Science.gov

Sample records for incoherent laser beam

  1. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Colors

    NASA Astrophysics Data System (ADS)

    Maximov, A. V.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2014-10-01

    Recently, the effect of cross-beam energy transfer (CBET) has become one of the most important challenges for the effective coupling of laser energy to the target in inertial confinement fusion (ICF) (see, e.g., Ref. 1). CBET is based on the process of stimulated Brillouin scattering (SBS) driven by multiple crossing laser beams in the regime of moderate SBS amplification gains, and is consequently sensitive to the frequency characteristics of the laser beams driving the ICF targets: smoothing by spectral dispersion or frequency shifts between the beams (colors). Different from reduced ray-type models used in large-scale hydrodynamic simulations with CBET, we have developed a laser-plasma interaction (LPI)-type model of CBET that is capable of capturing the effects of laser speckles and the non-paraxial propagation of multiple laser beams. The LPI-type CBET model has been applied to the interaction between incoherent laser beams with different colors and the differences from the ray-type CBET model have been shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    SciTech Connect

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam.

  3. Comparison of coherent and incoherent laser beam combination for tactical engagements

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; Cusumano, Salvatore J.; Bartell, Richard J.; Basu, Santasri; McCrae, Jack E.; Fiorino, Steven T.

    2012-10-01

    The performance of a multibeam laser system is evaluated for coherent and incoherent beam combination under tactical scenarios. For direct comparison, identical aperture geometries are used for both, coherent or incoherent, combination methods. The analysis assumes a multilaser source coupled with a conventional 0.32 m diameter, on-axis, beam director. Parametric analysis includes variations over residual errors, beam quality, atmospheric effects, and scenario geometry. Analytical solutions from previous results are used to evaluate performance for the vacuum case, providing an upper bound on performance and a backdrop for organizing the multitude of effects as they are analyzed. Wave optics simulations are used for total system performance. Each laser in the array has a wavelength of 1.07 μm, 10 kW (25 kW) output power, and Gaussian exitance profile. Both tracking and full-aperture adaptive optics are modeled. Three tactical engagement geometries, air to surface, surface to air, and surface to surface, are evaluated for slant ranges from 2.5 to 10 km. Two near-median atmospheric profiles were selected based upon worldwide climatological data. The performance metric used is beam propagation efficiency for circular target diameters of 5 and 10 cm.

  4. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Experimental evidence of plasma-induced incoherence of a laser beam after propagation through an underdense plasma

    NASA Astrophysics Data System (ADS)

    Labaune, Christine; Fuchs, Julien; Depierreux, Sylvie; Baldis, Hector; Pesme, Denis; Myatt, Jason; Hüller, Stefan; Laval, Guy; Tikhonchuk, Vladimir

    2000-10-01

    Experiments with the six-beam laser facility at Laboratoire pour l'Utilisation des lasers Intenses (LULI) have demonstrated simultaneous and correlated large angular beam spreading and spectral broadening, on the red side of the spectra, of a RPP laser beam after its propagation through an underdense plasma.. At the highest intensities, the beam initial aperture is widely broadened (the F.W.H.M. aperture is increased by a factor 2) and its bandwidth increases from <0.1 A to more than 10 A. Results showing the effect of the plasma electron density, laser intensity and polarization smoothing will be presented. The increase of spatial and temporal incoherence of the laser beam is discussed following recent numerical simulations.

  6. High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner

    NASA Astrophysics Data System (ADS)

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing; Xu, Xiaojun

    2016-05-01

    We report an experiment of incoherent beam combining based on a 7×1 all-fiber signal combiner with output power up to 6.08 kW. Properties of transmission efficiency and beam quality are analyzed by beam propagation method. Based on the calculative results, a 7×1 all-fiber signal combiner is fabricated. The handle power capacity is tested with average transmission efficiency of 98.9% and beam quality of M2≈10.

  7. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  8. Incoherent beam shaping with freeform mirror

    NASA Astrophysics Data System (ADS)

    Michaelis, Dirk; Kudaev, Sergey; Steinkopf, Ralf; Gebhardt, Andreas; Schreiber, Peter; Bräuer, Andreas

    2008-08-01

    Beam shaping of incoherent light sources (LEDs, halogen lamps) for arbitrary target light distribution is obtained by a single free-shape mirror. Special design algorithm ensures continuous profile without abrupt changes and shadowing regions. The mirror is manufactured by single point diamond turning combined with Fast-Tool-Servo (FTS) for simultaneous figuring of base surface and fine structure (for redistributing the light energy). Lateral and axial resolution of the fine structure is determined by FTS and considered during the design and data transfer. Directly turned surfaces can be used as replication tools for polymer or glass moulding and embossing.

  9. Scintillation characterization for multiple incoherent uplink Gaussian beams

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Ming; Ning, Yu; Ma, Yan-Xing; Xi, Fen-Jie; Xu, Xiao-Jun

    2014-09-01

    By means of numerical simulations, we analyze the scintillation characterization for multiple incoherent uplink Gaussian beams under weak fluctuations cases. Because truly independent beams are difficult to create, we present a more general but approximate model for the multiple of beams traveling through partially correlated paths. This model compares with wave-optics simulations and highlights the reduced correlation coefficient as the beam separation is increased. The scintillation index of three and six incoherent uplink Gaussian beams is also induced. The result shows that the scintillation index decreases with the increase of beams amount and beam separation. When the beams amount and strength of atmospheric turbulence are fixed, the reduction of scintillation index is affected by the ratio of beams separation and the Fried length. The corresponding physical mechanisms for the results are discussed.

  10. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    PubMed

    Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources. PMID:26367302

  11. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna

    SciTech Connect

    Ho Wu, Dong; Graber, Benjamin; Kim, Christopher; Qadri, S. B.; Garzarella, Anthony

    2014-02-03

    We have systematically measured and analyzed the terahertz beams of a photoconductive antenna fabricated on a GaAs substrate. Our data indicate that the antenna produces both coherent and incoherent terahertz beams. The former is produced largely by the plasmon, and the latter is believed to be due to the black body radiation resulting from the thermal excitations and Joule heating by both the femto-second laser and the bias voltage, applied across the electrodes of the antenna. The terahertz-beam property is greatly affected by the operating condition of the photoconductive antenna.

  12. Incoherent GaAlAs/GaAs semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Hwang, C. J.; Chen, J. S.; Fu, R. J.; Wu, D. H.; Wang, C. S.

    1988-01-01

    The fabrication of an incoherent laser array is reported. The main features of the arrays are low threshold index-guided laser elements, single-lobe far-field pattern, low astigmatism, low current operation, dense packing, and total electrical and optical isolation. With further development, this device should have applications in multihead optical-disk reading and writing, multifiber optical communications, and line-of-sight communications.

  13. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  14. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence

    NASA Astrophysics Data System (ADS)

    Lehmberg, Robert H.; Chan, Yung

    2005-05-01

    Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers. © Optical Society of America

  15. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  16. Diffusive to quasi-ballistic random laser: incoherent and coherent models

    NASA Astrophysics Data System (ADS)

    Guerin, W.; Chong, Y. D.; Baudouin, Q.; Liertzer, M.; Rotter, S.; Kaiser, R.

    2016-09-01

    We study the crossover between the diffusive and quasi-ballistic regimes of random lasers. In particular, we compare incoherent models based on the diffusion equation and the radiative transfer equation (RTE), which neglect all wave effects, with a coherent wave model for the random laser threshold. We show that both the incoherent and the coherent models predict qualitatively similar thresholds, with a smooth transition from a diffuse to a quasi-ballistic regime. The shape of the intensity distribution in the sample as predicted by the RTE model at threshold is also in good agreement with the coherent model. The approximate incoherent models thus provide useful analytical predictions for the threshold of random lasers as well as the shape of the random laser modes at threshold.

  17. Laser beam shaping techniques

    SciTech Connect

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  18. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  19. A survey of beam-combining technologies for laser space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  20. Laser beam color separator

    NASA Technical Reports Server (NTRS)

    Franke, J. M.

    1978-01-01

    Multiwavelength laser beam is separated into series of parallel color beams using prism and retroreflector. Setup is inexpensive and needs no critical adjustments. It can incorporate several prisms to increase dispersion and reduce overall size. Transmission grating can be used instead of prism with sacrifice in efficiency. Spatial filter can remove unwanted beams.

  1. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  2. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  3. Wide-Field Common-Path Incoherent Correlation Microscopy with a Perfect Overlapping of Interfering Beams

    NASA Astrophysics Data System (ADS)

    Bouchal, P.; Bouchal, Z.

    2013-01-01

    Incoherent correlation microscopy is recently discovered technique for digital imaging of three-dimensional objects in a quasimonochromatic spatially incoherent light. Its operation is based on wavefront division carried out by a spatial light modulator and capturing correlation recordings of the observed scene. To achieve image reconstruction, at least a partial overlapping of the signal and reference waves created by the spatial light modulator is necessary. In the known experimental configurations, the overlapping of interfering beams is strongly reduced in off-axis areas of the object and the image can be reconstructed only in a very small portion of the field of view provided by the used microscope objective lens. Here, we propose and successfully demonstrate modified experimental system working with two-component relay optics inserted between the microscope objective and the spatial light modulator and providing full overlapping of correlated beams in all areas of the field of view of the objective lens. The benefits and applicability of the proposed system design are clearly demonstrated on the imaging of the USAF resolution targets.

  4. Astigmatic Bessel laser beams

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Kotlyar, V. V.; Soifer, V. A.; Jefimovs, K.; Pääkkönen, P.; Turunen, J.

    2004-05-01

    The oblique incidence of a He-Ne laser beam onto a phase-only diffractive optical element (DOE) that simultaneously produces several unimode different-order Bessel beams propagating at various angles with respect to the optical axis is studied theoretically and experimentally. It is shown that, under obliquely incident illumination of a DOE that forms Bessel beams, the resulting astigmatic diffraction pattern can be used to unambiguously identify the direction of the Bessel beam's phase rotation and the order of the Bessel mode.

  5. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  6. High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Kohn, Rudolph N., Jr.; Becker, Michael F.; Heinzen, Daniel J.

    2011-03-01

    We designed a precision laser beam shaper using a Texas Instruments digital micromirror device (DMD) with a telescope system containing a pinhole low-pass filter. The performance of the beam shaper was measured by comparing the intensity and wave-front uniformity to the target function and by the energy conversion efficiency. We demonstrated flattop and other laser beam profiles with 1-1.5% root-mean-square (RMS) error for a raw camera image and nearly flat phase. A noise analysis of the system revealed that lower error is possible and that most of the error came from coherent speckle noise in the camera. A previous experiment using a 1064 nm single-mode fiber (SMF) laser produced around 7% beam power conversion efficiency. Here we report improvements in system automation and laser source flexibility that result in increasing both the speed of the system to calculate and produce a beam, and the beam uniformity and energy conversion efficiency. A LabVIEW program was written to accelerate the speed of the iterative process for beam profile refinement. A 760 nm super-luminescent light emitting diode (SLED) and a 781 nm Laser Diode (LD) were used as light sources in order to reduce the beam coherence and approach the ultimate performance of the shaper. Both sources greatly reduced the speckle noise and increased measured intensity uniformity. Experiments achieved less than 0.9% RMS error over the entire flattop area with a diameter of 1.32 mm. In addition, simulations were conducted to determine the optimized wavelengths for different types of DMDs. For the .7XGA DMD, the 5th diffraction order matches 750-800 nm. Matching the laser diode to this wavelength increased the power conversion efficiency (input beam to output beam) to 19.8%.

  7. New beam lasers

    SciTech Connect

    Wang Shaomin; Lu Xuanhui; Lin Qiang; Zhao Daomu; Li Kang; Zhu Jingmin

    1996-12-31

    A new suggestion that there is a phase jump of {pi} in the boundary wave is put forward in this paper. This suggestion may be a supplement of Huygens-Fresnel principle. Based on this new suggestion, a series of new beams was invented, both outside and inside the laser cavity. Especially, a new CO{sub 2} laser with equivalent beam quality factor M{sub e}{sup 2} < 1 is achieved. It can be considered as the result of some controllable nonlinear self-focusing, and the physical background of deformed quantum mechanics.

  8. Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar

    NASA Technical Reports Server (NTRS)

    Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.

    2012-01-01

    In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.

  9. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.

    PubMed

    Kim, Hoon

    2010-01-18

    We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format. PMID:20173999

  10. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-06-01

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser-matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. This technique is experimentally validated on one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.

  11. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  12. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  13. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  14. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  15. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  16. Smartphone laser beam spatial profiler.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-11-15

    A simple, low-cost, portable, smartphone-based laser beam profiler for characterizing laser beam profiles is reported. The beam profiler utilizes a phosphor silica glass plate to convert UV light into visible (green) light that can be directly imaged onto an existing smartphone CMOS chip and analyzed using a customized app. 3D printing enables the ready fabrication of the instrument package. The beam's diameter, shape, divergence, beam quality factor, and output power are measured for two UV lasers: a CW 244 nm frequency-doubled Ar ion laser and a pulsed 193 nm ArF exciplex laser. The availability of specialized phosphor converters can extend the instrument from the UV to the near infrared and beyond, and the smartphone platform extends the Internet of Things to map laser beam profiles simultaneously in different locations. PMID:26565823

  17. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    SciTech Connect

    Kalmykov, S. Y. Shadwick, B. A.; Davoine, X.; Lehe, R.; Lifschitz, A. F.

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  18. Nonlinear combining of laser beams.

    PubMed

    Lushnikov, Pavel M; Vladimirova, Natalia

    2014-06-15

    We propose to combine multiple laser beams into a single diffraction-limited beam by beam self-focusing (collapse) in a Kerr medium. Beams with total power above critical are first combined in the near field and then propagated in the optical fiber/waveguide with Kerr nonlinearity. Random fluctuations during propagation eventually trigger a strong self-focusing event and produce a diffraction-limited beam carrying the critical power. PMID:24978503

  19. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  20. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  1. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  2. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  3. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  4. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  5. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  6. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGESBeta

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  7. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  8. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  9. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  10. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Chaffee, Paul H.

    1991-01-01

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  11. Laser-Beam Smoothing Induced by Stimulated Brillouin Scattering in an Inhomogeneous Plasma

    SciTech Connect

    Loiseau, P.; Morice, O.; Teychenne, D.; Casanova, M.; Hueller, S.; Pesme, D.

    2006-11-17

    We present results of two-dimensional simulations of the stimulated Brillouin scattering (SBS) of an optically smoothed laser beam propagating in an expanding plasma. In the weak damping limit, both backscattered and transmitted light waves exhibit an additional spatiotemporal incoherence, which is shown to be induced by SBS taking place in an inhomogeneous plasma. This mechanism is not related to laser-beam self-focusing and is thus complementary to plasma-induced smoothing [A. J. Schmitt and B. B. Afeyan, Phys. Plasmas 5, 503 (1998)]. The incoherence induced by SBS in the entrance part of the plasma could reduce the growth of parametric instabilities developing further inside the plasma and is able to significantly enlarge the spreading angle of the transmitted light. The angular width of the backscattered light is also found to be significantly larger than the aperture angle of the incident beam.

  12. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  13. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  14. Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse

    SciTech Connect

    Kuramitsu, Y.; Sakawa, Y.; Takeda, K.; Tampo, M.; Takabe, H.; Nakanii, N.; Kondo, K.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Kitagawa, Y.

    2011-01-15

    The first report on a model experiment of cosmic ray acceleration by using intense laser pulses is presented. Large amplitude light waves are considered to be excited in the upstream regions of relativistic astrophysical shocks and the wakefield acceleration of cosmic rays can take place. By substituting an intense laser pulse for the large amplitude light waves, such shock environments were modeled in a laboratory plasma. A plasma tube, which is created by imploding a hollow polystyrene cylinder, was irradiated by an intense laser pulse. Nonthermal electrons were generated by the wakefield acceleration and the energy distribution functions of the electrons have a power-law component with an index of {approx}2. The maximum attainable energy of the electrons in the experiment is discussed by a simple analytic model. In the incoherent wakefield the maximum energy can be much larger than one in the coherent field due to the momentum space diffusion or the energy diffusion of electrons.

  15. Protective laser beam viewing device

    DOEpatents

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  16. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  17. Single laser beam photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Heber, Andre; Selmke, Markus; Braun, Marco; Cichos, Frank

    2015-03-01

    Fluorescence microscopy provides a tool to study dynamics in softmatter materials on a molecular level. However, the observation time for fluorescent objects is limited due to bleaching. One way to overcome this limitation is the use of gold nanoparticles as labels. They are chemically inert under typical situations. These particles are selectively imaged using a modulated heating laser and a non-absorbed detection laser even in the presence of background scatterers. The absorbed power results in a localised temperature profile and to a refractive index change which only occurs for absorption. For finite thermal diffusivities the temperature profile does not instantly follow temperature changes present on the nanoparticle's surface. This results in an out-of-phase modulation of the detection laser. By exploiting the limited thermal diffusivity we show that a single laser beam being intensity modulated is enough to selectively image and quantify absorption. The use of a single laser makes photothermal microscopy easier to implement into existing microscopy setups.

  18. High energy laser beam dump

    SciTech Connect

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  19. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  20. Laser beam steering device

    NASA Technical Reports Server (NTRS)

    Motamedi, M. E.; Andrews, A. P.; Gunning, W. J.

    1993-01-01

    Agile beam steering is a critical requirement for airborne and space based LIDAR and optical communication systems. Design and test results are presented for a compact beam steering device with low inertia which functions by dithering two complementary (positive and negative) binary optic microlens arrays relative to each other in directions orthogonal to the direction of light propagation. The miniaturized system has been demonstrated at scan frequencies as high as 300 Hz, generating a 13 x 13 spot array with a total field of view of 2.4 degrees. The design is readily extendable to a 9.5 degree field of view and a 52 x 52 scan pattern. The system is compact - less than 2 in. on a side. Further size reductions are anticipated.

  1. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  2. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  3. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  4. Raman beam combining for laser brightness enhancement

    SciTech Connect

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  5. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  6. Separating Isotopes With Laser And Electron Beams

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor

    1989-01-01

    Need for second laser eliminated. In scheme for separation of isotopes, electrons of suitable kinetic energy ionize specific isotope excited by laser beam in magnetic field. Ionization by electron beams cheap and efficient in comparison to ionization by laser beams, and requires no special technical developments. Feasibility of new scheme demonstrated in selective ionization of Ba138, making possible separation of isotope from Ba isotopes of atomic weight 130, 132, 134, 135, 136, and 137.

  7. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  8. System evaluations of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    1992-01-01

    The major technology options for high-energy FELs and adaptive optics available to the Space Laser Energy (SELENE) program are reviewed. Initial system evaluations of these options are described. A feasibility assessment of laser power beaming is given.

  9. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  10. Fluorescent paint simplifies laser-beam alinement

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1978-01-01

    Usually to aline optics safely, low power laser which can safely operated without safety goggles is substituted for higher power laser during alinement procedure. Need for lower power substitute laser can be eliminated by painting target area with commercial paint which fluoresces strongly in red or yellow portion of spectrum when excited by argon laser beam.

  11. Diplexer for laser-beam heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Koepf, G.

    1981-01-01

    Four prism interferometer superposes local oscillator beam on signal beam. Position of movable prism directs incident energy in both beams out one output port. Output port is spatially separated from input ports, and there is no limitation on size of frequency difference between laser beams.

  12. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG ; Zhang, Jie; Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  13. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  14. Laser steering of particle beams: Refraction and reflection ofparticle beams

    SciTech Connect

    Esarey, Eric; Katsouleas, T.; Mori, W.B.; Dodd, E.; Lee, S.; Hemker, R.; Clayton, C.; Joshi, C.

    1999-11-01

    The co-propagation of an intense particle beam with an ionizing laser beam in a working gas/plasma is considered. When the axes of the laser and particle beam are not aligned, then asymmetric plasma lensing results in a net dipole field acting on the particle beam. The particle beam can be steered or bent (as well as focused) by steering the laser. An analogy is made between the bending of the particle beam by collective effects at a plasma boundary and the refraction or reflection of light at an interface. This mechanism of particle steering may be of interest in applications for which permanent magnets are inconvenient of a fast turn on is required. 3-D particle-in-cell simulations and relevance to a recent experiment are discussed.

  15. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5780 Light beam patient position... light (incoherent light or laser) to determine the alignment of the patient with a radiation beam....

  16. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5780 Light beam patient position... light (incoherent light or laser) to determine the alignment of the patient with a radiation beam....

  17. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  18. Beam Stop For High-Power Lasers

    NASA Technical Reports Server (NTRS)

    Mcdermid, Iain S.; Williamson, William B.

    1990-01-01

    Graphite/aluminum plate absorbs most of light. Beam stop fits on standard optical mounting fixture. Graphite plate thick enough to absorb incident laser beam but thin enough to transfer heat quickly to heat sink. Device used for variety of blocking purposes. For example, blocks laser beam after it passes through experimental setup, or at each stage of setup so stages checked and tested in sequence. Negligible reflectance of device is valuable safety feature, protecting both users and equipment from reflections.

  19. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  20. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  1. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  2. Rapid 2D incoherent mirror fabrication by laser interference lithography and wet etching for III-V MQW solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Freundlich, Alex

    2016-03-01

    Optimization of non-planar antireflective coating and back- (or front-) surface texturing are widely studied as advanced light management approach to further reduce the reflection losses and increase the sunlight absorption path in solar cells. Rear reflectors have been developed from coherent mirrors to incoherent mirrors in order to further increase light path, which can significantly improve the efficiency and allow for much thinner devices. A Lambertian surface, which has the most random texture, can theoretically raise the light path to 4n2 times that of a smooth surface. It's a challenge however to fabricate ideal Lambertian texture, especially in a fast and low cost way. In this work, a method is developed to overcome this challenge that combines the use of laser interference lithography (LIL) and selective wet etching. This approach allows for a rapid (10 min) wafer scale (3 inch wafer) texture processing with sub-wavelength (nano)-scale control of the pattern and the pitch. The technique appears as being particularly attractive for the development of ultrathin III-V devices, or in overcoming the weak sub-bandgap absorption in devices incorporating quantum dots or quantum wells. The structure of the device is demonstrated, without affecting active layers.

  3. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Fischer, W.; Benedetto, E.; Rumolo, G.; Schulte, D.; Tomas, R.; Zimmermann, Frank; Franchetti, G.; Ohmi, Kazuhito; Sonnad, K.G.; Vay, Jean-Luc; Pivi, M.T.F.; Raubenheimer, Tor O.; /SLAC

    2008-01-24

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e{sup +}e{sup -} scattering processes is also estimated. Options for future code development are reviewed.

  4. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  5. Adaptive optics for laser power beaming

    NASA Technical Reports Server (NTRS)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  6. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  7. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  8. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  9. High power laser beam delivery monitoring for laser safety

    NASA Astrophysics Data System (ADS)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.; Freeland, C. M.; Myler, J. K.

    1997-07-01

    The output of high power lasers used for material processing presents extreme radiation hazards. In normal operation this hazard is removed by the use of local shielding to prevent accidental exposure and system design to ensure efficient coupling of radiation into the workpiece. Faults in laser beam delivery or utilization can give rise to hazardous levels of laser radiation. A passive hazard control strategy requires that the laser system be enclosed such that the full laser power cannot burn through the housing under fault conditions. Usually this approach is too restrictive. Instead, active control strategies can be used in which a fault condition is detected and the laser cut off. This reduces the requirements for protective housing. In this work a distinction is drawn between reactive and proactive strategies. Reactive strategies rely on detecting the effects of an errant laser beam, whereas proactive strategies can anticipate as well as detect fault conditions. This can avoid the need for a hazardous situation to exist. A proactive strategy in which the laser beam is sampled at the final turning mirror is described in this work. Two control systems have been demonstrated; the first checks that beam power is within preset limits, the second monitors incoming beam power and position, and the radiation reflected back from the cutting head. In addition to their safety functions the accurate monitoring of power provides an additional benefit to the laser user.

  10. Satellites Would Transmit Power By Laser Beams

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Walker, Gilbert H.; HUMES D. H.; Kwon, J. H.

    1995-01-01

    Arrays of diode lasers concentrate power into narrow beams. Baseline design of system formulated with regard to two particular missions that differ greatly in power requirements, thus showing scalability and attributes of basic system. Satellite system features large-scale array amplifier of high efficiency, injection-locked amplifiers, coherent combination of beams, and use of advanced lithographic technology to fabricate diode lasers in array. Extremely rapid development of applicable technologies make features realizable within decade.

  11. Apparatus for laser beam profile measurements

    DOEpatents

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  12. Laser beam riding artillery missiles guidance device is designed

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  13. Modeling laser beam-rock interaction.

    SciTech Connect

    Leong, K. H.

    2003-07-23

    The optimal use of lasers requires the understanding of the primary parameters pertinent to laser beam-material interactions. Basically, the laser beam is a heat source that can be controlled to deliver a wide range in intensities and power. When interacting with a material, reflection at the surface, and transmission and absorption through the material occur. The material interaction process is governed by the irradiance (power/unit area) of the incident beam and the interaction time resulting in an amount of heat/energy applied to the material per unit area. The laser beam is a flexible heat source where its intensity and interaction with materials can be controlled by varying the power and size of the beam or the interaction time. For any material, a minimum amount of energy has to be absorbed for the material to be ablated by the laser beam, i.e., a solid has to be heated to liquefy and then vaporize. Under certain conditions, the photon energy may be able to break the molecular bonds of the material directly. In general, the energy absorbed is needed to vaporize the material and account for any heat that may be conducted away. Consequently, the interaction is a heat transfer problem. The relevant parameters are the heat flux and total heat input to the material. The corresponding parameters for the laser beam- material interaction are the irradiance of the beam and the interaction time. The product of these two parameters is the energy applied per unit area. A high irradiance beam may be able to ablate a material rapidly without significant heat transfer to surrounding areas. For drilling or cutting materials, a high intensity beam is required for laser ablation with minimal heat lost to the surrounding areas. However, at high beam irradiance (>1 GW cm{sup -2} for Nd:YAG beams), plasma formed from ionization of gases and vapor will partially absorb or diffract the beam. Reduced penetration of the material results. Similarly, in welding using CO2 lasers where

  14. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  15. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  16. Beam current controller for laser ion source

    SciTech Connect

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  17. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  18. Laser cooling of a stored ion beam: A first step towards crystalline beams

    SciTech Connect

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  19. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  20. Varying the Divergence of Multiple Parallel Laser Beams

    NASA Technical Reports Server (NTRS)

    Kovalik, Joseph M.; Wright, Malcolm W.

    2008-01-01

    A provision for controlled variation of the divergence of a laser beam or of multiple parallel laser beams has been incorporated into the design of a conceptual free-space optical-communication station from which the transmitted laser beam(s) would be launched via a telescope. The original purpose to be served by this provision was to enable optimization, under various atmospheric optical conditions, of the divergence of a laser beam or beams transmitted from a ground station to a spacecraft.

  1. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  2. An Alternative Form of Laser Beam Characterization

    SciTech Connect

    KNOROVSKY,GERALD A.; MACCALLUM,DANNY O.

    2000-06-30

    Careful characterization of laser beams used in materials processing such as welding and drilling is necessary to obtain robust, reproducible processes and products. Recently, equipment and techniques have become available which make it possible to rapidly and conveniently characterize the size, shape, mode structure, beam quality (Mz), and intensity of a laser beam (incident power/unit area) as a function of distance along the beam path. This facilitates obtaining a desired focused spot size and also locating its position. However, for a given position along the beam axis, these devices typically measure where the beam intensity level has been reduced to I/ez of maximum intensity at that position to determine the beam size. While giving an intuitive indication of the beam shape since the maximum intensity of the beam varies greatly, the contour so determined is not an iso-contour of any parameter related to the beam intensity or power. In this work we shall discuss an alternative beam shape formulation where the same measured information is plotted as contour intervals of intensity.

  3. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  4. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  5. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  6. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  7. Beam uniformity of flat top lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  8. Collimation of laser-produced proton beam

    NASA Astrophysics Data System (ADS)

    Takano, M.; Nagashima, T.; Izumiyama, T.; Gu, Y. J.; Barada, D.; Kong, Q.; Wang, P. X.; Ma, Y. Y.; Wang, W. M.; Kawata, S.

    2016-03-01

    In intense laser plasma interaction for particle acceleration several issues remain to be solved. In this paper we focus on a collimation of ion beam, which is produced by a laser plasma interaction. In this study, the ion beam is collimated by a thin film target. When an intense short pulse laser illuminates a target, target electrons are accelerated, and create an electron cloud that generates a sheath electric field at the target surface. Such the ion acceleration mechanism is called the target normal sheath acceleration (TNSA). The TNSA field would be used for the ion beam collimation by the electric field. We have successfully obtained a collimated beam in our particle-in-cell simulations.

  9. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  10. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures. PMID:26133832

  11. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  12. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  13. Transmitted Laser Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Niemann, C; Antonini, G; Compton, S; Glenzer, S; Hargrove, D; Moody, J; Kirkwood, R; Rekow, V; Sorce, C; Armstrong, W; Bahr, R; Keck, R; Pien, G; Seka, W; Thorp, K

    2004-04-01

    We have developed and commissioned a transmitted beam diagnostic (TBD) for the 2{omega} high intensity interaction beam at the Omega laser facility. The TBD consists of a bare-surface reflector mounted near the target, which collects and reflects 4% of the transmitted light to a detector assembly outside the vacuum chamber. The detector includes a time integrating near-field camera that measures beam spray, deflection and the absolute transmitted power. We present a detailed description of the instrument and the calibration method and include first measurements on laser heated gasbag targets to demonstrate the performance of the diagnostic.

  14. Beam Quality of a Nonideal Atom Laser

    SciTech Connect

    Riou, J.-F.; Guerin, W.; Le Coq, Y.; Fauquembergue, M.; Josse, V.; Bouyer, P.; Aspect, A.

    2006-02-24

    We study the propagation of a noninteracting atom laser distorted by the strong lensing effect of the Bose-Einstein condensate (BEC) from which it is outcoupled. We observe a transverse structure containing caustics that vary with the density within the residing BEC. Using the WKB approximation, Fresnel-Kirchhoff integral formalism, and ABCD matrices, we are able to describe analytically the atom-laser propagation. This allows us to characterize the quality of the nonideal atom-laser beam by a generalized M{sup 2} factor defined in analogy to photon lasers. Finally we measure this quality factor for different lensing effects.

  15. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  16. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  17. Digital Controller For Laser-Beam-Steering Subsystem: Part 2

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Voisinet, Leeann

    1995-01-01

    A report presents additional information about laser-beam-steering apparatus described in "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193) and "More About Beam-Steering Subsystem for Laser Communication" (NPO-19381). Reiterates basic principles of operation of beam-steering subsystem, with emphasis on modes of operation, basic design concepts, and initial experiments on partial prototype of apparatus.

  18. Optimization of beam configuration in laser fusion based on the laser beam pattern

    SciTech Connect

    Xu, Teng; Xu, Lixin; Wang, Anting; Gu, Chun; Wang, Shengbo; Liu, Jing; Wei, Ankun

    2013-12-15

    A simple method based on the laser beam pattern is proposed and numerically demonstrated to optimize a beam configuration for direct drive laser fusion. In this method, both the geometrical factor G{sub l} and the single beam factor B{sub l} are considered. By diminishing the product of B{sub l}·G{sub l}, the irradiation nonuniformity can be decreased to the order of 10{sup −5}. This optimization method can be applied on the design of irradiation systems for an arbitrary number of beams and any axially symmetric beam patterns.

  19. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  20. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  1. Narrow spread electron beams from a laser-plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Brunetti, E.; Cipiccia, S.; Ersfeld, B.; Islam, M. R.; Issac, R. C.; Raj, G.; Shanks, R. P.; Vieux, G.; Welsh, G. H.; Gillespie, W. A.; MacLeod, A. M.; Jaroszynski, D. A.

    2009-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of incoherent radiation pulses from plasma and coherent short-wavelength radiation pulses from a free-electron laser (FEL). The first quantitative measurements of the electron energy spectra have been made on the University of Strathclyde ALPHA-X wakefield acceleration beam line. A high peak power laser pulse (energy 900 mJ, duration 35 fs) is focused into a gas jet (nozzle length 2 mm) using an F/16 spherical mirror. Electrons from the laser-induced plasma are self-injected into the accelerating potential of the plasma density wake behind the laser pulse. Electron beams emitted from the plasma have been imaged downstream using a series of Lanex screens positioned along the beam line axis and the divergence of the electron beam has been measured to be typically in the range 1-3 mrad. Measurements of the electron energy spectrum, obtained using the ALPHA-X high resolution magnetic dipole spectrometer, are presented. The maximum central energy of the monoenergetic beam is 90 MeV and r.m.s. relative energy spreads as low as 0.8% are measured. The mean central energy is 82 MeV and mean relative energy spread is 1.1%. A theoretical analysis of this unexpectedly high electron beam quality is presented and the potential impact on the viability of FELs driven by electron beams from laser wakefield accelerators is examined.

  2. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  4. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  5. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  6. Laser beam application with high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Brenner, Berndt; Morgenthal, Lothar

    2007-05-01

    With the new industrial high power fiber lasers we have already stepped into a new generation of laser applications. These lasers are smaller, better, more cost-effective, and offer a processing "on the fly." Of utmost importance is their excellent beam quality which enables us to reduce the size of the focussing head including the scanning mirrors. With the reduced mass of the mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. Using such mirrors with this high beam quality we can shape the key hole geometry, and thus it is possible to decrease the keyhole spiking, which always occur in the case of deep penetration welding. We can generate very thin and deep welding seams, which we have only experienced with electron beam welding. The excellent beam quality of the fiber lasers offers us a lot of new applications from deep penetration welding to high speed welding. By using beam scanning we are able to easily change the beam and the seam geometry. Furthermore, it is possible to work with this kind of laser from a distance of some meters between focussing/scanning head and the work piece. This technique is called remote processing or processing "on the fly." The excellent beam quality also enables us to cut very precisely, and due to the small cutting widths with a very high speed. In this case the main problem is that the roughness of the cutting edge increases a little bit. One reason for this is that we cannot blow out the mold as easily as we can do it with higher cutting widths. There are also polarized fiber lasers on the market where we can use the Brewster effect for different applications. The presentation will cover some physical basics including different industrial applications.

  7. Laser beam welding shifts into high gear

    SciTech Connect

    Irving, B.

    1997-11-01

    Despite its high initial cost, laser beam welding is being recognized as the best method for many production lines. The automotive industry is becoming a bigger believer, with more lines being added every day for weld transmissions, mufflers and many other products. But the biggest market is tailor welded blanks. The welded blank is receiving attention from all sides. Several steelmakers have invested in tailor welded blank shops. The market for these blanks is no longer one only supported by CO{sub 2} lasers. The YAG laser is now very prominent. Only a few years ago, laser experts wondered what the market might be for 5 kW CO{sub 2} lasers. No one knew. But that has changed. Since then, lasers have become much more compact, and that means a great deal to the automotive industry in particular. The same space needed to house a 5-kW laser five years ago now can be employed for a 12-kW unit. The cost also has stabilized considerably. Dollars spent today for a kilowatt of laser power are about the same as they were five years ago. Compare that to the increase in the cost for the family automobile. It`s also a better laser. Thought also is being given to the replacement of the 3,000 spot welds per vehicle by another means of joining. Laser is a strong candidate, but it might take a total redesign of an automobile to allow that to happen. To take full advantage of laser beam welding, flanges probably would have to be eliminated. However, shorter lead time is needed between concept and production. Agile manufacturing is required to bring that about, and the laser is fast becoming a basic tool of agile manufacturing.

  8. LASER BEAM PROFILE MONITOR DEVELOPMENT AT BNL FOR SNS.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; GASSNER,D.; GRAU,M.; KESSELMAN,M.; PENG,S.; SIKORA,R.

    2002-05-06

    A beam profile monitor for H-beams based on laser photoneutralization is being developed at Brookhaven National Laboratory (BNL) for use on the Spallation Neutron Source (SNS) [l]. An H ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser (h=1064nm). To measure beam profiles, a narrow laser beam is passed through the ion beam neutralizing a portion of the H-beam struck by the laser. The laser trajectory is stepped across the ion beam. At each laser position, the reduction of the beam current caused by the laser is measured. A proof-of-principle experiment was done earlier at 750keV. This paper reports on measurements made on 200MeV beam at BNL and with a compact scanner prototype at Lawrence Berkeley National Lab on beam from the SNS RFQ.

  9. Miniature long-range light beam transmitter resorting to a high-power broad area laser diode

    NASA Astrophysics Data System (ADS)

    Yue, Wenjing; Lee, Sang-Shin

    2014-08-01

    A miniature long-range light beam transmitter, which taps into a high-power broad area laser diode (BALD), was realized to exhibit a uniform detectable width. An effective model was proposed to practically emulate the multimode characteristics of the beam generated by the BALD. The model, solely based on the emitting region and far-field divergence angle pertaining to the LD, is established through an incoherent superposition of multiple normalized Hermit-Gaussian modes. The feasibility of the proposed model was successfully verified in terms of the calculated and observed irradiance distributions of the light beams. A long-range light beam transmitter was then designed and constructed taking advantage of the BALD source in conjunction with a beam shaper. The manufactured transmitter was corroborated to provide an infrared beam with a constant detectable width of ~1 m, over a distance ranging up to 400 m, for a predefined threshold level.

  10. Beam shaping for laser initiated optical primers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  11. Laser synchrotron radiation and beam cooling

    SciTech Connect

    Esarey, E.; Sprangle, P.; Ting, A.

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  12. Laser beam propagation in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  13. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  14. Active diaphragm rupture with laser beam irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Torikai, H.; Yang, Q. S.; Watanabe, K.; Sasoh, A.

    We performed shock tube operations with a layer of diaphragm being ruptured by laser beam irradiation. Mylar or Cellophane was examined as the diaphragm material. It has been demonstrated that shock tube can be operated with this new technique. The absorbed energy depends on the material and thickness of the diaphragm and is an important control parameter.

  15. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  16. Laser and electron cooling of relativistic stored beams

    SciTech Connect

    Huber, G.; Schroeder, S.; Klein, R.; Boos, N.; Grieser, R.; Hoog, I.; Krieg, M.; Merz, P. ); Kuehl, T.; Neumann, R. ); Balykin, V.; Grieser, M.; Habs, D.; Jaeschke, E.; Petrich, W.; Schwalm, D.; Steck, M.; Wanner, B.; Wolf, A. )

    1991-08-05

    Laser cooling of ions at relativistic energies was first observed at the TSR storage ring in Heidelberg. A {sup 7}Li{sup +} ion beam moving at 6.4% the speed of light was overlapped with resonant co- and counter-propagating laser beams. The longitudinal temperatures were found to pass below 190 mK. Limits and applications of laser cooled relativistic ion beams are discussed. Laser cooling and electron cooling of the ion beam were combined.

  17. More About Beam-Steering Subsystem For Laser Communication

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Chen, Chien-Chu; Hemmati, Hamid; Lesh, James R.

    1995-01-01

    Two reports present additional information about developmental beam-steering subsystem of laser-communication system. Aspects of this subsystem described previously in "Beam-Steering Subsystem for Laser Communication" (NPO-19069) and "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193). Reports reiterate basic principles of operation of beam-steering subsystem and of laser-communication system as whole. Also presents some of details of optical and mechanical design of prototype of subsystem, called Optical Communication Demonstrator.

  18. BECOLA Beam Line Construction and Laser System

    NASA Astrophysics Data System (ADS)

    Pedicini, Eowyn; Minamisono, Kei; Barquest, Brad; Bollen, Georg; Klose, Andrew; Mantica, Paul; Morrissey, Dave; Ringle, Ryan; Schwarz, Stefan; Vinnikova, Sophia

    2010-11-01

    The BECOLA (BEam COoler and LAser spectroscopy) facility is being installed at NSCL for experiments on radioactive nuclides.ootnotetextK. Minamisono et al, Proc. Inst. Nucl. Theory 16, 180 (2009). Low energy ion beams will be cooled/bunched in an RFQ ion trap and then extracted to a max of 60 kV. The ion beam will be neutralized through a charge exchange cell (CEC), and remaining ions will be removed by a deflector and collected in a Faraday cup. Collinear laser spectroscopy will be used to measure the atomic hyperfine structure, and nuclear properties will be extracted. The assembly, vacuum testing, and optical alignment of the CEC have been completed and the ion deflector and Faraday cup were also assembled. Stabilization of the Ti:sapphire laser to be used for spectroscopy is achieved through a feedback loop using a precision wavelength meter that is calibrated by a stabilized He-Ne laser. Coupling the He-Ne laser into a single-mode optical fiber was optimized for stable operation of the feedback loop. Finally, a wall chart of nuclear moments was prepared to view trends in μ and Q for nuclear ground states for planning future measurements.

  19. Incoherent holography

    NASA Astrophysics Data System (ADS)

    Abramson, Nils H.

    2000-10-01

    Dennis Gabor invented in-line holography in 1947, but at that time the coherent light from a laser did not yet exist and therefore the holograms he produced were of very low quality. When the laser was born in 1960 beautiful 3-D off- center holograms were for the first time produced by Emmett Leith and Juris Upatnieks. However, already as early as 1934 the inventor and artist Hans Weil patented a method to produce simple pictures that appeared floating in space, by scratching a transparent or metallic surface in certain directions. In 1995 William J. Beaty published a method for Hand-Drawn Holograms. Then it became possible for any artist to draw his own 3-D pictures of simple objects and using his ingenious techniques these hand drawn images will mimic many of the qualities of ordinary holograms.

  20. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  1. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  2. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  3. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  4. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  5. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  6. Beam quality measurements using digitized laser beam images

    SciTech Connect

    Duncan, M.D. ); Mahon, R. )

    1989-11-01

    A method is described for measuring various laser beam characteristics with modest experimental complexity by digital processing of the near and far field images. Gaussian spot sizes, peak intensities, and spatial distributions of the images are easily found. Far field beam focusability is determined by computationally applying apertures of circular of elliptical diameters to the digitized image. Visualization of the magnitude of phase and intensity distortions is accomplished by comparing the 2-D fast Fourier transform of both smoothed and unsmoothed near field data to the actual far field data. The digital processing may be performed on current personal computers to give the experimenter unprecedented capabilities for rapid beam characteriztion at relatively low cost.

  7. Laser beam probing of jet exhaust turbulence.

    PubMed

    Hogge, C B; Visinsky, W L

    1971-04-01

    A He-Ne (6328-A) laser beam was passed through the highly turbulent region in the exhaust of a jet engine (J-57 with afterburner). Estimates of a structure constant that would characterize the turbulence in the exhaust are made from the beam spread of focused and collimated beams. The structure constant obtained in this manner is then compared with that determined from scintillation measurements of a (10.6-micro) beam and with the results of hot-wire anemometer readings taken in the exhaust. The various methods yield results for the structure constant that are in good agreement (typically a structure constant of the order of 3 x 10(-5) m(-?)). PMID:20094556

  8. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  9. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    NASA Astrophysics Data System (ADS)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  10. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  11. LASER BEAM PROFILE MONITOR DEVELOPMENT AT BNL FOR SNS.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; DELLA PENNA,A.; GASSNER,D.; GRAU,M.; KESSELMAN,M.; PENG,S.; SIKORA,R.

    2002-08-19

    A beam profile monitor for H{sup -} beams using laser photoneutralization is being developed at Brookhaven National Laboratory [1] for use on the Spallation Neutron Source (SNS) [2]. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is passed through the ion beam neutralizing a portion of the H{sup -} beam struck by the laser, and the perturbation of the beam current caused by the laser is measured. The laser trajectory is stepped across the ion beam generating a transverse profile. Proof-of-principle experiments were done at 750keV and 200MeV. Also a compact scanner prototype was used at Lawrence Berkeley National Laboratory (LBNL) [3] during commissioning of the SNS RFQ.

  12. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  13. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  14. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  15. Beam control and laser characterization for NIF

    SciTech Connect

    Boege, S. J., LLNL

    1998-06-10

    The demanding energy, power, pulse shape, focusability, pointing, and availability requirements placed on the 192 National Ignition Facility (NIF) beams lead to the need for an automatic operation capability that is well beyond that of previous inertial confinement fusion (ICF) lasers. Alignment, diagnostic, and wavefront correction subsystems are integrated in an approach that, by permitting maximal sharing of instrumentation between subsystems, meets performance requirements at a reasonable cost.

  16. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  17. Using an incoherent target return to adaptively focus through atmospheric turbulence.

    PubMed

    Nelson, W; Palastro, J P; Wu, C; Davis, C C

    2016-03-15

    A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics, in principle, can correct these fluctuations. Generally, however, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the returned field at a detector. We simulate an adaptive optics system that utilizes this relation to focus a beam through atmospheric turbulence onto a rough surface. PMID:26977694

  18. Laser beam collimation using Talbot interferometry

    NASA Technical Reports Server (NTRS)

    Ganesan, A. R.; Venkateswarlu, Putcha

    1993-01-01

    A modified method of checking laser beam collimation using a single grating and a right-angled prism is presented. The self-images (Talbot images) of a grating illuminated by a collimated beam are formed at some distance from the grating. The use of a right-angled prism makes it possible to carry out the folding of the self-image with respect to the original grating and to ensure that the grating lines in the self-image and the actual grating are inclined at equal angles with respect to horizontal direction. It is concluded that the proposed collimation test method has an in-built reference and does not require precise orientation of the grating as in the two-grating method. Large beams can be tested with a small-size assembly.

  19. Entangling the spatial properties of laser beams.

    PubMed

    Wagner, Katherine; Janousek, Jiri; Delaubert, Vincent; Zou, Hongxin; Harb, Charles; Treps, Nicolas; Morizur, Jean François; Lam, Ping Koy; Bachor, Hans A

    2008-07-25

    Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available. PMID:18653887

  20. Laser-Beam-Absorption Chemical-Species Monitor

    NASA Technical Reports Server (NTRS)

    Gersh, Michael; Goldstein, Neil; Lee, Jamine; Bien, Fritz; Richtsmeier, Steven

    1996-01-01

    Apparatus measures concentration of chemical species in fluid medium (e.g., gaseous industrial process stream). Directs laser beam through medium, and measures intensity of beam after passage through medium. Relative amount of beam power absorbed in medium indicative of concentration of chemical species; laser wavelength chosen to be one at which species of interest absorbs.

  1. Semiconductor Laser With Two-Dimensional Beam Steering

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    Modification of monolithic semiconductor injection laser capable of one-dimensional electronic beam steering enables deflection of beam in second direction. Such laser chip provides beam pointing or raster scanning for applications in optical communications, data processing, image scanning, and optical ranging.

  2. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    SciTech Connect

    Agapov, I.; Blair, G.A.; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  3. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  4. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  5. Quantum well, beam deflecting surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Kim, Jae H.

    1992-10-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  6. Quantum well, beam deflecting surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Kim, Jae H.

    1991-06-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  7. Quantum well, beam deflecting surface emitting lasers

    NASA Technical Reports Server (NTRS)

    Kim, Jae H. (Inventor)

    1992-01-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  8. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  9. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  10. Application of reactor-pumped lasers to power beaming

    NASA Astrophysics Data System (ADS)

    Repetti, T. E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technically or economically competitive with more mature solid-state technologies for application to power beaming.

  11. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  12. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P.

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  13. Further remarks on electron beam pumping of laser materials.

    PubMed

    Klein, C A

    1966-12-01

    This article demonstrates that recently completed studies on the energy dissipation of kilovolt electron beams in solids provide readily applicable methods for assessing the situation in electron beam pumped lasers. PMID:20057662

  14. Resonant microphone based on laser beam deflection

    NASA Astrophysics Data System (ADS)

    Roark, Kevin; Diebold, Gerald J.

    2004-07-01

    A microphone consisting of a flexible membrane coupled to a Helmholtz resonator can be constructed to have a resonance at a specific frequency making it, unlike conventional broadband microphones, a frequency selective detector of sound. The present device uses a laser beam reflected from the membrane and directed onto a split photodiode to record the motion of the membrane. Since the microphone has a lightly damped resonance, both the thermal noise fluctuations in the displacement of the membrane from its equilibrium position and the response of the microphone to sound at the resonance frequency are large. The large amplitude of both the signal and the noise fluctuations means that effect of amplifier noise on the microphone's sensitivity is diminished relative to that in broadband microphones. Applications of the microphone include photoacoustic detection of gases employing low power lasers.

  15. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  16. Conceptual development of the Laser Beam Manifold (LBM)

    NASA Technical Reports Server (NTRS)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  17. Beam-path conditioning for high-power laser systems

    SciTech Connect

    Stephens, T.; Johnson, D.; Languirand, M.

    1990-01-01

    Heating of mirrors and windows by high-power radiation from a laser transmitter produces turbulent density gradients in the gas near the optical surfaces. If the gradients are left uncontrolled, the resulting phase errors reduce the intensity on the target and degrade the signal returned to a receiver. Beam path conditioning maximizes the efficiency of the optical system by alleviating thermal turbulence within the beam path. Keywords: High power radiation, Beam path, Optical surface, Laser beams, Reprints. (JHD)

  18. Radial smoothing for improving laser-beam irradiance uniformity.

    PubMed

    Zhong, Zheqiang; Hou, Pengcheng; Zhang, Bin

    2015-12-15

    Laser-beam irradiation uniformity is a key issue in inertial confinement fusion research. We propose a radial smoothing (RS) approach in which the speckle in a focal plane is smoothed by the radial redistribution through fast focal zooming. This focal zooming is generated by introducing the periodical spherical wavefront modulation to the laser beam, based on an optical Kerr medium and its pump laser with the temporal profile of a Gaussian pulse train. The utilization of RS significantly improves the laser-beam uniformity without obvious impact on the performance of the high-power laser system. PMID:26670528

  19. Energy transfer between laser beams crossing in ignition hohlraums

    SciTech Connect

    Michel, P; Divol, L; Williams, E A; Thomas, C A; Callahan, D A; Weber, S; Haan, S W; Salmonson, J D; Dixit, S; Hinkel, D E; Edwards, M J; MacGowan, B J; Lindl, J D; Glenzer, S H; Suter, L J

    2008-10-03

    The full scale modeling of power transfer between laser beams crossing in plasmas is presented. A new model was developed, allowing calculation of the propagation and coupling of pairs of laser beams with their associated plasma wave in three dimensions. The full laser beam smoothing techniques used in ignition experiments are modeled, and their effects on crossed-beam energy transfer is investigated. A shift in wavelength between the beams can move the instability off resonance and reduce the transfer, hence preserving the symmetry of the capsule implosion.

  20. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  1. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  2. Active beam shaping in multiple laser guide stars

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    Adaptive beam shaping is a critical part of multiple Laser Guide Stars (LGS) for Multiple Conjugate Adaptive Optics (MCAO) for ground-based astronomical telescopes. There are two kinds of Laser Guide Stars: Na Laser Guide Stars (at 589 nm and 92 km altitude) and Rayleigh Laser Guide Stars (at 532 nm and 20 km altitude). Multiple Conjugate Adaptive Optics (MCAO) corrects for each "layer" of atmosphere independently. Multiple Laser Guide Stars are being developed to achieve a measure of tilt and increase the isoplanatic patch. Multiple Laser Guide Stars are being combined with Multiple Conjugate Optics in the Large Binocular Telescope (LBT): more than one Laser Guide Star (4-5) and two different wavelengths: 589 nm and 532 nm. Other observatories have multiple Laser Guide Stars but only one wavelength: 589 nm or 532 nm. Because Laser Guide Stars are launched into the atmosphere, adaptive beam shaping will be carried out before the laser is launched and will be different depending on which laser is being used, presumably to effect the tightest beam which can be achieved at the power level which is required to provide the requisite return to gound-based wavefront sensors. A complete range of devices are used. Beam attenuation and divergnece will take place. Multiple Laser Guide Stars of major observatories (SOR, LBT, MMT, ESO VLT and Gemini South) will be evaluated for effective adaptive beam shaping and impact on performance

  3. Characterizing the beam properties of terahertz quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Richter, H.; Rothbart, N.; Hübers, H.-W.

    2014-08-01

    Terahertz quantum-cascade lasers (QCLs) are very promising radiation sources for many scientific and commercial applications. Shaping and characterizing the beam profile of a QCL is crucial for any of these applications. Usually the beam profile should be as close as possible to a fundamental Gaussian TEM00 mode. In order to completely characterize the laser beam the power and the wavefront have to be measured. We describe methods for characterizing the beam properties of QCLs. Several QCLs with single-plasmon waveguide and emission frequencies between 2 and 5 THz are investigated. The beam profiles of these lasers are shaped into almost fundamental Gaussian modes using dedicated lenses. The beam propagation factor M2 is as low as 1.2. The wavefront is measured along the axis of propagation with a THz Hartmann sensor. Its curvature behaves as expected for a Gaussian beam. The applied methods can be transferred to any other THz beam.

  4. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  5. CW silver ion laser with electron beam excitation

    NASA Astrophysics Data System (ADS)

    Wernsman, B.; Prabhuram, T.; Lewis, K.; Gonzalez, F.; Villagran, M.

    1988-08-01

    A CW laser power of 140 mW was obtained in the 840.39-nm transition of Ag II by electron-beam excitation. The electron-beam excited metal-vapor ion laser is capable of operating using metals with high vaporization temperatures, and is of interest for generation of CW coherent radiation in the 220-260-nm spectral region.

  6. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations

    SciTech Connect

    Zhu Fan; Tan Jiubin; Cui Jiwen

    2013-06-15

    Beam splitting target reflector based compensation for the angular drift of laser beam in laser autocollimation is proposed in this article to improve the measurement accuracy and stability of small angle deviations. A beam splitting target reflector is used to replace the plane mirror in laser autocollimation to generate a reference beam when returning the measurement beam. The reference beam and measurement beam have the same angular drift, but have different sensitivities to the rotation angle of the reflector due to the unique characteristics of the reflector. Thus, the angular drift of laser beam in laser autocollimation can be compensated in real time by using the drift of reference beam. Experimental results indicate that an output stability of 0.085 arc sec in 2 h can be achieved after compensation. And a measurement accuracy of {+-}0.032 arc sec can be obtained over the range of {+-}1190 arc sec with an effective resolution of 0.006 arc sec. It is confirmed that the compensation method for the angular drift of laser beam is necessary for improving the measurement accuracy and stability in laser autocollimation.

  7. Random aspects of beam physics and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Charman, Andrew Emile

    on well-known analogies between paraxial optics and the Schrodinger equation for a single non-relativistic particle, and then generalized to non-paraxial situations. In essence, the variational principle says that prescribed classical charges radiate "as much as possible," consistent with energy conservation. The techniques are developed to model undulator radiation from relativistic electron beams, for which an example involving high harmonic generation is reviewed. We next study a situation where wiggler radiation is both emitted from particles and reapplied to them. In stochastic cooling, information in the radiation induced from a particle bunch, if suitably amplified and fed back on the beam, can decrease entropy and increase phase space density. Specifically, we analyze and assess possible quantum mechanical effects in optical stochastic cooling. Fast stochastic cooling (i.e., on microsecond time-scales) would be desirable in certain applications, for example, to boost final luminosity in the proposed muon collider, where the short particle lifetimes severely limit the total time available to reduce beam phase space. But fast cooling requires very high-bandwidth amplifiers to limit the incoherent heating effects from neighboring particles. Transit-time optical stochastic cooling employs high-gain, high-bandwidth, solid-state lasers to amplify the spontaneous radiation from the charged particle bunch in a strong-field magnetic wiggler. This amplified light is then fed back onto the same bunch inside a second wiggler, with appropriate phase delay to effect cooling. Prior to amplification, the usable coherent signal from any one particle is quite small, on average much less than one photon for each pass through the wiggler. This fact suggests that the radiation must be treated quantum mechanically, and raises doubts as to whether this weak signal even contains sufficient phase information for cooling and whether it can be reliably amplified to provide cooling on

  8. Do twisted laser beams evoke nuclear hyperpolarization?

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  9. Do twisted laser beams evoke nuclear hyperpolarization?

    PubMed

    Schmidt, A B; Andrews, D L; Rohrbach, A; Gohn-Kreuz, C; Shatokhin, V N; Kiselev, V G; Hennig, J; von Elverfeldt, D; Hövener, J-B

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5nm and various topological charges. We acquired (1)H and (19)F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  10. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  11. Suppression of beam steering in an injection-locked laser diode array

    SciTech Connect

    Brewer, L.R. )

    1991-12-09

    Experimental measurements were made to demonstrate that the degree of beam steering in an injection-locked laser diode array is related to the divergence of the master laser beam. For a collimated master laser beam the beam steering was suppressed. The injection-locked laser diode array beam steers with the master laser wavelength because only a portion of the divergent master laser beam satisfies the round trip mode condition.

  12. Mitigating the relativistic laser beam filamentation via an elliptical beam profile.

    PubMed

    Huang, T W; Zhou, C T; Robinson, A P L; Qiao, B; Zhang, H; Wu, S Z; Zhuo, H B; Norreys, P A; He, X T

    2015-11-01

    It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations. PMID:26651801

  13. A four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.; Weiland, T.L.; Eimerl, D.; Ehrlich, R.B.; Laumann, C.W.; Miller, J.L.

    1995-06-26

    A novel four-color beam smoothing scheme with a capability similar to that planned for the proposed National Ignition Facility has been deployed on the Nova laser, and has been successfully used for laser fusion experiments. Wavefront aberrations in high power laser systems produce nonuniformities in the energy distribution of the focal spot that can significantly degrade the coupling of the energy into a fusion target, driving various plasma instabilities. The introduction of temporal and spatial incoherence over the face of the beam using techniques such as smoothing by spectral dispersion (SSD) can reduce these variation in the focal irradiance when averaged over a finite time interval. We developed a multiple frequency source that is spatially separated into four quadrants, each containing a different central frequency. Each quadrant is independently converted to the third harmonic in a four-segment Type I/ Type II KDP crystal array with independent phase-matching for efficient frequency conversion. Up to 2.3 kJ of third harmonic light is generated in a 1 ns pulse, corresponding to up to 65% conversion efficiency. SSD is implemented by adding limited frequency modulated bandwidth to each frequency component. Smoothing by spectral dispersion is implemented during the spatial separation of the FM modulated beams to provide additional smoothing, reaching a 16% rms intensity variation level. The four- color system was successfully used to probe NIF-like plasmas, producing {lt} 1% SBS backscatter at {gt} 2x10{sup 15} W/cm{sup 2}. This paper discusses the detailed implementation and performance of the segmented four-color system on the Nova laser system.

  14. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  15. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  16. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect

    Shafer, R.E.

    1998-01-01

    Laser photodetachment can be used on high current, high energy H{sup {minus}} beams to carry out a wide variety of beam diagnostic measurements parasitically during normal operation, without having to operate the facility at either reduced current or duty cycle. Suitable Q-switched laser systems are small, inexpensive, and can be mounted on or near the beamline. Most of the proposed laser-based diagnostics techniques have already been demonstrated.

  17. High energy laser testbed for accurate beam pointing control

    NASA Astrophysics Data System (ADS)

    Kim, Dojong; Kim, Jae Jun; Frist, Duane; Nagashima, Masaki; Agrawal, Brij

    2010-02-01

    Precision laser beam pointing is a key technology in High Energy Laser systems. In this paper, a laboratory High Energy Laser testbed developed at the Naval Postgraduate School is introduced. System identification is performed and a mathematical model is constructed to estimate system performance. New beam pointing control algorithms are designed based on this mathematical model. It is shown in both computer simulation and experiment that the adaptive filter algorithm can improve the pointing performance of the system.

  18. Actuator requirements for laser power beaming

    SciTech Connect

    Zeiders, G.W.

    1994-12-31

    Design considerations and working formulas and graphs are presented for estimating the actuator requirements for adaptive optics correction of global tilt and residual piston error arising from atmospheric turbulence along a ground-to-space path. Frequency characteristics are calculated for several important crosswind conditions for the case where the active segments are very small compared to the full aperture; it is shown that the velocity profile has a strong effect on the power spectra and that high slew rates significantly increase the required high-frequency response and accentuate the effects of high-attitude turbulence. Predictions are given for the SELENE laser power beaming system which uses active control of a segmented primary telescope mirror.

  19. High resolution imaging with TM01 laser beams

    NASA Astrophysics Data System (ADS)

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2009-06-01

    Using the vectorial diffraction theory established by Richards and Wolf, we demonstrate that the resolution of a two-photon microscope can be improved with a radially polarized TM01 laser beam and an interface between dielectrics, instead of the linearly polarized Gaussian beam already used in laser scanning microscopy. To verify the theoretical results, we developed a mode converter producing radially polarized beams and we have integrated it in a commercial two-photon microscope.

  20. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  1. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  2. Apparatus Translates Crossed-Laser-Beam Probe Volume

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; South, Bruce W.; Exton, Reginald J.

    1994-01-01

    Optomechanical apparatus translates probe volume of crossed-beam laser velocimeter or similar instrument while maintaining optical alignment of beams. Measures velocity, pressure, and temperature of flowing gas at several locations. Repeated tedious realignments no longer necessary. Designed to accommodate stimulated-Raman-gain spectrometer for noninvasive measurement of local conditions in flowing gas in supersonic wind tunnel. Applicable to other techniques like coherent anti-Stokes Raman spectroscopy involving use of laser beams crossed at small angles (10 degrees or less).

  3. Propagation of high-energy laser beams through metallic aerosols

    SciTech Connect

    Zardecki, A.; Armstrong, R.L.

    1988-08-01

    By combining the results of the hydrodynamic code CON1D and the beam propagation code LASER, we investigate the propagation of high-energy laser beams through vaporizing metallic aerosols in the regime for which the plasma generation becomes important. An effective plasma absorption coefficient allows us to set up a coupled system of equations describing the system consisting of the beam and vapor. 14 refs., 5 figs.

  4. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-12-31

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modem, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  5. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  6. Hough Transform Based Corner Detection for Laser Beam Positioning

    SciTech Connect

    Awwal, A S

    2005-07-26

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.

  7. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  8. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  9. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  10. Optical trapping with Bessel beams generated from semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Sokolovskii, G. S.; Dudelev, V. V.; Losev, S. N.; Soboleva, K. K.; Deryagin, A. G.; Kuchinskii, V. I.; Sibbett, W.; Rafailov, E. U.

    2014-12-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.

  11. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect

    Shafer, R.E.

    1998-05-05

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4 {times} 10{sup {minus}17} cm{sup 2} at 1.5 eV, a 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10-ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  12. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  13. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  14. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  15. Helicopter engine exhaust rotor downwash effects on laser beams

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Sjöqvist, Lars; Seiffer, Dirk

    2015-10-01

    The hot exhaust gases from engines on helicopters are pushed down by the rotor in a turbulent flow. When the optical path of a laser beam or optical sensor passes through this region severe aberrations of the optical field may result. These perturbations will lead to beam wander and beam distortions that can limit the performance of optical countermeasure systems. To quantify these effects the Italian Air Force Flight Test Centre hosted a trial for the "Airborne platform effects on lasers and warning sensors" (ALWS) EDA-project. Laser beams were propagated from the airport control tower to a target screen in a slant path with the helicopter hovering over this path. Collimated laser beams at 1.55-, 2- and 4.6-μm wavelength were imaged with high speed cameras. Large increases in beam wander and beam divergence were found, with beam wander up to 200 μrad root-mean-square and increases in beam divergence up to 1 mrad. To allow scaling to other laser beam parameters and geometries formulas for propagation in atmospheric turbulence were used even though the turbulence may not follow Kolmogorov statistics. By assuming that the plume is short compared to the total propagation distance the integrated structure parameter through the plume could be calculated. Values in the range 10-10 to 10-8 m1/3 were found when the laser beams passed through the exhaust gases below the helicopter tail. The integrated structure parameter values calculated from beam wander were consistently lower than those calculated from long term spot size, indicating that the method is not perfect but provides information about order of magnitudes. The measured results show that the engine exhaust for worst case beam directions will dominate over atmospheric turbulence even for kilometer path lengths from a helicopter at low altitude. How severe the effect is on system performance will depend on beam and target parameters.

  16. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

    NASA Technical Reports Server (NTRS)

    Anderson, Richard

    1994-01-01

    The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

  17. Laser beam steering for GRACE Follow-On intersatellite interferometry.

    PubMed

    Schütze, Daniel; Stede, Gunnar; Müller, Vitali; Gerberding, Oliver; Bandikova, Tamara; Sheard, Benjamin S; Heinzel, Gerhard; Danzmann, Karsten

    2014-10-01

    The GRACE Follow-On satellites will use, for the first time, a Laser Ranging Interferometer to measure intersatellite distance changes from which fluctuations in Earth's geoid can be inferred. We have investigated the beam steering method that is required to maintain the laser link between the satellites. Although developed for the specific needs of the GRACE Follow-On mission, the beam steering method could also be applied to other intersatellite laser ranging applications where major difficulties are common: large spacecraft separation and large spacecraft attitude jitter. The beam steering method simultaneously coaligns local oscillator beam and transmitted beam with the laser beam received from the distant spacecraft using Differential Wavefront Sensing. We demonstrate the operation of the beam steering method on breadboard level using GRACE satellite attitude jitter data to command a hexapod, a six-degree-of-freedom rotation and translation stage. We verify coalignment of local oscillator beam/ transmitted beam and received beam of better than 10 μrad with a stability of 10 μrad/ √Hz in the GRACE Follow-On measurement band of 0.002...0.1 Hz. Additionally, important characteristics of the beam steering setup such as Differential Wavefront Sensing signals, heterodyne efficiency, and suppression of rotation-to-pathlength coupling are investigated and compared with analysis results. PMID:25321987

  18. CO2 laser beam propagation with ZnSe optics

    NASA Astrophysics Data System (ADS)

    Leong, K. H.; Liu, Yi; Holdridge, D. J.

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO2 laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO2 laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM(sub 00), TEM(sub 01), TEM(sub 10), and TEM(sub 20). Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive, and cylindrical lenses of 5 in. focal length and a 10 in. focal length integrating lens. Reflective optics included an integrator and a 5 in. focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size, and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  19. Multi-beam Laser Doppler Vibrometer with fiber sensing head

    NASA Astrophysics Data System (ADS)

    Phua, P. B.; Fu, Y.; Guo, M.; Liu, H.

    2012-06-01

    Laser Doppler vibrometry (LDV) is a well known technique to measure the motions, vibrations and mode shapes of structures and machine components. Photodetector-based LDV can only offer a point-wise measurement. However, it is possible to scan the laser beam to build up a vibrometric image. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new method of generating multiple laser beams with different frequency shifts. The laser beams are projected on different points, and the reflected beams interfere with a common reference beam. The cross-talk among object beams can be bypassed with a proper selection of frequency shifts. A simultaneous vibration measurement on multiple points is realized using a single photodetector. Based on the proposed spatial-encoding technology, a self-synchronized prototype of fiber-based multipoint laser Doppler vibrometer at 1550nm wavelength is developed. An addition red pilot laser is used for aiming purpose. It has the flexibility to measure the vibration of different points on various surfaces. The prototype is used to measure the vibration of different points on a cantilever beam and a plate. The measured results match well with simulation results using finite element method (FEM).

  20. Multifunctional micro-optical elements for laser beam homogenizing and beam shaping

    NASA Astrophysics Data System (ADS)

    Bich, A.; Rieck, J.; Dumouchel, C.; Roth, S.; Weible, K. J.; Eisner, M.; Voelkel, R.; Zimmermann, M.; Rank, M.; Schmidt, M.; Bitterli, R.; Ramanan, N.; Ruffieux, P.; Scharf, T.; Noell, W.; Herzig, H.-P.; De Rooij, Nico

    2008-02-01

    Refractive, diffractive and reflective micro-optical elements for laser beam shaping and homogenizing have been manufactured and tested. The presented multifunctional optical elements are used for shaping arbitrary laser beam profiles into a variety of geometries like, a homogeneous spot array or line pattern, a laser light sheet or flat-top intensity profiles. The resulting profiles are strongly influenced by the beam properties of the laser and by diffraction and interference effects at the micro-optical elements. We present general design rules for beam shaping and homogenizing. We demonstrate the application of such multifunctional micro-optical elements for a variety of applications from micro-laser machining to laser diagnostic systems.

  1. Incoherently coupled dark-bright photorefractive solitons

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Segev, Mordechai; Coskun, Tamer H.; Christodoulides, Demetrios N.; Kivshar, Yuri S.; Afanasjev, Vsevolod V.

    1996-11-01

    We report the observation of incoherently coupled dark-bright spatial soliton pairs in a biased bulk photorefractive crystal. When such a pair is decoupled, the dark component evolves into a triplet structure, whereas the bright one decays into a self-defocusing beam.

  2. Interactive dynamics of two copropagating laser beams in underdense plasmas.

    PubMed

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2004-08-01

    The interaction of two copropagating laser beams with crossed polarization in the underdense plasmas has been investigated analytically with the variational approach and numerically. The coupled envelope equations of the two beams include both the relativistic mass correction and the ponderomotive force effect. It is found that the relativistic effect always plays the role of beam attraction, while the ponderomotive force can play both the beam attraction and beam repulsion, depending upon the beam diameters and their transverse separation. In certain conditions, the two beam centers oscillate transversely around a propagation axis. In this case, the ponderomotive effect can lead to a higher oscillation frequency than that accounting for the relativistic effect only. The interaction of two beams decreases the threshold power for self-focusing of the single beam. A strong self-trapping beam can channel a weak one. PMID:15447601

  3. Enhanced focusing of laser beams in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Suk, H.

    2007-02-01

    The beating of two copropagating laser beams (having frequency difference Δω ≈ωp, where ωp is the plasma frequency) can resonantly excite a large amplitude plasma wave in a narrow-gap semiconductor [V. I. Berezhiani and S. M. Mahajan, Phys. Rev. B 55, 9247 (1997)]. The higher ponderomotive force on the electrons due to the plasma beat wave makes the medium highly nonlinear. As a result, the incident laser beams become self-focused due to the nonlinearity by the ponderomotive force. In this paper, we show the self-focusing and spot size evolution of the laser beams in semiconductor plasmas.

  4. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  5. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  6. Red and infrared gas laser beam for therapy

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Ristici, Marin; Ristici, E.; Tivarus, Madalina-Elena

    2000-06-01

    For the low power laser therapy, the experiments show that better results are obtained when the laser beam is an overlapping of two radiations: one in the visible region of the spectrum and the other in IR region. Also, some experiments show that for good results in biostimulation it is important to have a high coherence length of laser beam; this is not the case of the laser diodes The He-Ne laser has the best coherence, being able to generate laser radiations in visible and IR. It has tow strong laser lines: 633 nm and 1.15 micrometers . Although their gains are about the same, the available power of the red radiation is 3-4 times higher because of its larger width, when they oscillate separately. Using special dichroic mirrors for simultaneous reflection of the both liens, the laser beam will consist of the two radiations, each of them having good coherence . A 420 mm active length, 1.8 mm inner diameter He-Ne laser tube and a special designed resonator has been developed. The mirrors reflect both radiations as follows: one reflects 99.9 percent and the other, the output mirror, reflects 98 percent. There is a competition between them because these lines have a common lower level. The output power of the laser beam as 6 mW for 633 nm and 4 mW for 1.15 micrometers , respectively.

  7. Laser beam combiner for Thomson scattering core LIDARa)

    NASA Astrophysics Data System (ADS)

    Balboa, I.; Huang, B.; Naylor, G.; Walsh, M.; Sirinelli, A.; Parsons, P.; Fessey, J.; Townsend, M.; Beurskens, M.; Conway, N.; Flanagan, J.; Kempenaars, M.; Kirk, A.

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  8. Laser beam combiner for Thomson scattering core LIDAR.

    PubMed

    Balboa, I; Huang, B; Naylor, G; Walsh, M; Sirinelli, A; Parsons, P; Fessey, J; Townsend, M; Beurskens, M; Conway, N; Flanagan, J; Kempenaars, M; Kirk, A

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET. PMID:21033888

  9. Laser beam combiner for Thomson scattering core LIDAR

    SciTech Connect

    Balboa, I.; Naylor, G.; Sirinelli, A.; Parsons, P.; Fessey, J.; Townsend, M.; Beurskens, M.; Conway, N.; Kempenaars, M.; Kirk, A.; Walsh, M. [Diagnostics Division, Department of CHD, ITER Organization, CS 90 046, Bulding 155 Flanagan, J.

    2010-10-15

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within {+-}25 {mu}rad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  10. Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser.

    PubMed

    Hasan, Md Nazmul; Lee, Yung-Chun

    2015-02-23

    A method is proposed to minimize the focused spot size of an elliptically-diverging laser diode beam by means of a circular aperture and a single plano-convex aspherical microlens. The proposed microlens is fabricated using an excimer laser dragging method and has two different profiles in the x- and y-axis directions. The focused spot size of the beam is examined both numerically and experimentally. The feasibility of the proposed approach for beam pen lithography applications is demonstrated by patterning dotted, straight-line and spiral features on a photo resist layer followed by thin gold layer deposition and metal lift-off. The minimum feature size for dotted pattern is around 2.57 μm, while the minimum line-widths for straight-line and spiral pattern are 3.05 μm and 4.35 μm, respectively. Thus, the technique can be applied to write any arbitrary pattern for high-resolution lithography. PMID:25836486

  11. Photothermal single particle microscopy using a single laser beam

    SciTech Connect

    Selmke, Markus; Heber, André; Braun, Marco; Cichos, Frank

    2014-07-07

    We introduce a single-laser-beam photothermal microscopy scheme for the detection of single absorbing nano-objects. Here, a modulated incident laser beam with a constant intensity offset serves as pump and probe beam at the same time. Using the out-of-phase scattering response of the retarded thermorefractive wave field, the method provides a selective contrast for absorbers over a possible background of scatterers. The use of a single wavelength and a single beam, considerably simplifies the setup and integration of photothermal detection in existing microscopy schemes.

  12. Beam profile shaping for laser radars that use detector arrays.

    PubMed

    Veldkamp, W B; Kastner, C J

    1982-01-15

    The beam shaper we developed shapes the transmit beam of a CO(2) laser radar that uses a linear detector array. It consists of a diffraction grating and an anamorphic prism beam compressor and produces a stretched profile that efficiently and uniformly illuminates the far-field footprint of the detector array. The diffraction grating phase modulates the near field or the laser beam to generate a far-field flattop intensity profile, whereas the compressor produces the necessary profile eccentricity. We have achieved conversion efficiencies in the 70-90% range. PMID:20372453

  13. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  14. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  15. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  16. Laser beam brazing of car body and aircraft components

    SciTech Connect

    Haferkamp, H.; Kreutzburg, K.

    1994-12-31

    At present, when brazing car body components for the automotive industry, manual flame brazing is mostly used. The advantage of brazing as compared to welding, is the lower hardness of the braze metal, making postmachining easier. But manual flame brazing also shows several main disadvantages, such as pores within the seam and a high thermal influence on the workpiece. Therefore, investigations on laser beam brazing concerning the reduction of the technological and economical disadvantages of the flame brazing process were carried out. Laser beam brazing of aluminum alloys is also a main topic of this presentation. The fundamental research in brazing mild steel was done on lap joints. The investigations about brazing mild steel and aluminum alloys have demonstrated that it is possible to braze these metals using laser beam radiation. Laser beam brazing of 3-dimensional mild steel components requires a special program for the brazing sequence, and new specifications in design and fabrication. But comparing seams made by laser beam brazing to manual flame brazing show that there are advantages to using the automated laser process. Laser beam brazing of aluminum alloys makes it possible to join metals with poor brazeability, although brazing conditions lead to a slight melting of the gap sides.

  17. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  18. Diffractive beam shaping for enhanced laser polymer welding

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  19. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  20. Relativistic Electron Vortex Beams in a Laser Field.

    PubMed

    Bandyopadhyay, Pratul; Basu, Banasri; Chowdhury, Debashree

    2015-11-01

    The orbital angular momentum Hall effect and the spin Hall effect of electron vortex beams (EVBs) have been studied for the EVBs interacting with a laser field. In the scenario of a paraxial beam, the cumulative effect of the orbit-orbit interaction of EVBs and laser fields drives the orbital Hall effect, which in turn produces a shift of the center of the beam from that of the field-free case towards the polarization axis of the photons. In addition, for nonparaxial beams one can also perceive a similar shift of the center of the beam owing to the spin Hall effect involving spin-orbit interaction. Our analysis suggests that the shift in the paraxial beams will always be larger than that in the nonparaxial beams. PMID:26588389

  1. Pulsed Nd:YAG laser beam profile analyse

    NASA Astrophysics Data System (ADS)

    Chmelickova, Hana; Lapsanska, Hana; Ctvrtlik, Radim

    2005-06-01

    Pulsed laser system LASAG with maximal average power 150 W is used in our laboratory for experiments with various kinds of materials, process parameters optimisation for cutting, welding, drilling and surface treatment. Alignment of optical elements and good laser beam quality is critical parameter for successful result of laser treatment. Active medium - crystal in solid state laser is warmed up during laser action, because only some percent of input electrical power is turn to optical energy. Warm crystal has properties like a thick lens, which optical power is dependent on process parameters and kind of resonator. Also some defects in optical system - dirty or damaged mirrors or lens must be detect. Properties of non-visible near infrared beam can be tested by means of laser beam analyzer SPIRICON. In our system there are movable and changeable end mirrors and diaphragms to obtain five different types of resonators - basic one for welding and fibre applications and four ones for fine cutting and drilling. Measurements of beam profile for all these resonators were made with safety values of pulse length, energy and frequency. Control of losses in optical system was made to inspect quality of optical elements. Also measurement of laser beam outputting from three different fibre processing heads was realised. Control measurements on continual industrial Nd:YAG laser system were made. All data and capture pictures are stored and practical lessons for students in next school years were prepared.

  2. Effects of laser fluence on silicon modification by four-beam laser interference

    SciTech Connect

    Zhao, Le; Li, Dayou; Wang, Zuobin Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.

  3. Vacuum ultraviolet laser induced fluorescence on a Si atomic beam

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1991-01-01

    A broadly applicable vacuum ultraviolet experiment is described for measuring radiative lifetimes of neutral and singly-ionized atoms in a beam environment to 5-percent accuracy using laser induced fluorescence. First results for neutral Si are reported.

  4. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  5. Research aims at development of laser-guided electron beam

    NASA Astrophysics Data System (ADS)

    Kozicharow, E.

    1985-02-01

    The U.S. Department of Defense is conducting a technology development program that may result in the stationing of a laser-guided electron beam weapon, at ionospheric altitudes of 80-600 km, for the interception and destruction of Soviet ICBMs at ranges of more than 1000 miles. This research program is pursuing the principle of ion-focused propagation, which resolves the problem of atmospheric beam scattering by ionizing a channel in the atmospheric medium with a laser. Also discussed is the development status of space-based particle beams and lasers, ground-based laser systems employing orbiting mirror platforms for beam aiming, and nuclear device-powered directed energy weapons.

  6. Multiple scattering of laser beams in dense hydrosols

    NASA Technical Reports Server (NTRS)

    Zardecki, A.; Gerstl, S. A. W.; Unruh, W. P.; Stokes, G. H.; Stupin, D. M.; Elliott, N. E.; Weinman, J. A.

    1986-01-01

    The multiple scattering of laser beams is usually described within the framework of small-angle scattering theory. The validity of this approximation as well as improvements due to the incorporation of diffusion theory in the calculations were studied.

  7. Laser forming of a bowl shaped surface with a stationary laser beam

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shitanshu Shekhar; More, Harshit; Nath, Ashish Kumar

    2016-02-01

    Despite a lot of research done in the field of laser forming, generation of a symmetric bowl shaped surface by this process is still a challenge mainly because only a portion of the sheet is momentarily deformed in this process, unlike conventional sheet metal forming like deep drawing where the entire blank undergoes forming simultaneously reducing asymmetry to a minimum. The motion of laser beam also makes the process asymmetric. To counter these limitations this work proposes a new approach for laser forming of a bowl shaped surface by irradiating the centre of a flat circular blank with a stationary laser beam. With high power lasers, power density sufficient for laser forming, can be availed at reasonably large spot sizes. This advantage is exploited in this technique. Effects of duration of laser irradiation and beam spot diameter on the amount of bending and asymmetry in the formed surface were investigated. Laser power was kept constant while varying irradiation time. While varying laser spot diameter laser power was chosen so as to keep the surface temperature nearly constant at just below melting. Experimental conditions promoted almost uniform heating through sheet thickness. The amount of bending increased with irradiation time and spot diameter. It was interesting to observe that blanks bent towards the laser beam for smaller laser beam diameters and the reverse happened for larger spot diameters (~10 times of the sheet thickness). Effect of spot diameter variation has been explained with the help of coupled thermal-structural finite element simulations.

  8. Dynamically deformable reflective membrane for laser beam shaping and smoothing

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bitterli, R.; Bich, A.; Noell, W.; Voelkel, R.; Weible, K.; de Rooij, N.

    2012-03-01

    We show a laser beam shaping device made of a deformable continuous reflective membrane fabricated over a scanning stage. The combination of two actuator schemes enables shaping and smoothing of a laser beam with a unique compact device. It is designed to shape an input laser beam into a flat top or Gaussian intensity profile, to support high optical load and to potentially reduce speckle contrast. One single electrode is needed to deform the whole membrane into multiple sub-reflecting concave elements. The scanning stage is used simultaneously to smooth out the remaining interference patterns. The fabrication process is based on SOI wafer and parylene refilling to enable the fabrication of a 100 % fill factor 5 by 5 mm2 deformable membrane. Applications for such device are laser machining and laser display.

  9. 3w Transmitted Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Froula, D H; Rekow, V; Sorce, C; Piston, K; Knight, R; Alvarez, S; Griffith, R; Hargrove, D; Ross, J S; Dixit, S; Pollock, B; Divol, L; Glenzer, S H; Armstrong, W; Bahr, R; Thorp, K; Pien, G

    2006-04-24

    A 3{omega} transmitted beam diagnostic has been commissioned on the Omega Laser at the Laboratory for Laser Energetics, University of Rochester [Soures et.al., Laser Part. Beams 11 (1993)]. Transmitted light from one beam is collected by a large focusing mirror and directed onto a diagnostic platform. The near field of the transmitted light is imaged; the system collects information from twice the original f-cone of the beam. Two gated optical cameras capture the near field image of the transmitted light. Thirteen spatial positions around the measurement region are temporally resolved using fast photodiodes to allow a measure of the beam spray evolution. The Forward stimulated Raman scattering and forward simulated Brillion scattering are spectrally and temporally resolved at 5 independent locations within twice the original f-cone. The total transmitted energy is measured in two spectral bands ({delta}{lambda} < 400 nm and {delta}{lambda} > 400 nm).

  10. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  11. Dual-Beam Atom Laser Driven by Spinor Dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  12. Laser cooling of relativistic heavy-ion beams for FAIR

    NASA Astrophysics Data System (ADS)

    Winters, D.; Beck, T.; Birkl, G.; Dimopoulou, C.; Hannen, V.; Kühl, Th; Lochmann, M.; Loeser, M.; Ma, X.; Nolden, F.; Nörtershäuser, W.; Rein, B.; Sánchez, R.; Schramm, U.; Siebold, M.; Spiller, P.; Steck, M.; Stöhlker, Th; Ullmann, J.; Walther, Th; Wen, W.; Yang, J.; Zhang, D.; Bussmann, M.

    2015-11-01

    Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

  13. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  14. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  15. Disintegration of urinary calculi by laser beam: drilling experiment in extracted urinary stones.

    PubMed

    Tanahashi, Y; Orikasa, S; Chiba, R; Tahira, K; Fukatsu, T; Miyakawa, T

    1979-06-01

    Disintegration of urinary calculi was attempted by the use of laser beam. As a first step, drilling of extracted urinary stones was attempted using a continuous wave CO2 laser and a pulse ruby laser. Stones were drilled easily by either laser beam. The power around 10 W of continuous CO2 laser beam was sufficient to drill through the stone. PMID:462477

  16. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  17. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  18. Laser-based profile and energy monitor for H beams

    SciTech Connect

    Connolly,R.; Alessi, J.; Bellavia, S.; Dawson, C.; Degen, C.; Meng, W.; Raparia, D.; Russo, T.; Tsoupas, N.

    2008-09-29

    A beam profile and energy monitor for H{sup -} beams based on laser photoneutralization was built at Brookhaven National Laboratory (BNL)* for use on the High Intensity Neutrino Source (HMS) at Fermilab. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is stepped across the ion beam, removing electrons from the portion of the H{sup -} beam intercepted by the laser. These electrons are channeled into a Faraday cup by a curved axial magnetic field. To measure the energy distribution of the electrons, the laser position is fixed and the voltage on a screen in front of the Faraday cup is raised in small steps. We present a model which reproduces the measured energy spectrum from calculated beam energy and space-charge fields. Measurements are reported from experiments in the BNL linac MEBT at 750keV.

  19. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  20. Vectorial rotating vortex Hankel laser beams

    NASA Astrophysics Data System (ADS)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  1. Modeling beam propagation and frequency conversion for the beamlet laser

    SciTech Connect

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  2. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  3. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  4. Optimization of beam transformation system for laser-diode bars.

    PubMed

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%. PMID:27557249

  5. A picosecond beam-timing system for the OMEGA laser

    DOE PAGESBeta

    Donaldson, W. R.; Katz, J.; Huff, R.; Hill, E. M.; Kelly, J. H.; Kwaitkowski, J.; Brannon, R. B.; Boni, R.

    2016-05-27

    Here, a timing system is demonstrated for the OMEGA Laser System that guarantees all 60 beams will arrive on target simultaneously with a root mean square variability of 4 ps. The system relies on placing a scattering sphere at the target position to couple the UV light from each beam into a single photodetector.

  6. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  7. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  8. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  9. Digital Controller For Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon

    1995-01-01

    Report presents additional information about proposed apparatus described in "Beam-Steering Subsystem for Laser Communication" (NPO-19069). Discusses design of digital beam-steering control subsystem and, in particular, that part of design pertaining to digital compensation for frequency response of steering mirror.

  10. Laser beam scintillation beyond the turbulent atmosphere A numerical computation

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Taylor, L. S.

    1976-01-01

    The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.

  11. Flat-top beam for laser-stimulated pain

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark

    2005-04-01

    One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.

  12. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    SciTech Connect

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Sheng, Z. M.; Zhang, J.

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  13. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  14. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  15. Earth-to-geosynchronous satellite laser beam transmission.

    PubMed

    Aruga, T; Araki, K; Hayashi, R; Iwabuchi, T; Takahashi, M; Nakamura, S

    1985-01-01

    Some experimental results for detection of a ground-based laser beacon by a geosynchronous satellite are reported. A 50-cm diam telescope and silicon intensifier tube camera were used for optical observation of the satellite. The transmitted argon laser beam was detected by the visible channel of a radiometer on board the Japanese Geostationary Meteorological Satellite. Two activities, (1) orbit prediction correction using optical observation and (2) detection of the earth laser beacon by the radiometer, are described. PMID:18216903

  16. Lossless beam combiners for nearly equal laser frequencies

    NASA Astrophysics Data System (ADS)

    Haubrich, D.; Dornseifer, M.; Wynands, R.

    2000-02-01

    We discuss three ways to combine two laser beams with equal linear polarizations and very closely spaced frequencies into a single output beam containing up to 100% of the input power of each beam. One setup, a modified Mach-Zehnder interferometer, is examined in detail; it allows to adjust the combined output power electronically with the help of a simple servo loop. With off-the-shelf optical components we obtained a 98% efficiency.

  17. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  18. Compact laser transmitter delivering a long-range infrared beam aligned with a monitoring visible beam.

    PubMed

    Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin

    2012-06-10

    A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm. PMID:22695673

  19. Laser beam splitting by polarization encoding.

    PubMed

    Wan, Chenhao

    2015-03-20

    A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings. PMID:25968540

  20. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration.

    PubMed

    Pang, J; Ho, Y K; Yuan, X Q; Cao, N; Kong, Q; Wang, P X; Shao, L; Esarey, E H; Sessler, A M

    2002-12-01

    It has been found that for a focused laser beam propagating in free space, there exists, surrounding the laser beam axis, a subluminous wave phase velocity region. Relativistic electrons injected into this region can be trapped in the acceleration phase and remain in phase with the laser field for sufficiently long times, thereby receiving considerable energy from the field. Optics placed near the laser focus are not necessary, thus allowing high intensities and large energy gains. Important features of this process are examined via test particle simulations. The resulting energy gains are in agreement with theoretical estimates based on acceleration by the axial laser field. PMID:12513421

  1. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  2. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  3. Emittance of positron beams produced in intense laser plasma interaction

    SciTech Connect

    Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.; Sheppard, J. C.; Meyerhofer, D. D.; Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.; Fedosejev, R.; Kerr, S.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.

  4. Focusing of high-current laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.

    2007-04-01

    Using a two-dimensional relativistic hydrodynamic code, it is shown that a dense high-current ion beam driven by a short-pulse laser can be effectively focused by curving the target front surface. The focused beam parameters essentially depend on the density gradient scale length of the preplasma Ln and the surface curvature radius RT. When Ln⩽0.5λL (λL is the laser wavelength) and RT is comparable with the laser beam aperture dL, a significant fraction of the accelerated ions is focused on a spot much smaller than dL, which results in a considerable increase in the ion fluence and current density. Using high-contrast multipetawatt picosecond laser pulses of relativistic intensity (˜1020W/cm2), focused ion (proton) current densities approaching those required for fast ignition of DT fuel seem to be feasible.

  5. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.; Albrecht, G.; Beach, R.

    1994-12-31

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  6. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  7. Dynamic MEMS-based linear (1D) diffusers for laser beam homogenizing and beam shaping

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bich, A.; Noell, W.; Voelkel, R.; Weible, K. J.; De Rooij, N. F.

    2009-08-01

    We present a dynamic laser beam shaper based on MEMS technology. We show a prototype of a dynamic diffuser made of single crystal silicon. A linearly deformable silicon micromembrane is used to diffuse a laser beam in one dimension. Resonance frequencies of the membrane can range from 1 kHz to 100 kHz. Diffusing angle can be tuned by adjusting the driving voltage. We measured a diffusing angle of 0.16° for an actuation voltage of 20 V.

  8. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%. PMID:24921496

  9. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  10. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  11. Multimode laser beam analyzer instrument using electrically programmable optics

    NASA Astrophysics Data System (ADS)

    Marraccini, Philip J.; Riza, Nabeel A.

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M2. Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M2 experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  12. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  13. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  14. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  15. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  16. Phase-synchronous detection of coherent and incoherent nonlinear signals

    NASA Astrophysics Data System (ADS)

    Karki, Khadga Jung; Kringle, Loni; Marcus, Andrew H.; Pullerits, Tõnu

    2016-01-01

    The nonlinear optical response of a material system contains detailed information about its electronic structure. Standard approaches to nonlinear spectroscopy often use multiple beams crossed in a sample, and detect the wave vector matched polarization in transmission. Here, we apply a phase-synchronous digital detection scheme using an excitation geometry with two phase-modulated collinear ultrafast pulses. This scheme can be used to efficiently detect nonlinear coherent signals and incoherent signals, such as higher harmonics and multiphoton fluorescence and photocurrent, from various systems including a photocell device. We present theory and experiment to demonstrate that when the phase of each laser pulse is modulated at the frequency {φ }1 and {φ }2, respectively, nonlinear signals can be isolated at the frequencies n({φ }2-{φ }1), where n=0,1,2,\\ldots . This approach holds promise for performing nonlinear spectroscopic measurements under low-signal conditions.

  17. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  18. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  19. Transverse laser cooled Lithium atomic beam for plasma edge diagnostics

    NASA Astrophysics Data System (ADS)

    Barthwal, S.; Ajmathulla; Mahender, N.; Vudayagiri, A.; Kumar, A.

    2016-05-01

    We have built a set up to achieve a collimated atomic Lithium beam to be used for plasma edge diagnostics. The collimation is achieved by two-dimensional laser cooling, and such a beam could be very useful to obtain electron density at the edge of a plasma with very high spatial resolution. We present in this manuscript the details of this setup, including details of the oven we designed for the Lithium source. We present the metrics of the beam, including the transverse velocity profile of the atomic beam.

  20. CO/sub 2/ laser beam weldability of Zircaloy 2

    SciTech Connect

    Ram, V.; Kohn, G.; Stern, A.

    1986-07-01

    BWR (boiling water reactor) fuel rods are manufactured by stacking pellets into a zirconium alloy, cladding tube-zircaloy 2(Zr2). A fuel rod is designed as a pressure vessel in order to prevent failure of the cladding and release of radioactive fission products. As a result, there are very strict requirements from the welding methods employed. The usual welding methods for Zr2 are based on the tungsten inert gas (GTAW) resistance welding (RW) and electron beam welding (EBW) processes. There is very little information about laser beam welding (LBW) of Zr2. The recent development of multikilowatt laser systems has led to dramatic improvements in their welding performance. In the present work, laser beam welding of Zr2 was investigated. A comparison with GTA welding was carried out. The use of a high-power laser beam to weld nuclear fuel containers made of zircaloy has many advantages: (1) The high-power density of the focused laser beam enables very high welding speeds in comparison with arc welding. As a result, a narrow heat-affected zone is produced and the distortion of the parts is reduced to a minimum. (2) The beam can be transmitted to different stations alternatively, even to ones located far from one another. It also transmits to hot cells, glove boxes or any inert gas pressure chamber through suitable windows. (3) The process can easily be automated to enhance mass production. It is very simple, does not require skilled welders, and does not need the use of different electrodes, collets, etc. (4) The laser beam does not contaminate the weld metal with tungsten or other elements.

  1. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  2. Radially and azimuthally polarized laser beams by thin-disk laser.

    PubMed

    Aghbolaghi, Reza; Charehjolo, Habib Sahebghoran

    2016-05-01

    The generation of radially and azimuthally polarized beams is theoretically investigated in thin-disk laser configurations by writing Jones matrices for optical elements. Higher modes are omitted by aperture and the mode-selection operation is done by discontinuous phase elements. Two modes, TEM01x and TEM01y, are combined to generate the radially and azimuthally polarized laser beam. The polarization of the output beams is studied by the extended Jones matrices. In addition, the output power of the thin-disk laser is numerically estimated by solving the rate equations in ytterbium-doped materials. PMID:27140363

  3. Industrial beam delivery system for ultra-short pulsed laser

    NASA Astrophysics Data System (ADS)

    Funck, Max C.; Wedel, Björn; Kayander, Ilya; Niemeyer, Jörg

    2015-03-01

    Beam delivery systems are an integral part of industrial laser equipment. Separating laser source and application fiber optic beam delivery is employed wherever great flexibility is required. And today, fiber optic beam delivery of several kW average power is available for continuous wave operation using multimode step index fibers with core diameters of several 100 μm. However, during short-pulse or even ultra-short pulse laser operation step index fibers fail due to high power density levels and nonlinear effects such as self-focusing and induced scattering. Hollow core photonic crystal fibers (HC-PCF) are an alternative to traditional fibers featuring light propagation mostly inside a hollow core, enabling high power handling and drastically reduced nonlinear effects. These fibers have become available during the past decade and are used in research but also for fiber laser systems and exhibit a growing popularity. We report on using HC-PCF fibers and their integration into an industrial beam delivery package comparable to today's fiber optic standards and will discuss power handling, beam quality and efficiency as well as future prospects of this technology. In a preliminary industrial beam delivery setup 300 fs pulses at 100 W average power could be delivered.

  4. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  5. Quantum Radiation Reaction: From Interference to Incoherence

    NASA Astrophysics Data System (ADS)

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-01

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  6. Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.

    2016-06-01

    In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.

  7. An Investigation on Microstructure and Mechanical Properties of Nd:YAG Laser Beam Weld of Copper Beryllium Alloy

    NASA Astrophysics Data System (ADS)

    Akbari Mousavi, S. A. A.; Niknejad, S. T.

    2009-06-01

    Nd:YAG pulsed laser beam welding is conducted on UNS-C17200 copper beryllium sheet. Welding is carried out in the as-annealed and as-aged conditions to investigate the effects of preweld condition on weld microstructure and mechanical properties. Two different heat treatments including direct age treating and solution annealing + subsequent age treating are considered after welding. The mechanical and microstructural characteristics of weld metal regions (WMs) and heat-affected zones (HAZ) of four different samples are considered using tensile tests, hardness measurements, optical microscopy, electron microscopy, and X-ray diffraction (XRD). Results indicate that the microstructural and mechanical properties of the HAZ without postweld treatment are adversely affected by grain boundary liquation observed if welding is carried out in the as-aged condition. Tensile strength and hardness of the WM are improved after a postweld artificial age treatment at 315 °C for 3 hours. However, hardness of the WM is lower than that of the base metal (BM) and HAZ, because the precipitation mechanism in the fusion zone is not as effective as that is in the HAZ and BM. The CuBe secondary phase precipitates during solidification. The precipitates/matrix interface is incoherent, which does not significantly raise the hardness of the weld metal. Incoherent interdendritic precipitates are dissolved in the weld structure after postweld solution annealing. Having performed postweld solution treatment and aging, full strength and hardness throughout the copper beryllium material were observed.

  8. Wedged Fibers Suppress Feedback of Laser Beam

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  9. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  10. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  11. Excimer Laser Beam Analyzer Based on CVD Diamond

    NASA Astrophysics Data System (ADS)

    Girolami, Marco; Salvatori, Stefano; Conte, Gennaro

    2010-11-01

    1-D and 2-D detector arrays have been realized on CVD-diamond. The relatively high resistivity of diamond in the dark allowed the fabrication of photoconductive "sandwich" strip (1D) or pixel (2D) detectors: a semitransparent light-receiving back-side contact was used for detector biasing. Cross-talk between pixels was limited by using intermediate guard contacts connected at the same ground potential of the pixels. Each pixel photocurrent was conditioned by a read-out electronics composed by a high sensitive integrator and a Σ-Δ ADC converter. The overall 500 μs conversion time allowed a data acquisition rate up to 2 kSPS. The measured fast photoresponse of the samples in the ns time regime suggests to use the proposed devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The technology of laser beam profiling is evolving with the increase of excimer lasers applications that span from laser-cutting to VLSI and MEMS technologies. Indeed, to improve emission performances, fine tuning of the laser cavity is required. In such a view, the development of a beam-profiler, able to work in real-time between each laser pulse, is mandatory.

  12. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  13. Laser Welding of Alumina Ceramic Substrates with Two Fixed Beams

    NASA Astrophysics Data System (ADS)

    Sedore, Blake William Clark

    Laser welding was investigated as a potential joining technology for alumina ceramic substrates. The objective of this study was to develop a method to preheat the ceramic using a single defocused laser beam prior to welding. Engineering ceramics are employed in a variety of systems and environments due to their unique properties. Joining technologies must be developed to facilitate the manufacture of complex or large ceramic components. Laser welding is advantageous as it forms joints rapidly, and does not introduce intermediate materials to form the bond, which can have deleterious effects. The Laser Machining System (LMS) at Queen's University was adapted for this study. A defocused far-infrared (FIR) laser beam was positioned to overlay a focused near-infrared (NIR) laser beam; the defocused FIR beam preheated the ceramic substrate and the focused NIR beam formed the weld. A finite element model was developed in COMSOL MultiPhysics to simulate the preheating processes and to develop a preheating protocol. The protocol was implemented using the FIR beam and adjusted to achieve preheating temperatures of 1450, 1525, and 1600°C. Welds were performed on 1 mm thick alumina plates using the preheating protocols and NIR beam powers of 25, 50, and 75 W. Weld speed was held constant throughout the study at 0.5 mm/s. The preheating protocols were successful at achieving near-constant preheating temperatures, with standard deviations below 32 degrees. Partially penetrating welds were formed with the NIR beam at 25 W, and fully penetrating welds at 50 and 75 W. Large pores were present in the 25 W and 50 W welds. Minimal porosity was observed in the welds formed at 75 W. All of the welded plates experienced a transverse fracture that extended perpendicular to weld, and a longitudinal fracture extending parallel to the weld. This study shows that a fixed defocused laser beam can successfully preheat alumina substrates to the high temperatures required for welding; however

  14. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  15. Spatial mode cleaning in radically asymmetric strongly focused laser beams

    NASA Astrophysics Data System (ADS)

    Heins, Alan M.; Guo, Chunlei

    2013-12-01

    We demonstrate that a femtosecond laser pulse strongly focused in air can produce a highly symmetric damage pattern on glass. This damage pattern contains a series of near-perfect radial rings, with diameters much larger than the predicted focal spot diameter. These rings disappear when the experiment is conducted in vacuum, indicating atmospheric involvement. Surprisingly, the shape and size of the rings seem to be nearly independent of the shape of the generating laser beam, showing dramatic spatial mode cleaning. A "half moon" initial laser mode created by obscuring one side of the round beam produces rings of similar quality to those obtained with the unclipped beam. While spatial mode cleaning has previously been reported in filaments, this is the most dramatic demonstration of the effect that we are aware of. We argue that the effect is due primarily to ionization, in contrast to studies in longer filaments that attribute it to self-focusing.

  16. Note: Longitudinally excited N2 laser with low beam divergence

    NASA Astrophysics Data System (ADS)

    Uno, K.; Akitsu, T.; Jitsuno, T.

    2014-09-01

    We developed a longitudinally excited N2 laser (337 nm) with low beam divergence without collimator lenses. The N2 laser consisted of a 30 cm long Pyrex glass tube with an inner diameter of 2.5 mm, a normal stable resonator formed by flat mirrors, and a simple, novel driver circuit. At a N2 gas pressure of 0.4 kPa and a repetition rate of 40 Hz, the N2 laser produced a circular beam with an output energy of 2.6 μJ and a low full-angle beam divergence of 0.29 mrad due to the uniform discharge formed by the longitudinal excitation scheme, the long cavity with the small aperture, and the low-input energy oscillation.

  17. Note: Longitudinally excited N₂ laser with low beam divergence.

    PubMed

    Uno, K; Akitsu, T; Jitsuno, T

    2014-09-01

    We developed a longitudinally excited N2 laser (337 nm) with low beam divergence without collimator lenses. The N2 laser consisted of a 30 cm long Pyrex glass tube with an inner diameter of 2.5 mm, a normal stable resonator formed by flat mirrors, and a simple, novel driver circuit. At a N2 gas pressure of 0.4 kPa and a repetition rate of 40 Hz, the N2 laser produced a circular beam with an output energy of 2.6 μJ and a low full-angle beam divergence of 0.29 mrad due to the uniform discharge formed by the longitudinal excitation scheme, the long cavity with the small aperture, and the low-input energy oscillation. PMID:25273794

  18. Measurement of turbulences influence on the laser beam polarization state

    NASA Astrophysics Data System (ADS)

    Latal, Jan; Vitasek, Jan; Hajek, Lukas; Koudelka, Petr; Siska, Petr; Hejduk, Stanislav; Vanderka, Ales; Vasinek, Vladimir

    2015-07-01

    This article is dealing with evaluation of air turbulences in uence on the laser beam in the simulation box with regards to change of beam polarization state. For measurement the laser optical source LDM1550 operating at 1550 nm and polarimeter PAX5710 were used. The laser source was placed in front of simulation box that served for generation of stable turbulent environment. The simulation of turbulent environment was generated by high-speed ventilators PMD1212PMB1-A. The thermal turbulences were created by Empire CTH-5000 and Solac TH 8325 heaters. All heaters were placed along the side of simulation box. With the help of polarimeter and detector PAN5710IR3 were then subsequently recorded changes of polarization state of the optical beam with regards to changes of turbulence condition within the box. The results are then discussed and interpreted with the help of statistic methods in the end of the article.

  19. Laser beam welding of high stressed, complex aircraft structural parts

    NASA Astrophysics Data System (ADS)

    Mueller-Hummel, Peter; Ferstl, Stefan; Sengotta, Marcus; Lang, Roland

    2003-03-01

    Laser beam welding of primary aircraft structures manufactured from aluminum alloys is considered to have a great potential in cost saving. In order to evaluate this advantage, a technology program has been adopted at EADS, Military Aircraft. The goal was to manufacture air intake shells for the Eurofighter in a cost efficient way. Stretch formed skins and machined stiffeners are joined together with laser beam welding. The baseline for a comparison in terms of cost and weight was the conventional process based on stretch forming of thick plates and subsequent milling. The major tasks of the program have been the optimization of the twin focus laser beam welding process and the proof of the structural integrity including weld strength evaluation.

  20. Turbulence-induced persistence in laser beam wandering.

    PubMed

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere. PMID:26125388

  1. LASER APPLICATIONS: H- BEAM PHOTO-DETACHMENT AND PUSH BUTTON DIAGNOSTICS

    SciTech Connect

    Liu, Yun

    2012-01-01

    The laser based nonintrusive H- beam diagnostics and laser assisted H- beam stripping technologies have been developed at the Spallation Neutron Source (SNS). This paper reviews the present status of the SNS laser based diagnostics and the recent R&D progress on the fiber transmission of laser pulses and power enhancement optical cavity which will be used in diagnostics and laser stripping.

  2. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  3. Mid-IR laser source using hollow waveguide beam combining

    NASA Astrophysics Data System (ADS)

    Elder, Ian F.; Thorne, Daniel H.; Lamb, Robert A.; Jenkins, R. M.

    2016-03-01

    Hollow waveguide technology is a route to efficient beam combining of multiple laser sources in a compact footprint. It is a technology appropriate for combining free-space or fibre-coupled beams generated by semiconductor, fibre or solidstate laser sources. This paper will present results of a breadboard mid-IR system comprising four laser sources combined using a hollow waveguide optical circuit. In this approach the individual dichroic beam combiner components are held in precision alignment slots in the hollow waveguide circuit and the different input wavelengths are guided between the components to a common output port. The hollow waveguide circuit is formed in the surface of a Macor (machinable glass-ceramic) substrate using precision CNC machining techniques. The hollow waveguides have fundamentally different propagation characteristics to solid core waveguides leading to transmission characteristics close to those of the atmosphere while still providing useful light guidance properties. The transmission efficiency and power handling of the hollow waveguide circuit can be designed to be very high across a broad waveband range. Three of the sources are quantum cascade lasers (QCLs), a semiconductor laser technology providing direct generation of midwave IR output. The combined beams provide 4.2 W of near diffraction-limited output co-boresighted to better than 20 µrad. High coupling efficiency into the waveguides is demonstrated, with negligible waveguide transmission losses. The overall transmission of the hollow waveguide beam combining optical circuit, weighted by the laser power at each wavelength, is 93%. This loss is dominated by the performance of the dichroic optics used to combine the beams.

  4. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  5. Laser beam propagation through inertial confinement fusion hohlraum plasmasa)

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Divol, L.; Meezan, N. B.; Dixit, S.; Neumayer, P.; Moody, J. D.; Pollock, B. B.; Ross, J. S.; Suter, L.; Glenzer, S. H.

    2007-05-01

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (Te=3.5keV), dense (ne=5×1020cm-3), long-scale length (L˜2mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I <2×1015Wcm-2. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2keV to 3.5keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (ne=1021cm-3) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity.

  6. Discriminant Incoherent Component Analysis.

    PubMed

    Georgakis, Christos; Panagakis, Yannis; Pantic, Maja

    2016-05-01

    Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings. PMID:27008268

  7. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    SciTech Connect

    Michael, Sherif

    2008-04-28

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  8. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    NASA Astrophysics Data System (ADS)

    Michael, Sherif

    2008-04-01

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  9. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  10. Concrete "Waffle" Provides Laser Beam Accuracy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1978

    1978-01-01

    A massive concrete "waffle," riding on a bed of specially treated gravel and sand inside another building, provides the structural rigidity needed by the University of Rochester's Laboratory for Laser Energetics. (Author)

  11. Laser beam centering and pointing system

    DOEpatents

    Rushford, Michael Charles

    2015-01-13

    An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

  12. Design concept for diffractive elements shaping partially coherent laser beams.

    PubMed

    Schäfer, D

    2001-11-01

    A new two-step design algorithm for the calculation of a diffractive phase element (DPE) for use with partially coherent laser beams is presented. The optical reconstruction of the DPE is modeled by the convolution of a coherent diffraction pattern and the far-field intensity distribution of a partially coherent laser beam. Numerical deconvolution is applied to derive a suitable amplitude pattern as signal input to a standard iterative Fourier transform algorithm (IFTA). Theory and numerical results are presented. Compared with a single-step IFTA design, this new approach yields nearly equal diffraction efficiencies and a relative improvement of 15% in signal reconstruction error. PMID:11688882

  13. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  14. Growth of Gaussian instabilities in Gaussian laser beams

    SciTech Connect

    Abbi, S.C.; Kothari, N.C.

    1980-03-01

    We present a theory for the growth of a Gaussian perturbation superimposed on a Gaussian profile laser beam. This theory gives an exponential growth of the perturbation for small distances z traveled inside the nonlinear medium. For larger values of z, the growth is not exponential. The growth parameter ..cap alpha.. is defined and an analytical expression for this parameter is obtained. Our theory gives a smooth matching between the exponential growth of perturbations in a linearized instability theory and the sharp self-focusing thresholds expected for smooth Gaussian profile laser beams propagating in nonlinear media.

  15. System requirements for laser power beaming to geosynchronous satellites

    SciTech Connect

    Neal, R.D.; McKechnie, T.S.; Neal, D.R.

    1994-03-01

    Geosynchronous satellites use solar arrays as their primary source of electrical power. During earth eclipse, which occurs 90 times each year, the satellites are powered by batteries, but the heavy charge-discharge cycle decreases their life expectancy. By beaming laser power to satellites during the eclipses, satellite life expectancy can be significantly increased. In this paper, the authors investigate the basic system parameters and trade-offs of using reactor pumped laser technology to beam power from the Nevada Test Site. A first order argument is used to develop a consistent set of requirements for such a system.

  16. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths. PMID:27410591

  17. Large area electron beam pumped krypton fluoride laser amplifier

    SciTech Connect

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-06-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

  18. Nonparaxial optical vortices and Kummer laser beams

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.; Nalimov, Anton G.

    2013-09-01

    Two approaches to describe nonparaxial optical vortices were considered. One approach is to use a revised Kirchhoff integral, which does not neglect the relief of an optical element. Using this integral and the finite-difference time-domain method it is shown that an optical vortex generated by a refractive spiral plate with a relief step has an asymmetric profile. The annular diffraction pattern in the vortex beam cross-section is found to be disturbed not only for the near-field diffraction but also for the middle-field diffraction, at a distance of several Fresnel lengths. Another approach is to solve the Helmholtz equation without any approximations. An analytical solution to describe propagation of a light beam in the positive direction of the optical axis was found. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The autofocusing of the HB beams is studied.

  19. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  20. Development of a fast position-sensitive laser beam detector

    SciTech Connect

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G.

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  1. Converter of laser beams with circular polarization to cylindrical vector beams based on anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.

    2016-03-01

    The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.

  2. Laser stability and beam steering in a nonregular polygonal cavity.

    PubMed

    Currie, Bryn E; Stedman, Geoffrey E; Dunn, Robert W

    2002-03-20

    Two laser stability criteria or lasing conditions for cavity geometry based on the standard ABCD matrix analysis and the Bilger and Stedman analysis [Appl. Opt. 26, 3710 (1987)] are reconciled. Beam steering from mirror misalignment is discussed similarly, generalizing the Bilger and Stedman analysis to nonregular polygons by extending the standard ABCD matrix analysis to 3 x 3 matrices, which facilitates the thorough design of large rectangular ring lasers and is applied to a number of existing or planned ring lasers with perimeters of 77-120 m. PMID:11921797

  3. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  4. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  5. Hole-boring through clouds for laser power beaming

    SciTech Connect

    Lipinski, R.J.; Walter, R.F.

    1994-12-31

    Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allow a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.

  6. H sup minus beam characterization using laser-induced neutralization

    SciTech Connect

    Yuan, V.W.; Garcia, R.; Johnson, K.F.; Saadatmand, K.; Sander, O.R.; Sandoval, D.; Shinas, M.

    1991-01-01

    The Laser-induced neutralization techniques, LINDA, is important as a noninterceptive diagnostic for quantitatively measuring beam emittance values. It is also valuable for its capability to characterize, both quantitatively and qualitatively, the performance and match of linac components. In this paper we present LINDA experimental results that show how the output beam of a radio-frequency quadrupole (RFQ) and drift-tube linac (DTL) combination changes with the variation of RFQ-DTL relative phase and of DTL cavity power. We also present results showing the effect of a longitudinal buncher on beam emissions. 2 refs., 4 figs.

  7. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  8. Intense Laser Ionization and Acceleration of Electrons in Highly-Charged Ions Using Vortex Laser Beams

    NASA Astrophysics Data System (ADS)

    Pi, Liang-Wen; Vikartofsky, Andrew; Starace, Anthony F.

    2016-05-01

    Recent advances in laser technology have led to the development of high-power petawatt lasers, making possible laser intensities of the order of 1022 W /cm2 . An electron in a highly-charged ion can be ionized in a laser field at its peak intensity and swiftly accelerated to GeV energies. Our prior investigation of laser acceleration of electrons using linearly-polarized Gaussian beams (with zero orbital angular momentum) has revealed that the final-state energies and ejection angles of the electrons depend on the initial target ion positions relative to the laser focus. We report here recent simulations of laser ionization and acceleration of electrons using linearly-polarized vortex laser beams (i.e., Laguerre-Gaussian beams), which carry orbital angular momentum and can spin microscopic objects. These simulations show that the inherent spiral phase structure of the vortex beams leads to improved final-state energy and ejection angle distributions of the electrons. This work is supported in part by DOE, Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences, under Grant No. DE-FG02-96ER14646.

  9. Delivering pump light to a laser gain element while maintaining access to the laser beam

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.

    2001-01-01

    A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.

  10. Laser-beam interactions with materials

    SciTech Connect

    Allmen, M.V.

    1987-01-01

    Lasers are becoming popular tools and research instruments in materials research, metallurgy, semiconductor technology and engineering. This text treats, from a physicist's point of view, the processes that lasers can induce in materials. A broad view of the field and its perspectives is given: physical topics covered range from optics to shock waves, and applications range from semiconductor annealing to fusion-plasma production. Intuitive analytical models are used whenever possible, in order to foster creative thinking and facilitate access to newcomers and nonspecialists.

  11. HUBBLE DISCOVERS POWERFUL LASER BEAMED FROM CHAOTIC STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's concept of a gas cloud (left) that acts as a natural ultraviolet laser, near the huge, unstable star Eta Carinae (right) -- one of most massive and energetic stars in our Milky Way Galaxy. The super-laser was identified by a team led by Kris Davidson of the University of Minnesota, and including nine other collaborators in the U.S. and Sweden during spectroscpic observations made with the Goddard High Resolution spectrograph aboard NASA's Hubble Space Telescope. Since it's unlikely that a single beam from the cloud would happen to be precisely aimed in earth's driection, the astronomers conclude that numerous beams must be radiating from the cloud in all directions - beams from a dance hall mirror-ball. The interstellar laser may result from Eta Carinae's violently chaotic eruptions, illustrated here as a reddish (due to light scattering by dust) outflow from the bright star. A laser, (an acronym for Light Amplification by Stimulated Emission of Radiation) creates an intense coherent beam of light when atoms or molecules in a gas, liquid or solid medium, force an incoming mix of wavelengths (or colors) of light to work in phase, or, at the same wavelength. Though a natural infrared laser was identified in space in 1995, lasers are very rare in space and nothing like the UV laser has ever been seen before. Eta Carinae is several million times brighter than the Sun, and one hundred times as massive. The superstar, located 8,000 light-years away in the souther constellation Carina, underwent a colossal outburst 150 years ago. Illustration courtesy James Gitlin/STScI

  12. Approach for laser beam welding under hyperbaric conditions

    SciTech Connect

    Franz, T.; Schubert, E.; Sepold, G.

    1995-12-31

    A new approach for welding under hyperbaric conditions can be the application of laser beams. Welding experiments have been performed with CVO{sub 2} and Nd:YAG lasers at elevated pressures. Deep penetration welding with CO{sub 2} laser radiation ({lambda} = 10,6 {micro}m) is not possible at elevated pressure, since the appearing metal vapor plume shields the surface. The results of trials done with a Nd:YAG laser ({lambda} = 1,06 {micro}m) show that it is possible to perform deep penetration welding up to an overpressure of 2 to 3 bar today. At higher pressures heat conduction welding can be performed. This pressure level can be extended by influencing the metal vapor plume. Nd:YAG laser radiation can be transmitted through optical fibers and therefore easily be guided below sea level. This has led to the development of a mobile Nd:YAG laser system which consists of a containerized Nd:YAG laser source, a fiber for beam transmission and a working head which is capable to be remotely controlled and operated at a pressure of up to 10 bar.

  13. Relativistic focusing and ponderomotive channeling of intense laser beams

    PubMed

    Hafizi; Ting; Sprangle; Hubbard

    2000-09-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. PMID:11088939

  14. Relativistic focusing and ponderomotive channeling of intense laser beams

    SciTech Connect

    Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.

    2000-09-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society.

  15. Continuous beam of laser-cooled Yb atoms

    NASA Astrophysics Data System (ADS)

    Rathod, K. D.; Singh, Alok K.; Natarajan, Vasant

    2013-05-01

    We demonstrate the launching of laser-cooled Yb atoms in a continuous atomic beam. The continuous cold beam has significant advantages over the more-common pulsed fountain, which was also demonstrated by us recently. The cold beam is formed in the following steps: i) atoms from a thermal beam are first Zeeman-slowed to a small final velocity; ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT); and iii) atoms are launched continuously in the vertical direction using two sets of moving-molasses beams, inclined at ±15° to the vertical. The cooling transition used is the strongly allowed {^1S}_0 \\rightarrow {^1P}_1 transition at 399 nm. We capture about 7 × 106 atoms in the 2D-MOT, and then launch them with a vertical velocity of 13 m/s at a longitudinal temperature of 125(6) mK.

  16. Resurrection of beam conditioning for free electron lasers

    SciTech Connect

    Xie, Ming

    2003-02-17

    Recently Emma and Stupakov identified a fatal flaw in a Free Electron Laser (FEL) beam conditioning scheme. They showed that the conditioning is always accompanied by a projected transverse emittance growth that is so large as to make the beam conditioning completely impractical for short wavelength FELs. Furthermore, they provided a general proof along with evidence of computer simulation and reached a conclusion that any beam conditioner, regardless of the method, would suffer from the same constraints and limitations. In this paper, the author proposes an easy surgical removal of the fatal flaw by making a critical yet simple modification to the very scheme analyzed, thus resurrect the beam conditioning for short wavelength FELs. More generally, the also explain why a general search for removing have failed, why the concept and definition of beam conditioning.

  17. Thermal effect on prebunched two-beam free electron laser

    SciTech Connect

    Mirian, N. S.; Maraghechi, B.

    2013-08-15

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  18. Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions.

    PubMed

    Igumenshchev, I V; Froula, D H; Edgell, D H; Goncharov, V N; Kessler, T J; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Sangster, T C; Seka, W; Skupsky, S

    2013-04-01

    Spherically symmetric direct-drive-ignition designs driven by laser beams with a focal-spot size nearly equal to the target diameter suffer from energy losses due to crossed-beam energy transfer (CBET). Significant reduction of CBET and improvements in implosion hydrodynamic efficiency can be achieved by reducing the beam diameter. Narrow beams increase low-mode perturbations of the targets because of decreased illumination uniformity that degrades implosion performance. Initiating an implosion with nominal beams (equal in size to the target diameter) and reducing the beam diameter by ∼ 30%-40% after developing a sufficiently thick target corona, which smooths the perturbations, mitigate CBET while maintaining low-mode target uniformity in ignition designs with a fusion gain ≫ 1. PMID:25166997

  19. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  20. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  1. Developing beam phasing on the Nova laser

    SciTech Connect

    Ehrlich, R.B.; Amendt, P.A.; Dixit, S.N.; Hammel, B.A.; Kalantar, D.H.; Pennington, D.M.; Weiland, T.L.

    1997-03-10

    We are presently adding the capability to irradiate indirectly-driven Nova targets with two rings of illumination inside each end of the hohlraum for studies of time-dependent second Legendre (P2) and time- integrated fourth Legendre (P4) flux asymmetry control. The rings will be formed with specially designed kinoform phase plates (KPPs), which will direct each half of each beam into two separate rings that are nearly uniform azimuthally. The timing and temporal pulse shape of the outer rings will be controlled independently from those of the inner rings, allowing for phasing of the pulse shapes to control time dependent asymmetry. Modifications to the incident beam diagnostics (IBDS) will enable us to verify that acceptable levels of power balance among the contributing segments of each ring have been achieved on each shot. Current techniques for precision beam pointing and timing are expected to be sufficiently accurate for these experiments. We present a design for an affordable retrofit to achieve beam phasing on Nova, results of a simplified demonstration, and calculations highlighting the anticipated benefits.

  2. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  3. A Laser Lock System using Multiple Overlapping Beams

    NASA Astrophysics Data System (ADS)

    Harper, Stuart; Francis, Ben; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    We describe a system wherein the lock of trapping, ionizing, and ion resonance lasers for a Sr experiment are bootstrapped together in a single neutral atom vapor cell. This is done by overlapping beams to optically pump the atoms into the necessary states.

  4. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  5. Image Processing In Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  6. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    ERIC Educational Resources Information Center

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  7. Two-photon flow cytometer with laser scanning Bessel beams

    NASA Astrophysics Data System (ADS)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  8. Ultra-short pulsed laser tissue ablation using focused laser beam

    NASA Astrophysics Data System (ADS)

    Jaunich, Megan K.; Raje, Shreya; Mitra, Kunal; Grace, Michael S.; Fahey, Molly; Spooner, Greg

    2008-02-01

    Short pulse lasers are used for a variety of therapeutic applications in medicine. Recently ultra-short pulse lasers have gained prominence due to the reduction in collateral thermal damage to surrounding healthy tissue during tissue ablation. In this paper, ultra-short pulsed laser ablation of mouse skin tissue is analyzed by assessing the extent of damage produced due to focused laser beam irradiation. The laser used for this study is a fiber-based desktop laser (Raydiance, Inc.) having a wavelength of 1552 nm and a pulse width of 1.3 ps. The laser beam is focused on the sample surface to a spot size on the order of 10 microns, thus producing high peak intensity necessary for precise clean ablation. A parametric study is performed on in vitro mouse tissue specimens and live anaesthetized mice with mammary tumors through variation of laser parameters such as time-averaged laser power, repetition rate, laser scanning rate and irradiation time. Radial temperature distribution is measured using thermal camera to analyze the heat affected zone. Temperature measurements are performed to assess the peak temperature rise attained during ablation. A detailed histological study is performed using frozen section technique to observe the nature and extent of laser-induced damages.

  9. Aplanatic beam shaping for diffraction limited beam circularization of tapered laser diodes

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2014-03-01

    Many laser applications require a circular, astigmatism-free, diffraction limited, high power beam. A tapered laser diode can generate up to 6 W output power in a diffraction limited beam. However the beam is elliptical and highly astigmatic rendering the design of beam shaping challenging. We present a diffraction limited beam shaping design, especially suitable to circularize and collimate highly astigmatic beams. The setup consists of a simple plano-convex cylindrical lens in the aplanatic condition and an asphere. The first lens matches the divergence of the fast- to the slow axis at the point where the beam is circular while the following asphere collimates the beam. The aplanatic condition is fulfilled by choosing a glass with a specific refractive index depending on the ratio between fast- and slow axis divergence. This cylindrical lens introduces neither spherical error nor primary coma, which makes it insensitive to misalignment. The setup has been tested with a high power laser diode at 980 nm with a 6 mm long taper (angle 6°) and a facet width of 425 μm. The optics have a transmission of about 90% and the resulting beam has a M2 < 1.5. As a proof of principle 3.2 W were coupled into a 15 μm (NA 0.06) LMA fiber with 55% efficiency corresponding to a brightness B = 140 MW/(cm2 sr). Furthermore the presented beam shaping can easily be extended to bars or multiple emitters to reach power levels that are to date only achievable with complex wavelength combination techniques.

  10. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires

  11. Numerical analysis of the beam quality and spectrum of wavelength-beam-combined laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tang, Xuan; Wang, Xiao-Jun; Ke, Wei-Wei

    2015-02-01

    In this paper, a numerical model is presented to simulation the performance of the wavelength-beam-combined laser diode arrays (LDA) system. The eigen mode expansion method is used to describe the two-dimensional optical amplification and the strength of field feedback of external cavity. To describe the mode competition in laser diodes, the gain saturation effect is considered. The two-dimension distributions of the carrier concentration, recombination rates, and optical gain are calculated for solving the laser dynamic equation. The Fresnel integration, grating equation and mode overlap integration are used to obtain the feedback coefficient of extent cavity diffraction. Quantum noise is considered to evaluate the spectral linewidth of semiconductor laser. Based on the numerical model, the impact of the mutual optical feedback on the beam quality and spectrum of the LDA is present and analysis.

  12. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  13. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  14. Role of beam absorption in plasma during laser welding

    SciTech Connect

    SEMAK,V.V.; STEELE,R.J.; FUERSCHBACH,PHILLIP W.; DAMKROGER,BRIAN K.

    2000-05-15

    The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO{sub 2} laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

  15. Gamma-ray generation using laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  16. Laser beaming demonstrations at the Starfire Optical Range

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.; Leatherman, P.; Fugate, R.Q.; Maes, C.; Lange, W.J.; Cowan, W.

    1995-03-01

    The ability to acquire, track, and accurately direct a laser beam to a satellite is crucial for power-beaming and laser-communications. To assess the state of the art in this area, a team consisting of Air Force Phillips Laboratory, Sandia National Laboratories, and COMSAT Corporation personnel performed some laser beaming demonstrations to various satellites. A ruby laser and a frequency-doubled YAG laser were used with the Phillips Lab Starfire Optical Range (SOR) beam director for this activity. The ruby laser projected 20 J in 6 ms out the telescope with a beam divergence that increased from 1.4 to 4 times the diffraction limit during that time. The doubled YAG projected 0.09 J in 10 ns at 20 Hz. The SOR team demonstrated the ability to move rapidly to a satellite, center it in the telescope, then lock onto it with the tracker, and establish illumination. Several low-earth-orbit satellites with corner-cube retro-reflectors were illuminated at ranges from 1000 to 6000 km with a beam divergence estimated to be about 20 {mu}radians. The return signal from the ruby laser was collected in a 15-cm telescope, detected by a photomultiplier tube, and recorded at 400 kHz. Rapid variations in intensity (as short at 15 {mu}s) were noted, which may be due to speckles caused by phase interference from light reflected from different retro-reflectors on the satellite. The return light from the YAG was collected by a 35-cm telescope and detected by an intensified CCD camera. The satellite brightened by about a factor of 30 in the sunlight when the laser was turned on, and dimmed back to normal when the 50-{mu}radian point-ahead was turned off. The satellite was illuminated at 1 Hz as it entered the earth`s shadow and followed for about 10 seconds in the shadow. In another demonstration, four neighboring GEO satellites were located and centered in succession with a 3.5-m telescope at a rate of about 16 seconds per satellite.

  17. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.

    1993-12-31

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kill and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  18. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.

    1994-12-31

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. The authors will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. The authors will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, the authors will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. The authors will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  19. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  20. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  1. Laser beam apparatus and method for analyzing solar cells

    DOEpatents

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  2. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  3. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  4. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  5. PARALLEL ION BEAM PROFILE SCAN USING LASER WIRE

    SciTech Connect

    Liu, Yun; Aleksandrov, Alexander V; Huang, Chunning; Long, Cary D; Dickson, Richard W

    2013-01-01

    We report on the world s first experiment of a parallel profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed at the superconducting linac of the Spallation Neutron Source (SNS) accelerator complex. The laser wire profile scanner is based on a photo-detachment process and therefore can be conducted on an operational H- beam in a nonintrusive manner. The parallel profile scanning system makes it possible to simultaneously measure profiles of the 1-MW neutron production H- beam at 9 different locations of the linac by using a single light source. This paper describes the design, optical system and software platform development, and measurement results of the parallel profile scanning system.

  6. Design and testing of a refractive laser beam homogenizer

    NASA Astrophysics Data System (ADS)

    Fernelius, N. C.; Bradley, K. R.; Hoekstra, B. L.

    1984-09-01

    A survey is made of various techniques to create a homogeneous or flat top laser beam profile. A refractive homogenizer was designed for use with a ND:YAG laser with output at its fundamental (1.06 micrometer) and frequency doubled (532 nm) modes. The system consists of a 2X beam expander and two faceted cylindrical lenses with differing focal lengths. Each cylindrical lens focusses its input into a strip the width of a facet. By orienting their axes at a 90 degree angle and focussing them on the same plane, the beam is concentrated into a square focus. Formulae for calculating the facet angles are derived and a FORTRAN computer square focus. Formulae for calculating the facet angles are derived and a FORTRAN computer program was written to calculate them with a precision greater than one is able to fabricate them.

  7. Simultaneous ion beam profile scan using a single laser source

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Long, C.; Huang, C.; Dickson, R.; Aleksandrov, A.

    2013-01-01

    We report on the world’s first experiment of a simultaneous profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed and brought to operational level of application at the superconducting linac of the Spallation Neutron Source accelerator complex. The laser wire profile scanner is based on a photodetachment process and therefore can be conducted on a 1-MW neutron production H- beam in a nonintrusive manner. The new simultaneous profile scanning system allows one to simultaneously measure profiles of the H- beam at nine different locations of the linac with high speed and accuracy, and therefore provides a unique tool for accelerator tuning and physics study. This paper describes the design, optical system and software platform developments, and measurement results of the simultaneous profile scanning system.

  8. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  9. Laser beam drilling of metal-based composites

    NASA Astrophysics Data System (ADS)

    Riegel, H.; Merkel, M.; Ã-chsner, A.

    2014-02-01

    Laser drilling is a highly efficient technique to generate holes in almost any material. The relatively small amount of heat being involved during the process results in a small heat affected zone. This characteristic makes laser processing interesting for composite materials. The drilling process has to be adapted to the special characteristics of the composite material. In this paper investigations were performed with an advanced composite material, that is a metallic hollow sphere structure (MHSS). Numerical simulation was used to predict heat flux and temperature levels for different geometric parameters of the spheres (diameter, wall thickness) in order to optimize the drilling process. The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam, which can hardly be analyzed by any measuring technique. The models for transient numerical analysis consider heat conduction and convection. The experimental work was done by a CO2-laser. The percussion drilling method has been used as drilling technique. The pulse duration was in the millisecond time regime. Investigations have been done with a mean power of 100 W, 200 W and 400 W. Two focal lenses have been used with focal lengths of 5.0´´ and 7.5´´. The laser beam melts the hollow sphere structure inside the beam leaving a hole in the structure as well as in individual hollow spheres. An image processing technique was developed to determine the circularity on the spheres and the drilled diameter in the structure. The circularity declines with increasing drill depth. The diameter as function of depth can be well described with lines of constant intensity of the focussed laser beam, the isophotes.

  10. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  11. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  12. Photovoltaic cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  13. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  14. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  15. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  16. Laser Beam Delivery and Image Transmission Through Multimode Optical Fibers

    NASA Astrophysics Data System (ADS)

    Pan, Anpei

    This dissertation is dedicated to two important branches of optical fiber applications in biomedical engineering: laser beam delivery and image transmission. The optical phase of a light wave is distorted when it propagates through a multimode fiber. To compensate the distortion, a new hologram-generated phase conjugation theoretical model and experimental method has been developed. In the process, a self-pumped phase-conjugating mirror is introduced for recording the hologram. The coherence conditions are carefully matched so that only the desired optical signal is recorded. As a result, a high fidelity phase conjugation wave is produced. The resolution is 4.4 mum, which corresponds the diffraction-limited value of the system. Multimode optical fibers are widely used to deliver laser beams for medical diagnoses and treatments. However the spatial quality of the output beam is very poor. By use of holographic phase precompensation we present a new method to deliver high-quality laser beams. As a result, a highly collimated output beam with only 1.9 mrad divergence, which is 250 times smaller than the usual divergence, is obtained. The brightness is greatly increased. Other desired waves such as spherical wave or Gaussian beams can also be obtained. Another method, which is based on the formation at the remote end of a holographic filter, is also presented. The final output beams are nearly diffraction -limited. The hologram-generated phase conjugation is applied to image transmission through single multimode fibers. By use of Fourier transform theory and the formalism established in this study, the system resolution and the space bandwidth product are analyzed. The resolution of a multimode fiber can be 50 times higher than that of an imaging bundle if their diameters are the same. In the experiments a resolution chart was tested. The experimental results are quite consistent with the theory. A 3-D biological sample--a tooth--was also tested. The limitations of the

  17. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  18. Experimental characterization of beam quality of a Yb:YAG thin disk laser

    NASA Astrophysics Data System (ADS)

    Kazemi, S.; Mahdieh, M. H.

    2015-02-01

    In this paper we investigate the effects of cooling water temperature and pumping diode laser beam profile on the disk laser beam quality. The results show that both issues are important and can influence the beam quality but at the conditions of our experiment these issues do not affect the beam quality significantly.

  19. Proceedings of the laser beam propagation in the atmosphere

    SciTech Connect

    Leader, J.C.

    1983-01-01

    Among the topics discussed are the atmospheric attenuation of laser radiation, the determination of atmospheric properties from lidar measurements, laser transmission measurement limitations due to correlated atmospheric effects, high spatial resolution studies of propagation, multiple scattering of laser beam propagation in clouds, the probability density of the irradiance in atmospheric turbulence, source statistics effects on irradiance scintillations in turbulence, and numerical solutions of the fourth-moment equation. Also discussed are the characteristics and effects of speckle propagation through turbulence, the application of random medium propagation theory to communication and radar system analyses, multiple scattering corrections to the Beer-Lambert Law, millimeter wave propagation through a clear atmosphere, endoatmospheric laser arrays for thermal blooming environments, the wavelength dependence of adaptive optics compensation, time-dependent thermal blooming in axial pipe flow, and turbulence-induced adaptive optics performance degradation.

  20. The random walk of a drilling laser beam

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1980-01-01

    The disregistry of holes drilled with a pulse laser beam in 330-micron-thick single-crystal silicon-on-sapphire wafers is examined. The exit positions of the holes were displaced from the hole entrance positions on the opposing face of the wafer, and this random displacement increased with the number of laser pulses required. A model in which the bottom of the drill hole experiences small random displacements during each laser pulse is used to describe the experimental observations. It is shown that the average random displacement caused by each pulse is only a few percent of the hole diameter and can be reduced by using as few laser pulses as necessary while avoiding the cracking and spalling of the wafer that occur with a hole drilled with a single pulse.

  1. Beam Conditioning for Free Electron Lasers:Consequences and Methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.; /LBL, Berkeley /UC, Berkeley, Astron. Dept.

    2010-12-14

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  2. Beam conditioning for free electron lasers: Consequences and methods

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.

    2004-08-01

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a “Greenfield” FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of2 or more. The beam dynamics in a general conditioning system are studied, with “matching conditions” derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  3. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  4. Electro-optic and acousto-optic laser beam scanners

    NASA Astrophysics Data System (ADS)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  5. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  6. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    NASA Astrophysics Data System (ADS)

    Jafari, M. J.; Jafari Milani, M. R.; Niknam, A. R.

    2016-07-01

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).

  7. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  8. Filamentation of Beam-Shaped Femtosecond Laser Pulses

    SciTech Connect

    Polynkin, Pavel; Kolesik, Miroslav; Moloney, Jerome

    2010-10-08

    When ultra-intense and ultra-short optical pulses propagate in transparent dielectrics, the dynamic balance between multiple linear and nonlinear effects results in the generation of laser filaments. These peculiar objects have numerous interesting properties and can be potentially used in a variety of applications from remote sensing to the optical pulse compression down to few optical cycles to guiding lightning discharges away from sensitive sites. Materializing this practical potential is not straightforward owing to the complexity of the physical picture of filamentation. In this paper, we discuss recent experiments on using beam shaping as a means of control over the filament formation and dynamics. Two particular beam shapes that we have investigated so far are Bessel and Airy beams. The diffraction-free propagation of femtosecond Bessel beams allows for the creation of extended plasma channels in air. These extended filaments can be used for the generation of energetic optical pulses with the duration in the few-cycle range. In the case of filamentation of femtosecond Airy beams, the self-bending property of these beams allows for the creation of curved filaments. This is a new regime of the intense laser-pulse propagation in which the linear self-bending property of the beam competes against the nonlinear self-channeling. The bent filaments generated by ultra-intense Airy beams emit forward-propagating broadband radiation. Analysis of the spatial and spectral distribution of this emission provides for a valuable tool for analyzing the evolution of the ultra-intense optical pulse along the optical path.

  9. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  10. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  11. Beam profile measurement and evaluation of far field high energy laser

    NASA Astrophysics Data System (ADS)

    Yang, Pengling; Feng, Guobin; Wang, Zhenbao; Wang, Ping; Wu, Yong; Zhang, Jianmin; Cheng, Shaowu; Feng, Gang; Wang, Fei; Shao, Bibo

    2015-05-01

    The far field beam profile is of significant importance to the analysis of the atmospheric propagation effect and evaluation of the beam control capability, tracking and aiming precision of laser system. In the paper, technology of laser beam measurement such as mid-infrared laser detection at wide temperature range, power density attenuation, photoelectric and calorimetric compound method for laser measurement, synchronous detecting of multi-channel pulsed signal are introduced. A series of instrumented target with detector array are developed for laser beam power density distribution measurement at far field. The power in the bucket, strehl ratio, centroid and jitter of beam can be calculated from the measured results.

  12. CO{sub 2} Laser Ablation Propulsion Tractor Beams

    SciTech Connect

    Sinko, John E.; Schlecht, Clifford A.

    2010-05-06

    Manipulation of objects at a distance has already been achieved with no small measure of success in the realm of microscopic objects on the scale size of nanometers to micrometers in applications including laser trapping and laser tweezers. However, there has been relatively little effort to apply such remote control to macroscopic systems. A space tractor beam could be applied to a wide range of applications, including removal of orbital debris, facilitation of spacecraft docking, adjustment of satellite attitude or orbital position, etc. In this paper, an ablative laser propulsion tractor beam is demonstrated based on radiation from a CO{sub 2} laser. Cooperative, layered polymer targets were used for remote impulse generation using a CO{sub 2} laser. The use of a structured ablatant enabling switching between thrust directional parity (i.e., forward or reverse) and imparting torque to a remote target. Fluence-dependent results are presented in the context of polymer ablation modeling work and with consideration of confined ablation effects.

  13. Application of genetic algorithm on optimization of laser beam shaping.

    PubMed

    Tsai, Cheng-Mu; Fang, Yi-Chin; Lin, Chia-Te

    2015-06-15

    This study proposes a newly developed optimization method for an aspherical lens system employed in a refractive laser beam shaping system, which performs transformations on laser spots such that they are transformed into flat-tops of any size. In this paper, a genetic algorithm (GA) with multipoint search is proposed as the optimization method, together with macro language in optical simulation software, in order to search for ideal and optimized parameters. In comparison to a traditional two-dimensional (2D) computational method, using the one-dimensional (1D) computation for laser beam shaping can search for the optimal solution approximately twice as fast (after experiments). The optimal results show that when the laser spot shrinks from 3 mm to 1.07 mm, 88% uniformity is achieved, and when the laser spot increases from 3 mm to 5.273 mm, 90% uniformity is achieved. The distances between the lenses for both systems described above are even smaller than the thickness for the first lens, enabling us to conclude that our design objectives of extra light and slimness in the system are achieved. PMID:26193566

  14. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  15. A new beam source for free electron lasers

    SciTech Connect

    Wang, M.C.; Wang, Z.J.; Zhu, J.B.

    1995-12-31

    A high power, high current density and high voltage electron beam was generated with the pseudospark discharge (PS), this is a new beam source for free electron lasers. The design and construction of the pseudospark discharge was described, the device has low cost and is easy to fabricate. The experiments are presented, the configuration parameters of the modified pulse line accelerator (PLA) are as follows. The PS hollow cavity has a 3 cm diameter and 4.1 cm long. The discharge chamber consists of planar cathode with hollow cavity, sets of intermediate electrodes and insulators with a common channel, and a planar anode. The electrodes are made of brass and the insulators are made of Plexiglas. The diameter of the channel is 3.2 mm. The anode-cathode gap distance is varied in 10-100 mm. The electron beams have voltage of 200 KeV, current of 2 KA and beam diameter of 1mm. The beam penetrated a 0.3 mm hole on a copper foil of 0.05 mm thick at the distance of 5 cm from the anode and penetrated a 0.6 mm hole on an acid-sensitive film at the distance of 15 cm. A compact free electron laser with a table size is discussed.

  16. Free electron laser for a mildly relativistic electron beam

    SciTech Connect

    Uhm, H.S.

    1983-08-01

    One of the most basic instabilities which characterize a relativistic electron beam propagating through a helical wiggler (or undulator) magnetic field is the free electron laser instability. This instability has been extensively investigated in recent years with particular emphasis on applications involving high power microwave radiation. Previous theoretical studies of this instability have tended to result in the conclusion that high energy beams with a relativistic factor much greater than 1 are required to generate high frequency microwave radiation. Beams with this high a relativistic factor have proven to be highly unsuited, however, to compact and practical microwave tubes. To this end, for a relativistic electron beam propagating through a dielectric loaded waveguide, this paper presents a method for the bandwidth and frequency enhancement of the free electron laser instability which makes use of a mild (less than 1.5) relativistic factor. It demonstrates that the instability bandwidth and frequency can be greatly enhanced for specified values of the beam energy and wiggler wavelength if the dielectric constant and the thickness of the dielectric material are appropriately selected. The paper also presents a new scheme for a broad bandwidth microwave amplifier.

  17. Particle beams in ultrastrong laser fields: direct laser acceleration and radiation reaction effects

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Li, Jian-Xing; Hatsagortsyan, Karen Z.; Tamburini, Matteo; Di Piazza, Antonino; Keitel, Christoph H.

    2015-03-01

    Several aspects of the interaction of particle beams with ultrastrong laser fields are discussed. Firstly, we consider regimes when radiation reaction is not essential and it is demonstrated that employing chirped laser pulses, significant improvement of the direct acceleration of particles can be achieved. Results from single- and many-particle calculations of the particle acceleration, in vacuum, by plane-wave fields, as well as in tightly-focused laser beams, show that the mean energies and their spreads qualify them for important applications. Secondly, we investigate the effect of radiation reaction in electron-laser-beam interactions. Signatures of the quantum radiation reaction during the interaction of an electron bunch with a focused superstrong ultrashort laser pulse can be observed in a characteristic behavior of the spectral bandwidth, and the angular spread of the nonlinear Compton radiation on the laser pulse duration. Furthermore, it is shown that the radiation reaction effects can be employed to control the electron dynamics via the nonlinear interplay between the Lorentz and radiation reaction forces. In particular, it is shown that an ultrarelativistic electron bunch colliding head- on with a strong bichromatic laser pulse can be deflected in a controllable way, by changing either the relative phase or the relative amplitude between the two frequency components of the bichromatic field.

  18. The Final Focus Test Beam laser referene system

    SciTech Connect

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented.

  19. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  20. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields

    SciTech Connect

    Reed, S. A.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Vane, C. R.; Beene, J. R.; Stracener, D.; Schultz, D. R.; Maksimchuk, A.

    2006-12-04

    Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV {gamma} rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed {gamma} emission demonstrates production of greater than 3x10{sup 5} fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy.

  1. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen

    SciTech Connect

    Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.

    2012-02-13

    Quasimonoenergetic electron beams with maximum energy >0.5 GeV and 2 mrad divergence have been generated in pure nitrogen gas via wakefield acceleration with 80 TW, 30 fs laser pulses. Long low energy tail features were typically observed due to continuous ionization injection. The measured peak electron energy decreased with the plasma density, agreeing with the predicted scaling for electrons. The experiments showed a threshold electron density of 3x10{sup 18}cm{sup -3} for self-trapping. Our experiments suggest that pure Nitrogen is a potential candidate gas to achieve GeV monoenergetic electrons using the ionization induced injection scheme for laser wakefield acceleration.

  2. Cold-atom dynamics in crossed-laser-beam waveguides

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Echanobe, J.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-10-15

    We study the dynamics of neutral cold atoms in an L-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. The motion in one sense is optimized, and the motion in the other sense may be suppressed even if it is energetically allowed. Quantum and classical simulations are performed and give similar results. Complemented with a vibrational cooling process we find a range of parameters for which this setting works as a one-way device or 'atom diode'.

  3. Submicron accuracy optimization for laser beam soldering processes

    NASA Astrophysics Data System (ADS)

    Beckert, Erik; Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Scheidig, Ingo; Stiehl, Cornelia; Eberhardt, Ramona; Tünnermann, Andreas

    2010-02-01

    Laser beam soldering is a packaging technology alternative to polymeric adhesive bonding in terms of stability and functionality. Nevertheless, when packaging especially micro optical and MOEMS systems this technology has to fulfil stringent requirements for accuracy in the micron and submicron range. Investigating the assembly of several laser optical systems it has been shown that micron accuracy and submicron reproducibility can be reached when using design-of-experiment optimized solder processes that are based on applying liquid solder drops ("Solder Bumping") onto wettable metalized joining surfaces of optical components. The soldered assemblies were subject to thermal cycles and vibration/ shock test also.

  4. Laser beam self-focusing in the atmosphere

    SciTech Connect

    Rubenchik, A M; Fedoruk, M P; Turitsyn, S K

    2008-09-09

    We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that if the self-focusing length is comparable with the atmosphere height the self-focusing can reduce the spot size on the ground well below the diffraction limited one without beam quality degradation. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.

  5. Optomechanical design of the grating laser beam combiner (GLBC) laser diode header

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1989-01-01

    A laser diode header has been fabricated for a grating laser beam combiner (GLBC). The laser diode header provides the thermal control, the drive electronics, and the optical system necessary for proper operation of the beam combiner. The diode header is required to provide diffraction limited optical performance while providing correction for worst case defocus aberration, 0.6 mrad excess divergence, and worst case decenter aberration, 1.0 mrad pointing error. The design of the header considered the mechanical design and the optical design together resulting in a small, self-contained header with 0.7 mrad range for focus correction and +/- 2.5 mrad of beam steering. The complete diode header is currently undergoing optical and mechanical performance testing.

  6. Incoherent control of topological charges in nonequilibrium polariton condensates

    NASA Astrophysics Data System (ADS)

    Ma, Xuekai; Peschel, Ulf; Egorov, Oleg A.

    2016-01-01

    We study stability and switching dynamics of topological dislocations forming in a nonequilibrium polariton condensate sustained by an incoherent ring-shaped optical pump. In particular, we report on an elegant method for creation of vortices with predefined angular momenta by means of a purely incoherent (off-resonant) elliptically-shaped control beam. The control beam breaks the radiale symmetry of the system and induces chirality required for a topological charge transfer with a predefined sign. Numerical analysis encloses the optimal parameters for an effective switching between states with opposite orbital angular momenta.

  7. Rippled beam free-electron laser amplifier using the axial free-electron laser interaction

    SciTech Connect

    Carlsten, B.E.

    1997-05-01

    A new microwave generation mechanism involving a scalloping annular electron beam is discussed. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. In this paper, we analyze the ripple motion of the electron beam and derive the dispersion relation describing the exponential growth of the rf mode. We calculate the gain for a nominal design and as a function of beam current and ripple amplitude, and show that power gain on the order of 30 dB/m of interaction is achievable. We additionally demonstrate that, under the right conditions, the interaction is autoresonant. {copyright} {ital 1997 American Institute of Physics.}

  8. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  9. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  10. Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses

    SciTech Connect

    Thomas, A. G. R.; Mangles, S. P. D.; Dangor, A. E.; Kamperidis, C.; Krushelnick, K.; Najmudin, Z.; Murphy, C. D.; Foster, P.; Lancaster, K. L.; Norreys, P. A.; Gallacher, J. G.; Jaroszynski, D. A.; Viskup, R.

    2008-06-27

    The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually. This scheme can be easily implemented and may allow more control of the interaction than is available to the single pulse scheme.

  11. Beam Conditioning and Harmonic Generation in Free ElectronLasers

    SciTech Connect

    Charman, A.E.; Penn, G.; Wolski, A.; Wurtele, J.S.

    2004-07-05

    The next generation of large-scale free-electron lasers (FELs) such as Euro-XFEL and LCLS are to be devices which produce coherent X-rays using Self-Amplified Spontaneous Emission (SASE). The performance of these devices is limited by the spread in longitudinal velocities of the beam. In the case where this spread arises primarily from large transverse oscillation amplitudes, beam conditioning can significantly enhance FEL performance. Future X-ray sources may also exploit harmonic generation starting from laser-seeded modulation. Preliminary analysis of such devices is discussed, based on a novel trial-function/variational-principle approach, which shows good agreement with more lengthy numerical simulations.

  12. Deformable silicon membrane for dynamic linear laser beam diffuser

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bich, A.; Herzig, H. P.; Bitterli, R.; Noell, W.; Scharf, T.; Voelkel, R.; Weible, K. J.; de Rooij, N. F.

    2010-02-01

    We present a dynamic laser beam shaper based on MEMS technology. We show a prototype of a dynamic diffuser made of single crystal silicon. A linearly deformable silicon micromembrane is used to diffuse a laser beam in one dimension. Resonance frequencies of the membrane can range from 1 kHz to 20 kHz. Mode shapes of the deformable mirror are excited using magnetic actuation. Diffusing angle can be tuned by adjusting the driving current in the membrane. We measured a diffusing angle of 1° for an applied current of 40 mA. The aluminum coated mirror can handle 140 W/cm2 of visible to infrared optical power. Application to smooth out interference pattern generated by a static diffuser is shown.

  13. Laser-beam apodization with a graded random phase window.

    PubMed

    Haas, R A; Summers, M A; Linford, G J

    1986-10-01

    Experiments and analysis indicate that graded random phase modulation can be used to apodize a laser beam. In the case of an obscuration or a hard edge it can prevent the formation of Fresnel-diffraction ripples. For example, here the interaction of a 1-microm-wavelength laser beam with a central obscuration of half-width a = 100 microm is studied theoretically. It is found that if the exit surface of a window, placed immediately downstream of the obstacle, is randomly modulated with a Gaussian amplitude transverse correlation length l = 50 microm and a mean-square amplitude that decreases exponentially from a peak height of ~1 microm(2) away from the center of the obscuration with transverse scale length L = 500 microm, then the Fresnel-diffraction ripples normally produced by the obscuration are eliminated. The scaling of these results is also discussed. The calculations are in general agreement with experimental results. PMID:19738707

  14. Power transmission by laser beam from lunar-synchronous satellite

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  15. High-quality electron beam from laser wake-field acceleration in laser produced plasma plumes

    SciTech Connect

    Sanyasi Rao, Bobbili; Moorti, Anand; Rathore, Ranjana; Ali Chakera, Juzer; Anant Naik, Prasad; Dass Gupta, Parshotam

    2013-06-10

    Generation of highly collimated ({theta}{sub div}{approx}10 mrad), quasi-monoenergetic electron beam with peak energy 12 MeV and charge {approx}50 pC has been experimentally demonstrated from self-guided laser wake-field acceleration (LWFA) in a plasma plume produced by laser ablation of solid nylon (C{sub 12}H{sub 22}N{sub 2}O{sub 2}){sub n} target. A 7 TW, 45 fs Ti:sapphire laser system was used for LWFA, and the plasma plume forming pulse was derived from the Nd:YAG pump laser of the same system. The results show that a reproducible, high quality electron beam could be produced from this scheme which is simple, low cost and has the capability for high repetition rate operation.

  16. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    NASA Astrophysics Data System (ADS)

    Loulergue, A.; Labat, M.; Evain, C.; Benabderrahmane, C.; Malka, V.; Couprie, M. E.

    2015-02-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation.

  17. The NU-POWER all-digital beam profiler: a powerful new tool for spatially characterizing laser beams

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Mughal, M. J.

    2003-12-01

    An all-digital laser beam profiler instrument is proposed and demonstrated that for the first time can provide real-time and full-repeatability multi-technique profiling with high power (e.g.,>10kW/cm2) laser beams.

  18. Advanced rapid prototyping by laser beam sintering of metal prototypes: design and development of an optimized laser beam delivery system

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Coremans, A.; Neubauer, Norbert; Niebling, F.

    1996-08-01

    Fast technological advances and steadily increasing severe worldwide competition force industry to respond all the time faster to new and chanced customer wishes. Some of the recently emerged processes, commonly referred to as 'rapid prototyping' (RP), have proved to be powerful tools for accelerating product and process development. Early approaches aimed at the automated production of plastic models. These techniques achieved industrial maturity extremely fast and are meanwhile established as standard utilities in the field of development/design processes. So far, their applicability to metal working industry was limited to design studies because the mechanical properties of the prototypes, e.g. modulus of elasticity and mechanical strength were not comparable to the final products they represented. Therefore, RP-processes aimed at the direct production of metallic prototypes gained more and more importance during recent years. A technique belonging to this group is manufacturing of prototypes by using a laser beam sintering machine capable of directly processing metal powders. This so called laser beam sintering process showed a great potential for direct manufacturing of functional tools and prototypes in early feasibility studies. Detailed examinations were performed at several research centers to determine the attainable quality of the parts concerning roughness, dimensional accuracy and mechanical strength. These examinations showed, that there still is a considerable demand for quality improvements of the previously mentioned parameters. The practical application and the potential for improvement of the geometrical accuracy of laser beam sintered parts by using a dual beam concept was proven. An innovative beam guiding and forming concept, similar to the previously mentioned patented beam guiding system, was developed and built with the goal to improve the process parameters governing mechanical properties as well as geometrical accuracy. Further reaching

  19. Investigation on the Influence of Different Laser Beam Intensity Distributions on Keyhole Geometry During Laser Welding

    NASA Astrophysics Data System (ADS)

    Volpp, J.

    An analytical quasi-static model of the keyhole during laser deep penetration welding is introduced. This model is used to calculate the keyhole geometry depending on spatial laser beam intensity. Keyhole shapes can be found solving the energy and pressure equations. All necessary physical effects like Fresnel and plasma absorption, heat conduction and vaporization are implemented in the model. For evaluation a Gaussian and a top hat beam profile were used. Experimental measurements of the keyhole shape using copper inlays in aluminum base material show good agreement with the results of the modeling.

  20. Temporal fluctuations of laser beam radiation in atmospheric precipitation

    NASA Astrophysics Data System (ADS)

    Kabanov, M. V.; Zhukov, A. F.; Tsvyk, R. Sh.

    1988-02-01

    The present results of experimental investigations of laser beam intensity temporal fluctuations in atmospheric precipitation indicate the difficulty of obtaining a priori intensity fluctuation estimates in a real atmosphere. The few cases in which one can analytically describe the spectrum and intensity fluctuation variance are nevertheless important for practical purposes. By measuring the intensity fluctuation spectra and intensity variance, it is possible to crudely estimate the precipitation and atmospheric turbulence parameters.

  1. Forward and backward stimulated Brillouin scattering of crossed laser beams

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1999-11-01

    The simultaneous forward and backward stimulated Brillouin scattering (SBS) of crossed laser beams is studied in detail. Analytical solutions are obtained for the linearized equations governing the transient phase of the instability and the nonlinear equations governing the steady state. These solutions show that backward SBS dominates the initial evolution of the instability, whereas forward SBS dominates the steady state. The analysis of this paper is verified by numerical simulation. {copyright} {ital 1999} {ital The American Physical Society}

  2. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  3. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  4. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Willetts, David V.

    1990-06-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  5. Gaussian laser beam transformation into an optical vortex beam by helical lens

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2016-01-01

    In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.

  6. Laser Beam MicroMachining (LBMM) - A review

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjay; Yadava, Vinod

    2015-10-01

    The use of short and ultrashort laser pulses for micromachining application is an emerging technology. Laser Beam MicroMachining (LBMM) has revolutionized many industries by providing innovative solutions in numerous industrial micro-engineering applications. High-intensity short or ultrashort laser pulses are powerful thermal energy source for creating micro-features in wide range of materials. These lasers can precisely ablate various types of materials with little or no collateral damage. An overview of LBMM is given so that we can obtain a current view of capabilities and tradeoffs associated with LBMM of sub-micron size. The fundamental understanding of ultrafast laser ablation process has been elucidated and the various research activities performed with nanosecond, picosecond and femtosecond, lasers have been discussed to understand the physical mechanisms and the critical experimental parameters involved in the LBMM. The critical analysis of various theoretical and experimental models used to describe the performance analysis of LBMM has been elaborated so that we can identify the relevant principles underlying the process.

  7. Radiochromic film diagnostics for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Margarone, Daniele; Candiano, Giacomo; Kim, I. Jong; Jeong, Tae Moon; Pšikal, Jan; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, Georg

    2015-05-01

    Radiochromic film (RCF) based multichannel diagnostics utilizes the concept of a stack detector comprised of alternating layers of RCFs and shielding aluminium layers. An algorithm based on SRIM simulations is used to correct the accumulated dose. Among the standard information that can be obtained is the maximum ion energy and to some extend the beam energy spectrum. The main area where this detector shines though is the geometrical characterization of the beam. Whereas other detectors such as Thomson parabola spectrometer or Faraday cups detect only a fraction of the outburst cone, the RCF stack placed right behind the target absorbs the whole beam. A complete 2D and to some extend 3D imprint of the ion beam allows us to determine parameters such as divergence or beam center shift with respect to the target normal. The obvious drawback of such diagnostics is its invasive character. But considering that only a few successful shots (2-3) are needed per one kind of target to perform the analysis, the drawbacks are acceptable. In this work, we present results obtained with the RCF diagnostics using both conventional accelerators and laser-driven ion beams during 2 experimental campaigns.

  8. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  9. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    SciTech Connect

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  10. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  11. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  12. Phase conjugation upon SBS of a focused laser speckle beam

    SciTech Connect

    Bogachev, V A; Kochemasov, G G; Starikov, F A

    2008-09-30

    The phase conjugation (PC) of a focused Gaussian laser beam with a partial spatial coherence of the wave front is studied numerically and theoretically upon SBS within the framework of a three-dimensional nonstationary SBS model, which takes into account transient processes and SBS saturation. The dependences of the PC coefficient h on the laser radiation power are obtained for different excesses of the angular divergence over the diffraction limit {xi}. It is found that for the given reflectance of laser radiation from the SBS mirror, the PC coefficient monotonically decreases with increasing the divergence. For example, under the near threshold SBS conditions, h decreases from 70% to 30%, when {xi} increases from 1 to 10. For the given divergence, the PC coefficient increases with increasing the reflectance and approaches the ideal one (h > 90%) upon deep SBS saturation, when the reflectance exceeds 90%-95%. (nonlinear optical phenomena)

  13. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  14. LASER COOLING: Cold atomic beams of high brightness

    NASA Astrophysics Data System (ADS)

    Rozhdestvensky, Yu V.

    2004-11-01

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a change of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid.

  15. Cross focusing of two laser beams and plasma wave excitation

    SciTech Connect

    Gupta, M.K.; Sharma, R.P.; Gupta, V.L.

    2005-12-15

    This article presents the cross focusing of two high power laser beams in a plasma when relativistic and ponderomotive nonlinearities are operative. The effect of electron density modification changes the critical power significantly in contrast to (only) relativistic case. The plasma wave generation at the difference frequency and particle acceleration has also been studied. In a typical case when laser wavelengths are 1047 and 1064 nm and electron density 1.9x10{sup 19} cm{sup -3}, the maximum electron plasma wave power flux comes out to be 6x10{sup 17} W/cm{sup 2} (laser power P{sub 1}=3.6x10{sup 18} W/cm{sup 2} and P{sub 2}=3.2x10{sup 18} W/cm{sup 2})

  16. High-power beam combining: a step to a future laser weapon system

    NASA Astrophysics Data System (ADS)

    Protz, Rudolf; Zoz, Jürgen; Geidek, Franz; Dietrich, Stephan; Fall, Michael

    2012-11-01

    Due to the enormous progress in the field of high-power fiber lasers during the last years commercial industrial fiber lasers are now available, which deliver a near-diffraction limited beam with power levels up to10kW. For the realization of a future laser weapon system, which can be used for Counter-RAM or similar air defence applications, a laser source with a beam power at the level of 100kW or more is required. At MBDA Germany the concept for a high-energy laser weapon system is investigated, which is based on such existing industrial laser sources as mentioned before. A number of individual high-power fiber laser beams are combined together, using one common beam director telescope. By this "geometric" beam coupling scheme, sufficient laser beam power for an operational laser weapon system can be achieved. The individual beams from the different lasers are steered by servo-loops, using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at the common focal point on a distant target, also allowing fine tracking of target movements and first order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated using several experimental set-ups. Different experiments were performed, to investigate laser beam target interaction and target fine tracking also at large distances. Content and results of these investigations are reported. An example for the lay-out of an Air Defence High Energy Laser Weapon (ADHELW ) is given. It can be concluded, that geometric high-power beam combining is an important step for the realization of a laser weapon system in the near future.

  17. Focusing of laser beams by the eye's optics

    NASA Astrophysics Data System (ADS)

    Zheltov, Georgi I.; Rubanov, Alexander S.

    1998-10-01

    The radial distribution of Gaussian beams radiation intensity on the focal plain of the ocular optical system has been calculated using the human eye Modulation Transfer Function. The dependencies of the distribution on the distance to the beam's constriction have been analyzed for the visible spectral range at a given eye accommodation. More consideration has been given to the conditions of the most `sharp' focusing of laser beams onto the retina (the most dangerous cases) and to the typical errors arising in the process retinal irradiance distribution measurement through the pupil. The analogous model has been created for the eyes of some animals. The results of calculations are in a good agreement with direct measurements data at the back pole of enucleated rabbit eyes.

  18. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  19. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  20. GaAs solar cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Huber, Daniel A.; Addis, F. William; Anheier, Norman; Coomes, E. P.

    1991-01-01

    Efforts to develop GaAs solar cells for coupling to laser beams in the wavelength range of 800 to 840 nm are described. This work was motivated primarily by interests in space-tp-space power beaming applications. In particular, the Battelle Pacific Northwest Laboratories is conducting studies of the utilization of power beaming for several future space missions. Modeling calculations of GaAs cell performance were carried out using PC-1D to determine an appropriate design for a p/n cell structure. Epitaxial wafers were grown by MOCVD and cells fabricated at WSU Tri-Cities. Under simulated conditions, an efficiency of 53 percent was achieved for a cell coupled to 806 nm light at 400 mW/sq cm.

  1. Electron beam charge diagnostics for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Smith, A.; Rodgers, D.; Donahue, R.; Byrne, W.; Leemans, W. P.

    2011-06-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160pC/mm2 and 0.4pC/(psmm2), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  2. Propagation modeling results for narrow-beam undersea laser communications

    NASA Astrophysics Data System (ADS)

    Fletcher, Andrew S.; Hardy, Nicholas D.; Hamilton, Scott A.

    2016-03-01

    Communication links through ocean waters are challenging due to undersea propagation physics. Undersea optical communications at blue or green wavelengths can achieve high data rates (megabit- to gigabit-per-second class links) despite the challenging undersea medium. Absorption and scattering in ocean waters attenuate optical signals and distort the waveform through dense multipath. The exponential propagation loss and the temporal spread due to multipath limit the achievable link distance and data rate. In this paper, we describe the Monte Carlo modeling of the undersea scattering and absorption channel. We model photon signal attenuation levels, spatial photon distributions, time of arrival statistics, and angle of arrival statistics for a variety of lasercom scenarios through both clear and turbid water environments. Modeling results inform the design options for an undersea optical communication system, particularly illustrating the advantages of narrow-beam lasers compared to wide beam methods (e.g. LED sources). The modeled pupil plane and focal plane photon arrival distributions enable beam tracking techniques for robust pointing solutions, even in highly scattering harbor waters. Laser communication with collimated beams maximizes the photon transfer through the scattering medium and enables spatial and temporal filters to minimize waveform distortion and background interference.

  3. Dual-beam laser thermal processing of silicon photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Teal, Anthony; Zhang, Tian; Hadler, Josh; Zhou, Zibo; Varlamov, Sergey; Perez-Würfl, Ivan

    2016-03-01

    We have developed an all-laser processing technique by means of two industrially-relevant continuous-wave fiber lasers operating at 1070 nm. This approach is capable of both substrate heating with a large defocused beam and material processing with a second scanned beam, and is suitable for a variety of photovoltaic applications. We have demonstrated this technique for rapid crystallization of thin film (~10 μm) silicon on glass, which is a low cost alternative to wafer-based solar cells. We have also applied this technique to wafer silicon to control dopant diffusion at the surface region where the focused line beam rapidly melts the substrate that then regrows epitaxially. Finite element simulations have been used to model the melt depth as a function of preheat temperature and line beam power. This process is carried out in tens of seconds for an area approximately 10 cm2 using only about 1 kW of total optical power and is readily scalable. In this paper, we will discuss our results with both c-Si wafers and thin-film silicon.

  4. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  5. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  6. Divergence of laser-driven relativistic electron beams

    SciTech Connect

    Debayle, A.; Honrubia, J. J.; D'Humieres, E.; Tikhonchuk, V. T.

    2010-09-15

    Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets.

  7. Divergence of laser-driven relativistic electron beams.

    PubMed

    Debayle, A; Honrubia, J J; d'Humières, E; Tikhonchuk, V T

    2010-09-01

    Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets. PMID:21230194

  8. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    NASA Astrophysics Data System (ADS)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  9. Electron beam pumping of CdZnSe quantum well laser structures using a variable energy electron beam

    NASA Astrophysics Data System (ADS)

    Trager-Cowan, C.; Bagnall, D. M.; McGow, F.; McCallum, W.; O'Donnell, K. P.; Smith, P. C.; Wright, P. J.; Cockayne, B.; Prior, K. A.; Mullins, J. T.; Horsburgh, G.; Cavenett, B. C.

    1996-02-01

    In this paper we present experimental results on electron beam pumping of MBE and MOVPE lasers with CdZnSe single quantum wells. Laser emission in the gree and blue occurs under pulsed excitation, with threshold power densities typically less than 2 kW/cm 2 at low temperatures. Threshold curves obtained at different electron beam energies show that there is an optimum electron beam energy for wells at a given depth below the surface. This suggests that it is possible to match the electron beam energy to a given structure. Results are broadly consistent with Monte Carlo calculations of the depth dependence of the energy deposition of the electron beam.

  10. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  11. Laser-and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chandrashekhar

    2006-10-01

    Scientists have been trying to use the tremendous electric fields in relativistic plasma waves to accelerate charged particles, and are now making substantial progress. If they succeed, future high energy accelerators will use plasma waves rather than microwave cavities as accelerating structures.Some accelerators, such as those used for radiation therapy will fit on a tabletop. Research on using plasma waves to accelerate particles began in earnest following the suggestion by John Dawson and his colleagues [1-3] that a relativistically propagating plasma wave or a wake field could be excited by using a powerful but short laser -or electron -beam as a driver pulse.Since their original suggestion the research on plasma --based accelerators has spread worldwide A series of experiments by the UCLA/USC/SLAC collaboration ,using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC), has demonstrated high-gradient acceleration of electrons and positrons using the the wake left by the SLAC beam as it passes through a lithium plasma. Electrons have been accelerated by more than 30 GeV in less than one meter. This acceleration gradient is about a thousand times larger than in conventional microwave-driven accelerators. It is a first step toward a ``plasma afterburner,'' which would be placed at the end of a kilometers-long conventional accelerator and double its beam energy in a few tens of meters. In addition to the acceleration of particle beams, these experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes the generation of intense and narrowly collimated x-ray beams, refraction of particles at a plasma interface, and the creation of intense beams of positrons. These results are leading the way to similar tabletop accelerators based on plasma wakes excited by lasers rather than electron beams. Applications for tabletop accelerators include gamma radiography, radiation therapy, and ultra

  12. Experimental setup for investigation of narrow IR laser beam propagation along horizontal 1300m urban path

    NASA Astrophysics Data System (ADS)

    Kapranov, Vitaliy; Tugaenko, Vjatcheslav; Marakasov, Dmitrii; Kudryavtsev, Andrei

    2015-11-01

    In this paper, we describe an experimental setup for laser beam propagation along a horizontal urban path that can be useful for applications such as wireless power transfer or free-space laser communications. This setup can be used for experiments in different atmosphere conditions. Part of obtained results from experiments for 1064 nm laser beam is presented.

  13. Structured beam shaping for precision laser dicing of multilayered substrates

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2007-02-01

    Laser dicing of wafer based devices; such as light emitting diodes (LEDs) is multifaceted since these devices are formed from various materials in a layered structure. Many of these layers include active device materials, passivation coatings, conductors and dielectric films all deposited on top of a bulk wafer substrate and all potentially having different ablation thresholds. These composite multi-layered structures require high finesse laser processes to ensure yields, high quality and low cost. Such processes have become very complex over the years as new devices become miniaturized, requiring smaller micro-machined features, greater precision and reduction of thermal stress to minimize substrate micro-cracking and maintain device integrity over its projected lifetime. Newer laser processes often involve the sequential use of single or multiple diode pumped solid state (DPSS) lasers, such as UV DPSS (355nn, 266nm), VIS DPSS (~532 nm) and IR DPSS (1064nm, 1070nm) as well as DPFL (Diode Pumped Fiber Lasers) lasers to penetrate various and differing material layers and substrates including SiC, Silicon and Sapphire. Development of beam shaping optics with the purpose of permitting two or more differing energy densities within a single focused or imaged beam spot would provide opportunities for pre-processing or pre-scribing of thinner cover layers, while following through with a higher energy density portion to cut through base substrates. This technique is also possible using multiple wavelengths simultaneously for micro-machining or dicing. Using multiple wavelengths offers advantages where high photon energies from such wavelengths as 266 nm can cause adverse effects to doped materials such as silicon or to active device layers such as GaN or other III-V materials deposited on the substrate surface. This paper will describe the development of variable intensity beam shaping optical elements targeting micromachining, dicing and patterning of delicate thin film

  14. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  15. Intensity dependence of relativistic focusing of intense laser beams propagating in plasmas

    SciTech Connect

    Liu Mingwei; Zhou Bingju; Yi Yougen; Liu Xiaojuan; Tang Liqiang

    2007-10-15

    Optical guiding of an intense laser beam propagating in uniform plasmas is analyzed by means of the variational method. The focusing properties of the beam are shown to be governed by the laser power as well as the laser intensity. An increase in the laser intensity leads to an enhancement of ponderomotive self-channeling but a stronger weakening of relativistic self-focusing. The oscillations of the beam spot size along the propagation distance come from the variability of the focusing force in terms of the laser intensity; and the dependence on the laser intensity is negligible in the weakly relativistic limit.

  16. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  17. Guiding of laser beams in plasmas by electromagnetic cascade compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, S.; Shvets, G.

    2006-10-01

    The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few- femtosecond electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red- and blue-shifted by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser phase, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. Thus, a train of high intensity radiation spikes with continually evolving longitudinal profile can be self- guided over several Rayleigh lengths in homogeneous plasma. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW show that achieving GeV energy is possible under realistic experimental conditions.

  18. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  19. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  20. Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)

    1992-01-01

    Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.

  1. Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Christopher A.; Papantonakis, Michael R.; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    Infrared active stand-off detection techniques often employ high power tunable quantum cascade lasers (QCLs) for target illumination. Due to the distances involved, any fluctuation of the laser beam direction and/or beam profile is amplified at the sample position. If not accounted for, this leads to diminished performance (both sensitivity and selectivity) of the detection technique as a direct result of uncertainties in laser irradiance at each imaged pixel of the sample. This is especially true for detection approaches which illuminate a relatively small footprint at the target since the laser beam profile spatial fluctuations are often comparable to the (focused) laser spot size. Also, there is often a necessary trade-off between high output QCL power and beam quality. Therefore, precise characterization of the laser beam profile and direction as a function of laser properties (tuning wavelength, current and operating mode: pulsed or CW) is imperative. We present detailed measurements of beam profiles, beam wander and power fluctuations and their reproducibility as function of laser wavelength and stand-off distance for a commercially available tunable quantum cascade laser. We present strategies for improving beam quality by compensating for fluctuations using a motorized mirror and a pair of motorized lenses. We also investigate QCL mode hops and how they affect laser beam properties at the sample. Detailed mode-hop stability maps were measured.

  2. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    SciTech Connect

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A.; Geer, S. B. van der

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  3. On the laser beam cutting of metallic hollow sphere structures

    NASA Astrophysics Data System (ADS)

    Riegel, H.; Fruhstuck, J.; Merkel, M.; Winkler, R.; Öchsner, A.

    2013-02-01

    Metal hollow sphere structures (MHSS) represent a group of advanced composite materials. A high geometric reproducibility leads to relatively constant mechanical and physical properties. Therefore MHSS combine the advantages of cellular metals without a big scattering of the material properties. Several joining technologies can be used to assemble single metallic hollow spheres to a interdependent structure like sintering, soldering and adhering. This allows adjusting of variable macroscopic attitudes. A cutting process for MHSS needs to reflect the special characteristic of the composite material. In this paper laser beam cutting is presented as an efficient technology. The small amount of heat being involved during the process results in a small heat affected zone. All investigations were done with MHSS having different macroscopic dimensions (length, width, thickness, joining technology). The experimental work was done by a CO2-laser. The cut depth is governed by the heat input per unit length and the MHSS density. Finite element analysis was used to predict heat flux and temperature level for different geometric parameters of the spheres (diameter, wall thickness). The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam and which can hardly be analysed by measuring technique. The models for the static and transient finite element analysis consider heat conduction and convection.

  4. The Collinear Fast Beam laser Spectroscopy (CFBS) experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Voss, A.; Procter, T. J.; Shelbaya, O.; Amaudruz, P.; Buchinger, F.; Crawford, J. E.; Daviel, S.; Mané, E.; Pearson, M. R.; Tamimi, W. Al

    2016-03-01

    Laser spectroscopy experiments at radioactive ion beam facilities around the world investigate properties of exotic nuclei for scientific endeavours such as, but not limited to, the investigation of nuclear structure. Advancements in experimental sensitivity and performance are continuously needed in order to extend the reach of nuclei that can be measured. The collinear fast beam laser spectroscopy (CFBS) setup at TRIUMF, coupled to an out-of-plane radio-frequency quadrupole Paul trap, enables measurements of some of the most fundamental nuclear properties for long-lived ground and isomeric states. The first comprehensive overview of the CFBS experiment is provided along with descriptions of key developments that extend the reach of laser spectroscopy experiments. A novel data acquisition technique structured around three-dimensional spectra is presented, where the integration of a custom multi-channel-scalar provides photon counts correlated with arrival time and acceleration voltage for post-experiment analysis. In addition, new rapid light manipulation techniques are discussed that suppress undesirable hyperfine pumping effects and regain losses in experimental efficiency.

  5. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  6. Detection of transient reflections during laser beam welding of copper

    NASA Astrophysics Data System (ADS)

    Ganser, Andreas; Liebl, Stefan; Schmitz, Patrick; Zaeh, Michael F.

    2016-03-01

    The advantages of laser beam welding, such as its high flexibility, its high local energy input, and its fast processing speed, led to a substantial increase of industrial applications using this technology. However, only a portion of the laser energy is absorbed during welding due to reflections. These reflections can damage the system components and lead to a reduced process efficiency. Especially when welding copper materials with infrared laser beam sources, the reflections play a significant role, since the reflection coefficient of copper is very high at infrared wavelengths. Therefore, a formation of a keyhole is necessary for a stable and efficient welding process. A theoretical model for the calculation of the reflections on an arbitrary position above the process zone, as well as a radiation analyzer based on a modular set-up are presented. This device enables a time- and space-resolved measurement of the reflected radiation. Using the experimental results, characteristic positions on the hemisphere could be identified to calibrate the theoretical model. The calibrated model allows to analyze the reflected radiation during the welding process to determine the energy which is absorbed by the work piece.

  7. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  8. Compact prisms for polarisation splitting of fibre laser beams

    SciTech Connect

    Davydov, B L; Yagodkin, D I

    2005-11-30

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO{sub 3}, {alpha}-BaB{sub 2}O{sub 4} ({alpha}-BBO), LiIO{sub 3}, LiNbO{sub 3}, YVO{sub 4}, and TiO{sub 2} crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90{sup 0}. Calcite prisms with the deviation angles for the extraordinary beam {approx}19{sup 0} and 90{sup 0} are tested experimentally. (control of laser radiation parameters)

  9. Automated analysis for detecting beams in laser wakefield simulations

    SciTech Connect

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  10. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  11. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  12. Hollow circular-truncated cone resonator and its hollow variable biconical laser beam

    NASA Astrophysics Data System (ADS)

    Liu, Jinglun; Chen, Mei; Wang, Qionghua; Sun, Nianchun

    2014-05-01

    To obtain a hollow variable biconical laser beam (HVBLB), a CO2 laser having a hollow circular-truncated cone resonator (HCTCR) is presented. This HCTCR comprises a rotationally symmetric total-reflecting concave mirror at the bottom, a rotationally symmetric part-reflecting convex mirror at the top, and a hollow circular-truncated cone discharge tube at the middle. The cross section of this generated biconical laser beam changes from annulus to circular to annulus and the size of this cross section from big to small to large as the propagation distance increases. So, a kind of laser beam with variable center intensity from zero to peak value to zero is obtained and is known as HVBLB. Due to the inclusion of part of the hollow laser beam (HLB) and solid laser beam, this HVBLB requires no additional beam-shaping element and has broad applications such as optical trapping and commercial manufacturing.

  13. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one. PMID:24921122

  14. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  15. The physical processes occuring during the deep penetration of metals by a laser beam

    NASA Astrophysics Data System (ADS)

    Vedenov, A. A.; Gladush, G. G.; Drobiazko, S. V.; Levchenko, E. B.

    1983-08-01

    Theoretical models describing the various aspects of the physical processes that occur in metals penetrated by a laser beam are examined. In particular, attention is given to channeling of the laser beam, the principles governing the formation of a crater, and the mechanisms of deep penetration by continuous and pulsed laser beams. Model predictions are compared with experimental data, and the areas where further research is needed are identified.

  16. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    PubMed

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  17. Relativistic attosecond electron pulses from cascaded acceleration using ultra-intense radially polarized laser beams

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    Attosecond electron pulses with peak energy above 200 MeV could be produced with ultrafast 100-TW radially polarized laser beams in a two-stage configuration. Such electron beams would be collimated and potentially quasi-monoenergetic.

  18. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-01

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc. PMID:26480079

  19. Applications of laser-accelerated particle beams for radiation therapy

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Fourkal, E.; Li, J. S.; Veltchev, I.; Luo, W.; Fan, J. J.; Lin, T.; Tafo, A.

    2011-05-01

    Proton beams are more advantageous than high-energy photons and electrons for radiation therapy because of their finite penetrating range and the Bragg peak near the end of their range, which have been utilized to achieve better dose conformity to the treatment target allowing for dose escalation and/or hypofractionation to increase local tumor control, reduce normal tissue complications and/or treatment time/cost. Proton therapy employing conventional particle acceleration techniques is expensive because of the large accelerators and treatment gantries that require excessive space and shielding. Compact proton acceleration systems are being sought to improve the cost-effectiveness for proton therapy. This paper reviews the physics principles of laser-proton acceleration and the development of prototype laserproton therapy systems as a solution for widespread applications of advanced proton therapy. The system design, the major components and the special delivery techniques for energy and intensity modulation are discussed in detail for laser-accelerated proton therapy.

  20. Analysis of laser beam weldability of Inconel 738 superalloy

    SciTech Connect

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-05-15

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.