Science.gov

Sample records for in-situ ion beam

  1. Mass sensor for in situ monitoring of focused ion and electron beam induced processes

    SciTech Connect

    Friedli, Vinzenz; Santschi, Christian; Michler, Johann; Hoffmann, Patrik; Utke, Ivo

    2007-01-29

    A cantilever-based mass sensor for in situ monitoring of deposition and milling using focused ion and electron beams is presented. Carefully designed experiments allowed for mass measurements with a noise level of {+-}10 fg by tracking the resonance frequency of a temperature stabilized piezoresistive cantilever using phase locking. The authors report on measurements of precursor surface coverage, residence time, mass deposition rates, yields, and deposit density using the (CH{sub 3}){sub 3}PtCpCH{sub 3} precursor.

  2. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    SciTech Connect

    Gianola, D. S.; Sedlmayr, A.; Moenig, R.; Kraft, O.; Volkert, C. A.; Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L.

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  3. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams. PMID:26864147

  4. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-01-01

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  5. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGESBeta

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  6. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    SciTech Connect

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  7. In-Situ Cleaning of Metal Cathodes using a Hydrogen Ion Beam

    SciTech Connect

    Dowell, D.H.; King, F.K.; Kirby, R.E.; Schmerge, J.F.; /SLAC

    2006-03-29

    Metal photocathodes are commonly used in high-field RF guns because they are robust, straightforward to implement and tolerate relatively poor vacuum compared to semi-conductor cathodes. However these cathodes have low quantum efficiency (QE) even at UV wavelengths, and still require some form of cleaning after installation in the gun. A commonly used process for improving the QE is laser cleaning. In this technique the UV drive laser is focused to a small diameter close to the metal's damage threshold and then moved across the surface to remove contaminants. This method does improve the QE, but can produce non-uniform emission and potentially damage the cathode. Ideally an alternative process which produces an atomically clean, but unaltered surface is needed. In this paper we explore using a hydrogen ion (H-ion) beam to clean a copper cathode. We describe QE measurements over the wavelength range of interest as a function of integrated exposure to an H-ion beam. We also describe the data analysis to obtain the work function and derive a formula of the QE for metal cathodes. Our measured work function for the cleaned sample is in good agreement with published values, and the theoretical QE as a function of photon wavelength is in excellent agreement with the cleaned copper experimental results. Finally, we propose an in-situ installation of an H-ion gun compatible with existing s-band RF guns.

  8. Ion Beams: In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating (Small 13/2016).

    PubMed

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused ion beam (FIB) processing is an important direct-write nanoscale synthesis technique; however it generates subsurface defects that can preclude its use for many applications. On page 1779 P.D. Rack and co-workers demonstrate an in situ laser assisted focused ion beam synthesis approach, which photothermally mitigates the defects generated in silicon during focused He(+) and Ne(+) exposures. Finally, the group shows that laser assisted FIB reduces the damage generated in graphene nanochannels fabricated via the He(+) FIB. PMID:27038178

  9. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  10. In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam

    SciTech Connect

    Dowell, D.H.; King, F.K.; Kirby, R.E.; Schmerge, J.F.; /SLAC

    2005-09-01

    Improving and maintaining the quantum efficiency (QE) of a metal photocathode in an s-band RF gun requires a process for cleaning the surface. In this type of gun, the cathode is typically installed and the system is vacuum baked to {approx}200 degrees C. If the QE is too low, the cathode is usually cleaned with the UV-drive laser. While laser cleaning does increase the cathode QE, it requires fluences close to the damage threshold and rastering the small diameter beam, both of which can produce nonuniform electron emission and potentially damage the cathode. This paper investigates the efficacy of a low energy hydrogen ion beam to produce high-QE metal cathodes. Measurements of the QE vs. wavelength, surface contaminants using x-ray photoelectron spectroscopy and surface roughness were performed on a copper sample, and the results showed a significant increase in QE after cleaning with a 1keV hydrogen ion beam. The H-ion beam cleaned an area approximately 1cm in diameter and had no effect on the surface roughness while significantly increasing the QE. These results and a comparison with theory as well as a scheme for installing an H-ion cleaner on an s-band gun are presented.

  11. In-situ superconducting YBa2Cu3O7 thin films grown by ion beam co-deposition

    NASA Astrophysics Data System (ADS)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1989-12-01

    We present superconducting YBa2C3O7 (YBCO) thin films grown in-situ by three-ion-beam sputtering. Y, Y2O3, Cu, Cu2O, BaF2 and BaCO3 sputter targets have been investigated. The highest quality films were prepared using a BaCO3 target. Auger analysis of films grown using a BaCO3 target show no carbon content. Y2O3 and Cu2O are more suitable than the native metals as sputter targets for YBCO growth as they are much less prone to sputter rate variations with oxygen partial pressure. They also supply oxygen to the growing film. As-deposited YBCO films are metallic (resistivity 240 μΩ cm at 100 K), reflective, and of highly homogeneous composition with TCO transition temperatures of 73 K and transition widths of 15 K. Post-annealing in flowing oxygen improves TCO's to 82 K. Critical currents are in excess of 105 A cm-2 at 77 K. Films are textured with c-axis orientation perpendicular to the (100) SrTiO3 substrate surface. As-deposited superconducting YBCO films have also been prepared on SiO2 and Y2O3 buffer layers on Si wafers.

  12. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schultz, J.A.; Schmidt, H.; Liu, Y.L.; Auciello, O.; Barr, T.; Chang, R.P.H.

    1992-08-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described.

  13. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M. ); Lin, Y.P. Northwestern Univ., Evanston, IL . Dept. of Materials Science); Schultz, J.A. ); Schmidt, H. ); Liu, Y.L. (Argonne National Lab., IL (United States

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described.

  14. Ion beam induced dissolution and precipitation of in situ formed Si-nanostructures in a-SiNx:H matrix

    NASA Astrophysics Data System (ADS)

    Singh, Sarab Preet; Ghosh, Santanu; Vijaya Prakash, G.; Khan, Saif A.; Kanjilal, D.; Srivastava, A. K.; Srivastava, Himanshu; Srivastava, P.

    2012-04-01

    We report here the response of in situ formed Si-nanostructures embedded in Si-rich hydrogenated amorphous silicon nitride matrix to 100 MeV Ni8+ ions irradiation under normal incidence at room temperature. Prior to irradiation, Si-nanostructures are amorphous in nature having partial crystallinity. Irradiation with a fluence of 5 × 1012 ions/cm2 leads to dissolution of Si-nanostructures. Nevertheless, irradiation with a relatively higher fluence of 1 × 1014 ions/cm2 enhances the nucleation and leads to the formation of amorphous Si-nanostructures. The results are understood on the basis of intense electronic energy loss induced hydrogen desorption and consequent rearrangement of the amorphous network under thermal spike formalism of ion-material interaction.

  15. New instrumentation in Argonne`s HVEM-Tamdem Facility: Expanded capability for in situ ion beam studies

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.

    1995-11-01

    During 1995, a state-of-the-art intermediate voltage electron microscope (IVEM) has been installed in the HVEM-Tandem Facility with in situ ion irradiation capabilities similar to those of the HVEM. A 300 kV Hitachi H-9000NAR has been interfaced to the two ion accelerators of the Facility, with a spatial resolution for imaging which is nearly an order of magnitude better than that for the 1.2 MV HVEM which dates from the early 1970s. The HVEM remains heavily utilized for electron- and ion irradiation-related materials studies, nevertheless, especially those for which less demanding microscopy is adequate. The capabilities and limitations of this IVEM and HVEM are compared. Both the HVEM and IVEM are part of the DOE funded User Facility and therefore are available to the scientific community for materials studies, free of charge for non-proprietary research.

  16. Focused ion beam-based in situ patterning of gallium arsenide(001) and optical investigations of indium arsenide/gallium arsenide(001)

    NASA Astrophysics Data System (ADS)

    Kalburge, Amol Madhusudan

    This dissertation contributes to the two generic areas of current research focusing on epitaxical semiconductor nanostructures: (i) all in-situ nanostructure synthesis via epitaxical growth on non-planar patterned substrates (NPPS), and via highly strained epitaxical growth on planar substrates, and (ii) optical behaviour of such nanostructures. Towards in-situ nanostructure synthesis via epitaxical growth on NPPS, two Ga+ focused ion beam (FIB) based approaches are explored to create NPPS in-situ. The first approach is a direct-write (i.e. resist-less) approach and uses FIB assisted chlorine etching (FIBCE) to directly create mesas into the GaAs (001) substrate. Systematic investigations of the FIBCE process are carried out to develop a basic understanding necessary for its effective use as a direct-write patterning tool. The second approach is a lithographic approach and uses plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) as an in-situ resist and Ga+ implantation as a resist exposure method. For the in-situ nanostructure synthesis via highly strained epitaxical growth of three-dimensional (3D) islands on planar substrates, systematic optical investigations of the InAs/GaAs (001) system are carried out to both, reveal the potential of the islands as quantum boxes [dubbed quantum dots (QDs)] and optimize their synthesis. Through low temperature photoluminescence and photoluminescence excitation studies we identify the optimum GaAs cap layer growth conditions and demonstrate the QD-like nature of 3D islands. Optical investigations of multiply stacked islands suggest that the size and shape uniformity of islands in the upper stacks improves during the vertical stacking process. Lasing is observed from the laser structures having single and multiple stacks of 2.00ML InAs islands, albeit at wavelengths shorter than the PL maximum. Through systematic optical studies of incremental InAs depositions ranging from 1.00ML to 2.00ML, and with

  17. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  18. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter

    NASA Astrophysics Data System (ADS)

    Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu

    2016-06-01

    Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.

  19. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  20. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  1. In situ ion irradiation of zirconium carbide

    NASA Astrophysics Data System (ADS)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  2. In-situ XMCD evaluation of ferromagnetic state at FeRh thin film surface induced by 1 keV Ar ion beam irradiation and annealing

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Aikoh, K.; Sakamaki, M.; Amemiya, K.; Iwase, A.

    2015-12-01

    Surface ferromagnetic state of FeRh thin films irradiated with 1 keV Ar ion-beam has been investigated by using soft X-ray Magnetic Circular Dichroism (XMCD). It was revealed that the Fe atoms of the samples were strongly spin-polarized after Ar ion-beam irradiation. Due to its small penetration depth, 1 keV Ar ion-beam irradiation can modify the magnetic state at subsurface of the samples. In accordance with the XMCD sum rule analysis, the main component of the irradiation induced ferromagnetism at the FeRh film surface was to be effective spin magnetic moment, and not to be orbital moment. We also confirmed that the surface ferromagnetic state could be produced by thermal annealing of the excessively ion irradiated paramagnetic subsurface of the FeRh thin films. This novel magnetic modification technique by using ion irradiation and subsequent annealing can be a potential tool to control the surface magnetic state of FeRh thin films.

  3. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1984-12-01

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3)=53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D/sub 1//sup +/(E):D/sub 2//sup +/(E):D/sub 3//sup +/(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed.

  4. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  5. In situ, real-time analysis of the growth of ferroelectric and conductive oxide heterostructures by a new time-of-flight pulsed ion beam surface analysis technique

    SciTech Connect

    Auciello, O.; Krauss, A.R.; Gruen, D.M.; Lin, Y. |; Chang, R.P.H.

    1994-06-01

    A new time-of-flight ion scattering and recoil spectroscopy ISARS) technique has been developed and is now used to perform in situ, real-time analysis of ferroelectric and conductive oxide layers during growth. Initial results presented here show various major effects, namely: (a) RuO{sub 2} films on MgO substrates appear to be terminated in O atoms on the top layer located in between Ru atoms lying in the layer underneath (This effect may have major implications for the explanation of the elimination of polarization fatigue demonstrated for RuO{sub 2}/PZT/RuO{sub 2} heterostructure capacitors); (b) deposition of a Ru monolayer (?n top of a Pb monolayer results in surface segregation of Pb until a complete Pb layer develops over the Ru monolayer, and (c) a Pb/Zr/Ti layered structure yields a top Pb layer with first evidence of the existence of Pb vacancies, which also may have major implications in relation to the electrical characteristics of PZT-based capacitors.

  6. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  7. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  8. In-situ Studies of Highly Charged Ions at the LLNL EBIT

    SciTech Connect

    Beiersdorfer, P

    2001-08-16

    The properties of highly charged ions and their interaction with electrons and atoms is being studied in-situ at the LLNL electron beam ion traps, EBIT-II and SuperEBIT. Spectroscopic measurements provide data on electron-ion and ion-atom interactions as well as accurate transition energies of lines relevant for understanding QED, nuclear magnetization, and the effects of relativity on complex, state-of-the-art atomic calculations.

  9. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  10. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  11. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  12. Ion beam analysis of C-13 and deuterium deposition in DIII-D and their removal by in-situ oxygen baking

    SciTech Connect

    Wampler, W. R.; Allen, S. L.; Brooks, N. H.; Chrobak, C P; Davis, J W; Ellis, R; McLean, A. G.

    2011-01-01

    An experiment was conducted in DIII-D to examine carbon deposition when a secondary separatrix is near the wall. The magnetic configuration for this experiment was a biased double-null, similar to that foreseen for ITER. C-13 methane was injected toroidally symmetrically near the secondary separatrix into ELMy H-mode deuterium plasmas. The resulting deposition of C-13 was determined by nuclear reaction analysis. These results show that very little of the injected C-13 was deposited at the primary separatrix, whereas a large fraction of injected C-13 was deposited close to the point of injection near the secondary separatrix. Six of the tiles were put back into DIII-D, where they were baked at 350-360 degrees C for 2 h at similar to 1 kPa in a 20% O-2/80% He gas mixture. Subsequent ion beam analysis of these tiles showed that about 21% of the C-13 and 54% of the deuterium were removed by the bake.

  13. Decreasing Beam Auto Tuning Interruption Events with In-Situ Chemical Cleaning on Axcelis GSD

    SciTech Connect

    Fuchs, Dieter; Spreitzer, Stefan; Vogl, Josef; Bishop, Steve; Eldridge, David; Kaim, Robert

    2008-11-03

    Ion beam auto tuning time and success rate are often major factors in the utilization and productivity of ion implanters. Tuning software frequently fails to meet specified setup times or recipe parameters, causing production stoppages and requiring manual intervention. Build-up of conductive deposits in the arc chamber and extraction gap can be one of the main causes of auto tuning problems. The deposits cause glitching and ion beam instabilities, which lead to errors in the software optimization routines. Infineon Regensburg has been testing use of XeF{sub 2}, an in-situ chemical cleaning reagent, with positive results in reducing auto tuning interruption events.

  14. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  15. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    SciTech Connect

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-15

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN{sub 2}) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C{sub 60} was used to test the sample cooling unit. It shows that the phase of the C{sub 60} film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  16. The TriBeam system: Femtosecond laser ablation in situ SEM

    SciTech Connect

    Echlin, McLean P.; Straw, Marcus; Randolph, Steven; Filevich, Jorge; Pollock, Tresa M.

    2015-02-15

    Femtosecond laser ablation offers the unique ability to remove material at rates that are orders of magnitude faster than existing ion beam technologies with little or no associated damage. By combining ultrafast lasers with state-of-the-art electron microscopy equipment, we have developed a TriBeam system capable of targeted, in-situ tomography providing chemical, structural, and topographical information in three dimensions of near mm{sup 3} sized volumes. The origins, development, physics, current uses, and future potential for the TriBeam system are described in this tutorial review. - Graphical abstract: Display Omitted - Highlights: • An emerging tool, the TriBeam, for in situ femtosecond (fs) laser ablation is presented. • Fs laser ablation aided tomography at the mm{sup 3}-scale is demonstrated. • Fs laser induced deposition of Pt is demonstrated at sub-diffraction limit resolution. • Fs laser surface structuring is reviewed as well as micromachining applications.

  17. Improved Beam Diagnostic Spatial Calibration Using In-Situ Measurements of Beam Emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.; Pablant, N. A.

    2014-10-01

    A new technique has been developed for determining the measurement geometry of the charge exchange recombination spectroscopy diagnostic (CER) on DIII-D. This technique removes uncertainty in the measurement geometry related to the position of the neutral beams when they are injecting power. This has been accomplished by combining standard measurements that use in-vessel calibration targets with spectroscopic measurements of Doppler shifted and Stark split beam emission to fully describe the neutral beam positions and CER views. A least squares fitting routine determines the measurement geometry consistent with all the calibration data. The use of beam emission measurements allows the position of the neutral beams to be determined in-situ by the same views that makeup the CER diagnostic. Results indicate that changes in the measurement geometry are required to create a consistent set of calibration measurements. However, changes in quantities derived from the geometry, e.g. ion temperature gradient and poloidal rotation, are small. Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC02-09H11466.

  18. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  19. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  20. In situ growth of superconducting YBaCuO using reactive electron-beam coevaporation

    SciTech Connect

    Missert, N.; Hammond, R.; Mooij, J.E.; Matijasevic, V.; Rosenthal, P.; Geballe, T.H.; Laderman, S.S.; Lu, C.; Garwin; Barton, R.

    1989-03-01

    Conditions required for in situ growth of YBaCuO thin films by reactive electron-beam evaporation have been explored. Three sources of activated oxygen (atomic oxygen from microwave discharge, a plasma generated by electron beams and an ion beam) were compared. The best results so far were obtained with atomic oxygen. Epitaxial films with high critical currents were grown on SrTiO/sub 3/ <100> and <110>, Al/sub 2/O/sub 3/ <1102> and MgO <100> at 600/sup 0/C. Evaporation rates were controlled with a rate monitor using atomic absorption.

  1. In situ growth of superconducting YBaCuO using reactive electron-beam coevaporation

    SciTech Connect

    Missert, N.; Hammond, R.; Mooij, J.E.; Matijasevic, V.; Rosenthal, P.; Geballe, T.H.; Kapitulnik, A.; Beasley, M.R.; Laderman, S.S.; Lu, C.

    1988-09-01

    Conditions required for in situ growth of YBaCuO thin films by reactive electron-beam evaporation have been explored. Three sources of activated oxygen (atomic oxygen from microwave discharge, a plasma generated by electron beams, and an ion beam) were compared. The best results so far were obtained with atomic oxygen. Epitaxial films with high critical currents were grown on SrTiO/sub 3/ <100> and <110>, Al/sub 2/O/sub 3/ <1/bar 1/02> and MgO <100> at 600/degree/C. Evaporation rates were controlled with a rate monitor using atomic absorption. 16 refs., 2 figs., 1 tab.

  2. Ion beam surface modification

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.

    1982-01-01

    The essential details of a study on the practical applications and mechanisms of polymer sputtering via Argon ion impact are summarized. The potential to modify the properties of polymer surfaces to improve their adherence, durability, biocompatibility, or other desirable properties by ion beam sputtering was emphasized. Ion beam milling can be of benefit as an analytical tool to obtain composition versus depth information. Ion impact from a directed ion gun source specifically etches polymer structures according to their morphologies, therefore this technique may be useful to study unknown or new morphological features. Factors addressed were related to: (1) the texture that arises on a polymer target after ion impact; (2) the chemistry of the top surface after ion impact; (3) the chemistry of sputtered films of polymeric material deposited on substrates placed adjacent to targets during ion impact; and (4) practical properties of textured polymer targets, specifically the wettability and adhesive bonding properties.

  3. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  4. Beam-assisted large elongation of in situ formed Li2O nanowires

    PubMed Central

    Zheng, He; Liu, Yang; Mao, Scott X.; Wang, Jianbo; Huang, Jian Yu

    2012-01-01

    As an important component of the solid electrolyte interface in lithium ion batteries and an effective blanket breeding material in fusion reactor, the mechanical property of Li2O is of great interest but is not well understood. Here we show that the polycrystalline Li2O nanowires were formed in situ by touching and pulling lithium hydroxide under electron beam (e-beam) illumination. The Li2O nanowires sustained an enhanced elongation (from 80% to 176%) under low dose e-beam irradiation near room temperature as compared with that (from 51% to 57%) without e-beam irradiation. The extremely high deformability could be understood by the fast Li2O diffusion under e-beam irradiation and tensile stress condition. The large elongation without e-beam irradiation implies that nano-structured Li2O is ductile near room temperature. PMID:22848788

  5. Beam-assisted large elongation of in situ formed Li₂O nanowires.

    PubMed

    Zheng, He; Liu, Yang; Mao, Scott X; Wang, Jianbo; Huang, Jian Yu

    2012-01-01

    As an important component of the solid electrolyte interface in lithium ion batteries and an effective blanket breeding material in fusion reactor, the mechanical property of Li(2)O is of great interest but is not well understood. Here we show that the polycrystalline Li(2)O nanowires were formed in situ by touching and pulling lithium hydroxide under electron beam (e-beam) illumination. The Li(2)O nanowires sustained an enhanced elongation (from 80% to 176%) under low dose e-beam irradiation near room temperature as compared with that (from 51% to 57%) without e-beam irradiation. The extremely high deformability could be understood by the fast Li(2)O diffusion under e-beam irradiation and tensile stress condition. The large elongation without e-beam irradiation implies that nano-structured Li(2)O is ductile near room temperature. PMID:22848788

  6. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  7. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  8. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  9. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  10. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGESBeta

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  11. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  12. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  13. In situ and remote measurements of ions escaping from Venus

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.

    2013-12-01

    Venus is thought to lose a large fraction of its atmosphere in the form ions, mainly via pickup. The relative loss rate of the exosphere as neutrals or ions is not known, nor is the flux of escaping ions well constrained. Knowledge of these processes will shed light on the role an intrinsic magnetic field has in atmospheric erosion. We use the complementary in-situ plasma and energetic neutral atom (ENA) measurements from the Venus Express (VEx) spacecraft in order to constrain the ion escape. VEx completed about 2500 orbits to date and reached altitudes as low as 200km. The ASPERA/IMA instrument measured directional proton and oxygen ion spectra in the 10eV to 40keV range. We bin the data accumulated over the mission in space and bulk flow direction, yielding a direct measure of the local ion escape flux. While such in-situ measurements provide data without ambiguity, they are limited by the orbital coverage. This is why we include remote ENA measurements from the ASPERA/NPD (100eV to 10keV) instrument to our study. ENAs are created when escaping ions charge exchange with the high atmosphere atoms or molecules. We have done an exhaustive analysis of the data, excluding time periods of instrument contamination. Most ENA emission originates from low altitudes above Venus' limb. These measurements will be compared with the in-situ data, which allows constraining the atmospheric density at high altitudes. Interestingly, there are also ENA emissions from other directions, which were not sampled in-situ. This allows us to put a lower limit to the escape from these regions.

  14. Ion beam mixing by focused ion beam

    SciTech Connect

    Barna, Arpad; Kotis, Laszlo; Labar, Janos L.; Osvath, Zoltan; Toth, Attila L.; Menyhard, Miklos; Zalar, Anton; Panjan, Peter

    2007-09-01

    Si amorphous (41 nm)/Cr polycrystalline (46 nm) multilayer structure was irradiated by 30 keV Ga{sup +} ions with fluences in the range of 25-820 ions/nm{sup 2} using a focused ion beam. The effect of irradiation on the concentration distribution was studied by Auger electron spectroscopy depth profiling, cross-sectional transmission electron microscopy, and atomic force microscopy. The ion irradiation did not result in roughening on the free surface. On the other hand, the Ga{sup +} irradiation produced a strongly mixed region around the first Si/Cr interface. The thickness of mixed region depends on the Ga{sup +} fluence and it is joined to the pure Cr matrix with an unusual sharp interface. With increasing fluence the width of the mixed region increases but the interface between the mixed layer and pure Cr remains sharp. TRIDYN simulation failed to reproduce this behavior. Assuming that the Ga{sup +} irradiation induces asymmetric mixing, that is during the mixing process the Cr can enter the Si layer, but the Si cannot enter the Cr layer, the experimental findings can qualitatively be explained.

  15. In Situ Measurements of Meteoric Ions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aikin, Arthur C.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.

  16. Ion Beam Simulator

    Energy Science and Technology Software Center (ESTSC)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore » beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.« less

  17. Ion Accelerator Merges Several Beams

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1984-01-01

    Intense ion beam formed by merging multiple ion beamlets into one concentrated beam. Beamlet holes in graphite screen and focusing grids arranged in hexagonal pattern. Merged beam passes through single hole in each of aluminum accelerator and decelerator grids. Ion extraction efficiency, beam intensity, and focusing improved.

  18. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  19. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  20. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  1. In situ creep measurements on micropillar samples during heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Özerinç, Sezer; Averback, Robert S.; King, William P.

    2014-08-01

    We report on the development of an in situ micropillar compression apparatus capable of measuring creep under heavy ion beam irradiation. The apparatus has a force resolution of 1 μN and a displacement resolution of 1 nm. The experimental setup consists of a nanopositioner, a laser displacement sensor, and a microfabricated doubly clamped silicon-beam transducer. The system was tested by measuring the creep rate of amorphous Cu56Ti38Ag6 micropillars as a function of applied stress during room temperature irradiation with 2.1 MeV Ne+. Measured values of the irradiation induced fluidity are in the range 0.5-3 dpa-1 GPa-1, and in good agreement with values obtained by stress relaxation experiments on other metallic glasses, and with predictions of molecular dynamics simulations. The in situ apparatus provides a practical approach for accelerated evaluation of irradiation induced creep in promising nuclear materials.

  2. An in situ transmission electron microscopy study of the ion irradiation induced amorphisation of silicon by He and Xe

    SciTech Connect

    Edmondson, P. D.; Abrams, K. J.; Hinks, J. A.; Greaves, G.; Pawley, C. J.; Hanif, I.; Donnelly, S. E.

    2015-11-21

    We used transmission electron microscopy with in situ ion irradiation to examine the ion-beam-induced amorphisation of crystalline silicon under irradiation with light (He) and heavy (Xe) ions at room temperature. Analysis of the electron diffraction data reveal the heterogeneous amorphisation mechanism to be dominant in both cases. Moreover, for the differences in the amorphisation curves are discussed in terms of intra-cascade dynamic recovery, and the role of electronic and nuclear loss mechanisms.

  3. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  4. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  5. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  6. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  7. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Pace, D C

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access. PMID:26520957

  8. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    SciTech Connect

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  9. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  10. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  11. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  12. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  13. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  14. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Kramer, G. J.; Nazikian, R.; Austin, M. E.; Hanson, J. M.; Zeng, L.

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  15. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  16. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges.

    PubMed

    Hammad Fawey, Mohammed; Chakravadhanula, Venkata Sai Kiran; Reddy, Munnangi Anji; Rongeat, Carine; Scherer, Torsten; Hahn, Horst; Fichtner, Maximilian; Kübel, Christian

    2016-07-01

    Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145192

  17. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  18. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  19. ION BEAM COLLIMATOR

    DOEpatents

    Langsdorf, A.S. Jr.

    1957-11-26

    A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

  20. Li ion nanowire batteries and their in situ characterization in the TEM

    NASA Astrophysics Data System (ADS)

    Ruzmetov, Dmitry

    2012-02-01

    The ability to measure the morphological, chemical, and transport characteristics with nanoscale resolution in electrochemical energy storage devices is critical for understanding the complex interfacial reactions and phase transformation that accompany cycling of secondary batteries. In this talk I will describe the use of an all-nanowire Li ion battery for in situ characterization of charge and discharge reactions. The nanowire batteries (NWBs) consist of a metalized core, a LiCoO2 cathode, LiPON solid electrolyte, and a thin film Si anode. Measuring several micrometers in length and several hundred nanometers in diameter, the NWBs can be readily imaged and analyzed in transmission electron microscopes (TEM, STEM). We use focused ion beam milling and electron beam induced deposition to separate the cathode and anode and fabricate Pt contacts to a NWB. In situ electrical cycling of NWBs in TEM reveals that the most of the structural changes due to cycling happens in the electrolyte layer especially near the cathode/electrolyte interface. Electrical response from a single NWB was measured in the sub-pA range. For NWBs with the thinnest electrolyte, approximately 100 nm, we observe rapid self-discharge, along with void formation at the electrode/electrolyte interface, indicating electrical and chemical breakdown. The analysis of the NWB's electrical characteristics reveals space-charge limited electronic conduction, which effectively shorts the anode and cathode electrodes. When the electrolyte thickness is increased, the self-discharge rate is reduced substantially and the NWBs maintain a potential above 2 V. Our study illustrates that at reduced dimensions the increase in the electric field can lead to large electronic current in the electrolyte effectively shorting the battery even when the electrolyte layer is uniform and pinhole free. The scaling of this phenomenon provides useful guidelines for design of 3D Li ion batteries.

  1. Ion beam modification of metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1990-04-01

    Energetic ions beams may be used in various ways to modify and so improve the tribological properties of metals. These methods include: — ion implantation of selected additive species; — ion beam mixing of thin deposited coatings; — ion-beam-assisted deposition of thicker overlay coatings. The first of these techniques has been widely used to modify the electronic properties of semiconductors, but has since been extended for the treatment of all classes of material. Tool steels can be strengthened by the ion implantation of nitrogen or titanium, to produce fine dispersions of hard second-phase precipitates. Solid solution strengthening, by combinations of substitutional and interstitial species, such as yttrium and nitrogen, has also been successful. Both ion beam mixing (IBM) and ion-beam-assisted deposition (IBAD) use a combination of coating and ion bombardment. In the first case, the objective is to intermix the coating and substrate by the aid of radiation-enhanced diffusion. In the latter case, the coating is densified and modified during deposition and the process can be continued in order to build up overlay coatings several μm in thickness. The surface can then be tailored, for instance to provide a hard and adherent ceramic such as silicon nitride, boron nitride or titanium nitride. It is an advantage that all the above processes can be applied at relatively low temperatures, below about 200° C, thereby avoiding distortion of precision components. Ion implantation is also being successfully applied for the reduction of corrosion, especially at high temperatures or in the atmosphere and to explore the mechanisms of oxidation. Ion-assisted coatings, being compact and adherent, provide a more substantial protection against corrosion: silicon nitride and boron nitride are potentially useful in this respect. Examples will be given of the successful application of these methods for the surface modification of metals and alloys, and developments in the

  2. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  3. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    SciTech Connect

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; Matola, Brad R.; Linn, Allison R.; Joy, David Charles; Adam Justin Rondinone

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ion lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.

  4. In situ methods for Li-ion battery research: A review of recent developments

    NASA Astrophysics Data System (ADS)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  5. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  6. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    SciTech Connect

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.; Poole, H. J.

    2009-05-04

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).

  7. Neon Ion Beam Lithography (NIBL).

    PubMed

    Winston, Donald; Manfrinato, Vitor R; Nicaise, Samuel M; Cheong, Lin Lee; Duan, Huigao; Ferranti, David; Marshman, Jeff; McVey, Shawn; Stern, Lewis; Notte, John; Berggren, Karl K

    2011-10-12

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. We report lithography using neon ions with fluence <1 ion/nm(2), ∼1000× more efficient than using 30 keV electrons, and resolution down to 7 nm half-pitch. This combination of resolution and exposure efficiency is expected to impact a wide array of fields that are dependent on beam-based lithography. PMID:21899279

  8. VISIONS: Combined remote sensing and in situ observations of auroral zone ion outflow during a substorm

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Clemmons, J. H.; Hecht, J. H.; Lemon, C. L.; Collier, M. R.; Keller, J. W.; Pfaff, R. F.; Klenzing, J.; McLain, J.

    2013-12-01

    The 'first step' in the chain of events that energizes thermal ions from a few tenths of an eV to 10 keV and transports them from the topside ionosphere to high altitudes occurs in the 300-1000 km altitude regime. In this region, various drivers work together to heat and accelerate the ions and push them up the field line. These include Joule heating, soft electron precipitation (driving ambipolar fields), and BBELF and VLF waves. Since the ions need to gain at least several eV to reach the higher altitudes where wave-particle interactions have been observed to form ion conics and beams, the low-altitude region serves as a 'rate limiting step' for the overall process of ion energization and outflow. Major outstanding questions still remain as to the extent and duration of outflow, and the details of the mechanisms that drive it - questions that can only be resolved by studying this critical altitude region. VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) was a sounding rocket mission launched Feb 7, 2013, at 0821 UTC from Poker Flat, AK into the expansion phase of an auroral substorm. VISIONS was expressly designed to take advantage of the sounding rocket trajectory (slow motion through the auroral features and vertical profile) and a unique combination of in situ and remote sensing to shed new light on the drivers of low-altitude ion outflow. VISIONS carried five instruments, which together with ground-based instrumentation, measure the relevant parameters for studying ion outflow: 1) a low-energy energetic neutral atom (ENA) imager, MILENA, to remotely sense ion outflow from 50 eV to 3 keV 2) an electrostatic analyzer for electrons from 3 eV - 30 keV 3) an electrostatic analyzer for ions from 1.5 eV - 15 eV 4) a four-channel visible imager (6300, 3914, H-Beta, and 8446) with 90 degree field of view for understanding electron precipitation over a wide area and for comparison with the ENA images 5) a fields and thermal plasma suite that

  9. in situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-04-01

    This research resulted in a construction and implementation of an in situ plasma discharge to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results.

  10. In situ analysis of ion-induced polymer surface modification using secondary ion mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuji, Shigeto; Kitazawa, Hideaki; Takeda, Yoshihiko

    2016-06-01

    We have investigated the surface modification process consisting of ion irradiation immediately followed by exposure to ambient gas for three types of polymers having the same main chain, sbnd Csbnd Csbnd , but different atoms bound to the main chain, using in situ secondary ion mass spectroscopy. The polymers' surface was irradiated with 30 keV Au ions at a total fluence for up to 1 × 1017 cm-2 and exposed to ambient gas in a ultra-high-vacuum chamber (1 × 10-6 Pa) for 30 min after the ion irradiation. Low density polyethylene mainly exhibited a hydrogen dissociation during the ion irradiation and a recombination with hydrogen atoms by the exposure, polytetrafluoroethylene mainly showed a main chain scission and no recombination during the exposure, and polyvinylidene difluoride lost hydrogen and fluorine atoms by the ion irradiation and partially recombined with hydrogen and fluorine atoms upon the exposure. The deposited energy density on the polymer surfaces reflects the dependence of the modification on the incident ion species, Au or Ga ions.

  11. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    DOE PAGESBeta

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; Matola, Brad R.; Linn, Allison R.; Joy, David Charles; Adam Justin Rondinone

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less

  12. In situ evaporation of lithium for LEVIS ion source

    SciTech Connect

    Gerber, B.; Lopez, M.; Lamppa, K.; Stearns, W.; Bieg, K.

    1994-05-01

    This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

  13. In Situ TEM Concurrent and Successive Au Self-Ion Irradiation and He Implantation

    SciTech Connect

    Chisholm, Claire; Hattar, K; Minor, Andrew

    2014-01-01

    The development of advanced computational methods used for predicting performance lifetimes of materials exposed to harsh radiation environments are highly dependent on fundamental understanding of solid-radiation interactions that occur within metal components. In this work, we present successive and concurrent in situ TEM dual-beam self-ion irradiation of 2.8MeV Au4+ and implantation of 10 keV He1+, utilizing a new facility at Sandia National Laboratories. These experiments, using a model material system, provide direct real-time insight into initial interactions of displacement damage and fission products that simulate damage from neutron exposure. In successive irradiation, extensive dislocation loop and stacking fault tetrahedra damage was formed and could be associated with individual ion strikes, but no evidence of cavity formation was observed. In contrast, concurrent irradiation to the same dose resulted in the onset of cavity formation at the site of a heavy-ion strike. This direct real-time observation provides insight into the complex interplay between the helium and vacancy dynamics.

  14. Ion beam deposited protective films

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1981-01-01

    Sputter deposition of adherent thin films on complex geometric surfaces by ion beam sources is examined in order to evaluate three different types of protective coatings for die materials. In the first experiment, a 30 cm diameter argon ion source was used to sputter deposit adherent metallic films up to eight microns thick on H-13 steel, and a thermal fatigue test specimen sputter deposited with metallic coatings one micron thick was immersed in liquid aluminum and cooled by water for 15,000 cycles to simulate operational environments. Results show that these materials do protect the steel by reducing thermal fatigue and thereby increasing die lifetime. The second experiment generated diamond-like carbon films using a dual beam ion source system that directed an eight cm argon ion source beam at the substrates. These films are still in the process of being evaluated for crystallinity, hardness and infrared absorption. The third experiment coated a fiber glass beam shield incorporated in the eight-cm diameter mercury ion thruster with molybdenum to ensure proper electrical and thermal properties. The coating maintained its integrity even under acceleration tests.

  15. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  16. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  17. Ion-beam-driven electrostatic ion cyclotron instabilities

    SciTech Connect

    Miura, A.; Okuda, H.; Ashour-Abdalla, M.

    1982-10-01

    We present results of numerical simulations on the electrostatic ion cyclotron instabilities driven by the ion beam parallel to the magnetic field. For the beam speed exceeding the thermal speed of background ions and the beam temperature much lower than the background ion temperature, it is found that the instability results in strong perpendicular heating and slowing down of parallel drift of the beam ions, leading to the saturation of the instability. Applications to plasma heating and space plasma physics are discussed.

  18. Focused ion beams in biology.

    PubMed

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions. PMID:26513553

  19. In-situ deposition of sacrificial layers during ion implantation

    SciTech Connect

    Anders, A.; Anders, S.; Brown, I.G.; Yu, K.M.

    1995-02-01

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase.

  20. Ion extraction optics with tunable ion angular distribution of ribbon beams

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Distaso, Daniel; Campbell, Christopher; Singh, Vikram; Renau, Anthony

    2015-09-01

    The characteristics of the ion angular distribution (IAD) of an extracted ion beam are determined by the shape, location, and orientation of the plasma meniscus. We describe an electrostatic lens that allows modification of plasma meniscus topology and as a result in situ control of the IAD of extracted ribbon ion beams, i.e., control of ion mean angle and angular spread. The ion extraction optics supposes the use of an electrode immersed in the plasma which is located adjacent to the extraction slit. By electrically biasing the electrode relative to the plasma, the meniscus topology and its orientation relative to the wafer plane can be controlled. Thus, 300 mm wide ribbon ion beams with characteristic mean angle spanning from 0° to 50° and angular spread as low as 4°can be obtained. Ion angular distribution can be tuned in terms of mean angle and angular spread for different ion beam energies and beam currents. In addition, being made of conductive material, the extraction optics is insensitive to the possible conductive deposits resulting from byproducts of ion beam bombardment of the wafer surface.

  1. Integration of scanning probes and ion beams

    SciTech Connect

    Persaud, A.; Park, S.J.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Rangelow, I.

    2005-03-30

    We report the integration of a scanning force microscope with ion beams. The scanning probe images surface structures non-invasively and aligns the ion beam to regions of interest. The ion beam is transported through a hole in the scanning probe tip. Piezoresistive force sensors allow placement of micromachined cantilevers close to the ion beam lens. Scanning probe imaging and alignment is demonstrated in a vacuum chamber coupled to the ion beam line. Dot arrays are formed by ion implantation in resist layers on silicon samples with dot diameters limited by the hole size in the probe tips of a few hundred nm.

  2. In situ study of e-beam Al and Hf metal deposition on native oxide InP (100)

    SciTech Connect

    Dong, H.; KC, Santosh; Azcatl, A.; Cabrera, W.; Qin, X.; Brennan, B.; Cho, K.; Wallace, R. M.; Zhernokletov, D.

    2013-11-28

    The interfacial chemistry of thin Al (∼3 nm) and Hf (∼2 nm) metal films deposited by electron beam (e-beam) evaporation on native oxide InP (100) samples at room temperature and after annealing has been studied by in situ angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The In-oxides are completely scavenged forming In-In/In-(Al/Hf) bonding after Al and Hf metal deposition. The P-oxide concentration is significantly decreased, and the P-oxide chemical states have been changed to more P-rich oxides upon metal deposition. Indium diffusion through these metals before and after annealing at 250 °C has also been characterized. First principles calculation shows that In has lower surface formation energy compared with Al and Hf metals, which is consistent with the observed indium diffusion behavior.

  3. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  4. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  5. In situ study of erosion and deposition of amorphous hydrogenated carbon films by exposure to a hydrogen atom beam

    SciTech Connect

    Markelj, Sabina; Pelicon, Primoz; Cadez, Iztok; Schwarz-Selinger, Thomas; Jacob, Wolfgang

    2012-07-15

    This paper reports on the first dual-beam experiment employing a hydrogen atom beam for sample exposure and an ion beam for analysis, enabling in situ and real-time studies of hydrogen atom interaction with materials. The erosion of an amorphous hydrogenated carbon (a-C:H) layer by deuterium atoms at 580 K sample temperature was studied and the uptake of deuterium during the erosion process was measured in real time. The deuterium areal density increased at the beginning to 7.3 Multiplication-Sign 10{sup 15} D cm{sup -2}, but then stabilized at a constant value of 5.5 Multiplication-Sign 10{sup 15} D cm{sup -2}. Formation of a polymer-like deposit on an a-C:H layer held at room temperature and subjected to the deuterium atom beam was observed and also studied in situ. For both erosion and deposition studies an a-{sup 13}C:H layer on top of an Si substrate was used as a sample, making the experiments isotopically fully specified and thereby differentiating the deposited from the original layer and the interacting D atoms from H atoms present in the layer and in the residual vacuum. From the deposition study it was shown that carbon in the deposited layer originates from carbon-carrying species in the background vacuum that interact with hydrogen atoms. The areal density of the carbon at the surface was determined from the energy shift of the Si edge in the Rutherford backscattering spectrum. The cross section for {sup 7}Li on D at 4.3 MeV Li ion energy and at a recoil angle of 30 Degree-Sign was also determined to be (236 {+-} 16) Multiplication-Sign 10{sup -27} cm{sup 2}/sr. This is a factor of 3 {+-} 0.2 times higher than the Rutherford elastic cross section.

  6. Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

    SciTech Connect

    Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

    2014-02-21

    One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

  7. Obliquely incident ion beam figuring

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Dai, Yifan; Xie, Xuhui; Li, Shengyi

    2015-10-01

    A new ion beam figuring (IBF) technique, obliquely incident IBF (OI-IBF), is proposed. In OI-IBF, the ion beam bombards the optical surface obliquely with an invariable incident angle instead of perpendicularly as in the normal IBF. Due to the higher removal rate in oblique incidence, the process time in OI-IBF can be significantly shortened. The removal rates at different incident angles were first tested, and then a test mirror was processed by OI-IBF. Comparison shows that in the OI-IBF technique with a 30 deg incident angle, the process time was reduced by 56.8%, while keeping the same figure correcting ability. The experimental results indicate that the OI-IBF technique is feasible and effective to improve the surface correction process efficiency.

  8. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  9. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  10. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  11. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  12. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility. PMID:24986759

  13. Study of dislocations in copper by weak beam, stereo, and in situ straining TEM

    SciTech Connect

    McCabe, R. J.; Misra, A.; Mitchell, T. E.

    2002-01-01

    Conventional transmission electron microscopy (TEM) has been an invaluable tool for verifjhg and developing dislocation theories since the first direct observations of dislocations were made using a TEM in the 1950s. Several useful techniques and technological advancements have been made since, helping fbrther the advancement of dislocation knowledge. The present paper concerns two studies of dislocations in copper made by coupling several of these techniques, specifically weak beam, in situ straining, and stereo TEM. Stereo-TEM coupled with in situ straining TEM was used for tracking 3D dislocation motion and interactions in low dislocation density copper foils. A mechanism by which dislocations in a pileup bypass a dislocation node is observed and discussed. Weak beam TEM is used in conjunction with stereo-TEM to analyze the dislocation content of a dense dislocation wall (DDW).

  14. In-situ phase transformation in the field ion microscope.

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.

    1991-04-01

    Many materials undergo an athermal martensite transformation when cooled. This transformation has been observed in the Tishomingo meteorite during cooling to cryogenic temperatures. The meteorite is unstable when cooled to the cryogenic temperatures (40 - 85K) suitable for field ion imaging since the martensite start temperature of this material (Fe-32.5 wt%Ni) is approximately 235K.

  15. In situ/operando soft x-ray spectroscopy characterization of ion solvation and catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Sheng; Guo, Jinghua

    Many important systems especially in energy-related regime are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the varying applications calls for in-situ/operando characterization tools. We will present the recent development of the in-situ/operando soft X-ray spectroscopic in the studies of catalytic and alkali ion solvation under bias condition, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. Also the different feasible detection approaches can provide surface and bulk sensitivity experimentally from those in-situ cells. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle with examples in Ca, Na, Mg based solutions at ambient pressure/temperature and high temperature (~250°C) gas catalysis will be shown.

  16. What can in situ ion chromatography offer for Mars exploration?

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures. PMID:24963874

  17. A family of carbon-based nanocomposite tubular structures created by in situ electron beam irradiation.

    PubMed

    Liu, Jian-Wei; Xu, Jie; Ni, Yong; Fan, Feng-Jia; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-05-22

    We report a unique approach for the fabrication of a family of curling tubular nanostructures rapidly created by a rolling up of carbon membranes under in situ TEM electron beam irradiation. Multiwall tubes can also be created if irradiation by electron beam is performed long enough. This general approach can be extended to curve the conductive carbon film loaded with various functional nanomaterials, such as nanocrystals, nanorods, nanowires, and nanosheets, providing a unique strategy to make composite tubular structures and composite materials by a combination of desired optical, electronic, and magnetic properties, which could find potential applications, including fluid transportation, encapsulation, and capillarity on the nanometer scale. PMID:22530775

  18. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  19. Development of an ion beam alignment system for real-time scanning tunneling microscope observation of dopant-ion irradiation

    SciTech Connect

    Kamioka, Takefumi; Sato, Kou; Kazama, Yutaka; Watanabe, Takanobu; Ohdomari, Iwao

    2008-07-15

    An ion beam alignment system has been developed in order to realize real-time scanning tunneling microscope (STM) observation of 'dopant-ion' irradiation that has been difficult due to the low emission intensity of the liquid-metal-ion-source (LMIS) containing dopant atoms. The alignment system is installed in our original ion gun and STM combined system (IG/STM) which is used for in situ STM observation during ion irradiation. By using an absorbed electron image unit and a dummy sample, ion beam alignment operation is drastically simplified and accurized. We demonstrate that sequential STM images during phosphorus-ion irradiation are successfully obtained for sample surfaces of Si(111)-7x7 at room temperature and a high temperature of 500 deg. C. The LMIS-IG/STM equipped with the developed ion beam alignment system would be a powerful tool for microscopic investigation of the dynamic processes of ion irradiation.

  20. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  1. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  2. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  3. Concurrent in situ ion irradiation transmission electron microscope

    SciTech Connect

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  4. Ion-pair strategy for enabling amifostine oral absorption: rat in situ and in vivo experiments.

    PubMed

    Samiei, N; Mangas-Sanjuan, V; González-Álvarez, I; Foroutan, M; Shafaati, A; Zarghi, A; Bermejo, M

    2013-07-16

    This study shows the effect of ion pair formation on intestinal absorption and oral bioavailability of amifostine. Amifostine is a prodrug used as a highly potent and selective radiotherapy and chemotherapy protectant but due to its low lipophilicity and charge at physiological pH range, its trans epithelial transport and its potential for oral drug delivery is very low. Ion pair formation with negatively charged counter ions was evaluated by in situ rat perfusion studies as a possible strategy to enhance intestinal absorption of amifostine. Succinic acid, phthalic acid and benzoic acid were used as counter ions. Rat intestinal perfusion studies confirmed a statistically significant increase in amifostine permeability in the presence of the counter ions in the order of succinic>phthalic>benzoic. Rat pharmacokinetic studies in vivo were performed to calculate oral absolute bioavailability of amifostine alone and with ion pairs in order to confirm the in situ perfusion results and the applicability of the ion pair approach. Intravenous and intraduodenal administrations were done in rats using a permanent jugular vein cannulation technique and a duodenal cannulation method to avoid drug degradation in stomach. In vivo oral bioavailability studies demonstrated a 20-30-fold increase in amifostine bioavailability with succinic acid depending on counter ion ratio and 10-fold increase with phthalic acid as ion pair. In summary ion pair strategy with succinic acid could enable amifostine oral administration on enteric coated formulations. PMID:23643735

  5. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  6. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE PAGESBeta

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  7. Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1978-01-01

    An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.

  8. In Situ Thermal Ion Temperature Measurements in the E Region Ionosphere: Techniques, Results, and Limitations

    NASA Astrophysics Data System (ADS)

    Burchill, J. K.; Archer, W. E.; Clemmons, J. H.; Knudsen, D. J.; Nicolls, M. J.

    2011-12-01

    In situ measurements of thermal ion temperature are rare at E region altitudes, which are too low for satellites. Here we present ion temperature measurements from a Thermal Ion Imager (TII) that flew on NASA sounding rocket 36.234 (the "Joule-2" mission) into the nightside E region ionosphere on 19 January 2007 from Poker Flat, AK. The TII is an electrostatic ion energy/angle imager that provides 2D ion distributions at 8 ms resolution. Ion temperatures are derived at altitudes between 100 km and 190 km by modelling the detector total count rate versus ion bulk flow angle with respect to the plane of the imager's field of view. Modelling this count rate spin profile shows that the analysis technique is robust against a number of error sources, including variability in payload floating potential, ion upflow, and aperture widening due to reflections from electrode surfaces. A significant uncertainty is associated with the average mass of the ions, which is not measured independently. Using the International Reference Ionosphere model to estimate ion mass, we obtain an ion temperature of 1300 K at 125 km, increasing to more than 3000 K at 180 km. These temperatures are much larger than neutral temperatures obtained from an ionization gauge on the same rocket (Tn˜500 K at 125 km, ˜600 K at 180 km), and do not agree with incoherent scatter radar observations in the vicinity of the rocket. These anomalous ion temperatures are, however, consistent with results from an independent analysis of the shape of the ion distribution images from a similar instrument on a separate payload flown 10 minutes earlier [Archer, MSc Thesis, University of Calgary, 2009]. We conclude that the high ion temperature readings are an artifact related to the environment in the vicinity of the probe, and investigate mechanisms for the cause. We discuss the implications of this effect for future in situ attempts to measure ion temperature in the E region ionosphere.

  9. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  10. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals.

    PubMed

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-01-01

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80-400 nanometers) and grain sizes (50-220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts. PMID:26552934

  11. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals

    PubMed Central

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-01-01

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80–400 nanometers) and grain sizes (50–220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts. PMID:26552934

  12. Dehydration of Ions in Voltage-Gated Carbon Nanopores Observed by in Situ NMR.

    PubMed

    Luo, Zhi-Xiang; Xing, Yun-Zhao; Liu, Shubin; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

    2015-12-17

    Ion transport through nanochannels is of fundamental importance in voltage-gated protein ion channels and energy storage devices. Direct microscopic observations are critical for understanding the intricacy of ionic processes in nanoconfinement. Here we report an in situ nuclear magnetic resonance study of ion hydration in voltage-gated carbon nanopores. Nucleus-independent chemical shift was employed to monitor the ionic processes of NaF aqueous electrolyte in nanopores of carbon supercapacitors. The state of ion hydration was revealed by the chemical shift, which is sensitive to the hydration number. A large energy barrier was observed for ions to enter nanopores smaller than the hydrated ion size. Increasing the gating voltage above 0.4 V overcomes this barrier and brings F(-) into the nanopores without dehydration. Partial dehydration of F(-) occurs only at gating voltage above 0.7 V. No dehydration was observed for Na(+) cations, in agreement with their strong ion hydration. PMID:26629712

  13. In situ measurement of surface potential developed on MgO thin film surface under ion irradiation using ion scattering spectroscopy

    SciTech Connect

    Nagatomi, T.; Kuwayama, T.; Takai, Y.; Yoshino, K.; Morita, Y.; Kitagawa, M.; Nishitani, M.

    2009-11-15

    The application of ion scattering spectroscopy (ISS) to the in situ measurement of the surface potential developed on an insulator surface under positive ion irradiation was investigated. The ISS spectra measured for a MgO film of 600 nm thickness on a Si substrate by the irradiation of 950 eV He{sup +} ions revealed that the surface is positively charged by approximately 180 V. For accurate measurement of the surface potential, a correction to take into account the angular deflection of primary ions induced by the high surface potential is required. The dependence of the surface potential on the sample temperature revealed that no charging is induced above 700 deg. C, indicating that accumulated charges can be removed by heating to 700 deg. C. From the measurement of the ion-induced secondary electron yield using a collector electrode located in front of the sample surface, the surface potential and ion-induced secondary electron yield were found to be strongly affected by the experimental setup. Secondary electrons produced by the impact of slow positive secondary ions, the maximum energy of which corresponds to the surface potential, play an important role when the bias voltage applied to the collector electrode is positively high for the present experimental setup. The surface potential developed on the surface of MgO films of 600 and 200 nm thickness was measured in situ, revealing that the amount of accumulated charges and the time required to attain the steady state of charging are slightly dependent on the beam current of primary ions and strongly dependent on the thickness of the MgO film. The present results confirmed that the application of ISS has high potential for investigating charging phenomena and the secondary electron emission from insulator surfaces under positive ion irradiation.

  14. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  15. In situ tomography of femtosecond optical beams with a holographic knife-edge

    NASA Astrophysics Data System (ADS)

    Strohaber, J.; Kaya, G.; Kaya, N.; Hart, N.; Kolomenskii, A. A.; Paulus, G. G.; Schuessler, H. A.

    2011-07-01

    We present an in situ beam characterization technique to analyze femtosecond optical beams in a folded version of a 2f-2f setup. This technique makes use of a two-dimensional spatial light modulator (SLM) to holographically redirect radiation between different diffraction orders. This manipulation of light between diffraction orders is carried out locally within the beam. Because SLMs can withstand intensities of up to I˜1011 W/cm2, this makes them suitable for amplified femtosecond radiation. The flexibility of the SLM was demonstrated by producing a diverse assortment of ``soft apertures'' that are mechanically difficult or impossible to reproduce. We test our method by holographically knife-edging and tomographically reconstructing both continuous wave and broadband radiation in transverse optical modes.

  16. IN SITU PRECISE ANGLE MONITORING ON SYNCHROTRON RADIATION MONOCHROMATOR BY USE OF PENCIL BEAM INTERFEROMETER.

    SciTech Connect

    QIAN,S.TAKACS,P.DONG,Q.HULBERT,S.

    2003-08-25

    Monochromator is a very important and precise instrument used in beam lines at synchrotron radiation facilities. We need to know if there is actual thermal distortion on gratings resulting in the degradation of the monochromator resolution. We need to know the characteristics of the grating rotation. It is possible to make a simple but precise in-situ distortion monitoring and rotation angle test of the grating by use of a precise pencil beam angle monitor. We have made preliminary measurements on a monochrometer grating of an undulator beam line X1B at Brookhaven National Laboratory. We monitored a small amount of angle variation on the grating. We detected 1.7 {micro}rad backlash (P-V) of the grating controlling system.

  17. "Metallic burn paper" used for in situ characterization of laser beam properties.

    PubMed

    Bass, Isaac L; Negres, Raluca A; Stanion, Ken; Guss, Gabe; Bude, Jeff

    2016-04-20

    In situ ablation of thin metal films on fused silica substrates by picosecond class lasers was investigated as a method of characterizing the beam at the sample plane. The technique involved plotting the areas enclosed by constant fluence contours identified in optical microscope images of the ablation sites versus the logs of the pulse energies. Inconel films on commercially available neutral density filters as well as magnetron sputtered gold films were used. It was also shown that this technique could be used to calibrate real-time beam profile diagnostics against the beam at the sample plane. The contours were shown to correspond to the boundary where part or all of the film was ablated. PMID:27140078

  18. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  19. In situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One of the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.

  20. In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ramdon, Sanjay; Bhushan, Bharat; Nagpure, Shrikant C.

    2014-03-01

    Lithium-ion (Li-ion) batteries have been implemented for numerous applications, including plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). In an effort to prolong battery life, it is important to understand the mechanisms that cause reduced battery capacity with aging. Past studies have shown that morphological changes occur in aged cathodes. In situ electrochemical studies using atomic force microscopy allow for the direct observation of the morphology of the Li-ion battery cathode, at a nanometer scale resolution, during the cycling of an electrochemical cell. A simple electrochemical cell designed for in situ characterization is introduced. Charge/discharge curves and morphology data obtained during charging and discharging of cells are presented, and relevant mechanisms are discussed.

  1. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  2. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  3. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  4. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  5. Neutral Beam Ion Confinement in NSTX

    SciTech Connect

    D.S. Darrow; E.D. Fredrickson; S.M. Kaye; S.S. Medley; and A.L. Roquemore

    2001-07-24

    Neutral-beam (NB) heating in the National Spherical Torus Experiment (NSTX) began in September 2000 using up to 5 MW of 80 keV deuterium (D) beams. An initial assessment of beam ion confinement has been made using neutron detectors, a neutral particle analyzer (NPA), and a Faraday cup beam ion loss probe. Preliminary neutron results indicate that confinement may be roughly classical in quiescent discharges, but the probe measurements do not match a classical loss model. MHD activity, especially reconnection events (REs) causes substantial disturbance of the beam ion population.

  6. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  7. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  8. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  9. Treatment Planning for Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Greilich, Steffen; Jäkel, Oliver

    2010-01-01

    Beams of charged particles offer an improved dose conformation to the target volume as compared to photon radiotherapy, with better sparing of normal tissue structures close to the target. In addition, beams of ions heavier than helium exhibit a strong increase of the Linear Energy Transfer (LET) in the Bragg peak as compared to the entrance region, resulting in a higher biological efficiency in the target region. These physical and biological properties make ion beams more favorable for radiation therapy of cancer than photon beams. As a consequence, particle therapy with heavy ions has gained increasing interest worldwide. To fully benefit from the advantages of ion radiotherapy, appropriate treatment planning has to be done—taking into account the specific characteristics of ion beams, e.g. the inverted depth-dose profile, nuclear fragmentation, and increase radiobiological effectiveness. This paper describes in brief the approach taken at GSI Darmstadt and HIT Heidelberg for an active 3D beam scanning system.

  10. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    NASA Astrophysics Data System (ADS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  11. Laser cooling of a stored ion beam: A first step towards crystalline beams

    SciTech Connect

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  12. Ion optics of RHIC electron beam ion source

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  13. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  14. Heavy ion beams for inertial fusion

    SciTech Connect

    Godlove, T.F.; Herrmannsfeldt, W.B.

    1980-05-01

    The United States' program in inertial confinement fusion (ICF) is described in this paper, with emphasis on the studies of the use of intense high energy beams of heavy ions to provide the power and energy needed to initiate thermonuclear burn. Preliminary calculations of the transport of intense ion beams in an electrostatic quadrupole focussing structure are discussed.

  15. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  16. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques. PMID:26827327

  17. Optical Faraday Cup for Heavy Ion Beams

    SciTech Connect

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  18. Focused Ion Beam Technology for Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  19. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  20. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications. PMID:25989463

  1. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957-hour test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especialy at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  2. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957 hr test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especially at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  3. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate.

    PubMed

    Yu, Shihui; Wang, Qi-Ming; Wang, Xin; Liu, Dandan; Zhang, Wenji; Ye, Tiantian; Yang, Xinggang; Pan, Weisan

    2015-03-01

    This study was aimed to design a liposomal based ion-sensitive in situ ophthalmic delivery system of timolol maleate (TM). The TM liposome was produced by the reverse evaporation technique coupled with pH-gradients method (REVPR), and then was incorporated into deacetylated gellan gum gels. The TM liposome was demonstrated to be a round and uniform shape in TEM pictures. Compared with the TM eye drops, the TM liposome produced a 1.93 folds increase in apparent permeability coefficients (Papp), resulting in a significant increase of the corneal penetration. The TM-loaded liposome incorporated ion sensitive in situ gels (TM L-ISG) showed longer retention time on corneal surface compared with the eye drops using gamma scintigraphy technology. Draize testing showed that TM L-ISG was non-irritant for ocular tissues. The biggest efficacy of TM L-ISG occurred 30 min after eye drops administration, and efficacy disappeared after 240min. Then, compared with the eye drops, the optimal TM L-ISG could quickly reduce the intraocular pressure and the effective time was significantly longer (P≤0.05). These results indicate that liposome incorporated ion sensitive in situ gels have a potential ability for the opthalmic delivery. PMID:25615987

  4. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  5. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  6. Suppression of self-interstitials in silicon during ion implantation via in-situ photoexcitation

    SciTech Connect

    Ravi, J.; Erokhin, Yu.; Christensen, K.; Rozgonyi, G.A.; Patnaik, B.K.; White, C.W.

    1995-02-01

    The influence of in-situ photoexcitation during low temperature implantation on self-interstitial agglomeration following annealing has been investigated using transmission electron microscopy (TEM). A reduction in the level of as-implanted damage determined by RBS and TEM occurs athermally during 150 keV self-ion implantation. The damage reduction following a 300 C anneal suggests that it is mostly divacancy related. Subsequent thermal annealing at 800 C resulted in the formation of (311) rod like defects or dislocation loops for samples with and without in-situ photoexcitation, respectively. Estimation of the number of self-interstitials bound by these defects in the sample without in-situ photoexcitation corresponds to the implanted dose; whereas for the in-situ photoexcitation sample a suppression of {approx}2 orders in magnitude is found. The kinetics of the athermal annealing process are discussed within the framework of either a recombination enhanced defect reaction mechanism, or a charge state enhanced defect migration and Coulomb interaction.

  7. In situ analyses on negative ions in the indium-gallium-zinc oxide sputtering process

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo

    2013-07-01

    The origin of negative ions in the dc magnetron sputtering process using a ceramic indium-gallium-zinc oxide target has been investigated by in situ analyses. The observed negative ions are mainly O{sup -} with energies corresponding to the target voltage, which originates from the target and barely from the reactive gas (O{sub 2}). Dissociation of ZnO{sup -}, GaO{sup -}, ZnO{sub 2}{sup -}, and GaO{sub 2}{sup -} radicals also contributes to the total negative ion flux. Furthermore, we find that some sputtering parameters, such as the type of sputtering gas (Ar or Kr), sputtering power, total gas pressure, and magnetic field strength at the target surface, can be used to control the energy distribution of the O{sup -} ion flux.

  8. Earth's ion upflow associated with polar cap patches: Global and in situ observations

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-He; Zong, Qiu-Gang; Lockwood, Michael; Heelis, Roderick A.; Hairston, Marc; Liang, Jun; McCrea, Ian; Zhang, Bei-Chen; Moen, Jøran; Zhang, Shun-Rong; Zhang, Yong-Liang; Ruohoniemi, J. Michael; Lester, Mark; Thomas, Evan G.; Liu, Rui-Yuan; Dunlop, Malcolm W.; Liu, Yong C.-M.; Ma, Yu-Zhang

    2016-03-01

    We report simultaneous global monitoring of a patch of ionization and in situ observation of ion upflow at the center of the polar cap region during a geomagnetic storm. Our observations indicate strong fluxes of upwelling O+ ions originating from frictional heating produced by rapid antisunward flow of the plasma patch. The statistical results from the crossings of the central polar cap region by Defense Meteorological Satellite Program F16-F18 from 2010 to 2013 confirm that the field-aligned flow can turn upward when rapid antisunward flows appear, with consequent significant frictional heating of the ions, which overcomes the gravity effect. We suggest that such rapidly moving patches can provide an important source of upwelling ions in a region where downward flows are usually expected. These observations give new insight into the processes of ionosphere-magnetosphere coupling.

  9. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  10. Simulation of ion beam transport through the 400 Kv ion implanter at Michigan Ion Beam Laboratory

    SciTech Connect

    Naab, F. U.; Toader, O. F.; Was, G. S.

    2013-04-19

    The Michigan Ion Beam Laboratory houses a 400 kV ion implanter. An application that simulates the ion beam trajectories through the implanter from the ion source to the target was developed using the SIMION Registered-Sign code. The goals were to have a tool to develop an intuitive understanding of abstract physics phenomena and diagnose ion trajectories. Using this application, new implanter users of different fields in science quickly understand how the machine works and quickly learn to operate it. In this article we describe the implanter simulation application and compare the parameters of the implanter components obtained from the simulations with the measured ones. The overall agreement between the simulated and measured values of magnetic fields and electric potentials is {approx}10%.

  11. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  12. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, N.; Bufford, D. C.; Li, J.; Hattar, K.; Wang, H.; Zhang, X.

    2016-07-01

    Recent studies show that immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals by providing active defect sinks that capture and annihilate radiation induced defect clusters. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In this study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Furthermore in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.

  13. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  14. Modified betatron for ion beam fusion

    SciTech Connect

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs.

  15. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  16. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  17. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  18. In-situ spectral reflectance for improving molecular beam epitaxy device growth

    SciTech Connect

    Breiland, W.G.; Hammons, B.E.; Hou, H.Q.; Killeen, K.P.; Klem, J.F.; Reno, J.L.; Sherwin, M.

    1997-05-01

    This report summarizes the development of in situ spectral reflectance as a tool for improving the quality, reproducibility, and yield of device structures grown from compound semiconductors. Although initially targeted at MBE (Molecular Beam Epitaxy) machines, equipment difficulties forced the authors to test most of their ideas on a MOCVD (Metal Organic Chemical Vapor Deposition) reactor. A pre-growth control strategy using in situ reflectance has led to an unprecedented demonstration of process control on one of the most difficult device structures that can be grown with compound semiconductor materials. Hundreds of vertical cavity surface emitting lasers (VCSEL`s) were grown with only {+-} 0.3% deviations in the Fabry-Perot cavity wavelength--a nearly ten-fold improvement over current calibration methods. The success of the ADVISOR (Analysis of Deposition using Virtual Interfaces and Spectroscopic Optical Reflectance) method has led to a great deal of interest from the commercial sector, including use by Hewlett Packard and Honeywell. The algorithms, software and reflectance design are being evaluated for patents and/or license agreements. A small company, Filmetrics, Inc., is incorporating the ADVISOR analysis method in its reflectometer product.

  19. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    SciTech Connect

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D; Lowe, Larry E; Ulrich, Joseph B

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  20. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration.

    PubMed

    Salunke, Sneha R; Patil, Sanjay B

    2016-06-01

    Nasal delivery is the promising approach for rapid onset of action and avoids the first pass metabolism. The main aim of present study was to develop a novel mucoadhesive in situ gel of salbutamol sulphate using gellan gum and hydroxylpropyl methyl cellulose (HPMC) for nasal administration. The formulations were prepared so as to have gelation at physiological ion content after nasal administration. Developed formulations were evaluated for gelation, viscosity, drug content, in vitro mucoadhesion, in vitro drug release study, ex vivo permeation, and histopathology. Formulations showed pH in the range of nasal cavity and optimum viscosity for nasal administration. The mucoadhesive force depends upon concentration of HPMC and drug release was found to be 97.34% in 11h. The histopathology did not detect any damage during ex vivo permeation studies. Hence, in situ gel system of gellan gum may be a promising approach for nasal delivery of salbutamol sulphate for therapeutic improvement. PMID:26899173

  1. An in situ operando MEMS platform for characterization of Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Jung, H.; Gerasopoulos, K.; Zhang, X.; Ghodssi, R.

    2015-12-01

    This paper presents an in situ operando approach that allows characterization of lithium-ion battery electrodes. A MEMS sensor is designed and integrated with a commercially available Raman spectroscope to enable monitoring the stress and structural changes in the electrodes. An interferometric method with an enhanced image processing algorithm is applied for analyzing the crystal phase-dependent stress changes - contributing to higher sensitivity compared to a previously reported technique - while the structural changes are monitored using Raman spectroscopy. New capabilities of our platform are highlighted, allowing visual observation of crystal phase-dependent structural changes in the electrode. Simultaneous characterization of the stress and structural changes are achieved concurrently in situ operando. The results show excellent agreement with previous literature reports on both phenomena.

  2. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    PubMed Central

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  3. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-02-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities.

  4. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction.

    PubMed

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  5. A Distributed Radiator, Heavy Ion Target with Realistic Ion Beams

    NASA Astrophysics Data System (ADS)

    Callahan, Debra A.; Tabak, Max

    1997-11-01

    Recent efforts in heavy ion target design have centered around the distributed radiator design of Tabak(M. Tabak, Bull. Am. Phys. Soc., Vol 41, No 7, 1996.). The initial distributed radiator target assumed beams with a uniform radial density distribution aimed directly along the z axis. Chamber propagation simulations indicate that the beam distribution is more nearly Gaussian at best focus. In addition, more than two beams will be necessary to carry the required current; this means that the beams must be angled to allow space for the final focusing systems upstream. We will describe our modifications to the distributed radiator target to allow realistic beams and realistic beam angles.

  6. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    PubMed

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries. PMID:24251957

  7. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  8. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  9. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  10. Infrared imaging diagnostics for INTF ion beam

    NASA Astrophysics Data System (ADS)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  11. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  12. Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning

    NASA Astrophysics Data System (ADS)

    McConnell, Robert; Bruzewicz, Colin; Chiaverini, John; Sage, Jeremy

    2015-08-01

    Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Although the source of this heating is not yet understood, several previous studies suggest that noise due to surface contaminants is the limiting heating mechanism in some instances. We demonstrate an improvement by a factor of 4 in the room-temperature heating rate of a niobium surface electrode trap by in situ plasma cleaning of the trap surface. This surface treatment was performed with a simple homebuilt coil assembly and commercially available matching network and is considerably gentler than other treatments, such as ion milling or laser cleaning, that have previously been shown to improve ion heating rates. We do not see an improvement in the heating rate when the trap is operated at cryogenic temperatures, pointing to a role of thermally activated surface contaminants in motional heating whose activity may freeze out at low temperatures.

  13. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  14. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  15. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  16. Novel method for unambiguous ion identification in mixed ion beams extracted from an electron beam ion trap

    SciTech Connect

    Meissl, W.; Simon, M. C.; Crespo Lopez-Urrutia, J. R.; Tawara, H.; Ullrich, J.; Winter, HP.; Aumayr, F.

    2006-09-15

    A novel technique to identify small fluxes of mixed highly charged ion beams extracted from an electron beam ion trap is presented and practically demonstrated. The method exploits projectile charge state dependent potential emission of electrons as induced by ion impact on a metal surface to separate ions with identical or very similar mass-to-charge ratio.

  17. ION BEAM ETCHING EFFECTS IN BIOLOGICAL MICROANALYSIS

    EPA Science Inventory

    Oxygen ion beam sputter etching used in SIMS has been shown to produce morphologic effects which have similarities and differences in comparison to rf plasma etching of biological specimens. Sputter yield variations resulting from structural microheterogeneity are illustrated (e....

  18. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  19. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  20. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  1. (7)Li in situ 1D NMR imaging of a lithium ion battery.

    PubMed

    Klamor, S; Zick, K; Oerther, T; Schappacher, F M; Winter, M; Brunklaus, G

    2015-02-14

    The spatial distribution of charge carriers in lithium ion batteries during current flow is of fundamental interest for a detailed understanding of transport properties and the development of strategies for future improvements of the electrolyte-electrode interface behaviour. In this work we explored the potential of (7)Li 1D in situ NMR imaging for the identification of concentration gradients under constant current load in a battery cell. An electrochemical cell based on PTFE body and a stack of glass microfiber discs that are soaked with a technically relevant electrolyte suitable for high-temperature application and squeezed between a Li metal and a nano-Si-graphite composite electrode was assembled to acquire (7)Li 1D in situ NMR profiles with an improved NMR pulse sequence as function of time and state of charge, thereby visualizing the course of ion concentration during charge and discharge. Surface localized changes of Li concentration were attributed to processes such as solid electrolyte interphase formation or full lithiation of the composite electrode. The method allows the extraction of lithium ion transport properties. PMID:25578436

  2. Beam dynamics in heavy ion induction LINACS

    SciTech Connect

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  3. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  4. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  5. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  6. Using neutral beams as a light ion beam probe (invited)a)

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Austin, M. E.; Fisher, R. K.; Hanson, J. M.; Nazikian, R.; Zeng, L.

    2014-11-01

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  7. In-Situ Ion Analysis of Fresh Waters via an ISE Multiprobe and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Mueller, A. V.; Hemond, H.

    2010-12-01

    The ecological and geochemical sciences stand to substantially gain from capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and in-lab analysis. In-situ chemical instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, by reducing the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. We have pursued in-situ measurement of all major ions contributing to the charge makeup (>99%) of oxic natural fresh waters via an instrument combining an array of ion-selective electrode (ISE) hardware with an appropriate multivariate signal processing architecture. Commercially available electrochemical sensors promote low cost and a fast development schedule, as well as easy maintenance and reproduction. Data processing techniques are adapted from artificial intelligence and chemometrics to extract accurate information from the corresponding in-situ data matrix. This architecture takes into account temperature, conductivity, and non-linearity effects, as well as taking advantage of sensor cross-selectivities traditionally considered as interferences. Chemical and mathematical constraints, e.g. charge balance and total ionic strength, provide further system-level information. Maximizing data recovery from the sensor array allows use of the instrument without the standard additions or ionic strength adjustment traditionally-required with use of ISEs. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (sodium, potassium, calcium, and ammonium ) and hydrogen ion in a simplified

  8. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  9. In situ neutron powder diffraction using custom-made lithium-ion batteries.

    PubMed

    Brant, William R; Schmid, Siegbert; Du, Guodong; Brand, Helen E A; Pang, Wei Kong; Peterson, Vanessa K; Guo, Zaiping; Sharma, Neeraj

    2014-01-01

    Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles. However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications. This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the 'roll-over' cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data. PMID:25406578

  10. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation.

    PubMed

    Pinkerton, Nathalie M; Grandeury, Arnaud; Fisch, Andreas; Brozio, Jörg; Riebesehl, Bernd U; Prud'homme, Robert K

    2013-01-01

    We present an in situ hydrophobic salt forming technique for the encapsulation of weakly hydrophobic, ionizable active pharmaceutical ingredients (API) into stable nanocarriers (NCs) formed via a rapid precipitation process. Traditionally, NC formation via rapid precipitation has been difficult with APIs in this class because their intermediate solubility makes achieving high supersaturation difficult during the precipitation process and the intermediate solubility causes rapid Ostwald ripening or recrystallization after precipitation. By forming a hydrophobic salt in situ, the API solubility and crystallinity can be tuned to allow for NC formation. Unlike covalent API modification, the hydrophobic salt formation modifies properties via ionic interactions, thus circumventing the need for full FDA reapproval. This technique greatly expands the types of APIs that can be successfully encapsulated in NC form. Three model APIs were investigated and successfully incorporated into NCs by forming salts with hydrophobic counterions: cinnarizine, an antihistamine, clozapine, an antipsychotic, and α-lipoic acid, a common food supplement. We focus on cinnarizine to develop the rules for the in situ nanoprecipitation of salt NCs. These rules include the pK(a)s and solubilities of the API and counterion, the effect of the salt former-to-API ratio on particle stability and encapsulation efficiency, and the control of NC size. Finally, we present results on the release rates of these ion pair APIs from the NCs. PMID:23259920

  11. Superintense ion beam with high energy density

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  12. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing.

    PubMed

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices. PMID:26233395

  13. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  14. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    SciTech Connect

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven Reitzenstein, Stephan; Strittmatter, André

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  15. Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Wu, Jiang; Wang, Xiaodong; Zhang, Mingliang; Li, Juntao; Shi, Zhigui; Li, Handong; Zhou, Zhihua; Ji, Haining; Niu, Xiaobin; Wang, Zhiming M.

    2016-01-01

    Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles. The uniformity, size, and density of Ga nanodroplets can be tuned by the incident angles of ion beam. The ion beam current also plays a critical role in the self-ordering of Ga nanodroplets, and it is found that the droplets exhibit a similar droplet size but higher density and better uniformity with increasing the ion beam current. In addition, more complex arrangements of nanodroplets are achieved via in situ patterning and ion-beam-directed migration of Ga atoms. Particularly, compared to the destructive formation of nanodroplets through direct ion beam bombardment, the controllable assembly of nanodroplets on intact surfaces can be used as templates for fabrication of ordered semiconductor nanostructures by droplet epitaxy.

  16. Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces.

    PubMed

    Xu, Xingliang; Wu, Jiang; Wang, Xiaodong; Zhang, Mingliang; Li, Juntao; Shi, Zhigui; Li, Handong; Zhou, Zhihua; Ji, Haining; Niu, Xiaobin; Wang, Zhiming M

    2016-12-01

    Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles. The uniformity, size, and density of Ga nanodroplets can be tuned by the incident angles of ion beam. The ion beam current also plays a critical role in the self-ordering of Ga nanodroplets, and it is found that the droplets exhibit a similar droplet size but higher density and better uniformity with increasing the ion beam current. In addition, more complex arrangements of nanodroplets are achieved via in situ patterning and ion-beam-directed migration of Ga atoms. Particularly, compared to the destructive formation of nanodroplets through direct ion beam bombardment, the controllable assembly of nanodroplets on intact surfaces can be used as templates for fabrication of ordered semiconductor nanostructures by droplet epitaxy. PMID:26815607

  17. A pencil beam algorithm for helium ion beam therapy

    SciTech Connect

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  18. A synchronous beam sweeper for heavy ions

    SciTech Connect

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs.

  19. Thermoacoustic imaging using heavy ion beams

    SciTech Connect

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  20. Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity

    NASA Astrophysics Data System (ADS)

    Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena

    2015-12-01

    Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.

  1. Graphene engineering by neon ion beams

    DOE PAGESBeta

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  2. Beam current controller for laser ion source

    SciTech Connect

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  3. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  4. Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process.

    PubMed

    Pandalaneni, K; Amamcharla, J K

    2016-07-01

    Lactose accounts for about 75 and 85% of the solids in whey and deproteinized whey, respectively. Production of lactose is usually carried out by a process called crystallization. Several factors including rate of cooling, presence of impurities, and mixing speed influence the crystal size characteristics. To optimize the lactose crystallization process parameters to maximize the lactose yield, it is important to monitor the crystallization process. However, efficient in situ tools to implement at concentrations relevant to the dairy industry are lacking. The objective of the present work was to use a focused beam reflectance measurement (FBRM) system for in situ monitoring of lactose crystallization at supersaturated concentrations (wt/wt) 50, 55, and 60% at 20 and 30°C. The FBRM data were compared with Brix readings collected using a refractometer during isothermal crystallization. Chord length distributions obtained from FBRM in the ranges of <50 µm (fine crystals) and 50 to 300 µm (coarse crystals) were recorded and evaluated in relation to the extent of crystallization and rate constants deduced from the refractometer measurements. Extent of crystallization and rate constants increased with increasing supersaturation concentration and temperature. The measured fine crystal counts from FBRM increased at higher supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. Square weighted chord length distribution obtained from FBRM showed that as concentration increased, a decrease in chord lengths occurred at 20°C and similar observations were made from microscopic images. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully assessed in the study. PMID:27132102

  5. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  6. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  7. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    SciTech Connect

    Plotnikov, Yuri Karp, Jason Knobloch, Aaron Kapusta, Chris Lin, David

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  8. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  9. Upgoing ion beams. I - Microscopic analysis

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.; Kintner, P. M.

    1982-12-01

    The stability of electrostatic waves with frequencies near the hydrogen cyclotron frequency is investigated for an auroral plasma containing an ion beam by studying the relationship between low-frequency waves (0-1 kHz) and particles seen by the S3-3 satellite. It is concluded that only electrostatic hydrogen ion cyclotron (EHC) waves can be generated at the observed frequencies by the observed energetic particles, with the waves being produced either by drifting electrons or by the ion beam. In the model developed, ion beams are seen with their observed temperatures because they have evolved to a weakly unstable configuration in which the wave growth length is comparable to the width of the beam region. Waves are well confined to the beams because they are damped rapidly in the adjacent plasma, and the mirror effect can maintain a weak instability over a considerable altitude range. It is proposed that this effect is a source for strong pitch angle scattering, as well as an explanation for the nonexistence of downgoing ion beams.

  10. Ion sources and targets for radioactive beams

    SciTech Connect

    Schiffer, J.P.; Back, B.B.; Ahmad, I.

    1995-08-01

    A high-intensity ISOL-type radioactive beam facility depends critically on the performance of the target/ion source system. We developed a concept for producing high-intensity secondary beams of fission fragments, such as {sup 132}Sn, using a two-part target and ion source combination. The idea involves stopping a 1000-kW beam of 200-MeV deuterons in a target of Be or U to produce a secondary beam of neutrons. Just behind the neutron production target is a second target, typically a porous form of UC, coupled to an ISOL-type ion source. In December 1994, we tested this concept with 200-MeV deuterons at low intensity in an experiment at the NSCL. The yields of characteristic gamma rays were measured and confirmed our predictions.

  11. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  12. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  13. In situ remediation of soils contaminated with toxic metal ions using microwave energy.

    PubMed

    Abramovitch, Rudolph A; ChangQing, Lu; Hicks, Evan; Sinard, Joseph

    2003-12-01

    Following onto our work on the in situ remediation of soils contaminated with PAH's, PCB's and other polychlorinated organic compounds using microwave energy, we now report a preliminary investigation on the in situ remediation of soils contaminated with toxic metal ions: Cd(II), Mn(II), Th(IV), Cr(III) and mainly Cr(VI). The soil is partially vitrified in the process, and extraction with hot (70 degrees C) 35% nitric acid for 4.5 h leads to the recovery of very small amounts of the metals which had been spiked into the clean soil: Cd, Mn, and Cr(III) are completely immobilized (unextractable), Th is mostly unextractable, and Cr(VI) partially extractable at very high levels of spiking, but almost completely unextractable using the US EPA Toxicity Characteristic Leaching Procedure. This suggests that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time. PMID:14512111

  14. Precise formation of geometrically focused ion beams

    SciTech Connect

    Davydenko, V.I.; Ivanov, A.A.; Korepanov, S.A.; Kotelnikov, I.A.

    2006-03-15

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by {approx}50%.

  15. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    PubMed Central

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  16. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    NASA Astrophysics Data System (ADS)

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-02-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity.

  17. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  18. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  19. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  20. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  1. Study of Defects in GaN In Situ Doped with Eu3+ Ion Grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhou; Koizumi, Atsushi; Fujiwara, Yasufumi; Jadwisienczak, Wojciech M.

    2016-04-01

    In this work, GaN epilayer in situ doped with Eu3+ ions was deposited on the top of an undoped n-GaN/LT-GaN/sapphire structure by organometallic vapor-phase epitaxy. A set of different ohmic and Schottky contacts on GaN:Eu3+ surface was fabricated by electron-beam evaporation for performing deep level transient spectroscopy (DLTS) measurement. The deep defect energy levels in GaN:Eu3+ epilayer were assessed by standard DLTS and high resolution Laplace DLTS (L-DLTS). Three dominant DLTS peaks were observed in the temperature range from 35 K to 400 K. The calculated activation energies of these defect energy levels were 0.108 ± 0.03 eV (Trap A), 0.287 ± 0.04 eV (Trap B) and 0.485 ± 0.06 eV (Trap C) below conduction band edge, respectively. High resolution L-DLTS conducted for the GaN:Eu3+ epilayer revealed at least four closely spaced defect energy levels associated with Trap B. It is proposed that these defect energy levels correspond to the selected optically active Eu3+ ion centers in GaN host previously identified by optical studies in this material (Fujiwara and Dierolf in Jpn J Appl Phys 53:05FA13, 2014).

  2. In-SITU, Time-resolved Raman Spectro-micro-topography of an Operating Lithium Ion Battery

    NASA Technical Reports Server (NTRS)

    Luo, Yu; Cai, Wen-Bin; Xing, Xue-Kun; Scherson, Daniel A.

    2003-01-01

    A Raman microscope has been coupled to a computer-controlled, two-dimensional linear translator attached to a custom-designed, sealed optical chamber to allow in situ acquisition of space-, and time-resolved spectra of an operating thin graphite/LiCoO2 Li-ion battery. This unique arrangement made it possible to collect continuously series of Raman spectra from a sharply defined edge of the battery exposing the anode (A), separator (S), and cathode (C), during charge and discharge, while the device was moved back and forth under the fixed focused laser beam along an axis normal to the layered A/S/C plane. Clear spectral evidence was obtained for changes in the amount of Li(+) within particles of graphite in the anode, and, to a lesser extent, of LiCoO2 in the cathode, during battery discharge both as a function of position and time. Analysis of time-resolved Raman spectro-micro-topography (SMT) measurements of the type described in this work are expected to open new prospects for assessing the validity of theoretical models aimed at simulating the flow of Li(+) within Li-ion batteries under operating conditions.

  3. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  4. Proposed LLNL electron beam ion trap

    SciTech Connect

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-07-02

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs.

  5. Medical applications of ion beam processes

    NASA Astrophysics Data System (ADS)

    Sioshansi, P.

    The use of ions beams for treatment of surfaces in medical prostheses has gained increasing interest in the past few years. The application of ion beams has taken different forms: (1) ion implantation has been used for increasing the hardness and wear resistance of the new generation titanium based alloys, as well as reducing the wear of the mating polyethylene component used in orthopedic total joint replacement. Spire Corporation has been successful in commercializing ion implantation technology and is processing several thousand artificial knees and hips per year. (Spire uses the tradename IONGUARD™ for this application.) (2) Similarly, ion implantation has proven to be very effective for increasing the corrosion resistance of the Co-Cr based alloys that have traditionally been used in orthopedic prostheses. This application should be of particular interest in resolving the issues surrounding ion release problems associated with these alloys. (3) Ion beam etching/milling has been used for producing a highly textured surface for tissue ingrowth in applications ranging from porous orthopedic implants and percutaneous devices to artificial skin and the process should have a significant impact in this application. (4) There are indications that ion implantation is a useful process for increasing biocompatibility and tissue attachment on metallic samples. This subject deserves considerable attention in the coming years.

  6. Epitaxial growth and heterostructure synthesis by ion beam deposition (IBD)

    SciTech Connect

    Herbots, N.; Appleton, B.R.; Noggle, T.S.; Pennycook, S.J.; Zuhr, R.A.; Zehner, D.M.

    1986-01-01

    The synthesis of heterostructures and the possibility of low-temperature epitaxy by direct ion beam deposition at low energies (10 to 200 eV) were investigated both theoretically and experimentally. Monte-Carlo simulations of ion-solid interactions were used to study collision processes during IBD and have led to a qualitative understanding of the physical parameters involved in the deposition process. /sup 30/Si and /sup 74/Ge were deposited on Si(100) and Ge(100) directly from mass- and energy-analyzed ion beams. Ge/Si multilayers with interfaces as sharp as 0.35 nm were formed by IBD at 65 eV. Reactive ion etching with 20 eV /sup 37/Cl was used to clean Si surfaces in-situ at 625 and 870/sup 0/K. IBD epitaxy was then observed between 625 and 870/sup 0/K with ion energies ranging from 10 to 65 eV. /sup 30/Si films on Si(100) grown at 700/sup 0/K exhibited an ion channeling minimum yield of 4.8%. The dopant species in the substrate affected the occurrence of silicon epitaxy below 870/sup 0/K. Cross-section transmission electron microscopy (TEM) showed that dislocation loops were formed within the substrate during heated deposition, at a depth larger than 40 nm below the bombarded region. A uniaxial lattice expansion normal to the surface was measured in IBD crystals by x-ray Bragg reflection profiling and ion channeling. It is concluded that epitaxial layers and heterostructures can be formed at low temperature by IBD.

  7. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  8. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  9. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  10. Ion channel modifying agents influence the electrical activity generated by canine intrinsic cardiac neurons in situ.

    PubMed

    Thompson, G W; Horackova, M; Armour, J A

    2000-04-01

    This study was designed to establish whether agents known to modify neuronal ion channels influence the behavior of mammalian intrinsic cardiac neurons in situ and, if so, in a manner consistent with that found previously in vitro. The activity generated by right atrial neurons was recorded extracellularly in varying numbers of anesthetized dogs before and during continuous local arterial infusion of several neuronal ion channel modifying agents. Veratridine (7.5 microM), the specific modifier of Na+-selective channels, increased neuronal activity (95% above control) in 80% of dogs tested (n = 25). The membrane depolarizing agent potassium chloride (40 mM) reduced neuronal activity (43% below control) in 84% of dogs tested (n = 19). The inhibitor of voltage-sensitive K+ channels, tetraethylammonium (10 mM), decreased neuronal activity (42% below control) in 73% of dogs tested (n = 11). The nonspecific potassium channel inhibitor barium chloride (5 mM) excited neurons (47% above control) in 13 of 19 animals tested. Cadmium chloride (200 microM), which inhibits Ca2+-selective channels and Ca2+-dependent K+ channels, increased neuronal activity (65% above control) in 79% of dogs tested (n = 14). The specific L-type Ca2+ channel blocking agent nifedipine (5 microM) reduced neuronal activity (52% blow control in 72% of 11 dogs tested), as did the nonspecific inhibitor of L-type Ca2+ channels, nickel chloride (5 mM) (36% below control in 69% of 13 dogs tested). Each agent induced either excitatory or inhibitory responses, depending on the agent tested. It is concluded that specific ion channels (I(Na), I(CaL), I(Kv), and I(KCa)) that have been associated with intrinsic cardiac neurons in vitro are involved in their capacity to generate action potentials in situ. PMID:10772056

  11. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  12. Variable-spot ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-03-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  13. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  14. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  15. Ion beam lithography with gold and silicon ions

    NASA Astrophysics Data System (ADS)

    Seniutinas, Gediminas; Balčytis, Armandas; Nishijima, Yoshiaki; Nadzeyka, Achim; Bauerdick, Sven; Juodkazis, Saulius

    2016-04-01

    Different ion species deliver a different material sputtering yield and implantation depth, thus enabling focused ion beam (FIB) fabrication for diverse applications. Using newly developed FIB milling with double charged hbox {Au}^{2+} and hbox {Si}^{2+} ions, fabrication has been carried out on Au-sputtered films to define arrays of densely packed nanoparticles supporting optical extinction peaks at visible-IR wavelengths determined by the size, shape, and proximity of nanoparticles. Results are qualitatively compared with hbox {Ga}+ milling. A possibility to use such ion implantation to tailor the etching rate of silicon is also demonstrated.

  16. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  17. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    PubMed Central

    Twedt, Kevin A.; Zou, Jie; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J.; Aksyuk, Vladimir A.

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics1–3, biosensing4, microfludics5, and cavity optomechanics6–8. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes9 can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances10,11. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam12. An ion beam (radius ≈50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q≥20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation damage and relaxation dynamics in a silicon lattice13,14. PMID:27087832

  18. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  19. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1989-11-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr 2+ beam at a dose rate of 1×10 12/cm 2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  20. Ion-activated In Situ Gelling Ophthalmic Delivery Systems of Azithromycin

    PubMed Central

    Vijaya, C.; Goud, K. Swetha

    2011-01-01

    Gelation of pectin caused by divalent cations especially calcium ions has been applied to develop an ophthalmic formulation of azithromycin in the present study. Rapid elimination of drug on instillation into cul de sac would be minimal with in situ gelling ophthalmic solution leading to increased precorneal contact time and prolonged drug delivery. In the formulation development studies pectin was used in different concentrations (1-5% w/v) and different proportions of the hydrocolloids hydroxypropyl methylcellulose and sodium carboxymethyl cellulose of different grades of viscosity were used. The primary criteria for formulation optimization were gelling capacity and rheological behaviour. In addition, formulations were evaluated for pH, and antimicrobial efficacy and drug release. The clarity, pH, gelation in simulated tear fluid and rheological properties of the optimized formulations were satisfactory. The formulations inhibited the growth of Staphylococcus aureus effectively in cup–plate method and were proved to be safe and non irritant on rabbit eyes. The results indicate that pectin based in situ gels can be successfully used to prolong the duration of action of azithromycin. PMID:23112394

  1. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  2. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

    PubMed Central

    Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia

    2014-01-01

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913

  3. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  4. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (<3) values of the PVI index. We observed a distinct population of high PVI (>3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  5. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    2014-12-01

    The direct observation of the microstructural evolution and state-of-charge (SOC) distribution in active materials is crucial to understand the lithiation/delithiation mechanisms during electrochemical cycling of lithium-ion batteries (LIBs). Owing to their high spatial resolutions and capability to map chemical states by combining other spectroscopic techniques, microscopic techniques including X-ray fluorescence (XRF) microscopy, Raman microscopy, transmission X-ray microscopy (TXM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) play significant roles in real time monitoring the dynamic changes in the LIB electrodes and materials. This paper reviews the recent progress of using in situ microscopic techniques to study LIB materials, including Si-, Sn-, Ge-, C- and metal oxides-based anode materials, and layered oxysulfide, metal fluorides, LiCoO2, LiNi0.8Co0.15Al0.05O2, LiMn2O4, LiFePO4 cathode materials.

  6. Transmission electron microscopy of the amorphization of copper indium diselenide by in situ ion irradiation

    SciTech Connect

    Hinks, J. A.; Edmondson, P. D.

    2012-03-01

    Copper indium diselenide (CIS), along with its derivatives Cu(In,Ga)(Se,S){sub 2}, is a prime candidate for use in the absorber layers of photovoltaic devices. Due to its ability to resist radiation damage, it is particularly well suited for use in extraterrestrial and other irradiating environments. However, the nature of its radiation hardness is not well understood. In this study, transmission electron microscopy (TEM) with in situ ion irradiation was used to monitor the dynamic microstructural effects of radiation damage on CIS. Samples were bombarded with 400 keV xenon ions to create large numbers of atomic displacements within the thickness of the TEM samples and thus explore the conditions under which, if any, CIS could be amorphized. By observing the impact of heavily damaging radiation in situ--rather than merely the end-state possible in ex situ experiments--at the magnifications allowed by TEM, it was possible to gain an understanding of the atomistic processes at work and the underlying mechanism that give rise to the radiation hardness of CIS. At 200 K and below, it was found that copper-poor samples could be amorphized and copper-rich samples could not. This difference in behavior is linked to the crystallographic phases that are present at different compositions. Amorphization was found to progress via a combination of one- and two-hit processes. The radiation hardness of CIS is discussed in terms of crystallographic structures/defects and the consequences these have for the ability of the material to recover from the effects of displacing radiation.

  7. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  8. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  9. ALLIGATOR - An apparatus for ion beam assisted deposition with a broad-beam ion source

    NASA Astrophysics Data System (ADS)

    Wituschek, H.; Barth, M.; Ensinger, W.; Frech, G.; Rück, D. M.; Leible, K. D.; Wolf, G. K.

    1992-04-01

    Ion beam assisted deposition is a versatile technique for preparing thin films and coatings for various applications. Up to now a prototype setup for research purposes has been used in our laboratory. Processing of industrial standard workpieces requires a high current ion source with broad beam and high uniformity for homogeneous bombardment. In this contribution a new apparatus for large area samples will be described. It is named ALLIGATOR (German acronym of facility for ion assisted evaporation on transverse movable or rotary targets). In order to have a wide energy range available two ion sources are used. One delivers a beam energy up to 1.3 keV. The other is suitable for energies from 5 keV up to 40 keV. The ``high-energy'' ion source is a multicusp multiaperture source with 180-mA total current and a beam diameter of 280 mm at the target position.

  10. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  11. Beam dynamics in heavy ion fusion

    SciTech Connect

    Seidl, P.

    1995-04-01

    A standard design for heavy ion fusion drivers under study in the US is an induction linac with electrostatic focusing at low energy and magnetic focusing at higher energy. The need to focus the intense beam to a few-millimeter size spot at the deuterium-tritium target establishes the emittance budget for the accelerator. Economic and technological considerations favor a larger number of beams in the low-energy, electrostatic-focusing section than in the high-energy, magnetic-focusing section. Combining four beams into a single focusing channel is a viable option, depending on the growth in emittance due to the combining process. Several significant beam dynamics issues that are, or have been, under active study are discussed: large space charge and image forces, beam wall clearances, halos, alignment, longitudinal instability, and bunch length control.

  12. In situ beam analysis of radiation damage kinetics in MgTiO{sub 3} single crystals at 170-470 K

    SciTech Connect

    Yu, Ning; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1995-12-31

    Radiation damage kinetics in synthetic MgTiO{sub 3} (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of I and 5x l0{sup 15} Xe/cm{sup 2} were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5xl0{sup 16}Xe/cm{sup 2} at the irradiation temperature of 470 K. This study has shown that MgTiO{sub 3}, which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments.

  13. In situ measurement of the ion incidence angle dependence of the ion-enhanced etching yield in plasma reactors

    SciTech Connect

    Belen, Rodolfo Jun; Gomez, Sergi; Kiehlbauch, Mark; Aydil, Eray S.

    2006-11-15

    The authors propose and demonstrate a technique to determine the ion incidence angle dependence of the ion-enhanced etching yield under realistic plasma conditions and in situ in an arbitrary plasma reactor. The technique is based on measuring the etch rate as a function of position along the walls of features that initially have nearly semicircular cross sections. These initial feature shapes can be easily obtained by wet or isotropic plasma etching of holes patterned through a mask. The etch rate as a function of distance along the feature profile provides the etching yield as a function of the ion incidence angle. The etch rates are measured by comparing digitized scanning electron micrograph cross sections of the features before and after plasma etching in gas mixtures of interest. The authors have applied this technique to measure the ion incidence angle dependence of the Si etching yield in HBr, Cl{sub 2}, SF{sub 6}, and NF{sub 3} plasmas and binary mixtures of SF{sub 6} and NF{sub 3} with O{sub 2}. Advantages and limitations of this method are also discussed.

  14. Production of highly charged ion beams from ECR ion sources

    SciTech Connect

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 e{mu}A of O{sup 7+} and 1.15 emA of O{sup 6+}, more than 100 e{mu}A of intermediate heavy ions for charge states up to Ar{sup 13+}, Ca{sup 13+}, Fe{sup 13+}, Co{sup 14+} and Kr{sup 18+}, and tens of e{mu}A of heavy ions with charge states to Kr{sup 26+}, Xe{sup 28+}, Au{sup 35+}, Bi{sup 34+} and U{sup 34+} have been produced from ECR ion sources. At an intensity of at least 1 e{mu}A, the maximum charge state available for the heavy ions are Xe{sup 36+}, Au{sup 46+}, Bi{sup 47+} and U{sup 48+}. An order of magnitude enhancement for fully stripped argon ions (I {ge} 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams.

  15. The effect of residual gas scattering on Ga ion beam patterning of graphene

    SciTech Connect

    Thissen, Nick F. W. E-mail: a.a.bol@tue.nl; Vervuurt, R. H. J.; Weber, J. W.; Kessels, W. M. M.; Bol, A. A. E-mail: a.a.bol@tue.nl; Mulders, J. J. L.

    2015-11-23

    The patterning of graphene by a 30 kV Ga{sup +} focused ion beam (FIB) is studied by in-situ and ex-situ Raman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account.

  16. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  17. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    NASA Astrophysics Data System (ADS)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  18. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    SciTech Connect

    Manova, D.; Bergmann, A.; Maendl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-15

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton{sup Registered-Sign} windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  19. Graphene engineering by neon ion beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  20. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  1. Graphene engineering by neon ion beams.

    PubMed

    Iberi, Vighter; Ievlev, Anton V; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V; Joy, David C; Rondinone, Adam J; Belianinov, Alex; Ovchinnikova, Olga S

    2016-03-29

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface. PMID:26890062

  2. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  3. Metal assisted focused-ion beam nanopatterning.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  4. BEARS: Radioactive ion beams at LBNL

    SciTech Connect

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C and 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.

  5. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  6. Electron beam ion sources and traps (invited)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard

    2000-02-01

    The electron beam method of stepwise ionization to highest charge states has found applications in electron beam ion sources (EBISs) for accelerators and atomic physics collision experiments as well as in electron beam ion traps (EBITs) for x-ray and mass spectroscopy. A dense and almost monoenergetic electron beam provides a unique tool for ionization, because radiative recombination by slow electrons is negligible and charge exchange is almost avoided in ultrahigh vacua. These are essential differences to electron cyclotron resonance ion sources with inevitable low energy electrons and comparatively high gas pressure. The distinction between EBIS and EBIT as genuine devices has become meaningless, because EBISs may work as traps and almost all EBITs are feeding beamlines for external experiments. More interesting is to note the diversification of these devices, which demonstrates that a matured technology is finding dedicated answers for different applications. At present we may distinguish six major lines of development and application: high current EBISs for upcoming hadron colliders, super EBITs in the energy range above 300 keV for quantum electrondynamics tests, inexpensive and small EBISTs for atomic physics studies, a highly efficient EBIS with oscillating electrons, MEDEBIS for tumor therapy with C6+, and charge breeding in facilities for exotic radioactive beams.

  7. Application of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, Raquel; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-11-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ˜1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ˜ 1.0) anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  8. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels.

    PubMed

    Li, Xin; Du, Lina; Chen, Xu; Ge, Pingju; Wang, Yu; Fu, Yangmu; Sun, Haiyan; Jiang, Qingwei; Jin, Yiguang

    2015-07-15

    Ketorolac tromethamine (KT) was potent to treat moderate to moderately severe pains. However, KT solutions for nasal delivery lost quickly from the nasal route. Thermo- and ion-sensitive in-situ hydrogels (ISGs) are appropriate for nasal drug delivery because the intranasal temperature maintains ∼37 °C and nasal fluids consist of plentiful cations. In this study, a novel nasal thermo- and ion-sensitive ISG of KT was prepared with thermo-sensitive poloxamer 407 (P407) and ion-sensitive deacetylated gellan gum (DGG). The optimal formulation of the KT ISG consisted of 3% (w/v) DGG and 18% (w/v) P407 and its viscosity was up to 7.63 Pas at 37 °C. Furthermore, penetration enhancers and bacterial inhibitors were added and their fractions in the ISG were optimized based on transmucosal efficiencies and toxicity on toad pili. Sulfobutyl ether-β-cyclodextrin of 2.5% (w/v) and chlorobutanol of 0.5% (w/v) were chosen as the penetration enhancer and the bacterial inhibitor, respectively. The Fick's diffusion and dissolution of KT could drive it continuous release from the dually sensitive ISG according to the in vitro investigation. Two methods, writhing frequencies induced by acetic acid and latency time of tails retracting from hot water, were used to evaluate the pharmacodynamics of the KT ISG on the mouse models. The writhing frequencies significantly decreased and the latency time of tail retracting was obviously prolonged (p<0.05) for the KT ISG compared to the control. The thermo- and ion-sensitive KT ISG had appropriate gelation temperature, sustained drug release, improved intranasal absorption, obvious pharmacodynamic effect, and negligible nasal ciliotoxicity. It is a promising intranasal analgesic formulation. PMID:25957699

  9. Storage rings for radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Dimopoulou, C.; Dolinskii, A.; Steck, M.

    2008-10-01

    Storage rings for radioactive heavy ions can be applied for a wide range of experiments in atomic and nuclear physics. The rare isotope beams are produced in flight via fragmentation or fission of high-intensity primary ions and they circulate in the storage ring at moderately relativistic energies (typically between 0.1 GeV/u up to 1 GeV/u). Due to their production mechanism they are usually highly charged or even fully stripped. The circulating radioactive heavy ion beams can be used to measure nuclear properties such as masses and decay times, which, in turn, can depend strongly on the ionic charge state. The storage rings must have large acceptances and dynamic apertures. The subsequent application of stochastic precooling of the secondary ions which are injected with large transverse and longitudinal emittances, and electron cooling to reach very high phase space densities has turned out to be a helpful tool for experiments with short-lived ions having lifetimes down to a few seconds. Some of these experiments have already been performed at the experimental storage ring ESR at GSI. The storage ring complex of the FAIR project is intended to enhance significantly the range of experimental possibilities. It is planned to extend the scope of experimental possibilities to collisions with electron or antiproton beams.

  10. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection

    PubMed Central

    Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.

    2015-01-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694

  11. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection

    NASA Astrophysics Data System (ADS)

    Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.

    2015-10-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed.

  12. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  13. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  14. Electron-Beam Atomic Spectroscopy for In Situ Measurements of Melt Composition for Refractory Metals: Analysis of Fundamental Physics and Plasma Models

    NASA Astrophysics Data System (ADS)

    Gasper, Paul Joseph; Apelian, Diran

    2015-04-01

    Electron-beam (EB) melting is used for the processing of refractory metals, such as Ta, Nb, Mo, and W. These metals have high value and are critical to many industries, including the semiconductor, aerospace, and nuclear industries. EB melting can also purify secondary feedstock, enabling the recovery and recycling of these materials. Currently, there is no method for measuring melt composition in situ during EB melting. Optical emission spectroscopy of the plasma generated by EB impact with vapor above the melt, a technique here termed electron-beam atomic spectroscopy, can be used to measure melt composition in situ, allowing for analysis of melt dynamics, facilitating improvement of EB melting processes and aiding recycling and recovery of these critical and high-value metals. This paper reviews the physics of the plasma generation by EB impact by characterizing the densities and energies of electrons, ions, and neutrals, and describing the interactions between them. Then several plasma models are introduced and their suitability to this application analyzed. Lastly, a potential method for calibration-free composition measurement is described and the challenges for implementation addressed.

  15. Spectroscopy of ions using fast beams and ion traps

    SciTech Connect

    Pinnington, E H; Trabert, E

    2004-10-01

    A knowledge of the spectra of ionized atoms is of importance in many fields. They can be studied in a wide variety of light sources. In recent years techniques coming under the broad heatings of fast beams and ion traps have been used extensively for such investigations. This article considers the advantages that various techniques have for particular applications.

  16. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-06-01

    NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (˜6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (˜3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  17. Membrane-Extraction Ion Mobility Spectrometry for In-Situ Detection of Chlorinated Hydrocarbons in Water

    SciTech Connect

    Du, Yongzhai; Zhang, Wei; Whitten, William B; Li, Haiyang; Watson, David B; Xu, Jun

    2010-01-01

    Membrane-extraction ion mobility spectrometry (ME-IMS) has been developed for in-situ sampling and analysis of trace chlorinated hydrocarbons in water in a single procedure. The sampling is configured so that aqueous contaminants permeate through a spiral hollow polydimethylsiloxane (PDMS) membrane and are carried away by a vapor flow through the membrane tube. The extracted analyte flows into an atmospheric pressure chemical ionization (APCI) chamber and is analyzed in a home-made IMS analyzer. PDMS membrane is found to effectively extract chlorinated hydrocarbon solvents from liquid phase to vapor. The specialized IMS analyzer has been found to have resolutions of R=33 and 41, respectively, for negative- and positive-modes and is capable of detecting aqueous tetrachloroethylene (PCE) and trichloroethylene (TCE) as low as 80 g/L and 74 g/L in negative ion mode, respectively. The time-dependent characteristics of sampling and detection of TCE are both experimentally and theoretically studied for various concentrations, membrane lengths, and flow rates. These characteristics demonstrate that membrane-extraction IMS is feasible for the continuous monitoring of chlorinated hydrocarbons in water.

  18. Space Plasma Ion Processing of Ilmenite in the Lunar Soil: Insights from In-Situ TEM Ion Irradiation Experiments

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.

    2007-01-01

    Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.

  19. Fast Ion Beam Microscopy of Whole Cells

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika Nb; Ren, Minqin; Pastorin, G.; Bettiol, Andrew

    2013-08-01

    The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the

  20. Ion acceleration mechanism in electron beams

    SciTech Connect

    Popov, A.F.

    1982-07-01

    Analysis of experimental data reveals that several processes observed in diodes and during the transport of intense electron beams in a neutral gas result from polarization of a plasma in an electric field. Under certain conditions this effect gives rise to a high-field region at the boundary of a plasma column. The electron beam is strongly focused in this region. As a result, a two-dimensional potential well forms at the crossover point of a strongly focused beam. The electric field at this well can reach several megavolts per centimeter. The crossover point moves as a result of expansion of the plasma cloud. The ions trapped in the potential well are accelerated. There is effective acceleration over a distance of the order of a few times the beam radius. A new physical model gives a satisfactory explanation of the experimental results.

  1. Ion-beam sputtering increases solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, R. R.

    1977-01-01

    Ion-beam sputtering, fabrication of oxide-semiconductor-on-silicon (OSOS) solar cells, results in cells of 12% efficiency. Ion-beam sputtering technique is compatible with low-cost continuous fabrication and requires no high-temperature processing.

  2. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  3. Inertial confinement fusion with light ion beams.

    PubMed

    Vandevender, J P; Cook, D L

    1986-05-16

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well. PMID:17755963

  4. Ion beam figuring system in NUDT

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Xie, Xuhui; Dai, Yifan; Jiao, Changjun; Li, Shengyi

    2007-12-01

    Ion beam figuring (IBF) is an optical fabrication technique that provides highly deterministic process to correct surface figure error of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Recently, an ion beam figuring system KDIFS-500 has been designed and built in National University of Defense Technology (NUDT) of the P.R. China. KDIFS-500 is capable of processing workpiece up to Φ500mm. Line scanning process was discussed in detail for estimating the parameters of the beam removal function (BRF) in process. Experiments were conducted to demonstrate that the BRF increases gradually in process and by employing a stability control, the BRF can be kept stable in process. Finally, a Φ95 mm plano optical sample of CVD coated SiC substrate has been figured in two process iterations for demonstrating the correction capability of the KDIFS-500. Their figure convergence ratios reached 5.8 and 2.1 respectively. The actual figure residual errors were basically consistent with the predicted error. These consistencies indicated that the IBF processes on KDIFS-500 are predictable deterministic processes.

  5. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  6. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  7. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  8. Ion beam emittance from an ECRIS

    NASA Astrophysics Data System (ADS)

    Spädtke, P.; Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K.; Biri, S.; Rácz, R.

    2016-02-01

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  9. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    NASA Astrophysics Data System (ADS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  10. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  11. Ion-beam cleaning for cold welds

    NASA Technical Reports Server (NTRS)

    Slater, B. L.

    1980-01-01

    1000 eV beam bombarding metal surfaces to be joined removes oxides and contaminants at rate of several atomic layers per second for current density of 1 mA/squ. cm. Clean surfaces can then be joined by squeezing them together. With ion-beam cleaning, mating force for strong bond is low enough to cause only 1% deformation. Conventional cold-welding requires about 70% deformation for bonding. Technique was tested successfully on aluminum to aluminum welds, copper to copper, copper to aluminum, copper to nickel, and silver to iron. Base metals failed before welds in tear test.

  12. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  13. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  14. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  15. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  16. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  17. Effects of Beam Filling Pattern on Beam Ion Instability and Beam Loading In PEP-X

    SciTech Connect

    Wang, L.; /SLAC

    2009-06-02

    A proposed high-brightness synchrotron light source (PEP-X) is under design at SLAC. The 4.5-GeV PEP-X storage ring has four theoretical minimum emittance (TME) cells to achieve the very low emittance and two double-bend achromat (DBA) cells to provide spaces for IDs. Damping wigglers will be installed in zero-dispersion straights to reduce the emittance below 0.1 nm. Ion induced beam instability is one critical issue due to its ultra small emittance. Third harmonic cavity can be used to lengthen the bunch in order to improve the beam's life time. Bunch-train filling pattern is proposed to mitigate both the fast ion instability and beam loading effect. This paper investigates the fast ion instability and beam loading for different beam filling patterns.

  18. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  19. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  20. In situ patterning of organic molecules in aqueous solutions using an inverted electron-beam lithography system

    NASA Astrophysics Data System (ADS)

    Miyazako, Hiroki; Ishihara, Kazuhiko; Mabuchi, Kunihiko; Hoshino, Takayuki

    2016-06-01

    A method for in situ controlling the detachment and deposition of organic molecules such as sugars and biocompatible polymers in aqueous solutions by electron-beam (EB) scan is proposed and evaluated. It was demonstrated that EB irradiation could detach 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers from a silicon nitride membrane. Moreover, organic molecules such as cationic polymers and sugars could be deposited on the membrane by EB irradiation. Spatial distributions of scattered electrons were numerically simulated, and acceleration voltage dependences of the detachment and deposition phenomena were experimentally measured. The simulations and experimental results suggest that the detachment of MPC polymers is mainly due to electrical effects of primary electrons, and that the deposition of organic molecules is mainly due to chemical reactions induced by primary electrons. In view of these findings, the proposed method can be applied to in situ and nanoscale patterning such as the fabrication of cell scaffolds.

  1. Simulation of ion beam injection and extraction in an EBIS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  2. A proof of concept investigation: A unique mobility spectrometer for In Situ diagnostics of positive and negative ion distributions in the mesosphere and lower ionosphere

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1996-01-01

    We have carried out a proof-of-concept development and test effort that not only promises the reduction of parasitic effects of surface contamination (therefore increasing the integrity of 'in situ' measurements in the 60-130 km regime), but promises a uniquely expanded measurement set that includes electron densities, plasma conductivities, charged-particle mobilities, and mass discrimination of positive and negative ion distributions throughout the continuum to free-molecular-flow regimes. Three different sensor configurations were designed, built and tested, along with specialized driving voltage, electrometer and channeltron control electronics. The individual systems were tested in a variety of simulated space environments ranging from pressures near the continuum limit of 100 mTorr to the collisionless regime at 10(exp -6) Torr. Swept modes were initially employed to better understand ion optics and ion 'beam' losses to end walls and to control electrodes. This swept mode also helped better understand and mitigate the influences of secondary electrons on the overall performance of the PIMS design concept. Final results demonstrated the utility of the concept in dominant single-ion plasma environments. Accumulated information, including theoretical concepts and laboratory data, suggest that multi-ion diagnostics are fully within the instrument capabilities and that cold plasma tests with minimized pre-aperture sheath acceleration are the key ingredients to multi-ion success.

  3. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  4. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  5. Ferric ion-assisted in situ synthesis of silver nanoplates on polydopamine-coated silk.

    PubMed

    Xiao, Jing; Zhang, Huihui; Mao, Cuiping; Wang, Ying; Wang, Ling; Lu, Zhisong

    2016-10-01

    In the present study, a ferric ion (Fe(3+))-assisted in situ synthesis approach was developed to grow silver (Ag) nanoplates on the polydopamine (PDA)-coated silk without the use of additional reductants. The essential role of Fe(3+) in the formation of Ag nanoplates is revealed by comparing the morphologies of Ag nanostructures prepared on the silk-coated PDA film with/without Fe(3+) doping. Scanning electron micrographs show that high-density Ag nanoplates could be synthesized in the reaction system containing 50μg/mL FeCl3 and 50mM AgNO3. The size of the Ag nanoplate could be tuned by adjusting the reaction duration. Based on the data, a mechanism involving the Fe(3+)-selected growth of Ag atoms along the certain crystal faces was proposed to explain the fabrication process. Transmission electron microscopy and X-ray diffractometry indicate that the Ag nanoplates possess good crystalline structures. Raman spectra demonstrate that the nanoplates could strongly enhance the Raman scattering of the PDA molecules. The Ag nanoplate-coated silk could be utilized as a flexible substrate for the development of surface-enhanced Raman scattering biosensors. PMID:27390855

  6. In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels.

    PubMed

    Kacher, J; Liu, G S; Robertson, I M

    2012-11-01

    The effects of heavy-ion irradiation on dislocation processes in stainless steels were investigated using in situ irradiation and deformation in the transmission electron microscope as well as post mortem electron tomography to retrieve information on the three-dimensional dislocation state. Irradiation-induced defects were found to pose a strong collective barrier to dislocation motion, leading to dislocation pileups forming in grain interiors and at grain boundaries. The passage of multiple dislocations along the same slip plane removes the irradiation defects and leads to the eventual formation of a defect-free channel. These channels are composed of densely tangled dislocation networks which line the channel-matrix walls as well as residual dislocation debris in the channel interiors. The structures of the dislocation tangles were found to be similar to those encountered in later stages of deformation in unirradiated materials, with the exception that they developed earlier in the deformation process and were confined to the defect free channels. Also, defect free channels were found to widen through both source widening as well as complex cross-slip mechanisms. PMID:22365051

  7. 18650 Li-ion cells with reference electrode and in situ characterization of electrodes

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.; Doughty, D. H.

    At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA (˜C/5 rate) discharge, the cell gave ˜900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 °C, the anode and cathode impedances at 10 mHz were around 149 and 53 mΩ, respectively, and the total cell impedance at 10 mHz was ˜203 mΩ. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from ˜0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse.

  8. 18650 Li-ion cells with reference electrode and in-situ characterization of electrodes.

    SciTech Connect

    Doughty, Daniel Harvey; Nagasubramanian, Ganesan

    2005-03-01

    At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA ({approx}C/5 rate) discharge, the cell gave {approx}900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 C, the anode and cathode impedances at 10 mHz were around 149 and 53 m{Omega}, respectively, and the total cell impedance at 10 mHz was {approx}203 m{Omega}. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from {approx}0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse.

  9. In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.

    2014-12-01

    Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.

  10. In situ Raman study of Electrochemically Intercalted Bisulfate Ions in Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Sumanasekera, G. U.; Allen, J. L.; Rao, A. M.; Fang, S. L.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of bisulfate ions in single-walled carbon nanotubes (SWNT) using in situ Raman spectroscopy. SWNTs pressed onto a Pt plate was used as the working electrode, a Pt wire and Ag/AgCl were used, respectively, as the counter electrode and reference electrode. Sulfuric acid (95%) was used as the electrolyte. Using Raman scattering we have observed an apparent rapid spontaneous reaction involving charge transfer between ionically bonded HSO_4^- anions and the nanotubes. This is evidenced by an instantaneous shift of the Raman-active tangential mode frequency from 1593 cm -1 to 1604 cm-1 (It was not possible to reverse this shift electrochemically to 1593 cm-1, even at the expense of large reverse bias). In forward bias, after this initial instantaneous reaction, the tangential mode frequency again upshifted from 1604 cm-1 to 1614 cm-1 linearly with external electrochemical charge Q. From the slope of ω(Q) we found in this regime, δω/δ f= 1220 cm-1 (f = holes/carbon). Upon further charging, a second regime with slope δω/δ f = 118 cm-1 was observed where the frequency upshifted from 1614 cm-1 to 1620 cm-1. The results are compared to similar studies in C_p^+HSO_4^-.xH_2SO4 graphite intercalation compounds.

  11. Design of a new lithium ion battery test cell for in-situ neutron diffraction measurements

    NASA Astrophysics Data System (ADS)

    Roberts, Matthew; Biendicho, Jordi Jacas; Hull, Stephen; Beran, Premysl; Gustafsson, Torbjörn; Svensson, Gunnar; Edström, Kristina

    2013-03-01

    This paper introduces a new cell design for the construction of lithium ion batteries with conventional electrochemical performance whilst allowing in situ neutron diffraction measurement. A cell comprising of a wound cathode, electrolyte and anode stack has been prepared. The conventional hydrogen-containing components of the cell have been replaced by hydrogen-free equivalents. The electrodes are fabricated using a PTFE binder, the electrolyte consists of deuterated solvents which are supported in a quartz glass fibre separator. Typical battery performance is reported using the hydrogen-free components with a specific capacity of 140 mA h g-1 being observed for LiFePO4 at a rate of 0.2 C. Neutron diffraction patterns of full cells were recorded with phase change reactions monitored. When aluminium packaging was used a better signal to noise ratio was obtained. The obtained atomic positions and lattice parameters for all cells investigated were found to be consistent with parameters refined from the diffraction pattern of a powder of the pure electrode material. This paper highlights the pertinent points in designing cells for these measurements and addresses some of the problems.

  12. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  13. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  14. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  15. Development of a universal serial bus interface circuit for ion beam current integrators.

    PubMed

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation. PMID:17764373

  16. Ion beam deposition and surface characterization of thin multi-component oxide films during growth.

    SciTech Connect

    Krauss, A.R.; Im, J.; Smentkowski, V.; Schultz, J.A.; Auciello, O.; Gruen, D.M.; Holocek, J.; Chang, R.P.H.

    1998-01-13

    Ion beam deposition of either elemental targets in a chemically active gas such as oxygen or nitrogen, or of the appropriate oxide or nitride target, usually with an additional amount of ambient oxygen or nitrogen present, is an effective means of depositing high quality oxide and nitride films. However, there are a number of phenomena which can occur, especially during the production of multicomponent films such as the ferroelectric perovskites or high temperature superconducting oxides, which make it desirable to monitor the composition and structure of the growing film in situ. These phenomena include thermodynamic (Gibbsian), and oxidation or nitridation-driven segregation, enhanced oxidation or nitridation through production of a highly reactive gas phase species such as atomic oxygen or ozone via interaction of the ion beam with the target, and changes in the film composition due to preferential sputtering of the substrate via primary ion backscattering and secondary sputtering of the film. Ion beam deposition provides a relatively low background pressure of the sputtering gas, but the ambient oxygen or nitrogen required to produce the desired phase, along with the gas burden produced by the ion source, result in a background pressure which is too high by several orders of magnitude to perform in situ surface analysis by conventional means. Similarly, diamond is normally grown in the presence of a hydrogen atmosphere to inhibit the formation of the graphitic phase.

  17. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries.

    PubMed

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-03-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g(-1) at 1.8 A g(-1) after 500 cycles, and 868.2 mA h g(-1) at 10.0 A g(-1). The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. PMID:26875542

  18. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    SciTech Connect

    Fang, Jiancheng; Wang, Tao Quan, Wei; Yuan, Heng; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.

  19. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect

    Mach, Jindřich Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš; Šamořil, Tomáš

    2014-08-15

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  20. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-02-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes.The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08961a

  1. Study on space charge compensation in negative hydrogen ion beam

    NASA Astrophysics Data System (ADS)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  2. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  3. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  4. Radioactive Ion Beam Production Capabilities At The Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Dowling, D. T.; Gross, C. J.; Juras, R. C.; Liu, Y.; Meigs, M. J.; Mendez, A. J.; Nazarewicz, W.; Sinclair, J. W.; Stracener, D. W.; Tatum, B. A.

    2011-06-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of the HRIBF is the production of high quality beams of shortlived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions. HRIBF produces RIBs by the isotope separator on-line (ISOL) technique using a particle accelerator system that consists of the Oak Ridge Isochronous Cyclotron (ORIC) driver accelerator, one of the two Injectors for Radioactive Ion Species (IRIS1 or IRIS2) production systems, and the 25-MV tandem electrostatic accelerator that is used for RIB post-acceleration. ORIC provides a light ion beam (proton, deuteron, or alpha) which is directed onto a thick target mounted in a target-ion source (TIS) assembly located on IRIS1 or IRIS2. Radioactive atoms that diffuse from the target material are ionized, accelerated, mass selected, and transported to the tandem accelerator where they are further accelerated to energies suitable for nuclear physics research. RIBs are transported through a beam line system to various experimental end stations including the Recoil Mass Spectrometer (RMS) for nuclear structure research, and the Daresbury Recoil Separator (DRS) for nuclear astrophysics research. HRIBF also includes two off-line ion source test facilities, one low-power on-line ISOL test facility (OLTF), and one high-power on-line ISOL test facility (HPTL). This paper provides an overview and status update of HRIBF, describes the recently completed 4.7M IRIS2 addition and incorporation of laser systems for beam production and purification, and discusses a

  5. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  6. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  7. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  8. Beam Ion Driven Instabilities in NSTX

    SciTech Connect

    N.N. Gorelenkov; E. Belova; H.L. Berk; C.Z. Cheng; E. Fredrickson; W. Heidbrink; S. Kaye; G. Kramer

    2003-11-07

    A low-field, low-aspect-ratio device such as NSTX (National Spherical Torus Experiment) is an excellent testbed to study the ITER-relevant physics of fast-particle confinement that is of major importance for burning plasmas. The low Alfvin speed in NSTX offers a window to the super-Alfvinic regime expected in ITER. Effects such as the large FLR, orbit width, strong shaping, and high thermal and fast-ion betas make this effort a greater challenge. We report on the linear stability of different Alfvin eigenmode (AE) branches and compare theory with experimental data. Low-frequency MHD activities, {approx}100 kHz, on NSTX are often observed and identified as the toroidicity-induced AEs (TAE) driven by beam ions. Sometimes they are accompanied by beam ion losses in H-mode, high q(0) plasmas. Numerical analysis using the NOVA-K code shows good agreement with the experimental data. The TAE instability was compared in experiments on NSTX and DIII-D. With very similar plasma conditions, we tested the theoretical prediction that the toroidal mode number of the most unstable TAEs scales with the machine minor radius, n {approx} a. In NSTX, TAEs are observed with n = 1-2, whereas in DIII-D n = 4-7. The confirmation of n scaling validates the predictive capabilities of theoretical tools (NOVA-K) for studying ITER plasmas. In the high-frequency range, recent observations of rich sub-ion cyclotron frequency MHD activities in NSTX suggest that new instabilities are excited, which we identify as Global shear AEs (GAEs). Similar to the compressional AEs (CAEs), GAEs are destabilized by the Doppler-shifted cyclotron resonance in the presence of 80 keV neutral-beam injection. To simulate GAE/CAEs in realistic NSTX plasma conditions, we have developed a nonlinear hybrid kinetic-MHD code, HYM, which is capable of computing the mode structure, saturation, and energetic particle transport.

  9. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  10. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  11. Ion beam mixing of metal/fluoropolymer interfaces

    SciTech Connect

    Dennis, D. L.; Giedd, R. E.; Wang, Y. Q.; Glass, G. A.

    1999-06-10

    Ion beam mixing of metals and polymers with very low dielectric constants such as Teflon can provide many applications in the area of electronic materials. This work is a study of the 'mixing' effect of 50 keV nitrogen implanted thin metal layers on Teflon PTFE (polytetrafluoroethylene) substrates. RBS analysis shows that the distribution of thin layers of copper and chromium (approximately 300-400 A thick) through the implant layer of the Teflon depends on the reactivity of the metal. As the implant fluence is increased, the distribution of metal atoms in the polymer matrix becomes concentrated over smaller ranges near the bottom of the implant layer. In situ RGA analysis during the implantation shows the liberation of an abundance of fluorine in many different forms. This is supported by results from a NRA experiment that shows the non-uniform concentration profile of fluorine throughout the implant layer. During the implantation process, the fluorine is released through the incident ion track leaving a carbon and metal rich region near the surface of the implant layer. The fluorine density increases with depth through the implant layer making a smooth transition to the undamaged bulk Teflon below. Low dielectric materials with highly conductive surfaces, such as this one, may provide an opportunity for a broad range of new microelectronic applications.

  12. Ion beam mixing of metal/fluoropolymer interfaces

    SciTech Connect

    Dennis, D.L.; Giedd, R.E.; Wang, Y.Q.; Glass, G.A.

    1999-06-01

    Ion beam mixing of metals and polymers with very low dielectric constants such as Teflon can provide many applications in the area of electronic materials. This work is a study of the {open_quotes}mixing{close_quotes} effect of 50 keV nitrogen implanted thin metal layers on Teflon PTFE (polytetrafluoroethylene) substrates. RBS analysis shows that the distribution of thin layers of copper and chromium (approximately 300-400 {Angstrom} thick) through the implant layer of the Teflon depends on the reactivity of the metal. As the implant fluence is increased, the distribution of metal atoms in the polymer matrix becomes concentrated over smaller ranges near the bottom of the implant layer. {ital In situ} RGA analysis during the implantation shows the liberation of an abundance of fluorine in many different forms. This is supported by results from a NRA experiment that shows the non-uniform concentration profile of fluorine throughout the implant layer. During the implantation process, the fluorine is released through the incident ion track leaving a carbon and metal rich region near the surface of the implant layer. The fluorine density increases with depth through the implant layer making a smooth transition to the undamaged bulk Teflon below. Low dielectric materials with highly conductive surfaces, such as this one, may provide an opportunity for a broad range of new microelectronic applications. {copyright} {ital 1999 American Institute of Physics.}

  13. Patient position verification in ion-beam therapy using ion-beam radiography and fiducial markers

    NASA Astrophysics Data System (ADS)

    Huber, Lucas; Telsemeyer, Julia; Martišíková, Mária; Jäkel, Oliver

    2011-11-01

    The basic rationale for radiation therapy using ion-beams is its high local precision of dose deposition. Therefore accurate patient positioning prior to and during beam application is a crucial part of the therapy. The current standard position verification procedure uses X-ray based imaging before each beam application. The patient is assumed to remain in his position throughout irradiation. Currently there is no monitoring of the patient position or organ movement during treatment. The aim of this study is to investigate the possibility of verifying the position of a fiducial marker during therapy using ion radiography. Some modern ion therapy facilities like the Heidelberg Ion-Beam Therapy Center (HIT), where our measurements were carried out, use scanning pencil beams to apply dose. Exploiting them for imaging allows to solely irradiate regions of interest in the patient's body, e.g. tissue containing medical markers. The advantage of this technique is that it can be performed quickly in turn with therapeutic beam application and irradiates only very little tissue. For our measurements we used conventional medical metal markers embedded in phantom material mimicking body tissue. To image the residual beam we use a Perkin Elmer RID256-L flat panel detector. In an idealized setup the marker contrast was measured to be as high as 60%, which was reduced by a factor of 2-2.5 when the marker was placed at distances to the detector in the phantom material larger than 10 cm. It was shown that applying 2ṡ105 carbon ions suffices to make the markers' position visible in a setup of realistic material thickness and marker depth. While the dose is comparable to X-ray imaging, the irradiated volume and, consequently, also the integral dose is considerably reduced. However, in realistic geometries there are large particle range differences in lateral direction yielding steep signal gradients in the radiography. Thus, the useful image area with unambiguous signal

  14. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  15. Amorphization of In/Au-bilayers by low temperature ion beam mixing

    NASA Astrophysics Data System (ADS)

    Miehle, W.; Plewnia, A.; Ziemann, P.

    1993-06-01

    Au/In-bilayers with a thickness ratio corresponding to AuIn 2 have been bombarded at different temperatures TS < 15, 77, 125 and 180 K with 350 keV Kr +-ions. The resulting ion beam mixing (IM) is monitored by in situ resistance measurements. At TS ≤ 125 K, IM leads to the formation of an amorphous phase, while at TS = 180 K the disordered crystalline AuIn 2-phase is obtained. The mixing efficiencies extracted from the sputter-corrected resistance data are found to be temperature-independent for TS ≤ 180 K and are consistent with the predictions of the thermal spike model.

  16. In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries.

    PubMed

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2016-01-20

    Flexible free-standing carbonized cellulose-based hybrid film is integrately designed and served both as paper anode and as lightweight current collector for lithium-ion batteries. The well-supported heterogeneous nanoarchitecture is constructed from Li4Ti5O12 (LTO), carbonized cellulose nanofiber (C-CNF) and carbon nanotubes (CNTs) using by a pressured extrusion papermaking method followed by in situ carbonization under argon atmospheres. The in situ carbonization of CNF/CNT hybrid film immobilized with uniform-dispersed LTO results in a dramatic improvement in the electrical conductivity and specific surface area, so that the carbonized paper anode exhibits extraordinary rate and cycling performance compared to the paper anode without carbonization. The flexible, lightweight, single-layer cellulose-based hybrid films after carbonization can be utilized as promising electrode materials for high-performance, low-cost, and environmentally friendly lithium-ion batteries. PMID:26727586

  17. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  18. In situ auger analysis of surface composition during high fluence ion implantation

    NASA Astrophysics Data System (ADS)

    Baldwin, D. A.; Sartwell, B. D.; Singer, I. L.

    1985-03-01

    A multi-technique ultrahigh vacuum (UHV) target chamber has been used to perform in situ Auger electron spectroscopic (AES) analysis during ion implantation and AES sputter depth profiling of the substrate within 1-2 min after implantation. Iron was implanted with 150 keV Ti + at a 45° angle of incidence in a target chamber with pressures ranging from 8 × 10 -9 Torr of residual gases up to 1 × 10 -5 Torr of intentionally admitted CO gas. A fluence of ∼1.0 × 10 16cm -2 was needed to sputter away the C-covered air-formed oxide. The implanted Ti reached the surface at the 1 at.% level by ∼1.5 × 10 16cm -2. With increasing fluence, the Ti surface concentration increased to ∼15 at.% at steady-state with a curve shape that was concave downward at all fluences. The surface C concentration was found to be proportional to that of Ti for implants in CO, supporting a vacuum carburization model. Substantial O surface concentration (15-20 at.%) was detected for these runs but depth profiles showed only carburization, not oxidation, of the implanted layer. Even in the best vacuum available (8 × 10 -9Torr), some carburization was observed and was attributed to residual gas absorption. An increase in Ti retained dose with increasing CO pressure has been observed but not yet independently confirmed. The Ti/Fe surface concentration ratio is higher for implants done in CO, and this is discussed in terms of modification of the sputter yield for Ti.

  19. In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes.

    PubMed

    Athavale, Rohini; Kokorite, Ilga; Dinkel, Christian; Bakker, Eric; Wehrli, Bernhard; Crespo, Gastón A; Brand, Andreas

    2015-12-15

    A promising profiling setup for in situ measurements in lakes with potentiometric solid-contact ion-selective electrodes (SC-ISEs) and a data processing method for sensor calibration and drift correction are presented. The profiling setup consists of a logging system, which is equipped with a syringe sampler and sensors for the measurement of standard parameters including temperature, conductivity, oxygen and photosynthetically active radiation (PAR). The setup was expanded with SC-ISEs in galvanically separated amplifiers. The potential for high-resolution profiling is investigated by deploying the setup in the eutrophic Lake Rotsee (Lucerne, Switzerland), using two different designs of ammonium sensing SC-ISEs. Ammonium was chosen as a target analyte, since it is the most common reduced inorganic nitrogen species involved in various pathways of the nitrogen cycle and is therefore indicative of numerous biogeochemical processes that occur in lakes such as denitrification and primary production. One of the designs, which uses a composite carbon-nanotube-PVC-based membrane, suffered from sulfide poisoning in the deeper, sulfidic regions of the lake. In contrast, electrodes containing a plasticizer-free methacrylate copolymer-based sensing layer on top of a conducting polymer layer as a transducer did not show this poisoning effect. The syringe samples drawn during continuous profiling were utilized to calibrate the electrode response. Reaction hotspots and steep gradients of ammonium concentrations were identified on-site by monitoring the electrode potential online. Upon conversion to high-resolution concentration profiles, fine scale features between the calibration points were displayed, which would have been missed by conventional limnological sampling and subsequent laboratory analyses. Thus, the presented setup with SC-ISEs tuned to analytes of interest can facilitate the study of biogeochemical processes that occur at the centimeter scale. PMID:26580973

  20. Beam-folding ultraviolet-visible Fourier transform spectrometry and underwater cytometry for in situ measurement of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Wang, Xuzhu

    itself insensitive to these fluctuations. In addition, an attempt on fast-scanning visible IFTS based on the improved beam-folding technique was done. Preliminary experimental results demonstrated the feasibility of the fast-scanning visible IFTS based on the improved beam-folding technique. In part two, an underwater cytometer for in situ measurement of marine phytoplankton using a combining technique of laser-induced fluorescence (LIF) and laser differential Doppler velocimetry (LDDV) was developed. The advancement compared to the previous work done in the laboratory is to realize an in situ underwater measurement system by means of improving the optical design. The experimental results in June and August 2004 in the coastal area of Hong Kong demonstrated that the new cytometer can be used for in situ measurement of marine phytoplankton. The mean concentration detected by this instrument agreed closely with the experimental data measured by the traditional cell counting under a microscope. With an underwater optical sensing unit that does not rely on an electrical power source, the sensing unit can stay submerged underwater for long periods, making a long-term real-time monitoring system possible.

  1. Development of broad beam ion sources at CSSAR

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; You, D. W.; Kuang, Y. Z.

    1994-04-01

    High-energy and intense beam current broad beam ion sources have been developed for ion implantation and dynamic recoil mixing at CSSAR. The sources can be operated over beam energy and current ranges of 3-120 keV and 5-70 mA, respectively. For sputter coating of thin films, a series of focusing beam ion sources with different structures has also been developed. The energy and current range from 1-10 keV and 100-350 mA for different applications. For some applications, low-energy (below 100 eV) ion beams are required. CSSAR has developed a 6-cm-diam broad beam ion source. The source can be operated at beam energy 10-70 eV, and the beam current 15-80 mA has been extracted. Typical structures and operational data are given for the sources mentioned above. Recently a new type of broad beam metal ion source (Electron Beam Evaporation Metal Ion Source EBE) is being studied. Ion beams of several kinds of materials such as C, W, Ta, Mo, Cr, Ti, B, Cu, etc. have been extracted from the source. Typical operation conditions and ion yields are given in this paper.

  2. Radially uniform circular sweep of ion beam

    SciTech Connect

    Akhmetov, T.D.; Davydenko, V.I.; Ivanov, A.A.; Kobets, V.V.; Medvedko, A.S.; Skorobogatov, D.N.; Tiunov, M.A.

    2006-03-15

    A spiral sweep of the ion beam was suggested to provide sufficiently uniform irradiation of a circular target. It is shown that if the beam radius is small enough, the radius of the beam center should increase as a square root of time to provide uniform radial irradiation of the target. In the complex for Boron Neutron Capture Therapy developed at the Budker Institute of Nuclear Physics, the proton beam sweep will be performed by a sweeper with uniform magnetic field with strength up to 500 G and axial length {approx}20 cm, rotating at 100-2000 Hz, and scanning over the radius at a 1-10 Hz frequency. The sweeper field is produced by four longitudinal flat current windings placed near the inner walls of a box-shaped yoke with the inner opening of a square cross section. A similar sweeping technique can be used in a 200 keV oxygen implanter, which is also under development at the Budker Institute.

  3. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    NASA Astrophysics Data System (ADS)

    Patterson, N.; Adams, D. P.; Hodges, V. C.; Vasile, M. J.; Michael, J. R.; Kotula, P. G.

    2008-06-01

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  4. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    PubMed

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations. PMID:21825787

  5. The Neutralization of Ion-Rocket Beams

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R.

    1961-01-01

    The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.

  6. Modeling of a multicharged ion beam line using SIMION

    NASA Astrophysics Data System (ADS)

    Korwin-Pawlowski, Michael L.; Amiz, Karima; Elsayed-Ali, Hani

    2009-06-01

    Multicharged ion beams (MCI) are promising tools to probe or modify the surface of materials with applications in microelectronics and nanotechnology. Ion beam lines are parts of the MCI systems connecting the ion source with the processing chamber and they perform the function of extracting, accelerating, decelerating, focusing and scanning the ion beam on the surface of the target. In our work we present results of modeling of an MCI beam line using the SIMION code to simulate the flight of ions, with the purpose of optimizing the yield of the line and avoiding spurious effects due to interaction of the ions with the metallic elements of the line, such as heating, outgassing and excessive Xray emission. We show that a two stage ion extractor could significantly reduce ion beam losses.

  7. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  8. In-situ TEM/heavy ion irradiation on ultrafine-and nanocrystalline-grained tungsten: Effect of 3 MeV Si, Cu and W ions

    SciTech Connect

    El-Atwani, O.; Suslova, A.; Novakowski, T.J.; Hattar, K.; Efe, M.; Harilal, S.S.; Hassanein, A.

    2015-01-15

    Plasma facing components for future fusion applications will experience helium- and neutron-induced structural damage. Direct observation of the in-situ dynamic response of such components during particle beam exposure assists in fundamental understanding of the physical phenomena that give rise to their irradiation resistance. We investigated the response of ultrafine and nanocrystalline-grained tungsten to 3 MeV heavy ion irradiations (Si{sup 2} {sup +}, Cu{sup 3} {sup +} and W{sup 4} {sup +}) for the simulation of neutron-induced damage through transmutation reactions via in-situ ion irradiation–transmission electron microscopy experiments. Defect densities as a function of irradiation dose (displacement per atom) and fluence were studied. Four stages of defect densities evolution were observed, as a function of irradiation dose: 1) increase in defect density at lower doses, 2) higher defect production rate at the intermediate doses (before saturation), 3) reaching the maximum value, and 4) drop of the defect density in the case of W{sup 4} {sup +}, possibly due to defect coalescence and grain boundary absorption of small defect clusters. The effect of grain size on defect densities was investigated and found that defect densities were independent of grain size in the ultrafine and nanocrystalline region (60–400 nm). These results were compared to other heavy ion irradiation studies of structural materials. - Graphical abstract: Bright-field TEM micrographs and defect densities of UF and NC tungsten grains irradiated with a) Si{sup +} {sup 2} at 1.03 dpa: 1) 140 nm — 7.2 × 10{sup −} {sup 3} defects/nm{sup 2}, 2) 122 nm — 6.9 × 10{sup −} {sup 3} defects/nm{sup 2}, 3) 63 nm — 4.7 × 10{sup −} {sup 3} defects/nm{sup 2}, and 4) 367 nm — 6.4 × 10{sup −} {sup 3} defects/nm{sup 2}; b) Cu{sup +} {sup 3} to 3.79 dpa: 1) 228 nm — 4.3 × 10{sup −} {sup 3} defects/nm{sup 2}; 2) 202 nm — 5.9 × 10{sup −} {sup 3} defects/nm{sup 2}; and 3) 137 nm

  9. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  10. Focused ion beam in dental research.

    PubMed

    Ngo, H; Cairney, J; Munroe, P; Vargas, M; Mount, G

    2000-11-01

    Focused ion beam (FIB) has been available for over 10 yrs but until recently its usage has been confined to the semiconductor industry. It has been developed as an important tool in defect analysis, circuit modification and recently transmission electron microscope sample preparation. This paper introduces FIB and demonstrates its application in dental research. Its ion and electron imaging modes complement the SEM while its ability to prepare TEM samples from a wide range of material will allow the study of new types of adhesive interface. As an example, its use is described in the characterization of the interface of resin to a tribochemically treated surface of an experimental fiber-reinforced resin-based composite. As with all new techniques, the initial learning curve was difficult to manage. This new instrument offers opportunities to expand research in dental materials to areas not possible before. PMID:11763915

  11. Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm

    2013-11-01

    Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.

  12. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  13. Neutral Beam Ion Loss Modelling for NSTX

    NASA Astrophysics Data System (ADS)

    Darrow, D. S.; Akers, R.; Kaye, S. M.; Mikkelsen, D. R.

    1999-11-01

    The loss of 80 keV D neutral beam ions to the walls has been modeled for a range of plasma conditions in NSTX using the EIGOL code[1]. Initial results of the code are in reasonable agreement with those from the LOCUST code[2]. Both codes predict loss fractions of 20% for a discharge with β_T=40% and q_0=2.6. Losses are strongly concentrated on the front face and edges of the high-harmonic fast wave antenna as it projects farther inward than other internal structures at the midplane. The edges of the passive stabilizer plates near the midplane are also subject to a large flux of lost beam ions under some conditions. The dependence of the loss upon the plasma density profile, I_p, and BT will be presented. [1] D. S. Darrow, et al., in Proceedings of the 26th EPS Conference on Controlled Fusion and Plasma Physics, Maastricht, The Netherlands, 14-18 June 1999. [2] R. Akers, et al., ibid.

  14. Ion beam probing of electrostatic fields

    NASA Technical Reports Server (NTRS)

    Persson, H.

    1979-01-01

    The determination of a cylindrically symmetric, time-independent electrostatic potential V in a magnetic field B with the same symmetry by measurements of the deflection of a primary beam of ions is analyzed and substantiated by examples. Special attention is given to the requirements on canonical angular momentum and total energy set by an arbitrary, nonmonotone V, to scaling laws obtained by normalization, and to the analogy with ionospheric sounding. The inversion procedure with the Abel analysis of an equivalent problem with a one-dimensional fictitious potential is used in a numerical experiment with application to the NASA Lewis Modified Penning Discharge. The determination of V from a study of secondary beams of ions with increased charge produced by hot plasma electrons is also analyzed, both from a general point of view and with application to the NASA Lewis SUMMA experiment. Simple formulas and geometrical constructions are given for the minimum energy necessary to reach the axis, the whole plasma, and any point in the magnetic field. The common, simplifying assumption that V is a small perturbation is critically and constructively analyzed; an iteration scheme for successively correcting the orbits and points of ionization for the electrostatic potential is suggested.

  15. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  16. Ion beam requirements for fast ignition of inertial fusion targets

    SciTech Connect

    Honrubia, J. J.; Murakami, M.

    2015-01-15

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core, ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point has been analyzed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  17. In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam

    NASA Astrophysics Data System (ADS)

    El Mel, Abdel-Aziz; Bittencourt, Carla

    2016-05-01

    With the current development of electron beam sources, the use of transmission electron microscopes is no more limited to imaging or chemical analysis but has rather been extended to nanoengineering. This includes the e-beam induced growth, etching and structural transformation of nanomaterials. In this review we summarize recent progress on the e-beam induced morphological transformation of nanostructures from solid to hollow. We provide a detailed account of the processes reported so far in the literature with a special emphasis on the mechanistic understanding of the e-beam induced hollowing of nanomaterials. Through an important number of examples, we discuss how one can achieve a precise control of such hollowing processes by understanding the fundamental mechanisms occurring at the atomic scale during the irradiation of solid nanostructures. Finally, we conclude with remarks and our own view on the prospective future directions of this research field.

  18. In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam.

    PubMed

    El Mel, Abdel-Aziz; Bittencourt, Carla

    2016-06-01

    With the current development of electron beam sources, the use of transmission electron microscopes is no more limited to imaging or chemical analysis but has rather been extended to nanoengineering. This includes the e-beam induced growth, etching and structural transformation of nanomaterials. In this review we summarize recent progress on the e-beam induced morphological transformation of nanostructures from solid to hollow. We provide a detailed account of the processes reported so far in the literature with a special emphasis on the mechanistic understanding of the e-beam induced hollowing of nanomaterials. Through an important number of examples, we discuss how one can achieve a precise control of such hollowing processes by understanding the fundamental mechanisms occurring at the atomic scale during the irradiation of solid nanostructures. Finally, we conclude with remarks and our own view on the prospective future directions of this research field. PMID:27172892

  19. The prospects of a subnanometer focused neon ion beam.

    PubMed

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress. PMID:21796647

  20. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  1. Spacecraft charging during ion beam emissions in sunlight

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Mcneil, W. J.; Aggson, T. L.

    1990-01-01

    During ion beam emissions from the SCATHA satellite, the potential of the negatively charged satellite body shows a sinusoidal oscillation frequency of once-per-spin of the satellite. The minimum occurs when the ion beam is sunward. The processes that may be responsible for the voltage modulation are considered. Neutralization of ion beam space charge by photoelectrons is examined. The photoelectrons are accelerated by the negative potential of the satellite. Effects of electron impact ionization, excitation of metastable states, and photoionization of xenon neutral atoms in the ion beam are studied in detail. Critical ionization velocity interaction is unlikely under the condition considered.

  2. Ion Beam Energy Dependant Study of Nanopore Sculpting

    NASA Astrophysics Data System (ADS)

    Ledden, Brad

    2005-03-01

    Experiments show that ion beams of various energies (1keV, 3keV, and 5keV) can be used to controllably ``sculpt'' nanoscale features in silicon nitride films using a feedback controlled ion beam sculpting apparatus. We report on nanopore ion beam sculpting effects that depend on inert gas ion beam energy. We show that: (1) all ion beam energies enable single nanometer control of structural dimensions in nanopores; (2) the ion beam energies above show similar ion beam flux dependence of nanopore formation; (3) the thickness of nanopores differs depending on ion beam energy. Computer simulations (with SRIM and TRIM) and an ``adatom'' surface diffusion model are employed to explain the dynamics of nanoscale dimension change by competing sputtering and surface mass transport processes induced by different ion beam irradiation. These experiments and theoretical work reveal the surface atomic transport phenomena in a quantitative way that allows the extraction of parameters such as the adatom surface diffusion coefficients and average travel distances.

  3. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries.

    PubMed

    Jiang, Le; Qu, Yang; Ren, Zhiyu; Yu, Peng; Zhao, Dongdong; Zhou, Wei; Wang, Lei; Fu, Honggang

    2015-01-28

    Metal oxide-based materials with yolk-shell morphology have been intensively investigated as important anodes for Li-ion batteries due to their large ion storage ability, high safety, and excellent cycling stability. In this work, in situ carbon-coated yolk-shell V2O3 microspheres were synthesized via a template-free polyol solvothermal method. The growth of yolk-shell microspheres underwent coordination and polymerization, followed by an inside-out Ostwald-ripening process and further calcination in N2 atmosphere. The thin amorphous carbon layers coating on the microspheres' surface came from polyol frameworks which could protect V2O3 during the charge-discharge process and led to a better stability in Li-ion batteries. The in situ carbon-coated yolk-shell V2O3 microspheres showed a capacity of 437.5 mAh·g(-1) after 100 cycles at a current density of 0.1 A·g(-1), which was 92.6% of its initial capability (472.5 mAh·g(-1)). They were regarded as excellent electrode materials for lithium-ion batteries and exhibit good electrochemistry performance and stability. PMID:25569599

  4. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    SciTech Connect

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  5. Testing Time Dilation on Fast Ion Beams

    NASA Astrophysics Data System (ADS)

    Saathoff, G.; Reinhardt, S.; Bernhardt, B.; Holzwarth, R.; Udem, T.; Hänsch, T. W.; Bing, D.; Schwalm, D.; Wolf, A.; Botermann, B.; Karpuk, S.; Novotny, C.; Nörtershäuser, W.; Huber, G.; Geppert, C.; Kühl, T.; Stöhlker, T.; Rempel, T.; Gwinner, G.

    2011-12-01

    We report the status of an experimental test of special-relativistic time dilation. Following an idea of Ives and Stilwell in 1938, we measure the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these Doppler shifts both the ion velocity β = υ/c and the time dilation factor γ = γ {SR} (1 + hat α β 2 ) can be derived for testing Special Relativity. From measurements based on saturation spectroscopy on lithium ions stored at β = 0.03 and β = 0.06, we achieved an upper limit for deviation from Special Relativity of <=ft| {hat α } ; | \\underline < 8 × 10{ - 8} . Recent measurements on a β = 0.338 Li+ beam show similar sensitivity and promise an improvement by at least one order of magnitude. Finally we discuss present sensitivities to various coefficients in the photon and particle sector of the Standard-Model Extension, as well as possible modifications of the experiment for the test of further, hitherto unbounded, coefficients.

  6. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  7. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  8. In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging

    NASA Astrophysics Data System (ADS)

    Goers, D.; Holzapfel, M.; Scheifele, W.; Lehmann, E.; Vontobel, P.; Novák, P.

    In situ neutron radiography (NR) was used to study the gas evolution on graphite electrodes in lithium-ion cells containing different PVDF-based gel-type electrolytes. The amount of gas bubbles and channels was calculated by image analysis. Gas production was extremely high in the case of the electrolyte containing ethylene carbonate (EC) and propylene carbonate (PC) (2:3, w/w), 1 M LiClO 4. About 60% of the electrode surface consisted of the gas phase which resulted in an inhomogeneous local current distribution. In contrast, the electrolyte containing EC and γ-butyrolactone (GBL) (1:1, w/w), 1 M LiBF 4 only showed a small increase of the gas volume between the electrodes of about 3%. In situ NR also revealed the displacement of the electrolyte due to gas evolution and volume changes of the electrodes.

  9. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGESBeta

    Yu, K. Y.; Fan, Z.; Chen, Y.; Song, M.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe96Zr4 nanocomposite alloy. Irradiation resulted in amorphization of Fe2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphous nanocomposites.

  10. In situ ion gun cleaning of surface adsorbates and its effect on electrostatic forces

    NASA Astrophysics Data System (ADS)

    Schafer, Robert; Xu, Jun; Mohideen, Umar

    2016-01-01

    To obtain precise measurements of the Casimir force, it is crucial to take into account the electrostatic interactions that exist between the two boundaries. Two otherwise grounded conductors will continue to have residual electrostatic effects from patch potentials existing on the surfaces. In this paper, we look at the effect of in situ cleaning of adsorbate patches, and the resultant effect on the net electrostatic potential difference between two surfaces. We find a significant reduction in the residual potential due to in situ Ar+ cleaning for the samples used.

  11. Laser cooling of relativistic heavy-ion beams for FAIR

    NASA Astrophysics Data System (ADS)

    Winters, D.; Beck, T.; Birkl, G.; Dimopoulou, C.; Hannen, V.; Kühl, Th; Lochmann, M.; Loeser, M.; Ma, X.; Nolden, F.; Nörtershäuser, W.; Rein, B.; Sánchez, R.; Schramm, U.; Siebold, M.; Spiller, P.; Steck, M.; Stöhlker, Th; Ullmann, J.; Walther, Th; Wen, W.; Yang, J.; Zhang, D.; Bussmann, M.

    2015-11-01

    Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

  12. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  13. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  14. In-situ aberration correction of Bessel beams using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Jákl, Petr; Arzola, Alejandro V.; Zemánek, Pavel

    2015-01-01

    A spatial light modulator (SLM) is a versatile device capable of real-time generation of diffractive phase gratings. Employing the SLM in an optical setup opens the possibility of dynamic modification of properties of the incident laser beam, such as its splitting into an arbitrary number of diffracted beams, changing its convergence or its modification into non-traditional laser beam profiles. Advanced feedback procedures enable resolving complex phase masks correcting aberrations inherent to the whole optical system, such as imprecisions of manufacturing process, inhomogeneity of refractive index of materials used or misalignment of optical elements. In this work, generation of Bessel beams (BB) using the SLM is presented. The BB quality is very sensitive to the optical aberrations of the system, especially when higher topological charge is applied to create so-called optical vortices. Therefore, the method compensating those aberrations is applied and the corrected beam is inspected by a CCD camera and optical micro-manipulations of micro-particles. Our experimental results demonstrate successful trapping, rotation and translation of micrometer-sized particles purely by optical forces.

  15. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed. PMID:24231648

  16. Molecular-beam epitaxy growth and in situ arsenic doping of p-on-n HgCdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Arias, Jose; Zandian, M.; Pasko, J. G.; Shin, S. H.; Bubulac, L. O.; DeWames, R. E.; Tennant, W. E.

    1991-02-01

    In this paper we present, results on the growth of in situ doped p-on-n heterojunctions on HgCdTe epilayers grown on (211)B GaAs substrates by molecular-beam epitaxy (MBE). Long wavelength infrared (LWIR) photodiodes made with these grown junctions are of high performance. The n-type MBE HgCdTe/GaAs alloy epilayer in these structures was grown at Ts=185 °C and it was doped with indium (high 1014 cm-3 range) atoms. This epilayer was directly followed by the growth, at Ts=165 °C, of an arsenic-doped (1017-1018 cm-3 ) HgTe/CdTe superlattice structure which was necessary to incorporate the arsenic atoms as acceptors. After the structure was grown, a Hg annealing step was needed to interdiffuse the superlattice and obtain the arsenic-doped p-type HgCdTe layer above the indium-doped layer. LWIR mesa diodes made with this material have 77 K R0A values of 5×103, 81, 8.5, and 1.1 Ω cm2 for cutoff wavelengths of 8.0, 10.2, 10.8, and 13.5 μm, respectively; the 77 K quantum efficiency values for these diodes were greater than 55%. These recent results represent a significant step toward the demonstration of MBE as a viable growth technique for the in situ fabrication of large area LWIR focal plane arrays.

  17. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Dehoff, Ryan R.; Lloyd, Peter D.; Lowe, Larry E.; Ulrich, Joe B.

    2013-05-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  18. In situ electrochemical STM study of platinum nanodot arrays on highly oriented pyrolythic graphite prepared by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Foelske-Schmitz, A.; Peitz, A.; Guzenko, V. A.; Weingarth, D.; Scherer, G. G.; Wokaun, A.; Kötz, R.

    2012-12-01

    Model electrodes consisting of platinum dots with a mean diameter of (30 ± 5) nm and heights of 3-5 nm upon highly oriented pyrolytic graphite (HOPG) were prepared by electron beam lithography and subsequent sputtering. The Pt nanodot arrays were stable during scanning tunnelling microscopy (STM) measurements in air and in sulphuric acid electrolyte, indicating the presence of "anchors", immobilising the dots on the HOPG surface. Electrochemical STM was used to visualise potential induced Pt, carbon and Pt-influenced carbon corrosion in situ in 0.5 M sulphuric acid under ambient conditions. Potentiostatic hold experiments show that the Pt dots start to disappear at electrode potentials of E > 1.4 V vs. SHE. With increasing time and potential a hole pattern congruent to the original dot pattern appears on the HOPG basal planes. Corrosion and peeling of the HOPG substrate could also be followed in situ. Dissolution of Pt dots appears to be accelerated for potential cycling experiments compared to the potential hold statistics.

  19. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    SciTech Connect

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  20. Negative ion based neutral beam injector for JT-60U

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Araki, M.; Hanada, M.; Inoue, T.; Kunieda, S.; Kuriyama, M.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Tanaka, M.; Watanabe, K.

    1992-10-01

    A 500 keV, 10 MW neutral beam injector is to be constructed in JT-60 Upgrade for the experiments of current drive and heating of heat density core plasmas. This is the first neutral beam injector in the world using negative ions as the primary ions. In the design, D- ion beams of 44 A, 500 keV are produced by two ion sources (22 A/each ion source) and neutralized in a long gas neutralizer. The total system efficiency is about 40%. The ion source is a cesium-seeded multicusp volume source having a three stage electrostatic accelerator. To reduce the stripping loss of D- ions in the accelerator, the ion source should be operated at a low pressure of 0.3 Pa with a current density of 13 mA/cm2. The first test of the full-size negative ion source is scheduled from middle of 1993.

  1. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    NASA Astrophysics Data System (ADS)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  2. Identification of biological molecules in situ at high resolution via the fluorescence excited by a scanning electron beam.

    PubMed Central

    Hough, P V; McKinney, W R; Ledbeter, M C; Pollack, R E; Moos, H W

    1976-01-01

    Proteins, nucleic acids, and fluorescein-conjugated antibody are shown to be identifidable in situ via the fluorescence excited by the focused electron beam of a canning electron microscope. A molecular species is identified by its characteristic fluorescence spectrum and by a characteristic alteration of the spectrum with time under the electron beam. Primary protein fluorescence is relatively rapidly destroyed by the beam, but protein photoproduct fluorescence is more rugged and will in some cases permit detection of small numbers of protein molecules. Nucleic acid fluorescence is extremely long-lived and will permit detection of small numbers of nucleic acid residues. The theoretical resolution limit for localization of a particular molecular species -- about 20 A--is determined by the known maximum distance for molecular excitation by fast electrons. Drect extapolation from an observed resolution of 900 A in the localization of nucleic acid using a low-efficiency detector leads to an experimental resolution limit of less than 60 A. Fluorescence is strongly quenched by residual water in the specimen. Similar quenching is produced by some macromolecular associations and so may serve to localize such associations. Images PMID:768980

  3. Turning electrospun poly(methyl methacrylate) nanofibers into graphitic nanostructures by in situ electron beam irradiation

    SciTech Connect

    Duan, H. G.; Xie, E. Q.; Han, L.

    2008-02-15

    Using ultrathin electrospun poly(methyl methacrylate) (PMMA) nanofibers as precursor, graphitic nanofibers, nanobridges, nanocones, and fullerenelike onions could be prepared by electron beam irradiation in a controlled manner. With the help of the high resolution transmission electron microscopy, the real time processing of the carbonization and graphitization of the PMMA nanofibers could be investigated. This way to obtain graphitic nanostructures has promising applications in graphitic carbon nanostructure electronics and devices. Because PMMA is a widely used standard high resolution electron resist, this graphitization could be combined with electron beam lithography to obtain high resolution patterned graphitic circuits.

  4. Observation of Beam ION Instability in Spear3

    SciTech Connect

    Teytelman, D.; Cai, Y.; Corbett, W.J.; Raubenheimer, T.O.; Safranek, J.A.; Schmerge, J.F.; Sebek, J.J.; Wang, L.; /SLAC

    2011-12-14

    Weak vertical coupled bunch instability with oscillation amplitude at {mu}m level has been observed in SPEAR3. The instability becomes stronger when there is a vacuum pressure rise by partially turning off vacuum pumps and it becomes weaker when the vertical beam emittance is increased by turning off the skew quadrupole magnets. These confirmed that the instability was driven by ions in the vacuum. The threshold of the beam ion instability when running with a single bunch train is just under 200 mA. This paper presents the comprehensive observations of the beam ion instability in SPEAR3. The effects of vacuum pressure, beam current, beam filling pattern, chromaticity, beam emittance and bunch-by-bunch feedback are investigated in great detail. In an electron accelerator, ions generated from the residual gas molecules can be trapped by the beam. Then these trapped ions interact resonantly with the beam and cause beam instability and emittance blow-up. Most existing light sources use a long single bunch train filling pattern, followed by a long gap to avoid multi-turn ion trapping. However, such a gap does not preclude ions from accumulating during one passage of the single bunch train beam, and those ions can still cause a Fast Ion Instability (FII) as predicted by Raubenheimer and Zimmermann. FII has been observed in ALS, and PLS by artificially increasing the vacuum pressure by injecting helium gas into the vacuum chamber or by turning off the ion pumps in order to observe the beam ion instability. In some existing rings, for instance B factory, the beam ion instability was observed at the beginning of the machine operation after a long period of shutdown and then it automatically disappeared when the vacuum was better. However, when the beam emittance becomes smaller, the FII can occur at nominal conditions as observed in PLS, SOLEIL and SSRF. This paper reports the observations of beam ion instabilities in SPEAR3 under different condition during a period of one

  5. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect

    Unocic, Raymond R.; Sun, Xiao-Guang; Sacci, Robert L.; Adamczyk, Leslie A.; Alsem, Daan Hein; Dai, Sheng; Dudney, Nancy J.; More, Karren Leslie

    2014-08-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  6. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  7. In-situ white beam microdiffraction study of the deformation behavior in polycrystalline magnesium alloy during uniaxial loading

    SciTech Connect

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Madsen, I.C.; Bettles, C.; Tamura, N.; Geandier, G.

    2007-01-19

    Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situmeasurements a light weight (~;;0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

  8. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J.-H.; Heindel, T.; Burger, S.; Schmidt, F.; Strittmatter, A.; Rodt, S.; Reitzenstein, S.

    2015-07-01

    The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23+/-3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80+/-7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.

  9. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  10. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  11. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak. PMID:22852685

  12. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described. PMID:26932088

  13. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  14. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    PubMed

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-01

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization. PMID:26287361

  15. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed. PMID:18315202

  16. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  17. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  18. Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions

    SciTech Connect

    Sharma, Suresh C.; Gahlot, Ajay

    2008-07-15

    An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth rate of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].

  19. Simulations and Observations of Heating of Auroral Ion Beams

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dusenbery, P. B.; Collin, H. L.; Lin, C. S.; Persoon, A. M.

    1989-01-01

    In the auroral zone, quasi-static parallel electric fields produce beams of ionospheric ions (e.g., H(+), He(+) and 0(+)), which flow outward into the magnetosphere, providing a significant source of ions for the ring current and plasma sheet. Because the velocities to which these beams are accelerated is dependent on the mass of the ions, differential flows between the various ion species can develop which are unstable to an ion-ion streaming instability. Particle simulations and observations from DE 1 are used to investigate the heating of the ion beams produced by this instability. It is shown that there is net transfer of energy from the light ions to the heavy ions, with the heavy ions reaching maximum velocities near the beam velocity of the light ions. Bulk heating of the heavy ions occurs when their relative density is low while high-energy tails are produced when their relative density is high. The heating is primarily parallel to the magnetic field if the difference in the heavy and light ion beam velocities is subsonic while both perpendicular and parallel heating can occur if it is supersonic. In the latter case, very strong heating of an intermediate ion's species such as He(+) can also occur. Comparison with observations shows features consistent with heating via the ion-ion instability including perpendicular heating in the supersonic regime and parallel heating in the subsonic regime and a change in the heating between these regimes as the ratio of the H(+) beam speed to the local sound speed is observed to decrease. This heating is, however, not always observed in association with enhanced wave emissions. This lack of waves is attributed to reabsorption of the waves as the ions become heated.

  20. NRL light ion beam research for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Cooperstein, G.; Goldstein, S. A.; Mosher, D.; Barker, R. J.; Boller, J. R.; Colombant, D. G.; Drobot, A.; Meger, R. A.; Oliphant, W. F.; Ottinger, P. F.

    1980-11-01

    There is presently great interest in using light ions beams to drive thermonuclear pellets. Terrawatt-level ion beams have been efficiently produced using conventional pulsed power generators at Sandia Laboratory with magnetically-insulated ion diodes and at the Naval Research Laboratory with pinch-reflex ion diodes. Both laboratories have recently focused ion beams to pellet dimensions. This paper reviews recent advances made at NRL in the area of ion production with pinch-reflex diodes, and in the areas of beam focusing and transport. In addition, modulator generator and beam requirements for pellet ignition systems are reviewed and compared with the latest experimental results. These results include the following: (1) production of = or - 100,100 kj proton and deuteron beams with peak ion powers approaching 2 TW on the PITHON generator in collaboration with Physics International Co., (2) focusing of 0.5 TW deuteron beams produced on the NRL Gamble 2 generator to current densities of about 300 kA/sq cm, and (3) efficient transport of 100 kA level ion beams over 1 meter distances using Z-discharge plasma channels.

  1. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li(+)-ion batteries.

    PubMed

    Seidl, Lukas; Martens, Slađana; Ma, Jiwei; Stimming, Ulrich; Schneider, Oliver

    2016-08-01

    The SEI-formation on graphitic electrodes operated as an Li(+)-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li(+) the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes. PMID:27140292

  2. Production of multiply charged ion beams from solid substances with the mVINIS ion source

    SciTech Connect

    Draganic, I.; Dobrosavljevic, A.; Nedeljkovic, T.; Siljegovic, M.

    2006-03-15

    The mVINIS ion source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: (a) the evaporation of metals by using the inlet system based on a minioven and (b) the metal-ions-from-volatile-compounds method (MIVOC) by using the modified gas inlet system. Great efforts were made in the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg. C). The B{sup 3+} ion-beam current of over 300 {mu}A was one of the most intensive beams extracted until now. The obtained multiply charged ion-beam spectra of solid substances (B, Fe, and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials, and fullerenes.

  3. Nanopore Sculpting with Low Energy Ion Beam of Noble Gases

    NASA Astrophysics Data System (ADS)

    Cai, Qun; Ledden, Brad; Krueger, Eric; Golovchenko, Jene; Li, Jiali

    2005-03-01

    Experiments show that 3keV Helium, Neon, Argon, Krypton, and Xenon ion beams can be used to controllably ``sculpt'' nanoscale features in silicon nitride films using a feedback controlled ion beam sculpting apparatus. Here we report nanopore ion beam sculpting effects that depend on the inert gas ion species. We demonstrate that: (1) all the noble gas ion beams enable single nanometer control of structural dimensions in nanopores; (2) every ion species above shows similar ion beam flux dependence of nanopore formation, (3) the thickness of nanopores sculpted with different inert gas ion beam is deferent. Computer simulations (with SRIM and TRIM) and an ``adatom'' surface diffusion model are employed to explain the dynamics of nanoscale dimension change by competing sputtering and surface mass transport processes induced by different ion beam irradiation. These experiments and theoretical work reveal the surface atomic transport phenomena in a quantitative way that allows the extraction of parameters such as the adatom surface diffusion coefficients and average travel distances.

  4. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  5. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, Thomas J. T.; Snell, Charles M.

    2000-03-01

    High-current electron beams of small spot size are used for high-resolution x-ray radiography of dense objects. Intense energy deposition in the bremsstrahlung target causes generation of ions which can propagate upstream and disrupt the electron beam. We have investigated the use of a thin beryllium foil placed 1-2 cm in front of the target, which serves as a barrier for the ions but is essentially transparent to the incoming electron beam. Analysis and computer simulations confirm that this confinement method will halt ion propagation and preserve the spot size stability of the electron beam. (c) 2000 American Institute of Physics.

  6. The Gellyfish: An In-Situ Equilibrium-Based Sampler for Determining Multiple Free Metal Ion Concentrations in Marine Ecosystems

    PubMed Central

    Dong, Zhao; Lewis, Christopher G.; Burgess, Robert M.; Shine, James P.

    2016-01-01

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure due to their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated, time-consuming, and can only measure one metal at a time. We developed a new version of the ‘Gellyfish’, an in-situ equilibrium-based sampler, with significantly reduced equilibration time and the capability of measuring multiple free metal ions simultaneously. By calibrating the Gellyfish to account for its uptake of cationic metal complexes and validating them in multi-metal competition experiments, we were able to determine free metal ion concentrations previously collected over ten months at five locations in Boston Harbor for Cu, Zn, Pb, Ni, and Cd. This work generated one of the largest free metal ion datasets and demonstrated the applicability of the Gellyfish as an easy-to-use and inexpensive tool for monitoring free ion concentrations of metal mixtures in marine ecosystems. PMID:25598362

  7. Status of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.

    2003-05-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using 17F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include 25Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  8. Historical milestones and future prospects of cluster ion beam technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2014-08-01

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  9. Lithium ion beam driven hohlraums for PBFA II

    SciTech Connect

    Dukart, R.J.

    1994-05-06

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities.

  10. Electrical biasing and voltage contrast imaging in a focused ion beam system

    SciTech Connect

    Campbell, A.N.; Soden, J.M.; Rife, J.L.; Lee, R.G.

    1995-09-01

    We present two new techniques that enhance conventional focused ion beam (FIB) system capabilities for integrated circuit (IC) analysis: in situ electrical biasing and voltage contrast imaging. We have used in situ electrical biasing to enable a number of advanced failure analysis applications including (1) real time evaluation of device electrical behavior during milling and deposition, (2) verification of IC functional modifications without removal from the FIB system, and (3) ultraprecision control for cross sectioning of deep submicron structures, such as programmed amorphous silicon antifuses. We have also developed FIB system voltage contrast imaging that can be used for a variety of failure analysis applications. The use of passive voltage contrast imaging for defect localization and for navigation on planarized devices will be illustrated. In addition, we describe new, biased voltage contrast imaging techniques and provide examples of their application to the failure analysis of complex ICs. We discuss the necessary changes in system operating parameters to perform biased voltage contrast imaging.

  11. InSitu X-Ray Diffraction Studies on Lithium-Ion Battery Cathodes

    SciTech Connect

    Doughty, Daniel H.; Ingersoll, David; Rodriguez, Mark A.

    1999-07-13

    LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and LiNiO{sub 2} have been characterized in-situ XRD. LiNi{sub 0.8}Co{sub 0.2}O{sub 2} does not undergo a monoclinic phase transformation but remains a hexagonal lattice throughout the entire charging cycle. It is hypothesized that Co-doping may help stabilize the hexagonal structure.

  12. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  13. On the role of ion-based imaging methods in modern ion beam therapy

    SciTech Connect

    Magallanes, L. Rinaldi, I.; Brons, S.; Marcelos, T. Parodi, K.; Takechi, M.; Voss, B.; Jäkel, O.

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  14. On the role of ion-based imaging methods in modern ion beam therapy

    NASA Astrophysics Data System (ADS)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  15. Direct plasma injection scheme with various ion beams

    SciTech Connect

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  16. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  17. Beam Compression in Heavy-Ion Induction Linacs

    SciTech Connect

    Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waldron, W.L.; Welch, D.R.

    2009-01-01

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the LBNL Neutralized Drift Compression Experiment (NDCX) experiment with controlled ramps and forced neutralization. The achieved peak beam current and energy can be used in experiments to heat targets and create warm dense matter. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50x current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss experiments that are under development to reach the necessary higher beam intensities and the associated beam diagnostics.

  18. Measurements of Beam Ion Loss from the Compact Helical System

    SciTech Connect

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  19. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  20. In-situ Quasi-Instantaneous e-beam Driven Catalyst-Free Formation Of Crystalline Aluminum Borate Nanowires

    PubMed Central

    Gonzalez-Martinez, Ignacio G.; Gemming, Thomas; Mendes, Rafael; Bachmatiuk, Alicja; Bezugly, Viktor; Kunstmann, Jens; Eckert, Jürgen; Cuniberti, Gianaurelio; Rümmeli, Mark H.

    2016-01-01

    The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires. PMID:26934833

  1. In-situ Quasi-Instantaneous e-beam Driven Catalyst-Free Formation Of Crystalline Aluminum Borate Nanowires

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martinez, Ignacio G.; Gemming, Thomas; Mendes, Rafael; Bachmatiuk, Alicja; Bezugly, Viktor; Kunstmann, Jens; Eckert, Jürgen; Cuniberti, Gianaurelio; Rümmeli, Mark H.

    2016-03-01

    The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.

  2. Tamped, split fuel-layer ion-beam target

    SciTech Connect

    Meeker, D.J.; Bangerter, R.O.

    1981-01-01

    A double shelled, split fuel layer target with an outer hydro tamper surrounding the low Z absorber has been designed for ion beam drivers. Results from 1-D computer calculations predict a 5 GeV heavy ion beam could produce gains in excess of 200. The behavior of this target as a function of ion range, tamper thickness and spot size has been studied.

  3. Beam-Ion Instability in PEP-II

    SciTech Connect

    Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC

    2007-11-07

    The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.

  4. Design and operation of the electron beam ion trap

    SciTech Connect

    Vogel, D.

    1990-05-30

    This report describes the basic features and operating principles of the Electron Beam Ion Trap. The differences between EBIT and other sources of highly charged ions are outlined. Its features and operating parameters are discussed. The report also explains why certain design choices were necessary and the constraints involved in building an electron beam ion trap. EBIT's evaporation cooling system is described in detail. 13 refs., 8 figs.

  5. Development of a lithium liquid metal ion source for MeV ion beam analysis

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1988-01-01

    Lithium liquid metal ion sources are an attractive complement to the existing gaseous ion sources that are extensively used for ion beam analysis. This is due in part to the high brightness of the liquid metal ion source and in part to the availability of a lithium ion beam. High brightness is of particular importance to MeV ion microprobes which are now approaching current density limitations on targets determined by the ion source. The availability of a lithium beam provides increased capabilities for hydrogen profiling and high resolution Rutherford backscattering spectrometry. This paper describes the design and performance of a lithium liquid metal ion source suitable for use on a 5MV Laddertron accelerator. Operational experience with the source and some of its uses for ion beam analysis are discussed. 8 refs., 2 figs.

  6. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry.

    PubMed

    Li, Ming; Zhang, Jingjing; Jiang, Jie; Zhang, Jing; Gao, Jing; Qiao, Xiaolin

    2014-04-01

    In this paper, a novel approach based on paper spray ionization coupled with ion mobility spectrometry (PSI-IMS) was developed for rapid, in situ detection of cocaine residues in liquid samples and on various surfaces (e.g. glass, marble, skin, wood, fingernails), without tedious sample pretreatment. The obvious advantages of PSI are its low cost, easy operation and simple configuration without using nebulizing gas or discharge gas. Compared with mass spectrometry, ion mobility spectrometry (IMS) takes advantage of its low cost, easy operation, and simple configuration without requiring a vacuum system. Therefore, IMS is a more congruous detection method for PSI in the case of rapid, in situ analysis. For the analysis of cocaine residues in liquid samples, dynamic responses from 5 μg mL(-1) to 200 μg mL(-1) with a linear coefficient (R(2)) of 0.992 were obtained. In this case, the limit of detection (LOD) was calculated to be 2 μg mL(-1) as signal to noise (S/N) was 3 with a relative standard deviation (RSD) of 6.5% for 11 measurements (n = 11). Cocaine residues on various surfaces such as metal, glass, marble, wood, skin, and fingernails were also directly analyzed before wiping the surfaces with a piece of paper. The LOD was calculated to be as low as 5 ng (S/N = 3, RSD = 6.3%, n = 11). This demonstrates the capability of the PSI-IMS method for direct detection of cocaine residues at scenes of cocaine administration. Our results show that PSI-IMS is a simple, sensitive, rapid and economical method for in situ detection of this illicit drug, which could help governments to combat drug abuse. PMID:24563903

  7. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  8. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy.

    PubMed

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. (6)Li and (7)Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  9. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    PubMed Central

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  10. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy

    NASA Astrophysics Data System (ADS)

    Smeets, Paul J. M.; Cho, Kang Rae; Kempen, Ralph G. E.; Sommerdijk, Nico A. J. M.; de Yoreo, James J.

    2015-04-01

    The characteristic shapes, structures and properties of biominerals arise from their interplay with a macromolecular matrix. The developing mineral interacts with acidic macromolecules, which are either dissolved in the crystallization medium or associated with insoluble matrix polymers, that affect growth habits and phase selection or completely inhibit precipitation in solution. Yet little is known about the role of matrix-immobilized acidic macromolecules in directing mineralization. Here, by using in situ liquid-phase electron microscopy to visualize the nucleation and growth of CaCO3 in a matrix of polystyrene sulphonate (PSS), we show that the binding of calcium ions to form Ca-PSS globules is a key step in the formation of metastable amorphous calcium carbonate (ACC), an important precursor phase in many biomineralization systems. Our findings demonstrate that ion binding can play a significant role in directing nucleation, independently of any control over the free-energy barrier to nucleation.

  11. Area-selective formation of Si nanocrystals by assisted ion-beam irradiation during dual-ion-beam deposition

    SciTech Connect

    Kim, Jae Kwon; Cha, Kyu Man; Kang, Jung Hyun; Kim, Yong; Yi, Jae-Yel; Chung, Tae Hun; Bark, Hong Jun

    2004-08-30

    We investigate the effect of Ar-ion-beam irradiation during the deposition of SiO{sub x} films by dual-ion-beam deposition system. Ion-beam irradiation effectively increases the oxygen content, x, in SiO{sub x} films indicative of the preferential sputtering of Si phase as compared to SiO{sub 2} phase in SiO{sub x} films. We observe the intense photoluminescence from nonirradiated sample after postdeposition annealing at 1100 deg. C indicating the formation of Si nanocrystals as shown by a cross-sectional transmission electron microscope. However, the increased oxygen content in ion-beam-irradiated sample results in small optical volume of small Si nanocrystals not sufficient for yielding appreciable photoluminescence intensity after postdeposition annealing. The property is utilized for achieving the area-selective formation of Si nanocrytals by inserting a shadow mask in assist ion beam during deposition.

  12. In situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films

    SciTech Connect

    Tsukamoto, Naoki; Watanabe, Daisuke; Saito, Motoaki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    The origin of high energy negative ions during deposition of aluminum doped zinc oxide (AZO) films by dc magnetron sputtering of an AZO (Al{sub 2}O{sub 3}: 2.0 wt %) target was investigated by in situ analyses using the quadrupole mass spectrometer combined with the electrostatic energy analyzer. High energy negative oxygen (O{sup -}) ions which possessed the kinetic energy corresponding to the cathode sheath voltage were detected. The maximum flux of the O{sup -} ions was clearly observed at the location opposite to the erosion track area on the target. The flux of the O{sup -} ions changed hardly with increasing O{sub 2} flow ratio [O{sub 2}/(Ar+O{sub 2})] from 0% to 5%. The kinetic energy of the O{sup -} ions decreased with decreasing cathode sheath voltage from 403 to 337 V due to the enhancement of the vertical maximum magnetic field strength at the cathode surface from 0.025 to 0.100 T. The AZO films deposited with the lower O{sup -} bombardment energy showed the higher crystallinity and improved the electrical conductivity.

  13. Electrostatic entrapment of chloroaurate ions in patterned lipid films and the in situ formation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mandal, Saikat; Sainkar, S. R.; Sastry, Murali

    2001-09-01

    The formation of gold nanoparticle assemblies in a patterned manner on suitable substrates is described. The protocol for realizing such structures comprises the following steps. In the first step, patterned films of a fatty amine are thermally evaporated onto solid supports using suitable masks (e.g. a TEM grid). Thereafter, the fatty amine film is immersed in chloroauric acid solution and chloroaurate (AuCl4-) ions entrapped in the lipid matrix by electrostatic complexation with the ammonium ions of the fatty amine molecules. The final step involves the reduction of the AuCl4- ions in situ thus leading to the formation of gold nanoparticles within the patterned lipid matrix. The process of metal ion incorporation and reduction may be repeated a number of times to increase the nanoparticle density in the lipid matrix. AuCl4- ion entrapment and formation of gold nanoparticles within the patterned lipid matrix has been followed by quartz crystal microgravimetry, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive analysis of x-ray measurements. The protocol described shows immense potential for extension to assemblies of nanoparticles in more intricate patterns as well as to the growth of semiconductor quantum dots in such patterns.

  14. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Repetto, Diego; Giordano, Maria Caterina; Martella, Christian; Buatier de Mongeot, Francesco

    2015-02-01

    Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  15. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  16. In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery

    SciTech Connect

    Luo, Qingtao; Li, Liyu; Nie, Zimin; Wang, Wei; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo

    2012-06-27

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplified mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.

  17. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  18. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  19. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  20. The generation and application of intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Golden, J.; Kapetanakos, C. A.; Pasour, J. A.; Mahaffey, R. A.

    1981-04-01

    Means for the generation of pulsed, ultrahigh power beams of low-atomic-mass ions are considered, and potential applications of the beams in thermonuclear fusion and other applications are discussed. The intense ion beam sources represent an extension of the pulsed-power technology of relativistic electron beams, employing transmission lines powered by Marx generators to produce pulses of 25-100 nsec duration, energies of 0.1-2 MV, currents of 1 kA to 1 MA, and power levels above 1 GW. The most successful approach to intense pulsed beam generation is based on the acceleration of plasma ions within vacuum-diode-like sources involving the processes of plasma generation, ion extraction, and the suppression of the electron current, which may be accomplished by reflexing, pinching or magnetic insulation. Ion beams thus generated have been used to form transient, field-reversed ion layers and to excite high-power gas lasers. Intense ion beams are also under investigation as drivers of inertial confinement in thermonuclear reactors.

  1. Expansion Discharge Source for Ion Beam Laser Spectroscopy of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Porambo, Michael; Pearson, Jessica; Riccardo, Craig; McCall, Benjamin J.

    2013-06-01

    Molecular ions are important in several fields of research, and spectroscopy acts as a key tool in the study of these ions. However, problems such as low ion abundance, ion-neutral confusion, and spectral congestion due to high internal temperatures can hinder effective spectroscopic studies. To circumvent these problems, we are developing a technique called Sensitive, Cooled, Resolved, Ion BEam Spectroscopy (SCRIBES). This ion beam spectrometer will feature a continuous supersonic expansion discharge source to produce cold molecular ions, electrostatic ion optics to focus the ions into an ion beam and bend the beam away from co-produced neutral molecules, an overlap region for cavity enhanced spectroscopy, and a time-of-flight mass spectrometer. When completed, SCRIBES will be an effective tool for the study of large, fluxional, and complex molecular ions that are difficult to study with other means. The ion beam spectrometer has been successfully implemented with a hot ion source. This talk will focus on the work of integrating a supersonic expansion discharge source into the instrument. To better understand how the source would work in the whole ion beam instrument, characterization studies are being performed with spectroscopy of HN_2^+ in a section of the system to ascertain the rotational temperature of the ion expansion. Attempts are also underway to measure the ion current from a beam formed from the expansion. Once the source in this environment is properly understood, we will reintegrate it to the rest of the ion beam system, completing SCRIBES. A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel and B. J. McCall J. Chem. Phys., 135, 224201, (2011). K. N. Crabtree, C. A. Kauffman and B. J. McCall Rev. Sci. Instrum. 81, 086103, (2010).

  2. High-Speed Nano-Processing with Cluster Ion Beams

    NASA Astrophysics Data System (ADS)

    Seki, T.; Matsuo, J.

    2006-11-01

    The gas cluster ion beam process has a high potential for material processing in nano-technology devices, such as photonic crystals, thin film transistors (TFTs) and micro-electromechanical systems (MEMS). In order to fabricate the devices, one needs to etch target materials with a high-speed, low-damage and ultra-smooth process. Extremely high rate sputtering was realized by high-energy cluster ion beam. We have been using this technique for poly-Si TFTs. There are many hillocks on poly-Si films formed by using a laser anneal technique, and they cause degradation of devices. When the laser crystallized poly-Si film was irradiated with cluster ion beam, the higher hillocks could be etched selectively and the surfaces of poly-Si films could be processed with low ion dose. High-speed nano-processing was realized by cluster ion beam.

  3. Ion beam collimating grid to reduce added defects

    DOEpatents

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  4. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  5. Gabor lens focusing of a negative ion beam

    SciTech Connect

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  6. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  7. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  8. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGESBeta

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  9. Characterization of the Ion Beam Focusing in a Mass Spectrometer using an IonCCD™ Detector

    SciTech Connect

    Johnson, Grant E.; Hadjar, Omar; Laskin, Julia

    2011-07-26

    A position sensitive pixel-based detector array, referred to as the IonCCDTM, has been employed to characterize the ion optics and ion beam focusing in a custom built mass spectrometer designed for soft and reactive landing of mass-selected ions onto surfaces. The IonCCDTM was placed at several stages along the path of the ion beam to determine the focusing capabilities of the various ion optics which include an electrodynamic ion funnel, two radiofrequency (RF) only collision quadrupoles, a mass resolving quadrupole, a quadrupole bender, and two Einzel lens assemblies. The focusing capabilities of the RF-only collision quadrupoles and Einzel lenses are demonstrated by large decreases in the diameter of the ion beam. In contrast, the mass resolving quadrupole is shown to significantly defocus the mass-selected ion beam resulting in an expansion of the measured ion beam diameter. Combined with SIMION simulations we demonstrate that the IonCCDTM can identify minor errors in the alignment of charged-particle optics that result in erratic trajectories and significant deflections of the ion beam.. This information can be used to improve the design assembly and maintenance of custom-built mass spectrometry instrumentation.

  10. Characterization of the ion beam focusing in a mass spectrometer using an IonCCD™ detector.

    PubMed

    Johnson, Grant E; Hadjar, Omar; Laskin, Julia

    2011-08-01

    A position sensitive pixel-based detector array, referred to as the IonCCD, has been employed to characterize the ion optics and ion beam focusing in a custom built mass spectrometer designed for soft and reactive landing of mass-selected ions onto surfaces. The IonCCD was placed at several stages along the path of the ion beam to determine the focusing capabilities of the various ion optics, which include an electrodynamic ion funnel, two radiofrequency (rf)-only collision quadrupoles, a mass resolving quadrupole, a quadrupole bender, and two einzel lens assemblies. The focusing capabilities of the rf-only collision quadrupoles and einzel lenses are demonstrated by large decreases in the diameter of the ion beam. In contrast, the mass resolving quadrupole is shown to significantly defocus the mass-selected ion beam resulting in an expansion of the measured ion beam diameter. Combined with SIMION simulations, we demonstrate that the IonCCD can identify minor errors in the alignment of charged-particle optics that result in erratic trajectories and significant deflections of the ion beam. This information may be used to facilitate the design, assembly, and maintenance of custom-built mass spectrometry instrumentation. PMID:21953193

  11. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  12. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration.

    PubMed

    Yuan, Haifeng; Debroye, Elke; Janssen, Kris; Naiki, Hiroyuki; Steuwe, Christian; Lu, Gang; Moris, Michèle; Orgiu, Emanuele; Uji-I, Hiroshi; De Schryver, Frans; Samorì, Paolo; Hofkens, Johan; Roeffaers, Maarten

    2016-02-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  13. Spontaneous ion beam formation in the laboratory, space, and simulation

    SciTech Connect

    Carr, J. Jr.; Cassak, P. A.; Galante, M.; Keesee, A. M.; Lusk, G.; Magee, R. M.; McCarren, D.; Scime, E. E.; Sears, S.; Vandervort, R.; Gulbrandsen, N.; Goldman, Martin; Newman, David; Eastwood, J. P.

    2013-07-15

    We present experimental evidence for the spontaneous formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in the magnetosphere and in numerical simulations suggests that the observation of a complex ion velocity distribution alone is insufficient to distinguish between simple plasma expansion and magnetic reconnection. Further, the effective temperature of the aggregate ion population is significantly larger than the temperatures of the individual ion population components, suggesting that insufficiently resolved measurements could misidentify multiple beam creation as ion heating. Ions accelerated in randomly oriented electric fields that mimic heating would have an ion heating rate dependent on the ion charge and mass that is qualitatively consistent with recent experimental observations of ion heating during magnetic reconnection.

  14. Verification of high efficient broad beam cold cathode ion source.

    PubMed

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  15. Verification of high efficient broad beam cold cathode ion source

    NASA Astrophysics Data System (ADS)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  16. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  17. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  18. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  19. In situ Studies of Soft- and Reactive Landing of Mass-Selected Ions Using Infrared Reflection Absorption Spectroscopy

    SciTech Connect

    Hu, Qichi; Wang, Peng; Gassman, Paul L.; Laskin, Julia

    2009-09-01

    Grazing incidence infrared reflection absorption spectroscopy (IRRAS) for in situ and in real time characterization of substrates modified by soft- and reactive landing (SL and RL) of complex ions was implemented on a mass-selected ion deposition instrument. Ions produced by electrospray ionization were mass-selected using a quadrupole mass filter and deposited onto inert and reactive self-assembled monolayer (SAM) surfaces. Surface composition during and after ion deposition was monitored using IRRAS. Physisorption of a cyclic peptide, Garmicidin S (GS), was studied for 8 hrs during deposition and additional 12 hrs after the end of deposition. The integrated signal of the characteristic amide bands followed a linear increase during the deposition and stayed unchanged after the deposition was finished. Similar linear increase in IRRAS signal was obtained following reactive deposition of the protonated dodecanediamine onto SAMs of dithiobis (succinimidyl undecanoate) (NHS-SAM) and 16-mercaptohexadecanoic acid fluoride (COF-SAM) on gold. IRRAS allowed us to monitor for the first time the formation of the amide bond between reactive SAM surfaces and the projectile molecule.

  20. Xenon ion beam characterization in a helicon double layer thruster

    SciTech Connect

    Charles, C.; Boswell, R. W.; Lieberman, M. A.

    2006-12-25

    A current-free electric double layer is created in a helicon double layer thruster operating with xenon and compared to a recently developed theory. The Xe{sup +} ion beam formed by acceleration through the potential drop of the double layer is characterized radially using an electrostatic ion energy analyzer. For operating conditions of 500 W rf power, 0.07 mTorr gas pressure, and a maximum magnetic field of 125 G, the measured beam velocity is about 6 km s{sup -1}, the beam area is about 150 cm{sup 2}, and the measured beam divergence is less than 6 deg.

  1. Xenon ion beam characterization in a helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Lieberman, M. A.

    2006-12-01

    A current-free electric double layer is created in a helicon double layer thruster operating with xenon and compared to a recently developed theory. The Xe+ ion beam formed by acceleration through the potential drop of the double layer is characterized radially using an electrostatic ion energy analyzer. For operating conditions of 500W rf power, 0.07mTorr gas pressure, and a maximum magnetic field of 125G, the measured beam velocity is about 6kms-1, the beam area is about 150cm2, and the measured beam divergence is less than 6°.

  2. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  3. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  4. Apparatus for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  5. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  6. Heliosheath ENA images by Cassini/INCA and in-situ hot plasma ion measurements by Voyagers

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios; Roelof, Edmond; Mitchell, Donald; Decker, Robert; Dialynas, Konstantinos

    2016-07-01

    The advent of Energetic Neutral Atom (ENA) imaging, (the result of charge-exchange with energetic ions), has revealed the global nature of the heliosheath (HS) at both high ( > 5 keV, Cassini from 10 AU) and low (< 6 keV, IBEX from 1 AU) energies. Voyager 1 (V1) entered the HS in December 2004 at 94 AU and crossed the heliopause (HP) in August 2012 at 121.6 AU, while Voyager 2 (V2) has been in the HS since August 2007. Thus the properties of the HS along the V1, V2 trajectories are now well-established. Portions of the global HS have been imaged by the Cassini/ INCA (Ion and Neutral CAmera) since 2003 with a full image available since 2009, when IBEX global imaging observations also became available. The presence of the two Voyagers measuring ions locally in the HS contemporaneously with INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions and the global variability of the neutral component. Some of the key findings from the Voyagers and INCA measurements are as follows: (a) The HS contains a hot plasma population that carries a substantial part (30-50%) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically > 10. (b) The width of the HS in the direction of V1 is ˜~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels. (c) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2014, with minimum intensities in the anti-nose direction observed ˜~ 1.5 yrs after solar minimum followed by a recovery thereafter, and (d) The in situ ion measurements at V2 within the HS also show a similar SC dependence. The totality of the observations, together with the near-contemporaneous variability in intensities of ions in situ in the HS and ENA in the inner heliosphere suggests

  7. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  8. On the effectiveness of ion range determination from in-beam PET data

    NASA Astrophysics Data System (ADS)

    Fiedler, Fine; Shakirin, Georgy; Skowron, Judith; Braess, Henning; Crespo, Paulo; Kunath, Daniela; Pawelke, Jörg; Pönisch, Falk; Enghardt, Wolfgang

    2010-04-01

    At present, in-beam positron emission tomography (PET) is the only method for in vivo and in situ range verification in ion therapy. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI) Darmstadt, Germany, a unique in-beam PET installation has been operated from 1997 until the shut down of the carbon ion therapy facility in 2008. Therapeutic irradiation by means of 12C ion beams of more than 400 patients have been monitored. In this paper a first quantitative study on the accuracy of the in-beam PET method to detect range deviations between planned and applied treatment in clinically relevant situations using simulations based on clinical data is presented. Patient treatment plans were used for performing simulations of positron emitter distributions. For each patient a range difference of ± 6 mm in water was applied and compared to simulations without any changes. The comparisons were performed manually by six experienced evaluators for data of 81 patients. The number of patients required for the study was calculated using the outcome of a pilot study. The results indicate a sensitivity of (91 ± 3)% and a specificity of (96 ± 2)% for detecting an overrange, a reduced range is recognized with a sensitivity of (92 ± 3)% and a specificity of (96 ± 2)%. The positive and the negative predictive value of this method are 94% and 87%, respectively. The interobserver coefficient of variation is between 3 and 8%. The in-beam PET method demonstrated a high sensitivity and specificity for the detection of range deviations. As the range is a most indicative factor of deviations in the dose delivery, the promising results shown in this paper confirm the in-beam PET method as an appropriate tool for monitoring ion therapy.

  9. In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques.

    PubMed

    Yang, Shan; Yan, Binggong; Li, Tao; Zhu, Jing; Lu, Li; Zeng, Kaiyang

    2015-09-14

    This paper presents in situ characterization of lithium-ion diffusion at nano- to micro-meter scales in a Li-rich layered oxide thin film cathode under external bias by using Electrochemical Strain Microscopy (ESM) and Atomic Force Microscopy (AFM) techniques. The local variations of the diffusion coefficient are calculated and visualized from the ESM images. The results indicate that the Li-ion movement is closely correlated with the changes in the surface topography when the Li-rich cathode is subjected to an external bias. Furthermore, bias-induced Li-ion redistribution is partially reversible. Topography evolution due to Li-ion diffusion and relaxation behaviour are observed. The results from this in situ study provide the insight into the Li-ion diffusion mechanism in the cathode material and pave the way for studying the details of the diffusion-related phenomenon in Li-ion battery materials. PMID:26242479

  10. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  11. Simulating Electron Cloud Effects in Heavy-Ion Beams

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Lund, S.W.; Molvik, A.W.; Azevedo, T.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2004-08-04

    Stray electrons can be introduced in heavy ion fusion accelerators as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize here results from several studies of electron-cloud accumulation and effects: (1) Calculation of the electron cloud produced by electron desorption from computed beam ion loss; the importance of ion scattering is shown; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics. We find electron cloud variations that are resonant with the breathing mode of the beam have the biggest impact on the beam (larger than other resonant and random variations), and that the ion beam is surprisingly robust, with an electron density several percent of the beam density required to produce significant beam degradation in a 200-quadrupole system. We identify a possible instability associated with desorption and resonance with the breathing mode. (3) Preliminary investigations of a long-timestep algorithm for electron dynamics in arbitrary magnetic fields.

  12. Development of polyatomic ion beam system using liquid organic materials

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Nishida, Y.; Yamamoto, T.; Kawashita, M.

    2005-08-01

    We have developed a new type of polyatomic ion beam system using liquid organic materials such as octane and ethanol, which consists of a capillary type of nozzle, an ionizer, a mass-separator and a substrate holder. Ion current extracted after ionization was 430 μA for octane and 200 μA for ethanol, respectively. The mass-analysis was realized using a compact E × B mass filter, and the mass-analyzed ion beams were transferred toward the substrate. The ion current density at the substrate was a few μA/cm2 for the mass-separated ion species. Interactions of polyatomic ion beams with silicon (Si) surfaces were investigated by utilizing the ellipsometry measurement. It was found that the damaged layer thickness irradiated by the polyatomic ions with a mass number of about 40 was smaller than that by Ar ion irradiation at the same incident energy and ion fluence. The result indicated that the rupture of polyatomic ions occurred upon its impact on the Si surface with an incident energy larger than a few keV. In addition, the chemical modification of Si surfaces such as wettability could be achieved by adjusting the incident energy for the ethanol ions, which included all the fragment ions.

  13. Physics with energetic radioactive ion beams

    SciTech Connect

    Henning, W.F.

    1996-12-31

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

  14. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type

    SciTech Connect

    Silze, Alexandra; Ritter, Erik; Zschornack, Guenter; Schwan, Andreas; Ullmann, Falk

    2010-02-15

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C{sup 4+} ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm{sup -2} mrad{sup -2} were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  15. Production and characterization of ion beams from magnetically insulated diodes

    SciTech Connect

    Neri, J.M.

    1982-01-01

    The operation of magnetically insulated diodes and the characteristics of the resulting ion beams have been investigated using two pulsed power generators, LYNX at the 10/sup 9/W power level, and Neptune at the 10/sup 11/W power level. LYNX is a small magnetically insulated diode driven directly by a Marx bank. By changing the material used as the surface flashover ion source, the majority ion species generated by the diode could be chosen. Ion beams produced so far by this device are: protons, lithium, boron, carbon, sodium, strontium, and barium. Typical beam parameters for the ion beams are peak energies of 300 keV, current densities of 40 to 60 A/cm/sup 2/, and pulse durations of 300 to 400 nsec. The ion beam uniformity, divergence, and reproducibility were shown to be a function of the surface flashover source geometry. Finally, the LYNX ion beam was also used to anneal silicon crystals and other materials science experiments. The diode used on the Neptune generator was designed to study virtual cathode formation in a high power magnetically insulated diode. The physical cathode was replaced by electrons that ExB drift on the applied magnetic field lines. It was found that the best electrode configuration is one in which the electrons are required to only undergo the Hall drift to form the cathode. The divergence of the ion beam was examined with time-dependent and time-integrated shadowbox diagnostics. It was found that the intrinsic divergence of the ion beam does not have a strong directional dependence.

  16. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  17. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  18. In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching

    SciTech Connect

    Liu, Weimin; Wang, Liang; Fang, Chong

    2014-03-17

    All-optical switching has myriad applications in optoelectronics, optical communications, and quantum information technology. To achieve ultrafast optical switching in a compact yet versatile setup, we demonstrate distinct sets of two-dimensional (2D) broadband up-converted multicolor arrays (BUMAs) in a thin type-I β-barium-borate crystal with two noncollinear near-IR femtosecond pulses at various phase-matching conditions. The unique interaction mechanism is revealed as quadratic spatial solitons (QSSs)-coupled cascaded four-wave mixing (CFWM), corroborated by numerical calculations of the governing phase-matching conditions. Broad and continuous spectral-spatial tunability of the 2D BUMAs are achieved by varying the time delay between the two incident pulses that undergo CFWM interaction, rooted in the chirped nature of the weak white light and the QSSs generation of the intense fundamental beam. The control of 2D BUMAs is accomplished via seeding a weak second-harmonic pulse in situ to suppress the 2D arrays with polarization dependence on the femtosecond timescale that matches the control pulse duration of ∼35 fs. A potential application is proposed on femtosecond all-optical switching in an integrated wavelength-time division multiplexing device.

  19. In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching

    NASA Astrophysics Data System (ADS)

    Liu, Weimin; Wang, Liang; Fang, Chong

    2014-03-01

    All-optical switching has myriad applications in optoelectronics, optical communications, and quantum information technology. To achieve ultrafast optical switching in a compact yet versatile setup, we demonstrate distinct sets of two-dimensional (2D) broadband up-converted multicolor arrays (BUMAs) in a thin type-I β-barium-borate crystal with two noncollinear near-IR femtosecond pulses at various phase-matching conditions. The unique interaction mechanism is revealed as quadratic spatial solitons (QSSs)-coupled cascaded four-wave mixing (CFWM), corroborated by numerical calculations of the governing phase-matching conditions. Broad and continuous spectral-spatial tunability of the 2D BUMAs are achieved by varying the time delay between the two incident pulses that undergo CFWM interaction, rooted in the chirped nature of the weak white light and the QSSs generation of the intense fundamental beam. The control of 2D BUMAs is accomplished via seeding a weak second-harmonic pulse in situ to suppress the 2D arrays with polarization dependence on the femtosecond timescale that matches the control pulse duration of ˜35 fs. A potential application is proposed on femtosecond all-optical switching in an integrated wavelength-time division multiplexing device.

  20. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography

    PubMed Central

    Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J. -H.; Heindel, T.; Burger, S.; Schmidt, F.; Strittmatter, A.; Rodt, S.; Reitzenstein, S.

    2015-01-01

    The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter. PMID:26179766