under observation, can provide good support to practical slurry spreading, even though it does not reach an accuracy comparable to laboratory methods and does not give reliable information on phosphorus. PMID:16919932

  4. Electric Field Lines

    NASA Astrophysics Data System (ADS)

    Arribas, E.; Gallardo, C.; Molina, M.; Sanjosé, V.

    We present the computer program called LINES which is able to calculate and visualize the electric field lines due to seven different discrete configurations of electric point charges. Also we show two examples of the graphic screens generated by LINES.

  5. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  6. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  7. Pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  8. Distillation under electric fields

    SciTech Connect

    Shah, V.M.; Blankenship, K.D.; Tsouris, C.

    1997-11-01

    Distillation Is the most common separation process used in the chemical and petroleum industry. Major limitations in the applicability and efficiency of distillation come from thermodynamic equilibria, that is, vapor-liquid equilibria (VLE), and heat and mass transfer rates. In this work, electric fields are used to manipulate the VLE of mixtures. VLE experiments are performed for various binary mixtures in the presence of electric fields on the order of a few kilovolts per centimeter. The results show that the VLE is changed by electric fields, with changes in the separation factor as high as 10% being observed. Batch distillation experiments are also carried out for binary mixtures of 2-propanol and water with and without an applied electric field. Results show enhanced distillation rates and separation efficiency in the presence of an electric field but decreased separation enhancement when the electric current is increased. The latter phenomenon is caused by the formation at the surface of the liquid mixture of microdroplets that are entrained by the vapor. These observations suggest that there should be an electric field strength for each system for which the separation enhancement is maximum.

  9. IN SITU FIELD PORTABLE FINE PARTICLE MEASURING DEVICE

    EPA Science Inventory

    The report describes the design, development, and testing of an in situ fine particle measuring device--the Fine Particle Stack Spectrometer System (FPSSS). It is a laser-fed optical system with detection by near-forward light scattering. Sample volume is established by a high-re...

  10. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Ding, Mengning; He, Qiyuan; Wang, Gongming; Cheng, Hung-Chieh; Huang, Yu; Duan, Xiangfeng

    2015-08-01

    In situ monitoring electrochemical interfaces is crucial for fundamental understanding and continued optimization of electrocatalysts. Conventional spectroscopic techniques are generally difficult to implement for in situ electrochemical studies. Here we report an on-chip electrical transport spectroscopy approach for directly probing the electrochemical surfaces of metallic nanocatalysts in action. With a four-electrode device configuration, we demonstrate that the electrical properties of ultrafine platinum nanowires are highly sensitive and selective to the electrochemical surface states, enabling a nanoelectronic signalling pathway that reveals electrochemical interface information during in-device cyclic voltammetry. Our results not only show a high degree of consistency with generally accepted conclusions in platinum electrochemistry but also offer important insights on various practically important electrochemical reactions. This study defines a nanoelectronic strategy for in situ electrochemical surface studies with high surface sensitivity and surface specificity.

  11. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces

    PubMed Central

    Ding, Mengning; He, Qiyuan; Wang, Gongming; Cheng, Hung-Chieh; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    In situ monitoring electrochemical interfaces is crucial for fundamental understanding and continued optimization of electrocatalysts. Conventional spectroscopic techniques are generally difficult to implement for in situ electrochemical studies. Here we report an on-chip electrical transport spectroscopy approach for directly probing the electrochemical surfaces of metallic nanocatalysts in action. With a four-electrode device configuration, we demonstrate that the electrical properties of ultrafine platinum nanowires are highly sensitive and selective to the electrochemical surface states, enabling a nanoelectronic signalling pathway that reveals electrochemical interface information during in-device cyclic voltammetry. Our results not only show a high degree of consistency with generally accepted conclusions in platinum electrochemistry but also offer important insights on various practically important electrochemical reactions. This study defines a nanoelectronic strategy for in situ electrochemical surface studies with high surface sensitivity and surface specificity. PMID:26245937

  12. In situ electric field induced domain evolution in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.3(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ferroelectrics

    SciTech Connect

    Zakhozheva, M.; Kleebe, H.-J.; Schmitt, L. A.; Acosta, M.; Rödel, J.; Jo, W.

    2014-09-15

    In this work, the lead-free Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.3(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} piezoelectric ceramic was investigated in situ under an applied electric field by transmission electron microscopy. Significant changes in domain morphology of the studied material have been observed under an applied electric field. During the poling process, the domain configurations disappeared, forming a single-domain state. This multi- to single-domain state transition occurred with the formation of an intermediate nanodomain state. After removing the electric field, domain configurations reappeared. Selected area electron diffraction during electrical poling gave no indication of any structural changes as for example reflection splitting. Rather, a contribution of the extrinsic effect to the piezoelectric response of the Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.3(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} was found to be dominant.

  13. Dust as In-Situ Probes for Plasma Magnetic Field Interactions in a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    A series of experiments were conducted inside a GEC rf reference cell to map the forces in three dimensions above a magnet placed in a dusty plasma and employing both horizontal and vertical orientations. Micron sized dust particles were used as in-situ probes to investigate the interaction between the low-temperature plasma produced and a magnetic field close to a non-conductive surface. Dust particles were dropped into the plasma where they obtained a negative charge leading to trajectories, which were strongly influenced by both electric and ion drag forces. By recording the trajectories of the particles, which were illuminated by a vertical laser plane, the forces onto the particles were determined. A strong influence of the magnetic field onto the plasma sheath was observed. Given the electrons are strongly magnetized by the magnet while ions remain comparatively unaffected by the magnet a charge separation takes place, which leads to strong electric fields. As a result the sheath thickness varies significantly within the magnetic field, showing strong horizontal force components. Based on these observations, analogies to the interaction of the lunar plasma with known lunar magnetic anomalies will be drawn to contribute to the explanation of the formation of lunar swirls.

  14. Electric field generation in martian dust devils

    NASA Astrophysics Data System (ADS)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2016-04-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Mars in situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the Macroscopic Triboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric Modeling System (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system. Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  15. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    SciTech Connect

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  16. Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Kalyva, Maria; Kumar, Susmit; Brescia, Rosaria; Petroni, Simona; La Tegola, Carola; Bertoni, Giovanni; De Vittorio, Massimo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-01

    Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ˜0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ˜1010 Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation.

  17. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  18. In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Gao, P.; Xu, Z.; Bai, X. D.; Wang, E. G.

    2008-05-01

    In situ electrical transport measurements on individual bent ZnO nanowires have been performed inside a high-resolution transmission electron microscope, where the crystal structures of ZnO nanowires were simultaneously imaged. A series of consecutively recorded current-voltage (I-V) curves along with an increase in nanowire bending show the striking effect of bending on their electrical behavior. The bending-induced changes of resistivity, electron concentration, and carrier mobility of ZnO nanowires have been retrieved based on the experimental I-V data, which suggests the applications of ZnO nanowires as nanoelectromechanical sensors.

  19. In situ stress and natural fracture distribution in the Ekofisk Field, North Sea

    SciTech Connect

    Teufel, L W; Farrell, H E

    1990-01-01

    In situ stress and natural fractures have been mapped across the structural dome that forms the Ekofisk field in the Norwegian sector of the North Sea. The reservoir rock is chalk and a natural fracture system forms the primary conductive path for produced hydrocarbons and injected fluids. In situ stress measurements have been made using hydraulic fractures and anelastic strain recovery measurements of oriented core. 36 refs., 21 figs., 2 tabs.

  20. In situ electrical conductivity measurements of H2O under static pressure up to 28 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Bao; Gao, Yang; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-08-01

    The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H2O decreased discontinuously by four orders of magnitude at 0.7-0.96 GPa, indicating water frozen at this P-T condition. Correspondingly, the conduction of H2O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  1. Osmotic Effects on the Electrical Properties of Arabidopsis Root Hair Vacuoles in Situ1

    PubMed Central

    Lew, Roger R.

    2004-01-01

    To assess the role of the vacuole in responses to hyperosmotic and hypo-osmotic stress, the electrical properties of the vacuole were measured in situ. A double-barrel micropipette was inserted into the vacuole for voltage clamping. A second double-barrel micropipette was inserted into the cytoplasm to provide a virtual ground that separated the electrical properties of the vacuole from those of the plasma membrane. Osmotic stress causes immediate electrical responses at the plasma membrane (Lew RR [1996] Plant Physiol 97: 2002-2005) and ion flux changes and turgor recovery (Shabala SN, Lew RR [2002] 129: 290-299) in Arabidopsis root cells. In situ, the vacuole also responds rapidly to changes in extracellular osmotic potential. Hyperosmotic treatment caused a very large increase in the ionic conductance of the vacuole. Hypo-osmotic treatment did not affect the vacuolar conductance. In either case, the vacuolar electrical potential was unchanged. Taken in concert with previous studies of changes at the plasma membrane, these results demonstrate a highly coordinated system in which the vacuole and plasma membrane are primed to respond immediately to hyperosmotic stress before changes in gene expression. PMID:14730070

  2. FIELD-SCALE EVALUATION OF IN SITU COSOLVENT FLUSHING FOR ENCHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    A comprehensive, field-scale evaluation of in situ cosolvent flushing for enhanced remediation of nonaqueous phase liquid (NAPL)-contaminated aquifers was performed in a hydraulically isolated test cell (about 4.3 m x 3.6 m) constructed at a field site at Hill Air Force Base, Uta...

  3. In-situ phase transformation in the field ion microscope.

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.

    1991-04-01

    Many materials undergo an athermal martensite transformation when cooled. This transformation has been observed in the Tishomingo meteorite during cooling to cryogenic temperatures. The meteorite is unstable when cooled to the cryogenic temperatures (40 - 85K) suitable for field ion imaging since the martensite start temperature of this material (Fe-32.5 wt%Ni) is approximately 235K.

  4. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  5. Electrical properties of phosphorus in situ doped Au-catalyst vapor liquid solid silicon nanowires

    NASA Astrophysics Data System (ADS)

    Pichon, L.; Rogel, R.; Jacques, E.

    2015-11-01

    N-type in-situ doped silicon nanowire-based resistors are fabricated following a CMOS process fabrication. Silicon nanowires are prepared by a Vapour Liquid Solid (VLS) method using gold as the catalyst. The doping level is adjusted by varying the phosphine to silane mole ratio during silicon nanowire growth. A macroscopic electrical model is presented to extract the average silicon nanowire electrical resistivity over a large doping level range (varying from undoped to highly doped nanowires). Carrier transport is strongly affected by the trapping effect of gold impurities into silicon nanowires, and silicon nanowire electrical resistivity is three decades higher than for silicon bulk at low doping levels. The technological requirement in terms of doping level control for the fabrication of devices based on a gold catalyst VLS is demonstrated.

  6. Field tests of a chemiresistor sensor for in-situ monitoring of vapor-phase contaminants

    NASA Astrophysics Data System (ADS)

    Ho, C.; McGrath, L.; Wright, J.

    2003-04-01

    An in-situ chemiresistor sensor has been developed that can detect volatile organic compounds in subsurface environmental applications. Several field tests were conducted in 2001 and 2002 to test the reliability, operation, and performance of the in-situ chemiresistor sensor system. The chemiresistor consists of a carbon-loaded polymer deposited onto a microfabricated circuit. The polymer swells reversibly in the presence of volatile organic compounds as vapor-phase molecules absorb into the polymer, causing a change in the electrical resistance of the circuit. The change in resistance can be calibrated to known concentrations of analytes, and arrays of chemiresistors can be used on a single chip to aid in discrimination. A waterproof housing was constructed to allow the chemiresistor to be used in a variety of media including air, soil, and water. The integrated unit, which can be buried in soils or emplaced in wells, is connected via cable to a surface-based solar-powered data logger. A cell-phone modem is used to automatically download the data from the data logger on a periodic basis. The field tests were performed at three locations: (1) Edwards Air Force Base, CA; (2) Nevada Test Site; and (3) Sandia's Chemical Waste Landfill near Albuquerque, NM. The objectives of the tests were to evaluate the ruggedness, longevity, operation, performance, and engineering requirements of these sensors in actual field settings. Results showed that the sensors could be operated continuously for long periods of time (greater than a year) using remote solar-powered data-logging stations with wireless telemetry. The sensor housing, which was constructed of 304 stainless steel, showed some signs of corrosion when placed in contaminated water for several months, but the overall integrity was maintained. The detection limits of the chemiresistors were generally found to be near 0.1% of the saturated vapor pressure of the target analyte in controlled laboratory conditions (e

  7. Increasing electrical conductivity of upconversion materials by in situ binding with graphene.

    PubMed

    Wu, Suli; Sun, Xiaoqian; Zhu, Jiacheng; Chang, Jie; Zhang, Shufen

    2016-08-26

    Upconversion nanoparticles (UCNPs) hold promise as near-infrared light converters to enhance the efficiency of solar cells. However, the prevalent use of UCNPs in solar cells is restricted by their poor electrical conductivity and low emission efficiency. Here reduced graphene oxide (rGO)-NaYF4:Yb(3+)/Er(3+) composites are proposed to achieve good electrical conductivity due to the high charge carrier mobility of rGO. Composites of rGO and UCNPs combined by a chemical bond are in situ synthesized by the hydrothermal method, followed by a reduction process. The contact of UCNPs with rGO is proved by SEM, and the binding between the rGO-UCNP composites is confirmed by Fourier transform infrared spectroscopy. The composites are doped into the photoanode of a solar cell. As anticipated, electrochemical impedance spectroscopy confirms the good electrical conductivity of the in situ synthesized rGO-UCNPs. Furthermore, the use of rGO-UCNPs in solar cells enables an enhancement in short-circuit current density and overall efficiency by about 10%. These findings reveal that the combination of UCNPs with rGO opens up new opportunities of extending the use of UCNPs in the area of solar energy harvesting. PMID:27418592

  8. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth

    NASA Astrophysics Data System (ADS)

    Colin, J. J.; Diot, Y.; Guerin, Ph.; Lamongie, B.; Berneau, F.; Michel, A.; Jaouen, C.; Abadias, G.

    2016-02-01

    An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements.

  9. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth.

    PubMed

    Colin, J J; Diot, Y; Guerin, Ph; Lamongie, B; Berneau, F; Michel, A; Jaouen, C; Abadias, G

    2016-02-01

    An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements. PMID:26931861

  10. Increasing electrical conductivity of upconversion materials by in situ binding with graphene

    NASA Astrophysics Data System (ADS)

    Wu, Suli; Sun, Xiaoqian; Zhu, Jiacheng; Chang, Jie; Zhang, Shufen

    2016-08-01

    Upconversion nanoparticles (UCNPs) hold promise as near-infrared light converters to enhance the efficiency of solar cells. However, the prevalent use of UCNPs in solar cells is restricted by their poor electrical conductivity and low emission efficiency. Here reduced graphene oxide (rGO)–NaYF4:Yb3+/Er3+ composites are proposed to achieve good electrical conductivity due to the high charge carrier mobility of rGO. Composites of rGO and UCNPs combined by a chemical bond are in situ synthesized by the hydrothermal method, followed by a reduction process. The contact of UCNPs with rGO is proved by SEM, and the binding between the rGO–UCNP composites is confirmed by Fourier transform infrared spectroscopy. The composites are doped into the photoanode of a solar cell. As anticipated, electrochemical impedance spectroscopy confirms the good electrical conductivity of the in situ synthesized rGO–UCNPs. Furthermore, the use of rGO–UCNPs in solar cells enables an enhancement in short-circuit current density and overall efficiency by about 10%. These findings reveal that the combination of UCNPs with rGO opens up new opportunities of extending the use of UCNPs in the area of solar energy harvesting.

  11. In-situ electrical, mechanical and electrochemical characterizations of one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Mir Shah Ghassemi, Seyyed Hessam

    One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron

  12. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  13. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  14. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.

    2009-08-01

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  15. Versatile variable temperature insert at the DEIMOS beamline for in situ electrical transport measurements.

    PubMed

    Joly, L; Muller, B; Sternitzky, E; Faullumel, J G; Boulard, A; Otero, E; Choueikani, F; Kappler, J P; Studniarek, M; Bowen, M; Ohresser, P

    2016-05-01

    The design and the first experiments are described of a versatile cryogenic insert used for its electrical transport capabilities. The insert is designed for the cryomagnet installed on the DEIMOS beamline at the SOLEIL synchrotron dedicated to magnetic characterizations through X-ray absorption spectroscopy (XAS) measurements. This development was spurred by the multifunctional properties of novel materials such as multiferroics, in which, for example, the magnetic and electrical orders are intertwined and may be probed using XAS. The insert thus enables XAS to in situ probe this interplay. The implementation of redundant wiring and careful shielding also enables studies on operating electronic devices. Measurements on magnetic tunnel junctions illustrate the potential of the equipment toward XAS studies of in operando electronic devices. PMID:27140143

  16. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  17. FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...

  18. High voltage-power frequency electrical heating in-situ conversion technology of oil shale

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Yang, Yang; Lopatin, Vladimir; Guo, Wei; Liu, Baochang; Yu, Ping; Gao, Ke; Ma, Yinlong

    2014-05-01

    With the depletion of conventional energy sources,oil shale has got much attention as a new type of energy resource,which is rich and widespread in the world.The conventional utilization of oil shale is mainly focused on resorting to produce shale oil and fuel gas with low extraction efficiency about one in a million due to many shortcomings and limitations.And the in-situ conversion of oil shale,more environmentally friendly,is still in the experimental stage.High voltage-power frequency electrical heating in-situ conversion of oil shale is a new type of in-situ pyrolysis technology.The main equipment includes a high voltage-power frequency generator and interior reactor. The high voltage-power frequency generator can provide a voltage between 220-8000 V which can be adjusted in real time according to the actual situation.Firstly,high voltage is used to breakdown the oil shale to form a dendritic crack between two electrodes providing a conductive channel inside the oil shale rock.And then the power frequency(220V) is used to generate the electric current for heating the internal surface of conductive channel,so that the energy can be transmitted to the surrounding oil shale.When the temperature reaches 350 degree,the oil shale begins to pyrolysis.In addition,the temperature in the conductive channel can be extremely high with high voltage,which makes the internal surface of conductive channel graphitization and improves its heat conduction performance.This technology can successfully make the oil shale pyrolysis, based on a lot of lab experiments,and also produce the combustible shale oil and fuel gas.Compared to other in-situ conversion technology,this method has the following advantages: high speed of heating oil shale,the equipment underground is simple,and easy to operate;it can proceed without the limitation of shale thickness, and can be used especially in the thin oil shale reservoir;the heating channel is parallel to the oil shale layers,which has more

  19. A new probe for measuring small electric fields in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1991-01-01

    A dipolar double probe has been developed for in situ measurements of small electric fields in laboratory plasmas. The probe measures dc to ac electric fields (f values between 0 and 20 MHz) with high sensitivity (Emin about 10 microV/cm) and responds to both space charge electric fields and inductive electric fields. Using voltage-to-frequency conversion, the probe signal is obtained free of errors and loading effects by a transmission line. Various examples of useful applications for the new probe are presented, such as measurements of dc ambipolar fields, ac space-charge fields of ion acoustic waves, ac inductive fields of whistler waves, and mixed inductive and space-charge electric fields in current-carrying magnetoplasmas.

  20. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    SciTech Connect

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R.

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy`s (DOE`s) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites.

  1. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms.

    PubMed Central

    Hopkins, G D; Semprini, L; McCarty, P L

    1993-01-01

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms amended with phenol or toulene were equally effective in removing c-DCE (> 90%) followed by TCE (60 to 70%), while the microcosm fed methane was most effective in removing t-DCE (> 90%). The microcosm fed ammonia was the least effective. None of the microcosms effectively degraded 1,1,1-trichloroethane. At the Moffett Field groundwater test site, in situ removal of c-DCE and TCE coincided with biostimulation through phenol and oxygen injection and utilization, with c-DCE removed more rapidly than TCE. Greater TCE and c-DCE removal was observed when the phenol concentration was increased. Over 90% removal of c-DCE and TCE was observed in the 2-m biostimulated zone. This compares with 40 to 50% removal of c-DCE and 15 to 25% removal of TCE achieved by methane-grown microorganisms previously evaluated in an adjacent in situ test zone. The in situ removal with phenol-grown microorganisms agrees qualitatively with the microcosm studies, with the rates and extents of removal ranked as follows: c-DCE > TCE > t-DCE. These studies demonstrate the potential for in situ TCE bioremediation using microorganisms grown on phenol. PMID:8357259

  2. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements

    SciTech Connect

    Trindade, I. G.; Sousa, J. B.; Fermento, R.; Leitao, D.

    2009-07-15

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  3. In Situ Detection of Subsurface Biofilm Using Low-Field NMR: A Field Study.

    PubMed

    Kirkland, Catherine M; Herrling, Maria P; Hiebert, Randy; Bender, Andrew T; Grunewald, Elliot; Walsh, David O; Codd, Sarah L

    2015-09-15

    Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. Current methods to monitor subsurface biofilm growth in situ are indirect. Previous laboratory research conducted at MSU has indicated that low-field nuclear magnetic resonance (NMR) is sensitive to biofilm growth in porous media, where biofilm contributes a polymer gel-like phase and enhances T2 relaxation. Here we show that a small diameter NMR well logging tool can detect biofilm accumulation in the subsurface using the change in T2 relaxation behavior over time. T2 relaxation distributions were measured over an 18 day experimental period by two NMR probes, operating at approximately 275 kHz and 400 kHz, installed in 10.2 cm wells in an engineered field testing site. The mean log T2 relaxation times were reduced by 62% and 43%, respectively, while biofilm was cultivated in the soil surrounding each well. Biofilm growth was confirmed by bleaching and flushing the wells and observing the NMR signal's return to baseline. This result provides a direct and noninvasive method to spatiotemporally monitor biofilm accumulation in the subsurface. PMID:26308099

  4. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability.

    PubMed

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Yishu; Jaramillo, R; Banerjee, A; Ren, Y; Rosenbaum, T F

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal. PMID:26429451

  5. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    NASA Astrophysics Data System (ADS)

    Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  6. In situ bioassay using Chironomus riparius: An intermediate between laboratory and field sediment quality assessments

    SciTech Connect

    Guchte, C. van de; Grootelaar, L.; Naber, A.

    1995-12-31

    Benthic macroinvertebrates like chironomid larvae are important indicators for sediment quality. Both in field surveys and laboratory bioassays effect parameters like abundance, survival, growth, larval development and morphological abnormalities of chironomids are recommended biological endpoints to assess the impact of sediment associated contaminants. Now and then results from field surveys on contaminated sites appeared to differ from results in laboratory bioassays on sediment field samples from the same sites. The impact of so-called modifying factors like temperature, oxygen levels and the availability of food could be studied in the laboratory. However, these factors could not fully explain the observed differences. In situ bioassays have been developed to bridge the gap between laboratory and field derived data with respect to the exposure of cultured Chironomus riparius larvae versus field collected Chironomus sp. larvae. Control survival in the in situ bioassays was within acceptable limits (> 80%). Effects observed during the caged exposure of laboratory cultured first instar larvae at contaminated sites were in agreement with the hypothesis that adequate in-field bioassessment reduces uncertainties inherent in the use of standardized laboratory bioassays. Although relative risk ranking of chemicals or contaminated sites can rely upon standard testing protocols, in situ bioassays can give a better insight in exposure-effect relationships under actual field conditions.

  7. Growth and electrical rectification in axial in-situ doped p-n junction germanium nanowires

    SciTech Connect

    Picraux, Samuel T; Dayeh, Shadi; Zaslavsky, Alexander; Le, Son T

    2009-01-01

    In this work, we demonstrate the vapor-liquid-solid (VLS) growth and electrical properties of axial in-situ doped p-n junction Ge nanowires (NWs). In-situ doping of the NWs was accomplished by introducing dopant gases (diborane and phosphine) together with GeH{sub 4} in the growth process. By changing dopant sources during growth, a p-n junction can be realized along the axis of the NWs. Metal contacts to the wires were defined using e-beam lithography patterning, followed by 100 nm Ni sputter deposition and lift-off. Four-point measurements of the fabricated devices at room temperature and at 77 K clearly show rectification with on/off current ratio up to two orders of magnitude when the bias is applied across the p-n junction. The ideality factor of the junction current points to a significant generation-recombination contribution. The Ohmic characteristics in the p and n regions outside the junction make it possible to estimate the doping levels. We also observed backgate control of the NW junction current.

  8. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    SciTech Connect

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  9. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    SciTech Connect

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Y; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  10. The in-situ characterization of a transesterification reaction using electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin

    Impedance Spectroscopy has been used in the in-situ monitoring of a transesterfication reaction of soybean biodiesel. This paper describes the application of Electrical Impedance Spectroscopy (EIS) to observe and characterize the transesterfication reaction and its interfacial behavior phenomena electrically. In particular, the dielectric properties of soybean biodiesel were measured at broad range frequencies from 10-2 to 106 Hz at different temperatures, methanol molar ratio to biodiesel, concentration of catalyst and reaction time. Measurement of dielectric property have provided an important approach to understanding the structure of matter. Measurements of the dielectric properties are a reliable and efficient method for evaluating the biodiesel production to determine their quality and yield for reducing the production cost. The dielectric constant (epsilon') and loss (epsilon") are the most convenient indicators for quality control in commercial biodiesel manufacturing. Dielectric properties were correlated with chemically measured changes in soybean oil such as free fatty acids, amount of catalyst and alcohols at different temperatures as well as reaction times. It was observed that there is a good correlation between the dielectric constant (epsilon') and loss (epsilon") in soybean biodiesel. The result indicated that the dielectric properties increased with the (1) increasing temperature (2) increasing methanol; (3) increasing catalyst; (4) increasing reaction time. Dielectric properties was a useful index for the rapid quality evaluation of soybean biodiesel. Dielectric properties were compared to conventional methods of analysis (Infrared Spectroscopy) for evaluating the quality of soybean biodiesel. The results indicated that dielectric constant and dielectric loss are essential measurement for predicting the best biodiesel yield. Moreover, the electrical impedance parameters such as bulk resistance (Rb), bulk capacitance (Cb) and time constant(tau b

  11. Aqueous dissolution of laboratory and field samples from the in-situ vitrification process

    SciTech Connect

    McGrail, B.P. ); Bates, S.O. )

    1991-08-01

    In-situ vitrification (ISV) is being evaluated in several countries as a remediation technology for immobilizing both hazardous and radioactive buried wastes. A combination of laboratory data and modeling results are presented that establishes the scientific basis for predicting the long-term stability of an ISV glass in the environment. Laboratory experiments included tests with ISV samples obtained from pilot- and intermediate-scale field tests, a nuclear waste glass, and a natural obsidian. 8 refs.

  12. Formation factor logging by electrical methods. Comparison of formation factor logs obtained in situ and in the laboratory

    NASA Astrophysics Data System (ADS)

    Löfgren, Martin; Neretnieks, Ivars

    2003-03-01

    In this paper, a new in situ method for obtaining the formation factor, which is essential for the matrix diffusion, is described and tested in intrusive igneous rock. The method is based on electrical resistivity measurements in rock where the pore water and rock resistivities are essential parameters. The method is based on electromigration instead of diffusion as in traditional diffusion experiments. In previous works, quantitative formation factors of rock have been obtained by electrical methods in the laboratory. Here, a similar approach is used in situ. An in situ logging campaign was performed by SKB during 2000 in the 1700-m-deep borehole KLX02 in Laxemar, Sweden. The rock resistivity was measured with the slimhole Dual Laterolog from Antares. The groundwater resistivity was measured with the Difference Flow Meter from Posiva. A formation factor log was obtained with the maximum vertical resolution of 10 cm. In order to validate the log, 100 rock samples were taken from the bore core, and a formation factor log was obtained by using electrical methods in the laboratory. Both direct current (DC) and alternating current (AC) were used. The measurements on the core confirmed that the in situ log was quantitative, but with a possible systematic error. The in situ formation factors were on average about 1/3 to 1/5 of the laboratory formation factors, depending on depth.

  13. Field-scale evaluation of enhanced aquifer remediation using in-situ alcohol flushing

    SciTech Connect

    Rao, P.S.C.; Annable, M.D.; Hatfield, K.H.; Graham, W.D.; Wood, A.L.; Enfield, C.

    1995-09-01

    In-situ flushing of soils and aquifers contaminated with a variety of fuels and oils (e.g., gasoline, diesel, jet fuels, solvents, degreasers, coal tar, creosote, etc.) is based on enhanced mobilization and/or solubilization of the entrapped residual oils. The former technique involves immiscible displacement of oil macroemulsions, ganglia, blobs, and banks, whereas the latter technique is based on enhanced solubilization of the oil constituents and their miscible displacement. Results from lab-scale and field-scale evaluations of in-situ flushing with water-alcohol mixtures for enhanced solubilization of residual oils will be discussed. Emphasis of the presentation will be on the data collected during a recently completed field test of the in-situ cosolvent flushing technology, which was conducted at the Hill Air Force Base, utah, to remediate a shallow, unconfined aquifer contaminated with jet fuel and chlorinated solvents. As a part of this field test, studies were also conducted to evaluate the use of partitioning tracers (methyl alcohols) for quantifying the residual oils present at the site prior to and after cosolvent flushing. Criteria for performance assessment as well as the technological, regulatory, and economic factors governing full-scale applications for aquifer remediation will be discussed.

  14. Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field.

    PubMed

    Qian, Xu; Gao, Mo-Yun; Li, Ai-Dong; Zhou, Xiao-Yu; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Chen; Wu, Di

    2016-12-01

    In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy. PMID:27401088

  15. Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field

    NASA Astrophysics Data System (ADS)

    Qian, Xu; Gao, Mo-Yun; Li, Ai-Dong; Zhou, Xiao-Yu; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Chen; Wu, Di

    2016-07-01

    In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.

  16. Estimating In-situ Soil-Water Retention and Field Water Capacity in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A priori knowledge of the in-situ soil field water capacity (FWC) and the soil-water retention curve for soils is important for the effective irrigation management and scheduling of many crops. The primary objective of this study was to estimate the in-situ FWC using the soil-water retention curve d...

  17. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements

    SciTech Connect

    Chérigier-Kovacic, L. Doveil, F.; Ström, P.; Lejeune, A.

    2015-06-15

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied.

  18. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements.

    PubMed

    Chérigier-Kovacic, L; Ström, P; Lejeune, A; Doveil, F

    2015-06-01

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied. PMID:26133836

  19. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  20. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays.

    PubMed

    Nguyen, Mary-Anne; Srijanto, Bernadeta; Collier, C Patrick; Retterer, Scott T; Sarles, Stephen A

    2016-09-21

    The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizes the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. This novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes. PMID:27513561

  1. Introducing electric fields

    NASA Astrophysics Data System (ADS)

    Roche, John

    2016-09-01

    The clear introduction of basic concepts and definitions is crucial for teaching any topic in physics. I have always found it difficult to teach fields. While searching for better explanations I hit on an approach of reading foundational texts and electromagnetic textbooks in ten year lots, ranging from 1840 to the present. By combining this with modern techniques of textual interpretation I attempt to clarify three introductory concepts: how the field is defined; the principle of superposition and the role of the electrostatic field in a circuit.

  2. Electric and magnetic field measurements

    NASA Astrophysics Data System (ADS)

    McKnight, R. H.; Kotter, F. R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines is described. Apparatus designed to simulate the transmission line environment is also considered.

  3. Electric and magnetic field measurements

    NASA Astrophysics Data System (ADS)

    McKnight, R. H.; Kotter, F. R.; Misakian, M.; Hagler, J. N.

    1982-07-01

    Methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion related electrical quantities in the vicinity of high voltage direct current transmission lines are developed. Apparatus designed to simulate the transmission line environment are also evaluated.

  4. Field emission from α-Fe2O3 nanoflakes: Effect of vacuum pressure, gas adsorption and in-situ thermal treatment

    NASA Astrophysics Data System (ADS)

    Wu, J. Q.; Deng, S. Z.; Xu, N. S.; Chen, Jun

    2014-02-01

    The effects of vacuum pressure and gas adsorption on field emission current of α-Fe2O3 nanoflakes were studied. It was found that field emission current of α-Fe2O3 nanoflakes decreased with increasing pressure. The field emission current decreased when N2 or O2 was introduced into chamber, while no obvious change was observed for H2 gas. An in-situ thermal treatment was carried out to eradicate the effect of absorbed gas. After the in-situ thermal treatment, the field emission current density was largely enhanced from 60 to 500 μA/cm2 under applied electrical field of 10 MV/m and the turn on field (Eturn-on) decreased from 7.6 to 5.2 MV/m. The lowered turn-on field was attributed to the decrease of surface work function induced by surface gas desorption and reduction of α-Fe2O3 nanoflakes. Moreover, the improvement of field emission performance can be retained in high vacuum condition, which indicates the in-situ thermal treatment is an efficient method to improve field emission properties of α-Fe2O3 nanoflakes.

  5. Electric field effect in "metallic" polymers

    NASA Astrophysics Data System (ADS)

    Hsu, Fang-Chi

    this FET structure. In the presence of inserted ions, the in situ conductivity measurements indicate that the degree of disorder in the poorly conducting regions of PEDOT:PSS increases and the observed field effect is a bulk effect, which supports the percolation phenomenon; the in situ ESR measurements done simultaneously show no apparent change in the density of states at the Fermi level ( N(EF)) in the ordered regions of PEDOT:PSS. Combining the results in the disordered regions, the ordered regions and the percolation phenomenon lead to the conclusion that the inserted ions interacting with the counterions initially present in the disordered regions increase the hole hopping distance resulting in a conductor-nonconductor transition.

  6. In situ measured current structures of the eddy field in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Ternon, J. F.; Roberts, M. J.; Morris, T.; Hancke, L.; Backeberg, B.

    2014-02-01

    Circulation and the related biological production have been studied during five cruises conducted in the Mozambique Channel (MZC) between 2005 and 2010. The circulation in the MZC is known to be highly turbulent, favouring enhanced primary production as a result of mesoscale eddy dynamics, and connectivity throughout the Channel due to the variable currents associated with migrating eddies. This paper presents the results of in situ measurements that characterize the horizontal and vertical currents in the surface and subsurface layers (0-500 m). The in situ data were analysed together with the geostrophic eddy field observed from satellite altimeter measurements. Different circulation regimes were investigated, including the "classical" anticyclonic eddy generated at the Channel narrows (16°S), the enhancement of southward migrating eddies by merging with structures (both cyclonic and anticyclonic) formed in the east of the Channel, and the presence of a fully developed cyclonic eddy at the Channel narrows. Comparison between in situ measurements (S-ADCP and velocities derived from surface drifters) and the geostrophic current derived from sea surface height measurements indicated that the latter can provide a reliable, quantitative description of eddy driven circulation in the MZC, with the exception that these currents are weaker by as much 30%. It is also suggested from in situ observation (drifters) that the departure from geostrophy of the surface circulation might be linked to strong wind conditions. Finally, our observations highlight that a-geostrophic currents need to be considered in future research to facilitate a more comprehensive description of the circulation in this area.

  7. Field Deployment of Illite Clay as an InSitu Method for Remediating 137Cs-Contaminated Wetlands

    SciTech Connect

    Kaplan, D.I.

    2003-01-29

    The research reported herein centered on a field deployment of the in situ remediation method with the goal of learning if the clay amendments reduce the biological availability of 137Cs in contaminated wetlands.

  8. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  9. Validation of EGSIEM gravity field products with globally distributed in situ ocean bottom pressure observations

    NASA Astrophysics Data System (ADS)

    Poropat, Lea; Bergmann-Wolf, Inga; Flechtner, Frank; Dobslaw, Henryk

    2016-04-01

    Time variable global gravity field models that are processed by different research institutions all across Europe are currently compared and subsequently combined within the "European Gravity Field Service for Improved Emergency Management (EGSIEM)" project funded by the European Union. To objectively assess differences between the results from different groups, and also to evaluate the impact of changes in the data processing at an individual institution in preparation of a new data release, a validation of the final GRACE gravity fields against independent observations is required. 
For such a validation, we apply data from a set of globally distributed ocean bottom pressure sensors. The in situ observations have been thoroughly revised for outliers, instrumental drift and jumps, and were additionally reduced for tides. GRACE monthly mean solutions are then validated with the monthly resampled in situ observations. The validation typically concentrates on seasonal to interannual signals, but in case of GRACE-based series with daily sampling available from, e.g., Kalman Smoother Solutions, also sub-monthly signal variability can be assessed.

  10. Electric fields and quantum wormholes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  11. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements

    SciTech Connect

    Arnalds, U. B.; Agustsson, J. S.; Ingason, A. S.; Eriksson, A. K.; Gylfason, K. B.; Gudmundsson, J. T.; Olafsson, S.

    2007-10-15

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks.

  12. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements.

    PubMed

    Arnalds, U B; Agustsson, J S; Ingason, A S; Eriksson, A K; Gylfason, K B; Gudmundsson, J T; Olafsson, S

    2007-10-01

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks. PMID:17979429

  13. In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery

    PubMed Central

    2015-01-01

    A one-pot synthetic methodology for fabricating stimuli-responsive hemicellulose-based hydrogels was developed that consists of the in situ formation of magnetic iron oxide (Fe3O4) nanoparticles during the covalent cross-linking of O-acetyl-galactoglucomannan (AcGGM). The Fe3O4 nanoparticle content controlled the thermal stability, macrostructure, swelling behavior, and magnetization of the hybrid hydrogels. In addition, the magnetic field-responsive hemicellulose hydrogels (MFRHHs) exhibited excellent adsorption and controlled release profiles with bovine serum albumin (BSA) as the model drug. Therefore, the MFRHHs have great potential to be utilized in the biomedical field for tissue engineering applications, controlled drug delivery, and magnetically assisted bioseparation. Magnetic field-responsive hemicellulose hydrogels, prepared using a straightforward one-step process, expand the applications of biomass-derived polysaccharides by combining the renewability of hemicellulose and the magnetism of Fe3O4 nanoparticles. PMID:26196600

  14. In situ imaging of field-induced hexagonal columns in magnetite ferrofluids.

    PubMed

    Klokkenburg, Mark; Erné, Ben H; Meeldijk, Johannes D; Wiedenmann, Albrecht; Petukhov, Andrei V; Dullens, Roel P A; Philipse, Albert P

    2006-11-01

    Field-induced structures in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). The field-induced columnar phase locally exhibits hexagonal symmetry and confirms the structures observed in simulations for ferromagnetic dipolar fluids in 2D. The columns are distorted by lens-shaped voids, due to the weak interchain attraction relative to field-directed dipole-dipole attraction. Both dipolar coupling and the dipole concentration determine the dimensions and the spatial arrangement of the columns. Their regular spacing manifests long-range end-pole repulsions that eventually dominate the fluctuation-induced attractions between dipole chains that initiate the columnar transition. PMID:17155554

  15. Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization.

    PubMed

    Qian, Zhongjian; Liu, Xianyun; Yang, Ye; Yin, Qiaoxia

    2014-08-01

    Partially oxidized Si nanowire (NW) arrays have been achieved via a combinatorial process of selectively etching Si wafer to obtain vertically aligned single crystalline Si NW arrays and subsequent in situ partially oxidizing the as-etched bare Si NWs. The resultant Si products are Si-SiOx nanocable-like structures consisting of single-crystalline Si NW inner cores and outer shells of insulating SiOx. Field emission measurements demonstrate that surface partial oxidization enhances the field emission current of the as-etched bare Si NWs effectively, which can be ascribed to the outer shell of insulating SiOx that has small electron affinity (0.6-0.8 eV) and can protect Si NW inner cores. The results indicate that the partially oxidized Si NW arrays would act as the excellent field emitters in the future vacuum micro- and nano-electronic devices. PMID:25936088

  16. In situ measurements and radar observations of a severe storm - Electricity, kinematics, and precipitation

    NASA Technical Reports Server (NTRS)

    Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.

    1987-01-01

    Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.

  17. In situ destruction of contaminants via hydrous pyrolysis/oxidation. Visalia Field Test

    SciTech Connect

    Newmark, Robin L.; Aines, Roger D.; Knauss, Kevin; Leif, Roald; Chiarappa, Marina; Hudson, Bryant; Carrigan, Charles; Tompson, Andy; Richards, Jim; Eaker, Craig; Weidner, Randall; Sciarotta, Terry

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL' s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the

  18. Electric fields in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1972-01-01

    Two techniques, tracking the motions of Ba(+) clouds and measuring the differences in floating potential between symmetric double probes, were successful in: (1) demonstrating the basic convective nature of magnetospheric electric fields, (2) mapping global patterns of convection at upper ionosphere levels, and (3) revealing the physics of electric currents in the ionosphere and the importance of magnetosphere-ionosphere feedback in altering the imposed convection.

  19. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  20. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  1. An integrated, subsurface characterization system for real-time, in-situ field analysis

    SciTech Connect

    Baumgart, C.W.; Creager, J.; Mathes, J.; Pounds, T.; VanDeusen, A.; Warthen, B.

    1996-02-01

    This paper describes current efforts at AlliedSignal Federal Manufacturing and Technologies (FM and T) to develop and field an in-situ, data analysis platform to acquire, process, and display site survey data in near real-time. In past years, FM and T has performed a number of site survey tasks. Each of these surveys was unique in application as well as in the type of data processing and analysis that was required to extract and visualize useful site characterization information. However, common to each of these surveys were the following specific computational and operational requirements: (1) a capability to acquire, process, and visualize the site survey data in the field; (2) a capability to perform all processing in a timely fashion (ideally real-time); and (3) a technique for correlating (or fusing) data streams from multiple sensors. Two more general, but no less important, requirements include system architecture modularity and positioning capability. Potential applications include: survey, evaluation, and remediation of numerous Department of Defense and Department of Energy waste sites; real-time detection and characterization of unexploded ordnance and landmines; survey, evaluation, and remediation of industrial waste sites; location of underground utility lines; and providing law enforcement agencies with real-time surveys of crime scenes. The paper describes an integrated data acquisition, processing, and visualization platform that is capable of performing in-situ data processing, interpretation, and visualization in real-time.

  2. Inferring immobile and in-situ water saturation from laboratory and field measurements

    SciTech Connect

    Belen, Rodolfo P., Jr.

    2000-06-01

    Analysis of experimental data and numerical simulation results of dynamic boiling experiments revealed that there is an apparent correlation between the immobile water saturation and the shape of the steam saturation profile. An elbow in the steam saturation profile indicates the sudden drop in steam saturation that marks the transition from steam to two-phase conditions inside the core during boiling. The immobile water saturation can be inferred from this elbow in the steam saturation profile. Based on experimental results obtained by Satik (1997), the inferred immobile water saturation of Berea sandstone was found to be about 0.25, which is consistent with results of relative permeability experiments reported by Mahiya (1999). However, this technique may not be useful in inferring the immobile water saturation of less permeable geothermal rocks because the elbow in the steam saturation profile is less prominent. Models of vapor and liquid-dominated geothermal reservoirs that were developed based on Darcy's law and material and energy conservation equations proved to be useful in inferring the in-situ and immobile water saturations from field measurements of cumulative mass production, discharge enthalpy, and downhole temperature. Knowing rock and fluid properties, and the difference between the stable initial, T{sub o}, and dry-out, T{sub d}, downhole temperatures, the in-situ and immobile water saturations of vapor-dominated reservoirs can be estimated. On the other hand, the in-situ and immobile water saturations, and the change in mobile water content of liquid-dominated reservoirs can be inferred from the cumulative mass production, {Delta}m, and enthalpy, h{prime}, data. Comparison with two-phase, radial flow, numerical simulation results confirmed the validity and usefulness of these models.

  3. EVALUATION OF SILICON DIODES AS IN-SITU CRYOGENIC FIELD EMISSION DETECTORS FOR SRF CAVITY DEVELOPMENT

    SciTech Connect

    Ari Palczewski, Rongli Geng

    2012-07-01

    We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

  4. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  5. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    NASA Astrophysics Data System (ADS)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  6. In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China.

    PubMed

    Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Liu, Chongxuan; Li, Junxia; Zhu, Yapeng; Su, Chunli; Ma, Teng; Wang, Yanxin

    2016-01-25

    An aquifer Fe-coating technology was evaluated for in-situ As remediation. The groundwater in the aimed aquifer has low dissolved Fe(II) concentration and high As(III) concentration, which has a low affinity toward Fe-oxides/hydroxides. To overcome these challenges, dissolved Fe(II) (5.0 mM) and NaClO (2.6 mM) were injected into the studied aquifer to promote the formation of Fe oxides/hydroxides and to oxidize As(III) into As(V), thus removing aqueous As via adsorption and/or co-precipitation. During field experiment, As concentration in groundwater from the pumping well significantly decreased. Fe and As speciation calculations indicate that incorporation of negatively charged As(V) into goethite was the probable mechanism for As removal. Both chemical sequential extraction results and spectroscopic data also support that alternating injection of Fe(II) and NaClO can achieve aquifer Fe coating and immobilize As via adsorption onto Fe oxides/hydroxides. Geochemical modelling further confirms that although competition for sorption sites between As and other dissolved species is expected in the natural groundwater system, high surface area of the Fe oxides/hydroxides can provide sufficient sites for As retention. The ability to effectively decrease As concentration of in-situ aquifer Fe-coating technology indicates that this approach should have extensive applicability to similar high As groundwater occurred worldwide. PMID:26448490

  7. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied. PMID:27332828

  8. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  9. Dynamics of Magnetic Field Alignment of Block Copolymers by In-Situ SAXS

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum; Gopinadhan, Manesh; Majewski, Pawel

    2013-03-01

    The use of external fields to direct block copolymer self-assembly is well documented. Magnetic fields offer particular promise due to their space-pervasive nature and the ability to produce arbitrary alignments over truly macroscopic length scales in appropriate systems. We present here the results of in-situ SAXS studies performed using a custom superconducting magnet integrated with lab-scale x-ray scattering instruments. We consider the case of side-chain liquid crystalline diblock copolymers ordering under high magnetic fields. Despite the coincidence of the block copolymer order-disorder transition (ODT) and the LC clearing temperature in these weakly segregated materials, there is no measurable effect of the field on the ODT of the system, up to 6 T. This is in line with estimates based simply on the magnitudes of the relevant energy scales - the free energy of field interaction and the enthalpy of the isotropic-LC transition. We show that the alignment of the system is critically limited by the viscosity of the mesophase such that alignment can only be advanced by residence in a small temperature window near the ODT. This residence produces a weakly aligned system which thereafter transitions to a strongly aligned state on cooling even in the absence of the field. This work was conducted with support from NSF under DMR-0847534

  10. In-situ SAXS observation of magnetic field effects on block copolymer ordering and alignment

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum; Gopinadhan, Manesh; Majewksi, Pawel

    2012-02-01

    The use of external fields to direct block copolymer self-assembly is well documented. Magnetic fields offer particular promise due to their space-pervasive nature and the ability to produce arbitrary alignments over truly macroscopic length scales in appropriate systems. We present here the results of in-situ SAXS studies of side-chain liquid crystalline diblock copolymers ordering under high magnetic fields and ex-situ GISAXS data on thin films. Despite the coincidence of the block copolymer order-disorder transition (ODT) and the LC clearing temperature in these weakly segregated materials, there is no measurable effect of the field on the ODT of the system, up to 6 T. This is in line with rough estimates based simply on the magnitudes of the relevant energy scales - the free energy of field interaction and the enthalpy of the isotropic-LC transition. We show that the alignment of the system is critically limited by the viscosity of the mesophase such that alignment can only be advanced by residence in a small temperature window near TODT. This residence produces a weakly aligned system which thereafter transitions to a strongly aligned state on cooling even in the absence of the field.

  11. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  12. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  13. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  14. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  15. Intermittency of magnetic field turbulence: Astrophysical applications of in-situ observations

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev M.; Bykov, Andrei M.; Uvarov, Yury A.; Artemyev, Anton V.

    2015-08-01

    We briefly review some aspects of magnetic turbulence intermittency observed in space plasmas. Deviation of statistical characteristics of a system (e.g. its high statistical momenta) from the Gaussian can manifest itself as domination of rare large intensity peaks often associated with the intermittency in the system's dynamics. Thirty years ago, Zeldovich stressed the importance of the non-Gaussian appearance of the sharp values of vector and scalar physical parameters in random media as a factor of magnetic field amplification in cosmic structures. Magnetic turbulence is governing the behavior of collisionless plasmas in space and especially the physics of shocks and magnetic reconnections. Clear evidence of intermittent magnetic turbulence was found in recent in-situ spacecraft measurements of magnetic fields in the near-Earth and interplanetary plasma environments. We discuss the potentially promising approaches of incorporating the knowledge gained from spacecraft in-situ measurements into modern models describing plasma dynamics and radiation in various astrophysical systems. As an example, we discuss supernova remnants (SNRs) which are known to be the sources of energy, momentum, chemical elements, and high-energy cosmic rays (CRs) in galaxies. Supernova shocks accelerate charged particles to very high energies and may strongly amplify turbulent magnetic fields via instabilities driven by CRs. Relativistic electrons accelerated in SNRs radiate polarized synchrotron emission in a broad range of frequencies spanning from the radio to gamma-rays. We discuss the effects of intermittency of magnetic turbulence on the images of polarized synchrotron X-ray emission of young SNRs and emission spectra of pulsar wind nebula.

  16. Apparatuses and methods for generating electric fields

    SciTech Connect

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  17. Nanoconfined water under electric field

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Bratko, D.; Daub, C. D.

    2010-03-01

    We study the effect of electric field on interfacial tension of nanoconfined water [1,2] using molecular simulations. Our analysis and simulations confirm that classical electrostriction characterizes usual electrowetting behavior in nanoscale hydrophobic channels and nanoporous materials [3]. We suggest a new mechanism to orient nanoparticles by an applied electric field even when the particles carry no charges or dipoles of their own. Coupling to the field can be accomplished trough solvent-mediated interaction between the electric field and a nanoparticle [4]. For nanoscale particles in water, we find the response to the applied field to be sufficiently fast to make this mechanism relevant for biological processes, design of novel nanostructures and sensors, and development of nanoengineering methods [5]. [1]C. D. Daub, D. Bratko, K. Leung and A. Luzar, J. Phys. Chem. C 111, 505 (2007). [2] D. Bratko, C. D. Daub, K. Leung and A. Luzar, J. Am. Chem. Soc. 129, 2504 (2007) [3] D. Bratko, C. D. Daub and A. Luzar, Phys. Chem. Chem. Phys. 10, 6807 (2008). [4] D. Bratko, C. D. Daub and A. Luzar, Faraday Discussions 141, 55 (2009). [5] C. D. Daub, D. Bratko, T. Ali and A. Luzar, Phys. Rev. Lett. 103, 207801 (2009).

  18. Electric Field Mediated Droplet Centering

    SciTech Connect

    Bei, Z.-M.; Jones, T.B.; Tucker-Schwartz, A.; Harding, D.R.

    2010-03-12

    Double emulsion droplets subjected to a uniform ac electric field self-assemble into highly concentric structures via the dipole/dipole force if the outer droplet has a higher dielectric constant than the suspending liquid. The dielectric constant of the inner droplet has no influence. To minimize field-induced droplet distortion, the liquids must be density matched to ~0.1%. Centering of ~3 to 6 mm diameter droplets is achieved within ~60 s for field strengths of ~10^4 V_rms /m in liquids of viscosity ~10 cP. Effective centering depends strongly on frequency if the outer shell is conductive.

  19. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  20. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents

    NASA Astrophysics Data System (ADS)

    Wang, Tongmin; Zhu, Jing; Kang, Huijun; Chen, Zongning; Fu, Yanan; Huang, Wanxia; Xiao, Tiqiao

    2014-06-01

    The growth behavior and morphological evolution of dendrites in solidifying Sn-Bi alloy under electric currents [e.g., direct current (DC) and electric current pulse (ECP)] are in situ studied using synchrotron radiation X-ray imaging technique. The suppression of dendrite growth, floating and rotation of dendrites, refinement and remelting of dendrites are investigated by analyzing a series of animated images captured during the experiments. The modification mechanisms of dendrite morphology by electric fields are discussed based on the in situ and real-time observations. When DC is imposed on the samples, the growth of dendrites is significantly suppressed due to the effect of Joule heat, and a small dendrite freely flows up and rotates due to the common effect of natural convection. When ECP is imposed in the whole solidification process, the outset of solidification is delayed by Joule heat. And due to the accumulation of undercooling, dendrites suddenly nucleate, grow and finally become fine primary dendrite arm spacing. When ECP is imposed during the crystal growth stage only, the dendrites are remelted at first and then reappear along the original growing trajectories, showing the hereditary feature.

  1. In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Zurbuchen, Thomas H.; Richardson, Ian G.

    2004-01-01

    The heliospheric counterparts of coronal mass ejections (CMEs) at the Sun, interplanetary coronal mass ejections (ICMEs), can be identified in-situ based on a number of magnetic field, plasma, compositional and energetic particle signatures, as well as combinations thereof. Although many of these signatures have been recognized since the early space era, recent observations from improved instrumentation on spacecraft such as Ulysses, Wind, and ACE, in conjunction with solar observations from SOHO, have advanced our understanding of the characteristics of ICMEs and their solar counterparts. We summarize these signatures and their implications for understanding the nature of these structures and the physical properties of coronal mass ejections. We conclude that our understanding of ICMEs is far from complete, and formulate several challenges that, if addressed, would substantially improve our knowledge of the relationship between CMEs at the Sun and in the heliosphere.

  2. In situ tuning and probing the ambipolar field effect on multiwall carbon nanotubes

    SciTech Connect

    Chen, Li-Ying; Chang, Chia-Seng

    2014-12-15

    We report a method of fabricating ultra-clean and hysteresis-free multiwall carbon nanotube field-effect transistors (CNFETs) inside the ultra-high vacuum transmission electron microscope equipped with a movable gold tip as a local gate. By tailoring the shell structure of the nanotube and varying the drain-source voltage (V{sub ds}), we can tune the electronic characteristic of a multiwall CNFET in situ. We have also found that the Schottky barriers of a multiwall CNFET are generated within the nanotube, but not at the nanotube/electrode contacts, and the barrier height has been derived. We have subsequently demonstrated the ambipolar characteristics of the CNFET with concurrent high-resolution imaging and local gating.

  3. Modeling in situ soil enzyme activity using continuous field soil moisture and temperature data

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Wallenstein, M. D.

    2010-12-01

    Moisture and temperature are key drivers of soil organic matter decomposition, but there is little consensus on how climate change will affect the degradation of specific soil compounds under field conditions. Soil enzyme activities are a useful metric of soil community microbial function because they are they are the direct agents of decomposition for specific substrates in soil. However, current standard enzyme assays are conducted under optimized conditions in the laboratory and do not accurately reflect in situ enzyme activity, where diffusion and substrate availability may limit reaction rates. The Arrhenius equation, k= A*e(-Ea/RT), can be used to predict enzyme activity (k), collision frequency (A) or activation energy (Ea), but is difficult to parameterize when activities are measured under artificial conditions without diffusion or substrate limitation. We developed a modifed equation to estimate collision frequency and activation energy based on soil moisture to model in-situ enzyme activites. Our model was parameterized using data we collected from the Boston Area Climate Experiment (BACE) in Massachusetts; a multi-factor climate change experiment that provides an opportunity to assess how changes in moisture availability and temperature may impact enzyme activity. Soils were collected from three precipitation treatments and four temperature treatments arranged in a full-factorial design at the BACE site in June 2008, August 2008, January 2009 and June 2009. Enzyme assays were performed at four temperatures (4, 15, 25 and 35°C) to calculate temperature sensitivity and activation energy over the different treatments and seasons. Enzymes activities were measured for six common enzymes involved in carbon (β-glucosidase, cellobiohydrolase, xylosidase), phosphorus (phosphatase) and nitrogen cycling (N-acetyl glucosaminidase, and leucine amino peptidase). Potential enzyme activity was not significantly affected by precipitation, warming or the interaction of

  4. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  5. Paddy field mapping and yield estimation by satellite imagery and in situ observations

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.

    2011-12-01

    Since Asian countries are responsible for approximately 90% of the world rice production and consumptions, rice is the most significant cereal crop in Asia. In order to ensure food security and take mitigation strategies or policies to manage food shortages, timely and accurate statistics of rice production are essential. It is time and cost consuming work to create accurate statistics of rice production by ground-based measurements. Hence, satellite remote sensing is expected to contribute food security through the systematic collection of food security related information such as crop growth or yield estimation. In 2011, Japan Aerospace Exploration Agency (JAXA) is collaborating with GISTDA (Geo-Informatics and Space Technology Development Agency, Thailand) in research projects of rice yield estimation by integrating satellite imagery and in situ data. Thailand is one of the largest rice production countries and the largest rice exporting country, therefore rice related statistics are imperative for food security and economy in the country. However, satellite observation by optical sensor in tropics including Thailand is highly limited, because the area is frequently covered by cloud. In contrast, Japanese microwave sensor, namely Phased-Array L-Band Synthetic Aperture Radar (PALSAR) on board Advanced Land Observing Satellite (ALOS) is suitable for monitoring cloudy area such as Southeast Asia, because PALSAR can penetrate clouds and collect land-surface information even if the area is covered by cloud. In this study, rice crop yield over Khon Kaen, northeast part of Thailand was estimated by combining satellite imagery and in-situ observation. This study consists of mainly two parts, paddy field mapping and yield estimation by numerical crop model. First, paddy field areas were detected by integrating PALSAR and AVNIR-2 data. PALSAR imagery has much speckle noise and the border of each landcover is ambiguous compared to that of optical sensor. To overcome this

  6. Direct electrical and mechanical characterization of in situ generated DNA between the tips of silicon nanotweezers (SNT).

    PubMed

    Karsten, Stanislav L; Kumemura, Momoko; Jalabert, Laurent; Lafitte, Nicolas; Kudo, Lili C; Collard, Dominique; Fujita, Hiroyuki

    2016-05-24

    Previously, we reported the application of micromachined silicon nanotweezers (SNT) integrated with a comb-drive actuator and capacitive sensors for capturing and mechanical characterization of DNA bundles. Here, we demonstrate direct DNA amplification on such a MEMS structure with subsequent electrical and mechanical characterization of a single stranded DNA (ssDNA) bundle generated between the tips of SNT via isothermal rolling circle amplification (RCA) and dielectrophoresis (DEP). An in situ generated ssDNA bundle was visualized and evaluated via electrical conductivity (I-V) and mechanical frequency response measurements. Colloidal gold nanoparticles significantly enhanced (P < 0.01) the electrical properties of thin ssDNA bundles. The proposed technology allows direct in situ synthesis of DNA with a predefined sequence on the tips of a MEMS sensor device, such as SNT, followed by direct DNA electrical and mechanical characterization. In addition, our data provides a "proof-of-principle" for the feasibility of the on-chip label free DNA detection device that can be used for a variety of biomedical applications focused on sequence specific DNA detection. PMID:27161663

  7. The gravity anomaly field in the Gulf of Bothnia spatially characterized from satellite altimetry and in situ measurements

    NASA Astrophysics Data System (ADS)

    Noréus, J. P.; Nyborg, M. R.; Hayling, K. L.

    1997-06-01

    The gravity anomaly field in the Gulf of Bothnia has been investigated using (1) in situ high-precision measurements conducted on the sea ice during cold winters, and (2) gravity anomaly profiles computed from collinear satellite radar altimeter data from the Geosat ERM and the Topex/Poseidon missions. The in situ measurements were obtained from a collaboration between the Finnish Geodetic Institute, the Geological Survey of Sweden (SGU) and the National Survey of Sweden (LMV), and were processed with the geostatistical method called kriging. These data were used to calibrate the altimetric gravity. Altimetry generally resolves features of 20 km wavelength or longer, and in some cases detects shorter features when a sampling interval of 10 Hz is used. The precision of the along-track one-dimensional altimetric profiles corresponds to a gravity uncertainty of 2-3 mGal, and comparison with in situ measured gravity show 4 mGal discrepancy. The precision of the in situ measurements is better. However, depending on the sampling distance, the estimation uncertainty interior the in situ data areas may be up to 5 mGal between neighbouring data points. In regions with in situ data gaps, the estimation uncertainty of the in situ gravity measurements is rapidly increasing to a maximum of 9 mGal. An improved estimation uncertainty of 4-9 mGal was obtained in the same data gap regions with the support of satellite altimetry. Altimetric gravity is therefore used to estimate the gravity field in such regions, and to spatially characterize the gravity field in the Gulf of Bothnia.

  8. In situ aquatic bioassessment of pesticides applied on rice fields using a microalga and daphnids.

    PubMed

    Marques, C R; Pereira, R; Antunes, S C; Cachada, A; Duarte, A C; Gonçalves, F

    2011-08-15

    This study assessed the effects of episodic contamination on a drainage canal adjacent to an area of intensive rice production (Coimbra, Portugal). Four monitoring periods were considered [i) before herbicide application (day-14), ii) at the first application day (day 0), iii) 3 or 5 and iv) 6days after]. Each one consisted in three complementary evaluation lines: a) physico-chemical analyses, b) whole effluent toxicity (WET) assays with Pseudokirchneriella subcapitata, c) in situ bioassays to assess microalgae (P. subcapitata) growth, and the feeding rate and survival of Daphnia longispina and Daphnia magna. Study sites were located upstream, in a protected wetland (L1), and downstream, in the vicinity of rice fields (L2). Along with the application of agrochemicals, there was a general decrease of the water quality, especially in L2, due to nutrient and herbicide inputs. Herbicide peaks (on days 0, 5 and 6) in L2 water samples were recorded concomitantly or immediately after their application. Regarding the in situ bioassessment, the algae growth decrease from day 0 onwards in L1, whilst in L2 its inhibition was generally coherent with the decline of the water quality. Apparently, WET tests indicated that the limitation of nutrients could be affecting algae growth in L1, however, conclusions should be cautious. The feeding depression of daphnids occurred on days 0 and 5 for D. longispina and only on day 0 for D. magna, while significant reductions on survival were restricted to day 0 for both species. The impairments occurring on day 0 were linked to a potential increased toxicity driven by the ingestion of particle-bound herbicides and suspended particles. The feeding rate of daphnids provided an earlier indication of toxic impairments, though it is prompted the use of complementary endpoints and trophic levels in order to understand the cumulative effects due to various herbicide pulses. PMID:21669452

  9. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging

    PubMed Central

    2014-01-01

    Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed. PMID:24397559

  10. A comparison of methods for in situ discrimination of imaged phase boundaries using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Clark, P. J.; Tsoligkas, A. N.; Simmons, M. J. H.; Robbins, P. T.; Stitt, E. H.

    2016-02-01

    The detection of hard boundaries using tomographic techniques is challenging due to the measurement resolution inherent in the hardware and smoothing effects created during image reconstruction. This paper is concerned with the development of data processing approaches which enable the use of electrical capacitance tomography (ECT) in real-time applications to visualise interfaces in liquid/liquid and solid/liquid systems based upon phase permittivity differences in media with a high di-electric continuum. The methodologies developed were applied to a series of phantoms to investigate their validity as a tool for imaging phase boundaries in two and three phase systems. In an ECT based tomogram, the interface between phases is exhibited as a transition region; by applying a threshold technique based upon known areas of each respective phase within the system, the transient region can be resolved into a sharp interface. The image error of a tomogram, defined as the deviation of all pixels from their theoretical value, has been calculated using a pixel-by-pixel approach; however this requires exact a priori knowledge and is unsuitable for in-line application; the areal method used in this paper requires global phase distribution information thereby allowing for real-time application. A range of threshold values were applied to tomograms of phantoms of varying geometry and the corresponding image error for each threshold value calculated using both the areal and pixel-by-pixel approaches given above. The threshold value yielding lowest image error from this range is further used in the binary images giving improved tomograms with approximately 40% increase in image accuracy when compared with a default threshold value. Close to the sensor wall, the image becomes distorted due to reconstruction errors arising from decreased density in the electrical field lines, resulting in a circular phantom appearing elongated by approximately 10% when positioned near the wall.

  11. Integration of In-Situ Resource Utilization into lunar/Mars exploration through field analogs

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.; Larson, William E.

    2011-01-01

    The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the

  12. Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald

    The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For ex-ample, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for as-cent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review

  13. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  14. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    SciTech Connect

    Loomis, G.G.; Farnsworth, R.K.

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  15. In situ redox manipulation of aquifer sediments for groundwater remediation: From the flask to the field

    SciTech Connect

    Amonette, J.E.; Szecsody, J.E.; Williams, M.D.

    1995-12-31

    Structural iron in sediment clay minerals can be reduced to Fe(II) in situ by treatment with buffered dithionite solutions. The Fe(II) is then available to react with oxidized contaminants in groundwater that passes through the treated zone. Contaminants are removed by reductive precipitation [e.g., Cr(VI)(aq) {r_arrow} Cr(OH){sub 3}(s)] or destroyed by reductive dechlorination (e.g., CCl{sub 4} {r_arrow} reduced C + 4 Cl{sup -}). The effectiveness of the technology depends on several factors including available structural iron in the sediment, porosity of the aquifer, stability of the dithionite solution, and the rates of heterogeneous redox processes. These factors have been studied in a series of experiments ranging from small bench-scale batch and column studies through intermediate-scale transport experiments in a 7-meter-long physical aquifer model to a large-scale pilot field experiment. Each experimental system yields specific types of information that, when integrated, provide a cost-effective means to bring an experimental treatment technology {open_quotes}from the flask to the field.{close_quotes}

  16. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.

    2016-06-01

    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  17. The Lasagna technology for in situ soil remediation. 2: Large field test

    SciTech Connect

    Ho, S.V.; Athmer, C.; Sheridan, P.W.

    1999-04-01

    A full-scale field test of the Lasagna process was conducted at a Department of Energy trichloroethylene-contaminated clay site in Paducah, Kentucky. The test covered an area 21 ft x 30 ft (6.4 m x 9.2 m) and reached 45 ft (13.7 m) deep. A modified sheet piling method was utilized for installing electrodes and treatment zones in thin layers through stiff clay soil without generating solid waste. Iron filings were used in the treatment zones for in situ TCE degradation. Complications encountered during the test included contamination at significantly higher levels than anticipated and complex hydrogeology in the subsurface. Treatment effectiveness seems to vary with location, but in the contaminated areas bracketed by treatment zones, TCE removal ranged from 95% to over 99%. There are strong indications that some of the TCE was transported and degraded in the DNAPL form, which has significant implications. On the basis of the field results, treatment cost for a typical one-acre site with contamination from 15 to 45 ft deep ranges from about $45 to $80/yd{sup 3}. Implemented in its full configuration for the first time at a real site, the Lasagna process has demonstrated its robustness and cost-effectiveness in cleaning up TCE-contaminated soil in place.

  18. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Jinkui; Gong, Xinglong; Fan, Yanceng; Xia, Hesheng

    2010-10-01

    Highly filled polytetramethylene ether glycol (PTMEG)-based polyurethane (PU) magnetorheological elastomers (MREs) with anisotropic structure and good mechanical properties were prepared. The difficulty in dispersion and orientation of iron particles in the PU elastomer was overcome by ball milling mixing and further in situ one-step polycondensation under a magnetic field. The microstructure and properties of the composite were characterized in detail. Scanning electron microscopy (SEM) showed that a chain-like structure of carbonyl iron was formed in the PU matrix after orientation under a magnetic field of 1.2 T. The aligned chain-like structure of carbonyl iron in PU greatly enhanced the thermal conductivity, the compression properties and the magnetorheological (MR) effect of anisotropic PU MREs compared to that of the isotropic one. When the test frequency is 1 Hz, the maximum absolute and relative MR effect of anisotropic PU MREs with 26 wt% hard segment and 70 wt% carbonyl iron were ~ 1.3 MPa and ~ 21%, respectively.

  19. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  20. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    SciTech Connect

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  1. Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Larson, William E.

    2010-01-01

    The NASA project to develop In-Situ Resource Utilization (ISRU) technologies, in partnership with commercial and international collaborators, has achieved full system demonstrations of oxygen production using native regolith simulants. These demonstrations included robotic extraction of material from the terrain, sealed encapsulation of material in a pressurized reactor; chemical extraction of oxygen from the material in the form of water, and the electrolysis of water into oxygen and hydrogen for storage and reuse. These successes have provided growing confidence in the prospects of ISRU oxygen production as a credible source for critical mission consumables in preparation for and during crewed missions to the moon and other destinations. Other ISRU processes, especially relevant to early lunar exploration scenarios, have also been shown to be practical, including the extraction of subsurface volatiles, especially water, and the thermal processing of surface materials for civil engineering uses and for thermal energy storage. This paper describes these recent achievements and current NASA ISRU development and demonstration activity. The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables; and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example. the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent

  2. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated. PMID:26651869

  3. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  4. Electrical field of electrical appliances versus distance: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Badariah Ahmad; Hani Nordin, Farah; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z. A. M.

    2013-06-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  5. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  6. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  7. Comparison of cloud fields from atmospheric general circulation model, in situ and satellite measurements

    SciTech Connect

    Haskins, R.D.; Barnett, T.P.; Tyree, M.M.; Roeckner, E. ||

    1995-01-01

    This paper focuses on the comparison of cloud amounts derived from an atmospheric general circulation model (AGCM), Satellite-observed clouds, and Ground-based cloud observations. Unlike Earth Radiation Budget Experiment (ERBE)-type comparisons it does not mix potential errors in the cloud amount with those in the radiation code embedded in the model. Long term cloud climatologies were used to compare global cloud amounts and regional seasonal cycles. The AGCM successfully reproduced the signatures of the warm pool and North Pacific seasonal cycle cloudiness but failed in the low stratus region off the coast of South America, a known problem for AGCMs. The data sets also reproduced the anomaly signature associated with El Nino in the warm pool region, but the model amounts were lower. Global results had a similar success rate, with the model generally producing lower total cloud compared to the satellite and in situ measurements. To compare cloud vertical distributions the cloud height may need to be validated using the corresponding radiation fields. Unfortunately there were also some large discrepancies between the two observed cloud data sets. While tremendously improved over the last decade the character of the observed cloud data sets, must be substantially enhanced before they will be useful in validating AGCMs by any but the crudest levels of comparison.

  8. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    SciTech Connect

    Turick, C. E.; Knox, A. S.; Dixon, K. L.; Roseberry, R. J.; Kritzas, Y. G

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outside the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified

  9. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.

    PubMed

    Lee, Dae Geon; Kim, Dong Keun; Moon, Yoon Jae; Moon, Seung-Jae

    2013-09-01

    In this work, the in-situ properties of silver nanoparticle ink were estimated during laser sintering process. The silver nanoparticle ink was composed of 34 wt% silver nanoparticles with an average size of approximately 50 nm, and was deposited on a glass substrate via inkjet printing technology. A 532 nm continuous-wave laser was irradiated to the printed ink for 60 s under various laser intensities. During the laser irradiation, the in-situ electrical conductance of the sintered ink was measured to obtain the transient thermal conductivity of the silver nanoparticle ink using the Wiedemann Franz law. The 2-dimensional, transient heat-conduction equation was calculated to obtain the transient temperature of the silver nanoparticle ink. By coupling the calculated temperature with the measured, transient electrical conductance, the transient thermal conductivity of the ink during the laser sintering process was derived in the calculation. The calculated thermal conductivity of the ink sintered at a laser intensity of 467.9 W/cm2 with 598 K is 355.5 W/mK, which is 86.4% of the thermal conductivity of bulk silver, 411.4 W/mK, at that tempearture. The difference resulting from the porosity of the sintered ink has an effect on the thermal conductivity of the sintered ink. PMID:24205585

  10. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  11. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  12. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface. PMID:26026532

  13. Nanomanipulation and electrical behaviour of a single gold nanowire using in-situ SEM-FIB-nanomanipulators

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Luxmoore, I.; Forster, M. D.; Cullis, A. G.; Inkson, B. J.

    2008-08-01

    Gold nanowires were successfully fabricated by a DC electrodeposition technique into Anodic Aluminium Oxide (AAO) templates. The microstructure of 55nm gold nanowires released from AAO templates was observed by SEM and TEM to be polycrystalline, with a bamboo-type structure and grain sizes 20nm to several micrometers. Individual gold nanowires were picked up from bundles of gold nanowires using a super-sharp W tip attached to an in-situ Kleindiek nanomanipulator fitted in a SEM-FIB. The picked-up gold nanowires were then deposited onto a silicon wafer, or connected between two nanomanipulator tips, to fabricate single nanowire nano-circuits for electrical testing. The electrical properties of single manipulated nanowires are compared to that of bundles of gold nanowires for the two circuit types. The lowest resistance is achieved by connecting the gold nanowires between two FIB-milled tungsten tips.

  14. High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording.

    PubMed

    Zhao, Dong-Jie; Chen, Yang; Wang, Zi-Yang; Xue, Lin; Mao, Tong-Lin; Liu, Yi-Min; Wang, Zhong-Yi; Huang, Lan

    2015-01-01

    The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants. PMID:26333536

  15. High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording

    PubMed Central

    Zhao, Dong-Jie; Chen, Yang; Wang, Zi-Yang; Xue, Lin; Mao, Tong-Lin; Liu, Yi-Min; Wang, Zhong-Yi; Huang, Lan

    2015-01-01

    The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants. PMID:26333536

  16. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    SciTech Connect

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng E-mail: jfjia@sjtu.edu.cn

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  17. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-07-17

    The piezoelectric compositions (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  18. ELECTRIC-FIELD-ENHANCED FABRIC FILTRATION OF ELECTRICALLY CHARGED FLYASH

    EPA Science Inventory

    The paper summarizes measurements in which both external electric field (applied by electrodes at the fabric surface) and flyash electrical charge (controlled by an upstream corona precharger) are independent variables in a factorial performance experiment carried out in a labora...

  19. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  20. Esimation of field-scale thermal conductivities of unsaturatedrocks from in-situ temperature data

    SciTech Connect

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2006-06-26

    A general approach is presented here which allows estimationof field-scale thermal properties of unsaturated rock using temperaturedata collected from in situ heater tests. The approach developed here isused to determine the thermal conductivities of the unsaturated host rockof the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST wasdesigned to obtain thermal, hydrological, mechanical, and chemical (THMC)data in the unsaturated fractured rock of Yucca Mountain. Sophisticatednumerical models have been developed to analyze these THMC data. However,though the objective of those models was to analyze "field-scale" (of theorder of tens-of-meters) THMC data, thermal conductivities measured from"laboratory-scale" core samples have been used as input parameters.While, in the absence of a better alternative, using laboratory-scalethermal conductivity values in field-scale models can be justified, suchapplications introduce uncertainties in the outcome of the models. Thetemperature data collected from the DST provides a unique opportunity toresolve some of these uncertainties. These temperature data can be usedto estimate the thermal conductivity of the DST host rock and, given thelarge volume of rock affected by heating at the DST, such an estimatewill be a more reliable effective thermal conductivity value for fieldscale application. In this paper, thus, temperature data from the DST areused to develop an estimate of the field-scale thermal conductivityvalues of the unsaturated host rock of the DST. An analytical solution isdeveloped for the temperature rise in the host rock of the DST; and usinga nonlinear fitting routine, a best-fit estimate of field-scale thermalconductivity for the DST host rock is obtained. Temperature data from theDST show evidence of two distinct thermal regimes: a zone below boiling(wet) and a zone above boiling (dry). Estimates of thermal conductivityfor both the wet and dry zones are obtained in this paper. Sensitivity ofthese estimates

  1. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    SciTech Connect

    Liedel, Clemens; Pester, Christian; Ruppel, Markus A; Lewin, Christian; Pavan, Mariela J.; Urban, Volker S; Shenhar, Roy; Bosecke, Peter; Boker, Alexander

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  2. MMS Observations of Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Goodrich, K.; Wilder, F. D.; Sturner, A. P.; Holmes, J.; Stawarz, J. E.; Malaspina, D.; Usanova, M.; Torbert, R. B.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Goldman, M. V.; Drake, J. F.; Phan, T.; Nakamura, R.

    2015-12-01

    Parallel electric fields are a necessary condition for magnetic reconnection with non-zero guide field and are ultimately accountable for topological reconfiguration of a magnetic field. Parallel electric fields also play a strong role in charged particle acceleration and turbulence. The Magnetospheric Multiscale (MMS) mission targets these three universal plasma processes. The MMS satellites have an accurate three-dimensional electric field measurement, which can identify parallel electric fields as low as 1 mV/m at four adjacent locations. We present preliminary observations of parallel electric fields from MMS and provide an early interpretation of their impact on magnetic reconnection, in particular, where the topological change occurs. We also examine the role of parallel electric fields in particle acceleration. Direct particle acceleration by parallel electric fields is well established in the auroral region. Observations of double layers in by the Van Allan Probes suggest that acceleration by parallel electric fields may be significant in energizing some populations of the radiation belts. THEMIS observations also indicate that some of the largest parallel electric fields are found in regions of strong field-aligned currents associated with turbulence, suggesting a highly non-linear dissipation mechanism. We discuss how the MMS observations extend our understanding of the role of parallel electric fields in some of the most critical processes in the magnetosphere.

  3. A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests

    SciTech Connect

    Shonder, J.A.

    2000-05-02

    local regulations; water is heated and pumped through the U-tube (using a field generator to power the equipment, or line voltage where available); and the inlet and outlet water temperatures are measured as a function of time. Data on inlet and outlet temperature, power input to the heater and pump, and water flow rate are collected at regular intervals--typically 1 to 15 min--for the duration of the experiment, which may be as long as 60 h. Two common methods for determining soil thermal properties from such measurements are the line source method and the cylinder source method. Both are based on long-term approximate solutions to the classical heat conduction problem of an infinitely long heat source in an infinite homogeneous medium. Although there are some differences in the way the two methods are implemented, the only difference between the two models is whether the heat source is considered to be a line or a cylinder. In both methods, power input to the water loop is assumed to be constant. The simplicity of these methods makes them attractive, but they also have some disadvantages. First of all, because the line source and cylinder source approximations are inaccurate for early time behavior, some of the initial data from the field test must be discarded. The amount of data discarded can affect the property measurement. Also, both methods assume that the heat transfer to the ground loop is constant. In practice, heat input to the loop may vary significantly over the course of a field test due to rough operation of the generator or short-term sags and swells in power line voltage. Presumably, this variation affects the accuracy of the thermal property measurement, but error analysis is rarely performed. This report presents a new method for determining thermal properties from short-term in situ tests using a parameter estimation technique. Because it is based on numerical solutions to the heat conduction equation, the new method is not affected by short

  4. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability

    DOE PAGESBeta

    Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, Arnab; Ren, Yang; Rosenbaum, Thomas F.

    2015-09-04

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide rangemore » of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.« less

  5. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability

    SciTech Connect

    Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, Arnab; Ren, Yang; Rosenbaum, Thomas F.

    2015-09-04

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.

  6. Electric-field assisted growth and self-assembly of intrinsic silicon nanowires.

    PubMed

    Englander, Ongi; Christensen, Dane; Kim, Jongbaeg; Lin, Liwei; Morris, Stephen J S

    2005-04-01

    Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, in-situ, is demonstrated. The nanowires are seen to respond to the presence of a localized DC electric field set up between adjacent MEMS structures. The response is expressed in the form of improved nanowire order, alignment, and organization while transcending a gap. This process provides a simple yet reliable method for enhanced control over intrinsic one-dimensional nanostructure placement and handling. PMID:15826112

  7. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  8. In situ electrical characterization of palladium-based single electron transistors made by electromigration technique

    SciTech Connect

    Arzubiaga, L.; Llopis, R.; Golmar, F.; Casanova, F.; Hueso, L. E.

    2014-11-15

    We report the fabrication of single electron transistors (SETs) by feedback-controlled electromigration of palladium and palladium-nickel alloy nanowires. We have optimized a gradual electromigration process for obtaining devices consisting of three terminals (source, drain and gate electrodes), which are capacitively coupled to a metallic cluster of nanometric dimensions. This metal nanocluster forms into the inter-electrode channel during the electromigration process and constitutes the active element of each device, acting as a quantum dot that rules the electron flow between source and drain electrodes. The charge transport of the as-fabricated devices shows Coulomb blockade characteristics and the source to drain conductance can be modulated by electrostatic gating. We have thus achieved the fabrication and in situ measurement of palladium-based SETs inside a liquid helium cryostat chamber.

  9. Ion channel modifying agents influence the electrical activity generated by canine intrinsic cardiac neurons in situ.

    PubMed

    Thompson, G W; Horackova, M; Armour, J A

    2000-04-01

    This study was designed to establish whether agents known to modify neuronal ion channels influence the behavior of mammalian intrinsic cardiac neurons in situ and, if so, in a manner consistent with that found previously in vitro. The activity generated by right atrial neurons was recorded extracellularly in varying numbers of anesthetized dogs before and during continuous local arterial infusion of several neuronal ion channel modifying agents. Veratridine (7.5 microM), the specific modifier of Na+-selective channels, increased neuronal activity (95% above control) in 80% of dogs tested (n = 25). The membrane depolarizing agent potassium chloride (40 mM) reduced neuronal activity (43% below control) in 84% of dogs tested (n = 19). The inhibitor of voltage-sensitive K+ channels, tetraethylammonium (10 mM), decreased neuronal activity (42% below control) in 73% of dogs tested (n = 11). The nonspecific potassium channel inhibitor barium chloride (5 mM) excited neurons (47% above control) in 13 of 19 animals tested. Cadmium chloride (200 microM), which inhibits Ca2+-selective channels and Ca2+-dependent K+ channels, increased neuronal activity (65% above control) in 79% of dogs tested (n = 14). The specific L-type Ca2+ channel blocking agent nifedipine (5 microM) reduced neuronal activity (52% blow control in 72% of 11 dogs tested), as did the nonspecific inhibitor of L-type Ca2+ channels, nickel chloride (5 mM) (36% below control in 69% of 13 dogs tested). Each agent induced either excitatory or inhibitory responses, depending on the agent tested. It is concluded that specific ion channels (I(Na), I(CaL), I(Kv), and I(KCa)) that have been associated with intrinsic cardiac neurons in vitro are involved in their capacity to generate action potentials in situ. PMID:10772056

  10. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures. PMID:26329198

  11. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  12. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  13. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  14. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    NASA Astrophysics Data System (ADS)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  15. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors. PMID:26099110

  16. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  17. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    SciTech Connect

    William M. Davis

    1999-11-03

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface.

  18. Analysis of in-situ electrical conductivity data from the HFIR TRIST-ER1 experiment

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Shikama, T.

    1997-08-01

    The current vs. applied voltage data generated from the HFIR TRIST-ER1 experiment have been analyzed to determine the electrical conductivity of the 15 aluminum oxide specimens and the MgO-insulated electrical cables as a function of irradiation dose. With the exception of the 0.05%Cr-doped sapphire (ruby) specimen, the electrical conductivity of the alumina specimens remained at the expected radiation induced conductivity (RIC) level of <10{sup -6} S/m during full-power reactor irradiation (10-16 kGy/s) at 450-500{degrees}C up to a maximum dose of {approximately}3 dpa. The ruby specimen showed a rapid initial increase in conductivity to {approximately}2 x 10{sup -4} S/m after {approximately}0.1 dpa, followed by a gradual decrease to <1 x 10{sup -6} S/m after 2 dpa. Nonohmic electrical behavior was observed in all of the specimens, and was attributed to preferential attraction of ionized electrons in the capsule gas to the unshielded low-side bare electrical leads emanating from the subcapsules. The electrical conductivity was determined from the slope of the specimen current vs. voltage curve at negative voltages, where the gas ionization effect was minimized. Dielectric breakdown tests performed on unirradiated mineral-insulated coaxial cables identical to those used in the high voltage coaxial cables during the 3-month irradiation is attributable to thermal dielectric breakdown in the glass seals at the end of the cables, as opposed to a radiation-induced electrical degradation (RIED) effect.

  19. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  20. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  1. In-Situ MVA of CO2 Sequestration Using Smart Field Technology

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-09-01

    Capability of underground carbon dioxide storage to confine and sustain injected CO2 for a long period of time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2 . This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS

  2. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics.

    PubMed

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-18

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu^{3+} ion by electric field on a model system Eu-doped 0.94(Na_{1/2}Bi_{1/2}TiO_{3})-0.06(BaTiO_{3}). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field. PMID:27035321

  3. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  4. Quasi-reversible point defect relaxation in amorphous In-Ga-Zn-O thin films by in situ electrical measurements

    NASA Astrophysics Data System (ADS)

    Adler, Alexander U.; Yeh, Ted C.; Bruce Buchholz, D.; Chang, Robert P. H.; Mason, Thomas O.

    2013-03-01

    Quasi-reversible oxygen exchange/point defect relaxation in an amorphous In-Ga-Zn-O thin film was monitored by in situ electrical property measurements (conductivity, Seebeck coefficient) at 200 °C subjected to abrupt changes in oxygen partial pressure (pO2). By subtracting the long-term background decay from the conductivity curves, time-independent conductivity values were obtained at each pO2. From these values, a log-log "Brouwer" plot of conductivity vs. pO2 of approximately -1/2 was obtained, which may indicate co-elimination (filling) of neutral and charged oxygen vacancies. This work demonstrates that Brouwer analysis can be applied to the study of defect structure in amorphous oxide thin films.

  5. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  6. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  7. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  8. In Situ Electrical Study on Primary Hydrogen Spillover from Nanocatalysts to Amorphous Carbon Support

    SciTech Connect

    Lin, C.; Yang, Z.; Xu, T.; Zhao, Y.

    2008-01-01

    Primary hydrogen spillover has been studied using a unique electrical method. We observed that at ambient temperature, when a discontinuous nanogranular Pd film is on the top of an amorphous carbon film, the electrical conductance of the carbon film decreases in pressurized hydrogen. In comparison, in the absence of this Pd layer, the conductance of the carbon film remains unchanged in pressurized hydrogen. The observed decrease in the current in the Pd/carbon structure is ascribed to the hydrogenation of the dangling carbon bonds and sp{sup 2}-sp{sup 3} transition in the amorphous carbon by the primary spillover hydrogen atoms from Pd nanoclusters.

  9. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  10. Swarm Measurements of Ionospheric Electric Field and Plasma

    NASA Astrophysics Data System (ADS)

    Burchill, J.; Knudsen, D.; Eriksson, A.

    2009-05-01

    Swarm is a three-spacecraft European Space Agency Earth Explorer mission that will include precision in-situ measurements of magnetic field, electric field, and plasma parameters at altitudes up to 530 km, twice per second for four years beginning in late 2010. Electric fields in the direction perpendicular to the local magnetic field will be measured by the Swarm Electric Field Instruments (EFI) using a technique based on measurements of ion drift. The Swarm EFI's represent a new generation of ion drift measurement in that they use an intensified CCD-based technique to generate 2-D images of low-energy ion distribution functions from which both ion drift velocity and temperature are derived. These measurements will be complemented by Langmuir-probe measurements of electron density, electron temperature and spacecraft potential. We present an overview of the mission and of the predicted performance characteristics of the EFI, and examine the benefits of the Swarm configuration for ionospheric research relative to previous precision magnetic field research missions such as Ørsted and CHAMP.

  11. FIELD EVALUATION OF IN-SITU TREATMENTS TO REDUCE SOIL-LEAD BIOAVAILABILITY: INTRODUCTION & BACKGROUND

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  12. FIELD EVALUATION OF TERRA THERM IN SITU THERMAL DESTRUCTION (ISTD) TREATMENT OF HEXACHLOROCYCLOPENTADIENE

    EPA Science Inventory

    This report summarizes the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program evaluation of the In Situ Thermal Destruction (ISTD) technology, developed by others, was refined by TerraTherm, Inc. The demonstration was designed to ...

  13. ENVIRONMENTAL CHARACTERIZATION OF GEOKINETICS' IN-SITU OIL SHALE RETORTING TECHNOLOGY: FIELD AND ANALYTICAL DATA APPENDICES

    EPA Science Inventory

    Air emissions and water effluents from true in-situ oil shale retorting were physically, chemically and biologically characterized by sampling of Geokinetics Retort No. 17, a pilot-scale unit which produced 30 barrels of crude shale oil per day during testing from July 16 to July...

  14. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  15. Hydrocarbon disperse systems in electric fields

    SciTech Connect

    Deinega, Y.F.

    1983-07-01

    On the basis of method for regulating the smooth adjustment of the charge of the disperse phase of hydrocarbon systems in electric fields from positive to negative values by means of surfactants, a schematic electrokinetic picture of the behavior of the systems is derived. Changes in the structure of the disperse systems in electric fields have a substantial effect on the rheological properties of the system. The effect of electric fields on the formation of crystallization-condensation structures, the mechanism of electrical conduction with a high rate of deformation, and the many practical applications of electrical effects on hydrocarbon disperse systems are also studied.

  16. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  17. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization.

    PubMed

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. PMID:25493655

  18. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    NASA Astrophysics Data System (ADS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  19. In-situ Raman spectroscopy of electrically generated species in fullerene thin films

    NASA Astrophysics Data System (ADS)

    Phelan, Siobhan B.; O'Connell, Barry S.; Farrell, Garrett F.; Chambers, Gordon; Byrne, Hugh J.

    2003-03-01

    Organic materials have, in recent decades, been shown to be insulators, semiconductors, or even metallic when doped and the prospect of cheap, easily fabricated devices has attracted much interest. Primitive devices have been demonstrated and yet potentially competitive performance has been limited to polymer light emitting diodes. The recent report that lattice expanded C60 single crystals can be made superconducting, with a transition temperature of 117K, by the injection of charge via a FET type geometry has once again highlighted the potential of C60 in the development of molecular electronic devices. In light of the aforementioned report it is essential that a true understanding of the inter- and intramolecular processes in terms of their contribution to the electronic transport be obtained. In this study the current voltage characteristics of C60 thin film sandwich structures fabricated by vacuum deposition on indium tin oxide (ITO) with an aluminium top electrode are presented and discussed. A strongly non-linear behavior and a sharp increase in the device conductivity was observed at relatively low voltages (~2V), at both room and low temperatures (20K). At room temperature the system is seen to collapse, and in situ Raman measurements indicate a solid state reduction of the fullerene thin film to form a polymeric state. The high conductivity state was seen to be stable at elevated voltages and low temperatures. This state is seen to be reversible with the application of high voltages. At these high voltages the C60 film was seen to sporadically emit white light at randomly localized points analogous to the much documented electroluminescence in single crystals. Moreover the evidence suggests that this highly conducting species maybe similar in nature to a high intensity optically excited species. It is further speculated that the species recently reported in the superconducting lattice expanded C60 single crystals may also be analogous to the highly

  20. Entanglement generation by electric field background

    SciTech Connect

    Ebadi, Zahra Mirza, Behrouz

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  1. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  2. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  3. ISEC-3: Results from the third in-situ electrical conductivity test on polycrystaline alumina

    SciTech Connect

    Snead, L.L.; White, D.P.; Eatherly, W.S.; Zinkle, S.J.

    1996-04-01

    An experimental investigation of radiation induced electrical degradation (RIED) has been performed at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. In this study (the third in a series of experiments at the HFBR) the effects of neutron irradiation on the electrical conductivity of Wesgo AL995 polycrystalline alumina has been investigated at approximately 450{degrees}C. The capsule design used in this study is very similiar to a design used in the first two experiments in this series with some improvements made to a design used in the first two experiments in this series with some improvements made in the cable terminations. A guard ring configuration was used on the disk shaped sample. Triaxial mineral insulated cable was used as the data lead from the sputter deposited guard ring and central electrode of the sample, and coaxial mineral insulated cable was used as the sample power lead. No evidence for REID was observed in this series of experiments to a dose level of {approx}1.8 dpa. The effect of neutron irradiation on the electrical properties of two mineral insulated (MgO) cables was also investigated.

  4. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ. PMID:26032450

  5. In Situ Field Measurement of Leaf Water Potential Using Thermocouple Psychrometers 1

    PubMed Central

    Savage, Michael J.; Wiebe, Herman H.; Cass, Alfred

    1983-01-01

    Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential. PMID:16663267

  6. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  7. Feasibility studies of in-situ coal gasification in the Warrior coal field. Quarterly report

    SciTech Connect

    Douglas G.W.; McKinley, M.D.

    1980-01-01

    Studies in support of in-situ gasification involved experiments in bench-scale combustors where three parameters were varied independently: initial fuel bed temperature, applied air flow and water vapor influx rate. Methods for measuring the thermal conductivity of solids at high temperatures were evaluated and measurements of the thermal conductivity and thermal diffusivity were made over a temperature range for several samples of coke. (LTN)

  8. Identification of morphological biosignatures in Martian analogue field specimens using in situ planetary instrumentation.

    PubMed

    Pullan, Derek; Westall, Frances; Hofmann, Beda A; Parnell, John; Cockell, Charles S; Edwards, Howell G M; Villar, Susana E Jorge; Schröder, Christian; Cressey, Gordon; Marinangeli, Lucia; Richter, Lutz; Klingelhöfer, Göstar

    2008-02-01

    We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, Mössbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement. Our results demonstrate the importance of an integrated approach for this type of work. Each technique made a proportionate contribution to the overall effectiveness of our "pseudopayload" for biogenic assessment of samples yet highlighted a number of limitations of current space instrument technology for in situ astrobiology. PMID:18211229

  9. Investigating electrokinetics application for in-situ inorganic oil field scale control

    NASA Astrophysics Data System (ADS)

    Hashaykeh, Manal A. I. Albadawi

    Oil well scale formation and deposition is an expensive problem and could be a nightmare for any production engineer if the rate of deposition is rapid as in the case of North Sea oil fields. Inorganic scales accumulate in surface and subsurface equipment causing a reduction in oil production and severe damage for production equipment. The major components of most oil field scale deposits are BaSO4, CaSO4 and SrSO4, which are formed due to incompatible mixing of reservoir formation water and sea water flooded in secondary enhanced oil recovery (EOR) processes. This work focuses on BaSO4 scale as it is one of the toughest scale components to be removed either by chemical means or mechanical means. Scale control methods usually involve complicated treatment using chemical dissolution methods as primary attempt and mechanical scrapping or jetting methods in case of failure of the chemical means. In this work, we devised a novel in-situ scale control method benefiting from the application of direct current (DC) which involves some of the electrokinetic (EK) phenomena. The applications of EK has been proved in our laboratories yielding high efficiency in capturing barium and separating it from sulfate before reaching the production well, thus preventing deposition in the production wellbore or wellbore formation. This objective was evaluated in our lab designed EK apparatus in three parts. In part-1, an 18.5 cm unconsolidated sand core was used which produced inconsistent results. This problem was overcome in part-2, where the porous media involved 46 cm consolidated sandcore. This also partly fulfilled the purpose of upscaling. In part-3, the porous media was extended to a 100 cm spatial distance between the injection and production wells. For all the experiments the reservoir models were made of 125 µm uniform sand particles and followed a final consolidation pressure of 30 psi. The EK-reservoir model contains 2 basic junctions; one of them injecting a 500 ppm SO4 2

  10. Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing

    PubMed Central

    Hummelgård, Magnus; Zhang, Renyun; Nilsson, Hans-Erik; Olin, Håkan

    2011-01-01

    Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1. PMID:21390314

  11. Identification of Morphological Biosignatures in Martian Analogue Field Specimens Using In Situ Planetary Instrumentation

    NASA Astrophysics Data System (ADS)

    Pullan, Derek; Westall, Frances; Hofmann, Beda A.; Parnell, John; Cockell, Charles S.; Edwards, Howell G. M.; Villar, Susana E. Jorge; Schröder, Christian; Cressey, Gordon; Marinangeli, Lucia; Richter, Lutz; Klingelhöfer, Göstar

    2008-02-01

    We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, Mssbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement.

  12. Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}7.2 entitled ``Field scale test`` (January 10, 1996--December 31, 1997)

    SciTech Connect

    Athmer, C.; Ho, S.V.; Hughes, B.M.

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.

  13. Modeling the electric field of weakly electric fish.

    PubMed

    Babineau, David; Longtin, André; Lewis, John E

    2006-09-01

    Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have developed three different numerical models of a two-dimensional cross-section of the fish's body and its surroundings. One of these models mimics the real contour of the fish; two other geometrically simple models allow for an independent study of the effects of the fish's body geometry and conductivity on electric field and image formation. Using these models, we show that the fish's tapered body shape is mainly responsible for the smooth, uniform field in the rostral region, where most electroreceptors are located. The fish's narrowing body geometry is also responsible for the relatively large electric potential in the caudal region. Numerical tests also confirm the previous hypothesis that the electric fish body acts approximately like an ideal voltage divider; this is true especially for the tail region. Next, we calculate electric images produced by simple objects and find they vary according to the current density profile assigned to the fish's electric organ. This explains some of the qualitative differences previously reported for different modeling approaches. The variation of the electric image's shape as a function of different object locations is explained in terms of the fish's geometrical and electrical parameters. Lastly, we discuss novel cues for determining an object's rostro-caudal location and lateral distance using these electric images. PMID:16943504

  14. In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature

    NASA Astrophysics Data System (ADS)

    Tonus, F.; Skinner, S. J.

    2016-05-01

    Fuel cells are proposed as a future energy conversion technology that will reduce greenhouse gas emissions at the point of operation due to their ability to produce electrical energy from non-hydrocarbon fuel sources. The Solid Oxide Fuel Cell (SOFC) is amongst the most efficient fuel cell types, however, due to the high cell operating temperature cation diffusion occurs between the different components of the cell, resulting in rapid degradation of the power output. In this paper we investigate cation migration between the promising intermediate temperature-SOFC cathode La1-xSrxCo1-yFeyO3-δ (LSCF) and a fluorite type electrolyte Ce1-xPrxO2-δ (CPO). The crystallographic structure evolution and degradation of the materials were studied by neutron diffraction in-situ under pseudo-operating conditions, i.e. at 600 °C under air and under electrical polarisation. The lattice parameter and cation occupancy evolution were analysed by Rietveld refinement as a function of time and applied potential. The materials were found to be stable, as no impurity formation, lattice parameter or site occupancy evolution was observed during the experiment. However La migration prior to the experiment from LSCF to CPO was observed as well as B-site vacancies in LSCF.

  15. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  16. Modelling in situ enzyme potential of soils: a tool to predict soil respiration from agricultural fields

    NASA Astrophysics Data System (ADS)

    Shahbaz Ali, Rana; Poll, Christian; Demyan, Scott; Nkwain Funkuin, Yvonne; Ingwersen, Joachim; Wizemann, Hans-Dieter; Kandeler, Ellen

    2014-05-01

    The fate of soil organic carbon (SOC) is one of the largest uncertainties in predicting future climate and terrestrial ecosystem functions. Extra-cellular enzymes, produced by microorganisms, perform the very first step in SOC degradation and serve as key components in global carbon cycling. Very little information is available about the seasonal variation in the temperature sensitivity of soil enzymes. Here we aim to model in situ enzyme potentials involved in the degradation of either labile or recalcitrant organic compounds to understand the temporal variability of degradation processes. To identify the similarities in seasonal patterns of soil respiration and in situ enzyme potentials, we compared the modelled in situ enzyme activities with weekly measured soil CO2 emissions. Arable soil samples from two different treatments (4 years fallow and currently vegetated plots; treatments represent range of carbon input into soil) were collected every month from April, 2012 to April, 2013, from two different study regions (Kraichgau and Swabian Alb) in Southwest Germany. The vegetation plots were under crop rotation in both study areas. We measured activities of three enzymes including β-glucosidase, xylanase and phenoloxidase at five different temperatures. We also measured soil microbial biomass in form of microbial carbon (Cmic). Land-use and area had significant effects (P < 0.001) on the microbial biomass; fallow plots having less Cmic than vegetation plots. Potential activities of β-glucosidase (P < 0.001) and xylanase (P < 0.01) were significantly higher in the vegetation plots of the Swabian Alb region than in the Kraichgau region. In both study areas, enzyme activities were higher during vegetation period and lower during winter which points to the importance of carbon input and/or temperature and soil moisture. We calculated the temperature sensitivity (Q10) of enzyme activities based on laboratory measurements of enzyme activities at a range of incubation

  17. Substorm electric fields at nightside low latitude

    NASA Astrophysics Data System (ADS)

    Hashimoto, K. K.; Kikuchi, T.; Tomizawa, I.; Nagatsuma, T.

    2014-12-01

    The convection electric field penetrates from the polar ionosphere to low latitude and drives the DP2 currents in the global ionosphere with an intensified equatorial electrojet (EEJ). The electric field often reverses its direction, that is, the overshielding occurs and causes the equatorial counterelectrojet (CEJ) during storm and substorms. In this paper we report that the overshielding electric field is detected by the HF Doppler sounders at low latitude on the nightside. We analyzed the Doppler frequency of the HF radio signals propagated over 120 km in Japan at frequencies of 5 and 8 MHz and compared with the equatorial EEJ/CEJ during the substorm expansion phase. We found that the overshielding electric field reaches around 2 mV/m during major substorms (AL <-1800 nT). Taking the geometrical attenuation into account, we estimate the equatorial electric field to be about 1.5 mV/m. We also found that the correlation coefficient was 0.94 between the overshielding electric field and eastward equatorial electrojet at YAP on the night side. The electric field drives the eastward electrojets in the equatorial ionosphere on the night side. It is to be noted that the overshielding electric field is observed on the nightside at low latitude during the major substorms, while the convection electric field is dominant during smaller size substorms, as the CEJ flows on the dayside. These results suggest that the overshielding electric field associated with the Region-2 field-aligned currents becomes dominant during substorms at low latitude on the nightside as well as on the dayside.

  18. Wet cells and dry cells: In situ transmission electron microscopy of electrically-driven, dynamical processes

    NASA Astrophysics Data System (ADS)

    White, Edward Robert, IV

    Recent developments in nanofabrication techniques allow thin, wet systems to be imaged with high spatial and temporal resolution in the electron microscope. Coupling this ability with simultaneous, measured, electrical control, we cycle processes in liquid systems representing different electrochemical battery components. Dynamic processes imaged with these techniques, which represent a new state-of-the-art, include nanobubble collapse, dendrite growth, ion diffusion, and graphite intercalation. We also develop a sensitive system for measuring electron beam induced currents (EBIC) in the transmission electron microscope and apply it to graphene-MoS2 heterostructures. This new hybrid material has strong light-matter interactions, and the EBIC measurements map the minority carrier diffusion length, which we observe to decrease with increasing radiation damage. These results have direct implications for the function and service lifetime of solar cells based on molybdenum disulfide.

  19. In-situ aircraft observations of ice supersaturation and cirrus clouds in global field studies

    NASA Astrophysics Data System (ADS)

    Diao, M.; Zondlo, M. A.

    2012-12-01

    Clouds play important roles in the Earth's climate and weather system, and the net forcing of all clouds results in a cooling effect on the Earth's surface. However, clouds remain one of the largest uncertainties in climate models. The IPCC AR4 report shows that both the magnitude and sign of the changes in cloud radiative forcing in response to anthropogenic aerosols are highly uncertain. Cirrus clouds are a type of ice clouds that occur at 235-185K with a net warming effect on the Earth surface. Cirrus cloud formation requires ice supersaturation (ISS), i.e., relative humidity with respect to ice (RHi) greater than 100%. Because ISS is critically related to the ice nucleation processes, it is also an indicator of any changes of ice nucleation and cirrus cloud formation. Here we use the in-situ 1 Hz aircraft observations by the Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer on board the NSF Gulfstream-V research aircraft to analyze the differences of ISS distribution between the Northern and Southern Hemispheres (NH and SH). Our dataset is based on five deployments of the NSF Hiaper Pole-to-Pole Observations (HIPPO) Global field campaigns, including nine Pole-to-Pole transects from the year of 2009 to 2011, extending from 87°N to 67°S, covering four seasons, and the Stratosphere-Troposphere Analyses of Regional Transport (START08) campaign over North America region in April-June 2008. The flight track was mostly over the mid-Pacific Ocean, and also parts of the North America and Australia. We found that the frequency of ISS is much higher in NH than SH for the clear-sky conditions, while the in-cloud conditions show no significant difference between the two hemispheres. Our conclusion is in sharp contrast to the previous aircraft observations which concluded that the SH has higher frequency of ISS for clear-sky conditions based on two flight campaigns at Prestwick, Scotland (55°N) and Punta Arenas, Chile (55°S). We propose a method to separate

  20. Large electric fields in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Boehm, M. H.; Cattell, C. A.; Temerin, M.; Wygant, J. R.

    1985-01-01

    The Langmuir solitonlike structures which contain plasma frequency oscillations of 500 mV/m and parallel electric fields of about 100 mV/m, observed in the auroral zone below 1000 km, are studied. The characteristics of electrostatic shocks that contain perpendicular fields of 1000 mV/m and parallel fields of 100 mV/m, and of double layers that have parallel fields of 10 mV/m are described. Observations of the geomagnetic tail reveal the presence of 100 mV/m turbulent electric fields and 5-10 mV/m quasi-static fields in the high latitude boundary of the plasma sheet, and inside the plasma sheet fields of 5-10 mV/m are detected. The large amplitude quasi-static electric field fluctuations of 100 mV/m and the dc fields of approximately 5 mV/m observed in the bow shock are examined.

  1. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  2. Development and flight tests of a new middle atmosphere electric field payload

    NASA Technical Reports Server (NTRS)

    Gurkin, L. W.

    1982-01-01

    There has been a marked increase of scientific interest in middle atmosphere electrodynamics in recent years. This region, which encompasses the stratosphere and mesosphere, has generally been considered relatively passive, electrically. Attempts at in-situ electric field measurements throughout this region can only be accomplished by the use of sounding rockets. A series of middle atmosphere electrodynamic rocket flights have been conducted using a new electric field subpayload. This new payload is capable of measuring all three components of the vector electric field using the symmetric double probe technique. In six flight attempts, the subpayload has performed well and obtained E-field data on five flights. It has been successfully utilized in a mother-daughter configuration and as a stand-alone payload. The flight results have established the existence of large mesospheric electric fields, supporting previous results from single axis measurements.

  3. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  4. Electric Field Dependence of the Electrical Conductivity of VOx

    NASA Astrophysics Data System (ADS)

    Garcia, N.

    1985-01-01

    We have observed non-ohmic behavior in the resistivity of VOx for very small electric fields. In an attempt to explain these results several models are considered. We suggest that the sharpening of the transition to the insulating state with applied electric field is due to a reduction of the length of time during which regions of the sample fluctuate into the insulating state.

  5. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  6. Description and field test of an in situ coliform monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Wilkins, J. R.

    1979-01-01

    A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.

  7. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  8. Field demonstration of a full-scale in situ thermal desorption system for the remediation of soil containing PCBS and other hydrocarbons

    SciTech Connect

    Sheldon, R.B.; Iben, I.E.T.; Edelstein, W.A.

    1996-12-31

    A field demonstration of a full-sale, innovative and cost-effective remediation system using in situ thermal description (ISTD) was conducted at a state Superfund site in the northeastern United States in early 1996. The Demonstration was performed as part of the regulatory process to obtain a nationwide Toxic Substances Control Act (TSCA) permit for the remediation of soils containing PCBs at concentrations up to 5,000 ppm. An area of approximately 4800 square feet was remediated during six applications of an in situ Thermal Blanket covering an area of 800 square feet. Each application utilized five 160 square foot, electrically heated, 100-kilowatt modules. The Thermal Blanket heaters were operated at temperatures as high as 925 C. The modules contain 10 in. of vermiculite insulation to reduce upward heat losses to less than 10% of total power. The modules are covered with an impermeable silicone sheet and the in situ process is run at negative pressure to collect contaminants, prevent contaminant migration and eliminate odors. Off-gas emissions are controlled by a vapor extraction system comprised of a cyclonic separator for particulate removal, a flameless thermal oxidizer for destruction of residual contaminants, and a carbon polishing unit. Treatment times ranged from slightly more than 24 hours to treat the upper six inches to approximately four days to treat soil 12 to 18 inches deep. Temperature profiles and remedial efficiency are consistent with results from a computer thermal simulator. Post-treatment soil samples demonstrated the capability to achieve stringent soil cleanup levels of less than 2 ppm for PCBs while concurrently meeting ambient air quality standards with respect to air emissions and worker exposure limits. The Thermal Blanket is less intrusive than other permanent remedies and produces less noise, generates less dust and has a minimum of other impacts on the surrounding community.

  9. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  10. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma.

    PubMed

    Gruver, Aaron M; Peerwani, Ziad; Tubbs, Raymond R

    2010-03-01

    Assessment of ERBB2 (HER2) status in breast carcinomas has become critical in determining response to the humanised monoclonal antibody trastuzumab. The current joint College of American Pathologists and the American Society of Clinical Oncology guidelines for the evaluation of HER2 status in breast carcinoma involve testing by immunohistochemistry and fluorescence in situ hybridisation (FISH). However, neither of these modalities is without limitations. Novel bright field in situ hybridisation techniques continue to provide viable alternatives to FISH testing. While these techniques are not limited to evaluation of the HER2 gene, the extensive number of studies comparing bright field in situ techniques with other methods of assessing HER2 status allow a robust evaluation of this approach. Analysis of the literature demonstrates that, when used to assess HER2 gene status, bright field in situ hybridisation demonstrates excellent concordance with FISH results. The average percentage agreement in an informal analysis of studies comparing HER2 amplification by chromogenic in situ hybridisation with FISH was 96% (SD 4%); kappa coefficients ranged from 0.76 to 1.0. Although a much smaller number of studies are available for review, similar levels of concordance have been reported in studies comparing HER2 amplification by methods employing metallography (silver in situ hybridisation) with FISH. A summary of the advancements in bright field in situ hybridisation, with focus on those techniques with clinical applications of interest to the practicing pathologist, is presented. PMID:20203220