Sample records for in-situ gamma spectrometry

  1. Continuous measurement of radiation from radionuclides deposited on the ground using in situ gamma-ray spectrometry.

    PubMed

    Mirsch, M; Barth, J; Dalheimer, A; Steinkopff, T

    2014-08-01

    Until recently, in situ measurements in a network of radiation-measuring sites at the Deutscher Wetterdienst could only be started if all components had been put up in an instrumentation shelter and the detector had been cooled for ?6 h. Within a project on partial automation of radioactivity monitoring, it has now become possible to permanently equip the measuring sites, i.e. the instrumentation shelter, with the components for in situ gamma-ray spectrometry. The cooling technology of the detectors changed from liquid nitrogen based to an electric system and the instrumentation shelters could be fixed with air conditioning to minimise the influence of changes in the outside temperature. PMID:24812073

  2. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    SciTech Connect

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-11-15

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education (ORISE) field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how “fit for use” this technology is for detecting discrete particles in soil.

  3. In situ gamma spectrometry measurements and Monte Carlo computations for the detection of radioactive sources in scrap metal.

    PubMed

    Clouvas, A; Xanthos, S; Takoudis, G; Potiriadis, C; Silva, J

    2005-02-01

    A very limited number of field experiments have been performed to assess the relative radiation detection sensitivities of commercially available equipment used to detect radioactive sources in recycled metal scrap. Such experiments require the cooperation and commitment of considerable resources on the part of vendors of the radiation detection systems and the cooperation of a steel mill or scrap processing facility. The results will unavoidably be specific to the equipment tested at the time, the characteristics of the scrap metal involved in the tests, and to the specific configurations of the scrap containers. Given these limitations, the use of computer simulation for this purpose would be a desirable alternative. With this in mind, this study sought to determine whether Monte Carlo simulation of photon flux energy distributions resulting from a radiation source in metal scrap would be realistic. In the present work, experimental and simulated photon flux energy distributions in the outer part of a truck due to the presence of embedded radioactive sources in the scrap metal load are compared. The experimental photon fluxes are deduced by in situ gamma spectrometry measurements with portable Ge detector and the calculated ones by Monte Carlo simulations with the MCNP code. The good agreement between simulated and measured photon flux energy distributions indicate that the results obtained by the Monte Carlo simulations are realistic. PMID:15650590

  4. Survey of the {sup 137}Cs contamination in Belgium by in-situ gamma spectrometry, a decade after the Chernobyl accident

    SciTech Connect

    Uyttenhove, J. [Univ. of Gent (Belgium); Pomme, S.; Hardenman, F. [Belgian Nuclear Research Centre, Boeretang (Belgium); Culot, J.P. [A.V. Nuclear, Brussels (Belgium)] [and others

    1997-10-01

    The residual radiocesium concentration, nearly 10 y after the Chernobyl accident, is measured at different sites on the Belgian territory by means of in-situ gamma-spectrometry. A possible link between the rainfall at the beginning of May 1986 and the actual cesium concentration is investigated. The radiological impact of this contamination, even in the most affected regions in the Ardennes, is very small (<6 {mu}Sv y{sup -1}). 6 refs., 4 figs., 1 tab.

  5. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector at the previous activation point, could not be evaluated because of equipment failure.

  6. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  7. Small Scale Assessment of Spatial and Vertical Redistribution of Fukushima Fallouts Radiocaesium in Contaminated Soil Using in-situ HPGe Gamma Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Patin, J.; Onda, Y.; Yoda, H.; Kato, H.

    2011-12-01

    After Tohoku earthquake on March 11th 2011, the subsequent tsunami and the resulting Fukushima Daiichi Nuclear Power Plant disaster, gamma emitting particles, first release into the atmosphere, were quickly deposited on the soil surface, with potentially harmful level in the surroundings of the nuclear power plant. Thus, the evaluation of soil deposition pattern, depth migration and afterward radionuclides redistribution and export by erosion and hydrological processes is fundamental for contamination assessments and to plan future actions. Our study site is located 37km from Fukushima power plant, inside the evacuated zone. In this study, we used a bounded erosion plot of 22.1m x 5m to assess global export of sediments and 137Cs. This plot, previously cropped with tobacco, is morphologically divided into inter-rill areas separated by rills that formed into former wheel tracks. The bottom of the plot is subject to deposition of sediments. In order to determine and quantify the internal processes responsible of the export of sediment, the depth distribution of 137Cs is estimated using a portable High Purity Germanium (HPGe) detector. Such a portable device, associated to the high radiation levels, allow an acquisition of spatially distributed data within the plot in a reasonable time (1 min/sample). At the same time, depth distribution of 137Cs are measured using the scrapper plate technique, adapted to obtain a fine resolution in the first, highly contaminated, centimeters of soil. Finally, 137Cs depth profiles, associated with in situ and laboratory gamma spectrums acquired with the portable detector, allow for the detector calibration. Although the initial deposit can reasonably be supposed homogeneous at the plot scale, the dataset obtained 3 months later shows high spatial and temporal variability due to erosion processes. Measurements with the portable HPGe detector proved to be useful at this small scale, avoiding the needs of a large number of soil samples, and our results are promising to understand erosion at larger scale where horizontal patterns of deposition and redistribution are usually supposed homogeneous over quite larger areas.

  8. Spatial mapping of soil and radioactivity redistribution at the hillslope scale using in-situ gamma spectrometry, terrestrial laser scanning and RFID tags after the Fukushima nuclear accident fallout.

    NASA Astrophysics Data System (ADS)

    Patin, Jeremy; Onda, Yuichi; Noguchi, Takehiro; Parsons, Anthony

    2013-04-01

    In March 2011, the Fukushima Daiichi Nuclear Power Plant disaster, triggered by the Tohoku earthquake and the consequent tsunami, released a large amount of radionuclides in the environment. To provide a rapid assessment of the soil contamination and its potential redistribution, intensive scientific monitoring has been conducted since July 2011 in our study site, located in the Yamakiya district of Kawamata town, in Fukushima prefecture, Japan, about 37 km from the power plant. In this paper, we summarize and analyze a dataset combining multiple innovative methods deployed inside a 5m x 22m bounded hillslope plot. In addition to runoff volumes and sediments radiocesium concentrations, each major rainfall event was followed by in situ gamma spectrometry measurements. In 2012, to trace the complex behavior of sediments inside the plot, about 300 RFID (Radio-Frequency IDentification) tags representing coarse sediments were scattered and their spatial position was periodically checked using a total station. Finally, several high resolutions Digital Elevation Models were acquired with a terrestrial laser scanner to assess the surface structure and changes. The observed processes at the event scale include interrill and rill erosion, as well as local deposition and remobilization phenomenon. Not only do they directly provide information on the erosion spatio-temporal variability and the associated radionuclides transfers, but combined together they can constitute a solid basis to improve and challenge process-based distributed erosion models.

  9. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  10. In situ mass spectrometry in a 10 Torr W chemical vapor deposition process for film thickness metrology

    E-print Network

    Rubloff, Gary W.

    In situ mass spectrometry in a 10 Torr W chemical vapor deposition process for film thickness are explored, as in a development environment. In situ mass spectrometry presents an attractive option for real widely implemented using in situ sensors, par- ticularly using mass spectrometry or residual gas analysis

  11. Aerogel dust collection for in situ mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Anderson, M. S.; Davies, A. G.; Kirby, J. P.; Burchell, M. J.; Cole, M. J.

    2015-02-01

    The current technique for conducting in situ mass spectroscopic analysis of dust around extraterrestrial bodies is to have the dust impact a solid plate and analyze the atoms and molecular fragments resulting from the high speed impact. Due to the fact that the kinetic energy from the impact is converted primarily to thermal energy, much of the organic compounds present in the dust may be significantly altered or destroyed. To avoid this problem, aerogel could be used to capture the dust grains, largely intact, maintaining the integrity of the organic compounds in the interior of the dust grains. To demonstrate that organic molecules, present as minor components of silica particles, would survive hypervelocity capture in aerogel and can then be analyzed with mass spectrometry, several light gas gun impact tests and analyses were conducted. Fine particles containing polycyclic aromatic hydrocarbons (PAHs) were captured in aerogel at 5.5 km s-1. The flow of metastable helium from a Direct Analysis Real Time (DART) source was used to desorb and ionize the organics, which were then analyzed with a mass spectrometer. The PAHs were detected and identified by the DART-MS, demonstrating that this method could be used on future flight instruments.

  12. MONITORING GENETIC & METABOLIC POTENTIAL FOR IN SITU BIOREMEDIATION: MASS SPECTROMETRY

    EPA Science Inventory

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, sin...

  13. In-situ high-resolution gamma-spectrometric survey of burial ground-monitoring wells

    SciTech Connect

    Bowman, W.W.

    1981-09-01

    In situ high resolution gamma-ray spectrometry with an intrinsic germanium detector assembly of special design surveyed the burial ground monitoring wells to locate and identify gamma emitters that may have migrated from the burial trenches toward the water table. Gamma-ray spectra were acquired as a function of depth in each well and recorded on magnetic tape. These spectra were reduced by a series of computer programs to produce count rate versus depth profiles for natural and man-made activities. The original spectra and the profiles have been archived on magnetic tape for comparison with similar future surveys. Large amounts of man-made activities were observed in some of the burial trenches; however, below the trench bottoms, only very low but detectable amounts of /sup 60/Co and /sup 137/Cs were observed in eleven wells. The highest level of man-made gamma activity observed below the trench bottoms has a count rate roughly equal to that observed for uranium daughter activities which are natural to the subsoil.

  14. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bucher, Benno [Swiss Federal Nuclear Safety Inspectorate, 5232 Villigen HSK (Switzerland); Rybach, Ladislaus [Swiss Federal Institute of Technology Zurich, Institute of Geophysics, 8093 Zurich (Switzerland)

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  15. In-Situ Mass Spectrometry for Chemical Identification in SiC Epitaxial Brian H. Ponczak1

    E-print Network

    Rubloff, Gary W.

    In-Situ Mass Spectrometry for Chemical Identification in SiC Epitaxial Deposition Brian H. Ponczak1 University of Maryland College Park, MD Keywords: Mass spectrometry, Epitaxial deposition Abstract-situ mass spectrometry is an analysis technique that allows for real-time identification of chemical species

  16. Mass Spectrometry Guided In Situ Proteolysis to Obtain Crystals for X-ray Structure Determination

    SciTech Connect

    Gheyi, Tarun; Rodgers, Logan; Romero, Richard; Sauder, J. Michael; Burley, Stephen K. (Lilly)

    2012-04-30

    A strategy for increasing the efficiency of protein crystallization/structure determination with mass spectrometry has been developed. This approach combines insights from limited proteolysis/mass spectrometry and crystallization via in situ proteolysis. The procedure seeks to identify protease-resistant polypeptide chain segments from purified proteins on the time-scale of crystal formation, and subsequently crystallizing the target protein in the presence of the optimal protease at the right relative concentration. We report our experience with 10 proteins of unknown structure, two of which yielded high-resolution X-ray structures. The advantage of this approach comes from its ability to select only those structure determination candidates that are likely to benefit from application of in situ proteolysis, using conditions most likely to result in formation of a stable proteolytic digestion product suitable for crystallization.

  17. Unpaired bases in phage DNA after gamma-irradiation in-situ and in-vitro

    Microsoft Academic Search

    Heidi Martin-Bertram; Peter Hartl; Claudia Winkler

    1984-01-01

    Summary Phage Lambda DNA, gamma-irradiated in-situ and in-vitro, has been analyzed for unpaired bases by melting, reannealing, and cleavage with Sl nuclease which is specific for single-stranded DNA. DNA, irradiated in-situ, i.e., in the phage particle, contained sites being sensitive to Sl nuclease. These single-stranded lesions were passed over and conserved during reannealing, whereas adjacent DNA regions reannealed specifically. Complementary

  18. Direct analysis of reference biofluids by coupled in situ electrodeposition-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matousek, Jaroslav P.; Powell, Kipton J.

    1999-12-01

    The application of coupled in situ electrodeposition-electrothermal atomic absorption spectrometry (ED-ETAAS) to the determination of Pb in biological standard reference materials is described. In situ electrodeposition at a cell voltage of 3.0 V from 25-?l samples onto electrodeposited Pd is used to quantitatively separate the analyte from blood and urine matrices. With subsequent withdrawal of spent electrolyte, this overcomes the atomisation problems inherent with high salt and organic contents. ED-ETAAS is applied with minimal sample pre-treatment (acidification). The electrolysis process aids decomposition of the organic matrix, and the release of trace elements. Evolution of H 2 at the cathode counters fouling of the Pd modifier surface. The palladium deposit is renewed in situ for each determination. For AMI certified lyophilised blood, diluted 1+3 with 0.1 M HCl (18.1 ?g/l Pb), the R.S.D. was 3.0% (peak height; n=5) and the detection limit (3 ? blank; n=5) was 1.5 ?g/l. Results for certified blood samples were AMI 72.3±4.3 ?g/l (certified 76.2±7.6 ?g/l) and Seronorm 34.2±2.0 ?g/l (36±4 ?g/l). The result for NIST SRM 2670 normal urine acidified to 1% HNO 3 was 8.1±0.6 ?g/l (recommended value 10 ?g/l).

  19. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  20. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; Tawalbeh, R.; Glenar, D.; Elsila, J. E.; Callahan, M.

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  1. In situ mass analysis of particles by surface ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.; Moen, A. L.

    1974-01-01

    A qualitative study of the application of surface ionization and mass spectrometry to the in situ detection and constituent analysis of atmospheric particles was conducted. The technique consists of mass analysis of ions formed as a result of impingement of a stream of particles on a hot filament where, it is presumed, surface ionization takes place. Laboratory air particles containing K, Ca, and possibly hydrocarbons were detected. Other known particles such as Al2O3, Pb(NO3)2, and Cr2O3 were analyzed by detecting the respective metal atoms making up the particles. In some cases, mass numbers indicative of compounds making up the particles were detected showing surface ionization of particles sometimes leads to chemical analysis as well as to elemental analysis. Individual particles were detected, and it was shown that the technique is sensitive to Al2O3 particles with a mass of a few nanograms.

  2. MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals

    PubMed Central

    Fujimura, Yoshinori; Miura, Daisuke

    2014-01-01

    Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research. PMID:24957029

  3. Thickness metrology and end point control in W chemical vapor deposition process from SiH4 WF6 using in situ mass spectrometry

    E-print Network

    Rubloff, Gary W.

    using in situ mass spectrometry Y. Xu,a) T. Gougousi,b) L. Henn-Lecordier, Y. Liu, S. Cho, and G. W reduction process . Using mass spectrometry as the sensor to detect both product generation (H2. Fault detection using real-time, in situ e.g., mass spec- trometry or residual gas analysis RGA has been

  4. Use of Gamma Spectrometry Method for Environmental Monitoring in the area of NPP

    NASA Astrophysics Data System (ADS)

    Thinova, L.; Cechak, T.; Kluson, J.; Trojek, T.

    2006-05-01

    It is generally not possible to correctly determine the long and short term impact of human activity upon the environment, without thorough processing of data, obtained through monitoring. It was confirmed that such impact on the environment must be monitored over a long time period. The data obtained must be of high quality, an attribute assured by present state of scientific knowledge. One of the well established methods for monitoring atmospheric deposition of radionuclides in the environment is laboratory and in situ gamma spectrometry. With the aim to monitor an occurrence of a one-time escape or persistent release of fission products into the air, resulting from an operation of a nuclear plant, two types of monitoring are performed: i/ measurement of samples from the environment (Schreber moss, forest humus, pine bark, mushrooms and forest berries) using laboratory gamma spectrometry method in the range up to 3 MeV (those data are used for the trend analysis and for the construction of the contaminationmaps); ii/ in situ gama spectrometry for assessment dosimetry and spectrometry characteristic of photon-fields (those data are used for the dose rate calculation).

  5. Composite mapping experiences in airborne gamma spectrometry.

    PubMed

    Bucher, B

    2014-08-01

    During an international intercomparison exercise of airborne gamma spectrometry held in Switzerland 2007 teams from Germany, France and Switzerland were proving their capabilities. One of the tasks was the composite mapping of an area around Basel. Each team was mainly covering the part of its own country at its own flying procedures. They delivered the evaluated data in a data format agreed in advance. The quantities to be delivered were also defined in advance. Nevertheless, during the process to put the data together a few questions raised: Which dose rate was meant? Had the dose rate to be delivered with or without cosmic contribution? Activity per dry or wet mass? Which coordinate system was used? Finally, the data could be put together in one map. For working procedures in case of an emergency, quantities of interest and exchange data format have to be defined in advance. But the procedures have also to be proved regularly. PMID:24664949

  6. MALDI Imaging Mass Spectrometry for In Situ Proteomic Analysis of Preneoplastic Lesions in Pancreatic Cancer

    PubMed Central

    Grüner, Barbara M.; Hahne, Hannes; Mazur, Pawel K.; Trajkovic-Arsic, Marija; Maier, Stefan; Esposito, Irene; Kalideris, Evdokia; Michalski, Christoph W.; Kleeff, Jörg; Rauser, Sandra; Schmid, Roland M.; Küster, Bernhard; Walch, Axel; Siveke, Jens T.

    2012-01-01

    The identification of new biomarkers for preneoplastic pancreatic lesions (PanINs, IPMNs) and early pancreatic ductal adenocarcinoma (PDAC) is crucial due to the diseasés high mortality rate upon late detection. To address this task we used the novel technique of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on genetically engineered mouse models (GEM) of pancreatic cancer. Various GEM were analyzed with MALDI IMS to investigate the peptide/protein-expression pattern of precursor lesions in comparison to normal pancreas and PDAC with cellular resolution. Statistical analysis revealed several discriminative m/z-species between normal and diseased tissue. Intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) could be distinguished from normal pancreatic tissue and PDAC by 26 significant m/z-species. Among these m/z-species, we identified Albumin and Thymosin-beta 4 by liquid chromatography and tandem mass spectrometry (LC-MS/MS), which were further validated by immunohistochemistry, western blot, quantitative RT-PCR and ELISA in both murine and human tissue. Thymosin-beta 4 was found significantly increased in sera of mice with PanIN lesions. Upregulated PanIN expression of Albumin was accompanied by increased expression of liver-restricted genes suggesting a hepatic transdifferentiation program of preneoplastic cells. In conclusion we show that GEM of endogenous PDAC are a suitable model system for MALDI-IMS and subsequent LC-MS/MS analysis, allowing in situ analysis of small precursor lesions and identification of differentially expressed peptides and proteins. PMID:22761793

  7. In situ Analysis of Organic Compounds on Mars using Chemical Derivatization and Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Cabane, M.; Coll, P.; Navarro-Gonzalez, R.; Mahaffy, P. R.

    2005-01-01

    One of the core science objectives of NASA's 2009 Mars Science Laboratory (MSL) mission is to determine the past or present habitability of Mars. The search for key organic compounds relevant to terrestrial life will be an important part of that assessment. We have developed a protocol for the analysis of amino acids and carboxylic acids in Mars analogue materials using gas chromatography mass spectrometry (GCMS). As shown, a variety of carboxylic acids were readily identified in soil collected from the Atacama Desert in Chile at part-per-billion levels by GCMS after extraction and chemical derivatization using the reagent N,N-tert.-butyl (dimethylsilyl) trifluoroacetamide (MTBSTFA). Several derivatized amino acids including glycine and alanine were also detected by GCMS in the Atacama soil at lower concentrations (chromatogram not shown). Lacking derivatization capability, the Viking pyrolysis GCMS instruments could not have detected amino acids and carboxylic acids, since these non-volatile compounds require chemical transformation into volatile species that are stable in a GC column. We are currently optimizing the chemical extraction and derivatization technique for in situ GCMS analysis on Mars. Laboratory results of analyses of Atacama Desert samples and other Mars analogue materials using this protocol will be presented.

  8. In situ capture gamma-ray analysis of coal in an oversize borehole

    NASA Astrophysics Data System (ADS)

    Mikesell, Jon L.; Dotson, Danny W.; Senftle, Frank E.; Zych, Richard S.; Koger, Joseph; Goldman, Leonard

    1983-10-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes.

  9. Calibration of a field-portable gamma detector to obtain in situ measurements of the 137Cs inventories of cultivated soils and floodplain sediments.

    PubMed

    He, Q; Walling, D E

    2000-04-01

    Over the past 10 years, a number of studies have exploited the potential for using measurements of fallout 137Cs inventories to document rates and patterns of soil erosion on cultivated land and to estimate rates of overbank sedimentation on river floodplains. Traditional procedures for applying the 137Cs technique involve the collection of soil or sediment cores from a study site and their subsequent transfer to the laboratory for preparation and analysis by gamma spectrometry. Such procedures are time consuming and there may be a considerable delay before the results are available. It is therefore difficult to obtain preliminary results, which could be used to guide the development of an ongoing sampling programme. The use of in situ gamma spectrometry measurements to quantify 137Cs inventories in soils and sediments offers a number of potential advantages over traditional procedures. However, in order to derive a reliable estimate of the 137Cs inventory for a measurement point, it is necessary to take account of the attenuation of 137Cs gamma rays by the soil matrix and information on the depth distribution of 137Cs in the soil or sediment is therefore required. In the present study, empirical relationships between in situ measurements of 137Cs activity and total 137Cs inventories have been established for soils from a cultivated field and for floodplain sediments, based on information on the vertical distribution of 137Cs in the soils and sediments provided by the forward scattering ratio derived from the field measured spectra. These relationships have been used to estimate 137Cs inventories from in situ measurements of 137Cs activity at other locations. PMID:10800723

  10. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology

    Microsoft Academic Search

    Simon E. Jackson; Norman J. Pearson; William L. Griffin; Elena A. Belousova

    2004-01-01

    This paper reports new developments in in situ U–Pb zircon geochronology using 266 and 213 nm laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).Standard spot ablation (spot diameters 40–80 ?m) was employed, with no sampling strategies employed specifically to minimise elemental fractionation. Instead, He ablation gas and carefully replicated ablation conditions were employed to maintain constant ablation-related elemental fractionation of Pb and

  11. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  12. In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry.

    PubMed

    Santos, Luana N; Gonzalez, Mário H; Moura, Monise F; Donati, George L; Nóbrega, Joaquim A

    2012-08-15

    Tungsten coil atomic emission spectrometry (WCAES) is employed for the determination of calcium in juice, mineral and coconut water samples. A sample aliquot of 20 ?L is placed directly on the coil and a constant-voltage power source is used to dry and atomize the sample, as well as to promote Ca atomic emission. Analytical signals are resolved and detected using a Czerny-Turner spectrometer and a charge coupled device detector. Some experimental parameters such as coil position related to the spectrometer entrance slit and integration time are critically evaluated. A heating program with relatively constant drying temperatures is used in all measurements. An in situ digestion procedure is used to partially decompose organic matrices and improve WCAES precision and accuracy. By adding an oxidizing mixture to the sample and including a digestion step in the heating cycle, no statistical difference was observed between WCAES and ICP OES results for Ca in juice and coconut water samples. Mineral water samples were simply diluted with 1% vv(-1) HNO(3) before analysis and no significant interference was observed for concomitants such as Na and K. Despite severe positive interference caused by Mg, good agreement was obtained between WCAES and ICP OES results for Ca in several mineral water samples. Limits of detection and quantification obtained were 0.02 and 0.07 mg L(-1), respectively. The method precision, calculated as the relative standard deviation for 10 consecutive measurements of a 2.5 mg L(-1) Ca solution, is 3.8%. PMID:22841081

  13. Mechanistic aspects of the electro-oxidation of ethylene glycol on a Pt-film electrode: A combined in situ IR spectroscopy and online mass spectrometry

    E-print Network

    Pfeifer, Holger

    in situ IR spectroscopy and online mass spectrometry study of kinetic isotope effects J. Schnaidt* , M. Highly surface sensitive, in situ ATR- FTIR spectroscopy was employed to follow the potential dependent pathways such as CO2 formation, COad formation, the formation of a precursor for COad formation

  14. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  15. Detection of soil microorganism in situ by combined gas chromatography mass spectrometry

    NASA Technical Reports Server (NTRS)

    Alexander, M.; Duxbury, J. M.; Francis, A. J.; Adamson, J.

    1972-01-01

    Experimental tests were made to determine whether analysis of volatile metabolic products, formed in situ, is a viable procedure for an extraterrestrial life detection system. Laboratory experiments, carried out under anaerobic conditions with addition of carbon source, extended to include a variety of soils and additional substrates. In situ experiments were conducted without amendment using a vacuum sampling system.

  16. Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry.

    PubMed

    Chang, Qing; Peng, Yue'e; Dan, Conghui; Shuai, Qin; Hu, Shenghong

    2015-03-25

    A method for the rapid in situ identification of bioactive compounds in fresh plants has been developed using in vivo nanospray coupled to high-resolution mass spectrometry (HR-MS). Using a homemade in vivo nanospray ion source, the plant liquid was drawn out from a target region and ionized in situ. The ionized bioactive compounds were then identified using Q-Orbitrap HR-MS. The accurate mass measurements of these bioactive compounds were performed by full-scan or selected ion monitoring (SIM), and tandem mass spectrometry (MS/MS) was used in the structural elucidation. Without sample pretreatment, 12 bioactive compounds in 7 different plant species were identified, namely, isoalliin in onion; butylphthalide in celery; N-methylpelletierine, pelletierine, and pseudopelletierine in pomegranate; chlorogenic acid in crabapple; solamargine, solasonine, and solasodine in nightshade; aloin and aloe-emodin in aloe; and menthone in mint. This work demonstrates that in vivo nanospray HR-MS is a good method for rapid in situ identification of bioactive compounds in plants. PMID:25749134

  17. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry.

    PubMed

    Li, Ming; Zhang, Jingjing; Jiang, Jie; Zhang, Jing; Gao, Jing; Qiao, Xiaolin

    2014-04-01

    In this paper, a novel approach based on paper spray ionization coupled with ion mobility spectrometry (PSI-IMS) was developed for rapid, in situ detection of cocaine residues in liquid samples and on various surfaces (e.g. glass, marble, skin, wood, fingernails), without tedious sample pretreatment. The obvious advantages of PSI are its low cost, easy operation and simple configuration without using nebulizing gas or discharge gas. Compared with mass spectrometry, ion mobility spectrometry (IMS) takes advantage of its low cost, easy operation, and simple configuration without requiring a vacuum system. Therefore, IMS is a more congruous detection method for PSI in the case of rapid, in situ analysis. For the analysis of cocaine residues in liquid samples, dynamic responses from 5 ?g mL(-1) to 200 ?g mL(-1) with a linear coefficient (R(2)) of 0.992 were obtained. In this case, the limit of detection (LOD) was calculated to be 2 ?g mL(-1) as signal to noise (S/N) was 3 with a relative standard deviation (RSD) of 6.5% for 11 measurements (n = 11). Cocaine residues on various surfaces such as metal, glass, marble, wood, skin, and fingernails were also directly analyzed before wiping the surfaces with a piece of paper. The LOD was calculated to be as low as 5 ng (S/N = 3, RSD = 6.3%, n = 11). This demonstrates the capability of the PSI-IMS method for direct detection of cocaine residues at scenes of cocaine administration. Our results show that PSI-IMS is a simple, sensitive, rapid and economical method for in situ detection of this illicit drug, which could help governments to combat drug abuse. PMID:24563903

  18. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas.

    PubMed

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-12-01

    High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. PMID:25233216

  19. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility. PMID:24986759

  20. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies.

    PubMed

    Nilsson, Anna; Forngren, Benita; Bjurström, Sivert; Goodwin, Richard J A; Basmaci, Elisa; Gustafsson, Ingela; Annas, Anita; Hellgren, Dennis; Svanhagen, Alexander; Andrén, Per E; Lindberg, Johan

    2012-01-01

    Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development. PMID:23110069

  1. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  2. Gamma-ray spectroscopy of in-situ SNM with the M³CA and a new room-temperature detector

    Microsoft Academic Search

    P. A. Russo; D. A. Close; S. T. Hsue

    1995-01-01

    Gamma-ray spectroscopy with real-time readout is applied in portable and fixed (continuous) quantitative assays of in-situ special nuclear materials (SNM). Hold-up, in-process inventory, stored inventory, and dynamic materials are several categories of SNM for which in-situ measurements are required. Conventional room-temperature gamma-ray detectors serve in a limited number of these applications, but these detectors have a low gamma energy resolution

  3. A numerical method for the calibration of in situ gamma ray spectroscopy systems.

    PubMed

    Dewey, S C; Whetstone, Z D; Kearfott, K J

    2010-05-01

    High purity germanium in situ gamma ray spectroscopy systems are typically calibrated using pre-calculated tables and empirical formulas to estimate the response of a detector to an exponentially distributed source in a soil matrix. Although this method is effective, it has estimated uncertainties of 10-15%, is limited to only a restricted set of measurement scenarios, and the approach only applies to an exponentially distributed source. In addition, the only soil parameters that can be varied are density and moisture content, while soil attenuation properties are fixed. This paper presents a more flexible method for performing such calibrations. For this new method, a three- or four-dimensional analytical expression is derived that is a combination of a theoretical equation and experimentally measured data. Numerical methods are used to integrate this expression, which approximates the response of a detector to a large variety of source distributions within any soil, concrete, or other matrix. The calculation method is flexible enough to allow for the variation of multiple parameters, including media attenuation properties and the measurement geometry. The method could easily be adapted to horizontally non-uniform sources as well. Detector responses are calculated analytically and Monte Carlo radiation transport simulations are used to verify the results. Results indicate that the method adds an uncertainty of only approximately 5% to the other uncertainties typically associated with the calibration of a detector system. PMID:20386196

  4. Principles of UV-gamma coincidence spectrometry

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Peräjärvi, Kari; Toivonen, Juha; Toivonen, Harri

    2012-10-01

    With conventional methods, samples containing alpha-particle-emitting nuclides are difficult to detect and characterize from distances greater than a few centimetres. One promising technique is to observe alpha particles indirectly by utilizing alpha-induced ultraviolet (UV) photons. While absorbing in air, the energy of alpha particles is transferred to atmospheric molecules, leading to their ionization and excitation. In this work, UV photons generated in the relaxation of nitrogen molecules were used to trigger a gamma-ray spectrometer. This UV approach allows the focusing of gamma-ray measurements on a certain point containing alpha emitters. The present paper demonstrates that the new measurement principle works and has the potential to be developed for both in-field and laboratory applications.

  5. A dedicated LIMS for routine gamma-ray spectrometry.

    PubMed

    Bruggeman, M; Verheyen, L; Vidmar, T

    2014-05-01

    We developed a Microsoft(®) Access-based LIMS (Laboratory Information and Management Systems), ?-LIMS, for the management of our gamma-spectrometry laboratory, in which thousands of routine, but high-quality analyses are performed each year. This paper explains the main features of the ?-LIMS and puts special attention on the interfacing methods and solutions for using the Genie™2000 spectrometry software in conjunction with the EFFTRAN package, which serves for efficiency transfer calculations, coincidence summing corrections and a procedure for uncertainty estimation. PMID:24332338

  6. Gamma-ray spectrometry of LDEF samples

    SciTech Connect

    Winn, W.G.

    1991-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of (sup 22)Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  7. Gamma-ray spectrometry of LDEF samples

    SciTech Connect

    Winn, W.G.

    1991-12-31

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of (sup 22)Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  8. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction

    SciTech Connect

    Fernandez-Garrido, S.; Calleja, E. [ISOM and Dpt. de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Koblmueller, G.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2008-08-01

    Thermal decomposition of wurtzite (0001)-oriented GaN was analyzed: in vacuum, under active N exposure, and during growth by rf plasma-assisted molecular beam epitaxy. The GaN decomposition rate was determined by measurements of the Ga desorption using in situ quadrupole mass spectrometry, which showed Arrhenius behavior with an apparent activation energy of 3.1 eV. Clear signatures of intensity oscillations during reflection high-energy electron diffraction measurements facilitated complementary evaluation of the decomposition rate and highlighted a layer-by-layer decomposition mode in vacuum. Exposure to active nitrogen, either under vacuum or during growth under N-rich growth conditions, strongly reduced the GaN losses due to GaN decomposition.

  9. Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer

    Microsoft Academic Search

    Moneeb Ehtesham; Ken Samoto; Peter Kabos; Frank L Acosta; Mervin AR Gutierrez; Keith L Black; John S Yu

    2002-01-01

    Interferon-gamma (IFN?) and tumor necrosis factor-alpha (TNF?) are potent immunostimulatory cytokines with demonstrated tumoricidal effects in a variety of cancers. With the aim of investigating their ability to generate antitumor immune responses in malignant brain tumors, we describe the use of in situ adenoviral-mediated IFN? and TNF? gene transfer in glioma-bearing rodents. Survival was prolonged in mice treated with AdmIFN?

  10. REAL-TIME IN-SITU MEASUREMENT OF MATERIAL ELASTIC PROPERTIES IN A HIGH GAMMA IRRADIATION ENVIRONMENT

    SciTech Connect

    Ken Telschow; Rob Schley; Dave Cottle

    2006-05-01

    The first measurements of elastic vibrations of an object in-situ to a high gamma irradiation field using a laser coupled resonant ultrasound method are described. A vibration mode of an Inconel hollow capped cylinder was measured throughout a period of 170 hours as the gamma radiation field was increased to 104 Gray/hour. The vibration mode frequency was observed to change in a manner consistent with the temperature dependence of the elastic stiffness coefficients of the material. These results illustrate the efficacy of the laser approach for real-time resonant ultrasound measurements in this severely hostile nuclear environment.

  11. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  12. The laser ablation ion funnel: Sampling for in situ mass spectrometry on Mars

    NASA Astrophysics Data System (ADS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-04-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  13. Novel application of ?/? autoradiography and collimated ?-spectrometry to study in situ radionuclide migration paths in fractured rock

    NASA Astrophysics Data System (ADS)

    Möri, A.; Biggin, C.; Mäder, U.; Eikenberg, J.; Rüthi, M.

    ?/?-Autoradiography and collimated ?-spectrometry were applied on in situ impregnated core samples containing various radionuclides such as 137Cs and 60Co to study diffusion paths in fractured granitic rocks from the Grimsel test site (GTS). The radionuclide tracers were injected into a water conducting feature (WCF) during years ( 137Cs) or months ( 60Co) before the flow field and the adjacent rock matrix were overcored for analysis. The retardation sites of the radionuclides in and around the flow paths were first determined by means of a state of the art ?/?-autoradiography scanner. Increased activity above natural background was observed both in the WCF and in the adjacent rock matrix showing structural control of radionuclide transport into the rock matrix as activity in the matrix was mainly bound to grain-boundary pores. In a second step, the areas of increased activity within the WCF and in the neighbouring rock matrix were investigated using a HPGe ?-spectrometer. A new setup for collimated ?-spectrometry was developed, which revealed spatial and nuclide specific information about tracer concentrations in the samples. Although this technique is hampered by much reduced counting efficiencies, it allows non-invasive determination of spatial distribution of radionuclides at the centimetre scale. A preliminary data set produced to show the application possibilities of these techniques indicated maximum 137Cs diffusion into the rock matrix adjacent to a WCF to a depth of 45 mm within 3 years and for 60Co to about 3 mm in 2 months.

  14. A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring

    E-print Network

    Ming Zeng; Zhi Zeng; Jirong Cang; Xingyu Pan; Tao Xue; Hao Ma; Hongchang Yi; Jianping Cheng

    2015-04-20

    A prototype of LaBr3:Ce in situ gamma-ray spectrometer for marine environmental monitoring is developed and applied for in situ measurement. A 3-inch LaBr3:Ce scintillator is used in the detector, and a digital pulse process electronics is chosen as the pulse height analyzer. For this prototype, the energy response of the spectrometer is linear and the energy resolution of 662keV is 2.6% (much better than NaI). With the measurement of the prototype in a water tank filled with 137Cs, the detect efficiency for 137Cs is (0.288 0.01)cps/(Bq/L), which is close to the result of Monte Carlo simulation, 0.283cps/(Bq/L). With this measurement, the MDAC for 137Cs in one hour has been calculated to 0.78Bq/L, better than that of NaI(Tl) in-situ gamma spectrometer, which is ~1.0Bq/L.

  15. Slow elimination of phosphorylated histone {gamma}-H2AX from DNA of terminally differentiated mouse heart cells in situ

    SciTech Connect

    Gavrilov, Boris [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Vezhenkova, Irina [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Firsanov, Denis [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Solovjeva, Liudmila [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Svetlova, Maria [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Mikhailov, Vyacheslav [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Tomilin, Nikolai [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation)]. E-mail: nvtom@hotmail.com

    2006-09-08

    Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around double-strand DNA breaks (DSBs) and this modification (called {gamma}-H2AX) may serve as a useful marker of genome damage and repair in terminally differentiated cells. Here using immunohistochemistry we studied kinetics of {gamma}-H2AX formation and elimination in the X-irradiated mouse heart and renal epithelial tissues in situ. Unirradiated tissues have 3-5% {gamma}-H2AX-positive cells and in tissues fixed 1 h after X-irradiation {gamma}-H2AX-positive nuclei are induced in a dose-dependent manner approaching 20-30% after 3 Gy of IR. Analysis of mouse tissues at different times after 3 Gy of IR showed that maximal induction of {gamma}-H2AX in heart is observed 20 min after IR and then is decreased slowly with about half remaining 23 h later. In renal epithelium maximum of the {gamma}-H2AX-positive cells is observed 40 min after IR and then decreases to control values in 23 h. This indicates that there are significant variations between non-proliferating mammalian tissues in the initial H2AX phosphorylation rate as well as in the rate of {gamma}-H2AX elimination after X-irradiation, which should be taken into account in the analysis of radiation responses.

  16. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  17. In situ analysis of formation of carbon nanostructures in arc discharge by optical spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Jian; Hwangbo, George; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures due to its relatively high growth temperature. By introducing a non-uniform magnetic field with the component normal to arc current, graphene flakes and single-walled carbon nanotubes can be synthesized in one step. In contrast to the growth processes without magnetic field, the magnetically-enhanced arc is confined by the Lorentz force, which generates the plasma jet and makes effective delivery of carbon particles and heat flux. However, there are still unresolved questions concerning the location of the region of nanoparticle synthesis and growth steps of carbon nanostructures. In this work we carried out in situ analysis of the optical spectrum which can provide a unique investigation of the different transformation processes of the carbon and metal catalyst vapors generated from the vaporization of the anode in arc. The experiments were taken for various electrode gaps and different conditions of external magnetic field. Moreover, SEM, TEM, EDX and Raman spectroscopy were employed to characterize the properties of carbon nanotubes and graphene.

  18. In situ analysis of formation of carbon nanostructures in arc discharge by optical spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Jian; Hwangbo, George; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures due to its relatively high growth temperature. By introducing a non- uniform magnetic field with the component normal to arc current, graphene flakes and single-walled carbon nanotubes can be synthesized in one step. In contrast to the growth processes without magnetic field, the magnetically-enhanced arc is confined by the Lorentz force, which generates the plasma jet and makes effective delivery of carbon particles and heat flux. However, there are still unresolved questions concerning the location of the region of nanoparticle synthesis and growth steps of carbon nanostructures. In this work we carried out in situ analysis of the optical spectrum which can provide a unique investigation of the different transformation processes of the carbon and metal catalyst vapors generated from the vaporization of the anode in arc. The experiments were taken for various electrode gaps and different conditions of external magnetic field. Moreover, SEM, TEM, EDX and Raman spectroscopy were employed to characterize the properties of carbon nanotubes and graphene.

  19. Miniaturized laser-induced plasma spectrometry for planetary in situ analysis - The case for Jupiter's moon Europa

    NASA Astrophysics Data System (ADS)

    Pavlov, S. G.; Jessberger, E. K.; Hübers, H.-W.; Schröder, S.; Rauschenbach, I.; Florek, S.; Neumann, J.; Henkel, H.; Klinkner, S.

    2011-08-01

    Jupiter's icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa's surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 ?m, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.

  20. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  1. Calibrated In Situ Measurement of UT/LS Water Vapor Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A.; Gao, R.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2011-12-01

    Over the past several decades there has been considerable disagreement among in situ water vapor measurements by different instruments at the low part per million (ppm) mixing ratios found in the upper troposphere and lower stratosphere (UT/LS). These discrepancies contribute to uncertainty in our understanding of the microphysics related to cirrus cloud particle nucleation and growth and affect our ability to determine the effect of climate changes on the radiatively important feedback from UT/LS water vapor. To address the discrepancies observed in measured UT/LS water vapor, a new chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor at low mixing ratios. The instrument utilizes a radioactive ? particle source to ionize a flow of sample air drawn into the instrument. A cascade of ion-molecule reactions results in the production of protonated water ions proportional to the water vapor mixing ratio that are then detected by the mass spectrometer. The multi-step nature of the ionization mechanism results in a non-linear sensitivity to water vapor, necessitating calibration across the full range of values to be measured. To accomplish this calibration, we have developed a novel calibration scheme using catalytic oxidation of hydrogen to produce well-defined water vapor mixing ratios that can be introduced into the instrument inlet during flight. The CIMS instrument was deployed for the first time aboard the NASA WB-57 high altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The sensitivity of the instrument to water vapor was calibrated every ~45 minutes in flight from < 1 to 150 ppm. Analysis of in-flight data demonstrates a typical sensitivity of 2000 Hz/ppm at 4.5 ppm with a signal to noise ratio (2 ?) > 50 for a 1 second measurement. The instrument and its calibration system performed successfully in 7 flights during the MACPEX mission, sampling water vapor mixing ratios as low as 4 ppm in stratospheric air. A comparison of the new measurement with other measurements on board the aircraft is expected to help resolve the long-standing differences in low water measurements in the lower stratosphere.

  2. Gamma ray spectrometry of LDEF samples at SRS

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1991-01-01

    A total of 31 samples from Long Duration Exposure Facility (LDEF), including materials of Al, V, and steel trunnions were analyzed by ultralow level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include an end piece that collects noticeable Be-7 on its leading surface. No significant Be-7 was detected in the samples analyzed. The most sensitive analyses were performed with a 90 pct. efficient HPGe gamma ray detector, which is enclosed in a purged active/passive active shield.

  3. Development of the Probing In-Situ with Neutron and Gamma Rays (PING) Instrument for Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.

  4. In situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry.

    PubMed

    Ziegler, Dominik; Mariotti, Anna; Pflüger, Valentin; Saad, Maged; Vogel, Guido; Tonolla, Mauro; Perret, Xavier

    2012-01-01

    Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues. PMID:22615938

  5. In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry

    PubMed Central

    Pflüger, Valentin; Saad, Maged; Vogel, Guido; Tonolla, Mauro; Perret, Xavier

    2012-01-01

    Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues. PMID:22615938

  6. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Short, Joshua TL; Carson, James P.; Cha, Jeeyeon; Dey, Sudhansu K.; Yang, Pengxiang; Prieto Conaway, Maria C.; Laskin, Julia

    2013-10-15

    Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z values at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.

  7. Desorption corona beam ionisation (DCBI) mass spectrometry for in-situ analysis of adsorbed phenol in cigarette acetate fiber filter.

    PubMed

    Du, Wen; Tang, Li-Juan; Wen, Jian-Hui; Zhong, Ke-Jun; Jiang, Jian-Hui; Wang, Hua; Chen, Bo; Yu, Ru-Qin

    2015-01-01

    The study of spatial distribution characteristics of the adsorbed compounds for absorbent materials has significant importance in understanding the behaviors of aerosols while they migrating in the absorbent materials. Herein, for the first time, desorption corona beam ionization-mass spectrometry (DCBI-MS) has proposed for direct in-situ analysis of adsorbed aerosol for absorbent materials. DCBI is a novel atmospheric pressure chemical ionization (APCI)-related technique developed by our group in recent years. It can facilitate accurately localizing sampling by forming a visible thin corona beam and avoid the risk of sample contamination and matrix interference compared with other similar techniques. The advantages of DCBI-MS allow rapid screening of the spatial distribution characteristics of the adsorbed compounds for absorbent materials. The distribution characteristic of phenol in cigarette filter tip filled with cellulose acetate fiber was studied as a model case for demonstrating the feasibility of the developed method. As a comparison, conventional HPLC was also used for the study of the distribution characteristic of phenol. The results revealed DCBI-MS had highly improved assay simplicity in spatial distribution characteristic analysis of phenol for the acetate fiber tip, therefore, exhibiting a great potential for convenient, rapid and cost-efficient analysis of the spatial distribution characteristic investigation of adsorbed compounds for adsorbent materials. PMID:25281132

  8. Planetary In Situ Sample Analysis with Tandem Two-Step Laser Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, W. B.; Getty, S. A.; Cornish, T. J.; Ecelberger, S. A.; Li, X.; Merrill Floyd, M. A.; Arevalo, R.; Elsila, J.; Callahan, M. P.

    2012-12-01

    Future surface missions to comets and outer solar system satellites such as Europa, Enceladus, and Titan will benefit strongly from investigations that can detect a wide range of organics in complex sample mixtures and ices, as well as determine the structure of selected molecules, to provide insight into their origin and evolution. At the same time, such missions are likely to be among the most highly constrained in mass and power resources, particularly those flown within the tightly focused Discovery and New Frontiers programs. Techniques requiring minimal or no sample manipulation or preparation may be needed to reduce complexity. Pulsed laser-based mass spectrometry may satisfy such requirements, with total instrument masses potentially less than 5 kg, particularly where analysis of higher-molecular weight, nonvolatile species is a priority objective. Prototype flight-compatible mass spectrometers under active development in our lab are based on direct ultraviolet Nd:YAG laser desorption and ionization (LDI) of solid samples under high vacuum. Prompt ions from a single few ns-duration laser pulse are accelerated into a compact time-of-flight mass spectrometer (TOF-MS). Both inorganic species including elements and oxides such as M_xO_y (M = Mg, Al, Cl, Ca, Fe; x, y = 1-4) from the mineral matrix as well as organics with molecular weights up to several kDa are readily detected over a range of laser intensities. To improve our ability to distinguish among peaks and patterns in the often-complex LDI spectra obtained from natural samples, we have recently begun systematically testing several critical instrument enhancements. First, by moving the common voltage bias of the ion flight tube and detector to a common negative potential, we are able to switch between positive and negative ion detection modes with only electrostatic switching. Inter-comparison of cation and anion spectra can provide highly diagnostic information on both inorganic (e.g., Na+ and K+ vs. Cl-) and organic moieties. Second, by focusing a separate "post-ionization" laser pulse just above the sample surface, we can achieve two-step laser mass spectrometry, or L2MS, in the same highly-miniaturized TOF-MS. L2MS enables selective analysis of aromatic organics even in the presence of a complex mineral matrix. Finally, by introducing an ion optical gate in the flight path, we are able to take advantage of the broad focusing capabilities of the "curved field" reflectron at the core of the TOF-MS to achieve pseudo-tandem structural analysis of selected organics. The high-speed gate is used to admit only the molecular ion/s of interest into the reflectron. Diagnostic fragments of the ion/s obtained through metastable decay or active collision-induced dissociation (CID) remain in focus despite having widely variable velocities and masses. As such even molecular isomers with differing fragmentation pathways may be distinguished through a series of pseudo-tandem mass spectra that could be obtained in an automatic process during a mission. The "real-world" benefits of these enhancements are being fully characterized using a set of synthetic and natural standard samples as well as several planetary analogs and meteorites.

  9. Radon gamma-ray spectrometry with YAP:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Plastino, Wolfango; De Felice, Pierino; de Notaristefani, Francesco

    2002-06-01

    The detection properties of a YAP:Ce scintillator (YAlO 3:Ce crystal) optically coupled to a Hamamatsu H5784 photomultiplier with standard bialkali photocathode have been analyzed. In particular, the application to radon and radon-daughters gamma-ray spectrometry was investigated. The crystal response has been studied under severe extreme conditions to simulate environments of geophysical interest, particularly those found in geothermal and volcanic areas. Tests in water up to a temperature of 100°C and in acids solutions such as HCl (37%), H 2SO 4 (48%) and HNO 3 (65%) have been performed. The measurements with standard radon sources provided by the National Institute for Metrology of Ionizing Radiations (ENEA) have emphasized the non-hygroscopic properties of the scintillator and a small dependence of the light yield on temperature and HNO 3. The data collected in this first step of our research have pointed out that the YAP:Ce scintillator can allow high response stability for radon gamma-ray spectrometry in environments with large temperature gradients and high acid concentrations.

  10. Automated determination of tin by hydride generation using in situ trapping on stable coatings in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Haug, Hermann O.; Yiping, Liao

    1995-09-01

    Conditions have been studied for the determination of Sn by coupling of hydride generation and graphite furnace atomic absorption spectrometry. Sequestering and in situ concentration of Sn hydride in the graphite furnace requires just a single application of a long-term stable trapping reagent for automated analyses. In a systematic study it is shown that effective trapping of stannane is possible on graphite tubes or platforms coated with a carbide-forming element such as Zr, Nb, Ta, or W at trapping temperatures of 500 to 600°C. Trapping temperatures should not be higher than 600°C (the "critical temperature") because otherwise at temperatures higher than 700°C errors in absorbance values could occur by an adsorptive "carry-over effect". Signal stability and reproducibility are tested over more than 400 complete trapping and atomization cycles, and a precision of 2% is observed. Narrow peaks are obtained for all coatings except for Nb- and Ta-coated platforms where double peaks occur. Ir- or Pd/Ir-coated surfaces allow trapping of stannane at lower temperatures but the signal stability (especially in the case of Pd/Ir coating) is lower than with the carbide-forming element coatings. The highest sensitivity is found for Zr- and W-coated tubes with a characteristic mass of about 17 and 20 pg, respectively, and the calibration curves are linear up to 2 ng Sn on Zr-treated tubes (peak height) and 4 ng on Zr-coated platforms (integrated absorbance) using the 286.3 nm line. The detection limit is 25 pg for a 1 ml sample volume, and the reagent blank is still significant with the purest available chemicals. The method is tested by determination of Sn in low alloy steel samples.

  11. High-resolution gamma-ray spectrometry in uranium exploration

    USGS Publications Warehouse

    Moxham, Robert M.; Tanner, Allan B.

    1977-01-01

    Sedimentary-type uranium deposits accumulate at favorable sites along a migration path which may be kilometers in length. Their source is a large volume of rock from which the uranium has been leached. The geochemical mobilities and half lives of uranium and its daughter products vary widely so that they are transported from the source rocks, at different rates, along the migration path to their ultimate site. The radioactive disequilibrium resulting from this process has been well documented in the immediate vicinity of ore deposits, and disequilibrium is commonly recorded on gamma-ray logs up the hydraulic gradient from uranium ore. Little is known about the state of secular equilibrium in the leached host rocks, which often represent the only part of the migration path that is at or near the surface and is thus most accessible to the exploration geophysicist. High-resolution gamma-ray spectrometry provides a means of investigating the disequilibrium associated with uranium leaching and migration. Direct measurement of uranium can be made by this method, and the equivalent weight percents can be determined for six of the seven daughter-product decay groups that characterize the state of radioactive equilibrium. The technique has been used quantitatively in laboratory studies, where the results compare favorably with radiochemical analyses; field experiments suggest that semi-quantitative data may be obtained at the outcrop.

  12. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that on a planetary surface. We will also illustrate the use of gamma ray timing techniques to improve sensitivity and will compare the material composition results from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results.

  13. A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

    1993-01-01

    An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

  14. Use of a Shielded High Resolution Gamma Spectrometry System to Segregate LLW from Contact Handleable ILW Containing Plutonium - 13046

    SciTech Connect

    Lester, Rosemary; Wilkins, Colin [Canberra UK Ltd, Unit 1 B528.1, Harwell Science Campus, Oxfordshire OX11 0DF (United Kingdom)] [Canberra UK Ltd, Unit 1 B528.1, Harwell Science Campus, Oxfordshire OX11 0DF (United Kingdom); Chard, Patrick [Canberra UK Ltd, Forss Business and Technology park, Thurso, Caithness KW14 7UZ (United Kingdom)] [Canberra UK Ltd, Forss Business and Technology park, Thurso, Caithness KW14 7UZ (United Kingdom); Jaederstroem, Henrik; LeBlanc, Paul; Mowry, Rick [Canberra Industries, Inc., 800 Research Parkway, Meriden, Connecticut, 06450 (United States)] [Canberra Industries, Inc., 800 Research Parkway, Meriden, Connecticut, 06450 (United States); MacDonald, Sanders; Gunn, William [Dounreay Site Restoration Limited, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom)] [Dounreay Site Restoration Limited, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom)

    2013-07-01

    Dounreay Site Restoration Limited (DSRL) have a number of drums of solid waste that may contain Plutonium Contaminated Material. These are currently categorised as Contact Handleable Intermediate Level Waste (CHILW). A significant fraction of these drums potentially contain waste that is in the Low Level Waste (LLW) category. A Canberra Q2 shielded high resolution gamma spectrometry system is being used to quantify the total activity of drums that are potentially in the LLW category in order to segregate those that do contain LLW from CHILW drums and thus to minimise the total volume of waste in the higher category. Am-241 is being used as an indicator of the presence of plutonium in the waste from its strong 59.54 keV gamma-ray; a knowledge of the different waste streams from which the material originates allows a pessimistic waste 'fingerprint' to be used in order to determine an upper limit to the activities of the weak and non-gamma-emitting plutonium and associated radionuclides. This paper describes the main features of the high resolution gamma spectrometry system being used by DSRL to perform the segregation of CHILW and LLW and how it was configured and calibrated using the Canberra In-Situ Object Counting System (ISOCS). It also describes how potential LLW drums are selected for assay and how the system uses the existing waste stream fingerprint information to determine a reliable upper limit for the total activity present in each measured drum. Results from the initial on-site commissioning trials and the first measurements of waste drums using the new monitor are presented. (authors)

  15. Gamma irradiation testing of montan wax barrier materials for in-situ waste containment

    SciTech Connect

    Soo, P.; Heiser, J.

    1996-02-01

    A scoping study was carried out to quantify the potential use of a montan wax as a barrier material for subsurface use. If it possesses resistance to chemical and structural change, it could be used in a barrier to minimize the migration of contaminants from their storage or disposal locations. Properties that were evaluated included hardness, melting point, molecular weight, and biodegradation as a function of gamma radiation dose. The main emphasis was to quantify the wax`s long-term ability to withstand radiation-induced mechanical, chemical, and microbial degradation.

  16. Demonstration of lightweight gamma spectrometry systems in urban environments.

    PubMed

    Cresswell, A J; Sanderson, D C W; Harrold, M; Kirley, B; Mitchell, C; Weir, A

    2013-10-01

    Urban areas present highly complex radiation environments; with small scale features resulting from different construction materials, topographic effects and potential anthropogenic inputs from past industrial activity or other sources. Mapping of the radiation fields in urban areas allows a detailed assessment of exposure pathways for the people who live and work there, as well as locating discrete sources of activity that may warrant removal to mitigate dose to the general public. These areas also present access difficulties for radiometric mapping using vehicles or aircraft. A lightweight portable gamma spectrometry system has been used to survey sites in the vicinity of Glasgow to demonstrate the possibilities of radiometric mapping of urban areas, and to investigate the complex radiometric features such areas present. Variations in natural activity due to construction materials have been described, the presence of (137)Cs used to identify relatively undisturbed ground, and a previously unknown NORM feature identified. The effect of topographic enclosure on measurements of activity concentration has been quantified. The portable system is compared with the outputs that might be expected from larger vehicular or airborne systems. For large areas airborne surveys are the most cost effective approach, but provide limited spatial resolution, vehicular surveys can provide sparse exploratory data rapidly or detailed mapping of open areas where off-road access is possible. Backpack systems are ideally suited to detailed surveys of small areas, especially where vehicular access is difficult. PMID:23639691

  17. Gamma-ray spectroscopy of in-situ SNM with the M{sup 3}CA and a new room-temperature detector

    SciTech Connect

    Russo, P.A.; Close, D.A.; Hsue, S.T. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Gamma-ray spectroscopy with real-time readout is applied in portable and fixed (continuous) quantitative assays of in-situ special nuclear materials (SNM). Hold-up, in-process inventory, stored inventory, and dynamic materials are several categories of SNM for which in-situ measurements are required. Conventional room-temperature gamma-ray detectors serve in a limited number of these applications, but these detectors have a low gamma energy resolution that limits their sensitivities. It is necessary to develope room temperature detectors with improved sensitivity, and the promising approach is an elegant new detector design that benefits from the recent advances in solid-state materials technology for the production of large, good-quality crystals of CdZnTe. The detector operates with a miniature, modular, multi-channel analyzer. Characteristics of this detector are briefly discussed in this paper.

  18. Recovery and reanalysis of archived airborne gamma spectrometry data from the 1991 Dounreay survey.

    PubMed

    Cresswell, A J

    2012-01-01

    Archived Airborne Gamma Spectrometry (AGS) data from the 1991 NIREX characterisations of Caithness have been recovered. The separate gamma spectrometry and positional data streams for approximately 120,000 measurements have been combined into a single data stream using the European Radiometrics and Spectrometry (ERS) data format. An analysis using working calibration coefficients and spectral stripping procedure has verified that the original survey recorded high quality data. The converted data stream is in a format more accessible to future research use, including evaluation of environmental change in the Caithness region. PMID:21798750

  19. Deformation and fracture behavior of Ni-Mo-Al(gamma/gamma prime-alpha) in situ composite

    NASA Technical Reports Server (NTRS)

    Sriramamurthy, A. M.; Tewari, S. N.

    1984-01-01

    Tensile properties of a directionally solidified (DS) eutectic alloy of the nominal composition Ni-33 Mo-5.7 Al (weight percent) have been investigated both at room temperature and elevated temperatures. The microstructure-mechanical property relationship has been studied for the alloy both in the as-DS and heat-treated conditions. Changes in the yield strength, the work hardening behavior, and the fracture morphology have been explained in terms of the microstructural changes due to the heat treatment. The yield drops observed have been attributed to the microdebonding due to the possible segregation of impurities at the fiber-matrix interface, and partly to the strain aging. The deformation mechanism has been identified to be the cutting of gamma prime particles.

  20. Gamma-ray spectroscopy of in-situ SNM with the M³CA and a new room-temperature detector

    Microsoft Academic Search

    P. A. Russo; D. A. Close; S. T. Hsue; J. K. Jr. Sprinkle; M. C. Sumner

    1995-01-01

    Compact, rugged, efficient, and reliable room-temperature gamma ray detectors with better energy resolution are need for in situ applications. These improved detectors are sought as alternatives to the compact NaI(T1) detectors now available. A promising approach is an elegant new design that benefits fully form the recent advances in solid-state materials technology for production of large, good quality crystals of

  1. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ? 2HCO3- + H2S CH4 + SO4= ? HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = pKa then the mole fractions are equal. We find by this means that the HS-/H2S factor is 2.744:1. We report here both the process for determining the relative Raman cross-sections and show the application of the technique via deconvolution of the species present in the spectra. We present results of in situ pore water measurements made on highly reducing sediments on the Santa Monica Basin Mounds and determine the in situ pH to have a mean value of 7.12 at 20 - 30 cm insertion depth into a zone of dense bacterial mat. References: Zhang, X., P.M. Walz, W.J. Kirkwood, K.C. Hester, W.Ussler, E.T. Peltzer, P.G. Brewer (2010). Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry. Deep-Sea Res. I 57: 297-306. Zhang, X., K.C. Hester, W. Ussler, P.M. Walz, E.T. Peltzer, P.G. Brewer (submitted). Observing Deep Ocean Sediment Methane Concentrations. Science.

  2. ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement

    SciTech Connect

    Pin, P. [AREVA NC La Hague - Nuclear Measurement Team, 50444 Beaumont-Hague Cedex (France); Barat, E.; Dautremer, T.; Montagu, T. [CEA - Saclay, LIST, Electronics and Signal Processing Laboratory, 91191 Gif sur Yvette (France); Normand, S. [CEA - Saclay, LIST, Sensors and Electronic Architectures Laboratory, 91191 Gif sur Yvette (France)

    2011-07-01

    ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

  3. A simple method for the absolute determination of uranium enrichment by high-resolution gamma spectrometry.

    PubMed

    Korob, R O; Blasiyh Nuño, G A

    2006-05-01

    A simple method for the determination of uranium enrichment using high-resolution gamma spectrometry is presented in this paper. The method relies solely on the gamma-ray emission probabilities of 235U and 234mPa, and an iterative procedure for the least squares fit of a polynomial to a set of experimentally determined data. To ensure the reliability of the 234mPa gamma-ray emission probabilities employed, a new determination of these probabilities was carried out using a combination of gamma spectrometry and Cerenkov counting of a purified 234Th solution. Using these new data, a maximum difference of approximately 5% has been found between the experimental and declared uranium enrichment in a set of solid and liquid samples containing uranium compounds. PMID:16311038

  4. QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY

    EPA Science Inventory

    This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

  5. In-situ monitoring of actinides and rare earth elements by electrothermal hollow cathode discharge spectrometry. Technical progress report

    Microsoft Academic Search

    S. C. Lee; M. C. Edelson

    1992-01-01

    This report describes an Electrothermal Hollow Cathode Discharge Spectrometry (ET-HCDS) source being constructed for the analytical determination of actinides and rare earth elements. This work was initiated with the support of the Office of Safeguards and Security; the Buried Waste Integrated Demonstration began funding work in this area in mid-FY1992 and the work is continuing into FY1993 with funds from

  6. Calculation of the decision thresholds in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2014-12-01

    A method was developed for calculating the decision thresholds for gamma-ray spectrometric measurements. At the energies where gamma-ray emitters that are present in the nuclide library, but were not identified in the spectrum, radiate, peaks are supposed to appear. The peak areas are calculated by fitting, using the method of least squares, the spectral region of the supposed peaks with a continuous background and the spectrometer response function at the gamma-ray energies where the supposed peaks are positioned. The null measurement uncertainty of a gamma-ray emitter is obtained as the uncertainty of the weighted average of the activities calculated from the areas of the supposed peaks in a spectrum where the specified activity of the gamma-ray emitter is zero. For the calculation of the decision threshold the null measurement uncertainty is used. These decision thresholds overestimate the critical limits calculated with the Currie formula by about 10% in the case of single gamma-ray emitters. For multi-gamma-ray emitters the decision thresholds yield smaller values than the Currie formula. The presence of a peaked background or peaks that are near the supposed peaks increases the decision threshold considerably. PMID:25233528

  7. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the reciprocal shift in immunoreactivity as evidence of activation, and implicate TGF-beta as a mediator of tissue response to ionizing radiation. The sensitivity of activation to low radiation doses points to a potential role for TGF-beta in orchestrating tissue response to oxidative stress. As such, radiation may be useful as a probe to delineate the consequences of latent TGF-beta activation in situ.

  8. In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ouaras, K.; Delacqua, L. Colina; Lombardi, G.; Röpcke, J.; Wartel, M.; Bonnin, X.; Redolfi, M.; Hassouni, K.; Hassouni

    2014-12-01

    The formation of carbon nanoparticles in low pressure magnetized H2/CH4 and H2/C2H2 plasmas is investigated using infrared quantum cascade laser absorption, mass spectrometry, and electrostatic probe measurements. Results showed that dust formation is correlated to the presence of a significant amount of large positively charged hydrocarbon ions. Large negative ions or neutral hydrocarbon were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas.

  9. Gamma-ray spectroscopy of in-situ SNM with the M{sup 3}CA and a new room-temperature detector

    SciTech Connect

    Russo, P.A.; Close, D.A.; Hsue, S.T.; Sprinkle, J.K. Jr.; Sumner, M.C.

    1995-02-01

    Compact, rugged, efficient, and reliable room-temperature gamma ray detectors with better energy resolution are need for in situ applications. These improved detectors are sought as alternatives to the compact NaI(T1) detectors now available. A promising approach is an elegant new design that benefits fully form the recent advances in solid-state materials technology for production of large, good quality crystals of CdZnTe for room-temperature gamma ray spectroscopy. The new detector, equipped with simple but innovative electrode technology to address intrinsic charge-collection deficiencies, operates with the new self-contained portable gamma spectroscopy system, the miniature modular multichannel analyzer (M{sup 3}CA), without added layers of electronic complexity for pulse processing. Applications of in situ NDA for portable determinations of fixed uranium and plutonium quantities and the continuous assay of dynamic quantities of these materials will provide the test criteria for evaluating the performance of such detectors operating with the M{sup 3}CA.

  10. In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas.

    PubMed

    Fenhalls, G; Wong, A; Bezuidenhout, J; van Helden, P; Bardin, P; Lukey, P T

    2000-05-01

    Human tuberculous granulomas from five adults undergoing surgery for hemoptysis were analyzed by nonradioactive in situ hybridization for tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), and interleukin-4 (IL-4) gene expression. All of the patients produced TNF-alpha mRNA. Three patients stained positive for both IFN-gamma and IL-4 mRNA; the other two stained positive for IFN-gamma but not IL-4 mRNA. Heterogeneity between the granulomas was observed in those patients staining positive for both IFN-gamma and IL-4 mRNA; these patients exhibited granulomas having IFN-gamma and not IL-4 mRNA as well as granulomas positive for both cytokine mRNAs. There was no evidence of caseation in these granulomas, and the cytokine patterns may represent events in the evolution of the granuloma. However, in those granulomas exhibiting caseous necrosis, very little IFN-gamma or IL-4 mRNA was observed, implying that progression of the granuloma is accompanied by a down regulation of T-cell responses. TNF-alpha mRNA expression was highest in patients with both IFN-gamma and IL-4 mRNA. Populations of CD68 positive macrophage-like cells within the granulomas produce mRNA for TNF-alpha, IFN-gamma, and IL-4. This implies that macrophages within the tuberculous granuloma may not be dependent on T-cell cytokines for modulation of their function but may be able to regulate their own activation state and that of the surrounding T cells. These findings have implications on the delivery of immunotherapies to patients with tuberculosis. PMID:10768979

  11. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOEpatents

    Hartwell, Jack K. (Idaho Falls, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Blackfoot, ID); Killian, E. Wayne (Idahoe Falls, ID)

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  12. Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situ BTEX biodegradaton.

    PubMed

    Beller, Harry R

    2002-06-15

    Benzylsuccinic acid (BS) and methylbenzylsuccinic acid (MeBS) isomers have been proposed as distinctive indicators of anaerobic toluene and xylene metabolism in fuel-contaminated aquifers; however, labor-intensive analytical procedures have limited their analysis at field sites. In this article, a rapid electrospray LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) method for benzylsuccinates is described that involves selected reaction monitoring, internal standard quantification with [ring-2H5]BS, small sample size (<1 mL), and no extraction/concentration steps. The highly selective LC/MS/ MS method was shown to be sensitive (detection limits ca. 0.3 microg/L), accurate, and precise. The method was used to characterize geographic and temporal distributions of BS and MeBS isomers in an anaerobic, hydrocarbon-contaminated aquifer. BS was never detected, and MeBS isomers were detected in the three wells with the highest concentrations of BTEX (benzene, toluene, ethylbenzene, and xylenes); MeBS concentrations ranged from <0.3 to 205 microg/L. A strong linear correlation (r2 = 0.94; n = 12) was found between concentrations of total MeBS isomers and their parent compounds, xylenes, which suggests that anaerobic xylene metabolism at this site was probably first-order rather than zero-order. The novel LC/MS/MS method for BS and MeBS isomers is a promising technique for rapid and reliable monitoring of in situ bioremediation of gasoline-contaminated groundwater. PMID:12099470

  13. In-situ monitoring of actinides and rare earth elements by electrothermal hollow cathode discharge spectrometry. Technical progress report

    SciTech Connect

    Lee, S.C.; Edelson, M.C.

    1992-12-01

    This report describes an Electrothermal Hollow Cathode Discharge Spectrometry (ET-HCDS) source being constructed for the analytical determination of actinides and rare earth elements. This work was initiated with the support of the Office of Safeguards and Security; the Buried Waste Integrated Demonstration began funding work in this area in mid-FY1992 and the work is continuing into FY1993 with funds from both sources. Special features of this instrument should permit it to be used for the determination of individual isotopic species, which is important for safeguard`s materials control and accountancy. ET-HCDS can be achieved using compact instrumentation suitable for use in field laboratories. The technique is capable of determining a suite of environmentally-important species, such as the actinides and the heavy metals, in a variety of physical forms (e.g., in solution, as found on air particulates, or in soils). ET-HCDS should be capable of very sensitive analyses and should require very small samples (e.g., microgram). Since ET-HCDS is possible in an air atmosphere (at reduced pressures), it may be useful for the real-time determination of hazardous materials, both radioactive and non radioactive, contained in dusts released during waste retrieval operations; ET-HCDS should also be useful for the rapid and sensitive analysis of metals in soils.

  14. Real time in situ chemical characterization of submicrometer organic particles using direct analysis in real time-mass spectrometry.

    PubMed

    Nah, Theodora; Chan, ManNin; Leone, Stephen R; Wilson, Kevin R

    2013-02-19

    Direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol is exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic particles are desorbed, ionized, and detected with reduced molecular ion fragmentation, allowing for compositional identification. Aerosol particles detected include alkanes, alkenes, acids, esters, alcohols, aldehydes, and amino acids. The ion signal produced by DART-MS scales with the aerosol surface area rather than volume, suggesting that DART-MS is a viable technique to measure the chemical composition of the particle interface. For oleic acid, particle size measurements of the aerosol stream exiting the ionization region suggest that the probing depth depends upon the desorption temperature, and the probing depth is estimated to be on the order of 5 nm for a 185 nm diameter particle at a DART heater temperature of 500 °C with nitrogen as the DART gas. The reaction of ozone with submicrometer oleic acid particles is measured to demonstrate the ability of this technique to identify products and quantify reaction rates in a heterogeneous reaction. PMID:23330910

  15. Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry.

    PubMed

    Mahpishanian, Shokouh; Shemirani, Farzaneh

    2010-07-15

    A simple in situ solvent formation microextraction methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF(6)) as an ion-pairing agent was proposed for the preconcentration of trace levels of cadmium. In this method cadmium was complexed with O,O-diethyldithiophosphate (DDTP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS). ISFME is a simple and rapid method for extraction and preconcentration of metal ions from sample solutions containing a high concentration of salt. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.07 microg L(-1) and 78, respectively. The relative standard deviation (R.S.D.) was obtained 2.42%. The accuracy of the method was confirmed by analyzing certified reference materials for trace elements in seawater (GBW (E) 080040 seawater). The proposed method was successfully applied for the determination of cadmium in water samples and food grade salts. PMID:20602922

  16. Apparatus for measuring the stopping power of active materials evaporated in situ and characterized by Auger electron spectrometry and Rutherford backscattering

    SciTech Connect

    Semrad, D.; Bauer, P.; Eder, K.; Obermann, W.

    1986-07-01

    An ultrahigh-vacuum scattering chamber working in the low 10/sup -9/-mbar range is described. It is attached to a standard O-ring sealed beam transport system of an electrostatic accelerator. Twelve targets can be prepared in situ, one by one, by evaporating the material onto backings, which are mounted on tiltable target holders on a wheel. Backscattering spectra are obtained from these targets and the stopping cross section is deduced from their widths. A cooled high-resolution surface barrier detector is used for this purpose. The integral concentrations of light impurities in the target are obtained using Rutherford backscattering (RBS), whereas Auger electron spectrometry (AES) together with a sputtering device is used to determine the depth composition. As a test of the assembly we determined the stopping power of aluminum for protons and deuterons, respectively. The results are compared to published tables based upon fits to experiments. The influence of impurities on the result is discussed for an aluminum target prepared under standard evaporation conditions.

  17. Influence of poly (lactide-co-glycolide) type and gamma irradiation on the betamethasone acetate release from the in situ forming systems.

    PubMed

    Rafienia, Mohammad; Emami, Shahriar Hojjati; Mirzadeh, Hamid; Mobedi, Hamid; Karbasi, Saeed

    2009-04-01

    In situ forming biodegradable polymeric systems were prepared from Poly (DL-lactide-co-glycolide), RG504H (50:50, lactide:glycolide), RG756 (75:25) and mixture of them. They were dissolved in N-methyl-2-pyrrolidone (33% w/w) and mixed with betamethasone acetate (BTMA, 5 and 10% w/w) and ethyl heptanoate (5% w/w, as an additive). The effects of gamma irradiation, drug loading, type of polymers and solvent removal were evaluated on release profiles. Scanning electron microscopy (SEM) of RG756 samples loaded by BTMA did not show any degradation until two weeks. Differential scanning calorimeter (DSC) experiments confirmed insignificant decrease in T(g), and consequently release rate. Declining T(g) of RG504H and RG756 after gamma irradiation was about 0.4 and 1.46 degrees C, respectively. High performance liquid chromatography (HPLC) revealed that BTMA release is more rapid from the formulations prepared using the RG504H with lower molecular weight. The formulations prepared by RG756 had lower burst release (2.5-41%) than the samples based on RG504H (60-67%) and mixture of them (30-33%). Regarding this research three different kinds of steriled in situ forming systems were developed which can release BTMA for 24, 90 and 60 days. PMID:19450225

  18. Natural Radiation from Soil using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Moreira, R. H.; de Paula, A. L. C.; Medina, N. H.

    2009-06-01

    We have studied the distribution of natural radioactivity in the soil of Interlagos, in São Paulo city and Billings Reservoir, in São Bernardo do Campo, São Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the 238Th decay series, with smaller contributions from 40K and the elements of the series of 238U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.

  19. Metrological characterization of the ADONIS system used in gamma-ray spectrometry.

    PubMed

    Plagnard, J; Morel, J; Tuan, A Tran

    2004-01-01

    In gamma-ray spectrometry, new acquisition systems based on digital signal processing are now commercially available. In order to determine their performance at high count rates, the Commissariat à l'Energie Atomique (CEA), Laboratoire National Henri Becquerel has tested several of these systems. These tests have clearly shown that the performance levels announced by the manufacturers were generally not met. It was therefore a logical step to include the Atelier de DévelOppement Numérique pour l'Instrumentation en Spectrométrie (ADONIS) system in these tests. ADONIS is the new numerical system for gamma-ray spectrometry, developed by the CEA Service d'Instrumentation et d'Application des Rayonnements. PMID:14987639

  20. Advances in room-temperature solid-state gamma-ray spectrometry

    SciTech Connect

    Iwanczyk, J.S.

    1983-01-01

    This article presents a review and analysis of different concepts of gamma-ray spectrometry using room-temperature solid-state detectors. The classical approach involving the use of a charge-sensitive preamplifier and attempting to collect all the ionization charge produced by the gamma ray is analyzed and discussed in terms of the charge transport parameters of the most promising compound semiconductor materials. It is concluded that compound semiconductor detector materials having a large disparity between the ..mu.. tau products for electrons and holes (such as HgI/sub 2/ and CdTe) will have rather poor energy resolution if the classical method of spectrometry requiring full charge collection is employed. 30 references.

  1. Characterization of gamma irradiated petrolatum eye ointment base by headspace–gas chromatography–mass spectrometry

    Microsoft Academic Search

    Lan Hong; Hans Altorfer

    2002-01-01

    The effects of gamma irradiation on petrolatum eye ointment base (EOB) and its ingredients (white petrolatum, liquid paraffin, and wool fat) were studied at different irradiation doses. Forty-one volatile radiolysis products were detected and identified by a combined system of headspace–gas chromatography–mass spectrometry (HS–GC–MS). The characteristics of the radiolysis products and the degradation pathway were discussed in each case, respectively.

  2. gamma. -ray spectrometry for determination of radium-228 and radium-226 in natural waters

    Microsoft Academic Search

    Jacqueline. Michel; Willard S. Moore; Philip T. King

    1981-01-01

    A technique has been developed for the measurement of ²²⁸Ra and ²²⁶Ra in both fresh- and seawater using Ge(Li) ..gamma..-ray spectrometry. Radium isotopes are preconcentrated in the field from 100 to 1000 L onto Mn-impregnated acrylic fiber cartridges, leached from the fiber and coprecipitated with BaSOâ. Lower limits of detection are controlled by the volume of water processed through the

  3. The potential of gamma-ray spectrometry as supplementary information for mapping central European soils

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Baritz, R.; Willer, J.; Pickert, E.; Kardel, K.; Herrmann, L.

    2012-04-01

    Permanently updated soil maps are needed inter alia for the prediction of landslide hazards, flooding and drought effects, land degradation monitoring, and precision farming. Since comprehensive and intensive field mapping is not affordable, alternative mapping approaches are required. A promising tool, with quite unrecognised potential for modern soil science is gamma-ray spectrometry. As the radioelements potassium, thorium and uranium respond differently to soil forming processes, it should be possible to infer from their concentration on weathering status, and after calibration on soil properties and types. This paper aims to investigate the potential of airborne gamma spectrometry for mapping of central European soils and soil properties. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Seven different petrographic training and validation areas were chosen each. To assess the potential of gamma-ray spectrometry as additional data layer, predictions were carried out (i) with and (ii) without radiometric data. The outputs were compared with independent soil information of the validation areas. Both prediction runs used the following predictors: elevation, slope, curvature, planform curvature, profile curvature, terrain ruggedness index, relative altitude, vertical distance above drainage network, wetness index, and convergence index. As additional predictor parent material derived from a reclassification of the official geological map (1:1M scale) was used. As radiometric properties potassium, thorium and uranium were used. The radiometric raster datasets were generated by universal kriging using relative altitude as covariate. Training and validation datasets were selected from a comprehensive dataset representing more than 14.000 point data. Point data include soil types and substrates, and for more than 800 sites soil profiles with analysed texture, pH, exchangeable cations, nutrients, and efficient cation exchange capacity. The study shows that gamma spectrometry is suitable to enhance the prediction of soil types and properties such as texture significantly.

  4. Gamma-ray spectrometry with thick mercuric iodide detectors

    SciTech Connect

    Beyerle, A.; Hull, K.; Markakis, J.; Lopez, B.; Szymczyk, W.M.

    1982-01-01

    Gamma-ray spectra with energies up to 1.3 MeV have been detected for the first time with 1-cm-thick HgI/sub 2/ semiconductor detectors at room temperature. The spectra can be taken using a long, 10 ..mu..s, or a short, 0.5 ..mu..s, charge collection time. The latter has produced better results with better peak efficiency, higher peak-to-valley ratio, and fewer low energy counts with little sacrifice in resolution. Spectra for energies between 100 keV and 1.3 MeV and descriptions of the techniques for their acquisition are presented. The thick detectors need a conditioning treatment, which is described, prior to showing spectral response.

  5. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    SciTech Connect

    William Quam

    2001-09-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large source to detector distances. The usual laboratory measurements are done with small sources at 20 to 50 cm ranges. Practical ranges for aerial work will be 50 to 100 meters or greater. These distances will require correction for air attenuation for most of the low energy isotopes. The approximations used in the present note for aerial measurements involve small diameter sources (diameter approximately equal to the altitude), a 1 kt pass, and a planar array with no aircraft attenuation material in the field of view. The array will have a collimator to limit the side-looking sensitivity to enable a more accurate extrapolation from the laboratory data. Large arrays will have significant physical size and weight compared to the small hand-held instruments thus far constructed. We estimate these parameters and extrapolate the power consumption to provide a realistic estimate of a suitable airborne system. In all cases these larger systems are lighter and physically more compact than the usual NaI or high purity Germanium (HPGe) systems used in aerial work. Thus deployment should be simple. The power consumption is much less as well.

  6. Early detection of radioactive fallout by gamma spectrometry.

    PubMed

    Aage, H K; Korsbech, U; Bargholz, K

    2003-01-01

    Radioactive fallout should be detected as early as possible. A new and efficient method for detection of low-level irradiation from manmade radioactivity is developed. Radiation abnormalities are detectable down to air kerma rates of 0.5 to 1.0 nGy h(-1) for 137Cs and even lower for 131I. For multi-gamma energy radioactivity the detection level is 2.6-3.5 nGy h(-1). A standard NaI detector and a 512-channel analyser are used together with noise adjusted singular value decomposition (NASVD). Statistical noise is removed and the measured spectra are reproduced using spectral components produced by NASVD. Stripping is not used and false alarms due to washout of atmospheric radon progeny are almost eliminated. Detection levels and the criteria for setting warning and alarm levels are discussed. The method may also be useful in other situations, for example where low-level signals from radioactive sources need to be detected. PMID:14653336

  7. Let them fly or light them up: matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridization (FISH).

    PubMed

    Schweickert, Birgitta; Moter, Annette; Lefmann, Michael; Göbel, Ulf B

    2004-01-01

    This review focuses on clinical bacteriology and by and large does not cover the detection of fungi, viruses or parasites. It discusses two completely different but complementary approaches that may either supplement or replace classic culture-based bacteriology. The latter view may appear provocative in the light of the actual market penetration of molecular genetic testing in clinical bacteriology. Despite its elegance, high specificity and sensitivity, molecular genetic diagnostics has not yet reached the majority of clinical laboratories. The reasons for this are manifold: Many microbiologists and medical technologists are more familiar with classical microbiological methods than with molecular biology techniques. Culture-based methods still represent the work horse of everyday routine. The number of available FDA-approved molecular genetic tests is limited and external quality control is still under development. Finally, it appears difficult to incorporate genetic testing in the routine laboratory setting due to the limited number of samples received or the lack of appropriate resources. However, financial and time constraints, particularly in hospitals as a consequence of budget cuts and reduced length of stay, lead to a demand for significantly shorter turnaround times that cannot be met by culture-dependent diagnosis. As a consequence, smaller laboratories that do not have the technical and personal equipment required for molecular genetic amplification techniques may adopt alternative methods such as fluorescence in situ hybridization (FISH) that combines easy-to-perform molecular hybridization with microscopy, a technique familiar to every microbiologist. FISH is hence one of the technologies presented here. For large hospital or reference laboratories with a high sample volume requiring massive parallel high-throughput testing we discuss matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of nucleic acids, a technology that has evolved from the post-genome sequencing era, for high-throughput sequence variation analysis (1, 2). PMID:15638841

  8. TEM in situ observation of {alpha}{sub 2}{r_arrow}{alpha}{sub 2}/{gamma} phase transformation in a Ti-45at.% Al alloy

    SciTech Connect

    Xu, Q.; Lei, C.H. [Chinese Academy of Sciences, Beijing (China). Beijing Lab. of Electron Microscopy; Zhang, Y.G. [Beijing Univ. of Aeronautics and Astronautics (China). Dept. of Materials Science and Engineering

    1995-12-31

    The Ti-45at.%Al alloy which was solution-treated at 1,350 C for 30 minutes and quenched in water has a single phase {alpha}{sub 2}, matrix with high density anti-phase domains (APDs) and a small amount of stacking faults on the (0001) plane. The aging process of the quenched alloy has been in situ studied. It has been found that the {gamma} lamellae can precipitate in the {alpha}{sub 2} matrix by two mechanisms. When the alloy is aged at 700 C, the stacking faults pre-existing in the {alpha}{sub 2} matrix start to grow and more are generated. With the increase of aging time and aging temperature the density of stacking faults is increased and the {gamma} lamellae then precipitate. This is a diffusion-controlled process. Alternatively, the {gamma} lamellae can be formed from the {alpha}{sub 2} matrix by 1/3{l_angle}1{bar 1}00{r_angle} shearing on the (0001) plane which are emitted from grain boundaries of the {alpha}{sub 2} matrix.

  9. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States)] [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States); Lit, Peter [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)] [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)

    2013-07-01

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were calculated. From the scanning data, locations with observed Cs-137 ratios exceeding six standard deviations above the mean ratio were mapped in high resolution [2]. Field teams returned to those locations to collect static count measurements using the same detection systems. Soil surface samples were collected at 30 locations and analyzed for Cs-137. An exponential correlation was identified between Cs-137 concentrations in surface soil and field-scanned Cs-137 ratios. The data indicate field minimum detectable concentration (MDC) of Cs-137 at 0.02 Bq/g (0.5 pCi/g) or lower depending on contaminant distribution in soil. (authors)

  10. An Analysis of Nuclear Fuel Burnup in the AGR 1 TRISO Fuel Experiment Using Gamma Spectrometry, Mass Spectrometry, and Computational Simulation Techniques

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz; Phillip L. Winston; James W. Sterbentz

    2014-10-01

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1 %FIMA for the direct method and 20.0 %FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3 % FIMA to 10.7 % FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. The results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20 % FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.

  11. Adaptation of Pixelated CdZnTe gamma-ray imaging technology for in situ planetary science applications

    Microsoft Academic Search

    Suzanne Nowicki; Julia Bodnarik; Larry Evans; Min Namkung; Ann Parsons; Jeffrey Schweitzer; Richard Starr

    2010-01-01

    It is important for planetary sciences to find a gamma-ray spectrometer that is compact, light and provides good energy resolution in an energy range that varies from ? 30 keV to 10 MeV. Pixelated CdZnTe detector is a good candidate for this application due to its small volume, light weight and it has demonstrated good energy resolution below ?2–3 MeV.

  12. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Reyss, J-L

    2010-07-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes. PMID:20106569

  13. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure.

    PubMed

    Senthilkumar, B; Dhavamani, V; Ramkumar, S; Philominathan, P

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides (232)Th, (238)U and (40)K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using gamma-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of (232)Th, (238)U and (40)K is 42.9+/-9.4 Bq.kg(-1), 14.7+/-1.7 Bq.kg(-1) and 149.5+/-3.1 Bq.kg(-1) respectively are derived from all the soil samples studied. The activity concentration of (232)Th, (238)U and (40)K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h(-1) and 59.1 nGy.h(-1) with an arithmetic mean of 43.3 +/-9 nGy.h(-1). This value is lesser than the population weighted world-averaged of 60 nGy.h(-1). Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 muSv.y(-1) with an arithmetic mean of 53.1+/-11 muSv.y(-1). The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  14. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.

    PubMed

    Alrefae, Tareq

    2014-11-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring airborne radioactivity collected on filter paper, was based on Monte Carlo simulations using the toolkit GEANT4. Experimentally, the efficiency values of an HPGe detector were calculated for a multi-gamma disk source. These efficiency values were compared to their counterparts produced by a computer code that simulated experimental conditions. Such comparison revealed biases of 24, 10, 1, 3, 7, and 3% for the radionuclides (photon energies in keV) of Ce (166), Sn (392), Cs (662), Co (1,173), Co (1,333), and Y (1,836), respectively. The output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:25271933

  15. Standard test method for quantitative determination of americium 241 in plutonium by Gamma-Ray spectrometry

    E-print Network

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers the quantitative determination of americium 241 by gamma-ray spectrometry in plutonium nitrate solution samples that do not contain significant amounts of radioactive fission products or other high specific activity gamma-ray emitters. 1.2 This test method can be used to determine the americium 241 in samples of plutonium metal, oxide and other solid forms, when the solid is appropriately sampled and dissolved. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Radioactivity Levels and Gamma-Ray Dose Rate in Soil Samples from Kohistan (Pakistan) Using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Hasan, M. Khan; Ismail, M.; K., Khan; Akhter, P.

    2011-01-01

    The analysis of naturally occurring radionuclides (226Ra, 232Th and 40K) and an anthropogenic radionuclide 137Cs is carried out in some soil samples collected from Kohistan district of N.W.F.P. (Pakistan), using gamma-ray spectrometry. The gamma spectrometry is operated using a high purity Germanium (HPGe) detector coupled with a computer based high resolution multi channel analyzer. The specific activity in soil ranges from 24.72 to 78.48Bq·kg-1 for 226Ra, 21.73 to 75.28Bq·kg-1 for 232Th, 7.06 to 14.9Bq·kg-1 for 137Cs and 298.46 to 570.77Bq·kg-1 for 40K with the mean values of 42.11, 43.27, 9.5 and 418.27Bq·kg-1, respectively. The radium equivalent activity in all the soil samples is lower than the safe limit set in the OECD report (370Bq·kg-1). Man-made radionuclide 137Cs is also present in detectable amount in all soil samples. Presence of 137Cs indicates that the samples in this remote area also receive some fallout from nuclear accident in Chernobyl power plant in 1986. The internal and external hazard indices have the mean values of 0.48 and 0.37 respectively. Absorbed dose rates and effective dose equivalents are also determined for the samples. The concentration of radionuclides found in the soil samples during the present study is nominal and does not pose any potential health hazard to the general public.

  17. The interference of medical radionuclides with occupational in vivo gamma spectrometry.

    PubMed

    Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B

    2003-06-01

    Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration. PMID:12822585

  18. First Year PIDDP Report on gamma-ray and x-ray spectroscopy: X-ray remote sensing and in situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.

  19. High Throughput In Situ XAFS Screening of Catalysts

    SciTech Connect

    Tsapatsaris, Nikolaos; Beesley, Angela M.; Weiher, Norbert; Tatton, Helen; Schroeder, Sven L. M. [The University of Manchester, Molecular Materials Centre, School of Chemical Engineering and Analytical Science, Manchester, M60 1QD, PO Box 88 (United Kingdom); School of Chemistry, Manchester, M60 1QD, PO Box 88 (United Kingdom); Dent, Andy J.; Mosselmans, Frederick J. W. [Diamond Light Source, Chilton, Didcot, OX12 0QX (United Kingdom); Tromp, Moniek; Russu, Sergio [University of Southampton, School of Chemistry, Southampton, SO17 1BJ, (United Kingdom); Evans, John [Diamond Light Source, Chilton, Didcot, OX12 0QX (United Kingdom); University of Southampton, School of Chemistry, Southampton, SO17 1BJ, (United Kingdom); Harvey, Ian; Hayama, Shu [CCRLC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom)

    2007-02-02

    We outline and demonstrate the feasibility of high-throughput (HT) in situ XAFS for synchrotron radiation studies. An XAS data acquisition and control system for the analysis of dynamic materials libraries under control of temperature and gaseous environments has been developed. The system is compatible with the 96-well industry standard and coupled to multi-stream quadrupole mass spectrometry (QMS) analysis of reactor effluents. An automated analytical workflow generates data quickly compared to traditional individual spectrum acquisition and analyses them in quasi-real time using an HT data analysis tool based on IFFEFIT. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on {gamma}-Al2O3, and for the in situ characterization of Au catalysts supported on Al2O3 and TiO2.

  20. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R.E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  1. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by ?-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  2. Initial recommendations for restricting gamma-ray spectrometry measurements of radionuclides for on-site inspections

    Microsoft Academic Search

    W. F. Buckley; S. A. Kreek; J. F. Wild

    1998-01-01

    The US paper �Radionuclide Sampling, Sample Handling and Analytical Laboratory Equipment for Comprehensive Test Ban Treaty On-Site Inspections,� CTBT\\/PC\\/V\\/OSI\\/WSII\\/PR\\/29 identified the radionuclides of interest to an OS1 as 144<\\/sup>Ce, 147<\\/sup>Nd, 141<\\/sup>Ce, 149<\\/sup>Ba140<\\/sup>La), 95<\\/sup> Zr(95<\\/sup>Nb), 131m<\\/sup>Xe, 133m<\\/sup>Xe, 133g<\\/sup>Xe, 135g<\\/sup>Xe, and 37<\\/sup>Ar. All of these nuclides (except 37<\\/sup>Ar) can be measured via some form of conventional or coincidence-based gamma-ray spectrometry. The non-gaseous

  3. Gamma-ray spectrometry with solid-state detectors by current pulse-height analysis

    SciTech Connect

    Szymczyk, W.M.; Dabrowski, A.J.; Iwanczyk, J.S.; Kusmiss, J.H.; Huth, G.C.; Hull, K.; Beyerle, A.; Markakis, J.

    1982-01-01

    The traditional way of doing gamma-ray spectrometry with semiconductor detectors depends on being able to collect the ionization charge. In most cases, hole trapping limits the spectrometric performance of room-temperature detectors made from compound semiconductors. Recently it has been shown for thick HgI/sub 2/ detectors that significant improvement can be produced by using a technique of unconventionally short differentiation of the detector pulses. The present paper presents the concept underlying the technique and gives its theoretical background. The method consists of measuring the amplitude of ionization current pulses before charge collection is completed rather than measuring the amount of charge collected. Hole collection is obviated, and the transport of electrons becomes the most-important consideration. The conditions under which this novel method can be applied to various semiconductor materials are discussed. Two different approaches toward the electronic implementation of the technique are compared.

  4. Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry

    Microsoft Academic Search

    Shokouh Mahpishanian; Farzaneh Shemirani

    2010-01-01

    A simple in situ solvent formation microextraction methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion-pairing agent was proposed for the preconcentration of trace levels of cadmium. In this method cadmium was complexed with O,O-diethyldithiophosphate (DDTP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte

  5. Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

    E-print Network

    I. Dillmann; C. Domingo-Pardo; M. Heil; F. Käppeler; A. Wallner; O. Forstner; R. Golser; W. Kutschera; A. Priller; P. Steier; A. Mengoni; R. Gallino; M. Paul; C. Vockenhuber

    2009-07-01

    The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30 keV= 5.73+/-0.34 mb.

  6. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix.

    PubMed

    Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa

    2008-12-15

    Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used. PMID:18805390

  7. Quantitative Analysis of CF4 Produced in the SiO2 Etching Process Using c-C4F8, C3F8, and C2F6 Plasmas by In Situ Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Furuya, Kenji; Hatano, Yoshihiko

    2004-01-01

    The use of CF32+ as a specific product ion to selectively quantify CF4 produced in the SiO2 etching process using plasmas of perfluorocompounds (PFCs), such as c-C4F8, C3F8, and C2F6, has been proposed and investigated in the present experiments by measuring mass spectra inside and outside the plasmas. It is known that the CF32+ ion does not appear in the mass spectra of any stable PFCs, except for CF4. It is confirmed in the present experiments that the quantity of CF32+ originating from the CF3 radical in the mass spectra measured in situ is negligible. Other unstable chemical species in the plasmas are too small in quantity to explain the intensity of CF32+ appearing in the mass spectra measured in situ, even if they could produce stable CF32+ by ionization. It is therefore concluded that CF32+ can be used as a fingerprint of CF4 in mass spectrometry. Application of this new method for the quantitative analysis of CF4 produced in the SiO2 etching process using PFC plasmas results in CF4 production advancing significantly not only in the etching region of SiO2 but also in the downstream region of the plasmas.

  8. Monte Carlo calculations of coincidence-summing corrections for volume sources in gamma-ray spectrometry with Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Toraño, Eduardo; Pozuelo, Milagros; Salvat, Francesc

    2005-06-01

    A Monte Carlo simulation approach to solve the problem of measuring volume sources in gamma-ray spectrometry is described. The simulation package PENELOPE, with a cylindrical geometry tool was used to model two measurement systems and to calculate the detection efficiency for volume sources of ? emitters affected by coincidence-summing effects. ?-Ray spectra and experimental detection efficiencies from multi- ? emitting nuclides as 60Co, 88Y, 134Cs, 152Eu and 166mHo are compared to the simulation results.

  9. Elemental analysis of process streams in advanced coal utilization plants using neutron-induced gamma spectrometry with californium-252 sources

    Microsoft Academic Search

    C. L. Herzenberg; C. E. Cohn; S. A. Cox; R. W. Doering; N. M. OFallon; D. Duffey

    1978-01-01

    Development of techniques of neutron-induced gamma spectrometry for non-invasive on-line instrumental analysis of coal for application to process streams in coal conversion plants is described. Using ²⁵²Cf sources and Ge(Li) detector based spectrometers, it appears feasible to monitor most of the elements in coal present in concentrations of 0.1 weight percent or more, including S, Fe, Si, Ca, Al, N,

  10. High-precision determination of osmium and rhenium isotope ratios by in situ oxygen isotope ratio correction using negative thermal ionization mass spectrometry

    Microsoft Academic Search

    Yongzhong Liu; Min Huang; Akimasa Masuda; Masao Inoue

    1998-01-01

    The Os and Re isotope ratios were determined from the measurements of OsO3 and ReO4? ions by negative thermal ionization mass spectrometry. It was found that the oxygen isotope ratios of OsO3? and ReO4 ions vary to a large extent by the fluctuations in oxygen pressure in the ion source of the mass spectrometer and that the stability of oxygen

  11. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil.

    PubMed

    de Castilhos, Natara D B; Melquiades, Fábio L; Thomaz, Edivaldo L; Bastos, Rodrigo Oliveira

    2014-10-15

    Physical and chemical properties of soils play a major role in the evaluation of different geochemical signature, soil quality, discrimination of land use type, soil provenance and soil degradation. The objectives of the present study are the soil elemental characterization and soil differentiation in topographic sequence and depth, using Energy Dispersive X-Ray Fluorescence (EDXRF) as well as gamma-ray spectrometry data combined with Principal Component Analysis (PCA). The study area is an agricultural region of Boa Vista catchment which is located at Guamiranga municipality, Brazil. PCA analysis was performed with four different data sets: spectral data from EDXRF, spectral data from gamma-ray spectrometry, concentration values from EDXRF measurements and concentration values from gamma-ray spectrometry. All PCAs showed similar results, confirmed by hierarchical cluster analysis, allowing the data grouping into top, bottom and riparian zone samples, i.e. the samples were separated due to its landscape position. The two hillslopes present the same behavior independent of the land use history. There are distinctive and characteristic patterns in the analyzed soil. The methodologies presented are promising and could be used to infer significant information about the region to be studied. PMID:25464179

  12. Low-background gamma-ray spectrometry in the Garching underground laboratory

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Mannel, T.; Sivers, M. V.

    2013-08-01

    We describe two setups that were built for low-background gamma-ray spectrometry in the Garching Underground Laboratory (˜ 10 m.w.e.). Both setups are based on HPGe detectors surrounded by several layers of passive shielding as well as an active muon veto. The first setup (GEM) comprises a single HPGe detector surrounded by a NaI(Tl) scintillation detector that serves as anti-Compton veto. The second setup (LoAx) consists of two smaller HPGe detectors which are arranged face-to-face to cover a large solid angle around the sample. The detection efficiency of both systems is determined using a calibrated Monte-Carlo simulation. The count rate finally achieved in the energy range 40-2700keV is 10250±26cts/day for the GEM setup, and 5258±27cts/day and 6876±31cts/day between 20-1500keV for the two detectors of the LoAx setup. This leads to detection sensitivities of a few mBq/kg for U and Th at both screening stations.

  13. Comparison of airborne and terrestrial gamma spectrometry measurements - evaluation of three areas in southern Sweden.

    PubMed

    Kock, Peder; Samuelsson, Christer

    2011-06-01

    The Geological Survey of Sweden (SGU) has been conducting airborne gamma spectrometry measurements of natural radioactivity in Sweden for more than 40 years. Today, the database covers about 80% of the country's land surface. This article explores the first step of putting this data into use in radioactive source search at ground level. However, in order to be able to use the airborne background measurements at ground level, SGU data must be validated against terrestrial data. In this work, we compare the SGU data with data measured by a portable backpack system. This is done for three different areas in southern Sweden. The statistical analysis shows that a linear relationship and a positive correlation exist between the air and ground data. However, this linear relationship could be revealed only when the region possessed large enough variations in areal activity. Furthermore, the activity distributions measured show good agreement to those of SGU. We conclude that the SGU database could be used for terrestrial background assessment, given that a linear transfer function is established. PMID:21481503

  14. \\Gamma\\Gamma \\Gamma\\Gamma

    E-print Network

    Laske, Gabi

    \\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma yyy yyy \\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma yyy

  15. A NEW METHDOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY.

    SciTech Connect

    KANE,W.R.; VANIER,P.E.; ZUHOSKI,P.B.; LEMLEY,J.R.

    2000-07-16

    In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: (1) The material is in a standard container, and (2) The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: (A) Measurement of the emitted gamma rays, and (B) Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic ''fingerprint'' of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass. With well-characterized standards, this methodology can provide an accurate measure of the contained fissile material.

  16. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  17. A portable gas chromatograph with simultaneous detection by mass spectrometry and electroantennography for the highly sensitive in situ measurement of volatiles.

    PubMed

    Schott, Matthias; Wehrenfennig, Christoph; Gasch, Tina; Düring, Rolf-Alexander; Vilcinskas, Andreas

    2013-09-01

    Mating disruption is a sustainable method for the control of insect pests, involving the release of synthetic sex pheromones that disrupt the olfactory localization of females by males. However, the development and refinement of this strategy is hampered because current instruments lack the sensitivity to detect volatile organic chemicals in the field, and portable electroantennograms produce non-comparable relative units and distorted results in the presence of plant volatiles. To address the demand for more sensitive instruments that are suitable for the rapid in situ detection of airborne pheromones, we have developed a portable, automated needle trap device connected to a gas chromatograph, mass spectrometer, and electroantennographic detector (NTD-GC-MS/EAD) suitable for field applications. We tested the instrument by measuring the concentration of the sex pheromone (E,Z)-7,9-dodecadienyl acetate, which is used to disrupt the mating of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Our data confirm that the instrument generates highly reproducible results and is highly sensitive, with a detection threshold of 3 ng/m(3) (E,Z)-7,9-dodecadienyl acetate in outside air. PMID:23954942

  18. Car-borne gamma spectrometry: a virtual exercise in emergency response.

    PubMed

    Dowdall, M; Smethurst, M A; Watson, R; Mauring, A; Aage, H K; Andersson, K G; Pálsson, S E

    2012-05-01

    In recent years car-borne gamma spectrometry has expanded from its role as a geological survey platform to being a useful asset in searching for orphan sources and for surveying in the aftermath of an incident involving the release of radioactive materials. The opportunities for gaining practical experience in the field however are limited by cost considerations and practicability. These limitations are exacerbated by the fact that field data can differ significantly from data generated in the laboratory. As a means of exercising existing emergency measuring/surveying capability and introducing car-borne measurements to a larger group, a virtual exercise was devised. The exercise ORPEX (Orphan Sources and Fresh Fallout Virtual Exercise in Mobile Measurement) featured two typical emergency scenarios: a search for orphan sources and surveying to delineate fallout from a local release point. Synthetic spectral data were generated for point sources and inserted into genuine car-borne measurement data. Participants were presented with a typical software tool and data and were asked to report source locations and isotopes within a time limit. In the second scenario, synthetic data representing fallout from a local fire involving radioactive material were added to real car-borne data, participants being asked to produce maps identifying and characterising the regions of contamination. Fourteen individual organisations from seven different countries supplied results which indicated that for strong sources of isotopes with simple spectra featuring high energy peaks, location and identification was not a problem. Problems arose for isotopes with low energy signals or that presented a weak signal even when visible for extended periods. Experienced analysts tended to perform better in identification of sources irrespective of experience with mobile measurements whereas those with experience in such measurements were more confident in providing more precise estimates of location. The results indicated the need for the inclusion of less frequently encountered sources in field exercise related to mobile measurements. PMID:22326718

  19. Neanderthal skeleton from Tabun: U-series data by gamma-ray spectrometry.

    PubMed

    Schwarcz, H P; Simpson, J J; Stringer, C B

    1998-12-01

    The Neanderthal hominid Tabun C1, found in Israel by Garrod & Bate, was attributed to either layer B or C of their stratigraphic sequence. We have used gamma-ray spectrometry to determine the 230Th/234U and 231Pa/235U ratios of two bones from this skeleton, the mandible and a femur. The ages calculated from these ratios depend on the uranium uptake history of the bones. Assuming a model of early U (EU) uptake the age of the Tabun C1 mandible is 34+/-5 ka. The EU age of the femur is 19+/-2 ka. The femur may have experienced continuous (linear) U uptake which would give an age of 33+/-4 ka, in agreement with the mandible's EU age, but implies marked inhomogeneity in U uptake history at the site. These new age estimates for the skeleton suggest that it was younger than deposits of layer C. This apparent age is less than those of other Neanderthals found in Israel, and distinctly younger than the ages of the Skhul and Qafzeh burials. This suggests that Neanderthals did not necessarily coexist with the earliest modern humans in the region. All of the more complete Neanderthal fossils from Israel are now dated to the cool period of the last glacial cycle, suggesting that Neanderthals may have arrived in this region as a result of the southward expansion of their habitable range. The young age determined for the Tabun skeleton would suggest that Neanderthals survived as late in the Levant as they did in Europe. PMID:9929173

  20. X-ray remote sensing and in-situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in-situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. A calibration facility is being constructed at Schlumberger-Doll Research for gamma and x ray detectors. With this facility the detector response can be determined in an invariant and reproducible fashion. Initial use of the facility is expected for the MARS94 detectors. Work is continuing to better understand the rare earth oxyorthosilicates and to define their characteristics. This will allow a better use of these scintillators for planetary missions. In a survey of scintillating materials two scintillators were identified as promising candidates besides GSO, LSO, and YSO. These are CdWO4 and CsI(Tl). It will be investigated if a detector with a better overall performance can be assembled with various photon converters. Considerable progress was achieved in photomultiplier design. The length of an 1 inch diameter PMT could be reduced from 4.2 to 2.5 inches without performance degradation. This technology is being employed in the gamma ray detector for the NEAR project. A further weight and size reduction of the detector package can be achieved with miniaturized integrated power supplies.

  1. IN-SITU ASSAY OF TRANSURANIC RADIONUCLIDES IN THE VADOSE ZONE USING HIGH-RESOLUTION SPECTRAL GAMMA LOGGING - A HANFORD CASE STUDY

    SciTech Connect

    ROHAY VJ; HENWOOD P; MCCAIN R

    2009-11-30

    High-resolution spectral gamma logging in steel-cased boreholes is used to detect and quantify transuranic radionuclides in the subsurface. Pu-239, Pu-241, Am-241, and Np-237 are identified based on characteristic decay gammas. Typical minimum detectable levels are on the order of 20 to 40 nCi/g. In intervals of high transuranic concentrations, gamma rays from other sources may complicate analysis and interpretation. Gamma rays detected in the borehole may originate from three sources: decay of the parent transuranic radionuclide or a daughter; alpha interactions; and interactions with neutrons resulting from either spontaneous fission or alpha particle interactions.

  2. Solubilized liquid scintillator for beta spectrometry and gamma dosimetry of uniformly distributed gamma sources in aqueous solutions

    Microsoft Academic Search

    Lahmann

    1974-01-01

    The detection and the spectrometry of $beta$-radiation in aqueous ; solutions by the scintillation counting technique is studied with a water ; fraction (30-100%) high enough to bar the use of the scintillators otherwise ; customarily employed. The following possibilities are investigated and ; delineated in terms of their applicabilities: 1) Cerenkov count. 2) Emulsion ; count (emulsification of a

  3. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    PubMed

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these. PMID:24261821

  4. Three independent techniques localize expression of transcript afp-11 and its bioactive peptide products to the paired AVK neurons in Ascaris suum: in situ hybridization, immunocytochemistry, and single cell mass spectrometry.

    PubMed

    Jarecki, Jessica L; Viola, India R; Andersen, Kari M; Miller, Andrew H; Ramaker, Megan A; Vestling, Martha M; Stretton, Antony O

    2013-03-20

    We utilized three independent techniques, immunocytochemistry (ICC), single cell mass spectrometry (MS), and in situ hybridization (ISH), to localize neuropeptides and their transcripts in the nervous system of the nematode Ascaris suum . AF11 (SDIGISEPNFLRFa) is an endogenous peptide with potent paralytic effects on A. suum locomotory behavior. A highly specific antibody to AF11 showed robust immunostaining for AF11 in the paired AVK neurons in the ventral ganglion. We traced the processes from the AVK neurons into the ventral nerve cord and identified them as ventral cord interneurons. MS and MS/MS of single dissected AVKs detected AF11, two previously characterized peptides (AF25 and AF26), seven novel sequence-related peptides, including several sharing a PNFLRFamide C-terminus, and peptide NY, a peptide with an unrelated sequence. Also present in a subset of AVKs was AF2, a peptide encoded by the afp-4 transcript. By sequencing the afp-11 transcript, we discovered that it encodes AF11, all the AF11-related peptides detected by MS in AVK, and peptide NY. ISH detected the afp-11 transcript in AVK neurons, consistent with other techniques. ISH did not detect afp-11 in the ALA neuron, although both ICC and MS found AF11 in ca. 30% of ALAs. All 10 AF11-related peptides reduced acetylcholine-induced muscle contraction, but they differed in their rate of reversal of inhibition after removal of the peptide. PMID:23509978

  5. Methylation of gamma-carboxylated Glu (Gla) allows detection by liquid chromatography-mass spectrometry and the identification of Gla residues in the gamma-glutamyl carboxylase

    PubMed Central

    Hallgren, K. W.; Zhang, D.; Kinter, M.; Willard, B.; Berkner, K. L.

    2013-01-01

    Gamma-carboxylated Glu (Gla) is a post-translational modification required for the activity of vitamin K-dependent (VKD) proteins that has been difficult to study by mass spectrometry due to the properties of this negatively-charged residue. Gla is generated by a single enzyme, the gamma-glutamyl carboxylase, which has broad biological impact because VKD proteins have diverse functions that include hemostasis, apoptosis, and growth control. The carboxylase also contains Glas, of unknown function, and is an integral membrane protein with poor sequence coverage. To locate these Glas, we first established methods that resulted in high coverage (92%) of uncarboxylated carboxylase. Subsequent analysis of carboxylated carboxylase identified a Gla-peptide (729-758) and a missing region (625-647) that was detected in uncarboxylated carboxylase. We therefore developed an approach to methylate Gla, which efficiently neutralized Gla and improved mass spectrometric analysis. Methylation eliminated CO2 loss from Gla, increased the ionization of Gla-containing peptide, and appeared to facilitate trypsin digestion. Methylation of a carboxylated carboxylase tryptic digest identified Glas in the 625-647 peptide. These studies provide valuable information for testing the function of carboxylase carboxylation. The methylation approach for studying Gla by mass spectrometry is an important advance that will be broadly applicable to analyzing other VKD proteins. PMID:22536908

  6. Gamma spectrometry efficiency calibration using Monte Carlo methods to measure radioactivity of 137Cs in food samples.

    PubMed

    Alrefae, T

    2014-12-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring the radioactivity of (137)Cs in food samples, was based on Monte Carlo simulations available in the free-of-charge toolkit GEANT4. Experimentally, the efficiency values of a high-purity germanium detector were calculated for three reference materials representing three different food items. These efficiency values were compared with their counterparts produced by a computer code that simulated experimental conditions. Interestingly, the output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:24214912

  7. Investigation of Failed TRISO Fuel Assay Using Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Harp, Jason Michael

    TRISO microsphere fuel is the fundamental fuel unit for Very High Temperature Reactors (VHTR). A single TRISO particle consists of an inner kernel of Uranium Oxycarbide surrounded by layers of pyrolytic carbon and silicon carbide. The silicon carbide serves as the primary barrier to the release of fission products into the core. If the silicon carbide layer fails, fission gas, especially Kr and Xe, will begin to escape the failed particle. In order to understand the behavior of TRISO fuel under in-core conditions, a series of experiments is being conducted by Idaho National Lab at the Advanced Test Reactor. AGR-1 is the first of these experiments. It will measure fission product release due to failed TRISO particles. Simulations of this experiment have been conducted at North Carolina State University to develop a method for the analysis of the results of the experiment. The ATR core was simulated using the Monte Carlo code MCNP to calculate the expected neutron energy spectrum for the AGR-1 experimental test train. This spectrum was used to create one-group cross sections for implementation in ORIGEN calculations of the amount of activity produced in the experiment. Several theoretical models have been developed to describe the phenomenon of gas release. While each model is based on similar physics, different models contain unique features that distinguish them from one another. These Release to Birth (R/B) models are developed and applied to the activity found in the ORIGEN calculations to create expected release activities. The release activity is used to create gamma-ray spectra that are representative of the different R/B models. Expected R/B due to a model can be calculated for comparison to the experiment with knowledge of the number of failed particles in the spectra. The comparison of measured to predicted R/B ratios gives insight into the physics of release and also helps validate specific models. Direct comparison is possible, but many of the uncertainties associated with direct comparison are nullified through the use of relative indicators. Each R/B model has a unique set of indicators that reflect the physical processes simulated in the model. Trends in the model indicators can be matched up with trends in indicators derived from the release spectra to validate either an entire model or validate the need to consider certain parameters in the creation of a complete and successful release to birth model. Gamma spectrometry is a useful tool for the understanding of fission gas release from failed TRISO particles. A better understanding of the processes that influence fission gas release will influence the fuel manufacturing and quality assurance protocols during the continued development of the VHTR. Future work in this area includes experiment in which the conditions can be better controlled to document the effects of temperature and fission rate in the fuel.

  8. Quantitative analysis of gamma-hydroxybutyrate at endogenous concentrations in hair using liquid chromatography tandem mass spectrometry.

    PubMed

    Stout, Phillip A; Simons, Kelsie D; Kerrigan, Sarah

    2010-03-01

    A method capable of quantifying endogenous concentrations of gamma-hydroxybutyrate (GHB) in human head hair was developed and validated using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS). Hair was digested under alkaline conditions, and GHB was isolated using liquid-liquid extraction. LC/MS/MS was performed using atmospheric pressure chemical ionization in the negative mode, multiple reaction monitoring, and deuterated internal standard (GHB-D(6)). Linearity was observed between 0.1 and 100 ng/mg GHB (R(2) = 1.000). The limits of detection and quantitation in human hair were 0.2 and 0.4 ng/mg, respectively. Accuracy at 2 ng/mg and 10 ng/mg was determined to be 97% and 94%, and intra-assay CVs at these concentrations were 5.2% and 7.4% (n = 4). Beta-hydroxybutyrate (BHB), alpha-hydroxybutyrate, gamma-butyrolactone, and 1,4-butanediol did not produce an interference, and there was negligible ion suppression or enhancement from the matrix. PMID:20141559

  9. Radioactive contamination measurements of the primary sodium pipes in FBTR by gamma spectrometry

    Microsoft Academic Search

    M. T. Jose; T. Ravi; D. N. Krishnakumar; V. Meenakshisundaram

    2009-01-01

    Gamma spectrometric measurements were carried out in the primary sodium pipes of FBTR, twice during shut down state of the reactor with sodium circulating at 180°C and once after draining the primary sodium from pipes. However, the first two measurements were mainly the feasibility studies of undertaking gamma spectrometric measurements inside the primary sodium cells and to establish a reference

  10. The in situ exobiological investigation of the Martian surface mineralogy during unmanned missions. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; White, Melisa R.

    1994-01-01

    An important goal of exobiological research is to determine if life arose on planets other than Earth. The only other planet known, to date, on which life may have arisen is Mars. The data suggest that the physical environment of early Mars (i.e., temperature, pressure, and radiation regimes) was suitable for life to arise. Thus far, the data also suggest that early Mars possessed sufficient quantities of the required building blocks and a number of the chemical compounds necessary for life to arise. It is not known, however, if water existed in the appropriate state (i.e., liquid) in sufficient quantities long enough for life to arise. Determining the mineralogy and components of the Martian soil through in situ analyses during missions to Mars will provide information from which an assessment can be made for the probability of the origin of life on Mars. Missions to Mars in the near future will be unmanned and capable of in situ analyses. Our studies have shown that differential thermal analysis coupled with gas chromatography (DTA/GC) is a more appropriate analytical technique than, x-ray fluorescence, x-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential scanning calorimetry coupled with mass spectrometry (DSC/MS), or DSC/GC to identify the mineralogy of the Martian surface material in situ. DTA/GC is an advancement over the pyrolytic techniques flown on previous missions that have supplied only limited mineralogical information (Biemann et al. 1977).

  11. Microprobe sampling--photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette.

    PubMed

    Hertz, Romy; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin; Zimmermann, Ralf

    2012-02-10

    A microprobe sampling device (?-probe) has been developed for in situ on-line photo ionization mass spectrometric analysis of volatile chemical species formed within objects consisting of organic matter during thermal processing. With this approach the chemical signature occurring during heating, pyrolysis, combustion, roasting and charring of organic material within burning objects such as burning fuel particles (e.g., biomass or coal pieces), lit cigarettes or thermally processed food products (e.g., roasting of coffee beans) can be investigated. Due to its dynamic changes between combustion and pyrolysis phases the cigarette smoking process is particularly interesting and has been chosen as first application. For this investigation the tip of the ?-probe is inserted directly into the tobacco rod and volatile organic compounds from inside the burning cigarette are extracted and real-time analyzed as the glowing front (or coal) approaches and passes the ?-probe sampling position. The combination of micro-sampling with photo ionization time-of-flight mass spectrometry (PI-TOFMS) allows on-line intrapuff-resolved analysis of species formation inside a burning cigarette. Monitoring volatile smoke compounds during cigarette puffing and smoldering cycles in this way provides unparalleled insights into formation mechanisms and their time-dependent change. Using this technique the changes from pyrolysis conditions to combustion conditions inside the coal of a cigarette could be observed directly. A comparative analysis of species formation within a burning Kentucky 2R4F reference cigarette with ?-probe analysis reveals different patterns and behaviors for nicotine, and a range of semi-volatile aromatic and aliphatic species. PMID:22244143

  12. Real time in situ chemical characterization of sub-micron organic aerosols using Direct Analysis in Real Time mass spectrometry (DART-MS): the effect of aerosol size and volatility.

    PubMed

    Chan, Man Nin; Nah, Theodora; Wilson, Kevin R

    2013-07-01

    Direct Analysis in Real Time (DART) mass spectrometry is an atmospheric pressure ionization technique suitable for in situ chemical analysis of organic aerosols. Here, mass spectra are obtained by introducing a stream of nanometer-sized aerosols into the ionization region, which is an open space between the ion source and the atmospheric inlet of mass spectrometer. Model single component aerosols are used to show how the aerosol size and volatility influence the measured ion signals at different DART gas temperatures. The results show that for equivalent aerosol mass concentrations, the ion signal scales with particle surface area, with smaller diameter oleic acid aerosols yielding higher ion signals relative to larger diameter aerosols. For the aerosols of the same size, but different vapor pressures, the ion signal is larger for more volatile succinic acid aerosols than less volatile adipic and suberic acid particles. From the measured changes in aerosol size, produced by the DART source, the radial probing depth for these model aerosols range from 1 to 10 nm, the magnitude of which depends upon the physiochemical properties of the aerosols and DART gas temperature. An aerosol evaporation model reveals that the ion signal is correlated with changes in aerosol size and depends upon the total quantity of evaporated aerosol mass, consistent with a mechanism in which gas-phase molecules are first desorbed from the aerosol surface prior to ionization. The results of this work serve as a basis for future investigations of the mass spectra, ionization pathways, and probing depth of the aerosols using DART. PMID:23687648

  13. Determination of fluorine by the spectrometry of prompt gamma-rays

    Microsoft Academic Search

    I. S. Giles; M. Peisach

    1976-01-01

    The use, for analysis, of prompt gamma-rays excited by 5 MeV alpha-particles from the reactions19F(?,???)19F,19F(?, n?)22Na and19F(?, p?)22NE, was studied. The precision of the analyses depended on the gamma-ray energy used for the measurement. Relative standard\\u000a deviations were ±1.8, ±0.9 and ±1.3% using the 110-, 197- or 1275 keV gamma-rays. The method was tested with N. I. M. standard\\u000a materials

  14. High Throughput In Situ EXAFS Instrumentation for the Automatic Characterization of Materials and Catalysts

    SciTech Connect

    Tsapatsaris, Nikolaos; Beesley, A. M.; Weiher, Norbert; Schroeder, Sven L. M. [School of Chemical Engineering and Analytical Science, Molecular Materials Centre, University of Manchester, Sackville Street, P.O. Box 88. Manchester, M60 1QD (United Kingdom); Tromp, Moniek; Evans, John [School of Chemistry, University of Southhampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Dent, A. J. [Diamond Light Source Ltd., Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Harvey, Ian [Synchrotron Radiation Source (SRS), Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom)

    2007-01-19

    An XAS data acquisition and control system for the in situ analysis of dynamic materials libraries under control of temperature and gaseous environment has been developed. It was integrated at the SRS in Daresbury, UK, beamline 9.3, using a Si (220) monochromator and a 13 element solid state Ge fluorescence detector. The core of the system is an intelligent X, Y, Z, {theta} positioning system coupled to multi-stream quadrupole mass spectrometry analysis (QMS). The system is modular and can be adapted to other synchrotron radiation beamlines. The entire software control was implemented using Labview and allows the scan of a variety of library sizes, in several positions, angles, gas compositions and temperatures with minimal operator intervention. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on {gamma}-Al2O3, and for the evaluation and structural characterization of eight Au catalysts supported on Al2O3 and TiO2 Mass spectrometer traces reveal conversion rate oscillations in 6wt % Au/{gamma}Al2O3 catalysts. The use of HT experimentation for in situ EXAFS studies demonstrates the feasibility and potential of HT in situ XAFS for synchrotron radiation studies.

  15. Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry.

    PubMed

    Ozmen, S F; Boztosun, I; Yavuz, M; Tunç, M R

    2014-03-01

    In this study several soil samples were collected from the Büyükeceli district where Turkey's first nuclear power plant will be built and radioactivity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined by gamma spectrometry using a high-purity germanium detector. The measured activity concentrations in soil samples ranged from 9.8 ± 0.7 to 258.6 ± 15.8, 11.7 ± 0.9 to 85.6 ± 5.0, 173.8 ± 2.1 to 1949.5 ± 14.7 and 0.4 ± 0.1 to 72.2 ± 2.2 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. Findings are in good agreement with the published results of neighbouring areas. The absorbed gamma dose rate (D) in air and the annual effective dose of soil samples were calculated to be 80.2 nGy h(-1) and 98.3 mSv y(-1), respectively. The results show that the radiation hazard in the Büyükeceli district is insignificant. The data presented in this study would be very useful to determine the future effects of the nuclear power plant to the environment. PMID:24214909

  16. The efficiency calibration and development of environmental correction factors for an in situ high-resolution gamma spectroscopy well logging system

    SciTech Connect

    Giles, J.R.

    1996-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. Absolute efficiency calibration of the GSLS was performed using simple cylindrical borehole geometry. The calibration source incorporated naturally occurring radioactive material (NORM) that emitted photons ranging from 186-keV to 2,614-keV. More complex borehole geometries were modeled using commercially available shielding software. A linear relationship was found between increasing source thickness and relative photon fluence rates at the detector. Examination of varying porosity and moisture content showed that as porosity increases, relative photon fluence rates increase linearly for all energies. Attenuation effects due to iron, water, PVC, and concrete cylindrical shields were found to agree with previous studies. Regression analyses produced energy-dependent equations for efficiency corrections applicable to spectral gamma-ray well logs collected under non-standard borehole conditions.

  17. Evaluation of an automated assay system to measure soil radionuclides by L x-ray and gamma-ray spectrometry

    SciTech Connect

    Nyhan, J.W.; Drennon, B.J.; Crowell, J.M.

    1982-08-01

    An automated radionuclide assay system for conducting soil radioassays using L x-ray and gamma-ray spectrometry was evaluated. Wet chemistry assay procedures were shown to be considerably more time consuming than similar analyses of soil on this radionuclide assay system. The detection limits of /sup 241/Am and plutonium were determined, as well as the reproducibility of radionuclide assay results. The L x-ray spectrometric measurements were compared with radiochemical analyses on several tuff samples. The assay system's intrinsic germanium detector was found to respond linearly to varying low concentrations of /sup 241/Am and plutonium, both of which were easily detected in the presence of elevated concentrations of /sup 137/Cs.

  18. Dose rate constant of a cesium-131 interstitial brachytherapy seed measured by thermoluminescent dosimetry and gamma-ray spectrometry.

    PubMed

    Chen, Z; Bongiorni, P; Nath, R

    2005-11-01

    The aim of this work was to conduct an independent determination of the dose rate constant of the newly introduced Model CS-1 131Cs seed. A total of eight 131Cs seeds were obtained from the seed manufacturer. The air-kerma strength of each seed was measured by the manufacturer whose calibration is traceable to the air-kerma strength standard established for the 131Cs seeds at the National Institute of Standards and Technology (1 sigma uncertainty < 1%). The dose rate constant of each seed was measured by two independent methods: One based on the actual photon energy spectrum emitted by the seed using gamma-ray spectrometry and the other based on the dose-rate measured by thermoluminescent dosimeter (TLD) in a Solid Water phantom. The dose rate constant in water determined by the gamma-ray spectrometry technique and by the TLD dosimetry are 1.066 +/- 0.064 cGyh(-1)U(-1) and 1.058 +/- 0.106 cGyh(-1)U(-1), respectively, showing excellent agreement with each other. These values, however, are approximately 15% greater than a previously reported value of 0.915 cGyh(-1)U(-1) [Med. Phys. 31, 1529-1538 (2004)]. Although low-energy fluorescent x rays at 16.6 and 18.7 keV, originating from niobium present in the seed construction, were measured in the energy spectrum of the 131Cs seeds, their yields were not sufficient to lower the dose rate constant to the value of 0.915 cGyh(-1)U(-1). Additional determinations of the dose rate constant may be needed to establish an AAPM recommended consensus value for routine clinical use of the 131Cs seed. PMID:16372409

  19. A convenient method for discriminating between natural and depleted uranium by gamma-ray spectrometry.

    PubMed

    Shoji, M; Hamajima, Y; Takatsuka, K; Honoki, H; Nakajima, T; Kondo, T; Nakanishi, T

    2001-08-01

    A convenient method for discriminating between natural and depleted uranium reagent was developed by measuring and analyzing the gamma-ray spectra of some reagents with no standard source. The counting rates (R) of photoelectric peaks of gamma-rays from nuclides with the same radioactivity divided by their emission probability (B) are expressed as a function of gamma-ray energy. The radioactivities of 234Th and 234mPa and 21.72 times that of 235U are equal to the radioactivity of 235U in natural uranium. Therefore, the plot of 21.72-fold R/B for 235U should be on a curve fitted to the points for 234Th and 234mPa in natural uranium. Depleted uranium with a 235U isotopic composition of less than 0.68% could be discriminated from natural uranium in the case of a reagent containing 4.0 g of uranium. PMID:11393763

  20. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, J.S.

    1990-01-01

    Aerial gamma-ray surveys of the natural environment measure the flux of gamma rays produced by the radioactive decay of 40K, 214Bi, and 208Tl in the upper 10-20 cm of surface materials. 40K is a radioactive potassium isotope which can be used to estimate the total amount of potassium in the soils and rocks. 214Bi is a decay product of the 238U radioactive decay series and is used to estimate the uranium concentrations, and 208Tl, a decay product of the 232Th radioactive decay series, is used to estimate thorium concentrations. Aerial gamma-ray data covering the 48 contiguous states of the United States have been compiled to produce maps showing the distributions of equivalent uranium, equivalent thorium, and potassium. This compilation involved processing the aerial survey data from about 470 1?? ?? 2?? quadrangle maps. ?? 1990.

  1. Mathematical model of gamma-ray spectrometry borehole logging for quantitative analysis

    USGS Publications Warehouse

    Schimschal, Ulrich

    1981-01-01

    A technique for analyzing gamma-ray spectral-logging data has been developed, in which a digital computer is used to calculate the effects of gamma-ray attentuation in a borehole environment. The computer model allows for the calculation of the effects of lithology, porosity, density, and the thickness of a horizontal layer of uniformly distributed radioactive material surrounding a centralized probe in a cylindrical borehole. The computer program also contains parameters for the calculation of the effects of well casing, drilling fluid, probe housing, and losses through the sodium-iodide crystal. Errors associated with the commonly used mathematical assumption of a point detector are eliminated in this model. (USGS)

  2. In Situ Measurements of Natural Radioactivity in Selected Igneous Rocks of the Opava Mountain Region

    NASA Astrophysics Data System (ADS)

    D?aluk, Agnieszka; Malczewski, Dariusz; ?aba, Jerzy; Dziurowicz, Maria

    2014-09-01

    In situ gamma-ray measurements of four igneous rocks were taken in the Opava Mountains (Eastern Sudetes, Poland). The activity of naturally occurring radionuclides was measured using a portable GX3020 gamma-ray spectrometry workstation. The activity concentrations of 40K varied from 914 ± 17 Bqkg-1 (gneiss, Kamienna Góra) to 2019 ± 37 Bqkg-1 (weathered granite, S?awniowice), while those of 232Th from 7.5 ± 0.6 Bqkg-1 (weathered granite, S?awniowice) to 68 ± 0.9 Bqkg-1 (migmatitic gneiss, Nadziejów). The activities associated with 238U decay series ranged from 10 ± 0.4 Bqkg-1 (weathered granite, S?awniowice) to 62 ± 1.6 Bqkg-1 (gneiss, Kamienna Góra). The results will be used in compiling Radiological Atlas of the Sudetes

  3. The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities

    SciTech Connect

    Kane, Walter R.; Lemley, James R.; Forman, Leon

    1997-12-31

    While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled Intrusiveness Verification Technique) approach, where a computer-based interface is employed to limit access to the information obtained, may be followed.

  4. Determination of the stellar (n,{gamma}) cross section of {sup 40}Ca with accelerator mass spectrometry

    SciTech Connect

    Dillmann, I.; Domingo-Pardo, C.; Heil, M.; Kaeppeler, F.; Wallner, A.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Mengoni, A.; Gallino, R.; Paul, M.; Vockenhuber, C. [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, D-76021 Karlsruhe (Germany); Vienna Environmental Research Accelerator, Fakultaet fuer Physik, Universitaet Wien, A-1090 Wien (Austria); International Atomic Energy Agency, Wagramer Strasse 5, A-1400 Wien (Austria); Dipartimento di Fisica Generale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Racah Institute of Physics, Hebrew University, IL-Jerusalem 91904 (Israel); TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada)

    2009-06-15

    The stellar (n,{gamma}) cross section of {sup 40}Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing {gamma}-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the {sup 7}Li(p,n){sup 7}Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic {sup 40}Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, {sup 40}Ca can also play a secondary role as ''neutron poison'' for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of <{sigma}>{sub 3}0 keV=5.73{+-}0.34 mb.

  5. The influence of exogenous conditions on mobile measured gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-12-01

    In the past, gamma ray measurements have been used for geological surveys and exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Based on these applications and knowledge in combination with adjusted sensor systems, gamma ray measurements are used to derive soil parameters to create detailed soil maps e.g., in digital soil mapping (DSM) and monitoring of soils. Therefore, not only qualitative but also quantitative comparability is necessary. Grain size distribution, type of clay minerals and organic matter content are soil parameters which directly influence the gamma ray emitter concentration. Additionally, the measured concentration is influenced by endogenous processes like soil moisture variation due to raining events, foggy weather conditions, or erosion and deposition of material. A time series of gamma ray measurements was used to observe changes in gamma ray concentration on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different time steps shows similar structures with minor variation between the data ranges and shape of structures. However, the data measured during different soil moisture contents differ in absolute value. An average increase of soil moisture of 36% leads to a decrease of Th (by 20%), K (by 29%), and U (by 41%). These differences can be explained by higher attenuation of radiation during higher soil moisture content. The different changes in nuclide concentration will also lead to varying ratios. We will present our experiences concerning the measurement under variable field conditions and their impacts on gamma ray data quality. These activities are done within the iSOIL project. iSOIL- Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment; iSOIL is one member of the SOIL TECHNOLOGY CLUSTER of Research Projects funded by the EC.

  6. Subsurface In situ elemental composition measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A.; McClanahan, T.; Bodnarik, J.; Evans, L.; Nowicki, S.; Schweitzer, J.; Starr, R.

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  7. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  8. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  9. Measurement of Danube sediment radioactivity in Serbia and Montenegro using gamma ray spectrometry

    Microsoft Academic Search

    I. Bikit; J. Slivka; M. Veskovi?; E. Varga; N. Žiki?-Todorovi?; D. Mr?a; S. Forkapi?

    2006-01-01

    The radionuclide content of 54 sediment samples collected from 18 locations distributed along the Vojvodina part of the Danube was determined by means of low-level, high-resolution gamma-spectroscopy. Beside the members of the natural radioactive chains of 238U, 232Th and the natural 40K, 137Cs content of Chernobyl origin was also detected. The data obtained are compared with those collected during four

  10. Gamma-ray spectrometry of humans at the University of Utah

    Microsoft Academic Search

    Ray D. Lloyd; Charles W. Mays; David H. Taysum

    1979-01-01

    Summary A human total-body counter was designed and built with two 20 × 10 cm NaI (Tl) crystals suspended over an “isoresponse surface” upon which the subject reclines. This surface is curved from head to knee and from left to right, so that a gamma-ray emitting object is detected with equal efficiency when placed anywhere upon it. The positioner and

  11. Coincidence summing effects in gamma-ray spectrometry using a Marinelli beaker.

    PubMed

    Lee, Mosung; Park, Tae Soon; Woo, Jong-Kwan

    2008-01-01

    The coincidence summing effects on a HPGe spectrometer have been studied by using Marinelli beakers containing (133)Ba and (152)Eu solutions. The coincidence summing effects were calculated from the ratio of full-energy peak efficiency and total efficiency. The peak efficiency values for (133)Ba and (152)Eu corrected by using the peak-to-total ratio were found to be in good agreement (within 3%) as compared with the efficiency values from Marinelli beakers containing single gamma-ray emitters. PMID:18430578

  12. On the categorization of uranium materials using low resolution gamma ray spectrometry.

    PubMed

    Vesterlund, A; Ulvsand, T; Lidström, K; Skarnemark, G; Ekberg, C; Ramebäck, H

    2013-02-01

    In order to characterize uranium materials during e.g. nuclear safeguards inspections and in initial stages of nuclear forensic investigations, hand-held low resolution gamma ray detection instruments with automatic uranium categorization capabilities may be used. In this paper, simulated response curves for a number of matrices applied on NaI(Tl) scintillation detector spectra show that the result of the categorization is strongly dependent on the physical properties of the uranium material. Recommendations on how to minimize the possibility of misclassification are discussed. PMID:23208231

  13. In situ chondrocyte viscoelasticity.

    PubMed

    Han, Sang-Kuy; Madden, Ryan; Abusara, Ziad; Herzog, Walter

    2012-09-21

    It has been proposed, based on theoretical considerations, that the strain rate-dependent viscoelastic response of cartilage reduces local tissue and cell deformations during cyclic compressions. However, experimental studies have not addressed the in situ viscoelastic response of chondrocytes under static and dynamic loading conditions. In particular, results obtained from experimental studies using isolated chondrocytes embedded in gel constructs cannot be used to predict the intrinsic viscoelastic responses of chondrocytes in situ or in vivo. Therefore, the purpose of this study was to investigate the viscoelastic response of chondrocytes in their native environment under static and cyclic mechanical compression using a novel in situ experimental approach. Cartilage matrix and chondrocyte recovery in situ following mechanical compressions was highly viscoelastic. The observed in situ behavior was consistent with a previous study on in vivo chondrocyte mechanics which showed that it took 5-7 min for chondrocytes to recover shape and volume following virtually instantaneous cell deformations during muscular loading of the knee in live mice. We conclude from these results that the viscoelastic properties of cartilage minimize chondrocyte deformations during cyclic dynamic loading as occurs, for example, in the lower limb joints during locomotion, thereby allowing the cells to reach mechanical and metabolic homeostasis even under highly dynamic loading conditions. PMID:22884037

  14. Detection of frozen salt in pipes using gamma-ray spectrometry of potassium self-activity

    SciTech Connect

    Grena, Roberto; Scafe, Raffaele; Pisacane, Fabrizio; Pilato, Renzo; Crescenzi, Tommaso; Mazzei, Domenico [ENEA, Casaccia Research Centre, via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy)

    2010-01-15

    Solar plants that use molten salts as heat transfer fluid need careful control to avoid the freezing of the salt in the pipes; if such a problem occurs, a diagnostic instrument to localize where is the frozen salt plug and to determine its length is useful. If the salt contains potassium (as is the case of the most common mixture used in solar plants, NaNO{sub 3}/KNO{sub 3} 60/40% by weight), the gamma decay of the natural unstable isotope {sup 40}K can be exploited to detect the frozen salt in a non-invasive way. Simulations and experimental results regarding the detectability of such plugs with different masses/lengths are presented. (author)

  15. Determination of sedimentation rates in Eastern sea areas of Hong Kong with gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, K. N.; Young, E. C. M.; Stokes, M. J.; Guan, Z. J.

    1995-02-01

    Cylindrical samples of sediments have been obtained from four sea areas adjacent to the Mirs Bay to the east of Hong Kong. An n-type HPGe low background ?-ray spectrometry system has been employed to measure the Pb-210 and Cs-137 concentrations in the samples simultaneously. The distribution of the specific activities with depth were also acquired. Using the least squares fit method, the sedimentation rate at the four sampling sites have been evaluated. The results show that the sedimentation rate decreases when the sampling sites are further away from the Mirs Bay into the South China Sea. In particular, the rate calculated using the Pb-210 activities decreases from 0.46 to 0.27 cm/y, and that using the Cs-137 method from 0.35 to 0.086 cm/y. The Cs-137 method yields results which are subjected to external disturbance to a greater extent, and is thus less reliable than the Pb-210 method.

  16. In situ groundwater bioremediation

    SciTech Connect

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  17. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Lansard, B; Bourquin, M; Reyss, J-L; von Ballmoos, P; Jean, P

    2013-02-01

    We describe a new underground laboratory, namely LAFARA (for "LAboratoire de mesure des FAibles RAdioactivités"), that was recently created in the French Pyrénées. This laboratory is primarily designed to analyze environmental samples that display low radioactivity levels using gamma-ray spectrometry. Two high-purity germanium detectors were placed under 85 m of rock (ca. 215 m water equivalent) in the tunnel of Ferrières (Ariège, France). The background is thus reduced by a factor of ?20 in comparison to above-ground laboratories. Both detectors are fully equipped so that the samples can be analyzed in an automatic mode without requiring permanent presence of a technician in the laboratory. Auto-samplers (twenty positions) and systems to fill liquid nitrogen automatically provide one month of autonomy to the spectrometers. The LAFARA facility allows us to develop new applications in the field of environmental sciences based on the use of natural radionuclides present at low levels in the environment. As an illustration, we present two of these applications: i) dating of marine sediments using the decay of (226)Ra in sedimentary barite (BaSO(4)), ii) determination of (227)Ac ((231)Pa) activities in marine sediment cores. PMID:23164692

  18. Stability of plasma gamma-hydroxybutyrate determined by gas chromatography-positive ion chemical ionization-mass spectrometry.

    PubMed

    Chen, Meng; Andrenyak, David M; Moody, David E; Foltz, Rodger L

    2003-10-01

    An effective method for the determination of gamma-hydroxybutyric acid (GHB) in human plasma is described that utilizes a simple liquid-liquid extraction procedure and gas chromatography-positive ion chemical ionization-mass spectrometry (GC-PCI-MS). The method has been used to study the stability of plasma GHB under several storage conditions. Following the extraction with acetonitrile, GHB and deuterated GHB (GHB-d(6)) were derivatized with N,O-bis[trimethylsilyl] trifluoroacetamide (BSFTA). After the separation on a capillary GC column, the derivatives were ionized with ammonia reagent gas and analyzed by MS. The lower limit of quantitation in 100 microL of plasma was 2.5 microg/mL, over a range from 2.5 to 250 microg/mL. The coefficients of variation did not exceed 3.9% and the mean measured concentrations did not deviate more than 8% from the target for both intra- and interassay precision and accuracy. Plasma GHB was found to be stable at -20 degrees C for up to 9 months, at room temperature for 48 h, and after 3 freeze/thaw cycles. It was also found to be stable in processed samples stored at room temperature for 5 days and for 15 days at -20 degrees C. PMID:14606997

  19. In Situ Composite Fastener

    NASA Technical Reports Server (NTRS)

    Freeman, W. T., Jr.; Jones, W. S.; Farley, G. L.

    1984-01-01

    Fasteners installed prior to curing. In situ composite fastener polymeric, graphite, glass, or metallic thread, pin, or staple. Selected fastener pressed through thickness of composite component while composite is in prepreg or B-stage state. Parts not removed from mold to install fastener. Technique used around cutouts to prevent free edges from delaminating.

  20. Determination of radionuclides and elemental composition of clay soils by gamma- and X-ray spectrometry.

    PubMed

    Omoniyi, Isinkaye M; Oludare, Shitta M B; Oluwaseyi, Oderinde M

    2013-12-01

    Radiochemical and elemental analysis of clay soils collected from different locations within Ekiti State have been performed in this study using gamma and XRF spectrometric measurements. The results of this study show that the mean concentrations of uranium ranged from 2.2?±?1.0 mg/kg to 3.2?±?1.1 mg/kg, that of thorium ranged from 4.0?±?0.5 mg/kg to 5.7?±?1.7 mg/kg, while potasium presented in % by weight ranged from 0.4?±?0.2 to 1.3?±?0.3 in all the locations. The overall mean concentrations of these radionuclides are comparable to values from other locations around the world. The XRF analysis revealed 4 major elements and 11 minor or trace elements present in the clay samples. The distribution of the various major and trace elements in all the sampling sites do not follow any systematic trend but vary from point to point. To assess the level of contamination and the possible anthropogenic impact in the clay soils, the enrichment factor (EF) and the geoaccumulation index (Igeo) were estimated for some potential hazardous elements. The results indicate that Cu, Zn, Ni and Mn have EF?

  1. Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry

    NASA Astrophysics Data System (ADS)

    Hahn, B. C.; McLennan, S. M.; Klein, E. C.

    2011-07-01

    Martian thermal state and evolution depend principally on the radiogenic heat-producing element (HPE) distributions in the planet's crust and mantle. The Gamma-Ray Spectrometer (GRS) on the 2001 Mars Odyssey spacecraft has mapped the surface abundances of HPEs across Mars. From these data, we produce the first models of global and regional surface heat production and crustal heat flow. As previous studies have suggested that the crust is a repository for approximately 50% of the radiogenic elements on Mars, these models provide important, directly measurable constraints on Martian heat generation. Our calculations show considerable geographic and temporal variations in crustal heat flow, and demonstrate the existence of anomalous heat flow provinces. We calculate a present day average surface heat production of 4.9 ± 0.3 × 10-11 W · kg-1. We also calculate the average crustal component of heat flow of 6.4 ± 0.4 mW · m-2. The crustal component of radiogenically produced heat flow ranges from <1 mW · m-2 in the Hellas Basin and Utopia Planitia regions to ˜13 mW · m-2 in the Sirenum Fossae region. These heat production and crustal heat flow values from geochemical measurements support previous heat flow estimates produced by different methodologies.

  2. Gamma-ray spectrometry of humans at the University of Utah.

    PubMed

    Lloyd, R D; Mays, C W; Taysum, D H

    1979-04-30

    A human total-body counter was designed and built with two 20 X 10 cm NaI (Tl) crystals suspended over an "isoresponse surface" upon which the subject reclines. This surface is curved from head to knee and from left to right, so that a gamma-ray emitting object is detected with equal efficiency when placed anywhere upon it. The positioner and detectors are housed in a low background enclosure constructed of steel 31 cm thick with a graded inner lining of lead + cadmium + copper. Calibration of the system was accomplished by administering trace amounts of various radionuclides to 48 human subjects of various sizes, ranging in age from 4--80 years. Counting rates per retained muCi at 0.53, 0.66, 1.53, and 2.75 MeV (83Rb, 137Cs, 42K, and 24Na) were determined as a function of body size and were compared with counting rates per muCi of corresponding emitters centered in a polyethylene cylinder of radius 10.3 cm. Limits of detection, corresponding to three times the standard deviation of a 50 min background, were 170 nCi 90Sr (via Bremsstrahlung X-rays), 0.78 nCi 131I, 0.48 nCi 83Rb, 0.52 nCi 137 Cs, 4.9 nCi 40K (or 5.8 g of natural potassium) and 1.7 nCi 222Rn. PMID:112640

  3. Regional Crustal Components of Martian Heat Flow from Mars Odyssey Gamma-Ray Spectrometry (GRS)

    NASA Astrophysics Data System (ADS)

    Hahn, B. C.; McLennan, S. M.

    2009-12-01

    Martian thermal state and evolution depend principally on the heat-producing element distributions in the planet’s crust and mantle, specifically the incompatible radiogenic isotopes of K, Th, and U. Normally these elements are preferentially sequestered into a planet’s crust during differentiation, and this is especially true for Mars, which possesses a thick and mostly ancient crust that is proportionally large with respect to the planet’s total volume. The Gamma-Ray Spectrometer (GRS) instrument on board the 2001 Mars Odyssey spacecraft can detect all three of these elements and has been used to map the K and Th abundances across nearly the entire Martian surface. It has been estimated that as much as 50% or more of the Martian planetary budget of heat producing elements has seen sequestered into the crust during planetary differentiation due to their incompatibility in igneous processes; a process that mostly took place very early in Martian geological history. As such, the crustal component of heat flow represents as much as half of the total planetary output of radiogenic heat. While GRS measurements can not constrain heat flow from mantle sources, previous work calculated the average crustal component of heat flow of 6.43 mW/m2 based on radiogenic elemental abundances. Orbital GRS data are of lower spatial resolution (5°x5° per pixel) than most other orbital remote sensing instruments and, accordingly, are best suited for global or large, regional-scale studies, rather than detailed, local analyses of geographically small features and landforms. Here we present detailed calculations for specific, areally-large, regions and geologic provinces on Mars, reporting the present-day crustal component of heat flow, the crustal heat flow at time of regional formation, and constraints of geothermal gradients from these measurements.

  4. In situ ethylation–purge and programmed-temperature-vaporizer cold trapping–gas chromatography–mass spectrometry as an automated technique for the determination of methyl- and butyltin compounds in aqueous samples

    Microsoft Academic Search

    Ralf Eiden; Heinz Friedrich Schöler; Manfred Gastner

    1998-01-01

    A new method for the determination of methyl- and butyltin compounds in aqueous samples is presented. The organotin species are derivatized in situ with sodium tetraethylborate (NaBEt4) in an 800-ml sample, purged on-line with helium and cryofocused at ?40°C in the Tenax-filled glass insert of a modified split\\/splitless injector. The injector is equipped with a liquid nitrogen cooling and a

  5. CO 2 reduction on Pt electrocatalysts and its impact on H 2 oxidation in CO 2 containing fuel cell feed gas – A combined in situ infrared spectroscopy, mass spectrometry and fuel cell performance study

    Microsoft Academic Search

    T. Smolinka; M. Heinen; Y. X. Chen; Z. Jusys; W. Lehnert; R. J. Behm

    2005-01-01

    We present results of a combined electrochemical and in situ spectroscopy study on kinetic and mechanistic aspects of the reduction of CO2 on Pt model electrodes and compare these with the performance of a Pt\\/C membrane electrode assembly (MEA) in a polymer electrolyte fuel cell (PEFC) for using pure H2 or H2\\/CO2(25%) mixtures (synthetic reformate). Based on highly sensitive surface

  6. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. PMID:24331854

  7. In Situ Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.; Hammond, Monica

    2005-01-01

    A manufacturing system is described that is internal to controlled cabin environments which will produce functional parts to net shape with sufficient tolerance, strength and integrity to meet application specific needs such as CEV ECLS components, robotic arm or rover components, EVA suit items, unforeseen tools, conformal repair patches, and habitat fittings among others. Except for start-up and shut-down, fabrication will be automatic without crew intervention under nominal scenarios. Off-nominal scenarios may require crew and/or Earth control intervention. System will have the ability to fabricate using both provisioned feedstock materials and feedstock refined from in situ regolith.

  8. Determination of gamma-hydroxybutyric acid (GHB) in plasma and urine by headspace solid-phase microextraction and gas chromatography/positive ion chemical ionization mass spectrometry.

    PubMed

    Frison, G; Tedeschi, L; Maietti, S; Ferrara, S D

    2000-01-01

    A new method for the qualitative and quantitative analysis of gamma-hydroxybutyric acid (GHB) in plasma and urine samples is described. It involves the conversion of GHB to gamma-butyrolactone (GBL), its subsequent headspace solid-phase microextraction (SPME), and detection by gas chromatography/positive ion chemical ionization mass spectrometry (GC/PICI-MS), using D(6)-GBL as internal standard. The assay is linear over a plasma GHB range of 1-100 microg/mL (n = 5, r = 0.999) and a urine GHB range of 5-150 microg/mL (n = 5, r = 0. 998). Relative intra- and inter-assay standard deviations, determined for plasma and urine samples at 5 and 50 microg/mL, are all below 5%. The method is simple, specific and reasonably fast. It may be applied for clinical and forensic toxicology as well as for purposes of therapeutic drug monitoring. PMID:11114057

  9. In Situ Surface Characterization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Leger, Patrick C.; Yanovsky, Igor

    2011-01-01

    Operation of in situ space assets, such as rovers and landers, requires operators to acquire a thorough understanding of the environment surrounding the spacecraft. The following programs help with that understanding by providing higher-level information characterizing the surface, which is not immediately obvious by just looking at the XYZ terrain data. This software suite covers three primary programs: marsuvw, marsrough, and marsslope, and two secondary programs, which together use XYZ data derived from in situ stereo imagery to characterize the surface by determining surface normal, surface roughness, and various aspects of local slope, respectively. These programs all use the Planetary Image Geometry (PIG) library to read mission-specific data files. The programs themselves are completely multimission; all mission dependencies are handled by PIG. The input data consists of images containing XYZ locations as derived by, e.g., marsxyz. The marsuvw program determines surface normals from XYZ data by gathering XYZ points from an area around each pixel and fitting a plane to those points. Outliers are rejected, and various consistency checks are applied. The result shows the orientation of the local surface at each point as a unit vector. The program can be run in two modes: standard, which is typically used for in situ arm work, and slope, which is typically used for rover mobility. The difference is primarily due to optimizations necessary for the larger patch sizes in the slope case. The marsrough program determines surface roughness in a small area around each pixel, which is defined as the maximum peak-to-peak deviation from the plane perpendicular to the surface normal at that pixel. The marsslope program takes a surface normal file as input and derives one of several slope-like outputs from it. The outputs include slope, slope rover direction (a measure of slope radially away from the rover), slope heading, slope magnitude, northerly tilt, and solar energy (compares the slope with the Sun s location at local noon). The marsuvwproj program projects a surface normal onto an arbitrary plane in space, resulting in a normalized 3D vector, which is constrained to lie in the plane. The marsuvwrot program rotates the vectors in a surface normal file, generating a new surface normal file. It also can change coordinate systems for an existing surface normal file. While the algorithms behind this suite are not particularly unique, what makes the programs useful is their integration into the larger in situ image processing system via the PIG library. They work directly with space in situ data, understanding the appropriate image metadata fields and updating them properly. The secondary programs (marsuvwproj, marsuvwrot) were originally developed to deal with anomalous situations on Opportunity and Spirit, respectively, but may have more general applicability.

  10. Author's personal copy Ambient mass spectrometry

    E-print Network

    Vertes, Akos

    Author's personal copy Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging Peter Nemes, Akos Vertes Recent technical innovations in mass spectrometry (MS) have analysis; Mass spectrometry; Metabolomics; Molecular imaging; Peptidomics; Single-cell analysis; Tissue

  11. Determination of gamma-hydroxybutyrate (GHB) in biological specimens by simultaneous extraction and chemical derivatization followed by GC-MS

    Microsoft Academic Search

    Sheng-Meng Wang; Yun-Seng Giang; Min-Jen Lu; Tsung-Li Kuo

    Urine and chicken liver fortified with gamma-hydroxybutyrate (GHB) were pretreated with in-situ liquid-liquid extraction\\/chemical derivatization (LLE-ChD) or in-situ solid-phase extraction\\/chemical derivatization (SPE-ChD) followed by gas chromatography-mass spectrometry (GC-MS). GHB as its N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) derivative was recovered from urine in 23.7 % through the LLE-ChD procedure, in contrast to 60.7 % via the SPE-ChD counterpart. In the selective ion monitoring (SIM)

  12. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients. PMID:24321866

  13. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  14. Measurement of Radionuclides and Gamma-Ray Dose Rate in Soil and Transfer of Radionuclides from Soil to Vegetation, Vegetable of Some Northern Area of Pakistan Using ?-Ray Spectrometry

    Microsoft Academic Search

    Hasan M. Khan; M. Ismail; Khalid Khan; Perveen Akhter

    2011-01-01

    The analysis of gamma emitters natural radionuclides, i.e., 226Ra, 232Th, and 40K, has been carried out in soil, vegetation, vegetable, and water samples collected from some Northern area of Pakistan, using\\u000a gamma-ray spectrometry. The ?-ray spectrometry was carried out using high-purity Germanium detector coupled with a computer-based\\u000a high-resolution multi-channel analyzer. The activity concentrations in soil ranges from 24.7 to 78.5 Bq?kg?1,

  15. In Situ Nuclear Characterization Infrastructure

    SciTech Connect

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  16. 13 In Situ: Groundwater Bioremediation

    E-print Network

    Hazen, Terry

    13 In Situ: Groundwater Bioremediation T. C. Hazen Lawrence Berkeley National Laboratory, Berkeley and Bioaugmentation of Groundwater ............................ 2589 5 Intrinsic Bioremediation and Modeling.1007/978-3-540-77587-4_191, # Springer-Verlag Berlin Heidelberg, 2010 #12;Abstract: In situ groundwater bioremediation of hydrocarbons

  17. Gamma

    NSDL National Science Digital Library

    The Geometric Algorithms for Modeling, Motion, and Animation (GAMMA) research group is part of the Department of Computer Science at the University of North Carolina. Some of the topics of research include haptics, "robot motion planning," collision detection, and "real-time interaction with virtual environments." There are several projects that are described in detail for each of the main areas of investigation. Many recent papers are offered that describe the progress and findings of the group's research. Additionally, there is a large collection of videos demonstrating computer animation, simulation, and interactive applications. Some software can also be downloaded for the GAMMA Web site; however, access to a few of the titles must first be approved by the system administrator.

  18. Verification of the content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry

    E-print Network

    Cong Tam Nguyen

    2005-08-29

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu-Be neutron sources has been developed. It is also shown that the isotopic composition and the age of plutonium (Pu) can be determined in the intensive neutron field of these sources by the ``Multi-Group Analysis'' method. Gamma spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The isotopic composition and the age of Pu were determined using a commercial implementation of the Multi-Group Analysis algorithm. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector parallel to each other. The determination of the specific neutron yields and the problem of neutron damage to the detector are also discussed.

  19. Verification of the content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry

    E-print Network

    Nguyen, C T

    2006-01-01

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu-Be neutron sources has been developed. It is also shown that the isotopic composition and the age of plutonium (Pu) can be determined in the intensive neutron field of these sources by the ``Multi-Group Analysis'' method. Gamma spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The isotopic composition and the age of Pu were determined using a commercial implementation of the Multi-Group Analysis algorithm. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector parallel to each other. The determination of the specific neutron yields and the problem of neutron damage to the detector are also discussed.

  20. Determination of attenuation coefficient for self-absorption correction in routine gamma ray spectrometry of environmental bulk sample

    Microsoft Academic Search

    K. Satoh; N. Ohashi; H. Higuchi; M. Noguchi

    1984-01-01

    A simple method to determine -ray attenuation coefficients using Ba-133 -rays has been developed and applied to self-absorption correction in routine -ray spectrometry for environmental samples composed of unknown matrix elements. Experimental values of the mass attenuation coefficient obtained by the method agree well with calculated values for samples of known elemental composition which was determined by means of chemical

  1. Experimental study on neptunium migration under in situ geochemical conditions

    NASA Astrophysics Data System (ADS)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-?m size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  2. FISH - (Fluoresence In Situ Hybridization)

    NSDL National Science Digital Library

    Darryl Leja (National Human Genome Research Institute REV)

    2005-04-04

    Fluorescence in situ hybridization (FISH) is a process which vividly paints chromosomes or portions of chromosomes with fluorescent molecules. This technique is useful for identifying chromosomal abnormalities and gene mapping.

  3. In Situ Activation of Microcapsules

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  4. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  5. Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Iwanowska, Joanna; Swiderski, Lukasz; Szczesniak, Tomasz; Sibczynski, Pawel; Moszynski, Marek; Grodzicka, Martyna; Kamada, Kei; Tsutsumi, Kousuke; Usuki, Yoshiyuki; Yanagida, Takayuki; Yoshikawa, Akira

    2013-06-01

    Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry has been investigated. The measurements of two samples of GAGG:Ce cover the tests of emission spectra (maximum of emission at about 530 nm), light output, non-proportionality, energy resolution, time resolution and decay time of light pulses. We compare the results with commonly known scintillators, such as NaI(Tl), LSO, LuAG etc. The results show that GAGG:Ce has a high light yield of about 33000 ph/MeV as measured with Hamamatsu S3590-18 Si PiN photodiode [1]. The total energy resolution for 662 keV gamma-rays from 137Cs source is equal to about 6%, whereas intrinsic resolution is equal to 5.2%. Additionally, we made basic measurements of photoelectron yield, non-proportionality and total energy resolution of small sample (5×5×5 mm3) of GAGG:Ce crystal coupled to Hamamatsu MPPC array (6×6 mm2). The results show that the performance of GAGG:Ce measured with the MPPC array are similar to those measured with the PMT.

  6. Assessing soil erosion at landscape level: A step forward in the up-scaling of 137Cs measurements through the use of in-situ lanthanum bromide scintillator

    NASA Astrophysics Data System (ADS)

    Gonsalves, Basil C.; Darby, Iain G.; Toloza, Arsenio; Mabit, Lionel; Kaiser, Ralf B.; Dercon, Gerd

    2014-05-01

    Measuring Fallout Radionuclides (FRN), in particular 137Cs, is a well-established method to estimate soil erosion and deposition in agricultural landscapes. While extremely sensitive, laboratory based gamma-ray spectrometry requires careful handling and preparation of measurement samples with a lengthy measuring time (~1 day), In-situ gamma-ray spectrometry can give near instantaneous results, allowing prompt decisions to be made and identification of critical spots of soil erosion, while the equipment is in the field. The aim of this investigation was to compare the precision of the in-situ FRN measurements, made by a cost-effective lanthanum bromide (LaBr3 (Ce)) scintillation detector of 137Cs against those from conventional (high-purity germanium HPGe detector) but laborious laboratory based gamma-ray spectrometry for assessing soil erosion. As preliminary test, five cores of a gleyic Cambisol - per increments of 5 cm until 1 m depth - were collected at the experimental research station of the Austrian Agency for Health and Food Safety located in Grabenegg 130 km west of Vienna. Three soil cores were sampled at the study site and, in the vicinity of this experimental site, two additional cores were collected at two different undisturbed reference sites. Laboratory gamma analyses were carried out during 50 000 seconds using a HPGe coaxial detector. The gamma measurements performed at the laboratory confirmed the undisturbed status of the two selected reference sites (i.e. exponential decrease with depth of the 137Cs content). Using the surface area of the sampling tool, the 137Cs areal activities of the cores sampled in the study site have been established at 2134±465 Bq m-2, 1835±356 Bq m-2 and 2553±340 Bq m-2, and, for the two reference sites at 3221±444 Bq m-2 and 3946±527 Bq m-2. At the same location and prior to collect the five soil cores, in-situ measurements using a lanthanum bromide (LaBr3 (Ce)) scintillator were performed. The detector was placed at 2 cm above ground and each measurement was conducted for 900 seconds. A significant positive correlation (i.e. R2=0.82; p < 0.001) has been established between the 137Cs areal activities obtained with the in-situ and laboratory based measurements. The first results relating to in-situ measurement of 137Cs offer an exciting potential for the application of FRN measurements and their up-scaling in the framework of soil erosion assessments at the landscape level. This includes cost, time, and portability, the potential to work in remote areas, pre-screening to develop more effective sampling strategies and rapid repeat surveys. This work is still in its initial stage and more research is required to validate this innovative in-situ technique.

  7. Standard test method for nondestructive analysis of special nuclear materials in homogeneous solutions by Gamma-Ray spectrometry

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of the concentration of gamma-ray emitting special nuclear materials dissolved in homogeneous solutions. The test method corrects for gamma-ray attenuation by the solution and its container by measurement of the transmission of a beam of gamma rays from an external source (Refs. (1), (2), and (3)). 1.2 Two solution geometries, slab and cylinder, are considered. The solution container that determines the geometry may be either a removable or a fixed geometry container. This test method is limited to solution containers having walls or a top and bottom of equal transmission through which the gamma rays from the external transmission correction source must pass. 1.3 This test method is typically applied to radionuclide concentrations ranging from a few milligrams per litre to several hundred grams per litre. The assay range will be a function of the specific activity of the nuclide of interest, the physical characteristics of the solution container, counting equip...

  8. In situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  9. Triplex in-situ hybridization

    DOEpatents

    Fresco, Jacques R. (Princeton, NJ); Johnson, Marion D. (East Windsor, NJ)

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  10. In Situ Instrumentation for Sub-Surface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    Novel instrumentation is under development at NASA's Goddard Space Flight Center, building upon earth-based techniques for hostile environments, to infer geochemical processes important to formation and evolution of solid bodies in our Solar System. A prototype instrument, the Pulsed Neutron Generator Gamma Ray and Neutron Detectors (PNG-GRAND), has a 14 MeV pulsed neutron generator coupled with gamma ray and neutron detectors to measure quantitative elemental concentrations and bulk densities of a number of major, minor and trace elements at or below the surfaces with approximately a meter-sized spatial resolution down to depths of about 50 cm without the need to drill. PNG-GRAND's in situ a meter-scale measurements and adaptability to a variety of extreme space environments will complement orbital kilometer-scale and in-situ millimeter scale elemental and mineralogical measurements to provide a more complete picture of the geochemistry of planets, moons, asteroids and comets.

  11. Determination of the natural radioactivity levels in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry.

    PubMed

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K S; Alkhomashi, N; Al-Dahan, N; Al-Dosari, M; Bradley, D A; Bukhari, S; Matthews, M; Regan, P H; Santawamaitre, T; Malain, D; Habib, A

    2012-07-01

    This study is aimed at the determination of the activity concentrations of naturally occuring and technologically enhanced levels of radiation in 34 representative soil samples that have been collected from an inshore oil field area which was found to have, in a previous study, the highest observed value of 226Ra concentration among 129 soil samples. The activity concentrations of 238U and 226Ra have been inferred from gamma-ray transitions associated with their decay progenies and measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the values of the activity concentrations associated with the naturally occuring radionuclide chains for all the samples collected from NW Dukhan. Discrete-line, gamma-ray energy transitions from spectral lines ranging in energy from ?100 keV up to 2.6 MeV have been associated with characteristic decays of the various decay products within the 235.8U and 232Th radioactive decay chains. These data have been analyzed, under the assumption of secular equilibrium for the U and Th decay chains. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented. The weighted mean value of the activity concentrations of 226Ra in one of the samples was found to be around a factor of 2 higher than the values obtained in the previous study and approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. The weighted mean values of the activity concentrations of 232Th and 40K were also deduced and found to be within the worldwide average values of 30 and 400 Bq/kg, respectively. Our previous study reported a value of 201.9±1.5Stat.±13Syst.Bq/kg for 226Ra in one sample and further investigation in the current work determined a measured value for 226Ra of 342.00±1.9Stat.±25Syst.Bq/kg in a sample taken from the same locality. This is significantly higher than all the other investigated soil samples in the current and previous works. Notably, the Th levels in the same sample are within the worldwide average expectations, implying that the increased 226Ra concentration arises from TENORM processes. PMID:22244196

  12. High resolution Secondary Ionisation Mass Spectrometry O analyses of Hulu Cave speleothem

    E-print Network

    High resolution Secondary Ionisation Mass Spectrometry (SIMS) 18 O analyses of Hulu Cave speleothem The suitability of in situ Secondary Ionisation Mass Spectrometry (SIMS) techniques for measuring O isotopes

  13. Rapid determination of radon daughters and of artificial radionuclides in air by online gamma-ray spectrometry.

    PubMed

    Hötzl, H; Winkler, R

    1993-01-01

    For the determination of airborne radionuclide concentrations in real time, a fixed filter device was constructed which fits directly onto a germanium detector with standard nuclear electronics and a multichannel analyzer buffer connected via a data line to a personal computer for remote control and on-line spectrum evaluation. The on-line gamma-ray spectrometer was applied to the study of radon decay product concentrations in ground-level air and to the rapid detection of any contamination of the environmental air by artificial radionuclides. At Munich-Neuherberg, depending on the meterological conditions, the measured air concentrations of 214Pb, the first gamma-ray-emitting member of the 222Rn decay series, varied from about 1 to 50 Bq m-3. For the artificial radionuclides 60Co, 131I and 137Cs the detection limits were determined as a function of the varying natural radon daughter concentrations at sampling and counting times of 1 h or 1 day. For these radionuclides minimum detectable air activity concentrations of 0.3 or 0.001 Bq m-3, respectively, were obtained at low radon daughter levels. At high radon daughter levels the respective detection limits were found to be higher by a factor of only about 2. PMID:8393198

  14. The use of mercury as a supplementary inner shielding material for low-background gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sharkawy, A.; Sharshar, T.; Badran, H. M.

    2013-07-01

    Gamma-ray spectroscopic measurements of low-level environmental samples require the reduction of the background as low as practicable. In the present work, we investigate the advantages of adding Hg passive shielding inside a low-background Pb-shield to further reduce the background radiation. The background count rate achieved by the Pb-shield alone over the energy interval from 25 to 2700 keV, amounts to 8.4 × 10-4 counts/s.keV which is ~ 1.5% of the normal background. The introduction of Hg-shield adds another 15% reduction. On the average, the Hg-shield suppresses the net peak areas of X- and gamma-rays to < 3 and 1% of the normal background, respectively. On the other hand, the reduction in the count rate of these peaks due to the addition of Hg-shield varies according to the energy. The measurements showed no evidence of the presence of cosmogenically produced 194Hg in the measured spectra. An additional 2% reduction was achieved by using neutron moderators.

  15. TRIO-01 experiment: in-situ tritium-recovery results

    SciTech Connect

    Clemmer, R.G.; Finn, P.A.; Billone, M.C.; Misra, B.; Arons, R.M.; Poeppel, R.B.; Dyer, F.F.; Dudley, I.T.; Bate, L.C.; Clemmer, E.D.

    1983-08-01

    The TRIO-01 experiment is a test of in-situ tritium recovery from ..gamma..-LiAlO/sub 2/ with test conditions chosen to simulate those anticipated in fusion power reactors. A status report is presented which describes qualitatively the results observed during the irradiation phase of the experiment. Both the rate of tritium release and the chemical forms of tritium were measured using a helium sweep gas which flowed past the breeder material to a gas analysis system.

  16. TRIO-01 experiment: in-situ tritium recovery results

    SciTech Connect

    Clemmer, R.G.; Finn, P.A.; Billone, M.C.; Misra, B.; Arons, R.M.; Poeppel, R.B.; Dyer, F.F.; Dudley, I.T.; Bate, L.C.; Clemmer, E.D.

    1983-10-01

    The TRIO-01 experiment is a test of in-situ tritium recovery from ..gamma..-LiAlO/sub 2/ with test conditions chosen to simulate those anticipated in fusion power reactors. A status report is presented which describes qualitatively the results observed during the irradiation phase of the experiment. Both the rate of tritium release and the chemical forms of tritium were measured using a helium sweep gas which flowed past the breeder material to a gas analysis system.

  17. TRIO-01 experiment: in-situ tritium recovery results

    SciTech Connect

    Clemmer, R.G.; Finn, P.A.; Billone, M.C.; Misra, B.; Greenwood, L.R.; Dyer, F.F.; Dudley, I.T.; Bate, L.C.; Clemmer, E.D.; Fisher, P.W.

    1983-01-01

    The TRIO-01 experiment was designed to test in-situ tritium recovery and heat transfer performance of a candidate solid breeder, ..gamma..-LiAlO/sub 2/. The results showed that nearly all the tritium generated was recovered. Only < 0.1 wppM tritium remained in the solid after irradiation testing. The heat transfer performance showed that temperature profiles can be effectively controlled.

  18. In situ biofilm coupon device

    DOEpatents

    Peyton, Brent M. (Kennewick, WA); Truex, Michael J. (Richland, WA)

    1997-01-01

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  19. In situ biofilm coupon device

    DOEpatents

    Peyton, B.M.; Truex, M.J.

    1997-06-24

    An apparatus is disclosed for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements. 3 figs.

  20. Strategies for In situ and Sample Return Analyses

    NASA Astrophysics Data System (ADS)

    Papanastassiou, D. A.

    2006-12-01

    There is general agreement that planetary exploration proceeds from orbital reconnaissance of a planet, to surface and near-surface in situ exploration, to sample return missions, which bring back samples for investigations in terrestrial laboratories, using the panoply of state-of-the-art analytical techniques. The applicable techniques may depend on the nature of the returned material and complementary and multi- disciplinary techniques can be used to best advantage. High precision techniques also serve to provide the "ground truth" and calibrate past and future orbital and in situ measurements on a planet. It is also recognized that returned samples may continue to be analyzed by novel techniques as the techniques become developed, in part to address specific characteristics of returned samples. There are geophysical measurements such as those of the moment of inertia of a planet, seismic activity, and surface morphology that depend on orbital and in-situ science. Other characteristics, such as isotopic ages and isotopic compositions (e.g., initial Sr and Nd) as indicators of planetary mantle or crust evolution and sample provenance require returned samples. In situ analyses may be useful for preliminary characterization and for optimization of sample selection for sample return. In situ analyses by Surveyor on the Moon helped identify the major element chemistry of lunar samples and the need for high precision mass spectrometry (e. g., for Rb-Sr ages, based on extremely low alkali contents). The discussion of in-situ investigations vs. investigations on returned samples must be directly related to available instrumentation and to instrumentation that can be developed in the foreseeable future. The discussion of choices is not a philosophical but instead a very practical issue: what precision is required for key investigations and what is the instrumentation that meets or exceeds the required precision. This must be applied to potential in situ instruments and to laboratory instruments. Age determinations and use of isotopes for deciphering planetary evolution are viewed as off-limits for in-situ determinations, as they require: a) typically high precision mass spectrometry (at 0.01% and below); b) the determination of parent-daughter element ratios at least at the percent level; c) the measurement of coexisting minerals (for internal isochron determinations); d) low contamination (e. g., for U-Pb and Pb-Pb); and e) removal of adhering phases and contaminants, not related to the samples to be analyzed. Total K-Ar age determinations are subject to fewer requirements and may be feasible, in situ, but in the absence of neutron activation, as required for 39Ar-40Ar, the expected precision is at the level of ~20%, with trapped Ar in the samples introducing further uncertainty. Precision of 20% for K-Ar may suffice to address some key cratering rate uncertainties on Mars, especially as applicable to the Middle Amazonian(1). For in situ, the key issues, which must be addressed for all measurements are: what precision is required and are there instruments available, at the required precision levels. These issues must be addressed many years before a mission gets defined. Low precision instruments on several in situ missions that do not address key scientific questions may in fact be more expensive, in their sum, than a sample return mission. In summary, all missions should undergo similar intense scrutiny with regard to desired science and feasibility, based on available instrumentation (with demonstrated and known capabilities) and cost. 1. P. T. Doran et al. (2004) Earth Sci. Rev. 67, 313-337.

  1. In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry

    SciTech Connect

    Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

    2011-10-31

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

  2. The use of MCNP and gamma spectrometry in supporting the evaluation of NORM in Libyan oil pipeline scale

    NASA Astrophysics Data System (ADS)

    Habib, Ahmed S.; Bradley, D. A.; Regan, P. H.; Shutt, A. L.

    2010-07-01

    The accumulation of scales in production pipes is a common problem in the oil industry, reducing fluid flow and also leading to costly remedies and disposal issues. Typical materials found in such scale are sulphates and carbonates of calcium and barium, or iron sulphide. Radium arising from the uranium/thorium present in oil-bearing rock formations may replace the barium or calcium in these salts to form radium salts. This creates what is known as technologically enhanced naturally occurring radioactive material (TENORM or simply NORM). NORM is a serious environmental and health and safety issue arising from commercial oil and gas extraction operations. Whilst a good deal has been published on the characterisation and measurement of radioactive scales from offshore oil production, little information has been published regarding NORM associated with land-based facilities such as that of the Libyan oil industry. The ongoing investigation described in this paper concerns an assessment of NORM from a number of land based Libyan oil fields. A total of 27 pipe scale samples were collected from eight oil fields, from different locations in Libya. The dose rates, measured using a handheld survey meter positioned on sample surfaces, ranged from 0.1-27.3 ?Sv h -1. In the initial evaluations of the sample activity, use is being made of a portable HPGe based spectrometry system. To comply with the prevailing safety regulations of the University of Surrey, the samples are being counted in their original form, creating a need for correction of non-homogeneous sample geometries. To derive a detection efficiency based on the actual sample geometries, a technique has been developed using a Monte Carlo particle transport code (MCNPX). A preliminary activity determination has been performed using an HPGe portable detector system.

  3. Titan tholins analysed by in situ mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bénilan, Y.; Carrasco, N.; Cernogora, G.; Coll, P.; Gautier, T.; Gazeau, M.-C.; Gaie-Levrel, F.; Mahjoub, A.; Nahon, L.; Pernot, P.; Szopa, C.; Schwell, M.

    2012-09-01

    The main objective of the whole project developed in collaboration is to provide a better understanding of the chemical composition of Titan Tholins produced in the PAMPRE reactor (LATMOS) and thereby of their formation pathways.

  4. Noise canceling in-situ detection

    DOEpatents

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  5. In-Situ Metrology: the Path to Real-Time Advanced Process Control

    E-print Network

    Rubloff, Gary W.

    -to-run feedback and feedforward control We have developed in-situ metrologies based on mass spectrometry, acoustic at a level of about 1% accuracy. These developments open the door to real-time sensors as the basis for both, Characterization and Metrology for VLSI Technology: 2003 International Conference, edited by D. G. Seiler, A. C

  6. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.

    PubMed

    Cresswell, A J; Sanderson, D C W

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq (137)Cs within large areas (10-20 km(2)h(-1)), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15m whilst maintaining speeds covering 1-2 km(2) h(-1) can detect buried (137)Cs sources of 0.5MBq or greater activity. A survey design to detect 100 kBq (137)Cs sources at 10 cm depth has also been defined, requiring surveys at <15m ground clearance and <2 ms(-1) ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. PMID:22947616

  7. Composite with In Situ Plenums

    NASA Technical Reports Server (NTRS)

    Montesano, Mark

    2012-01-01

    A document describes a high-performance thermal distribution panel (TDP) concept using high-conductivity (greater than 800 W/mK) macro composite skin with in situ heat pipes. The processing technologies proposed to build such a panel result in a one-piece, inseparable assembly with high conductance in both the X and Y planes. The TDP configuration can also be used to produce panels with high structural stiffness. The one-piece construction of the TDP eliminates the thermal interface between the cooling plenums and the heat spreader base, and obviates the need for bulky mounting flanges and thick heat spreaders used on baseline designs. The conductivity of the TDP can be configured to exceed 800 W/mK with a mass density below 2.5 grams per cubic centimeter. This material can provide efficient conductive heat transfer between the in situ heat plenums, permitting the use of thinner panel thicknesses. The plenums may be used as heat pipes, loop heat pipes, or liquid cooling channels. The panel technology used in the TDP is a macro-composite comprised of aluminum-encapsulated annealed pyrolytic graphite (APG). APG is highly aligned crystalline graphite with an in-plane thermal conductivity of 1,700 W/mK. APG has low shear strength and does not constrain the encapsulating material. The proposed concept has no thermal interfaces between the heat pipes and the spreader plate, further improving the overall conductance of the system. The in situ plenums can also be used for liquid cooling applications. The process can be used to fabricate structural panels by adding a second thin sheet.

  8. Crystallization of a recombinant form of the complete sequence of human gamma-interferon: characterization by small-angle X-ray scattering, mass spectrometry and preliminary X-ray diffraction studies.

    PubMed

    Budayova-Spano, M; Shepard, W; Schoot, B; Astier, J P; Veesler, S

    2001-06-01

    The crystallization conditions of a recombinant form of the complete sequence of human gamma-interferon, designated r-hu IFN-gamma (RU 42369), have been determined after studying the behaviour of this protein in solution by small-angle X-ray scattering (SAXS) as a function of pH and salt type. IFN-gamma is difficult to crystallize without truncating at least the last five amino acids of the C-terminus; the SAXS results suggest viable crystallization conditions that led to crystals of r-hu IFN-gamma suitable for X-ray diffraction analysis. The crystals were grown in the presence of ammonium sulfate using vapour-diffusion techniques. The crystals, which diffract to 5 A resolution at best, belong to the primitive tetragonal space group P42(1)2 and have unit-cell parameters a = b = 123.4, c = 93.4 A. The protein contained in these crystals was analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which verified the presence of the complete amino-acid sequence of r-hu IFN-gamma. PMID:11375524

  9. Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide

    SciTech Connect

    St Clair, Jason M.; McCabe, David C. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Crounse, John D. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); Steiner, Urs [Varian, Inc., Santa Clara, California 95051 (United States); Wennberg, Paul O. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States)

    2010-09-15

    A new approach for measuring gas-phase methyl hydrogen peroxide [(MHP) CH{sub 3}OOH] utilizing chemical ionization mass spectrometry is presented. Tandem mass spectrometry is used to avoid mass interferences that hindered previous attempts to measure atmospheric CH{sub 3}OOH with CF{sub 3}O{sup -} clustering chemistry. CH{sub 3}OOH has been successfully measured in situ using this technique during both airborne and ground-based campaigns. The accuracy and precision for the MHP measurement are a function of water vapor mixing ratio. Typical precision at 500 pptv MHP and 100 ppmv H{sub 2}O is {+-}80 pptv (2 sigma) for a 1 s integration period. The accuracy at 100 ppmv H{sub 2}O is estimated to be better than {+-}40%. Chemical ionization tandem mass spectrometry shows considerable promise for the determination of in situ atmospheric trace gas mixing ratios where isobaric compounds or mass interferences impede accurate measurements.

  10. Verification of the 239Pu content, isotopic composition and age of plutonium in Pu–Be neutron sources by gamma-spectrometry

    Microsoft Academic Search

    Cong Tam Nguyen

    2006-01-01

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu–Be neutron sources has been developed. Gamma-spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector

  11. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T. (Tracy, CA); Coleman, Matthew A. (Livermore, CA); Tucker, James D. (Livermore, CA)

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  12. In-situ measurement system

    DOEpatents

    Lord, David E. (Livermore, CA)

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  13. Simulations of Terrestrial in-situ Cosmogenic-Nuclide Production

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Nishiizumi, K.; Lal, D.; Arnold, J. R.; Englert, P. A. J.; Klein, J.; Middleton, R.; Jull, A. J. T.; Donahue, D. J.

    1994-01-01

    Targets of silicon and silicon dioxide were irradiated with spallation neutrons to simulate the production of long-lived radionuclides in the surface of the Earth. Gamma-ray spectroscopy was used to measure Be-7 and Na-22, and accelerator mass spectrometry was used to measure Be-10, C-14, and Al-26. The measured ratios of these nuclides are compared with calculated ratios and with ratios from other simulations and agree well with ratios inferred from terrestrial samples.

  14. Correlations to determine in-situ stress from open-hole logging data in sandstone reservoirs

    E-print Network

    Gongora, Cesar Augusto

    1995-01-01

    principal in-situ stress derived from both open-hole log data and cased-hole stress tests and gamma ray readings. The information used during this research project came from the Gas Research Institute (GRI's) Staged Field Experiment (SFE) No. I and No.2...

  15. 6, 1246912501, 2006 In situ measurements

    E-print Network

    Paris-Sud XI, Université de

    ACPD 6, 12469­12501, 2006 In situ measurements of H2O in the TTL during HIBISCUS G. Durry et al­12501, 2006 In situ measurements of H2O in the TTL during HIBISCUS G. Durry et al. Title Page Abstract in the TTL during HIBISCUS G. Durry et al. Title Page Abstract Introduction Conclusions References Tables

  16. Dry eye after laser in situ keratomileusis

    Microsoft Academic Search

    Ikuko Toda; Naoko Asano-Kato; Yoshiko Komai-Hori; Kazuo Tsubota

    2001-01-01

    PURPOSE: To determine whether patients undergoing laser in situ keratomileusis have postoperative dry eye.METHODS: In this retrospective, interventional case series, 124 eyes of 64 consecutive patients who underwent laser in situ keratomileusis were examined for a dry eye symptom, Schirmer test with anesthesia, tear clearance rate, tear break-up time, vital staining for ocular surface, corneal sensitivity, and blink rate. All

  17. 3, 445477, 2003 Lidar and in situ

    E-print Network

    Boyer, Edmond

    ) scattering and absorbing both solar and thermal ra- diation, 2) acting as cloud condensation nuclei and in situ observations of continental and Saharan aerosol: closure analysis of particles optical as5 computed from in situ measurements of particles size distributions, performed at the mountain top

  18. IN SITU XRAY DIFFRACTION (IXD) SCIENTIFIC SCOPE

    E-print Network

    Ohta, Shigemi

    layout Catalysis: Water gas shift reaction RealTime Catalysis: InSitu Structural Studies for Producing scale , to study structural, morphological and chemical transformations under various conditions characterization of materials · Timeresolved in situ XRD measurements in the subminute time scale to study phase

  19. In situ bioremediation of petrol contaminated groundwater

    E-print Network

    Blouin-Demers, Gabriel

    21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater · Intrinsic BR vs. Engineered BR Anaerobic Bioremediation (1) Background · Anaerobic conditions most likely

  20. In situ bioremediation in Europe

    SciTech Connect

    Porta, A. [Battelle Europe, Geneva (CH); Young, J.K.; Molton, P.M. [Pacific Northwest Lab., Richland, WA (US)

    1993-06-01

    Site remediation activity in Europe is increasing, even if not at the forced pace of the US. Although there is a better understanding of the benefits of bioremediation than of other approaches, especially about in situ bioremediation of contaminated soils, relatively few projects have been carried out full-scale in Europe or in the US. Some engineering companies and large industrial companies in Europe are investigating bioremediation and biotreatment technologies, in some cases to solve their internal waste problems. Technologies related to the application of microorganisms to the soil, release of nutrients into the soil, and enhancement of microbial decontamination are being tested through various additives such as surfactants, ion exchange resins, limestone, or dolomite. New equipment has been developed for crushing and mixing or injecting and sparging the microorganisms, as have new reactor technologies (e.g., rotating aerator reactors, biometal sludge reactors, and special mobile containers for simultaneous storage, transportation, and biodegradation of contaminated soil). Some work has also been done with immobilized enzymes to support and restore enzymatic activities related to partial or total xenobiotic decontamination. Finally, some major programs funded by public and private institutions confirm that increasing numbers of firms have a working interest in bioremediation.

  1. High resolution Secondary Ionisation Mass Spectrometry O analyses of Hulu Cave speleothem

    E-print Network

    High resolution Secondary Ionisation Mass Spectrometry (SIMS) 18 O analyses of Hulu Cave speleothem The suitability of in situ Secondary Ionisation Mass Spectrometry (SIMS) techniques for measuring O isotopes Ionisation Mass Spectrometry (SIMS) 18O analyses of Hulu Cave speleothem at the time of Heinrich Event

  2. Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Elsperman, M. S.; Cook, T.; Smith, D.

    2010-12-01

    We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). This two spacecraft mission mimics the likely architecture approach that human explorers will use: a “mother ship”(MS) designed to get from Earth to the NEO and a “Small Body Lander”(SBL) that performs in situ investigation on or close to the NEO’s surface. The MS carries the SBL to the target NEO. Once at the target NEO, the MS conducts an initial reconnaissance in order to produce a high resolution map of the surface. This map is used to identify coordinates of interest which are sent to the SBL. The SBL un-docks from the MS to rendezvous with the NEO and collect data. Landings are possible, though the challenges of anchoring to the NEO surface are significant. The SBL design is flexible and adaptable, enabling science data collection on or near the surface. After surface investigations are completed on the first NEO, the SBL will return and autonomously rendezvous and dock with the MS. The MS then goes to the next NEO target. During transit to the next NEO, the SBL could be refueled by the MS, a TRL8 capability demonstrated on the DARPA/NASA Orbital Express mission in 2007, or alternately sized to operate without requiring refueling depending on the mission profile. The mission goals are to identify surface hazards; quantify engineering boundary conditions for future human visits, and identify resources for future exploitation. The mission goals will be accomplished through the execution of key mission objectives: (1) high-resolution surface topography; (2) surface composition and mineralogy; (3) radiation environment near NEO; and (4) mechanical properties of the surface. Essential SBL instruments include: a) LIDAR (Obj. 1); b) 3D, high- resolution hyperspectral imaging cameras (Obj. 2); c) radiation sensor package (Obj. 3); and d) strain gauges (Obj. 4). Additional or alternative instruments could include: e) x-ray fluorescence or laser-induced breakdown spectroscopy (LIBS) sensor package (Obj. 2); f) gamma ray/neutron spectrometry package (Obj. 2); and g) radiometer package (to address variations in thermal environment). The ability to reach, survey, sample, and analyze multiple NEOs at close proximity is an enormous capability that can enable NASA to rapidly achieve the primary Exploration Precursor Robotic Mission (xPRM) Program goal of characterizing NEOs for future human exploration. Instead of launching multiple dedicated missions to each NEO of interest, a multi-NEO sortie mission can be planned and executed to achieve the same mission objectives with one launch, dramatically reducing the cost of NEO exploration. Collectively, our NEO Exploration System Architecture provides solutions for a wide variety of exploration activities using a common spacecraft bus and common core instrumentation for the spacecraft. This engineering consistency will substantially improve the probability of mission success, increase the likelihood of maintaining an aggressive launch schedule, and decrease the total cost of multiple missions. NASA successfully used this approach with the robotic precursors leading up to the Apollo missions, and we see significant benefits from this same programmatic approach for the xPRM program.

  3. In situ bioremediation using horizontal wells

    SciTech Connect

    NONE

    1995-04-01

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  4. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study.

    PubMed

    Khelifi, R; Nievaart, V A; Bode, P; Moss, R L; Krijger, G C

    2009-07-01

    A Monte Carlo calculation was carried out for boron neutron capture therapy (BNCT) of extra corporal liver phantom. The present paper describes the basis for a subsequent clinical application of the prompt gamma spectroscopy set-up aimed at in vivo monitoring of boron distribution. MCNP code was used first to validate the homogeneity in thermal neutron field in the liver phantom and simulate the gamma ray detection system (collimator and detector) in the treatment room. The gamma ray of 478 keV emitted by boron in small specific region can be detected and a mathematical formalism was used for the tomography image reconstruction. PMID:19394243

  5. In situ resistivity measurement of cobalt silicide formation

    NASA Astrophysics Data System (ADS)

    Ottaviani, G.; Tu, K. N.; Psaras, P.; Nobili, C.

    1987-09-01

    In situ resistivity measurements have been utilized to study the reaction and silicide formation between cobalt and amorphous silicon thin films from room temperature to 800 °C. In conjunction, structure and composition changes were analyzed by x-ray diffraction and Rutherford backscattering spectrometry. Formation of Co2Si, CoSi, and CoSi2 were observed. Interfacial reaction to form Co2Si occurs at approximately 400 °C. In bilayers of excess silicon, CoSi forms at approximately 520 °C and, if free silicon is still present, CoSi2 forms at about 550 °C. In the case of excess cobalt, Co2Si forms first and is followed by a cobalt-rich solid solution. Co3Si silicide was not observed.

  6. A Deep-Sea Mass Spectrometer Instrument for Long-Term, In Situ Biogeochemical Monitoring

    Microsoft Academic Search

    A. Bossuyt; G. M. McMurtry

    2004-01-01

    Mass spectrometry has been a major analytical tool for more than 100 years, but it has rarely been used to monitor the environment in situ. Furthermore, a deep-water instrument is even more challenging due to a lack of an effective membrane-introduction interface and an efficient high-vacuum system that will work remotely for long periods at very high pressure. Being able

  7. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry

    Microsoft Academic Search

    V Kannan; M. P Rajan; M. A. R Iyengar; R Ramesh

    2002-01-01

    Pre-operational survey at Kalpakkam coast, indicated elevated gamma background radiation levels in the range of 100–4000nGyh?1 over the large tracts of the coastal sands due to the presence of pockets of monazite mineral in beach sands. In view of the prevalence of monazite, a systematic gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected

  8. ENHANCED BIODEGRADATION THROUGH IN-SITU AERATION

    EPA Science Inventory

    This presentation provided an overview of enhanced aerobic bioremediation using in-situ aeration or venting. The following topics were covered: (1) Basic discussion on biodegradation and respiration testing; (2) Basic discussion on volatilization, rate-limited mass transport, an...

  9. DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan

    SciTech Connect

    Yow, J.L. Jr.

    1993-12-22

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.

  10. Accelerator mass spectrometry: Proceedings of the fourth international symposium on accelerator mass spectrometry

    SciTech Connect

    Gove, H.E. (ed.); Litherland, A.E. (ed.); Elmore, D. (ed.)

    1987-01-01

    This report is a volume of the journal Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. This particular volume is concerned with accelerator mass spectrometry. The sections of this issue are: Advances in AMS techniques; Archaeology and ecology; Glaciology and climatology; Cosmochemistry and in situ production; Ocean and atmospheric sciences; Hydrology and geology; Astrophysics, nuclear physics and lasers.

  11. Principle and Application of Ambient Mass Spectrometry for Direct Analysis of Complex Samples

    Microsoft Academic Search

    Huan-Wen CHEN; Bin HU; Xie ZHANG

    2010-01-01

    Ambient mass spectrometry allows the in situ, real-time, online, high throughput, and low sample-consumption analysis to be performed with no\\/minimal sample pretreatment. Consequently, ambient mass spectrometry featured by direct ionization techniques is of increasing interest for the detection of trace analytes in complex matrix. The application of ambient mass spectrometry has greatly improved the efficiency of mass spectrometry method, and

  12. In situ surface characterization of the intermetallic compound PdGa - A highly selective hydrogenation catalyst

    NASA Astrophysics Data System (ADS)

    Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T. V.; Szentmiklósi, L.; Jentoft, F. C.; Knop-Gericke, A.; Grin, Yu.; Schlögl, R.

    2009-06-01

    The structurally well-defined intermetallic compound PdGa - a highly selective catalyst for the semi-hydrogenation of acetylene - was characterized by Fourier transform infrared spectroscopy (FTIR) in situ X-ray photoelectron spectroscopy and in situ prompt gamma activation analysis. A strong modification of the electronic states in PdGa compared to elemental Pd was revealed as well as the complete isolation of the Pd atoms on the surface of PdGa. In situ investigations proved the high stability of the surface, thus excluding segregation phenomena (common for alloys) or sub-surface chemistry involving C and/or H atoms (known for elemental Pd). By suppressing the sub-surface chemistry, the electronic modification as well as the site isolation lead to the high selectivity and long-term stability of PdGa in the semi-hydrogenation of acetylene.

  13. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  14. Radiation resistance of sequencing chips for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Lui, Clarissa S; Zlatkovsky, Ilya; Papalias, Chris W; Bolander, Jarie; Myers, Jason W; Bustillo, James; Rothberg, Jonathan M; Zuber, Maria T; Ruvkun, Gary

    2013-06-01

    Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis. PMID:23734755

  15. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  16. In-situ bioremediation via horizontal wells

    SciTech Connect

    Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A. [Westinghouse Savannah River Technology Center, Aiken, SC (United States)

    1993-12-31

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation.

  17. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOEpatents

    Xu, X. George (Clifton Park, NY); Naessens, Edward P. (West Point, NY)

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  18. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry.

    PubMed

    Kannan, V; Rajan, M P; Iyenga, M A R; Ramesh, R

    2002-07-01

    Pre-operational survey at Kalpakkam coast, indicated elevated gamma background radiation levels in the range of 100-4000 nGy h(-1) over the large tracts of the coastal sands due to the presence of pockets of monazite mineral in beach sands. In view of the prevalence of monazite, a systematic gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected from the terrestrial and coastal environment of Kalpakkam was performed and concentrations of primordial radionuclides such as 238U, 232Th and 40K and anthropogenic radionuclide 137Cs were determined. The concentrations of 238U, 232Th and 40K in soil samples were 5-71, 15-776 and 200-854 Bq kg(-1) dry, respectively. In beach sand samples, 238U, 232Th and 40K contents varied in the range of 36-258, 352-3872 and 324-405 Bq kg(-1) dry, respectively. The total absorbed gamma dose rate in air due to the presence of 238U, 232Th and 40K in Kalpakkam soil samples varied between 24 and 556 nGy h(-1) with a mean of 103 nGy h(-1). The contribution to the total absorbed gamma dose rate in air in the decreasing order was due to the presence of 232Th (76.4%), followed by 40K (16.9%) and 238U (6.7%) in Kalpakkam soils. However, in beach areas of Kalpakkam, the presence of 232Th in beach sand contributed maximum (94.0%) to the total absorbed gamma dose rate in air followed by 238U (4.7%) and minimum contribution was by 40K (1.3%). 137Cs in Kalpakkam soils ranged from < or = 1.0 to 2.8 Bq kg(-1) dry, which was 1-3 order of magnitude less than the concentration of primordial radionuclides in soil. PMID:12137019

  19. In Situ Imaging of Atomic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Hung, Chen-Lung; Chin, Cheng

    2015-09-01

    One exciting progress in recent cold atom experiments is the development of high resolution, in situ imaging techniques for atomic quantum gases.1-3 These new powerful tools provide detailed information on the distribution of atoms in a trap with resolution approaching the level of single atom and even single lattice site, and complement the welldeveloped time-of-flight method that probes the system in momentum space. In a condensed matter analogy, this technique is equivalent to locating electrons of a material in a snap shot. In situ imaging has offered a new powerful tool to study atomic gases and inspired many new research directions and ideas. In this chapter, we will describe the experimental setup of in situ absorption imaging, observables that can be extracted from the images, and new physics that can be explored with this technique.

  20. An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention

    PubMed Central

    Gupta, Himanshu; Aqil, M.; Khar, R. K.; Ali, Asgar; Bhatnagar, Aseem; Mittal, Gaurav

    2015-01-01

    Introduction: Delivering drugs to ocular region is a challenging task. Eye physiological barriers lead to relatively less therapeutic and bioavailability effect by the conventional eye drops. This may be overcome by the use of in situ gel delivery system. Objective: The objective of our work was to formulate an ocular delivery system of levofloxacin, based on the concept of ion (sodium alginate) and pH (chitosan) activated in situ gelation concept. Due to its elastic properties, in situ gels resist the ocular drainage of drug leading to longer contact times with ocular surface. Materials and Methods: The formulation was evaluated for physicochemical characteristics, in vitro drug release. Ocular retention studies were carried out by Gamma scintigraphy. Time activity curve was plotted between marketed formulation and developed formulation for comparing drug drainage from the eye with time. Ocular tolerance test was performed by handheld infra-red camera. Results and Discussion: The formulations showed a first-order release pattern over 12 h. Both in vitro release studies and in vivo gamma scintigraphy precorneal retention studies indicated better therapeutic efficacy compared with standard eye drops. Conclusion: The results demonstrated that the developed in situ gel of levofloxacin is nonirritant, has prolonged action and is a better option in terms of retention, ocular bioavailability and patient compliance when compared with plain eye drops formulation. PMID:25709330

  1. Scientific rationale for Saturn's in situ exploration

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Fletcher, L. N.; Lebreton, J.-P.; Wurz, P.; Cavalié, T.; Coustenis, A.; Courtin, R.; Gautier, D.; Helled, R.; Irwin, P. G. J.; Morse, A. D.; Nettelmann, N.; Marty, B.; Rousselot, P.; Venot, O.; Atkinson, D. H.; Waite, J. H.; Reh, K. R.; Simon, A. A.; Atreya, S.; André, N.; Blanc, M.; Daglis, I. A.; Fischer, G.; Geppert, W. D.; Guillot, T.; Hedman, M. M.; Hueso, R.; Lellouch, E.; Lunine, J. I.; Murray, C. D.; O`Donoghue, J.; Rengel, M.; Sánchez-Lavega, A.; Schmider, F.-X.; Spiga, A.; Spilker, T.; Petit, J.-M.; Tiscareno, M. S.; Ali-Dib, M.; Altwegg, K.; Bolton, S. J.; Bouquet, A.; Briois, C.; Fouchet, T.; Guerlet, S.; Kostiuk, T.; Lebleu, D.; Moreno, R.; Orton, G. S.; Poncy, J.

    2014-12-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.

  2. In-situ observation of ettringite crystals

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Mizukoshi, Norihiro; Makida, Koji; Tsukamoto, Katsuo

    2009-01-01

    In-situ observation of growing ettringite crystals in solution has been carried out and the morphology change of ettringite has been investigated under various conditions. In particular, the acceleration behavior of ettringite growth in the presence of calcite, the cause of which is not yet understood, is examined. Spherulite with calcite in its core is formed first followed by the generation of acicular crystals. Compared with the in-situ observation result of crystal growth in a solution with no calcite, the effect of added calcite can be explained as a decrease in the activation energy of nucleation for ettringite around calcite.

  3. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R. (Shoreham, NY); Reich, Morris (Kew Gardens Hills, NY); Barletta, Robert (Wading River, NY)

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  4. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  5. Quantitative measurements in in situ straining experiments in transmission electron microscopy.

    PubMed

    Pettinari, F; Couret, A; Caillard, D; Molénat, G; Clément, N; Coujou, A

    2001-07-01

    Several examples of recent studies by in situ straining experiments in a transmission electron microscope performed in the Toulouse group (France) are presented. In particular, quantitative measurements of the features of the dislocation motion are described. These examples deal with individual or collective propagation of dislocations, which are submitted to various types of obstacle. Different metallic materials are investigated: magnesium, intermetallics, aluminium alloys and gamma phase of a superalloy. PMID:11454154

  6. DIG In Situ Hybridization Protocol (with detergent)

    E-print Network

    sensitivity, while BIOTIN is considerably less sensitive. Therefore I recommend that you use BIOTIN probes by fluorescence in situ hybridization. Histochem. Cell Biol. (1999) 111:435- 443. DAY ONE Add DIG, FITC, or BIOTIN:500 BIOTIN Rabbit anti-BIOTIN (Chemicon Cat. #AB1708) 1:500 FITC

  7. Absolute head media spacing measurement in situ

    Microsoft Academic Search

    Zhi-Min Yuan; Bo Liu

    2006-01-01

    For the nanometer-spaced head disk interface, the demand for precision flying height (FH) measurement increases. The conventional optical FH testing technology is facing physical challenges, and the industry is seeking the alternative technology for nanometer FH test. This work proposes to use logarithmic harmonic ratio of reproduced waveform versus testing frequency to derive absolute head media spacing (HMS) in situ.

  8. Current treatment for lobular carcinoma in situ

    Microsoft Academic Search

    Frank E. Gump; David Kinne; Gordon F. Schwartz

    1998-01-01

    Background: We thought that observation for patients with lobular carcinoma in situ (LCIS) had been generally accepted by the mid-1980s. A questionnaire mailed to oncologic surgeons in 1988 revealed that 33% of the respondents still advised unilateral mastectomy, although a slim majority (54%) advised observation. New studies have been published in the intervening 8 years, and we decided it would

  9. In-Situ Burning of Spilled Oil.

    ERIC Educational Resources Information Center

    Allen, Alan A.

    1991-01-01

    Reviews in-situ burning with particular emphasis on how it can be applied in water-related oil spill situations. Presents and discusses the use of nomograms and development of techniques cited for safe and effective ignition and controlled burning of spilled oil. Includes representative oil spill scenarios and possible responses. (15 references)…

  10. Routine fluorescence in situ hybridization in soil

    Microsoft Academic Search

    J. Bertaux; U. Gloger; M. Schmid; A. Hartmann; S. Scheu

    2007-01-01

    The use of fluorescence in situ hybridization (FISH) to identify and enumerate soil bacteria has long been hampered by the autofluorescence of soil particles masking the bacterial signals and because the need of counting hundreds of bacteria in order to achieve statistically reliable data is time consuming. Recently, it was demonstrated that Nycodenz facilitates FISH in soil by concentrating bacteria

  11. In Situ Fiber-Optic Reflectance Monitor

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Gray, Perry A.

    1996-01-01

    In situ fiber-optic reflectance monitor serves as simple means of monitoring changes in reflectance of specimen exposed to simulated outerspace or other environments in vacuum chamber. Eliminates need to remove specimen from vacuum chamber, eliminating optical changes and bleaching such removal causes in coatings.

  12. DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION

    EPA Science Inventory

    in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...

  13. Transesterification in situ of sunflower seed oil

    Microsoft Academic Search

    Kevin J. Harrington; C. DArch-Evans

    1985-01-01

    Transesterification of sunflower seed oil in situ has produced methyl and ethyl esters in yields greater than 40% of the dry seed weight. This figure compares with a typical yield of ca. 30% when the esters were prepared in the conventional manner from preextracted seed oil. 14 references.

  14. Optimized Autonomous Space In-situ Sensorweb

    NASA Astrophysics Data System (ADS)

    Song, W.; Shirazi, B. A.; Lahusen, R.; Kedar, S.; Chien, S.; Webb, F.

    2009-12-01

    A multidisciplinary team of computer scientists (WSU), earth (USGS) and space (JPL) scientists are collaborating to develop a sensor web system optimized for rapid deployment at restless volcanoes. The primary goals of this Optimized Autonomous Space In-situ Sensorweb (OASIS) are: 1) integrate complementary space and in-situ (ground-based) elements into an interactive, autonomous sensorweb; 2) advance sensorweb power and communication resource management technology; and 3) enable scalability for seamless infusion of future space and in-situ assets into the sensorweb. This three year project started with a rigorous multi-disciplinary interchange that resulted in a system requirements document aimed to guide the design of OASIS and future networks and to achieve the project stated goals. Based on those guidelines, we have developed fully self-contained in-situ nodes that integrate GPS, seismic, infrasonic and ash detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a highly optimized mesh network for remote geophysical monitoring operation. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through a database with alarming capabilities at the command and control center. We have successfully completed two field deployments in the crater of Mount St. Helens, Washington on October 14, 2008 and July 14th, 2009 respectively, and demonstrated that sensor web technology provides unprecedented fine-scale real-time continuous data acquisition and interaction for earth science community.

  15. WH in situ and the intervention effect

    Microsoft Academic Search

    ERIC MATHIEU

    In this paper, I discuss data which suggest that covert movement must satisfy constraints than overt movement does not, posing a challenge for the uniform characterization of Move as Move F (Chomsky 1995). I propose an alternative analysis: the WH operator that French WH phrases in situ contain moves to Spec-CP and leaves a trace which is non- referential. Since

  16. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (inventors)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  17. Fabrication Capabilities Utilizing In Situ Materials

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Fikes, John C.; Darby, Charles A.; Good, James E.; Gilley, Scott D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has a Space Exploration Policy that lays out a plan that far exceeds the earlier Apollo goals where landing on the moon and taking those first historic steps fulfilled the mission. The policy states that we will set roots on the moon by establishing an outpost. This outpost will be used as a test bed for residing in more distant locales, such as Mars. In order to become self-sufficient, the occupants must have the capability to fabricate component parts in situ. Additionally, in situ materials must be used to minimize valuable mission upmass and to be as efficient as possible. In situ materials can be found from various sources such as raw lunar regolith whereby specific constituents can be extracted from the regolith (such as aluminum, titanium, or iron), and existing hardware already residing on the moon from past Apollo missions. The Electron Beam Melting (EBM) process lends itself well to fabricating parts, tools, and other necessary items using in situ materials and will be discussed further in this paper.

  18. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. he purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. ydroxyapatite [Ca10(PO4)6(OH)2]was reacted with aqueous Pb, resinexchang...

  19. ENGINEERING BULLETIN: IN SITU VITRIFICATION TREATMENT

    EPA Science Inventory

    In situ vitrification (ISV) uses electrical power to heat and melt soil, sludge, mine tailings, buried wastes, and sediments contaminated with organic, inorganic, and metal-bearing hazardous wastes. The molten material cools to form a hard, monolithic, chemically inert, stable...

  20. Consolidation of in-situ retort

    SciTech Connect

    Larson, O.A.; Matthews, C.W.

    1980-11-04

    Shale oil is recovered from an underground oil shale deposit by in-situ retorting of rubblized shale in a retort formed in the deposit. Oil shale in a volume in the range of ten to fifty percent of the volume of the retort is mined from the deposit and delivered to the surface to provide void space for the expansion of the shale that occurs on rubblization to form the in-situ retort. The oil shale delivered to the surface is retorted at the surface. After completion of the in-situ retorting, boreholes are drilled downwardly through the retorted shale and a pipe lowered through the borehole to a level near the bottom of the retort. Spent shale from the surface retorting operation is slurried and pumped into the lower end of the in-situ retort. Pumping is continued to squeeze the slurry into the fissures between blocks of spent shale. The slurry is delivered into successively higher levels of the retort and the pumping and squeezing operation repeated at each level. In a preferred operation, slurry discharged into the retort is allowed to set before discharging slurry into the retort at a higher level to avoid excessive hydrostatic pressures on the retort.

  1. Refueling with In-Situ Produced Propellants

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2014-01-01

    In-situ produced propellants have been identified in many architecture studies as key to implementing feasible chemical propulsion missions to destinations beyond lunar orbit. Some of the more noteworthy ones include: launching from Mars to return to Earth (either direct from the surface, or via an orbital rendezvous); using the Earth-Moon Lagrange point as a place to refuel Mars transfer stages with Lunar surface produced propellants; and using Mars Moon Phobos as a place to produce propellants for descent and ascent stages bound for the Mars surface. However successful implementation of these strategies require an ability to successfully transfer propellants from the in-situ production equipment into the propellant tankage of the rocket stage used to move to the desired location. In many circumstances the most desirable location for this transfer to occur is in the low-gravity environment of space. In support of low earth orbit propellant depot concepts, extensive studies have been conducted on transferring propellants in-space. Most of these propellant transfer techniques will be applicable to low gravity operations in other locations. Even ground-based transfer operations on the Moon, Mars, and especially Phobos could benefit from the propellant conserving techniques used for depot refueling. This paper will review the literature of in-situ propellants and refueling to: assess the performance benefits of the use in-situ propellants for mission concepts; review the parallels with propellant depot efforts; assess the progress of the techniques required; and provide recommendations for future research.

  2. ENGINEERING BULLETIN: IN SITU BIODEGRADATION TREATMENT

    EPA Science Inventory

    In situ biodegradation may be used to treat low-to-intermediate concentrations of organic contaminants in place without disturbing or displacing the contaminated media. Although this technology has been used to degrade a limited number of inorganics, specifically cyanide and nitr...

  3. ENGINEERING BULLETIN: IN SITU BIODEGRADATION TREATMENT

    EPA Science Inventory

    In situ biodegradation may be used to treat low-to-intermediate concentrations of organic contaminants in place without disturbing or displacing the contaminated media. lthough this technology hag been used to degrade a limited number of inorganics, specifically cyanide and nitra...

  4. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  5. Scintillation modeling using in situ data

    Microsoft Academic Search

    A. W. Wernik; L. Alfonsi; M. Materassi

    2007-01-01

    Satellite in situ measurements of plasma (electron) density fluctuations provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves on transionospheric links. When supplemented with the ionosphere model and irregularity anisotropy model, they can be applied to model morphology of scintillation provided a suitable propagation model is used. In this paper we

  6. FIELD STUDIES OF IN SITU SOIL WASHING

    EPA Science Inventory

    The EPA and US Air Force conducted a research test program to demonstrate the removal of hydrocarbons and chlorinated hydrocarbons from a sandy soil by in situ soil washing using surfactants. Contaminated soil from the fire training area of Volk Air National Guard Base, WI, was f...

  7. IN SITU SOIL VAPOR EXTRACTION TREATMENT

    EPA Science Inventory

    Soil vapor extraction (SVE) is designed to physically remove volatile compounds, generally from the vadose or unsaturated zone. t is an in situ process employing vapor extraction wells alone or in combination with air injection wells. acuum blowers supply the motive force, induci...

  8. ENGINEERING BULLETIN: IN SITU SOIL FLUSHING

    EPA Science Inventory

    In situ soil flushing is the extraction of contaminants from the soil with water or other suitable aqueous solutions. Soil flushing is accomplished by passing the extraction fluid through in-place soils using an injection or infiltration process. Extraction fluids must be recover...

  9. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  10. Assessment of Radionuclides, Trace Metals and Radionuclide Transfer from Soil to Food of Jhangar Valley (Pakistan) Using Gamma-Ray Spectrometry

    Microsoft Academic Search

    Hasan M. Khan; Zahid S. Chaudhry; Muhammad Ismail; Khalid Khan

    2010-01-01

    The gamma spectrometric analysis of soil and essential foodstuffs, e.g., wheat, millet, potato, lentils and cauliflower, which\\u000a form the main component of the daily diet of the local public, was carried out using high purity germanium (HpGe) detector\\u000a coupled with a computer based high-resolution multi-channel analyzer. The activity concentration in soil samples for 226Ra, 232Th and 40K ranged from 30.0 Bq kg?1

  11. Assay of uranium in U-bearing waste produced at natural uranium metal fuel fabrication plants by gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Kalsi, P. C.; Pandey, A. K.; Iyer, R. H.

    1994-01-01

    A passive gamma measurement technique is investigated for the assay of U-bearing wastes generated at the Natural Uranium Metal Fuel Fabrication Plants. A 3 in. × 3 in. NaI(Tl) detector was used in conjunction with a multichannel analyzer (MCA). The observed count rate of the 1 MeV ?-ray from the 238U in the sample was corrected for sample self-absorption and for absorption in the walls of the sample container. These correction factors were determined using one reference standard and from a knowledge of the sample weight, composition and the geometry of the sample container made of pure aluminium. The amount of 238U in the samples were measured by comparing the corrected area under the 1 MeV gamma ray peak of the known reference standard with the corresponding corrected peak areas of the samples to be measured. To compare the nondestructive assay (NDA) results with another independent method, chemical analysis of all the U-bearing waste samples was also carried out. The NDA results were found to agree within ±15% with the chemical analysis results. To make the method cost-effective, rapid and useful for plant operation on a routine basis, all the measurements were repeated using a single channel analyzer (SCA) also. The NDA results obtained with SCA agree within ±30% with the chemical analysis results.

  12. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2014-12-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in Northern Germany. The 15N analysis of denitrification derived 15N labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed by isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS), in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated and the initial and cumulative denitrification after one year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 ?g N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using membrane-inlet mass spectrometry satisfactorily coincided with laboratory analysis by conventional isotope ratio mass spectrometry, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulphidic zone of both aquifers compared to the zone of non-sulphidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. But the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone a lag phase of denitrification after NO3- injections was observed, which confounded the relationship between reactive compounds and in situ denitrification activity. This finding was attributed to adaptation processes in the microbial community after NO3- injections. Exemplarily, it was demonstrated that the microbial community in the NO3--free zone close below the NO3--bearing zone can be adapted to denitrification by amending wells with NO3--injections for an extended period. In situ denitrification rates were 30 to 65% higher after pre-conditioning with NO3-. Results from this study suggest that such pre-conditioning is crucial for the measurement of Dr(in situ) in deeper aquifer material from the NO3--free groundwater zone and thus for the prediction of Dcum(365) and SRC from Dr(in situ).

  13. Deuterium/hydrogen ratio analysis of thymol, carvacrol, gamma-terpinene and p-cymene in thyme, savory and oregano essential oils by gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Nhu-Trang, Tran-Thi; Casabianca, Hervé; Grenier-Loustalot, Marie-Florence

    2006-11-01

    Isotope ratio mass spectrometry online coupled with capillary gas chromatography (GC-Py-IRMS) on column INNOWAX is used in the origin specific analysis and the authenticity control of the phenolic essential oils (EOs). Isotopic data delta(2)H(V-SMOW) of thymol and carvacrol in natural essential oils were evidently more depleted than synthetic products (from -49 to 7 per thousand for thymol and -61 per thousand for carvacrol). delta(2)H(V-SMOW) values of p-cymene, gamma-terpinene and thymol in authentic thyme oils (Thymus vulgaris L. and Thymus zygis L.) were found from -300 to -270 per thousand, from -285 to -248 per thousand and from -259 to -234 per thousand, respectively. delta(2)H(V-SMOW) values of carvacrol and p-cymene in authentic oregano oils (Origanum heracleoticum L., Coridothymus capitatus L. and Origanum compactum L.) varied from -223 to -193 per thousand and from -284 to -259 per thousand, respectively. For authentic Satureja montana subsp. montana essential oils, the mean delta(2)H(V-SMOW) value for aromatic compounds were found to be the following: gamma-terpinene -273 per thousand (SD=4.6 per thousand) and p-cymene -283 per thousand (SD=3.0 per thousand), thymol -245 per thousand (SD=1.8 per thousand) and carvacrol -226 per thousand (SD=1.7 per thousand). In addition, p-cymene was previously found as a precursor of the biosynthesis of thymol and carvacrol in thyme oil, thus, we considered p-cymene as an endogenous reference compound (ERC) for D/H ratio analysis. The isotopic fractionation factors alpha(thymol/p-cymene)=1.05 and alpha(carvacrol/p-cymene)=1.08 were obtained and also used to control the authenticity of the phenolic EOs. PMID:16945376

  14. Potential of natural gamma-ray spectrometry for mapping and environmental monitoring of black-sand beach deposits on the northern coast of Sinai, Egypt.

    PubMed

    Aboelkhair, Hatem; Zaaeimah, Mostafa

    2013-04-01

    The concentrations and distributions of naturally occurring radioactive materials were studied with the aim of detecting and mapping radioactive anomalies as well as monitoring the environment for black-sand beach deposits in Northern Sinai, Egypt. For this purpose, ground gamma-ray spectrometric surveys were conducted using a portable GS-512 spectrometer, with an NaI (Tl) detector, on an area 77.5 km(2) in surface area located between the cities of Rafah and Elareish on the Mediterranean Sea coast. The results revealed that the black-sand beach deposits could be differentiated according to their total-count (TC) radioactivity into five normally distributed interpreted radiometric lithologic (IRL) units denoted by U1, U2, U3, U4 and U5. The computed characteristic TC radiometric statistics of these five IRL units range from 4.67  to 9.96 Ur for their individual arithmetic means. The computed arithmetic means for the three radioelements K, eU and eTh reach 0.46 %, 2.25 and 6.17 ppm, respectively for the whole study area. Monitoring the environmental effects of radioelement concentrations on the study area showed that the mean natural equivalent radiation dose rate from the terrestrial gamma-radiation of the whole area attains 0.33 mSv y(-1). This average value remains on the safe side and within the maximum permissible safe radiation dose (<1.0 mSv y(-1)) without harm to the individual, except at three scattered points reaching more than these values. Some of the local inhabitants in the region sometimes use black sands as a building material. Consequently, they are not recommended for use as building materials, because the inhabitants will, then, receive a relatively high radioactive dose generated mainly by monazite and zircon minerals, two of the main constituents of black sands. PMID:22869819

  15. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  16. ORIGINAL CONTRIBUTION Dynamic rheology studies of in situ polymerization process

    E-print Network

    ORIGINAL CONTRIBUTION Dynamic rheology studies of in situ polymerization process of polyacrylamide­cellulose small-amplitude oscillatory shear experiments for in situ polymerization process of polyacrylamide­cellulose hydrogels. Keywords Polyacrylamide . Cellulose nanocrystals . Nanocomposite hydrogels . Dynamic rheology

  17. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J. (Pacific Northwest Lab., Richland, WA (United States)); Petersen, J.N.; Shouche, M. (Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  18. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J. [Pacific Northwest Lab., Richland, WA (United States); Petersen, J.N.; Shouche, M. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  19. Quantum criticality from in situ density imaging

    SciTech Connect

    Fang Shiang; Chung, Chia-Min [Physics Department, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Ma, Ping Nang [Theoretische Physik, ETH Zurich, CH-8093 Zurich (Switzerland); Chen Pochung; Wang, Daw-Wei [Physics Department, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)

    2011-03-15

    We perform large-scale quantum Monte Carlo (QMC) simulations for strongly interacting bosons in a two-dimensional optical lattice trap and confirm an excellent agreement with the benchmarking in situ density measurements by the Chicago group [N. Gemelke et al., Nature (London) 460, 995 (2009)]. We further present a general finite-temperature phase diagram for both the uniform and the trapped systems, demonstrating how the universal scaling properties near the superfluid-to-Mott insulator transition can be observed from the in situ density profile. The characteristic temperature to find such quantum criticality is estimated to be of the order of the single-particle bandwidth, which should be achievable in the present experiments. Finally, we examine the validity regime of the local fluctuation-dissipation theorem, which can be a used as a thermometry in the strongly interacting regime.

  20. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  1. In situ soil remediation using electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive {sup 137}Cs and {sup 60}Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented.

  2. Apparatus for in-situ retorting

    SciTech Connect

    Durbin, A.T.; Kennedy, B.A.

    1981-05-05

    Apparatus for the in-situ retorting of carbonaceous deposits includes a plurality of retorts connected to a common exhaust tunnel effectively free of broken shale into which products of the retorting are discharged. To allow simultaneous mining, rubblization and retorting of the in-situ retorts, the exhaust tunnel is provided with doorways between the retorts. Doors movable in the exhaust tunnel are adapted to seal against the doorways to prevent flow from retorts in which retorting is in progress to retorts under construction. A trench in the exhaust tunnel is provided for flow of liquid products produced in the retorting. A liquid seal under the doorways communicates with the trench to provide a passage for liquid flow past the doorways and to prevent upstream flow of gaseous products through the passage for the liquid flow.

  3. BEATRIX-II: In situ tritium test

    SciTech Connect

    Baker, D.E. (Westinghouse Hanford Co., Richland, WA (USA)); Kuraswa, T. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Miller, J.M. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.); Slagle, O.D. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The BEATRIX-II irradiation experiment is an in-situ tritium release experiment being carried out in the Fast Flux Test Facility (FFTF) reactor to evaluate the tritium release characteristics of fusion solid breeder materials. A sophisticated tritium gas handling system has been developed to continuously monitor the tritium recovery from the specimens and facilitate tritium removal from the experiment's sweep gas flow stream. The in-situ recovery experiment accommodates two different in-reactor specimen canisters with individual gas streams and temperature monitoring/control. Ionization chambers have been specifically designed to respond to the rapid changes in the tritium release rate at the anticipated tritium concentrations. Two ceramic electrolysis cells have proved effective in reducing the moisture in the gas streams to hydrogen/tritium. A tritium getter system, capable of reducing the tritium level by a factor greater than 4000, is used to reduce the tritium in the sweep gas to a level acceptable for release.

  4. Exposure of the lysine in the gamma chain dodecapeptide of human fibrinogen is not enhanced by adsorption to poly(ethylene terephthalate) as measured by biotinylation and mass spectrometry.

    PubMed

    Ovod, Vitaliy; Scott, Evan A; Flake, Megan M; Parker, Stanley R; Bateman, Randall J; Elbert, Donald L

    2012-03-01

    Conformational changes in adsorbed fibrinogen may enhance the exposure of platelet adhesive sites that are inaccessible in solution. To test this hypothesis, mass spectrometric methods were developed to quantify chemical modification of lysine residues following adsorption of fibrinogen to biomaterials. The quantitative method used an internal standard consisting of isotope-labeled fibrinogen secreted by human HepG2 cells in culture. Lysine residues in the internal standard were partially reacted with NHS-biotin. For the experimental samples, normal human fibrinogen was adsorbed to poly(ethylene terephthalate) (PET) particles. The adsorbed fibrinogen was reacted with NHS-biotin and then eluted from the particles. Constant amounts of internal standard were added to sample fibrinogen and analyzed by liquid chromatography/tandem mass spectrometry. Biotinylation of the lysine residue in the platelet-adhesive gamma chain dodecapeptide (GCDP) was quantified by comparison with the internal standard. Approximately 80% of the GCDP peptides were biotinylated when fibrinogen was reacted with NHS-biotin in solution or adsorbed onto PET. These results are generally consistent with previous antibody binding studies and suggest that other regions of fibrinogen may be crucial in promoting platelet adhesion to materials. The results do not directly address but are consistent with the hypothesis that only activated platelets adhere to adsorbed fibrinogen. PMID:22213354

  5. In Situ Tritium Probe for Ground Water Monitoring

    NASA Astrophysics Data System (ADS)

    Hull, C.

    2001-12-01

    The U.S. Department of Energy (USDOE)/National Nuclear Security Administration (NNSA) has requested a probe system that can provide daily measurements of tritium in ground waters, fit into 5 cm diameter ground water monitor wells, and survive extended periods (months to years) at hydrostatic pressures of 12,000 kPa (1800 psi) and water temperatures to 60oC. The analytical Minimum Detectable Limit Allowable (MDA) requested for tritium in solution is <1,000 picoCuries per liter (pCi L-1) and preferably <300 pCi L-1 (11 Bq L-1). The In Situ Tritium probe system (ITP) must produce analytical results without drawing a ground water sample to the surface while operating unattended and automatically download data from remote well sites without external power or communication lines. An ITP has been developed that satisfies most of these requirements. A prototype system that demonstrated proof-of-principal was deployed successfully in shallow monitor wells. Ground water samples were processed and analyzed onboard the prototype ITP and data automatically transmitted to the wellhead. A third generation tritium detection and measurement cell that quantitatively measures dissolved tritium at activities <2,000 pCi L-1 has been tested under laboratory conditions. This, or a more sensitive, detection cell will be integrated into the ITP platform and deployed for extensive tests in deep monitor wells at the USDOE/NNSA Nevada Test Site within the next two years. Ultimate goals for the ITP system are low detection limits for dissolved tritium (<300 pCi L-1) plus additional analytical capabilities for nuclear and chemical parameters such as in situ gamma and neutron fluxes, pH, EH, EC, concentrations of specific aqueous components, etc.

  6. In situ health monitoring of piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  7. Numerical simulation of in situ bioremediation

    SciTech Connect

    Travis, B.J.

    1998-12-31

    Models that couple subsurface flow and transport with microbial processes are an important tool for assessing the effectiveness of bioremediation in field applications. A numerical algorithm is described that differs from previous in situ bioremediation models in that it includes: both vadose and groundwater zones, unsteady air and water flow, limited nutrients and airborne nutrients, toxicity, cometabolic kinetics, kinetic sorption, subgridscale averaging, pore clogging and protozoan grazing.

  8. In situ photoluminescence investigation of doped Alq

    Microsoft Academic Search

    G. Y. Zhong; J. He; S. T. Zhang; Z. H. Xiong; H. Z. Shi; X. M. Ding; W. Huang; X. Y. Hou

    2002-01-01

    We report the photoluminescence (PL) properties measured in situ from vacuum-deposited organic films of tris-(8-hydroxyquinoline) aluminum (Alq) doped with 4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran (DCM), where the red emission from the guest molecules is due to Forster energy transfer of excited state energy from host to guest. Both bare DCM-doped Alq (Alq:DCM) and bilayer Alq\\/Alq:DCM films have been studied, with the thickness of the

  9. LONG TERM IN SITU DISPOSAL ENGINEERING STUDY

    Microsoft Academic Search

    2003-01-01

    Patent application pulled per Ken Norris (FH General Counsel). The objective of this study is to devise methods, produce conceptual designs, examine and select alternatives, and estimate costs for the demonstration of long-term (300-year) in situ disposal of an existing waste disposal site. The demonstration site selected is the 216-A-24 Crib near the 200 East Area. The site contains a

  10. In situ clearance rates of planktonic rotifers

    Microsoft Academic Search

    Kenneth G. Bogdan; John J. Gilbert; Peter L. Starkweather

    1980-01-01

    The in situ clearance rates of several rotifer species from a small, temperate eutrophic lake were measured using three radioactive tracer cell-types, a bacterium (Aerobacter), a yeast (Rhodoto-rula), and alga (Chlamydomonas). Rates were below 10 µl\\/anim\\/h but varied significantly among species. Keratella cochlearis, Kellicottia bostoniensis, and Conochilus dossuarius ingested all three tracer cells but rates varied substantially with tracer cell-type.

  11. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Microsoft Academic Search

    L. Murdoch; B. Siegrist; T. Meiggs

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently

  12. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  13. In-situ droplet monitoring for self-tuning spectrometers

    DOEpatents

    Montaser, Akbar (Potomac, MD); Jorabchi, Kaveh (Arlington, VA); Kahen, Kaveh (Kleinburg, CA)

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  14. Standard Review Plan for In Situ Leach Uranium

    E-print Network

    NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License Applications Final Washington, DC 20555-0001 #12;NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License OF A STANDARD REVIEW PLAN (NUREG­1569) FOR STAFF REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE

  15. Determination of gamma-hydroxybutyric acid in biofluids using a one-step procedure with "in-vial" derivatization and headspace-trap gas chromatography-mass spectrometry.

    PubMed

    Ingels, Ann-Sofie M E; Neels, Hugo; Lambert, Willy E; Stove, Christophe P

    2013-06-28

    A headspace-trap gas chromatography-mass spectrometry (HS-trap GC-MS) method was developed to determine GHB, a low molecular weight compound and drug of abuse, in various biological fluids. Combining this relatively novel and fully automated headspace technique with "in-vial" methylation of GHB allowed for a straightforward approach. One single method could be used for all biofluids (urine, plasma, serum, whole blood or lyzed blood), requiring only 100?l of sample. Moreover, our approach involves mere addition of all reagents and sample into one vial. Following optimization of headspace conditions and trap settings, validation was performed. Although sample preparation only consists of the addition of salt and derivatization reagents directly to a 100?l-sample in a HS-vial, adequate method sensitivity and selectivity was obtained. Calibration curves ranged from 5 to 150?g/ml GHB for urine, from 2 to 150?g/ml for plasma, and from 3.5 to 200?g/ml for whole blood. Acceptable precision and accuracy (<13% bias and imprecision) were seen for all quality controls (QC's) (LLOQ-level, low, medium, high), including for the supplementary serum- and lyzed blood-based QC's, using calibration curves prepared in plasma or whole blood, respectively. Incurred sample reanalysis demonstrated assay reproducibility, while cross-validation with another GC-MS method demonstrated that our method is a valuable alternative for GHB determination in toxicological samples, with the advantage of requiring only 100?l and minimal hands-on time, as sample preparation is easy and injection automated. PMID:23664352

  16. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics

    Microsoft Academic Search

    D. N. Papadopoulou; G. A. Zachariadis; A. N. Anthemidis; N. C. Tsirliganis; J. A. Stratis

    2006-01-01

    Non-destructive analysis of cultural objects by micro-XRF spectrometry is an advantageous multi-element technique that has rapidly developed during the past few years. Portable instruments contribute significantly to the in situ analysis of valuable cultural objects, which cannot be transported to the laboratory. Ancient ceramics are the most common archaeological findings and they carry a significant historical content. Their analysis often

  17. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using ?-ray spectrometry, and determination of outdoor dose to the population

    PubMed Central

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D.

    2010-01-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238U, 232Th, and 40K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238U, 232Th, and 40K in the surface soil were 53.8, 44.2 and 464.2 Bq kg?1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  18. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using ?-ray spectrometry, and determination of outdoor dose to the population.

    PubMed

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D

    2010-10-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of (238)U, (232)Th, and (40)K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of (238)U, (232)Th, and (40)K in the surface soil were 53.8, 44.2 and 464.2 Bq kg(-1) respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  19. In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase.

    PubMed Central

    Honda, S; Toraya, T; Fukui, S

    1980-01-01

    The catalytic properties of coenzyme B12-dependent glycerol dehydratase and diol dehydratase were studied in situ with Klebsiella pneumoniae cells permeabilized by toluene treatment, since the in situ enzymes approximate the in vivo conditions of the enzymes more closely than enzymes in cell-free extracts or cell homogenates. Both dehydratases in situ underwent rapid "suicidal" inactivation by glycerol during catalysis, as they do in vitro. The inactivated dehydratases in situ, however, were rapidly and continually reactivated by adenosine 5'-triphosphate (ATP) and Mn2+ in the presence of free adenosylcobalamin, although in cell-free extracts or in cell homogenates they could not be reactivated at all under the same reaction conditions. ATP was partially replaced by cytidine 5'-triphosphate or guanosine 5'-triphosphate but not by the beta, gamma-methylene analog of ATP in the in situ reactivation. Mn2+ was fully replaced by Mg2+ but only partially by Co2+. Hydroxocoblamin could not replace adenosylcobalamin in reactivation mixtures. The ability to reactivate the glycerol-inactivated dehydratases in situ was only seen in cells grown anaerobically in glycerol-containing media. This suggests that some factor(s) required for in situ reactivation is subject to induction by glycerol. Of the two possible mechanisms of in situ reactivation, i.e., the regeneration of adenosylcobalamin by Co-adenosylation of the bound inactivated coenzyme moiety (B12-adenosylation mechanism) and the displacement of the bound inactivated coenzyme moiety by free adenosyl-cobalamin (B12-exchange mechanism), the former seems very unlikely from the experimental results. Images PMID:6997273

  20. A preliminary report on the determination of natural radioactivity levels of the State of Qatar using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, H.; Regan, P. H.; Bradley, D. A.; Malain, D.; Santawamaitre, T.; Habib, A.; Matthews, M.; Bukhari, S.; Al-Dosari, M.

    2010-07-01

    This study is aimed at the determination of the activity concentrations of naturally occuring and technically enhanced levels of radiation in soil samples collected across the landscape of Qatar. Representative soil samples from various locations across the Qatarian peninsula have been collected and analyzed in order to establish activity concentrations associated with the 235,8U and 232Th natural decay chains and also the long-lived naturally occurring radionuclide 40K. The activity concentrations have been measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the preliminary values of the activity concentrations associated with the naturally occuring radionuclide chains for six soil samples collected from the Qatarian peninsula. Sample 228, which has been collected from an inshore oil-field area, was observed to have the highest observed value of 226Ra concentration among the six samples. The weighted mean values of the activity concentrations of the radionuclides 238U, 232Th and 40K in one particular sample (sample 228) were, respectively, found to be 213.9±1.4, 4.55±0.11 and 111.4±3.6 Bq/kg, which compare with the worldwide weighted mean values in soil samples, 33, 45 and 420 Bq/kg, respectively. The deduced activity concentration of 238U in sample 228 in the current work was found to be significantly higher than the worldwide average value and was also significantly higher than the values determined for the five other initial samples discussed here. The mean values of the activity concentration of the 232Th series, 40K and 137Cs in Bq/kg from the six investigated soil samples were found to be 9.4±1.3, 204±22 and 5.8±5.6, respectively, with the quoted uncertainty referring to the standard deviation among these measurements.

  1. TSSM: The in situ exploration of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The probe will descend through Titan's atmosphere and land on a liquid surface (at the North pole, in a lake according to the current design). The currently envisaged strawman payload for these elements will be presented. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The short-lived probe would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.

  2. In-situ fracture stiffness determination

    NASA Astrophysics Data System (ADS)

    Hesler, G. J., III; Zheng, Z.; Myer, L. R.

    1990-01-01

    In-situ experiments to determine the hydrologic and mechanical characteristics of large naturally occurring fractures were conducted at the NAGRA test site in Grimsel, Switzerland. In addition to seismic measurements across a fracture zone in the FRI test area and flow measurements into the zone, deformation of the fracture resulting from pressurization of the zone was also measured. The deformation is modeled in three different ways: as a mathematical crack employing linear elastic fracture mechanics; as a mathematical crack with an additional restraining stiffness between the faces of the crack, and as a row of coplanar two-dimensional cracks.

  3. Robust and efficient in situ quantum control

    E-print Network

    Christopher Ferrie; Osama Moussa

    2014-09-10

    Precision control of quantum systems is the driving force for both quantum technology and the probing of physics at the quantum and nano-scale. We propose an implementation independent method for in situ quantum control that leverages recent advances in the direct estimation of quantum gate fidelity. Our algorithm takes account of the stochasticity of the problem and is suitable for closed-loop control and requires only a constant number of fidelity estimating experiments per iteration independent of the dimension of the control space. It is efficient and robust to both statistical and technical noise.

  4. Spatially controlled, in situ synthesis of polymers

    DOEpatents

    Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau

    2005-03-22

    An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.

  5. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  6. In situ video recording of suspended flocs

    NASA Astrophysics Data System (ADS)

    Maldiney, M.-A.; Mouchel, J.-M.

    1996-09-01

    This short note describes a newly developed device based on the use of an endoscope coupled to a CCD camera to measure in situ particle sizes. It was initially designed for river studies with lower water depths and turbidities, and further adapted for estuarine studies to participate in the intercalibration programme organized in the Elbe estuary. Major results reported here confirm that most suspended matter has diameters in the range of several hundred micrometers. The upper size limit of our device (400 ?m) was frequently exceeded for individual particles. A less magnifying lens could be used to overcome this problem, but then smaller sizes would not be detected.

  7. Survey of in-situ and remote sensing methods for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.

    1981-01-01

    General methods for determining the moisture content in the surface layers of the soil based on in situ or point measurements, soil water models and remote sensing observations are surveyed. In situ methods described include gravimetric techniques, nuclear techniques based on neutron scattering or gamma-ray attenuation, electromagnetic techniques, tensiometric techniques and hygrometric techniques. Soil water models based on column mass balance treat soil moisture contents as a result of meteorological inputs (precipitation, runoff, subsurface flow) and demands (evaporation, transpiration, percolation). The remote sensing approaches are based on measurements of the diurnal range of surface temperature and the crop canopy temperature in the thermal infrared, measurements of the radar backscattering coefficient in the microwave region, and measurements of microwave emission or brightness temperature. Advantages and disadvantages of the various methods are pointed out, and it is concluded that a successful monitoring system must incorporate all of the approaches considered.

  8. Molecular cytogenetics using fluorescence in situ hybridization

    SciTech Connect

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.; Pinkel, D.; Weier, H-U.; Yu, Loh-Chung.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences to which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.

  9. Dimensional characterisation of collagen constructs in situ

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Reynolds, J.; Chikkanna, B.; Daly, D.; Brown, R. A.; Tan, N. S.

    2014-02-01

    We present results of a non contacting instrument based on the confocal scanning technique for assessing the thickness and structure of collagen substrates and tissue constructs. There is an unmet need in the creation of tissue constructs to quantitatively evaluate their dimensional characteristics during manufacture. With this knowledge more effective structures can be produced. The measurement is complicated by the need to make these measurements in situ. For many processes, including the plastic compression of collagen gels for generating 3D structures, the constructs are situated in a liquid solution contained in a well plate or similar container. It is therefore necessary to perform the measurements through an interfering medium and this confounds many measurement techniques. A system has therefore been developed that utilizes a scanning confocal arrangement to accurately measure the dimensional characteristics of these constructs in situ. A fiber based optical arrangement using compact, proven components from the telecommunications industry has been integrated into a dedicated system architecture so that the constructs can be measured whilst in production. This architecture is particularly important due to the "wet" nature of the samples. The meter can measure constructs with thicknesses from a few tens of micrometers up to 0.9 millimeters with sub-micrometer resolution. Results are presented that show how the meter has been used to evaluate changes in these collagen constructs whilst in production. This was little understood prior to these measurements and the greater understanding of how the materials behave has allowed the process to be greatly improved.

  10. Dosimetry of in situ activated dysprosium microspheres

    NASA Astrophysics Data System (ADS)

    Adnani, N.

    2004-03-01

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 × 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min-1 and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products.

  11. Inherently safe in situ uranium recovery.

    SciTech Connect

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  12. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    Efficient PEM (Polymer Electrolyte Membrane) fuel cell performance requires effective water management. To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operations. High Frequency Resistance (HFR), AC Impedance and Neutron imaging were used to measure water content in operating fuel cells, with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable Gas Diffusion Layer (GDL) properties. High resolution neutron radiography was used to image fuel cells during a variety of conditions. The effect of specific operating conditions, including flow direction (co-flow or counter-flow) was examined. Counter-flow operation was found to result in higher water content than co-flow operation, which correlates to lower membrane resistivity. A variety of cells were used to quantify the membrane water in situ during exposure to saturated gases, during fuel cell operation, and during hydrogen pump operation. The quantitative results show lower membrane water content than previous results suggested.

  13. In situ gelling properties of anionic thiomers.

    PubMed

    Hintzen, Fabian; Laffleur, Flavia; Sakloetsakun, Duangkamon; Leithner, Katharina; Bernkop-Schnürch, Andreas

    2012-12-01

    The aim of this study was to investigate in situ crosslinking systems of anionic thiolated polymers. In order to accelerate the increase in dynamic viscosity of thiolated polymers (thiomers), they were combined with hydrogen peroxide, carbamide peroxide and ammonium persulfate. Thiomers (pectin-cysteine (Pec-Cys), sodium carboxymethylcellulose-cysteine (NaCMC-Cys) and poly(acrylic acid)-cysteine (PAA-Cys)) were synthesized via amide bond formation between the carboxylic acid group of polymers and the primary amino group of l-cysteine. The rheological properties of 1% (m/v) thiomer solutions with oxidizing agents were compared by oscillatory measurements over time (120?min). Pec-Cys and NaCMC-Cys with hydrogen and carbamide peroxide showed a sol-gel phase transition within a few minutes and scored up to 13,000-fold increase in dynamic viscosity. Furthermore, only thiomers exhibiting a polysaccharide backbone (Pec-Cys and NaCMC-Cys) showed a significant increase in viscosity (p?in situ gelling liquid/semisolid formulations or in tissue engineering. PMID:22324362

  14. Sensitive and Specific In-Situ Sensor for Monitoring Contaminated Water

    SciTech Connect

    Du, Yongzhai [ORNL] [ORNL; Watson, David B [ORNL] [ORNL; Whitten, William B [ORNL] [ORNL; Li, Haiyang [ORNL] [ORNL; Nazarov, Erkinjun [Sionex Corp] [Sionex Corp; Xu, Jun [ORNL] [ORNL

    2010-01-01

    We report on the development of a high-sensitivity and high-specificity sensor, combining membrane extraction, pre-concentration, and gas-chromatographic differential mobility spectrometry (GC/DMS), for in situ detection of chlorinated hydrocarbons in water. Direct in-situ detection was achieved by membrane conversion of aqueous analyte to vapor, followed by vapor spectroscopy using GC/DMS analyzer. The limit of detection (LOD) reaches 0.37 parts per billion in volume (ppbv), or 0.54 ug/L, for aqueous trichloroethylene (TCE) and 1.6 ug/L for perchloroethylene (PCE) by incorporating a preconcentrator between the membrane extraction and GC/DMS detection systems. The high specificity was achieved using two-dimensional separation parameters of GC retention time and DMS compensation voltage. The presence of co-contaminants and foreign contaminants, such as benzene, toluene, CCl4, and CHCl3 did not interfere with the identification of chlorinated hydrocarbons. This highly-sensitive and -specific sensor paves the way for developing field-deployable sensors for in-situ and real-time monitoring of chlorinated hydrocarbons in groundwater and surface water.

  15. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    SciTech Connect

    Cherrier, J.

    2005-05-16

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time series experiments demonstrated that short-term exposure of petroleum to UV light enhanced hydrocarbon degradation by 48% over that observed for non-photo-oxidized petroleum. Despite the greater bio-availability of the photo-oxidized over the non-photo-oxidized petroleum, an initial lag in CO{sub 2} production was observed indicating potential phototoxicity of the photo- by-products. {delta}{sup 13}C analysis and mass balance calculations reveal that co-metabolism with pinfish resulted in increased hydrocarbon degradation for both photo-oxidized and non-photo-oxidized petroleum each by over 100%. These results demonstrate the cumulative effect of photo-oxidation and co-metabolism on petroleum hydrocarbon degradation by natural bacterial populations indigenous to systems chronically impacted by hydrocarbon input. To address the second objective of this proposal bacterial concentrates were collected from Bayboro Harbor in April 2001 for nucleic acid extraction and subsequent natural radiocarbon abundance analyses. Unfortunately, however, all of these samples were lost due to a faulty compressor in our -70 freezer. The freezer was subsequently repaired and samples were again collected from Bayboro Harbor in June 2002 and again December 2002. Several attempts were made to extract the nucleic acid samples--however, the student was not able to successfully extract and an adequate amount of uncontaminated nucleic acid samples for subsequent natural radiocarbon abundance measurements of the bacterial carbon by accelerator mass spectrometry (i.e. require at least 50 {micro}g carbon for AMS measurement). Consequently, we were not able to address the second objective of this proposed work.

  16. Applications of Mass Spectrometry to Lipids and Membranes

    PubMed Central

    Harkewicz, Richard; Dennis, Edward A.

    2012-01-01

    Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the “comprehensive lipidomics analysis by separation simplification” (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues. PMID:21469951

  17. Influence of soil and buildings on outdoor gamma dose rates in São Paulo, Brazil.

    PubMed

    Medeiros, F H M; Yoshimura, E M

    2005-01-01

    This work analyzes the influence of the most abundant natural gamma emitters in soil (226Ra, 232Th, and 40K) on the total outdoor gamma dose rate in the city of São Paulo, Brazil. A new method is introduced to determine gamma dose rates due to soil 1 m above the ground through measurements performed deep in the soil. This allows evaluation of the soil component even in places where the measurement at 1 m height is influenced by other sources (mainly the presence of buildings). The methodology was tested in non-urbanized areas by comparing direct dose rate measurements in air with those deep in soil. In addition, high-resolution gamma ray spectrometry of soil samples collected throughout the city was used to determine the natural radionuclide concentrations, allowing the comparison with the in-situ dose rate results. Measurements deep in soil followed a log-normal distribution. The fitted geometric mean (median) and geometric standard deviation of the soil contribution to the ambient dose equivalent rate at 1 m height were, respectively, 80.9(6) and 0.642(4) nSv h(-1). Compared to previous data, these values show that buildings enhance about 35% the outdoor gamma dose rate expected only from soil. The specific activities of 226Ra, 232Th, and 40K in dry soil, given by their medians, were, respectively, 41, 75, and 176 Bq k(-1). These results reveal that the terrestrial gamma dose rates in São Paulo are higher than the world average, a fact that can be attributed to high thorium concentration. Direct measurements of dose rates were compared to the corresponding values determined from radionuclide concentrations in soil. Good agreement between methods was found. PMID:15596991

  18. Mass spectrometry

    Microsoft Academic Search

    A. L. Burlingame; Cedric H. L. Shackleton; Ian. Howe; O. S. Chizhov

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in

  19. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  20. Comparisons of Remote And In-situ CME Features

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Mulligan, T.; Lynch, B.

    2011-05-01

    We present a comparison of remote and in-situ CME ejecta using data from the Ulysses and SOHO missions. Quadrature occurs when two spacecraft form a 90 degree angle with the Sun. Quadrature studies allow the comparison of visible features of limb CMEs and and in-situ ICME properties. We investigate several events, including so-called "cannibal" CMEs, and compare the relationship between CME morphology and in-situ structures such as magnetic field, composition, and plasma properties.

  1. In-situ testing of Singapore marine clay at Changi

    Microsoft Academic Search

    A. Arulrajah; H. Nikraz; M. W. Bo

    2005-01-01

    .  The Changi East Reclamation Project in the Republic of Singapore comprises of the ground improvement of marine clay with the installation of prefabricated vertical drains and subsequent surcharge placement. Prior to the commencement of land reclamation works, a series of in-situ tests were conducted in marine conditions with the use of various in-situ testing equipment. The In-Situ Testing Site was

  2. In situ Micrometeorological Measurements during RxCADRE

    Microsoft Academic Search

    C. B. Clements; J. K. Hiers; S. J. Strenfel

    2009-01-01

    The Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) was a collaborative research project designed to fully instrument prescribed fires in the Southeastern United States. Data were collected on pre-burn fuel loads, post burn consumption, ambient weather, in situ atmospheric dynamics, plume dynamics, radiant heat release (both from in-situ and remote sensors), in-situ fire behavior, and select fire effects.

  3. Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Li, Z.-H.; Miller, J. S.; Brinckerhoff, W. B.; Clegg, S. M.; Mahaffy, P. R.; Swindle, T. D.; Wiens, R. C.

    2012-01-01

    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science.

  4. In situ search for organics by gas chromatography analysis: new derivatization / thermochemolysis approach

    NASA Astrophysics Data System (ADS)

    Geffroy, Claude; Buch, Arnaud; David, Marc; Aissat, Lyes; El Mufleh, Amel; Papot, S.; Sternberg, Robert

    Many organic molecules are present in interstellar clouds and might be carried to the early Earth by comets and meteorites during the heavy bombardment phase in the first few hundred million years of the solar system. It has been suggested that extraterrestrial organic material may well represent an important part of the organic material available for the origin of life. Until samples, brought by future space missions, are available on Earth, in situ measurements are one of the way to get unaltered and non-contaminated samples for analysis. The analytical technique has to be robust, sensitive and non-specific due to the large scope of targets molecules. The only currently flight qualified technique of analysis of organic molecules in space is gas chromatography (Viking, Cassini-Huygens, SAM-MSL, COSAC-Rosetta). The main objective of this work is to present a new approach with multi step analysis using derivatisation and thermochemolysis reagents for a one pot in situ analysis of volatile and refractory organics in surface or sub-surface samples (Mars, comets).Indeed, no single technology enables to identify all organic compounds because naturally occurring molecules have different polarities, molecular weights, being extractible or recalcitrant, bonded trapped or adsorbed on minerals. Thus, we propose to wider the scope of chemical reagent already validated for in situ wet chemistry such as MTBSTFA (Rodier et al. 2001, 2002), DMF-DMA (Rodier et al. 2002), or TMAH (Rodier et al, 2005, Geffroy-Rodier et al; 2009) to analyze enantiomers of amino acids, carbohydrates and lipids in a one pot several steps sub system using a multi reagent and multi step approach. Thus using a new derivatizing agent, we successfully identified twenty one amino acids including twelve of the twenty proteinic amino acids without inhibiting following multi step thermochemolysis. *Geffroy-Rodier C, Grasset L, Sternberg R. Buch A. Amblès A. (2009) Thermochemolysis in search for organics in extraterrestrial environments, Journal of Applied Pyrolysis 85: 454-459. *Rodier C, Sternberg R, Raulin F, Vidal-Madjar C (2001). In situ detection of organic molecules in extraterrestrial environment by gas chromatography / mass spectrometry. Journal of Chromatography A 915: 199-207. *Rodier C, Laurent C, Szopa C. Sternberg R, Raulin F (2002) Chirality and the origin of life: in situ enantiomeric separation for future space missions, Chirality 14: 527-532. *Rodier C. Sternberg R, Szopa C, Buch A, Cabane M and Raulin F (2005) Search for organics in extraterrestrial environments by in situ gas chromatography analysis. Advances in Space Research 36: 195-200. This work has been funded by CNES

  5. Support Routines for In Situ Image Processing

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean

    2013-01-01

    This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the pointing of in situ cameras, (8) marsinvrange: Inverse of marsrange . given a range file, re-computes an XYZ file that closely matches the original. . marsproj: Projects an XYZ coordinate through the camera model, and reports the line/sample coordinates of the point in the image, (9) marsprojfid: Given the output of marsfidfinder, projects the XYZ locations and compares them to the found locations, creating a report showing the fiducial errors in each image. marsrad: Radiometrically corrects an image, (10) marsrelabel: Updates coordinate system or camera model labels in an image, (11) marstiexyz: Given a stereo pair, allows the user to interactively pick a point in each image and reports the XYZ value corresponding to that pair of locations. marsunmosaic: Extracts a single frame from a mosaic, which will be created such that it could have been an input to the original mosaic. Useful for creating simulated input frames using different camera models than the original mosaic used, and (12) merinverter: Uses an inverse lookup table to convert 8-bit telemetered data to its 12-bit original form. Can be used in other missions despite the name.

  6. In-situ continuous water monitoring system

    DOEpatents

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  7. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, R.J.

    1984-01-10

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  8. In-situ continuous water monitoring system

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  9. Mars in Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santago-Maldonado, Edgardo

    2012-01-01

    We have examined the technologies required to enable Mars In-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil processing technology to extract water from Martian soil.

  10. Remote versus in situ turbulence measurements

    NASA Technical Reports Server (NTRS)

    Frost, Walter

    1987-01-01

    Comparisons of in situ wind and turbulence measurements made with the NASA B-57 instrumented aircraft and those remotely made with both radar and lidar systems are presented. Turbulence measurements with a lidar or radar system as compared with those from an aircraft are the principal themes. However, some discussion of mean wind speed and direction measurements is presented. First, the principle of measuring turbulence with Doppler lidar and radar is briefly and conceptually described. The comparisons with aircraft measurements are then discussed. Two studies in particular are addressed: one uses the JAWS Doppler radar data and the other uses data gathered both with the NASA Marshall Space Flight Center and the the NOAA Wave Propagation Lab. gound based lidars. Finally, some conclusions and recommendations are made.

  11. In-situ Resources In Space

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2005-01-01

    This tutorial is a primer on the motivational and materials science basis for utilizing space resources to lower the cost and increase the safety and reliability of human systems beyond Earth's orbit. Past research in materials processing in orbit will be briefly reviewed to emphasize the challenges and advantages inherent in processing materials in space. Data on resource availability from human Lunar and robotic/sensor missions beyond the Moon will be overviewed for resource relevance to human exploration and development of space. Specific scenarios such as propellant production on the Moon and Mars, and lunar photovoltaic power production from in-situ materials will be discussed in relation to exploration and commercialization of space. A conclusion will cover some of the visionary proposals for the use of space resources to extend human society and prosperity beyond Earth.

  12. Guiding neuronal development with in situ microfabrication

    NASA Astrophysics Data System (ADS)

    Kaehr, Bryan; Allen, Richard; Javier, David J.; Currie, John; Shear, Jason B.

    2004-11-01

    We report the ability to modify microscopic 3D topographies within dissociated cultures, providing a means to alter the development of neurons as they extend neurites and establish interconnections. In this approach, multiphoton excitation is used to focally excite noncytotoxic photosensitizers that promote protein crosslinking, such as BSA, into matrices having feature sizes 250 nm. Barriers, growth lanes, and pinning structures comprised of crosslinked proteins are fabricated under conditions that do not compromise the viability of neurons both on short time scales and over periods of days. In addition, the ability to fabricate functional microstructures from crosslinked avidin enables submicrometer localization of controllable quantities of biotinylated ligands, such as indicators and biological effectors. Feasibility is demonstrated for using in situ microfabrication to guide the contact position of cortical neurons with micrometer accuracy, opening the possibility for engineering well defined sets of synaptic interactions. biofabrication | multiphoton cell patterning | growth cone

  13. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    SciTech Connect

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  14. In-situ continuous water analyzing module

    DOEpatents

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  15. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, Robert J. (Schenectady, NY)

    1985-01-01

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  16. Recent advances in in situ vitrification

    SciTech Connect

    Bonner, W.F.; Luey, Ja-Kael

    1992-05-01

    In Situ Vitrification (ISV) is an innovative mobile remediation technology for soils and other underground contamination: Developed by the US Department of Energy`s Pacific Northwest Laboratory (PNL), ISV has advanced during the past decade from a laboratory concept to a remediation technology commercially available for contaminated soils. ISV technology is currently being developed for remediation of DOE waste sites at Hanford, Oak Ridge National Laboratory (ORNL) Idaho National Laboratory (INEL), and other sites. The incentives for application of ISV can convert contaminated sites to a solid, highly durable block similar to naturally occurring obsidian. The ISV product has been shown capable of passing US Environmental Protection Agency (EPA) tests such as the Toxic Characteristic Leach Procedure (TCLP). Retrieval, handling and transport of untreated hazardous material would normally not be required after application of ISV. Therefore, costs, exposure to personnel, risk of releases to the environment, and generation of secondary wastes are greatly reduced compared with remove-and-treat technologies.

  17. Recent advances in in situ vitrification

    SciTech Connect

    Bonner, W.F.; Luey, Ja-Kael.

    1992-05-01

    In Situ Vitrification (ISV) is an innovative mobile remediation technology for soils and other underground contamination: Developed by the US Department of Energy's Pacific Northwest Laboratory (PNL), ISV has advanced during the past decade from a laboratory concept to a remediation technology commercially available for contaminated soils. ISV technology is currently being developed for remediation of DOE waste sites at Hanford, Oak Ridge National Laboratory (ORNL) Idaho National Laboratory (INEL), and other sites. The incentives for application of ISV can convert contaminated sites to a solid, highly durable block similar to naturally occurring obsidian. The ISV product has been shown capable of passing US Environmental Protection Agency (EPA) tests such as the Toxic Characteristic Leach Procedure (TCLP). Retrieval, handling and transport of untreated hazardous material would normally not be required after application of ISV. Therefore, costs, exposure to personnel, risk of releases to the environment, and generation of secondary wastes are greatly reduced compared with remove-and-treat technologies.

  18. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    SciTech Connect

    N.T. Raczka

    2000-05-23

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring.

  19. In Situ Field Testing of Processes

    SciTech Connect

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  20. In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes

    Microsoft Academic Search

    SATOSHI OKABE; HISASHI SATOH; YOSHIMASA WATANABE

    1999-01-01

    We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in do- mestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these tech- niques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In

  1. In situ polymerase chain reaction and cycling primed in situ amplification: improvements and adaptations.

    PubMed

    Paskins, L; Brownie, J; Bull, J

    1999-05-01

    Ethanol fixation combined with microwave pretreatment allows rapid and simple detection of signals produced by cycling primed in situ (PRINS) amplification, which uses a single primer, and in situ polymerase chain reaction (ISPCR) in intact cells. After thermal cycling, signals remain as discrete subnuclear spots in the region of amplification and are clearly distinguishable from non-specific background labelling. These methods are applicable to routine blood smears, even after Giemsa staining or immunocytochemistry, and cellular morphology is retained. Chromosome enumeration by cycling PRINS is demonstrated using primers for repeat DNA sequences, whilst single copy sequence detection is demonstrated using bcl-2, CFTR and chromosome 21 specific primer pairs in ISPCR. We show that ethanol fixation supports efficient extension of cycling PRINS products to approximately 550 bp using up to 70 rounds of thermal cycling. PMID:10403121

  2. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate.

    PubMed

    Yu, Shihui; Wang, Qi-Ming; Wang, Xin; Liu, Dandan; Zhang, Wenji; Ye, Tiantian; Yang, Xinggang; Pan, Weisan

    2015-03-01

    This study was aimed to design a liposomal based ion-sensitive in situ ophthalmic delivery system of timolol maleate (TM). The TM liposome was produced by the reverse evaporation technique coupled with pH-gradients method (REVPR), and then was incorporated into deacetylated gellan gum gels. The TM liposome was demonstrated to be a round and uniform shape in TEM pictures. Compared with the TM eye drops, the TM liposome produced a 1.93 folds increase in apparent permeability coefficients (Papp), resulting in a significant increase of the corneal penetration. The TM-loaded liposome incorporated ion sensitive in situ gels (TM L-ISG) showed longer retention time on corneal surface compared with the eye drops using gamma scintigraphy technology. Draize testing showed that TM L-ISG was non-irritant for ocular tissues. The biggest efficacy of TM L-ISG occurred 30 min after eye drops administration, and efficacy disappeared after 240min. Then, compared with the eye drops, the optimal TM L-ISG could quickly reduce the intraocular pressure and the effective time was significantly longer (P?0.05). These results indicate that liposome incorporated ion sensitive in situ gels have a potential ability for the opthalmic delivery. PMID:25615987

  3. Release of uranium and thorium from granitic rocks during in situ weathering and initial erosion

    E-print Network

    Ledger, Ernest Broughton

    1978-01-01

    and gamma ray spectrometry. In unweathered or slightly weathered rocks, the mode of U occurrence in the Town Mountain-type granites (biotite 10%, U = 4 ppm) differ from the Bear Mountain granite (biotite = 1%, U = 33 ppm) . Both granites contain readily... be present as: (1) isomorphous substitution in the lattice; (2) local concentrations in lattice defects; (3) adsorption along crystal imperfections and grain boundaries; and (4) inclusions as microcrystals of U minerals. The U-zircon association...

  4. Additive manufacturing for in situ repair of osteochondral defects

    Microsoft Academic Search

    Daniel L. Cohen; Jeffrey I. Lipton; Lawrence J. Bonassar; Hod Lipson

    2010-01-01

    Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that

  5. Some implications of in situ uranium mining technology development

    SciTech Connect

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions. (DLC)

  6. Determining In-Situ Stress Profiles From Logs.

    E-print Network

    Mohaghegh, Shahab

    Conclusions #12;11 SPE 90070 Shahab D. Mohaghegh Methodology It was identified that formation lithology regarding in-situ stress. An important factor in designing successful hydraulic fractures. #12;4 SPE 90070 Shahab D. Mohaghegh Introduction The contrast between different formation's in-situ stress

  7. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  8. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-08-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  9. Hydraulic calculations for a modified in-situ retort

    SciTech Connect

    Hall, W.G.

    1980-03-01

    This report contains brief descriptions of a numerical model and the aquifer-retort system used to investigate hydraulics in the vicinity of a modified in-situ retort. The model is used to analyze several cases involving different physical and geohydrological parameters, and possible applications of the model to in-situ oil shale recovery are discussed.

  10. In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Duke, Michael

    2005-01-01

    A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.

  11. ENVIRONMENTAL EFFECTS OF IN SITU GASIFICATION OF TEXAS LIGNITE

    EPA Science Inventory

    A general survey of the environmental effects of the in-situ gasification of Texas lignite was undertaken. The survey emphasized the following subjects: Identification of location, quality and quantity of resources; Assessment of applicable in-situ gasification technologies; Dete...

  12. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  13. Polypropylene carbon nanotube composites by in situ polymerization

    Microsoft Academic Search

    Andreas Funck; Walter Kaminsky

    2007-01-01

    The preparation of isotactic polypropylene nanocomposites filled with crude, purified and oxidized multi-walled carbon nanotubes (MWCNTs) was accomplished by polymerization of propylene with a metallocene\\/methylaluminoxane (MAO) catalyst and in situ coating. A good interfacial adhesion between the matrix and the filler is crucial for the successful preparation of nanocomposites; therefore, the polymerizations were performed with a new in situ coating

  14. In Situ Airborne, Surface, and Submersible Instruments for Earth Science

    E-print Network

    SBIR SBIR 74 75 I In Situ Airborne, Surface, and Submersible Instruments for Earth Science In Situ Airborne, Surface, and Submersible Instruments for Earth Science Technical Abstract An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary

  15. In Situ Colloid Mobilization in Hanford Sediments under

    E-print Network

    Perfect, Ed

    In Situ Colloid Mobilization in Hanford Sediments under Unsaturated Transient Flow Conditions, Washington State University, Pullman, Washington 99164 Colloid transport may facilitate off-site transport to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments

  16. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  17. Autonomous In-Situ Resources Prospector

    NASA Technical Reports Server (NTRS)

    Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.

    2004-01-01

    This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground-penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.

  18. Aluminum-Based Cast In Situ Composites: A Review

    NASA Astrophysics Data System (ADS)

    Pramod, S. L.; Bakshi, Srinivasa R.; Murty, B. S.

    2015-02-01

    In situ composites are a class of composite materials in which the reinforcement is formed within the matrix by reaction during the processing. In situ method of composite synthesis has been widely followed by researchers because of several advantages over conventional stir casting such as fine particle size, clean interface, and good wettability of the reinforcement with the matrix and homogeneous distribution of the reinforcement compared to other processes. Besides this, in situ processing of composites by casting route is also economical and amenable for large scale production as compared to other methods such as powder metallurgy and spray forming. Commonly used reinforcements for Al and its alloys which can be produced in situ are Al2O3, AlN, TiB2, TiC, ZrB2, and Mg2Si. The aim of this paper is to review the current research and development in aluminum-based in situ composites by casting route.

  19. Polyamide 66 microspheres metallised with in situ synthesised gold nanoparticles for a catalytic application

    PubMed Central

    2012-01-01

    A simple concept is proposed to metallise polyamide 66 (PA66) spherulite structures with in situ synthesised gold nanoparticles (Au NPs) using a wet chemical method. This cost-effective approach, applied to produce a PA66/Au NP hybrid material, offers the advantages of controlling the nanoparticle size, the size distribution and the organic-inorganic interactions. These are the key factors that have to be controlled to construct consistent Au nanostructures which are essential for producing the catalytic activities of interest. The hybrid materials obtained are characterised by means of scanning electron microscopy, transmission electron microscopy, attenuated total reflection-Fourier transform infrared spectrometry and X-ray diffraction spectrometry. The results show that PA66 microspheres obtained via the crystallisation process are coated with Au NPs of 13 nm in size. It was found that controlling the metal coordination is the key parameter to template the Au NPs on the spherulite surfaces. The preparation processes and the key factors leading to the formation of PA66 spherulites coated with Au NPs are discussed. Moreover, the efficiency of the coated spherulites as a potential catalyst is proved by demonstrating the reduction of methylene blue via UV-visible spectrometry. PMID:22401661

  20. In situ observations of Io torus plasma

    NASA Technical Reports Server (NTRS)

    Sullivan, J. D.; Siscoe, G. L.

    1982-01-01

    The physical properties of the Io plasma formation deduced from in situ observations are described. The torus plasma is characterized by spatially distinct regions with steep gradients in plasma parameters between them. The innermost region has a cool plasma which collapses toward the centrifugal equator and gives rise to a distinctive localized concentration of plasma well inside of Io's orbit. The next region has a warm plasma which includes the L-shell of Io and is the presumed injection region of the plasma. Other regions, known as the plasma ledge and ramp, are described. The changes in plasma characteristics are accounted for by centrifugally driven flux tube interchange diffusion to provide radial mass transport. The ramp is shown to result from impoundment of the plasma by the inner edge of the energetic particle population. It is also shown how the power required to excite the ultraviolet emissions of the torus and the Jovian aurora determines the rate at which new plasma is fed into the torus.

  1. DNA Fragmentation in Microorganisms Assessed In Situ?

    PubMed Central

    Fernández, José Luis; Cartelle, Mónica; Muriel, Lourdes; Santiso, Rebeca; Tamayo, María; Goyanes, Vicente; Gosálvez, Jaime; Bou, Germán

    2008-01-01

    Chromosomal DNA fragmentation may be a direct or indirect outcome of cell death. Unlike DNA fragmentation in higher eukaryotic cells, DNA fragmentation in microorganisms is rarely studied. We report an adaptation of a diffusion-based assay, developed as a kit, which allows for simple and rapid discrimination of bacteria with fragmented DNA. Intact cells were embedded in an agarose microgel on a slide, incubated in a lysis buffer to partially remove the cell walls, membranes, and proteins, and then stained with a DNA fluorochrome, SYBR Gold. Identifying cells with fragmented DNA uses peripheral diffusion of DNA fragments. Cells without DNA fragmentation show only limited spreading of DNA fiber loops. These results have been seen in several gram-negative and gram-positive bacteria, as well as in yeasts. Detection of DNA fragmentation was confirmed by fluoroquinolone treatment and by DNA breakage detection-fluorescence in situ hybridization. Proteus mirabilis with spontaneously fragmented DNA during exponential and stationary growth or Escherichia coli with DNA damaged after exposure to hydrogen peroxide or antibiotics, such as ciprofloxacin or ampicillin, was clearly detected. Similarly, fragmented DNA was detected in Saccharomyces cerevisiae after amphotericin B treatment. Our assay may be useful for the simple and rapid evaluation of DNA damage and repair as well as cell death, either spontaneous or induced by exogenous stimuli, including antimicrobial agents or environmental conditions. PMID:18689511

  2. DNA fragmentation in microorganisms assessed in situ.

    PubMed

    Fernández, José Luis; Cartelle, Mónica; Muriel, Lourdes; Santiso, Rebeca; Tamayo, María; Goyanes, Vicente; Gosálvez, Jaime; Bou, Germán

    2008-10-01

    Chromosomal DNA fragmentation may be a direct or indirect outcome of cell death. Unlike DNA fragmentation in higher eukaryotic cells, DNA fragmentation in microorganisms is rarely studied. We report an adaptation of a diffusion-based assay, developed as a kit, which allows for simple and rapid discrimination of bacteria with fragmented DNA. Intact cells were embedded in an agarose microgel on a slide, incubated in a lysis buffer to partially remove the cell walls, membranes, and proteins, and then stained with a DNA fluorochrome, SYBR Gold. Identifying cells with fragmented DNA uses peripheral diffusion of DNA fragments. Cells without DNA fragmentation show only limited spreading of DNA fiber loops. These results have been seen in several gram-negative and gram-positive bacteria, as well as in yeasts. Detection of DNA fragmentation was confirmed by fluoroquinolone treatment and by DNA breakage detection-fluorescence in situ hybridization. Proteus mirabilis with spontaneously fragmented DNA during exponential and stationary growth or Escherichia coli with DNA damaged after exposure to hydrogen peroxide or antibiotics, such as ciprofloxacin or ampicillin, was clearly detected. Similarly, fragmented DNA was detected in Saccharomyces cerevisiae after amphotericin B treatment. Our assay may be useful for the simple and rapid evaluation of DNA damage and repair as well as cell death, either spontaneous or induced by exogenous stimuli, including antimicrobial agents or environmental conditions. PMID:18689511

  3. Visualizing T Cell Migration in situ

    PubMed Central

    Benechet, Alexandre P.; Menon, Manisha; Khanna, Kamal M.

    2014-01-01

    Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell–cell and cell–extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen-specific T cells persists as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in situ visualization of T cell responses. Here, we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naïve, effector, and memory T cells. PMID:25120547

  4. In-situ gas meter proving

    SciTech Connect

    Ting, V.C. [Chevron Petroleum Technology Co., La Habra, CA (United States)

    1995-12-01

    In natural gas custody and allocation measurement, the users typically installed and operated their orifice meters according to ANSI/API 2530 (AGA 3) standard. It is not a common practice now to prove orifice meters in field operation. However, the recent revision of ANSI/API 2530, Part 1, standard for orifice meter flow measurement allows users to prove meters under operating conditions using the actual fluid with the actual orifice plate and recording system in place. The standard recognizes that when accurate measurement is required, any deviation from the standard`s specifications will result in a higher measurement uncertainty. In fact, recent studies have shown that meter installation effects and meter tube surface roughness operating within the standard specifications can contribute additional measurement bias errors. On-site proving of gas flow meters can be performed at field locations to calibrate out bias errors and improve overall measurement uncertainty. This paper will illustrate how orifice flow measurement accuracy can be improved by in-situ meter proving. In addition, the current technology of proving methods and field operating performance data will be discussed.

  5. Innovative technologies for in-situ remediation

    SciTech Connect

    Ragaini, R.; Aines, R.; Knapp, R.; Matthews, S.; Yow, J.

    1994-06-01

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given.

  6. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    SciTech Connect

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons: americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.

  7. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  8. In situ identification of the Martian surface material and its interaction with the Martian atmosphere using DTA/GC

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; White, M. R.

    1992-01-01

    Little is known about the mineralogy of the martian surface material. Several techniques have been suggested as candidates for the in situ identification of the martian surface material. The most promising of these techniques include differential thermal analysis (DTA) coupled with gas chromatography (GC) and differential scanning calorimetry (DSC) coupled with either mass spectrometry (MS) or GC. Our studies showed that differential thermal analysis coupled with gas chromatography (DTA/GC) is a more appropriate analytical technique than DSC/MS or DSC/GC to identify the mineralogy of the martian surface material in situ. DTA/GC can be regarded as an advancement from pyrolytic GC analyses that were successfully flown on previous missions, but have supplied only limited mineralogical information.

  9. Coal deposit characterization by gamma-gamma density/percent dry ash relationships

    E-print Network

    Wright, David Scott

    1984-01-01

    relationship exists between log-derived gamma-gamma density and laboratory-derived percent dry ash for some coal deposits. This linear relationship has allowed the development of empirical methods for the determination of in situ percent dry ash, percent... available immediately after borehole logging by minor software modifications in computerized logging equipment, the follow1ng correlation coeff1cients from a coal depos1t of unknown location and rank: 1) gamma-gamma dens1ty versus percent dry ash: r = 0...

  10. Mass Spectrometry Mass spectrometry has emerged as

    E-print Network

    Heermann, Dieter W.

    Mass Spectrometry Mass spectrometry has emerged as the key technology for proteomics experiments 3D protein structures at a proteome scale using mass spectrometry experiments. Data Analysis Data and the development of suitable data analysis routines is a major challenge. Structural Proteomics Proteomics

  11. Assessment of the use of prompt gamma emission for proton therapy range verification

    E-print Network

    Styczynski, John R

    2009-01-01

    PURPOSE: Prompt gamma rays emitted from proton-nucleus interactions in tissue present a promising non-invasive, in situ means of monitoring proton beam based radiotherapy. This study investigates the fluence and energy ...

  12. in situ Calcite Precipitation for Contaminant Immobilization

    SciTech Connect

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at a well (which can lead to clogging). A final particularly attractive characteristic of this approach is its long-term sustainability; the remediation scheme is geared toward environments that are already saturated with respect to calcite, and in such systems the bulk of any newly precipitated calcite will remain stable once engineered manipulations cease. This means that the co-precipitated contaminants will be effectively sequestered over the long term. We are currently conducting integrated field, laboratory, and computational research to evaluate a) the relationships between urea hydrolysis rate, calcite precipitation rate, and trace metal partitioning under environmentally relevant conditions; and b) the coupling between flow/flux manipulations and calcite precipitate distribution and metal uptake. We are also assessing the application of geophysical and molecular biological tools to monitor the relevant chemical and physical processes. The primary emphasis is on field-scale processes, with the laboratory and modeling activities designed specifically to support the field studies. Field experiments are being conducted in perched water (vadose zone) at the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory; the VZRP provides an uncontaminated setting that is an analog of the 90Sr-contaminated vadose zone at the Idaho Nuclear Technology and Engineering Center. A summary of results to date will be presented.

  13. MENDING THE IN SITU MANIPULATION BARRIER

    SciTech Connect

    PETERSEN, S.W.

    2006-02-06

    In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations, indicating some loss of reductive capacity within the aquifer. The Technical Assistance Team (TAT) was requested to perform the following activities: (1) evaluate the most probable condition(s) that has led to the presence of Cr(VI) in 12 different barrier wells (i.e. premature loss of reductive capacity), (2) recommend methods for determining the cause of the problem, (3) recommend methods for evaluating the magnitude of the problem, (4) recommend practicable method(s) for mending the barrier that involves a long-term solution, and (5) recommend methods for extending the barrier to the northeast (e.g., changing injection procedure, changing or augmenting the injected material). Since the March 2004 workshop, a decision has been made to place a hold on the barrier extension until more is known about the cause of the problem. However, the report complies with the original request for information on all of the above activities, but focuses on determining the cause of the problem and mending of the existing barrier.

  14. LONG TERM IN SITU DISPOSAL ENGINEERING STUDY

    SciTech Connect

    ADAMS; CARLSON; BROCKMAN

    2003-07-23

    Patent application pulled per Ken Norris (FH General Counsel). The objective of this study is to devise methods, produce conceptual designs, examine and select alternatives, and estimate costs for the demonstration of long-term (300-year) in situ disposal of an existing waste disposal site. The demonstration site selected is the 216-A-24 Crib near the 200 East Area. The site contains a fission product inventory and has experienced plant, animal, and inadvertent than intrusion. Of the potential intrusive events and transport pathways at the site, potential human intrusion has been given primary consideration in barrier design. Intrusion by wind, plants, and animals has been given secondary consideration. Groundwater modeling for a number of barrier configurations has been carried out to help select a barrier that will minimize water infiltration and waste/water contact time. The estimated effective lifetime and cost of 20 barrier schemes, using a variety of materials, have been evaluated. The schemes studied include single component surface barriers, multicomponent barriers, and massively injected grout barriers. Five barriers with high estimated effective lifetimes and relatively low costs have been selected for detailed evaluation. They are basalt riprap barriers, massive soil barriers, salt basin barriers, multi-component fine/coarse barriers, and cemented basalt barriers. A variety of materials and configurations for marking the site have also been considered. A decision analysis was completed to select a barrier scheme for demonstration. The analysis indicated that the basalt riprap alternative would be the preferred choice for a full-scale demonstration. The recommended approach is to demonstrate the basalt riprap barrier at the 216-A-24 Crib as soon as possible. Methods and costs of assessing effectiveness of the demonstration are also described. Preliminary design modifications and costs for applying the five selected barrier schemes to other site types are also presented.

  15. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  16. In-Situ Roughening of Polymeric Microstructures

    PubMed Central

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  17. In situ Probe Science at Saturn

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Mousis, O.; Lunine, J. I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; Mahaffy, P.; Orton, G. S.; Reh, K.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2014-04-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of certain disequilibrium species, diagnostic of deeper internal processes and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed atmosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ exploration. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key atmospheric constituents, and atmospheric structure including pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sensing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.

  18. Particle Analysis by Laser Mass Spectrometry

    NSDL National Science Digital Library

    PALMS (Particle Analysis by Laser Mass Spectrometry), a laser ion mass spectrometer run by the National Oceanic and Atmospherics Association's (NOAA's) Meteorological Chemistry Group, makes in-situ measurements of the chemical composition of individual aerosol particles. PALMS has a lab version and a flight version, which is carried on the nose of an aircraft. The PALMS Website gives spectral data from the Spring 1998 flight mission and from 1993 measurements from Idaho Hill, Colorado, 1995 measurements from Cape Grim, Tasmania, and a link to a data page for the Atlanta, Georgia station. Throughout the site's data pages are links to other universities and other institutions using PALMS or involved in aerosol spectrometry research. A list of publications related to PALMS is also provided.

  19. Mass spectrometry imaging for biomedical applications

    PubMed Central

    Liu, Jiangjiang; Ouyang, Zheng

    2013-01-01

    The development of mass spectrometry imaging technologies is of significant current research interest. Mass spectrometry potentially is capable of providing highly specific information about the distribution of chemical compounds on tissues at highly sensitive levels. The required in-situ analysis for the tissue imaging forced MS analysis being performed off the traditional conditions optimized in pharmaceutical applications with intense sample preparation. This critical review seeks to present an overview of the current status of the MS imaging with different sampling ionization methods and to discuss the 3D imaging and quantitative imaging capabilities needed to be further developed, the importance of the multi-modal imaging, and a balance between the pursuit of the high imaging resolution and the practical application of MS imaging in biomedicine. PMID:23539099

  20. Mass spectrometry in the home and garden.

    PubMed

    Pulliam, Christopher J; Bain, Ryan M; Wiley, Joshua S; Ouyang, Zheng; Cooks, R Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application. PMID:25510934

  1. Time-Resolved Data Acquisition for In Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julia Gates; Burger, Dan M.; Burger, Arnold; Evans, Larry G.; Parsons, Ann M.; Starr, Richard D.; Stassun, Keivan G.

    2012-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface geochemistry of planetary bodies in situ. All previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on a constant neutron source produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  2. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    SciTech Connect

    Glenn O'Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  3. What We Learned From the Venus Surface in-situ Exploration And What Looks Promising to do Next

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Head, J. W.

    2005-12-01

    The in-situ study of Venus surface started on Dec 15, 1970 with the landing of the Soviet Venera 7 probe, which sent back to Earth data on the surface temperature and atmosphere pressure. Then, since 1972 till 1985 there were successful landings of the Soviet Venera 9 to 14 and Vega 1-2 probes. The Day probe, part of the US Pioneer Venus Multiprobe (1978), also sent the data from the Venus surface. Gained by these missions we have the results of gamma-spectrometry measurements of K, U, and Th contents in the surface material in five sites and the X-ray fluorescence measurements of major elements contents in three sites as well as TV panoramas of four landing sites. In addition, in some of these sites there have been measured the surface material density, bearing capacity and electro conductivity as well as albedo and color. The results of the geochemical measurements, all characterizing Venusian plains, are consistent with basaltic composition of the surface material in all seven sampled sites. Recent comparisons of the Venusian compositions with those of the extended database of terrestrial magmatic rocks from different geodynamic environments within the oceanic crust showed that except one (Venera 14) all other measurements suggest enrichment in LIL elements and differ from N-MORB compositions. The surface in the imaged landing sites was found to consist of very dark finely layered and mechanically weak rock and even darker soil. Recent joint analysis of the Veneras' and Magellan data showed that the layered rock most likely is thermally sintered airborn sediment of fine debris derived from ejecta of impact craters. This sediment, although of small thickness, seems to be widespread on the Venus surface that should be taken into account in planning new missions. The future landings have to provide more compositional knowledge on Venus surface by significantly improving the analyses accuracies and detection limits and extending sampled geologic formations beyond the already sampled plains. Determination of mineralogic composition of the surface material as well as the redox-controlling components of the atmosphere are of a key value. Seismic and other geophysical sounding of Venus interior should be also planned. Sample return mission(s) as distant but necessary step in Venus studies should be considered too.

  4. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS

    SciTech Connect

    Liu, Bingwen; Yu, Xiao-Ying; Zhu, Zihua; Hua, Xin; Yang, Li; Wang, Zhaoying

    2014-01-01

    A portable vacuum interface allowing direct probing of the electrode-electrolyte interface was developed. A classical electrochemical system consisting of gold working electrode, platinum counter electrode, platinum reference electrode, and potassium iodide electrolyte was used to demonstrate real-time observation of the gold iodide adlayer on the electrode and chemical species as a result of redox reactions using cyclic voltammetry (CV) and the time-of-flight secondary ion mass spectrometry (ToF-SIMS, a vacuum-based surface analytical technique) simultaneously. This microfluidic electrochemical probe provides a new way to investigate the surface region with adsorbed molecules and region of diffused layer with chemical speciation in liquids in situ by surface sensitive techniques.

  5. In situ proton-NMR analyses of Escherichia coli HB101 fermentations in 1H2O and in D2O

    Microsoft Academic Search

    Lothar Brecker; Herfried Griengl; Douglas W. Ribbons

    Experiments using one-dimensional Fourier-transform proton-NMR spectrometry for non-invasive analyses of microbial fermentations in situ, in vivo and in normal aqueous buffer are described. Analyses of the 'mixed acid' fermentation during growth of Escherichia coli on glucose and citrate were performed to identify and quantitatively estimate the concentrations of the two substrates provided and of the six products formed without sampling

  6. In-situ derivatisation of degradation products of chemical warfare agents in water by solid-phase microextraction and gas chromatographic–mass spectrometric analysis

    Microsoft Academic Search

    Mui Tiang Sng; Wei Fang Ng

    1999-01-01

    A new analytical procedure was developed for the extraction of degradation products of chemical warfare agents from water and for in-situ derivatisation prior to analysis by gas chromatography–mass spectrometry (GC–MS). With this new procedure, degradation products of the chemical warfare agents can be analysed and identified without going through laborious sample preparation. Parameters such as fiber selection, pH, salt content,

  7. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique

    Microsoft Academic Search

    Tsuyoshi Iizuka; Takafumi Hirata

    2005-01-01

    We have developed a new analytical technique for precise and accurate in situ Hf isotope ratio measurements for zircons by means of laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Newly designed sample cell and N2 mixing technique provided higher elemental sensitivity with smoother signal intensity profiles. In order to improve the accuracy of the Hf isotope ratio analysis, previously

  8. Development of a solenoid pumped in situ zinc analyzer for environmental monitoring

    USGS Publications Warehouse

    Chapin, T.P.; Wanty, R.B.

    2005-01-01

    A battery powered submersible chemical analyzer, the Zn-DigiScan (Zn Digital Submersible Chemical Analyzer), has been developed for near real-time, in situ monitoring of zinc in aquatic systems. Microprocessor controlled solenoid pumps propel sample and carrier through an anion exchange column to separate zinc from interferences, add colorimetric reagents, and propel the reaction complex through a simple photometric detector. The Zn-DigiScan is capable of self-calibration with periodic injections of standards and blanks. The detection limit with this approach was 30 ??g L-1. Precision was 5-10% relative standard deviation (R.S.D.) below 100 ??g L-1, improving to 1% R.S.D. at 1000 ??g L-1. The linear range extended from 30 to 3000 ??g L-1. In situ field results were in agreement with samples analyzed by inductively coupled plasma mass spectrometry (ICPMS). This pump technology is quite versatile and colorimetric methods with complex online manipulations such as column reduction, preconcentration, and dilution can be performed with the DigiScan. However, long-term field deployments in shallow high altitude streams were hampered by air bubble formation in the photometric detector. ?? 2005 Elsevier B.V. All rights reserved.

  9. Methods for visualising active microbial benzene degraders in in situ microcosms.

    PubMed

    Schurig, Christian; Mueller, Carsten W; Höschen, Carmen; Prager, Andrea; Kothe, Erika; Beck, Henrike; Miltner, Anja; Kästner, Matthias

    2015-01-01

    Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results. PMID:25194840

  10. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    SciTech Connect

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  11. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining the chemical composition of those meteors which do not reach the ground. Particularly, we hope to get information about the composition difference between particles of different meteor showers and also sporadic and shower meteoroids". These visions categorized the aims of many subsequent rocket-borne ion mass spectrometer experiments in the lower ionosphere, Although the use such measurements to deduce the composition of different classes of meteoroids has not been successful, the past four decades of rocket observations have provided po%erful sets of data for advancing our understanding of meteor ablation, meteoric composition, metal neutral and ion chemistry as well as ionospheric dynamics.

  12. In Situ Probe Science at Saturn

    NASA Technical Reports Server (NTRS)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; Mahaffy, P.; Mousis, O.; Orton, G. S.; Reh, K.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sens-ing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.

  13. SITE TECHNOLOGY CAPSULE: IN SITU STEAM ENHANCED RECOVERY PROCESS

    EPA Science Inventory

    This Technology Capsule report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration was conducted...

  14. Posterior corneal curvature changes after myopic laser in situ keratomileusis

    Microsoft Academic Search

    Berthold Seitz; Francia Torres; Achim Langenbucher; Ashley Behrens; Enrique Suárez

    2001-01-01

    ObjectiveTo assess the posterior corneal power and asphericity changes after myopic laser in situ keratomileusis (LASIK) and to correlate these changes with the amount of correction and the residual stromal bed thickness.

  15. In-situ polymerization PLOT columns I: divinylbenzene

    NASA Technical Reports Server (NTRS)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  16. In-situ polymerization PLOT columns I: divinylbenzene.

    PubMed

    Shen, T C

    1992-06-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube. PMID:11540239

  17. Lobular Carcinoma in Situ, Classical Type and Unusual Variants

    Microsoft Academic Search

    Melissa Murray; Edi Brogi

    2009-01-01

    The morphologic spectrum of lobular carcinoma in situ (LCIS) includes the classical type and unusual variants recently described. In this article we review the morphology of LCIS and highlight ways to distinguish it from its morphologic mimickers.

  18. ISHMAEL: In-Situ Sample Handling Modular Analytical Experimental Laboratory

    NASA Technical Reports Server (NTRS)

    Bearman, G. H.; Kossakovski, D. A.

    2000-01-01

    In-Situ instruments are an integral part of mission designs for exploration of planetary surfaces. A technology gap exists today between sample acquisition and sample analysis tools. Integrated science payload packages need an integrated sample handling system.

  19. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  20. IN-SITU TREATMENT OF HAZARDOUS WASTE CONTAMINATED SOILS

    EPA Science Inventory

    Techniques were investigated for in-situ treatment of hazardous wastes that could be applied to contaminated soils. Included were chemical treatment methods, biological treatment, photochemical transformations and combination methods. Techniques were developed based on fundamenta...

  1. In situ sampling cart development engineering task plan

    SciTech Connect

    DeFord, D.K.

    1995-02-06

    This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today`s data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy.

  2. In situ bioremediation of chlorinated solvent with natural gas

    SciTech Connect

    Rabold, D.E.

    1996-12-31

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells.

  3. In situ quantification of genomic instability in breast cancer progression

    SciTech Connect

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  4. IN-SITU MEASUREMENT OF ELECTRODERMAL ACTIVITY DURING OCCUPATIONAL THERAPY

    E-print Network

    studies provided examples of how occupational therapy affected children's EDA. This is the first study of the effects of occupational therapy's in-situ activities using ACTIVITY DURING OCCUPATIONAL THERAPY by Elliott B. Hedman Submitted

  5. SITE TECHNOLOGY CAPSULE; IN SITU ELECTROKINETIC EXTRACTION SYSTEM

    EPA Science Inventory

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico. The SITE demonstration results show ...

  6. Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pflieger, D.; Forest, E.; Vinh, J.

    For twenty years or so now, mass spectrometry has been used to get exact measurements of the mass of biological molecules such as proteins, nucleic acids,oligosaccharides, and so on. Over the past ten years, this technology has followed the trend toward miniaturisation and the samples required can be much smaller. In particular, the nanoelectrospray source (online or by needle) allow one to work at flow rates of a few tens of nanolitres/min. There are many applications, both in the field of proteomics and in the analysis of protein structure, dynamics, and interactions. Combining this source with nanoHPLC, complex mixtures only available in small quantities can be separated and analysed online. There are also some advantages over conventional HPLC, despite a set of constraints related to the small dimensions and low flow rates. Combining capillary electrophoresis with the electrospray source also gives useful results, with its own set of advantages and constraints. Finally, developments are currently underway to combine this source with chips, providing a means of separation and analysis online.

  7. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 ...fluorescence in situ hybridization (FISH) enumeration systems. (a) Identification. An automated FISH enumeration system is a device...

  8. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 ...fluorescence in situ hybridization (FISH) enumeration systems. (a) Identification . An automated FISH enumeration system is a device...

  9. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 ...fluorescence in situ hybridization (FISH) enumeration systems. (a) Identification . An automated FISH enumeration system is a device...

  10. In situ soil reclamation by air stripping and sludge uptake

    E-print Network

    Carden?osa-Mendoza, Mauricio

    1989-01-01

    IN SITU SOIL RECLAMATION BY AIR STRIPPING AND SLUDGE UPTAKE A Thesis by MAURICIO CARDENOSA-MENDOZA Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1989 Major Subject: Civil Engineering IN SITU SOIL RECLAMATION BY AIR STRIPPING AND SLUDGE UPTAKE A Thesis by MAURICIO CARDENOSA-MENDOZA Approved as to style and content by: Robin . Autenrieth (Chair of comittee) James S. Bonner...

  11. In Situ Resource Utilization (ISRU II) Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    Kaplan, David (Compiler); Saunders, Stephen R. (Compiler)

    1997-01-01

    This volume contains extended abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU II) Technical Interchange Meeting, November 18-19, 1997, at the Lunar and Planetary Institute, Houston, Texas. Included are topics which include: Extraterrestrial resources, in situ propellant production, sampling of planetary surfaces, oxygen production, water vapor extraction from the Martian atmosphere, gas generation, cryogenic refrigeration, and propellant transport and storage.

  12. In situ sensor techniques in modern bioprocess monitoring

    Microsoft Academic Search

    Sascha Beutel; Steffen Henkel

    New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible\\u000a production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated\\u000a reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but\\u000a in situ sensors are directly incorporated

  13. Orientation of in situ stresses in the oceanic crust

    USGS Publications Warehouse

    Newmark, R.L.; Zoback, M.D.; Anderson, R.N.

    1984-01-01

    Two in situ measurements of principal stress directions have been made in DSDP Holes 504B, south of the Costa Rica Rift on the Nazca plate, and 597C, west of the East Pacific Rise on the Pacific plate. In both cases, the orientations of in situ principal stresses determined from borehole breakouts are consistent with the stress directions inferred from intraplate earthquakes located near the sites. ?? 1984 Nature Publishing Group.

  14. NASA wind shear flight test in situ results

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.

    1992-01-01

    The main objectives in developing the NASA in situ windshear detection algorithm were to provide a measurement standard for validation of forward-look sensors under development, and to demonstrate the algorithm's ability to operate with a suitably low nuisance alert rate. It was necessary to know exactly how the algorithm was implemented and what parameters and filtering were used, in order to be able to fully test its effectiveness and correlate in situ results with forward-look sensor data.

  15. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Microsoft Academic Search

    C. Langton; J. Blankenship; W. Griffin; M. Serrato

    2009-01-01

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD

  16. Using a Segmented Model to Describe In situ Nutrient Disappearance

    Microsoft Academic Search

    Stacey A. Gunter; Michael L. Galyean

    2000-01-01

    Gunter, S.A. and Galyean, M.L. 2000. Using a segmented model to describe in situ nutrient disappearance. J. Appl. Anim. Res., 18: 1–14.The purpose of this study was to compare the predictive results and characteristics of exponential (EM) and segmented, models (SM) describing ruminal in situ nutrient disappearance data. Using masticate samples collected from esophageally cannulated steers grazing midgrass prairie rangeland

  17. BAW and SAW sensors for in-situ analysis

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Bao, X. Q.; Chang, Z.; Sherrit, S.

    2003-01-01

    In-situ analysis is a major goal in current and future NASA exploration missions. In general in-situ analysis experiments are designed to investigate chmical, biological or geological markers or properties to determine the complex history of the body being studied. In order to expand the number of applicable sensor schemes an investigation into piezoelectric bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators has been initiated.

  18. Multi-scale burned area mapping in tallgrass prairie using in situ spectrometry and satellite imagery

    NASA Astrophysics Data System (ADS)

    Mohler, Rhett L.

    Prescribed burning in tallgrass prairie affects a wide range of human and natural systems. Consequently, managing this biome based on sound science, and with the concerns of all stakeholders taken into account, requires a method for mapping burned areas. In order to devise such a method, many different spectral ranges and spectral indices were tested for their ability to differentiate burned from unburned areas at both the field and satellite scales. Those bands and/or indices that performed well, as well as two different classification techniques and two different satellite-based sensors, were tested in order to come up with the best combination of band/index, classification technique, and sensor for mapping burned areas in tallgrass prairie. The ideal method used both the red and near-infrared spectral regions, used imagery at a spatial resolution of at least 250 m, used satellite imagery with daily temporal resolution, and used pixel-based classification techniques rather than object-based techniques. Using this method, burned area maps were generated for the Flint Hills for every year from 2000-2010, creating a fire history of the region during that time period. These maps were compared to active fire and burned area products, and these products were found to underestimate burned areas in tallgrass prairie.

  19. Visualization of microtubules of cells in situ by indirect immunofluorescence.

    PubMed

    Byers, H R; Fujiwara, K; Porter, K R

    1980-11-01

    Microtubule staining patterns can be visualized within cells in situ on the surface of fish scales from the squirrel fish, Holocentrus ascensionis, and the common goldfish, Carassius auratus, after incubation with antibodies to sea urchin tubulin and fluorescein-labeled goat antibodies to rabbit immunoglobulin G. Chromatophores in situ from both species reveal a radial microtubule framework that orients the alignment of pigment granules. Innervating fibers of erythrophores on the H. ascensionis scale can also be observed. In situ, pseudo-epithelial cells called scleroblasts show microtubule patterns with a remarkable degree of similarity within a selected region. Over 90% of the cells have a microtubule framework that is nearly superimposable from cell to adjacent cell. The microtubules in scleroblasts are few and form a simple radial framework with a localized microtubule organizing center (MTOC). Microtubules in scleroblasts in vitro emanate from localized MTOCs but are much less radially organized than in situ. Scleroblasts in situ on the scale of C. auratus show microtubules that curve abruptly into coalignment with phase striations on the fibrillary plate. The phase striations arise from the orthogonal plies of collagen in intimate association with the scleroblasts. The role of microtubules in scleroblasts may thus be to provide orientation for collagen fibrillogenesis, analogous to their role in orientation of cellulose fibers in plants. That cells in situ exhibit highly related and coordinated microtubule staining patterns reaffirms that the cytoskeleton plays an important role in the organization of differentiated tissues. PMID:6935678

  20. Invited Review Article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry

    NASA Astrophysics Data System (ADS)

    Ireland, Trevor R.

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  1. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

  2. SENSITIVITY STUDIES FOR AN IN-SITU PARTIAL DEFECT DETECTOR (PDET) IN SPENT FUEL USING MONTE CARLO TECHNIQUES

    SciTech Connect

    Sitaraman, S; Ham, Y S

    2008-04-28

    This study presents results from Monte Carlo radiation transport calculations aimed at characterizing a novel methodology being developed to detect partial defects in Pressurized Water Reactor (PWR) spent fuel assemblies (SFAs). The methodology uses a combination of measured neutron and gamma fields inside a spent fuel assembly in an in-situ condition where no movement of the fuel assembly is required. Previous studies performed on single isolated assemblies resulted in a unique base signature that would change when some of the fuel in the assembly is replaced with dummy fuel. These studies indicate that this signature is still valid in the in-situ condition enhancing the prospect of building a practical tool, Partial Defect Detector (PDET), which can be used in the field for partial defect detection.

  3. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites.

    PubMed

    Anjos, R M; Juri Ayub, J; Cid, A S; Cardoso, R; Lacerda, T

    2011-11-01

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of (232)Th, (226)Ra, and (40)K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg(-1), 4.9-160 Bq kg(-1) and 190-2029 Bq kg(-1), respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m × 4.0 m area, 2.8 m height) was found to be 120 nGy h(-1), which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h(-1) due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of (226)Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h(-1)) will be lower than 100 Bq m(-3), value recommended as a reference level by the World Health Organization. PMID:21729819

  4. In situ Management and Domestication of Plants in Mesoamerica

    PubMed Central

    Casas, Alejandro; Otero-Arnaiz, Adriana; Pérez-Negrón, Edgar; Valiente-Banuet, Alfonso

    2007-01-01

    Background and Aims Ethnobotanical studies in Mexico have documented that Mesoamerican peoples practise systems of in situ management of wild and weedy vegetation directed to control availability of useful plants. In situ management includes let standing, encouraging growing and protection of individual plants of useful species during clearance of vegetation, which in some cases may involve artificial selection. The aim of this study was to review, complement and re-analyse information from three case studies which examined patterns of morphological, physiological and genetic effects of artificial selection in plant populations under in situ management in the region. Methods Information on wild and in situ managed populations of the herbaceous weedy plants Anoda cristata and Crotalaria pumila, the tree Leucaena esculenta subsp. esculenta and the columnar cacti Escontria chiotilla, Polaskia chichipe and Stenocereus stellatus from Central Mexico was re-analysed. Analyses compared morphology and frequency of morphological variants, germination patterns, and population genetics parameters between wild and managed in situ populations of the species studied. Species of columnar cacti are under different management intensities and their populations, including cultivated stands of P. chichipe and S. stellatus, were also compared between species. Key Results Significant differences in morphology, germination patterns and genetic variation documented between wild, in situ managed and cultivated populations of the species studied are associated with higher frequencies of phenotypes favoured by humans in managed populations. Genetic diversity in managed populations of E. chiotilla and P. chichipe is slightly lower than in wild populations but in managed populations of S. stellatus variation was higher than in the wild. However, genetic distance between populations was generally small and influenced more by geographic distance than by management. Conclusions Artificial selection operating on in situ managed populations of the species analysed is causing incipient domestication. This process could be acting on any of the 600–700 plant species documented to be under in situ management in Mesoamerica. In situ domestication of plants could be relevant to understand early processes of domestication and current conditions of in situ conservation of plant genetic resources. PMID:17652338

  5. In situ vitrification: application analysis for stabilization of transuranic waste

    SciTech Connect

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  6. Novel approach for labeling of biopolymers with DOTA complexes using in situ click chemistry for quantification.

    PubMed

    He, Yide; Esteban-Fernández, Diego; Linscheid, Michael W

    2015-03-01

    In this work, we present a two-step labeling approach for the efficient tagging with lanthanide-containing complexes. For this purpose, derivatization of the cysteine residues with an alkyne group acting as linker was done before the DOTA complex was introduced using in situ click chemistry. The characterization of this new methodology is presented including the optimization of the labeling process, demonstration of the quantitative capabilities using both electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) detection, and study of the fragmentation behavior of the labeled peptides by collision-induced dissociation (CID) for identification purposes. The results show that, in terms of labeling efficiency, this new methodology improves previously developed DOTA-based label strategies, such as MeCAT-maleimide (metal-coded affinity tag, MeCAT-Mal) and MeCAT-iodoacetamide (MeCAT-IA) reagents. The goal of reducing the steric hindrance caused by the voluminous DOTA complex was fulfilled allowing both, quantification and identification of labeled biopolymers. PMID:25618695

  7. k e h k k e h k k e h k \\Gamma4 2 \\Gamma6 \\Gamma6 \\Gamma2 \\Gamma9 \\Gamma8 9 \\Delta 2 \\Gamma14

    E-print Network

    Sweldens, Wim

    \\Delta 2 \\Gamma14 \\Gamma3 0 \\Gamma5 0 \\Gamma7 0 \\Gamma2 \\Gamma2 \\Gamma3 \\Gamma4 9 \\Delta 2 \\Gamma8 \\Gamma6 \\Gamma35 \\Delta 2 \\Gamma12 \\Gamma1 2 \\Gamma2 \\Gamma3 \\Gamma2 \\Gamma5 \\Gamma5 9 \\Delta 2 \\Gamma10 0 23 \\Delta 2 \\Gamma5 \\Gamma2 \\Gamma63 \\Delta 2 \\Gamma9 \\Gamma4 189 \\Delta 2 \\Gamma12 1 2 \\Gamma2

  8. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry.

    PubMed

    Hatzenpichler, Roland; Scheller, Silvan; Tavormina, Patricia L; Babin, Brett M; Tirrell, David A; Orphan, Victoria J

    2014-08-01

    Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level. PMID:24571640

  9. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry

    PubMed Central

    Hatzenpichler, Roland; Scheller, Silvan; Tavormina, Patricia L; Babin, Brett M; Tirrell, David A; Orphan, Victoria J

    2014-01-01

    Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry (15NH3 assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and 15N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level. PMID:24571640

  10. In-situ radionuclide characterization of a submarine groundwater discharge site at Kalogria Bay, Stoupa, Greece.

    PubMed

    Tsabaris, Christos; Patiris, Dionisis L; Karageorgis, Aristomenis P; Eleftheriou, George; Papadopoulos, Vassilis P; Georgopoulos, Dimitris; Papathanassiou, Evangelos; Povinec, Pavel P

    2012-06-01

    In-situ underwater gamma-ray spectrometer KATERINA was used for continuous measurements of radon progenies ((214)Pb, (214)Bi), thoron progeny ((208)Tl) and (40)K in submarine groundwater discharge (SGD) sites at Kalogria Bay, SW Peloponnesus (Greece). The spectrometer was deployed attached on measuring platform along with two conductivity - temperature data loggers while underwater battery packs supplied the system for acquisition periods up to 25 days. The radionuclide time series together with salinity data were obtained for spring (wet) and summer (dry) seasons. The (40)K activity concentrations correlated well with salinity of the emanating groundwater. Although the (214)Bi and (208)Tl activities showed usually similar trends anticorrelating with salinity, in some cases (208)Tl did not follow the (214)Bi record due to changes in the dynamics of the groundwater aquifer. As the half-life of (220)Rn is very short (55.6 s), its concentration in SGD may depend on the distance from its origin to the monitoring point. The observed temporal variations of (214)Bi and (208)Tl confirmed advantages of continuous in-situ monitoring of SGD in coastal areas. PMID:21906856

  11. Method for enhanced longevity of in situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    1999-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  12. System for enhanced longevity of in situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  13. Nanoparticles laden in situ gelling system for ocular drug targeting

    PubMed Central

    Kumar, Divya; Jain, Nidhi; Gulati, Neha; Nagaich, Upendra

    2013-01-01

    Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development. PMID:23662277

  14. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel S.; Wright, Dana L.

    2013-01-01

    Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger. PMID:23783738

  15. In-Situ Pressure Testing of Steam Generator Tubes

    SciTech Connect

    Chandler, Cordelia K. [Framatome ANP (United States)

    2002-07-01

    The anatomist John Hunter said, 'But why think? Why not try the experiment?' His words are applicable to in-situ pressure testing as a means of performing condition monitoring of steam generator tubes. Other methods of performing condition monitoring include the application of theoretical burst and leakage equations (deterministic methods), probabilistic analyses, and tube pull. The deterministic and probabilistic methods must address uncertainties in the material properties and flow measurements. Destructive examination of a pulled tube provides the verification of the damage mechanism and possible causes of the degradation; however, the axial loads required to pull the tube may affect the degradation. The results of a tube pull are generally not available until after the plant has returned to service. In-situ pressure testing provides structural and leakage integrity of SG tubing conditions. Candidates are selected for in-situ testing based on te EPRI Guidelines and include an evaluation of crack depth, length and/or voltage response from the eddy-current inspection results. Appropriate selection of tubes for in-situ testing provides confidence that the results adequately address the structural and leakage integrity of the SG tube population. In-situ pressure testing, combined with conservative operational assessments for the next cycle, assures that the integrity of the SG tubing is maintained. (authors)

  16. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    SciTech Connect

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields} {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.

  17. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    PubMed

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively. PMID:16284661

  18. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow).

    PubMed Central

    Weiss, P; Schweitzer, B; Amann, R; Simon, M

    1996-01-01

    Microbial assemblages on large organic aggregates (lake snow) of Lake Constance, Germany, were analyzed with rRNA-directed fluorescent oligonucleotide probes specific for the domain Bacteria and the alpha-, beta-, and gamma-subclasses of the class Proteobacteria. Lake snow aggregates were either collected in situ by SCUBA diving or in a sediment trap at 50 m or formed of natural lake water incubated in rolling cylinders under simulated in situ conditions. For the latter aggregates, the time course of the microbial colonization was also examined. The natural aggregates and those made in rolling cylinders were composed of the particulate organic material present in the lake and thus reflected the composition of the ambient plankton community. All types of lake snow aggregates examined were heavily colonized by microbial cells and harbored between 0.5 x 10(6) and > 2 x 10(6) cells aggregate -1. Between 55 and 100% of the microbial cells stained with 4', 6-diamidino-2-phenylindole (DAPI) could be visualized with the domain Bacteria-specific probe. In most samples, beta-subclass proteobacteria dominated the microbial community, constituting 27 to 42% of total cells as counted by DAPI staining, irrespective of the composition of the aggregates. During the time course experiments with the laboratory-made aggregates, the fraction of beta-subclass proteobacteria usually increased over time. Except for a few samples, alpha- and gamma-subclass proteobacteria were far less abundant than beta-subclass proteobacteria, constituting 11 to 25 and 9 to 33% of total cells, respectively. Therefore, we assume that a specific aggregate-adapted microbial community was established on the aggregates. Because the compositions of the microbial assemblages on natural and laboratory-made aggregates were similar, we conclude that aggregates made in rolling cylinders are good model system with which to examine the formation and microbial colonization of macroscopic organic aggregates. PMID:8787398

  19. In situ, spatially resolved biosignature detection at the microbial scale

    NASA Astrophysics Data System (ADS)

    Williford, K. H.; Eigenbrode, J. L.; Hallmann, C.; Kitajima, K.; Kozdon, R.; Summons, R. E.; Kudryavstev, A.; Lepot, K.; Schopf, J.; Spicuzza, M.; Sugitani, K.; Ushikubo, T.; van Kranendonk, M.; Valley, J. W.

    2013-12-01

    Whether life has ever existed beyond Earth is one of the great human questions. The Science Definition Team (SDT) for the proposed NASA Mars 2020 rover mission recently announced a suggested approach for NASA to 'demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth' in part 'to investigate whether Mars was ever inhabited by microbial life.' The SDT further recommended a per-sample volume of 8 cm3 [1] (e.g., a core with a diameter of 1 cm and length of 10 cm). Such samples would be the first available for scientific inquiry with the potential to definitively answer the fundamental question of astrobiology, and their small volume would necessitate analysis with non- or minimally destructive techniques. Potential biosignatures include 'chemical, isotopic, mineralogical, and morphological features that can be created by life and also appear to be inconsistent with nonbiological processes'[1]. Guidelines for biosignature detection in extraterrestrial samples derive in part from the search for evidence of life in the most ancient sedimentary rocks on Earth, wherein the most compelling case for biogenicity is made when these 'chemical, isotopic, mineralogical, and morphological features' occur in association. Sedimentary rocks deposited on Earth prior to ~3.5 billion years ago (i.e., when persistent surface water [e.g., 2] likely supported habitable environments on Mars) have only very rarely escaped severe alteration by metamorphism and metasomatism. Understanding how these processes have operated on Earth through strategic interrogation of biosignature alteration records in (meta)sedimentary rocks is thus a critical task in the search for extraterrestrial life. Here we present techniques for and results of in situ, spatially resolved, non- or minimally destructive detection of morphological, elemental, molecular, and light stable isotopic biosignatures, as well as records of alteration, in Precambrian sedimentary rocks from Earth in the context of the eventual analysis of samples returned from Mars. Sample acquisition and preparation, morphological analysis by conventional light, confocal laser, and electron microscopy, elemental analysis by energy and wavelength dispersive spectroscopy, molecular analysis by laser Raman microscopy, carbon isotope analysis of organic matter and carbonate minerals, and multiple sulfur isotope analysis of pyrite with secondary ion mass spectrometry will be discussed. New and recently published [3-5] results from the application of these methods towards detection of the signatures of life, environment, and alteration history in rocks containing putative and bona fide microfossils ranging in age from 0.6 to 3.5 billion years, and in rocks of similar age lacking morphological biosignatures, as well as our current understanding of key challenges and opportunities for future research will be reviewed. [1] Mustard, J.F. et al. 2013. Report of the Mars 2020 Science Definition Team, 154 pp., posted by MEPAG at http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf. [2] Williams, R.M.E. et al. 2013. Science 340: 1068-1072. [3] Williford, K.H. et al. 2011. GCA 75: 5686-5705. [4] Williford, K.H. et al. 2013. GCA 104: 165-182. [5] Lepot, K. et al. 2013. GCA 112: 66-86.

  20. Prediction of elastic modulus for in-situ composites

    SciTech Connect

    Lin, Q.; Yee, A.F. [Univ. of Michigan, Ann Arbor, MI (United States)

    1993-12-31

    In this paper, a quantitative study of the mechanical properties of in-situ composites containing liquid crystalline polymer (LCP) is presented. A composite model has been proposed to account for the change of elastic modules of the reinforcing LCP phase with draw ratio in the in-situ composite strands. The LCP phase is envisaged as a composite of perfectly oriented chains and randomly oriented chains which are connected in series. Equations for longitudinal and transverse elastic moduli of the in-situ composite strands are then derived based on the well-known Halpin-Tsai equation and the composite model of the reinforcing LCP phase. This approach is able to make a number of predictions including the transverse elastic modules. Theoretical predictions of longitudinal elastic moduli agree fairly well with experimental results for polycarbonate/Vectra composites.

  1. Robot-Assisted Antegrade In-Situ Fenestrated Stent Grafting

    SciTech Connect

    Riga, Celia V., E-mail: c.riga@imperial.ac.uk; Bicknell, Colin D. [Imperial College Healthcare, St Mary's Hospital, Regional Vascular Unit (United Kingdom); Wallace, Daniel [Hansen Medical (United States); Hamady, Mohamad; Cheshire, Nicholas [Imperial College Healthcare, St Mary's Hospital, Regional Vascular Unit (United Kingdom)

    2009-05-15

    To determine the technical feasibility of a novel approach of in-situ fenestration of aortic stent grafts by using a remotely controlled robotic steerable catheter system in the porcine model. A 65-kg pig underwent robot-assisted bilateral antegrade in-situ renal fenestration of an abdominal aortic stent graft with subsequent successful deployment of a bare metal stent into the right renal artery. A 16-mm iliac extension covered stent served as the porcine aortic endograft. Under fluoroscopic guidance, the graft was punctured with a 20-G customized diathermy needle that was introduced and kept in place by the robotic arm. The needle was exchanged for a 4 x 20 mm cutting balloon before successful deployment of the renal stent. Robot-assisted antegrade in-situ fenestration is technically feasible in a large mammalian model. The robotic system enables precise manipulation, stable positioning, and minimum instrumentation of the aorta and its branches while minimizing radiation exposure.

  2. In-Situ Resource Utilization (ISRU) Development Program

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry

    1998-01-01

    The question "Why In-Situ Resource Utilization (ISRU)?" is addressed in this presentation. The reasons given concentrate on Cost reduction, Mass reduction, Risk reduction, the expansion of human exploration and presence and the enabling of industrial exploitation. A review of the Martian and Lunar resources available for ISRU is presented. Other ISRU concepts (i.e., In-Situ Consumable production (ISCP) and In-Situ Propellant Production (ISPP)) are introduced and further explained. The objectives of a Mars ISRU System Technology (MIST) include (1) the characterization of technology and subsystem performance for mission modeling and technology funding planning, (2) reduce risk and concerns arising from sample return and human missions utilizing ISRU, and (3) demonstrate the environmental suitability of ISRU components/processes and systems. A proof of concept demonstration schedule and a facility overview for MIST is presented.

  3. Design, fabrication, and applications of in situ fluid cell TEM.

    PubMed

    Li, Dongsheng; Nielsen, Michael H; De Yoreo, James J

    2013-01-01

    In situ fluid cell TEM is a powerful new tool for understanding dynamic processes during liquid phase chemical reactions, including mineral formation. This technique, which operates in the high vacuum of a TEM chamber, provides information on crystal structure, phase, morphology, size, aggregation/segregation, and crystal growth mechanisms in real time. In situ TEM records both crystal structure and morphology at spatial resolutions down to the atomic level with high temporal resolution of up to 10(-6)s per image, giving it distinct advantages over other in situ techniques such as optical microscopy, AFM, or X-ray scattering or diffraction. This chapter addresses the design, fabrication, and assembly of TEM fluid cells and applications of fluid cell TEM to understanding mechanisms of mineralization. PMID:24188766

  4. In Situ Floating Resin Cranioplasty for Cerebral Decompression

    PubMed Central

    Ahn, Duck-Hyung; Kang, Sung-Don

    2009-01-01

    The purpose of this report is to describe our surgical experiences in the treatment of cerebral decompression with in situ floating resin cranioplasty. We included in this retrospective study 7 patients who underwent in situ floating resin cranioplasty for cerebral decompression between December 2006 and March 2008. Of these patients, 3 patients had traumatic brain injury, 3 cerebral infarction, and one subarachnoid hemorrhage due to aneurysmal rupture. In situ floating resin cranioplasty for cerebral decompression can reduce complications related to the absence of a bone flap and allow reconstruction by secondary cranioplasty without difficulty. Furthermore, it provides cerebral protection and selectively eliminates the need for secondary cranioplasty in elderly patients or patients who have experienced unfavorable outcome. PMID:19893737

  5. NMR methods for in-situ biofilm metabolism studies

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Pinchuk, Gregory E.; Fredrickson, Jim K.; Gorby, Yuri A.; Minard, Kevin R.; Wind, Robert A.

    2005-09-01

    Novel procedures and instrumentation are described for nuclear magnetic resonance (NMR) spectroscopy and imaging studies of live, in situ microbial films. A perfused NMR/optical microscope sample chamber containing a planar biofilm support was integrated into a recirculation/dilution flow loop growth reactor system and used to grow in situ Shewanella oneidensis strain MR-1 biofilms. Localized NMR techniques were developed and used to non-invasively monitor time-resolved metabolite concentrations and to image the biomass volume and distribution. As a first illustration of the feasibility of the methodology an initial 13C-labeled lactate metabolic pathway study was performed, yielding results consistent with existing genomic data for MR-1. These results represent progress toward our ultimate goal of correlating time- and depth-resolved metabolism and mass transport with gene expression in live in situ biofilms using combined NMR/optical microscopy techniques.

  6. In situ biodegradation: Microbiological patterns in a contaminated aquifer

    SciTech Connect

    Madsen, E.L.; Sinclair, J.L.; Ghiorse, W.C. (Cornell Univ., Ithaca, NY (United States))

    1991-05-10

    Conventional approaches for proving in situ biodegradation of organic pollutants in aquifers have severe limitations. In the approach described here, patterns in a comprehensive set of microbiological activity and distribution data were analyzed. Measurements were performed on sediment samples gathered at consistent depths in aquifer boreholes spanning a gradient of contaminant concentrations at a buried coal tar site. Microbial adaptation to polyaromatic hydrocarbons (PAHs) was demonstrated by mineralization of naphthalene and phenanthrene in samples from PAH-contaminated, but not adjacent pristine, zones. Furthermore, contaminant-stimulated in situ bacterial growth was indicated because enhanced numbers of protozoa and their bacterial prey were found exclusively in contaminated subsurface samples. The data suggest that many convergent lines of logically linked indirect evidence can effectively document in situ biodegradation of aquifer contaminants.

  7. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Tanner, Dominique; Henley, Richard W.; Mavrogenes, John A.; Holden, Peter

    2013-10-01

    This study couples in situ 16O, 17O and 18O isotope and in situ trace element analyses to investigate and characterize the geochemical and textural complexity of magmatic-hydrothermal quartz crystals. Euhedral quartz crystals contemporaneous with mineralization were obtained from four magmatic-hydrothermal ore deposits: El Indio Au-Ag-Cu deposit; Summitville Au-Ag-Cu deposit; North Parkes Cu-Au deposit and Kingsgate quartz-Mo-Bi-W deposit. The internal features of the crystals were imaged using cathodoluminescence and qualitative electron microprobe maps. Quantitative isotopic data were collected in situ using 157 nm laser ablation inductively coupled plasma mass spectrometry (for 40 trace elements in quartz) and sensitive high-resolution ion microprobe (for 3 isotopes in quartz). Imaging revealed fine oscillatory zoning, sector zoning, complex "macromosaic" textures and hidden xenocrystic cores. In situ oxygen isotope analyses revealed a ?18O range of up to 12.4 ± 0.3 ‰ in a single crystal—the largest isotopic range ever ascribed to oscillatory zonation in quartz. Some of these crystals contain a heavier ?18O signature than expected by existing models. While sector-zoned crystals exhibited strong trace element variations between faces, no evidence for anisotropic isotope fractionation was found. We found: (1) isotopic heterogeneity in hydrothermal quartz crystals is common and precludes provenance analysis (e.g., ?D-?18O) using bulk analytical techniques, (2) the trace element signature of quartz is not an effective pathfinder toward noble metal mineralization and (3) in three of the four samples, both textural and isotopic data indicate non-equilibrium deposition of quartz.

  8. In-situ Rock Spalling Strength near Excavation Boundaries

    NASA Astrophysics Data System (ADS)

    Cai, M.; Kaiser, P. K.

    2014-03-01

    It is widely accepted that the in-situ strength of massive rocks is approximately 0.4 ± 0.1 UCS, where UCS is the uniaxial compressive strength obtained from unconfined tests using diamond drilling core samples with a diameter around 50 mm. In addition, it has been suggested that the in-situ rock spalling strength, i.e., the strength of the wall of an excavation when spalling initiates, can be set to the crack initiation stress determined from laboratory tests or field microseismic monitoring. These findings were supported by back-analysis of case histories where failure had been carefully documented, using either Kirsch's solution (with approximated circular tunnel geometry and hence ? max = 3? 1 -? 3) or simplified numerical stress modeling (with a smooth tunnel wall boundary) to approximate the maximum tangential stress ? max at the excavation boundary. The ratio of ? max /UCS is related to the observed depth of failure and failure initiation occurs when ? max is roughly equal to 0.4 ± 0.1 UCS. In this article, it is suggested that these approaches ignore one of the most important factors, the irregularity of the excavation boundary, when interpreting the in-situ rock strength. It is demonstrated that the "actual" in-situ spalling strength of massive rocks is not equal to 0.4 ± 0.1 UCS, but can be as high as 0.8 ± 0.05 UCS when surface irregularities are considered. It is demonstrated using the Mine-by tunnel notch breakout example that when the realistic "as-built" excavation boundary condition is honored, the "actual" in-situ rock strength, given by 0.8 UCS, can be applied to simulate progressive brittle rock failure process satisfactorily. The interpreted, reduced in-situ rock strength of 0.4 ± 0.1 UCS without considering geometry irregularity is therefore only an "apparent" rock strength.

  9. Measuring in situ vertical hydraulic conductivity in tidal environments

    NASA Astrophysics Data System (ADS)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhi; Wan, Li; Wang, Xusheng; Jiang, Xiaowei; Guo, Huaming

    2014-08-01

    The hydraulic conductivity of intertidal sediments plays an important role in quantifying seawater-groundwater interactions. However, its accurate and economical in situ evaluation is difficult since available in situ methods do not apply in intertidal zones due to periodic tidal fluctuations. Here a new apparatus is presented for measuring the sediments' vertical hydraulic conductivity in tidal environments and a simple, finite-difference data analysis method is proposed to estimate this key parameter. The new apparatus is easy to operate, and is able to measure in situ vertical hydraulic conductivity ranging from 10-7 m/s to 10-2 m/s in tidal environments within one hour. A posteriori error of the finite-difference approximation method is estimated to have the same magnitude order as the square of the nondimensionalized observation time interval K?t/(LV) (here ?t is the observation time interval, Rd is the diameter ratio of the falling-head water-container standpipe to the undisturbed in situ sediment sample, K is the vertical hydraulic conductivity, and LV is the sample length), which is usually a very small number. The new apparatus and finite-difference method were verified by numerical simulations and many in situ experiments in several coastal case study sites of Bohai Sea, PR China. The finite-difference method has adequate accuracy in estimating the hydraulic conductivity compared with the traditional least-squares fitting method. The relative error between the estimates by the two methods is less than 9.41% and averages 1.22% for all experiments. The new apparatus and simple finite-difference method are recommended for in situ experiment that have many advantages such as economy, efficiency, reliability, and simplicity.

  10. A simplified In Situ cosmogenic 14C extraction system

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    We describe the design, construction, and testing of a new, simplified in situ radiocarbon extraction system at the University of Arizona. Blank levels for the new system are low ((234 ?? 11) ?? 103 atoms (1 ??; n = 7)) and stable. The precision of a given measurement depends on the concentration of 14C, but is typically <5% for concentrations of 100 ?? 103 atoms g-1 or more. The new system is relatively small and easy to construct, costs significantly less than the original in situ 14C extraction system at Arizona, and lends itself to future automation. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  11. In situ remediation integrated program: Success through teamwork

    SciTech Connect

    Peterson, M.E.

    1994-08-01

    The In Situ Remediation Integrated Program (ISR IP), managed under the US Department of Energy`s (DOE) Office of Technology Development, focuses research and development efforts on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. As described here, specific ISR IP projects are advancing the application of in situ technologies to the demonstration point, providing developed technologies to customers within DOE. The ISR IP has also taken a lead role in assessing and supporting innovative technologies that may have application to DOE.

  12. In-situ measurements of lunar heat flow

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Keihm, S. J.

    1974-01-01

    During the Apollo program two successful heat flow measurements were made in situ on the lunar surface. At the Apollo 15 site a value of 0.0000031 watts/sqcm was measured and at the Apollo 17 site a value of 0.0000022 watts/sqcm was determined. Both measurements have uncertainty limits of + or - 20% and have been corrected for perturbing topographic effects. The apparent difference between the observations may correlate with observed variations in the surface abundance of thorium. Comparison with earlier determinations of heat flow, using the microwave emission spectrum from the moon, gives support to the high gradients and heat flows observed in situ.

  13. Triple redundant hydrogen sensor with in situ calibration

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Powell, J. D.; Schubert, F. H.; Koszenski, E. P.

    1980-01-01

    To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented.

  14. In situ evaporation of lithium for LEVIS ion source

    SciTech Connect

    Gerber, B.; Lopez, M.; Lamppa, K.; Stearns, W.; Bieg, K.

    1994-05-01

    This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

  15. In-situ bioremediation drilling and characterization work plan

    SciTech Connect

    Koegler, K.J.

    1994-04-26

    This work plan describes the design and construction of proposed wells and outlines the characterization activities to be performed in support of the In Situ Bioremediation Task for FY 1994. The purpose of the well-design is to facilitate implementation and monitoring of in situ biodegradation of CCl{sub 4} in ground water. However, the wells will also be used to characterize the geology, hydrology, microbiology, and contaminant distribution, which will all feed into the design of the technology. Implementation and design of this remediation demonstration technology will be described separately in an integrated test plan.

  16. In-situ Moessbauer Spectroscopy of Supported Iron Fischer-Tropsch Catalysts During Activation

    SciTech Connect

    Motjope, Thato R.; Dlamini, Thulani H. [Sasol Technology, 1 Klasie Havenga Avenue, Sasolburg, 1947 (South Africa)

    2005-04-26

    The behavior of Fe based catalysts supported on ZrO2, SiO2, {gamma}-Al2O3, CeO2 and TiO2 during calcination, reduction and FT synthesis have been studied via in situ Moessbauer spectroscopy. It was found that the type of metal support interaction i.e. surface migration or bulk diffusion during calcination was dependant on the type of support used. Surface migration of Fe3+ during calcination was dominant for ZrO2, CeO2 and {gamma}-Al2O3 and this resulted in the sintering of {alpha}-Fe2O3 crystallites. Whereas bulk diffusion was observed mainly for the catalysts prepared using SiO2 and TiO2, causing a stabilization of the small crystallites of Fe3+ that interacted strongly with the support. Upon reduction, the large crystallites of {alpha}-Fe2O3 were found to reduce readily compared to the small crystallites of Fe3+, except for the catalyst prepared using {gamma}-Al2O3, as a support, where the presence of Al3+ resulted in the formation of spinel like species with the formula (Fe{sup 3+}{sub 2-x}Al{sup 3+}{sub x}Fe{sup 2+})O{sub 4} which are resistant to reduction. Upon exposure to synthesis gas, it was found that catalysts supported on ZrO2 and CeO2 carburized readily resulting in the formation of circa 80% {chi}-Fe2.5C. From this study it was observed that {gamma}-Al2O3 is not the preferred support for Fe based FT catalysts, as it forms the least amount of Fe carbides during FT synthesis.

  17. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of gamma gliadin genes expressed in the wheat cultivar Butte 86 was evaluated by analyzing publicly available expressed sequence tag (EST) data. Eleven contigs were assembled from 153 Butte 86 ESTs. Nine of the contigs encoded full-length proteins and four of the proteins contained an...

  18. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash ( Cucurbita maxima Duchesne ex Lam.) via irradiated pollen

    Microsoft Academic Search

    Ertan Sait Kurtar; Ahmet Balkaya

    2010-01-01

    The influence of pollen irradiation on the production of in vitro haploid plants from in situ induced haploid embryos was\\u000a investigated in winter squash (Cucurbita maxima Duchesne ex Lam.). Pollen were irradiated at different gamma-ray doses (50, 100, 200 and 300 Gray) and durations (9, 11,\\u000a 15, 21, and 28 July). Production of in vitro haploid plantlets was influenced by

  19. In Situ Analysis of 34S/32S by Laser Ablation MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Craddock, P. R.; Ball, L.; Rouxel, O.; Bach, W.

    2005-12-01

    We present results from the development of a novel in situ approach to measurement of 34S/32S ratios in anhydrite (CaSO4). Sulfur isotopes have been used extensively to trace the sources of S in hydrothermal vent deposits (e.g., S from volcanic rocks, reduced seawater sulfate, reactions with sediments and contributions from magmatic S) and to infer the primary conditions controlling the genesis of hydrothermal deposits. Conventionally, S isotopes are determined via gas-source mass spectrometry using SO2 or SF6 as the S source. Such techniques are time-consuming and require extensive sample preparation stages. Important textural information and spatial resolution is lost following dissolution of sulfide and sulfate minerals. For hydrothermal systems in which changes of the physiochemical conditions of fluid circulation and mineral precipitation are rapid, only an in situ approach will allow the resolution of the signatures of variable sources and physiochemical conditions contained within individual sulfate and sulfide crystals over spatial scales of tens of microns. To fully characterize the complexity of S behavior (and of other elements) in hydrothermal systems, requires an in situ approach to isotope measurement. By optimizing coupled laser ablation and multi-collector inductively coupled plasma mass spectrometry (ThermoElectron Neptune LA-MC-ICP-MS) we have developed a method for precise measurements of 34S/32S ratios in anhydrite. A New Wave UP213 (quad Nd YAG 213 nm) laser is used as the ablation source with helium as the sample carrier gas. The accuracy of S isotope ratios that can be achieved by ICP-MS measurements is limited by two principal artifacts; instrumental mass bias and spectral interferences on masses (m/z) 32, 33, 34 and 36. Mass bias is corrected by employing "sample-standard bracketing" techniques, in which the mass bias of the unknown sample is interpolated between the known biases of adjacent S standard analyses. To bracket laser analyses, we use an in-house solution standard (SAlfaAesar = + 2.9 ‰ V-CDT), for which the 34S/32S ratio was previously determined using NIST standards. Major spectral interferences for S (e.g., O2) are eliminated by applying a mass resolution greater than m/m = 4000, which is achieved in medium resolution mode. The effects from matrix differences between solution and mineral phases have been investigated and shown to be within the analytical error of the method (± 0.2 ‰). This method has several advantages versus conventional approaches; (1) the extremely high temperatures achieved by a plasma source enables a higher ionization yield for S and gives high precision, (2) sample measurement is rapid, (3) the need for exhaustive sample preparation is alleviated and (4) a spatial resolution of the order of 100 ?m is achieved, enabling identification of small-scale heterogeneities contained within hydrothermal precipitates. We present preliminary data from analyses of anhydrite recovered from drilling of the active Pacmanus hydrothermal system, Papua New Guinea. The results indicate subtle changes in the S isotope ratios recorded in individual anhydrite crystals that are likely related to multiple sources of sulfur or complex sulfur cycling within the subseafloor of this hydrothermal system. In addition to characterizing anhydrite from hydrothermal systems, this method can be used to explore in situ isotopic variations of multiple sulfate minerals from a variety of environments (e.g., evaporite deposits).

  20. In-Situ Exploration of Venus: Major Science Objectives, Investigations, and Mission Platform Options

    NASA Astrophysics Data System (ADS)

    Baines, K. H.; Limaye, S. S.; Hall, J. L.; Atreya, S. K.; Bullock, M. A.; Crisp, D.; Grinspoon, D. H.; Mahaffy, P. R.; Russell, C. T.; Webster, C. R.; Zahnle, K. J.

    2013-12-01

    In-situ missions to Venus have been recommended by both the 2011 and 2003 Decadal Studies of the NRC and have been proposed numerous times to NASA's Discovery and New Frontiers programs as well as to ESA's Cosmic Vision program. Such missions would revolutionize our understanding of Venus, as they address key questions of Venus's origin, evolution, and current state via high precision measurements of (1) noble gases and their isotopes, and (2) reactive trace gases and aerosol associated with Venus's active photo- and thermo-chemistry and sulfur cycle, including components potentially responsible for the poorly-understood uv-absorbing haze layer. Fundamental questions, as promoted in recent VEXAG documents, include: (1) Did Venus, Mars, and Earth have a common origin? (2) What roles did comets from the outer Solar System play in delivering volatiles to Venus? (3) Did Venus once have and lose a global ocean? (4) How much has Venus outgassed, and what is the current rate of outgassing, particularly of sulfur, the major driver of Venus clouds? and (5) Through the deposition of energy within them, what role do these clouds play in (a) driving the cloud-level thermal structure and (b) generating and maintaining the super-rotating zonal windfield that covers the globe? Fundamental answers could be uniquely provided through in-situ sampling via mass spectrometry of the noble gases and their isotopes - in particular of the 8 stable Xe isotopes, the bulk abundances of Kr, and the 3 isotopes of Ne. Measurements of the relative abundances of the light isotopes of N, O, H, S and O, by, for example, tunable laser spectrometry, would provide additional insights into Venus's origin, surface outgassing and planetary escape. Such measurements could be performed by probes, landers, or balloons. On descent through the uv-absorbing layer and the surrounding H2SO4 cloud, each of these platforms could explore both the absorber and sulfur-cycle-associated reactive species and aerosols, thus addressing VEXAG desires for enhanced understanding of Venus' chemical cycles, aerosol properties, and radiative transfer. On descent to the surface, probes and landers can provide vertical profiles of temperatures and species abundances, as well as provide near-surface measurements of sulfur isotopes and trace sulfuric gases indicative of outgassing. Additional major in-situ goals dealing with Venus's global circulation and local dynamics can be addressed by a balloon platform floating within the convective middle cloud near ~55-km altitude. Drifting over a wide range of latitudes and all times-of-day and longitudes, such a floating platform could accurately measure (1) motions in all three dimensions - zonal, meridional, and vertical, including motions associated with convection and gravity waves, (2) simultaneous measurements of cloud particle size, their parent molecules, the local temperature, and vertical velocity, to study cloud formation/dissipation processes, and (3) the power and frequency of local lightning. Altogether, such in-situ measurements would potentially revolutionize our understanding of (1) Venus's circulation, including the role of waves and solar cloud heating in powering the planet's poorly-understood super-rotation, (2) Venus's sulfur cycle, key to Venus's current climate, and (3) how Earth's neighbor formed and evolved over the aeons.

  1. Development of ``Static'' In-Situ Implanter Chamber Cleaning

    NASA Astrophysics Data System (ADS)

    Yedave, Sharad; Sweeney, Joe; Byl, Oleg; Letaj, Shkelqim; Wodjenski, Mike; Hilgarth, Monica; Marganski, Paul; Bishop, Steve; Eldridge, David; Kaim, Robert

    2008-11-01

    Since the introduction of XeF2 in-situ cleaning, its use in production implanters has been mainly focused on cleaning ion sources by flowing the cleaning vapor through the source arc chamber. This has been called "Dynamic" in-situ cleaning. "Static" in-situ cleaning is a different method under development at ATMI which allows an entire vacuum chamber and its contents to be cleaned. The chamber is filled to a pressure of 1-3 Torr of XeF2 vapor, which reacts with deposited material on all internal surfaces, and the reaction by-products are then pumped away. When applied to the source vacuum chamber, the Static cleaning method allows cleaning vapor to contact components, such as the HV bushing and the manipulator assembly, which may not be adequately cleaned with the Dynamic method. Recently, ATMI has installed a prototype Static in-situ cleaning system on an in-house Ion Source Test Stand in Danbury, CT. This paper will describe the prototype cleaning system and process and its applicability to production implant systems. We will also present experimental data showing removal of various dopant residues and the cleaning effectiveness for different components and surfaces inside the source vacuum chamber.

  2. Combined in situ micromechanical cantilever-based sensing and ellipsometry

    E-print Network

    Grütter, Peter

    Combined in situ micromechanical cantilever-based sensing and ellipsometry Michel Godin,a) Olivier these instruments. © 2003 American Institute of Physics. DOI: 10.1063/1.1614859 I. INTRODUCTION Micromechanical of micromechanical sensors used for chemical mixture detection. However, if these micromechanical sensors

  3. In Situ Resource Utilization (ISRU 3) Technical Interchange Meeting: Abstracts

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, February 11-12, 1999, hosted by the Lockheed Martin Astronautics Waterton Facility, Denver, Colorado. Administration and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  4. In-Situ Pointing Correction and Rover Microlocalization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Lorre, Jean J.

    2010-01-01

    Two software programs, marstie and marsnav, work together to generate pointing corrections and rover micro-localization for in-situ images. The programs are based on the PIG (Planetary Image Geometry) library, which handles all mission dependencies. As a result, there is no mission-specific code in either of these programs. This software corrects geometric seams in images as much as possible.

  5. SITE TECHNOLOGY CAPSULE: IN SITU STEAM ENHANCED RECOVERY PROCESS

    EPA Science Inventory

    The SERP technology is designed to treat soils contaminated with VOCs and SVOCs in situ. Steam injection and vacuum extraction are used to remove the organic compounds from the soil and concentrate them for disposal or recycling. A full-scale demonstration of SERP was conducted a...

  6. A cell to study in situ electrocrystallization of calcium carbonate

    Microsoft Academic Search

    M. Euvrard; C Filiatre; E Crausaz

    2000-01-01

    In order to observe in real time and in situ the electrocrystallization of calcium carbonate, a new method using an assessment of the oxygen reduction reaction has been developed. The experimental assembly is composed of an electrochemical cell and an optical-video set-up. The specific features of the cell are: availability of an electrode polarization control, enabling the use of any

  7. In situ studies of velocity in fractured crystalline rocks.

    USGS Publications Warehouse

    Moos, D.; Zoback, M.D.

    1983-01-01

    A study of the effects of macroscopic fractures on P and S wave velocities has been conducted in four wells drilled in granitic rock to depths between 0.6 and 1.2km. The effect of macroscopic fractures is to decrease both Vp and Vs and increase Vp/Vs. In wells with a relatively low density of macroscopic fractures, the in situ velocity is similar to that of saturated core samples under confining pressure in the laboratory, and there is a clear correlation between zones with macroscopic fractures and anomalously low velocities. In wells with numerous macroscopic fractures, the in situ velocity is lower than that of intact samples under pressure, and there is a correlation between the rate at which in situ velocity increases with depth and the rate at which the velocity of laboratory samples increases with pressure. Differences in in situ P wave velocity between wells cannot be explained solely by differences in the degree of macroscopic fracturing, thus emphasizing the importance of composition and microcracks on velocity.-from Authors

  8. In Situ Enhanced Soil Mixing. Innovative Technology Summary Report

    SciTech Connect

    None

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic volatile organic (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration.

  9. An Improved In Situ and Satellite SST Analysis for Climate

    Microsoft Academic Search

    Richard W. Reynolds; Nick A. Rayner; Thomas M. Smith; Diane C. Stokes; Wanqiu Wang

    2002-01-01

    A weekly 18 spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite

  10. ESWL in situ or ureteroscopy for ureteric stones?

    Microsoft Academic Search

    J. Hofbauer; C. Tuerk; K. Höbarth; R. Hasun; M. Marberger

    1993-01-01

    As documented by follow-up data on ureteric stones in 1259 ureteric units treated, ESWL in situ on advanced lithotriptors with stone location by ultrasonography and fluoroscopy was successful without any retrograde ureteric manipulation in 98% of stones in the upper, 71% in the iliac, and 84% in the distal ureter; 85% of the units were stone-free within 3 months: ancillary

  11. Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis

    Microsoft Academic Search

    Michael Flämmich; Malte C. Gather; Norbert Danz; Dirk Michaelis; Andreas H. Bräuer; Klaus Meerholz; Andreas Tünnermann

    2010-01-01

    The orientation of the emissive dipole moments in organic light-emitting diodes (OLEDs) has a major impact on the optical outcoupling efficiency and, consequently, on the device performance as well as on possible optimization strategies. In this study we propose and demonstrate a general method to quantify the amounts of parallel and perpendicular emissive sites in OLEDs. The presented in situ-method

  12. Untersuchung von Fhn mit Hilfe von in situ-und

    E-print Network

    Gohm, Alexander

    Untersuchung von Föhn mit Hilfe von in situ- und Fernerkundungsmeßtechniken Alexander Gohm Georg) Hydraulische Theorie (Smith, 1985) MAP Science Plan 1998 1. Bedeutung von seitlichen und vertikalen Verengungen ? 2. Beziehung zwischen Strömung unter (gap flow) und über Kammniveau ? 3. 3D Verteilung von

  13. Homogeneity adjustments of in situ atmospheric climate data: a review

    Microsoft Academic Search

    Thomas C. Peterson; David R. Easterling; Pavel Groisman; Neville Nicholls; Neil Plummer; Simon Torok; Ingeborg Auer; Reinhard Boehm; Donald Gullett; Lucie Vincent; Raino Heino; Heikki Tuomenvirta; Olivier Mestre; Tamás Szentimrey; James Salinger; Eirik J. Førland; Inger Hanssen-Bauer; Hans Alexandersson; Philip Jones; David Parker

    1998-01-01

    Long-term in situ observations are widely used in a variety of climate analyses. Unfortunately, most decade- to century-scale time series of atmospheric data have been adversely impacted by inhomogeneities caused by, for example, changes in instrumentation, station moves, changes in the local environment such as urbanization, or the introduction of different observing practices like a new formula for calculating mean

  14. Bacterial Biotransformations for the In situ Stabilization of Plutonium

    SciTech Connect

    Neu, Mary; Boukhalfa, Hakim; Icopini, Gary; Hersman, Larry; Lack, Joe; Priester, John; Olson, Scott; Holden, Patricia

    2005-04-20

    Plutonium contamination in the environment is generally low-level and may be present and transported in a range of forms (IV, V, VI). Current remediation strategies are costly, financially and in terms of increased exposure risk to people and the environment. In situ bacterial biostabilization is a promising alternative.

  15. Challenges in mobility and robotics for in-situ science

    NASA Technical Reports Server (NTRS)

    Wilcox, B.

    2002-01-01

    In-situ science on planetary surfaces such as Mars, Venus, Mercury and Titan pose extreme challenges for mobile robots. Future missions will involve surface, subsurface, and atmospheric mobility which focuses the need for technology development in sensing, autonomy, and mobile robot architectures for solar system exploration.

  16. Respiration of Benthopelagic Fishes: In situ Measurements at 1230 Meters

    Microsoft Academic Search

    K. L. Smith Jr.; R. R. Hessler

    1974-01-01

    The respiration rate in situ of two common benthopelagic fishes, Coryphaenoides acrolepis and Eptatretus deani, was monitored at 1230 meters in the San Diego Trough. The respiration rate of C. acrolepis was two orders of magnitude lower and that of E. deani was significantly lower (P <.05) than rates in comparable shallow-water species.

  17. Changing Incidence of Lobular Carcinoma in situ of the Breast

    Microsoft Academic Search

    Christopher I. Li; Benjamin O. Anderson; Janet R. Daling; Roger E. Moe

    2002-01-01

    Estimating the incidence of lobular carcinoma in situ (LCIS) of the breast is challenging because it lacks both clinical and mammographic signs and is usually an incidental finding in breast biopsies performed for other reasons. In general, population-based studies are believed to provide the most accurate measures, but few documenting changes in LCIS incidence rates over time have been reported.

  18. Biomarker profile and genetic abnormalities in lobular carcinoma in situ

    Microsoft Academic Search

    Syed K. Mohsin; Peter O’Connell; D. Craig. Allred; Arlene L. Libby

    2005-01-01

    Summary  The predisposition of patients with lobular carcinoma in situ (LCIS) to develop invasive breast cancer (IBC) is well known. However, relatively little is known about the biologic characteristics, which may be involved in the development and progression of LCIS. This study evaluated 59 cases of LCIS (29 pure, 30 with synchronous IBC) for five biomarkers known to be important in

  19. Loss of chromosome 16q in lobular carcinoma in situ

    Microsoft Academic Search

    Joan E Etzell; Sandy Devries; K Chew; C Florendo; A Molinaro; B. M Ljung; Frederic M Waldman

    2001-01-01

    Lobular carcinoma in situ (LCIS) and infiltrating lobular carcinoma may represent different forms of the same disease based on their frequent clinical association and similar histologic features. Patients with LCIS are at increased risk of multicentric and bilateral disease. Thus, LCIS may represent both a precursor to infiltrating lobular carcinoma and a marker of risk for breast cancer. To identify

  20. A trap for in situ cultivation of filamentous actinobacteria

    Microsoft Academic Search

    Ekaterina Gavrish; Annette Bollmann; Slava Epstein; Kim Lewis

    2008-01-01

    The approach of growing microorganisms in situ, or in a simulated natural environment is appealing, and different versions of it have been described by several groups. The major difficulties with these approaches are that they are not selective for actinomycetes — a group of gram-positive bacteria well known as a rich source of antibiotics. In order to efficiently access actinomycetes,