Science.gov

Sample records for incoherent scatter signal

  1. Theory of waves incoherently scattered

    NASA Technical Reports Server (NTRS)

    Bauer, P.

    1974-01-01

    Electromagnetic waves impinging upon a plasma at frequencies larger than the plasma frequency, suffer weak scattering. The scattering arises from the existence of electron density fluctuations. The received signal corresponds to a particular spatial Fourier component of the fluctuations, the wave vector of which is a function of the wavelength of the radiowave. Wavelengths short with respect to the Debye length of the medium relate to fluctuations due to non-interacting Maxwellian electrons, while larger wavelengths relate to fluctuations due to collective Coulomb interactions. In the latter case, the scattered signal exhibits a spectral distribution which is characteristic of the main properties of the electron and ion gases and, therefore, provides a powerful diagnosis of the state of the ionosphere.

  2. Requirements for Space Shuttle incoherent scatter experiments

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1976-01-01

    The feasibility of carrying out incoherent-scatter experiments on the Space Shuttle has been analyzed. Design criteria considered were the required average transmitter power, frequency resolution, spatial resolution, and statistical accuracy. Experiments analyzed were measurement of the naturally enhanced plasma line and the ion component of the incoherent-scatter spectrum, as well as the plasma line artificially enhanced by an intense HF radiowave. The ion-component measurement does not appear feasible, while the other two appear reasonable for short ranges only.

  3. An effective method for incoherent scattering radar's detecting ability evaluation

    NASA Astrophysics Data System (ADS)

    Lu, Ziqing; Yao, Ming; Deng, Xiaohua

    2016-06-01

    Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.

  4. An Incoherent Scatter Radar Facility in Antarctica

    NASA Astrophysics Data System (ADS)

    Kelly, J. D.; Stromme, A.; Nicolls, M. J.; van Eyken, A. P.

    2014-12-01

    A high latitude Antarctic Incoherent Scatter Radar (ISR) facility will help to achieve the better distributed network of sophisticated observational platforms needed in order to gain transformational new knowledge of the short and long term global variability of Earth's upper atmosphere and its connection to the solar wind and space. It will facilitate moving toward a fully system level approach to upper atmosphere and space research. We have over the last few years performed a feasibility study including a site survey in McMurdo identifying a location and the needed logistics to carry this project out. This talk will provide and overview of the science rational and benefits of an Antarctic ISR facility, in addition to outline the current plans and next steps in establishing, for the first time, an Incohernet Scatter radar facility at a high southern latitude.

  5. Polyphase-coded incoherent scatter measurements at Millstone Hill

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilkka I.; Lind, Frank D.; Roininen, Lassi; Erickson, Philip J.; Rideout, William C.; Orispää, Mikko; Vierinen, Juha; Lehtinen, Markku S.

    2013-09-01

    We report first results of polyphase-coded incoherent scatter measurements at Millstone Hill. To our knowledge, these are the first incoherent scatter measurements with polyphase alternating codes of Markkanen et al. (2008) and optimal quadriphase sequences of Damtie et al. (2008). The results demonstrate that an arbitrary waveform generator recently installed at the Millstone Hill incoherent scatter radar, part of the National Science Foundation Geospace Facility operated by the Massachusetts Institute of Technology Haystack Observatory, is capable of reproducing the polyphase waveforms with an accuracy sufficient for incoherent scatter measurements. Polyphase codes will allow incoherent scatter radar experiments to be better optimized, because they provide a larger variety of code and code cycle lengths than the traditional binary codes.

  6. Incoherent scatter radar observations of the ionosphere

    NASA Technical Reports Server (NTRS)

    Hagfors, Tor

    1989-01-01

    Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.

  7. Concentration of hydrogen in titanium measured by neutron incoherent scattering

    SciTech Connect

    Chen-Mayer, H.H.; Mildner, D.F.R.; Lamaze, G.P.; Lindstrom, R.M.; Paul, R.L.; Kvardakov, V.V.; Richards, W.J.

    1998-12-31

    Mass fractions of hydrogen in titanium matrices have been measured using neutron incoherent scattering (NIS) and compared with results from prompt gamma activation analysis (PGAA). Qualitatively, NIS is a more efficient technique than PGAA which involves neutron absorption, and the former may be suitable for on-line analysis. However, for NIS the scattering contribution comes from both the hydrogen and the matrix, whereas prompt gamma emission has minimal matrix effect. To isolate the signal due to hydrogen scattering, a set of polypropylene films is used to simulate the increasing amount of hydrogen, and the scattered intensity is monitored. From this response, an unknown amount of the hydrogen can be deduced empirically. The authors have further attempted a first principle calculation of the intensity of the scattered signal from the experimental systems, and have obtained good agreement between calculation and the measurements. The study can be used as a reference for future applications of the scattering method to other hydrogen-in-metal systems.

  8. Diffraction pattern from thermal neutron incoherent elastic scattering and the holographic reconstruction of the coherent scattering length distribution

    SciTech Connect

    Sur, B.; Anghel, V.N.P.; Rogge, R.B.; Katsaras, J.

    2005-01-01

    The diffraction of spherical waves (S waves) interacting with a periodic scattering length distribution produces characteristic intensity patterns known as Kossel and Kikuchi lines (collectively called K lines). The K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distribution surrounding the source of S waves - a process known as 'Gabor holography' or, simply, 'holography'. This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scattering from a mixed incoherent and coherent S-wave scattering length distribution. The formulation demonstrates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In practice, one can therefore reconstruct the holographic data from samples with numerous incoherent S-wave scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally rich in incoherent thermal neutron scatterers, such as hydrogen (e.g., biological and polymeric materials). Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate or twin-image problem. The formulation presented for holographic inversion - different from those used previously [e.g., T. Gog et al., Phys. Rev. Lett. 76, 3132 (1996)] - eliminates the twin-image problem for single-wavelength data.

  9. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    PubMed

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  10. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  11. Innovative wavelet protocols in analyzing elastic incoherent neutron scattering.

    PubMed

    Magazù, S; Migliardo, F; Caccamo, M T

    2012-08-01

    Wavelet analysis has recently found a wide range of applications in Physics, Mathematics, and signal processing. This is mainly due to its ability to locally resolve a nonstationary signal in terms of functional forms, called mother wavelets, and to firmly locate trend anomalies in the signal. In the present paper, some examples of the application of wavelet analysis to elastic incoherent neutron scattering (EINS) data collected by the IN13 spectrometer at the Institute Laue Langevin (ILL) on water mixtures of the three homologous disaccharides, trehalose, maltose, and sucrose, and on literature data of dry and hydrated lysozyme and myoglobine as a function of temperature and of exchanged wave vector are presented. The experimental findings have been analyzed by means of a wavelet analysis that allows one to characterize the scattered elastic intensity behavior on different scales and to locate the discontinuities and the trend anomalies in the registered signal. This latter procedure is made possible thanks to the multiscale analysis, which allows, by decreasing the scale, one to localize the peculiar trend features. The entire body of the experimental findings reveals different transition temperatures for the three investigated disaccharides together with a stronger temperature dependence of the maltose/H(2)O and sucrose/H(2)O systems in comparison with the trehalose/H(2)O mixture, which signals a stronger character of this latter in comparison with the other two homologous disaccharides. These results justify the better ability of trehalose, with respect to maltose and sucrose, to encapsulate biostructures in a more rigid matrix. PMID:22793379

  12. Incoherent Scatter Radars for Global Scale Ionospheric Monitoring

    NASA Astrophysics Data System (ADS)

    Van Eyken, Anthony; Heinselman, Craig; Kelly, John; Sanchez, Ennio; Stromme, Anja

    2012-07-01

    Aeronomers have made huge strides in understanding the detailed physics and chemistry of the upper atmosphere and in designing, constructing and operating advanced facilities to monitor, measure, and in some cases, perturb that medium. However, the big picture, with its accompanying ability to predict the behavior of the geospace system both in response to natural (solar) and anthropogenic factors, remains somewhat elusive. Current incoherent scatter radars (ISRs) have the ability to operate reliably, remotely, and largely autonomously for extended periods and the procedures to build, deploy, operate, and maintain them are well developed. For the first time, it is now practical to envisage a global ISR deployment capable of providing the precision measurements required. Incoherent scatter radars have developed considerably in recent years with the deployment of multiple new systems (Poker Flat, Alaska, Resolute Bay, Canada, and in development in China, Argentina, Antarctica, Scandinavia, and elsewhere, as well as a second system at Resolute Bay) and operational changes to support continuous and remote measurements. We will discuss plans to add further observational sites, built around phased array incoherent scatter radars, to cover, for example, a complete geomagnetic meridian; plans to further integrate the routine operation of many radars around the globe; and the potential for hardware collaboration for future incoherent scatter radar systems.

  13. Theory of ghost scattering with incoherent light sources

    NASA Astrophysics Data System (ADS)

    Cheng, Jing

    2016-04-01

    Inspired by the idea of ghost imaging, we propose a ghost scattering scheme to study light scattering with incoherent light sources through the nonlocal correlation measurement of the differential scattering cross-section fluctuations in two different optical paths. We present a rigorous formal theory to describe the ghost scattering process. Also we have derived a simple and closed-form ghost scattering formula within the first-order Born approximation which is particularly suited for weak scatterers. We find that the scattering information of a test scatterer can be obtained by using only a single-pixel detector in the corresponding optical path through the nonlocal correlation measurement with the help of another reference path.

  14. Incoherent image formation in the presence of scattering eye media.

    PubMed

    Wesemann, W

    1987-08-01

    Incoherent image formation in human eyes that have scattering eye media is investigated as a function of the particle size and the optical density of the scattering medium and for test targets that differ in form and size. For single scattering by large particles (much greater than lambda), a point-spread function and the associated modulation-transfer function of the scattered light are derived from diffraction theory. It is shown that object structures with low spatial frequencies are also imaged by the scattered light. Following single scattering by small particles and/or multiple scattering, the scattered light forms an approximately uniform background. Consequently, the retinal contrast is reduced regardless of spatial frequency. The image quality is, contrary to what is found in normal image formation, extremely sensitive to the form and size of the test target. It is shown that the optimal readability of white-on-black letters is obtained at intermediate spatial frequencies. For an extended layer of arbitrary optical density and particle size, the influence of multiple scattering is approximated by using Hartel's scattering theory. It is shown that wavelength has only a small influence on retinal contrast for scattering by particles greater than lambda. PMID:3625324

  15. Incoherent neutron scattering in acetanilide and three deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José

    1991-03-01

    Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.

  16. Investigation of circumterrestrial space by means of incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Taran, V. I.; Bogovsky, V. K.; Lysenko, V. N.; Grigorenko, Ye. I.; Yemelyanov, L. Ya.

    The results of investigations of ionosphere by means of the Kharkov incoherent scatter radar are presented. The measurements realized jointly with Massachusetts Institute of Technology (Haystack Observatory) and Cornell University (Arecibo Observatory) made it possible to reveal the longitudinal and latitudinal variations of topside hydrogen ion behavior. Ionosphere observations in Kharkov during the solar eclipse on August 11, 1999 first have been carried out up to 1500-km altitude. They have shown the significant changes in state of the F region and topside ionosphere including hydrogen ion concentration, plasma fluxes, that is the evidence of significant infringement of plasma exchange processes between ionosphere and protonosphere.

  17. The Movable Antarctic Incoherent Scatter Radar (MAISR) - update and plans

    NASA Astrophysics Data System (ADS)

    van Eyken, A. P.; Kelly, J. D.; Stromme, A.; Heinselman, C. J.; Malone, M.; Maisr Proposal Team

    2010-12-01

    High latitude Antarctic Incoherent Scatter Radar will help to achieve the better distributed network of sophisticated observational platforms needed in to gain transformational new knowledge of the short and long term global variability of Earth’s upper atmosphere and its connection to the solar wind and space. It will facilitate moving toward a fully system level approach to upper atmosphere and space research. SRI has recently proposed to establish multiple space science observing facilities in the Antarctic, first at McMurdo, Antarctica, and later at an auroral or sub-auroral location. The facilities will be built around the well-proven, next-generation, Advanced Modular Incoherent Scatter Radar (AMISR) concept, and will each provide unprecedented temporal and spatial coverage of the Antarctic atmosphere. These will be the first ever ISRs in the high south, and a very important addition to the global network of observational platforms needed to address the global state and development of Earth’s upper atmosphere and its connection to interplanetary space. This poster provides an update on the progress of the project, including a construction timeline and details of how the community can become involved in the observational program. RISR-N at Resolute Bay, Canada, near the conjugate point of MAISR in Antarctica

  18. How the Saint Santin incoherent scatter system paved the way for a French involvement in EISCAT

    NASA Astrophysics Data System (ADS)

    Bauer, P.; Giraud, A.; Kofman, W.; Petit, M.; Waldteufel, P.

    2013-09-01

    This paper relates the development of a French incoherent scatter system which started its operations in 1965. This development took place several years after the initial implementation of such systems in the United States, in Peru and in the United Kingdom. The French system, owing to its bistatic configuration and the use of continuous waves, differed from the previous ones. These characteristics yielded signals of excellent spectral quality, unravelling the possibility of inferring physical parameters (Doppler shift, average ion mass) out of reach, at that time, of other systems. The possibility of making ion drift vector measurements led to extend the system into a quadristatic configuration. The multiple capabilities offered by the incoherent scatter technique, notably as concerns the thermodynamical properties of the ionosphere and of the thermosphere, led further the French community to a project of embarking an incoherent scatter radar on board a ship. Taking account of a project of a Scandinavian auroral zone radar and of the considerable interest of the study of auroral zone electrodynamics, the French community abandoned the idea of the ship and expressed an interest in joining the Scandinavian project in conjunction with Germany and the United Kingdom.

  19. Exact relativistic expressions for polarization of incoherent Thomson scattering

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Den Hartog, D. J.; Parke, E.

    2016-05-01

    We present a derivation of the degree of polarization for incoherent Thomson scattering (TS) using Mueller matrix formalism. An exact analytic solution is obtained for spectrum-integrated matrix elements. The solution is valid for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. It is based on a newly developed theoretical model, a finite transit time (FTT) correction to previous theoretical work on TS polarization. The Mueller matrix elements are substantially different from previous calculations without the FTT correction, even to the lowest linear order in Te/mec2≪1 . Mathematically, the derivation is a unique example of fully analytical integration of the 3D scattering operator over a relativistic Maxwellian distribution function; experimentally, the results have application to the use of the polarization properties of Thomson scattered light as a method of electron temperature measurement. The results can also be used as a reliable tool for benchmarking and verification of numerical codes for frequency resolved properties of TS polarization.

  20. Comparison of atomic oxygen measurements by incoherent scatter and satellite-borne mass spectrometer techniques

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Alcayde, D.

    1974-01-01

    Atomic oxygen densities determined by the incoherent scatter technique are compared to densities deduced from satellite-borne mass spectrometer measurements and are found to agree within experimental error. The diurnal variations inferred from the incoherent scatter measurements do show, however, some departure from diurnal variations found by modeling the mass spectrometer results. Some implications of these departures are briefly discussed.

  1. Results of the Irkutsk Incoherent Scattering Radar for space debris studies in 2013

    NASA Astrophysics Data System (ADS)

    Lebedev, Valentin; Kushnarev, Dmitriy; Nevidimov, Nikolay

    We present result of space object (SO) registration received on the Irkutsk Incoherent Scattering Radar (IISR) in June 2013 during regular ionospheric measurement. Diagnostic the of the radar for definition of the SO characteristics: range, beam velocity, azimuth angle, elevation, and signal amplitude were improved after the carried-out technological modernization and SO we have possibility of simultaneous measurement of parameters of parameters ionosphere and SO. Now the IISR new hardware-software complex allows to operate in a mode of ionospheric measurements up to 1000 SO flights per day, and to register objects of 10 cm in size at range of 800-900 km.

  2. Incoherent signal source resolution based on coherent aperture synthesis

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.

    2016-05-01

    A technique is proposed for resolving two incoherent signal sources of the same frequency and significantly different intensities with similar angular coordinates. The technique is based on aperture synthesis of a receiving array, first, by the signal of higher-power source and the estimate of its angular coordinate with subsequent subtraction of the signal spectrum from the angular spectrum of the received field. This makes it possible to achieve aperture synthesis and estimate the angle of arrival of a higher-power signal. Thus, the technique is of interest not only for synthesized apertures, but also for arrays with a filled aperture, since it eliminates the restrictions imposed by the presence of lateral lobes of the array response. Our mathematical simulation data demonstrate the efficiency of this technique in the detection and location of weak signals against the background of high-power noise sources even at their close angular positions.

  3. Incoherent Scatter Radar Long Duration Experiments at Millstone Hill

    NASA Astrophysics Data System (ADS)

    Zhang, S. R.; Holt, J. M.; Goncharenko, L. P.; Foster, J. C.; Erickson, P. J.; Lind, F. D.

    Incoherent scatter radars provide high quality physical measurements of the ionosphere which are useful for a wide variety of investigations Recently an emphasis has been placed on long duration observational runs which last on the order of one month In October 2002 EISCAT Svalbard and Millstone Hill Radars conducted first ever long duration experiments for over 30 consective days Zhang et al 2005 EISCAT Svalbard and Tromso Radars performed more long-duration runs in 2003 and 2004 In response to the demand for these long term observations the ISR community then scheduled additional month long World Day operations periods for September 2005 and March 2006 These long duration ISR experiments provides a unique opportunity to study many important ionosphere-thermosphere phenomena including the upper atmospheric climatology variability disturbances long-lasting and other types of space weather events which may not be captured by a regular run The detailed datasets cover both geomagnetically quiet and active periods under different solar activity conditions and represent one of the very finest resources for the evaluation of current and future geospace modeling efforts We present a number of examples from these datasets and describe how the user community may access them using the Madrigal database We discuss results of preliminary analyses with emphasis on the 2002 experiment in terms of the day-to-day variability and oscillations of the ionosphere during periods of quiet magnetic conditions and highlight some of the space

  4. Phase-synchronous detection of coherent and incoherent nonlinear signals

    NASA Astrophysics Data System (ADS)

    Karki, Khadga Jung; Kringle, Loni; Marcus, Andrew H.; Pullerits, Tõnu

    2016-01-01

    The nonlinear optical response of a material system contains detailed information about its electronic structure. Standard approaches to nonlinear spectroscopy often use multiple beams crossed in a sample, and detect the wave vector matched polarization in transmission. Here, we apply a phase-synchronous digital detection scheme using an excitation geometry with two phase-modulated collinear ultrafast pulses. This scheme can be used to efficiently detect nonlinear coherent signals and incoherent signals, such as higher harmonics and multiphoton fluorescence and photocurrent, from various systems including a photocell device. We present theory and experiment to demonstrate that when the phase of each laser pulse is modulated at the frequency {φ }1 and {φ }2, respectively, nonlinear signals can be isolated at the frequencies n({φ }2-{φ }1), where n=0,1,2,\\ldots . This approach holds promise for performing nonlinear spectroscopic measurements under low-signal conditions.

  5. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect

    Häussler, Wolfgang; Kredler, Lukas

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  6. EISCAT Incoherent Scatter Radars Probing High-Latitude Near-Earth Geospace for the EURIPOS Proposal

    NASA Astrophysics Data System (ADS)

    Turunen, E.

    2009-04-01

    EISCAT Scientific Association operates currently three incoherent scatter radars in Northern Scandinavia on behalf of its associate members in Finland, China, Germany, Japan, Norway, Sweden and United Kingdom, as well as currently supporting partners in France and Russia. The radar sites include transmitter/receiver site in Tromsø, Norway with a monostatic VHF radar and a tristatic UHF radar transmitter/receiver, UHF receiver sites in Kiruna, Sweden and Sodankylä, Finland and a 2-dish monostatic radar in Longyearbyen, Svalbard. Incoherent scatter radar method is known to be the most sophisticated radio method to remotely sense the ionosphere. The standard parameters analysed from the recorded scattered signals are the electron density, electron temperature, ion temperature, line-of-sight plasma velocity, ion-neutral collision frequency and ion mass. With more assumptions also information for example on neutral density and temperature, neutral velocity, Pedersen and Hall conductivities, electric current density and heat flux is available. Current applications of the radars include also interferometric applications for small-scale structures, mapping of meteroid orbits and monitoring space debris, as well as high-resolution mapping the radar reflectivity of the Moon surface. In addition to incoherent scatter radars, EISCAT also has a powerful HF heating facility for ionospheric modification experiments, and a dynasonde in Tromsø, as well as another dynasonde in Svalbard for routine ionospheric observations. All the current EISCAT facilities would serve the EURIPOS proposal quantifying the ionospheric variability and response to space weather events at high latitudes. Although the main ISR facilities cannot be run continuously, regular Common Programmes, measurement campaign modes - especially combined with coordinated satellite observations and specific model studies, and the continuous operation of supporting dynasondes, would greatly enhance the EURIPOS proposal

  7. Incoherent scatter from space shuttle and rocket engine plumes in the ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Huba, J. D.; Swartz, W. E.; Kelley, M. C.

    1998-02-01

    Enhanced echoes from the 430 MHz radar at Arecibo were observed during burns of the space shuttle orbital maneuver subsystem (OMS) engines near 317 km altitude. Similar radar signatures of enhanced backscatter were also obtained by the Millstone Hill radar observing the plume of a Centaur engine burning in the ionosphere. A theoretical model of incoherent scatter is presented to explain the radar backscatter observations. The theory considers molecular ion beams generated in the exhaust plume as a result of charge exchange between the ambient O+ ions and the high-speed exhaust molecules (primarily H2O). The field-aligned gyromotion of the pickup ions affects the radio wave scattering from the random thermal fluctuations of electron density. Numerical calculations are carried out for plasmas modified by the space shuttle or Centaur engines, and reasonable agreement with observations is found for the total scattered power. Incoherent backscatter spectra respond to characteristics of the exhaust plume such as vector flow velocity, temperature, and composition. The nonequilibrium velocity distributions for the ions in the pickup ion plume are similar to the distributions found in strongly convecting auroral region ionospheres. The incoherent scatter from the plume ions can be used to validate techniques used to study naturally disturbed plasmas. The predictions of our radar scatter calculations will be tested in future experiments using the space shuttle OMS engines over incoherent scatter radars located at equatorial latitudes and midlatitudes.

  8. Speed-dependent collision effects on radar back-scattering from the ionosphere. [incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Behl, Y. K.; Theimer, O. H.

    1982-01-01

    The question whether the differences between fluctuation spectra for linearly speed-dependent and speed-independent collision frequencies could account for disagreements between rocket and incoherent scatter estimate was addressed. The basic theory used for computing the fluctuation spectrum is outlined. The speed-dependence of the charge-neutral collision frequency is discussed, with special emphasis on its derivation from the mobility measurements. Various developments of the computer code used for the computation of the fluctuation spectrum are described. The range of values of input parameters typical to the collision-dominated ionosphere are briefly described. The computational results are presented, and the significance and limitation of these results and the future scope of the research are discussed.

  9. Studying the fine structure of coherent echo spectra using data from Irkutsk incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Potekhin, A. P.

    2009-12-01

    Studying the processes generating different-scale inhomogeneities is one of the challenging problems of ionospheric physics. Plasma instabilities are one of the physical mechanisms by which small-scale inhomogeneities are formed. The main forms of instability in the ionospheric E-layer are two-stream and gradient-drift ones. The inhomogeneities generated by them lead to an abnormally intense radio scattering of different wavelengths (known as coherent echo (CE) or radio aurora) in the E-layer. Therefore, the method of radiowave backscattering is among the widely used methods for studying such inhomogeneities. The CE phenomenon has been investigated most intensely at high and equatorial latitudes, where the conditions for the CE origination are formed rather regularly. For the last decade, CE has also been intensely studied at midlatitudes, where it is observed less frequently and its formation conditions are less known. In 1998-2006, the purposeful studies of the midlatitude CE peculiarities were performed at the Irkutsk incoherent scatter (IS) radar, with a particular emphasis on its coherent properties. It was for the first time found out that the spectra of some data sets had a fine comb-shaped structure, which generated well-known single-humped CE spectra as a result of statistical averaging. In the scope of this study, unique coherent methods for processing individual data sets of CE signals were developed, making it possible to reveal the peculiarities of unaveraged CE-signal spectra. To describe these peculiarities, we proposed a new model of the inhomogeneity spectrum, which is the superposition of the discrete set of spatial harmonics with close wave numbers. The model was shown to adequately describe the scattered signal characteristics observed experimentally.

  10. Study of auroral dynamics with combined spacecraft and incoherent scatter radar data

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.; Delabeaujardiere, Odile; Watermann, Jurgen

    1994-01-01

    The objectives of this project were to study the coupling between the ionosphere and the magnetosphere, and to understand how this coupling was affected by changes in the solar wind. The data used consisted of satellite measurements coordinated with Sondrestrom incoherent scatter radar observations. We focused our efforts on the study of temporal and spatial changes in the dayside auroral precipitation and electric field.

  11. Study of plasmasphere dynamics using incoherent scatter data from Chatanika, Alaska radar facility

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.

    1975-01-01

    Results of the study of Chatanika incoherent scatter radar data and Lockheed Palo Alto Research Laboratory satellite data are reported. Specific topics covered include: determination of the effective recombination coefficient in the auroral E region; determination of the location of the auroral oval; auroral boundary characteristics; and the relationship of auroral current systems, particle precipitation, visual aurora, and radar aurora.

  12. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  13. The effects of Coulomb collisions on O+, H+, and He+ plasmas for topside incoherent scatter radar applications at Jicamarca

    NASA Astrophysics Data System (ADS)

    Milla, M. A.; Kudeki, E.; Chau, J. L.

    2012-12-01

    Coulomb collision effects on incoherent scatter radar signals become important when radar beams are pointed perpendicular to the Earth's magnetic field (B). To study these effects, Milla and Kudeki [2011] developed a procedure to estimate the spectrum of plasma density fluctuations (also known as incoherent scatter spectrum) based on simulations of collisional particle trajectories in single-ion component plasmas. In these simulations, collision effects on the particle motion are modeled using the standard Fokker-Planck model of Rosenbluth et al. [1957]. We have recently generalized the procedure of Milla and Kudeki to consider the case of multiple ion components in order to study the characteristics of the incoherent scatter spectrum in O+, H+, and He+ ionospheric plasmas, which is needed for the analysis of topside perpendicular-to-B observations at the Jicamarca Radio Observatory. In this presentation, we will report on the development of this new approach and on the characteristics of the spectrum models that were developed. The simulation results show that the ion collision process can be fairly well approximated as a Gaussian motion process, a model that has been previously studied in the literature by different authors. However, in the case of electron collisions, the process is not Gaussian having a complicated dependence on plasma parameters. As it will be discussed, electron collisions have a significant impact on the shape of the incoherent scatter spectrum. The ultimate application of the models that were developed is the simultaneous estimation of plasma drifts, densities, and temperatures of the topside equatorial ionosphere in perpendicular-to-B experiments at Jicamarca. This experimental evaluation will have a broader impact since the accuracy of the Fokker-Planck collision model will be tested. References: Milla, M. A., and E. Kudeki (2011), Incoherent scatter spectral theories-Part II: Modeling the spectrum for modes propagating perpendicular to B

  14. Coherent and incoherent scattering by a plume of particles advected by turbulent velocity flow.

    PubMed

    Palmer, David R

    2009-08-01

    Studies of acoustic remote sensing of the plumes that result from the injection of particulate matter in the ocean, either naturally or by dumping or dredging activities, have assumed the scattering is incoherent. These plumes are always turbulent, however. The particle density is a passive scalar that is advected by the turbulent velocity flow. The possibility exists, therefore, that the scattered waves from a significant number of particles add coherently as a result of Bragg scattering. In this paper, we investigate this possibility. We derive an expression for the ratio of the coherent intensity to the incoherent one in terms of the turbulent spectrum and the properties of the particles that make up the plume. The sonar is modeled as a high-Q, monostatic, pulsed sonar with arbitrary pulse envelope and arbitrary, but narrow, beam pattern. We apply the formalism to acoustic remote sensing of black smoker hydrothermal plumes. We find that, at most, the coherent intensity is less than 1% of the incoherent one. The implications are that Bragg scattering does not lead to a significant coherent component and in analyses of scattering from this type of plume, one can ignore the complications of turbulence altogether. PMID:19640023

  15. Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

    NASA Astrophysics Data System (ADS)

    Nygrén, T.; Markkanen, M.; Lehtinen, M.; Tereshchenko, E. D.; Khudukon, B. Z.; Evstafiev, O. V.; Pollari, P.

    1996-12-01

    In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods. Acknowledgements. This work has been supported by the UK Particle-Physics and Astronomy Research Council. The assistance of the director and staff of the EISCAT Scientific Association, the staff of the Norsk Polarinstitutt and the director and staff of the Swedish Institute of Space Physics is gratefully acknowledged. In addition the authors would like to thank Professor Evgeny Tereshchenko of the Polar Geophysical Institute in Mumansk, Russia and Dr Tuomo Nygrén of the University of Oulu, Finland for provision of data from EISCAT special program time during the November 1995 campaign. Topical Editor D. Alcaydé thanks E. J. Fremouw and another referee for their help in evaluating this paper.--> Correspondence to: I. K. Walker-->

  16. Interferometric observation of Cygnus-A discrete radiosource scintillations at Irkutsk Incoherent Scatter radar

    NASA Astrophysics Data System (ADS)

    Globa, Mariya; Vasilev, Roman; Kushnaryov, Dmitriy; Medvedev, Andrey

    2016-03-01

    We propose a new method for analysis of data from Irkutsk Incoherent Scatter Radar. The method allows us to accomplish interferometric observation of discrete cosmic radio source characteristics. In this study, we analyzed ionospheric scintillations of the radio source Cygnus-A. Observations were made in 2013 during regular radar sessions within 5-15 days for different seasons, and the effective time of observation was 15-30 minutes per day. For interferometric analysis, the properties of correlation (coherence) coefficient of two independent recording channels were used. The statistical analysis of data from independent channels allows us to construct two-dimensional histograms of radio source brightness distribution with period of 18 s and to determine parameters (the maximum position and the histogram width) representing position and angular size of radio source for each histogram. It is shown that the change of statistical characteristics does not correlate with fluctuations in power (scintillations) of the signal caused by radio wave propagation through ionospheric irregularities.

  17. Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1978-01-01

    The basic experiments used phase-coded pulses to record electron density profiles with a resolution of 600 m in range and 300 m in horizontal extent, while scanning in azimuth. Data from incoherent scatter radar were compared with simultaneous ionosonde observations. Observations of sporadic E layers by incoherent scatter radar were discussed in terms of the effects of the neutral wind system acting on metallic ions. Several features were noted in the data, which support the wind shear mechanism of layer formation. The sporadic E layers often contained a pronounced small-scale structure, especially at times when partially transparent echoes were observed by the ionosonde. Under specific conditions, the ions in a meteor trail can be converged by a shear in the neutral wind into a relatively small irregularity at the center of a sporadic E layer.

  18. Incoherent scatter radar measurement of the average ion mass and temperature of a nighttime sporadic layer

    SciTech Connect

    Tepley, C.A.; Mathews, J.D.

    1985-04-01

    We report the results of incoherent scatter radar, total power, and ion line observations of a nighttime sporadic layer centered at 92-km altitude. The height variation of the absolute widths of the ion line yields a layer temperature of 210/sup 0/ +- 5 /sup 0/K and a mean ion mass of 50 +- 10 amu. This ion mass, when compared with average meteor composition, indicates that the layer is composed totally of metallic ions.

  19. Horizontal structure of midlatitude sporadic-E layers observed by incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1975-01-01

    The investigation reported is concerned with a model considered by Whitehead (1972). The partial transparency of the sporadic-E layer observed on certain occasions is attributed to regions of high electron density embedded in the layer. Observations obtained with an incoherent scatter radar facility are presented. Taking into account all factors, it is concluded that the partial transparency of sporadic-E layers, on the occasions of these observations, are explained by the Whitehead model.

  20. Application of particle swarm optimization method to incoherent scatter radar measurement of ionosphere parameters

    NASA Astrophysics Data System (ADS)

    Wu, Li-Li; Zhou, Qihou H.; Chen, Tie-Jun; Liang, J. J.; Wu, Xin

    2015-09-01

    Simultaneous derivation of multiple ionospheric parameters from the incoherent scatter power spectra in the F1 region is difficult because the spectra have only subtle differences for different combinations of parameters. In this study, we apply a particle swarm optimizer (PSO) to incoherent scatter power spectrum fitting and compare it to the commonly used least squares fitting (LSF) technique. The PSO method is found to outperform the LSF method in practically all scenarios using simulated data. The PSO method offers the advantages of not being sensitive to initial assumptions and allowing physical constraints to be easily built into the model. When simultaneously fitting for molecular ion fraction (fm), ion temperature (Ti), and ratio of ion to electron temperature (γT), γT is largely stable. The uncertainty between fm and Ti can be described as a quadratic relationship. The significance of this result is that Ti can be retroactively corrected for data archived many years ago where the assumption of fm may not be accurate, and the original power spectra are unavailable. In our discussion, we emphasize the fitting for fm, which is a difficult parameter to obtain. PSO method is often successful in obtaining fm, whereas LSF fails. We apply both PSO and LSF to actual observations made by the Arecibo incoherent scatter radar. The results show that PSO method is a viable method to simultaneously determine ion and electron temperatures and molecular ion fraction when the last is greater than 0.3.

  1. First Detection of Meteoric Smoke using the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Hsu, V. W.; Fentzke, J. T.; Brum, C. G.; Strelnikova, I.; Nicolls, M. J.

    2011-12-01

    In this work we present the first results of meteor smoke particles (MSPs) detected in the D-region plasma above the 449 MHz Poker Flat Incoherent Scatter Radar (PFISR) in Alaska (67°N, 149°W). MSPs are believed to be the major source of condensation nuclei for the formation of ice particles, the precursor for Polar Mesospheric Clouds (PMCs) and Polar Mesospheric Summer Echoes (PMSE). In addition, they are thought to contribute to D-region chemistry by providing a surface on which heterogeneous chemistry occurs (Summers and Siskand, 1999). Our results are obtained by utilizing a similar fitting method derived for use at other High Power Large Aperture Radar (HPLA) sites that treats the measured radar signal as the sum of two Lorentzian functions [Strelnikova et al., 2007]. This method allows us to determine particle size distributions and smoke densities (when calibrated electron density data is available) in the range of approximately 70 to 90 km altitude depending on background atmospheric composition. We present results from a period of strong D-Region ionization when the detected signal-to-noise (SNR) from the D-region is strongest (12 - 19 UT). Our results provide insight into the presence and distribution of charged meteoric dust in the polar mesopause region resulting from the condensation of ablated material of meteoric origin. Furthermore, we compare our results to other HPLA radar sites at high latitude (EISCAT) as well as low latitude (Arecibo) to verify our results and investigate any latitudinal variation that may exist.

  2. Signal evaluations using singular value decomposition for Thomson scattering diagnostics.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K

    2014-11-01

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters. PMID:25430278

  3. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    SciTech Connect

    Tojo, H. Yatsuka, E.; Hatae, T.; Itami, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  4. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the

  5. Incoherent source angular domain imaging through complex three-dimensional scattering structures

    NASA Astrophysics Data System (ADS)

    Cheng, Rongen L. K.; Chiang, Gary; Chapman, Glenn H.

    2012-03-01

    Scattering of photons in biological imaging is a known factor of degrading image resolution and quality. Angular Domain Imaging (ADI) is a technique which utilizes the angular distribution of photons to filter out multiple-scattering photons and accept only photons with small angular deviation from their original trajectories. The advantage of ADI is that it does not require a high optical quality, coherent, or pulsed source to acquire quality image. Initial experiments with Spatialfrequency Filter (SFF) ADI on simple liquid scattering test phantom showed good results as it can image through media with scattering ratio (SR) of 106:1. Previous work with complex 3D aquatic species eliminated scattering but showed optical interference patterns from the coherent laser sources. With SFF ADI, our target is to image through a complex 3D scattering structure with multilayer of different refractive indices and scattering coefficient from an Intralipid-infused polymer/agar, and a small species called Branchiostoma lanceolatum, a lancelet that is 5-8cm long and ~5mm thick. To remove interference, several narrow wavelength-band LEDs were used as illumination sources with one peaks at 630nm and the other peaks at 415nm. The LEDs are collimated and illuminates the 3D structure/lancelet in a water-filler container while a SFF removes the scattered photons before the imager. This allows us to reduce the optical interference and to study the impact of switching from coherent laser source into an incoherent narrow wavelength-band source. Hence, it allows us to investigate the enhancement of imaging the internal structures using the incoherent narrow wavelength-band source.

  6. Comparisons of Total Electron Content with GPS and Incoherent Scatter Radar during IPY

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Zhang, S.; Rideout, W. E.

    2008-12-01

    Since the early 1990's, comparisons of the measured total electron content (TEC) have been made between GPS and incoherent scatter radar (ISR). This was first done in 1990 using data collected at the Millstone Hill ISR site in Westford, MA. The Millstone Hill ISR can measure electron density up to approximately 800 km, depending on the amount of signal integration and/or the total amount background ionization. The initial ISR and GPS TEC comparisons were somewhat surprising in that the differences between these measurements varied significantly depending on the geomagnetic conditions. Prior to a geomagnetic storm, there were indications that as much as 20 percent of the background TEC was observed to be above 800 km. Directly after the geomagnetic storm, the average difference between the ISR and GPS TEC measurements was almost zero. This has been recently explained by the IMAGE satellite observations of the plasmaspheric drainage plumes which effectively drain plasma from the plasmasphere out into space during geomagnetically active conditions. Here, we will report on comparisons of the GPS and ISR estimates of the TEC in the high latitudes from the first year of the IPY, March 1, 2007 through March 1, 2008. Our analysis will focus on data from the ISRs associated with the high latitudes: the Poker Flat radar in Alaska, the EISCAT radar in Svalbard, the Sondrestrom radar in Greenland, and the Millstone Hill radar in Massachusetts. During this time period, the Poker Flat (PFISR) and EISCAT Svalbard (ESR) radars ran continuously. The Millstone Hill and Sondrestrom ISRs ran bi-weekly throughout the year. These comparisons will utilize TEC data from the Madrigal database that was estimated from the global network of GPS receivers. In addition, TEC data collected from individual GPS receivers located near the ISRs will be examined. The GPS versus ISR TEC comparisons will be used to study the variation of the high altitude electron content as a function of latitude

  7. Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Li; Li, Hui

    2015-01-01

    An analytic equation interpreting the intensity of ultrasound-modulated scattering light is derived, based on diffusion theory and previous explanations of the intensity modulation mechanism. Furthermore, an experiment of ultrasonic modulation of incoherent light in a scattering medium is developed. This analytical model agrees well with experimental results, which confirms the validity of the proposed intensity modulation mechanism. The model supplements the existing research on the ultrasonic modulation mechanism of scattering light. Project supported by the National Natural Science Foundation of China (Grant No. 61178089), the Key Program of Science and Technology of Fujian Province, China (Grant No. 2011Y0019), and the Educational Department of Fujian Province, China (Grant No. JA13074).

  8. Observations of plasma line splitting in the ionospheric incoherent scatter spectrum.

    PubMed

    Bhatt, Asti N; Nicolls, Michael J; Sulzer, Michael P; Kelley, Michael C

    2008-02-01

    Wide-bandwidth ionospheric incoherent scatter (IS) spectra obtained using the Arecibo IS radar show the occurrence of a split in the plasma line (i.e., two plasma lines) when the plasma frequency is close to the second harmonic of the electron gyrofrequency. This split is predicted in the IS theory for a magnetized plasma, but observations have never been reported. Here we present the experimental results and theoretical calculations supporting the observations. These results may assist in understanding the behavior of Langmuir waves in the magnetized plasma and are a validation of what historically was a somewhat controversial aspect of the IS theory. PMID:18352291

  9. The diurnal variation of E-F valley parameters from incoherent scatter measurements at Arecibo

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Sethi, N. K.; Pandey, V. K.

    1997-01-01

    The size and shape of the valley region between E and F layers is studied for nighttime conditions by using high resolution electron density profiles measured by the incoherent scatter radar at Arecibo, Puerto Rico, (18.3 degN,66.7 degW). Important valley parameters like width, depth and height of the valley minimum are derived from these measurements. By combining these nighttime results with our earlier daytime model (Mahajan, et. al, 1994), we now present a model for the full diurnal variation of the E-F valley parameters. Comparison with IRI-90 indicates significant differences between our model and the IRI valley model.

  10. Incoherent scatter radar-FAST satellite common volume observations of upflow-to-outflow conversion

    NASA Astrophysics Data System (ADS)

    Sánchez, Ennio R.; StrØmme, Anja

    2014-04-01

    Incoherent scatter radar measurements from the Sondrestrom Research Facility and the European Incoherent Scatter Svalbard radar have been combined with all-sky images, polar convection measurements, and FAST particle and field measurements to quantify the contribution of different magnetosphere-ionosphere coupling processes to the extraction efficiency of ions from the ionosphere. Upflowing ions are traced from their source vertically and horizontally to determine where and when they are likely to intersect the acceleration region observed by FAST. The duration and location of auroral emissions are used to estimate the size and duration of the acceleration region. The upflow-to-outflow efficiency is estimated for three periods of polar cap boundary intensifications and streamers during substorm recovery and steady magnetospheric convection. The extraction efficiency of conics ranges between 0.1%, for the lowest amplitude of broadband extremely low frequency waves, and 5%, for the highest-amplitude waves sampled. Simultaneous measurements of all-sky images and magnetic field-aligned radar measurements show that the most intense ion upflux occurs adjacent to the boundary of intense electron precipitation characteristic of polar cap boundary intensifications and streamers, suggesting that the most efficient acceleration mechanisms couple ionospheric heating at F region altitude with dispersive Alfvén waves that grow from horizontal gradients in electric field and conductivity.

  11. Ionosonde measurements in Bayesian statistical ionospheric tomography with incoherent scatter radar validation

    NASA Astrophysics Data System (ADS)

    Norberg, J.; Virtanen, I. I.; Roininen, L.; Vierinen, J.; Orispää, M.; Kauristie, K.; Lehtinen, M. S.

    2015-09-01

    We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters, and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient and statistically clear inversion algorithm for tomography. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT UHF incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the height distribution of electron density, and outperforms the alternative prior information sources. With an ionosonde at continuous disposal, the presented method enhances stand-alone near real-time ionospheric tomography for the given conditions significantly.

  12. Investigation of coherent to incoherent scattering cross section ratios of some foil metals depending on the temperature

    NASA Astrophysics Data System (ADS)

    Çatal, N.; Ertuğrul, M.; Özdemir, Y.

    2016-04-01

    In this study, it was aimed at examining the cross section ratios of coherent and incoherent scattering depending on the temperature for the elements Cd, In, Sn and Pb by 59.5 keV γ-rays from a 100 mCi 241Am radioisotope point source. The coherent and incoherent cross section of Cd, In, Sn and Pb have been measured by using a Si(Li) solid-state detector at temperature between 30-300 °C. Coherent to incoherent cross section ratios and FWHM (Full width at half maximum) of the elements have been calculated. Temperature-dependent changes of the parameters have been given in the graphical forms. Based on the results obtained, coherent to incoherent cross section ratios of the elements are dependent on the temperature. It is observed that coherent to incoherent cross section ratios of Cd, In, and Pb decrease with increasing temperature. For Sn, first of all coherent and incoherent intensity ratios decrease, then increase and decrease again respectively. To sum up, coherent to incoherent cross section ratios tend to decrease with increasing temperature.

  13. TID characterised using joint effort of incoherent scatter radar and GPS

    NASA Astrophysics Data System (ADS)

    van de Kamp, M.; Pokhotelov, D.; Kauristie, K.

    2014-12-01

    Travelling Ionospheric Disturbances (TIDs), which are caused by Atmospheric Gravity Waves (AGWs), are detected and characterised by a joint analysis of the results of two measurement techniques: incoherent scatter radar and multiple-receiver GPS measurements. Both techniques to measure TIDs are already well known, but are developed further in this study, and the strengths of the two are combined, in order to obtain semi-automatic tools for objective TID detection. The incoherent scatter radar provides a good vertical range and resolution and the GPS measurements provide a good horizontal range and resolution, while both have a good temporal resolution. Using the combination of the methods, the following parameters of the TID can be determined: the time of day when the TID occurs at one location, the period length (or frequency), the vertical phase velocity, the amplitude spectral density, the vertical wavelength, the azimuth angle of horizontal orientation, the horizontal wavelength, and the horizontal phase velocity. This technique will allow a systematic characterisation of AGW-TIDs, which can be useful, among other things, for statistical analyses. The presented technique is demonstrated on data of 20 January 2010 using data from the EISCAT incoherent scatter radar in Tromsø and from the SWEPOS GPS network in Sweden. On this day around 07:00-12:00 UT, a medium-scale TID was observed from both data sets simultaneously. The TID had a period length of around 2 h, and its wave propagated southeastward with a horizontal phase velocity of about 67 m s-1 and a wavelength of about 500 km. The TID had its maximum amplitude in Tromsø at 10:00 UT. The period length detected from the GPS results was twice the main period length detected from the radar, indicating a different harmonic of the same wave. The horizontal wavelength and phase velocity are also estimated from the radar results using Hines' theory, using the WKB approximation to account for inhomogeneity of the

  14. MIDAS-W: a workstation-based incoherent scatter radar data acquisition system

    NASA Astrophysics Data System (ADS)

    Holt, J. M.; Erickson, P. J.; Gorczyca, A. M.; Grydeland, T.

    2000-09-01

    The Millstone Hill Incoherent Scatter Data Acquisition System (MIDAS) is based on an abstract model of an incoherent scatter radar. This model is implemented in a hierarchical software system, which serves to isolate hardware and low-level software implementation details from higher levels of the system. Inherent in this is the idea that implementation details can easily be changed in response to technological advances. MIDAS is an evolutionary system, and the MIDAS hardware has, in fact, evolved while the basic software model has remained unchanged. From the earliest days of MIDAS, it was realized that some functions implemented in specialized hardware might eventually be implemented by software in a general-purpose computer. MIDAS-W is the realization of this concept. The core component of MIDAS-W is a Sun Microsystems UltraSparc 10 workstation equipped with an Ultrarad 1280 PCI bus analog to digital (A/D) converter board. In the current implementation, a 2.25 MHz intermediate frequency (IF) is bandpass sampled at 1 µs intervals and these samples are multicast over a high-speed Ethernet which serves as a raw data bus. A second workstation receives the samples, converts them to filtered, decimated, complex baseband samples and computes the lag-profile matrix of the decimated samples. Overall performance is approximately ten times better than the previous MIDAS system, which utilizes a custom digital filtering module and array processor based correlator. A major advantage of MIDAS-W is its flexibility. A portable, single-workstation data acquisition system can be implemented by moving the software receiver and correlator programs to the workstation with the A/D converter. When the data samples are multicast, additional data processing systems, for example for raw data recording, can be implemented simply by adding another workstation with suitable software to the high-speed network. Testing of new data processing software is also greatly simplified, because a

  15. Coherent and incoherent scatterings for measurement of mandibular bone density and stable iodine content of tissue

    PubMed Central

    Sharma, Amandeep; Singh, Mohinderpal; Singh, Bhajan; Sandhu, Balvir S.

    2009-01-01

    The aim of present study is to investigate the feasibility of gamma ray scattering for measurements of mandibular bone density and stable iodine content of tissue. Scattered spectra from solutions of K2HPO4 in distilled water (a phantom simulating the mandibular bone) and KI in distilled water filled in a thin plastic vial (a phantom simulating the kinetics of thyroid iodine) are recorded for 59.54 and 145 keV incident gamma rays, respectively. A high-purity germanium detector is placed at various angular positions to record the scattered spectra originating from interactions of incident gamma rays with the phantom. The measured intensity ratio of coherent to incoherent scattered gamma rays, corrected for photo-peak efficiency of HPGe detector, absorption of gamma rays in air column present between phantom and detector, and self-absorption in the phantom, is found to be increasing linearly with increase in concentration of K2HPO4 and KI in distilled water within experimental estimated error of <6%. The regression lines, obtained from experimental data for intensity ratio, provide the bone density and stable iodine contents of thyroid. The present non-destructive technique has the potential for a measure of mandibular bone density and stable iodine contents of thyroid. PMID:20098568

  16. Incoherent Quasielastic Neutron Scattering study of hydrogen diffusion in thorium-zirconium hydrides

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt A.; Mamontov, Eugene; Balooch, Mehdi; Olander, Donald R.

    2010-06-01

    Monophase thorium-zirconium hydrides (ThZr 2H x) have been fabricated starting from a metallic alloy and the hydrogen stoichiometry determined by X-ray diffraction. Incoherent Quasielastic Neutron Scattering (IQNS) on the hydrides was conducted over the temperature range 650-750 K at the Backscattering Silicon Spectrometer (BASIS) at the Spallation Neutron Source (SNS) at ORNL. The isotropic Chudley-Elliott model was utilized to analyze the quasielastic linewidth broadening data as function of momentum transfer. The diffusion coefficient and average jump distance of hydrogen atoms in ThZr 2H 5.6 and ThZr 2H 6.2 were extracted from the measurements.

  17. Estimating the vector electric field using monostatic, multibeam incoherent scatter radar measurements

    NASA Astrophysics Data System (ADS)

    Nicolls, Michael J.; Cosgrove, Russell; Bahcivan, Hasan

    2014-11-01

    An algorithm has been developed to image the local structure in the convection electric field using multibeam incoherent scatter radar (ISR) data. The imaged region covers about 4° in magnetic latitude and 8° in magnetic longitude for the specific geometry considered (that of the Poker Flat ISR). The algorithm implements the Lagrange method of undetermined multipliers to regularize the underdetermined problem posed by the radar measurements. The error on the reconstructed image is estimated by mapping the mathematical form to a Bayesian estimate and observing that the Lagrangian method determines an effective a priori covariance matrix from a user-defined regularization metric. There exists a unique solution when the average measurement error is smaller than the average measurement amplitude. The algorithm is tested using synthetic and real data and appears surprisingly robust at estimating the divergence of the field. Future applications include imaging the current systems surrounding auroral arcs in order to distinguish physical mechanisms.

  18. Experimental and Computational Studies on Collective Hydrogen Dynamics in Ammonia Borane: Incoherent Inelastic Neutron Scattering

    SciTech Connect

    Kathmann, Shawn M.; Parvanov, Vencislav M.; Schenter, Gregory K.; Stowe, Ashley C.; Daemen, Luke L.; Hartl, Monika A.; Linehan, John C.; Hess, Nancy J.; Karkamkar, Abhijeet J.; Autrey, Thomas

    2009-02-26

    Incoherent inelastic neutron scattering can be used as a sensitive probe of the vibrational dynamics in chemical hydrogen storage materials. Thermal neutron energy loss measurements at 10K are presented and compared to the vibrational power spectrum calculated using ab initio molecular dynamics of pure and deuterated ammonia borane (NH3BH3, NH3BD3, and ND3BH3). A harmonic vibrational analysis on NH3BH3 clusters was also explored to check for consistency with experiment and the power spectrum. The measured neutron spectra and computed ab initio power spectrum compare extremely well (50 to 500 cm-1) and some assignment of modes to simple motion is possible, however, it is found that the lowest modes (below 250 cm-1) are dominated by collective motion. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  19. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. II - Composition

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Reber, C. A.; Newton, G. P.; Spencer, N. W.; Brinton, H. C.; Mayr, H. G.; Potter, W. E.

    1977-01-01

    Measurements of O, He, and Ar from neutral gas mass spectrometers on four satellites (Ogo 6, San Marco 3, Aeros A, and AEC-C) and inferred oxygen and hydrogen densities from an ion mass spectrometer on AE-C have been combined with a neutral temperature and nitrogen density model to produce a global model of thermospheric composition in terms of inferred variations at 120 km. The data set covers the time period from mid-1969 to mid-1975. The MSIS (mass spectrometer and incoherent scatter data) model is compared with the Ogo 6 model (Hedin et al., 1974). Ar variations at 120 km tend to be in phase with temperature variations and inverse to the He, O, and H variations.

  20. Anomalous vibrational modes in acetanilide: A F. D. S. incoherent inelastic neutron scattering study

    SciTech Connect

    Barthes, M.; Moret, J. ); Eckert, J.; Johnson, S.W.; Swanson, B.I.; Unkefer, C.J. )

    1991-01-01

    The origin of the anomalous infra-red and Raman modes in acetanilide (C{sub 6}H{sub 5}NHCOCH{sub 3}, or ACN), remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons nonlinear vibrational coupling, or polaronic'' localized modes. An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed and recently the existence of slightly non-degenerate hydrogen atom configurations in the H-bond was suggested as an explanation for the anomalies. In this paper we report some new results on the anomalous vibrational modes in ACN that were obtained by inelastic incoherent neutron scattering (INS).

  1. Detection of artificially created negative ion clouds with incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Sultan, Peter J.; Mendillo, Michael; Oliver, William L.; Holt, John M.

    1992-01-01

    The physical mechanisms by which negative ions change the shape of the incoherent scatter spectrum, and the way in which shape changes may be used to detect the presence of heavy positive and negative ions in an ambient ionosphere are investigated. In order to detect heavy negative ions, the temperature structure of the ionosphere is fixed to a prevent average measurement, and any changes in spectral shape during the experiment are interpreted as being caused by changes in composition, and not by changes in the temperature ratio Te/Ti. The spatial and temporal development of heavy negative ion plasma clouds created during four active chemical release experiments was observed. Concentrations of 10-40-percent SF6(-) were detected in SPINEX 1, SPINEX 2, and IMS data sets. An average uncertainty of +/-10-percent SF6(-) is present in all three experiments. Concentrations of 30-percent Br(-) were detected in the NICARE 1 release, with uncertainties of +/-4 percent.

  2. MST data exchange through the NCAR incoherent-scatter radar data base

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.

    1986-01-01

    One means of making MST (mesosphere stratosphere troposphere) radar data more easily accessible for scientific research by the general scientific community is through a centralized data base. Such a data base can be designed to readily provide information on data availability and quality, and to provide copies of data from any radar in a common format to the user. The ionospheric incoherent scatter community has established a centralized data base at NCAR that may serve not only as a model for a possible MST data base, but also as a catalyst for getting an MST data base started. (Some key elements of the NCAR data base are given.) The NCAR data base can include MST data in the same framework with relatively little extra effort. They are willing to handle MST data on a limited basis in order to permit assessment of community interest and in order to provide some experience with a centralized data base for MST data.

  3. Incoherent scatter measurements of E region conductivities and currents in the auroral zone

    NASA Technical Reports Server (NTRS)

    Brekke, A.; Doupnik, J. R.; Banks, P. M.

    1974-01-01

    Data taken by incoherent scatter radar have been used to investigate ionospheric conductivities and electrical currents. During quiet days, the conductivities appear to vary in a way consistent with ionization arising from solar EUV radiation. In the evening hours, enhancements in the northward electric field are found to precede small increases in the conductivities. Strong enhancements of the Hall conductivity relative to the Pedersen conductivity occur during negative bays when the electric field is in a southwestward direction. The ionospheric currents calculated in the geomagnetic east-west direction are in good agreement with the H component measured by a nearby magnetometer; this result indicates that the current causing the ground level magnetic fluctuations is a broad horizontal sheet current. The north-south ionospheric current, however, consistently disagrees with the observed D component in a manner that cannot easily be explained unless currents parallel to the earth's magnetic field are present.

  4. Incoherent scatter radar and in situ and chemical release measurements of

    NASA Astrophysics Data System (ADS)

    Kudeki, Erhan; Pfaff, Robert; Larsen, Miguel

    2016-07-01

    Two sounding rockets collecting DC and AC electric field and plasma density measurements were launched into the equatorial ionosphere during an active E-region sunset event being monitored by ALTAIR and IRIS (UHF and VHF) radar systems. TMA and lithium vapor releases by the rockets climbing to 180 and 330 km apogees also enabled the measurements of E- and lower F-region neutral winds during this pre-reversal enhancement period followed by spread-F activity. E-region turbulence during sunset and F-region turbulence and plasma drifts that developed subsequently were monitored by ALTAIR and IRIS (a 50 MHz two-element fixed-beam radar interferometer) systems using a combination of coherent and incoherent scatter modes. Winds, drifts, and turbulence measurements of the post sunset ionosphere conducted during this equatorial vortex experiment (EVEX) and their implications for post-sunset spread-F development will be presented and discussed.

  5. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    SciTech Connect

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul; Harbola, Upendra

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  6. Electric fields and neutral winds from monostatic incoherent scatter measurements by means of stochastic inversion

    NASA Astrophysics Data System (ADS)

    Nygrén, T.; Aikio, A. T.; Kuula, R.; Voiculescu, M.

    2011-05-01

    A new method utilizing stochastic inversion in determining the electric field and neutral wind from monostatic beam swing incoherent scatter measurements is described. The method consists of two stages. In the first stage, beam-aligned ion velocities from a chosen F region height interval and a set of subsequent beam directions are taken as measurements. The unknowns are the two electric field components and the field-aligned ion velocity profile. The solution gives the most probable values of the unknowns with error estimates. In the second stage, the measurements consist of beam-aligned ion velocities from the E region, and the electric fields given by the first inversion problem are also used as measurements. The number of applied beam directions may be greater than in the first inversion problem. This is a feasible approach since the neutral wind usually changes more slowly than the electric field. The solution of the second inversion problem gives the most probable values of the three neutral wind components. Results of the method are shown for 11 September 2005, when the European Incoherent Scatter (EISCAT) UHF radar was running in the CP2 experiment mode, which is a four-position 6 min monostatic cycle. In addition, from each beam direction a tristatic measurement at one F region range gate was made using two additional receivers. That allowed comparison between the monostatic and tristatic electric field results, which were in excellent agreement. The calculated neutral wind components were in good accordance with previous measurements during disturbed conditions from the same site.

  7. Conjugate In-situ and Incoherent Scatter Radar Observations of Radiation Belt Loss Mechanisms.

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Jaynes, A. N.; Sanchez, E. R.; Nicolls, M. J.; Varney, R. H.; Marshall, R. A.

    2015-12-01

    We present results from conjugate observations between the Radiation Belt Storms Probe (RBSP) and the Poker Flat Incoherent Scatter Radar (PFISR) of energetic radiation belt precipitation. A key objective of the RBSP mission is to understand loss mechanisms of energetic particles from the radiation belt. The relative contribution from plasma waves (e.g., EMIC, hiss, chorus, and etc.) that pitch angle scatter particles into the loss cone remains an open scientific question. Rigorous experimental validation of these mechanisms is difficult to achieve because nearly simultaneous conjugate observations of in-situ pitch angle scattering and precipitation into the atmosphere are required. One ground-based signature of energetic precipitation is enhanced ionization and electron density at D-region altitudes. Incoherent scatter radar is a powerful remote sensing technique that is sensitive to electron density enhancements. By measuring the altitude profiles of ionization we infer the flux of particles precipitating into the atmosphere. PFISR observations show frequent occurrence of D-region ionization during both quiet-time and storm-time conditions. We present results from two events when the foot-points of the RBSP satellite were within 500 km of PFISR: a quiet-time event on January 13, 2015, and a storm-time event on April 16, 2015. PFISR observations of the D-region ionization signatures are presented, along with simultaneous conjugate RBSP observations of the magnetic field, electric field, and electron flux. Plasma waves are identified using the electric and magnetic field data, and evaluated as possible pitch angle scattering mechanisms. A direct comparison between the measured fluxes and loss cone fluxes predicted by theoretical wave-particle diffusion rates into the loss cone is used to test the validity of particle loss mechanisms predicted by the different theories. Preliminary results are presented of PFISR inversions of the D-region ionization to quantify the

  8. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  9. Incoherent quasielastic neutron scattering study on the polymorphism of tristearin: dynamical properties of hydrocarbon chains.

    PubMed

    Takechi, Chikayo; Kawaguchi, Tatsuya; Kaneko, Fumitoshi; Yamamuro, Osamu; Akita, Hiroyuki; Ono, Machiko; Suzuki, Masao

    2007-08-23

    Dynamical properties of acyl chains in the three polymorphic phases alpha, beta', and beta of tristearin [C(3)H(5)(OCOC(17)H(35))3] have been studied by means of incoherent quasielastic neutron scattering (IQNS) using selectively deuterated samples. The mean square displacement of hydrogen atoms, , was estimated from the scattering vector Q dependence of the elastic scattering component under the harmonic approximation. It was shown that the temperature dependence of was significantly different between the three phases. There was no marked difference in between these phases up to 193 K, and the value increased linearly with temperature. Although the beta phase remained linear up to 293 K, the alpha and beta' phases started to show a nonlinear increase around 200 K, suggesting an anharmonic nature of molecular motions. The alpha phase exhibited the most conspicuous temperature dependence. These characteristics were ascribable to the difference in the lateral packing of acyl chains. Compared with the beta phase which has a tightly packed T// subcell, the beta' and alpha phases have looser O perpendicular and H subcells, respectively. The molecular motion in the alpha phase was analyzed using the model of uniaxial rotational diffusion in a onefold cosine potential. It has been clarified that the rotational fluctuation about the chain axis in the alpha phase is rather restricted compared with that in the rotator phase of n-alkanes. PMID:17661503

  10. Electroacoustical imaging technique for encoding incoherent radiance fields as Gabor elementary signals

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.

    1985-01-01

    A technique is presented for directly encoding incoherent radiance fields as Gabor elementary signals. This technique uses an electro-acoustic sensor to modulate the electronic charges induced by the incident radiance field with the electric fields generated by Gaussian modulated sinusoidal acoustic waves. The resultant signal carries the amplitude and phase information required for localizing spatial frequencies of the radiance field. These localized spatial frequency representations provide a link between the either geometric or Fourier transform representations currently used in computer vision and pattern recognition.

  11. Proton vibrational dynamics in lithium imide investigated through incoherent inelastic and Compton neutron scattering.

    PubMed

    Pietropaolo, A; Colognesi, D; Catti, M; Nale, A-C; Adams, M A; Ramirez-Cuesta, A J; Mayers, J

    2012-11-28

    In the present study we report neutron spectroscopic measurements on polycrystalline lithium imide, namely, incoherent inelastic neutron scattering at 20 K, and neutron Compton scattering from 10 K up to room temperature. From the former technique the H-projected density of phonon states up to 100 meV is derived, while the latter works out the spherically averaged single-particle (i.e., H, Li, and N) momentum distributions and, from this, the mean kinetic energies. Only for H at the lowest investigated temperature, non-gaussian components of its momentum distribution are detected. However, these components do not seem directly connected to the system anharmonicity, being fully compatible with the simple N-H bond anisotropy. Neutron data are also complemented by ab initio lattice dynamics simulations, both harmonic and, at room temperature, carried out in the framework of the so-called "quantum colored noise thermostat" method. The single-particle mean kinetic energies in lithium imide as a function of temperature show a quite peculiar behavior at the moment not reproduced by ab initio lattice dynamics methods, at least as far as H and Li are concerned. As matter of fact, neither their low temperature values nor their temperature trends can be precisely explained in terms of standard phonon calculations. PMID:23206005

  12. Influence of gramicidin on the dynamics of DMPC studied by incoherent elastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U.; D'Angelo, G.; Conti Nibali, V.; Gonzalez, M.; Crupi, C.; Mondelli, C.

    2008-03-01

    By using the fixed energy window method in incoherent elastic neutron scattering, molecular motions in the 150 ps timescale in highly oriented multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) membranes in excess of water (D2O) have been studied as a function of temperature, in the range from 27 to 325 K. The same system in partially deuterated form and with the addition of a pore-forming peptide (gramicidin) has also been investigated. By proper orientation of the membrane plane with respect to the scattering wavevector Q, information on in plane and out of plane motions of lipid membranes have been derived. Two relevant dynamical transitions were observed at T = 297 K and at T = 270 K. The former is related to the structural main transition from gel to liquid phase of the phospholipid bilayer, while the latter is related to a transition of the aqueous solvent. The inclusion of gramicidin shifts the main transition down to 294 K and the second transition up to 276 K. In both cases the observed dynamical transitions show an enhanced mobility in the direction normal to the membrane plane.

  13. EISCAT incoherent scatter radar measurements of artificial ionospheric modification at sub-ms time scales

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Nicolls, M. J.

    2011-12-01

    Efficient generation of ELF/VLF waves through the modulation of ionospheric currents requires reliable measurements of the modulated current for different heater parameters. Incoherent scatter radar (ISR) measurements of modified plasma densities/temperatures would be ideal in quantifying the heating and cooling cycles in response to modulated heating by high-power HF waves. Considering the ms time scales of ELF/VLF generation processes, it is necessary to resolve the heating and cooling cycles at sub-ms time scales. Such measurements using ISRs have largely been avoided due to the common knowledge that the instrument requires minutes of integration. We present herein the results of an epoch averaging experiment using EISCAT that provides 0.2 ms resolution ISR power measurements as a function of phase into the HF heater ON and OFF cycle. In ELF/VLF generation, it is the electron temperature (Te) modulation that results in the modulation of electron collision frequency/mobility and therefore the electrojet modulation. Assuming a reliable electron collision frequency for transport as a function of Te, it is necessary to measure Te and electron density (Ne) simultaneously to predict the ionospheric current modulation. This is possible if (1) two incoherent scatter radars operating at sufficiently different frequencies are used and if (2) the Debye length and Bragg wavelengths are comparable. For the experiment results presented here, the ionospheric volume modified by the EISCAT heater were probed by both EISCAT UHF and VHF incoherent scatter radars operating at 0.16 m and 0.67 m Bragg wavelengths. Considering Ne=1e9 e/m3 in the D region ionosphere, for electron temperature Te=300 K, the Debye length is 0.38 m, where as for Te=1000 K the Debye length is 0.69 m; these parameters are reasonably appropriate to extract Te/Ne from simultaneous UHF/VHF data. We successfully detected ISR power modulation both in the E and F region heated ionosphere. Our findings are as

  14. Polymer Diffusion in Microgels with Upper Critical Solution Temperature as Studied by Incoherent Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Serrano Ruiz, D.; Alonso Cristobal, P.; Laurenti, M.; Rubio Retama, J.; Lopez-Cabarcos, E.

    2014-11-01

    Poly(acrylic-acrylamide) interpenetrated microgels present continuous phase transition from collapsed to swollen state around 42 °C. The upper critical solution temperature (UCST) of this polymeric system has prompted scientists to consider them candidates for its use in biological applications such as smart drug delivery devices since the swelling of the polymer matrix would permit the release of the drug previously entrapped within the microgels. In these systems the increment of the temperature can break inter-chain interactions, mainly hydrogen bonds, which reduce the elastic tension that stabilizes the microgel, favoring the polymer swelling. The microgel molecular dynamics at the UCST can be investigated using Incoherent Elastic (IENS) and Quasielastic Neutron Scattering (IQNS). From the analysis of the IQNS data we obtained that the diffusion coefficient of the polymer segments depends on the composition of the interpenetrated matrix. Thus, at room temperature, microgels with a polymer composition of 50% of each component present a diffusion coefficient 1·10-12 m2/s, while for the microgels formed by only one component the diffusion coefficient is 5.10-10 m2/s. This huge difference in the diffusion coefficient is conspicuously reduced when temperature increases, and we attribute this effect to the breaking of the inter-chain interaction. By means of FTIR-ATR analysis we have identified the groups that are involved in this phenomenon and we associate the breaking of the polyacrylic-polyacrylamide interactions with the swelling of the microgels.

  15. Study of auroral dynamics with combined spacecraft and incoherent-scatter radar data

    NASA Technical Reports Server (NTRS)

    Watermann, Juergen

    1993-01-01

    We have examined Sondrestrom incoherent-scatter radar observations of ionospheric plasma density and temperature distributions, as well as measurements of F-region ion drifts that were made during a prenoon pass by the DMSP-F7 satellite through the radar field of view. The spacecraft traversed a region of intense electron precipitation with a characteristic energy below approximately 200 eV. Particles with such low characteristic energies are believed to originate, either directly or indirectly, in the magnetosheath. The precipitation region had a width of about 2 deg invariant latitude. The corotating radar observed a patch of enhanced electron density and elevated electron temperature in the F2 region between about 10.5 and 12 magnetic local time in the same invariant latitude range where DMSP-F7 detected the soft-electron flux. The ion drift pattern, also obtained by radar, shows that it is unlikely that the plasma patch was produced by solar radiation and advected into the radar field of view. We suggest that the radar observed modifications of the ionospheric plasma distribution, which resulted from direct entry of magnetosheath electrons into the magnetosphere and down to ionospheric altitudes. Model calculations of the ionospheric response to the observed electron flux support our interpretation.

  16. Tristatic observations of meteors using the 930 MHz European Incoherent Scatter radar system

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Pellinen-Wannberg, Asta; Wannberg, Gudmund; Westman, Assar; HäGgströM, Ingemar; Meisel, David D.

    2002-11-01

    We report results from the first tristatic measurements of radar meteors obtained during 17 November 1997 and 1998, using the UHF (930 MHz) European Incoherent Scatter (EISCAT) radar system. The observing technique utilized for these observations was first reported by [1998a]. This system consists of three 32-m parabolic antennae located in northern Scandinavia. Since EISCAT observes mostly meteor head echoes, a general characteristic of high-power/large-aperture radars, direct Doppler velocity (±1 km/s) determinations are possible. In addition, using the technique reported here, absolute geocentric meteor velocity and good radiant information (±5°) are deduced for those meteors that are detected simultaneously by all three receivers. An overview of the methodology and a summary of the results obtained so far are reported in this work. We compare the results obtained using this method with those reported by previous large-aperture meteor radar work at lower frequencies and find general agreement. EISCAT detects mainly sporadic particles extending the fast daily sporadic micrometeor storms first suggested by [2000b] and [2001] to submillimeter particles. To the best of our knowledge, these observations represent the first of their kind and prove EISCAT to be a crucial instrument for the study of extraterrestrial particles entering the Earth's atmosphere, in particular at very high geocentric latitudes and high geocentric speeds.

  17. Telescience capability for the Sondre Stromfjord, Greenland, incoherent-scatter radar facility

    NASA Technical Reports Server (NTRS)

    Zambre, Yadunath B.

    1993-01-01

    SRI International (SRI) operates an upper-atmospheric research facility in Sondre Stromfjord (Sondrestrom), Greenland. In the past, the facility's remote location and limited logistical support imposed constraints on the research that could be carried out at the site. Campaigns involving multiple instruments were often constrained due to limited space, and experiments requiring coordination with other geographically separated facilities, though possible, were difficult. To provide greater access to the facility, an electronic connection between Sondrestrom and the mainland U.S.A. was established, providing access to the National Science Internet. SRI developed telescience software that sends data from the incoherent scatter radar at the Sondrestrom facility to SRI's offices in Menlo Park, California. This software uses the transmission control protocol (TCP/IP) to transmit the data in near real time between the two locations and the X window system to generate displays of the data in Menlo Park. This is in contrast to using the X window system to display data remotely across a wide-area network. Using CP to transport data over the long distance network has resulted in significantly improved network throughput and latency. While currently used to transport radar data, the telescience software is designed and intended for simultaneous use with other instruments at Sondrestrom and other facilities. Work incorporating additional instruments is currently in progress.

  18. Ionospheric climatology and model from long-term databases of worldwide incoherent scatter radars

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Holt, J. M.; van Eyken, T.; McCready, M.; Amory-Mazaudier, C.; Fukao, S.; Sulzer, M.

    2005-05-01

    Long-term databases of worldwide incoherent scatter radars are utilized to study ionospheric climatology and create empirical models for electron density, ion and electron temperatures, and ion drifts. These radars, including, from magnetic north to south and east to west, EISCAT Svalbard Radar (Norway), Soundrestrom Radar (Greenland), EISCAT Tromso Radars (Norway), Millstone Hill Radar (USA), St. Santin Radar (France), Shigaraki Middle and Upper atmosphere (MU) Radar (Japan) and Arecibo Radar (Puerto Rico), are able to characterize diurnal, seasonal, and solar cycle variations of height dependent ionospheric strctures in a broad latitude and longitude area. In these huge databases, available through the MADRIGAL system (http://www.openmadrigal.org), the data cover generally 1-2 solar cycles, and for Millstone Hill and Arecibo they span nearly 3 solar cycles. Based on these data, our systematical analyses result in a comprehensive overview of various features of the ionosphere and series of web-based empirical models (http://www.haystack.mit.edu/madrigal/Models/). This presentation will review local models for each site and discuss the ionospheric climatology, with emphasis on the development of annual/semiannual electron density variations with latitudes and longitudes, and on ionospheric thermal status at midlatitudes. This presentation will also explore the long-term trend of ionospheric electron density and ion temperature variations from Millstone Hill observations.

  19. The Resolute Bay Incoherent Scatter Radar: Initial Results and Future Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Dahlgren, H.; Sundberg, T.; Perry, G. W.; St-Maurice, J.; Shiokawa, K.; Hosokawa, K.; Zettergren, M. D.; Donovan, E.; Nicolls, M. J.

    2013-12-01

    The Resolute Bay Incoherent Scatter Radar (RISR) is the most recent facility developed under the NSF Advanced Modular ISR (AMISR) program, and the first ever ISR deployed to the geomagnetic polar cap region. The AMISR radars are electronically steerable, enabling the acquisition of three-dimensional, time-dependent, information over a significant regional volume. This paper provides a review of science results from the first two years of RISR operations. Of particular interest are studies that synthesize the new information about the intrinsic state variables (Ne, Te, Ti) with measurements by extant common-volume sensors (HF radar, all-sky imager, Fabry-Perot interferometer). The careful co-registration of these heterogeneous measurements is shown to provide new constraints on the nature of time-dependent solar wind-magnetosphere-ionosphere interactions in open magnetic-field regions. This capability will be further enhanced with the commissioning of the collocated Canadian facility (RISR-C) and the launch of the Enhanced Polar Outflow Probe (ePOP), both expected in 2013.

  20. Millstone Hill incoherent scatter F region observations during the disturbances of June 1991

    SciTech Connect

    Buonsanto, M.J.

    1995-04-01

    The extreme geomagnetic disturbances of early June 1991 were accompanied by dramatic effects in the Earth`s thermosphere and ionosphere which are the subject of coordinated analysis by the Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Storm Study project. F region observations taken at Millstone Hill over the interval June 5-11 using a nine-position experiment allow estimation of spatial gradients in ionospheric parameters above the station. From these gradients the motion term in the F region continuity equation is obtained and combined with calculations of rates of production and loss of the major ions in a semiempirical model of the F region ionosphere above Millstone Hill. Electron densities calculated from this semiempirical model using MSIS-86 are generally much smaller than the measurements. This discrepancy could be explained by the presence of vibrationally excited N{sub 2} combined with a decrease in the atomic oxygen to molecular composition ratio of {approx}2 or more on the most disturbed days. Neutral winds calculated by using the incoherent scatter line-of-sight ion drifts show a strong equatorward surge during the day on June 5 and strong equatorward surges during all the disturbed nights. Synoptic observations taken from Millstone Hill by using elevation and azimuth scans during the nights of June 12, 13, and 14 illustrate the large-scale structure of electron density and its relation to neutral winds and electric fields observed over much of eastern North America. 58 refs., 12 figs., 1 tab.

  1. Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar

    NASA Technical Reports Server (NTRS)

    Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.

    2012-01-01

    In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.

  2. The Science and Utility of Extended Runs and the Future Development of Incoherent Scatter Radar Observational Programs

    NASA Astrophysics Data System (ADS)

    van Eyken, T.

    2006-12-01

    Incoherent Scatter Radar (ISR) data represent the most comprehensive observations of the temporal behavior of the main parts of the ionosphere, and the associated atmosphere, available. As such, the radars are invaluable tools in characterizing the ionospheric response to energy flows in the Solar-Terrestrial system. Developments in radar operations and reliability now allow very extended data sets to be produced on a fairly routine basis and plans for the International Polar Year (IPY) include the continuous operation of at least one high latitude radar. Using data from two very different 30-day `World Day' co-ordinated observation periods in Autumn 2005 and Spring 2006, we illustrate the utility of such data sets for, inter alia, space weather observation and modeling and discuss the possible future development of such programs using the EISCAT Svalbard Radar, the soon to be completed Advanced Modular Incoherent Scatter Radar (AMISR), and the EISCAT_3D radar (currently being designed).

  3. Incoherent scattering of 137Cs gamma rays in the rare earth elements Nd, Sm, Gd, Dy, Er and Yb

    NASA Astrophysics Data System (ADS)

    Krishnaveni, S.; Gowda, Shivalinge; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna

    2005-09-01

    The differential incoherent scattering cross sections for 661.6 keV photons have been measured with an HPGe detector in the momentum range 4⩽x⩽46 Å-1 for the rare earth elements Nd, Sm, Gd, Dy, Er and Yb. The incoherent scattering functions were evaluated from the measured cross sections and compared with the NRHF values of Hubbel et al. [1975, J. Phys. Chem. Ref. Data 4, 471], the recent DHFR values of Kahane [1998, At. Data Nucl. Data Tables 68, 323] and other measured values. The present experimental values are systematically lower than the theoretical predictions, but show a good agreement within the experimental errors except for the momentum transfers of 30.59, 34.29 and 37.72 Å -1 for Nd, 43.69 Å -1 for Gd and 22.54 and 26.66 Å -1 for Dy, which show deviations at the two sigma level.

  4. Poker Flat Incoherent Scatter Radar observations of anomalous electron heating in the E region

    NASA Astrophysics Data System (ADS)

    Makarevich, R. A.; Koustov, A. V.; Nicolls, M. J.

    2013-07-01

    A comprehensive 2-year dataset collected with the Poker Flat Incoherent Scatter Radar (PFISR) located near Fairbanks, Alaska (MLAT = 65.4° N) is employed to identify and analyse 22 events of anomalous electron heating (AEH) in the auroral E region. The overall AEH occurrence probability is conservatively estimated to be 0.3% from nearly-continuous observations of the E region by PFISR, although it increases to 0.7-0.9% in the dawn and dusk sectors where all AEH events were observed. The AEH occurrence variation with MLT is broadly consistent with those of events with high convection velocity (>1000 m s-1) or electron temperature (> 800 K), except for much smaller AEH probability and absence of AEH events near magnetic midnight. This suggests that high convection electric field by itself is necessary but not sufficient for measurable electron heating by two-stream plasma waves. The multi-point observations are utilised to investigate the fundamental dependence of the electron temperature on the convection electric field, focusing on the previously-proposed saturation effects at extreme electric fields. The AEH dataset was found to exhibit considerable scatter and, on average, similar rate of the electron temperature increase with the electric field up to 100 mV m-1 as compared with previous studies. At higher (highest) electric fields, the electron temperatures are below the linear trend on average (within uncertainty). By employing a simple fluid model of AEH, it is demonstrated that some of this deviation from the linear trend may be due to a stronger vibrational cooling at very large temperatures and electric fields.

  5. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    PubMed

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other. PMID:27112937

  6. Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons

    SciTech Connect

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.

  7. A new High-level Gridded Madrigal Data Product for IPY Incoherent Scatter Radar Data and Model Output.

    NASA Astrophysics Data System (ADS)

    Holt, J. M.

    2008-12-01

    The World's high-latitude incoherent scatter radars are contributing to the International Polar Year (IPY) through an unprecedented set of long-duration runs. From March, 2007 through February, 2008 he EISCAT Svalbard Radar and the Poker Flat Incoherent Scatter Radar operated almost continuously and the Sondrestromfjord and Millstone Hill Radars ran on a regular biweekly schedule. These extensive data sets present a major data handling challenge as do the physics-based model runs covering this period. The radar data are all available through the distributed Madrigal Database. However, the radars employ different, sometimes complex, operating modes which can present a significant challenge to modelers and other users who are not experts in the incoherent scatter radar technique. We have addressed this problem by developing a higher level data product which casts the data from all the radars into an identical gridded form. Several modelers are also providing model output through Madrigal in the same format. For the radar data, tensor product cubic spline fits to the measured electron density, ion temperature and electron temperature are computed and output in Madrigal format at 15 minute intervals and a standard set of altitudes from 100 to 548 km. In addition, hmF2, integrated electron content and the neutral temperature are computed and included in the output Madrigal file. As an aid to studying day-to-day variability, files have been produced both for individual days of the year and monthly averages.

  8. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    SciTech Connect

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam.

  9. Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2016-01-01

    A three-terminal conductor presents peculiar thermoelectric and thermal properties in the quantum Hall regime: it can behave as a symmetric rectifier and as an ideal thermal diode. These properties rely on the coherent propagation along chiral edge channels. We investigate the effect of breaking the coherent propagation by the introduction of a probe terminal. It is shown that chiral effects not only survive the presence of incoherence but they can even improve the thermoelectric performance in the totally incoherent regime.

  10. Reprint of : Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2016-08-01

    A three-terminal conductor presents peculiar thermoelectric and thermal properties in the quantum Hall regime: it can behave as a symmetric rectifier and as an ideal thermal diode. These properties rely on the coherent propagation along chiral edge channels. We investigate the effect of breaking the coherent propagation by the introduction of a probe terminal. It is shown that chiral effects not only survive the presence of incoherence but they can even improve the thermoelectric performance in the totally incoherent regime.

  11. Resolute Bay Incoherent Scatter Radar observations of plasma structures in the vicinity of polar holes

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Lamarche, L. J.; Nicolls, M. J.

    2015-09-01

    The Resolute Bay Incoherent Scatter Radar North (RISR-N) data collected between January 2012 and June 2013 are employed to identify and analyze 14 events with significant plasma density depressions (Ne<4 × 1010 m-3) in the winter polar cap ionosphere. The RISR-N observations near a magnetic latitude (MLAT) of 85°N refer to the region poleward of the previously identified polar hole-auroral cavity region 70°-80° MLAT where extremely low densities (down to 2 × 108 m-3 near 300 km in altitude) are found at times. Multipoint observations by RISR-N are also characterized by multiple series of propagating local density enhancements (plasma structures) both well outside and in the vicinity of polar holes. A superposed epoch analysis of plasma density and convection reveals that the density depressions tend to reach their minimum near the reversal of the meridional convection component. The wavelet analysis of plasma density time series shows that the wave power is enhanced within the depressions and tends to peak near the density minimum. The plasma structures are more elongated at mesoscales (>150 km), with no apparent differences between structure shapes outside and inside low-density regions. The structure propagation velocity is perpendicular to its elongation direction and consistent with that of the large-scale plasma convection. The observations indicate that large-scale density depressions can form under a variety of convection conditions and that plasma structuring processes outside the depressions may be responsible for their partial filling.

  12. Poker Flat Incoherent Scatter Radar investigations of the nighttime E-region

    NASA Astrophysics Data System (ADS)

    Whittier, Robin L.

    Plasma within the ionosphere affects technology, such as long distance communications and satellite navigation, by scattering and altering the propagation of radio waves sent through the ionosphere. Understanding the structure and dynamics of the ionosphere that may interfere with modern technology is therefore an important aspect of Space Weather research. In this thesis, the average characteristics and dynamics of the nighttime E-region (90-150 km in altitude) are investigated during auroral disturbances and near extreme solar minimum. The near-continuous data on electron density obtained with the Poker Flat Incoherent Scatter Radar (PFISR) near Fairbanks, Alaska are utilized. A number of correlation analyses between E-region electron content and AE index are performed in order to examine the influence of geomagnetic conditions on the E-region in relation to time of the day as well as seasonal and solar cycle effects. It is shown that E-region electron content and AE index exhibit significant positive correlation, particularly near local magnetic midnight, with greater correlation generally occurring in spring and autumn. The midnight feature is interpreted as an indication that the electrojet system near midnight is mostly controlled by electric conductance. The presented statistical results on the current-conductance relationship utilizing a new dataset strengthen conclusions derived from previous studies. The extent of E-region contribution to the total electron content (TEC) is also estimated and investigated for various conditions for the first time using the full altitude profile of PFISR. The estimates ranged between 5%-60% and more active periods generally displayed a more significant contribution from the E-region to TEC. Additionally, using the AE index as an indicator of auroral disturbance onset, the evolution of auroral density enhancements is explored using the superposed epoch analysis technique. The behavior of E-region electron content, peak

  13. Vibrational dynamics in dendridic oligoarylamines by Raman spectroscopy and incoherent inelastic neutron scattering.

    PubMed

    Kulszewicz-Bajer, Irena; Louarn, Guy; Djurado, David; Skorka, Lukasz; Szymanski, Marek; Mevellec, Jean Yves; Rols, Stephane; Pron, Adam

    2014-05-15

    Vibrational dynamics in triarylamine dendrimers was studied in a complementary way by Raman and infrared (IR) spectroscopies and incoherent inelastic neutron scattering (IINS). Three molecules were investigated, namely, unsubstituted triarylamine dendrimer of the first generation and two dendrimers of the first and second generation, substituted in the crown with butyl groups. To facilitate the assignment of the observed IR and Raman modes as well as the IINS peaks, vibrational models, based on the general valence force field method (GVFF), were calculated for all three compounds studied. A perfect consistency between the calculated and experimental results was found. Moreover, an important complementarity of the vibrational spectroscopies and IINS was established for the investigated dendrimers. The IINS peaks originating mainly from the C-H motions were not restricted by particular selection rules and only dependent on the IINS cross section. To the contrary, Raman and IR bands were imposed by the selection rules and the local geometry of the dendrimers yielding mainly C-C and C-N deformation modes with those of C-H nature of much lower intensity. Raman spectroscopy was also applied to the studies of the oxidation of dendrimers to their cationic forms. A strong Raman resonance effect was observed, since the spectra of the studied compounds, registered at different levels of their oxidation, strongly depended on the position of the excitation line with respect to their electronic spectrum. In particular, the blue (458 nm) excitation line turned out to be insensitive toward the cationic forms yielding very limited spectral information. To the contrary, the use of the red (647 nm) and infrared (1064 nm) excitation lines allowed for an unambiguous monitoring of the spectral changes in dendrimers oxidized to nominally monocationic and tricationic states. The analysis of oxidation-induced spectral changes in the tricationic state indicated that the charge storage

  14. Demodulation Algorithms for the Ofdm Signals in the Time- and Frequency-Scattering Channels

    NASA Astrophysics Data System (ADS)

    Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.

    2016-06-01

    We consider a method based on the generalized maximum-likelihood rule for solving the problem of reception of the signals with orthogonal frequency division multiplexing of their harmonic components (OFDM signals) in the time- and frequency-scattering channels. The coherent and incoherent demodulators effectively using the time scattering due to the fast fading of the signal are developed. Using computer simulation, we performed comparative analysis of the proposed algorithms and well-known signal-reception algorithms with equalizers. The proposed symbolby-symbol detector with decision feedback and restriction of the number of searched variants is shown to have the best bit-error-rate performance. It is shown that under conditions of the limited accuracy of estimating the communication-channel parameters, the incoherent OFDMsignal detectors with differential phase-shift keying can ensure a better bit-error-rate performance compared with the coherent OFDM-signal detectors with absolute phase-shift keying.

  15. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    from the active site respectively, on baselines running East and South from the active core, is enivisaged. This provides an optimal geometry for calculation of vector velocities in the middle and upper atmosphere. The gain of the EISCAT_3D antennas and the large size of the active site arrays will deliver an enormous increase in the figure-of-merit relative to any of EISCAT's existing radars. An active site of 5,000 elements would already exceed the performance of the current EISCAT VHF system, while an active site comprising 16,000 elements, as suggested in the Design Study carried out from 2005 to 2009, will exceed the sensitivity of the present VHF radar by an order of magnitude. Each transmitter unit will have its own signal generator, allowing the generation and transmission of arbitrary waveforms, limited only by the available transmission bandwidth and spectrum allocation by the frequency management authorities. This unique innovation allows the implementation of all currently used and envisaged modulation schemes and antenna codings (such as polyphase alternating codes, array tapering, orbital angular momentum beams) and also provides the possibility to adopt any kind of future code. In addition, it will allow advanced clutter mitigation strategies such as adaptive null steering and null shaping. In this talk the upper atmosphere and geospace science case for EISCAT_3D is reviewed. Studies of the atmospheric energy budget, space plasma physics with both small-scale structures and large-scale processes, as well as geospace environment monitoring and possible service applications are reviewed, showing recent highlights from the current EISCAT incoherent scatter radars for comparison.

  16. High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner

    NASA Astrophysics Data System (ADS)

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing; Xu, Xiaojun

    2016-05-01

    We report an experiment of incoherent beam combining based on a 7×1 all-fiber signal combiner with output power up to 6.08 kW. Properties of transmission efficiency and beam quality are analyzed by beam propagation method. Based on the calculative results, a 7×1 all-fiber signal combiner is fabricated. The handle power capacity is tested with average transmission efficiency of 98.9% and beam quality of M2≈10.

  17. Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law

    NASA Astrophysics Data System (ADS)

    Patterson, M.; Hughes, S.; Schulz, S.; Beggs, D. M.; White, T. P.; O'Faolain, L.; Krauss, T. F.

    2009-11-01

    Through a combined theoretical and experimental study of disorder-induced incoherent scattering losses in slow-light photonic crystal slab waveguides, we show the importance of Bloch mode reshaping and multiple scattering. We describe a convenient and fully three-dimensional theoretical treatment of disorder-induced extrinsic scattering, including the calculation of backscatter and out-of-plane losses per unit cell, and the extrapolation of the unit-cell loss to the loss for an entire disordered waveguide. The theoretical predictions, which are also compared with recent measurements on dispersion engineered silicon waveguides, demonstrate the failure of the Beer-Lambert law due to multiple scattering. We also explain why the previously assumed group velocity scalings of disorder-induced loss break down in general.

  18. The incoherent scattering of radio waves in a non-Maxwellian plasma: The effects of Coulomb collisions

    SciTech Connect

    Tereshchenko, V.D.; Tereshchanko, E.D. ); Kohl, H. )

    1991-10-01

    In this paper the formulas for the ion distribution as well as the spectrum of radio waves scattered in a magnetized plasma with a strong electric field are derived. It is shown that the presence of the electric field in the ionosphere leads to an anisotropic ion velocity distribution and, therefore, to untypical incoherent scatter spectra for the F region of the polar ionosphere which are caused by ion-neutral together with ion-ion collisions. The effect of ion-ion collisions, which has not been taken into account so far, is to reduce the anisotropy of the ion velocity distribution. Estimates of the ion-ion collision frequency derived from EISCAT measurements show that this may happen above about 300 km.

  19. Comparison of incoherent scatter radar observations of SIMPLEX electron density depletion with SAMI2 and SAMI3 model results

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Huba, J. D.; Bernhardt, P. A.; Erickson, P. J.

    2010-12-01

    The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used for active ionospheric modification experiments employing ground based ionospheric radars as diagnostic tools. These experiments initiated by the Naval Research Laboratory in 1995 have been scheduled as the Shuttle Ionospheric Modification with Pulsed Localized Exhaust or SIMPLEX through the US Dept. of Defense's Space Test Program. During 2009, two SIMPLEX experiments with the shuttles STS-119 and STS-128 were viewed by the Millstone Hill 440 MHz radar in Westford, MA operated by the MIT Haystack Observatory. The objectives of these experiments were to observe local ion-acoustic turbulence and the ionospheric density irregularities created by the exhaust injection across the magnetic field that present a Bragg scattering target for the radar. The exhaust also creates a depletion in the background electron density at F-region altitudes that persists for a relatively long time and is readily detected by an incoherent scatter radar. The OMS engine burns release 10 kg/s of H2O, CO2, H2, and N2 molecules that charge exchange with ambient O+ ions at the F region heights, producing molecular ions and the electron density depletion due to the recombination with the ambient electrons. 2009 was a year of deep solar minimum that saw the background electron density values 19% lower than were expected during a solar minimum. (Emmert et al., GRL, 2010). We believe that the long recovery time from density depletion in SIMPLEX experiments of 2009 may have a root in the unique nature of the deep solar minimum. The density whole production and recovery will be modeled using NRL SAMI2 and SAMI3 model and the results will be discussed along with the observations using the incoherent scatter radar.

  20. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    NASA Technical Reports Server (NTRS)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  1. Storm-induced changes of the topside ionosphere as deduced from incoherent-scatter radars. Master's thesis

    SciTech Connect

    Lunn, K.J.

    1990-01-01

    Incoherent scatter radar observations from Millstone Hill, Saint Santin, and Arecibo are used to illustrate changes of the topside ionosphere during a geomagnetic storm. These observations consist of electron density, electron and ion temperatures, and ion velocity components parallel and perpendicular to the magnetic field. These parameters can further describe changes in ion composition, electric fields, and neutral winds. Attention is given to a specific storm during the Equinox Transition Study (ETS) of September 1984. In order to isolate the storm effects in the topside ionosphere, a comparison will be made between a disturbed and quiet day. A novel result from this study is the finding of correlated oscillations between parallel and perpendicular ion velocity components which are apparently storm induced. Previously, these oscillations have been observed primarily at night, but now it's noticed that during storm conditions there are prominent oscillations during the day.

  2. The Madrigal Virtual Observatory - a Fabric for Serving Both Incoherent Scatter and MST Radar Data to the CAWSES Science Community

    NASA Astrophysics Data System (ADS)

    Holt, J. M.; Goncharenko, L. P.; Rideout, W.; Palo, S.

    2006-12-01

    Madrigal is a distributed, open source virtual observatory which has been operational for 25 years. During that time it has evolved from a simple database system for the Millstone Hill Incoherent Scatter Radar to a full-featured virtual observatory distributed among five major sites. Madrigal features interoperability with the CEDAR Database, a well-defined metadata standard, real-time capability, an interactive Web interface, provision for linking ancillary information such as html pages and figures to data, interactive plotting and a complete Web-services interface. Madrigal is the primary data repository for incoherent scatter radar data. It also contains data from a variety of other ground-based space science instruments. This paper focuses on the addition of a substantial body of meteor wind and MF radar to Madrigal in support of the CAWSES program. An initial scientific investigation using this data is now underway at MIT Haystack Observatory. Analysis of the Millstone Hill ISR (42.6 deg N, 288.5 deg E) data for the September 2005 campaign indicated that both zonal and meridional components of the neutral wind in the lower thermosphere (100-130 km) have significantly higher tidal variations than average fall equinox winds. This difference might be related to interannual variability in tidal components, the sources of which are not fully understood. Previous studies have demonstrated interannual variability in the diurnal tide in mesospheric (~80-100 km) data at low latitudes and related it to quasi-biennial oscillations. To date, there is not sufficient information about interannual variability at middle latitudes, where the diurnal tide is expected to diminish. We are using MF and meteor radar data collected during the September-October 2005 CAWSES campaign to bound the geographical and altitudinal extend of this phenomena, quantify observed variability, and assess possible mechanisms leading to the observed phenomena.

  3. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGESBeta

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.; Plummer, L. K.

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  4. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    SciTech Connect

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.; Plummer, L. K.

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  5. A novel hybrid reconstruction algorithm for first generation incoherent scatter CT (ISCT) of large objects with potential medical imaging applications.

    PubMed

    Alpuche Aviles, Jorge E; Pistorius, Stephen; Gordon, Richard; Elbakri, Idris A

    2011-01-01

    This work presents a first generation incoherent scatter CT (ISCT) hybrid (analytic-iterative) reconstruction algorithm for accurate ρ{e}imaging of objects with clinically relevant sizes. The algorithm reconstructs quantitative images of ρ{e} within a few iterations, avoiding the challenges of optimization based reconstruction algorithms while addressing the limitations of current analytical algorithms. A 4π detector is conceptualized in order to address the issue of directional dependency and is then replaced with a ring of detectors which detect a constant fraction of the scattered photons. The ISCT algorithm corrects for the attenuation of photons using a limited number of iterations and filtered back projection (FBP) for image reconstruction. This results in a hybrid reconstruction algorithm that was tested with sinograms generated by Monte Carlo (MC) and analytical (AN) simulations. Results show that the ISCT algorithm is weakly dependent on the ρ{e} initial estimate. Simulation results show that the proposed algorithm reconstruct ρ{e} images with a mean error of -1% ± 3% for the AN model and from -6% to -8% for the MC model. Finally, the algorithm is capable of reconstructing qualitatively good images even in the presence of multiple scatter. The proposed algorithm would be suitable for in-vivo medical imaging as long as practical limitations can be addressed. PMID:21422588

  6. Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering

    NASA Astrophysics Data System (ADS)

    Peters, Judith; Kneller, Gerald R.

    2013-10-01

    We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.

  7. Coherent effects in the incoherent channel of resonant radiation scattering from excited atoms

    SciTech Connect

    Veklenko, B. A.

    2011-05-15

    Scattering of a resonance electromagnetic field from excited atoms cannot be described by the semiclassical theory of radiation operating with nonquantized electromagnetic fields. Field quantization effects are manifested in this case on the macroscopic level and lead to evolution of statistical properties of radiation in the course of scattering. It is found that a combined process coupling elastic scattering from an atom and induced emission from the same atom, which cannot be studied by the methods of the standard perturbation theory, plays a significant role in this effect. The process of combined scattering in extended media exhibits coherent properties that cannot be described by the standard refractive index.

  8. Statistical Signal Processing Methods in Scattering and Imaging

    NASA Astrophysics Data System (ADS)

    Zambrano Nunez, Maytee

    This Ph.D. dissertation project addresses two related topics in wave-based signal processing: 1) Cramer-Rao bound (CRB) analysis of scattering systems formed by pointlike scatterers in one-dimensional (1D) and three-dimensional (3D) spaces. 2) Compressive optical coherent imaging, based on the incorporation of sparsity priors in the reconstructions. The first topic addresses for wave scattering systems in 1D and 3D spaces the information content about scattering parameters, in particular, the targets' positions and strengths, and derived quantities, that is contained in scattering data corresponding to reflective, transmissive, and more general sensing modalities. This part of the dissertation derives the Cramer-Rao bound (CRB) for the estimation of parameters of scalar wave scattering systems formed by point scatterers. The results shed light on the fundamental difference between the approximate Born approximation model for weak scatterers and the more general multiple scattering model, and facilitate the identification of regions in parameter space where multiple scattering facilitates or obstructs the estimation of parameters from scattering data, as well as of sensing configurations giving maximal or minimal information about the parameters. The derived results are illustrated with numerical examples, with particular emphasis on the imaging resolution which we quantify via a relative resolution index borrowed from a previous paper. Additionally, this work investigates fundamental limits of estimation performance for the localization of the targets and the inverse scattering problem. The second topic of the effort describes a novel compressive-sensing-based technique for optical imaging with a coherent single-detector system. This hybrid opto-micro-electromechanical, coherent single-detector imaging system applies the latest developments in the nascent field of compressive sensing to the problem of computational imaging of wavefield intensity from a small number

  9. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    SciTech Connect

    Doster, W.; Nakagawa, H.; Appavou, M. S.

    2013-07-28

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at T{sub d} from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature T{sub g}. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature T{sub d}.

  10. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Doster, W.; Nakagawa, H.; Appavou, M. S.

    2013-07-01

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at Td from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature Tg. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature Td.

  11. Authentication of vegetable oils by confocal X-ray scattering analysis with coherent/incoherent scattered X-rays.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-11-01

    This paper presents an alternative analytical method based on the Rayleigh to Compton scattering intensity ratio and effective atomic number for non-destructive identification of vegetable oils using confocal energy dispersive X-ray fluorescence and scattering spectrometry. A calibration curve for the Rayleigh to Compton scattering intensity ratio and effective atomic number was constructed on the basis of a reliable physical model for X-ray scattering. The content of light elements, which are "invisible" using X-ray fluorescence, can be calculated "by difference" from the calibration curve. In this work, we demonstrated the use of this proposed approach to identify complex organic matrices in different vegetable oils with high precision and accuracy. PMID:27211668

  12. Dynamic cusp at low altitudes: A case study utilizing viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations

    SciTech Connect

    Watermann, J.; DeLaBeaujar, O.; Lummerzheim, D.; Woch, J.; Newell, P.T.

    1994-12-31

    Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8 and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5 degrees invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2 degrees invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2 degrees during this time, possibly influenced by an overall decrease in the IMF B{sub Z} component The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.

  13. Evidence for double incoherent Raman scattering in binary gas mixtures: SF{sub 6}-N{sub 2}

    SciTech Connect

    Verzhbitskiy, I. A.; Chrysos, M.; Rachet, F.; Kouzov, A. P.

    2010-01-15

    We report a collision-induced Raman band by room temperature gas mixtures of sulfur hexafluoride and nitrogen. The band is centered at the sum of the frequencies of the symmetric-stretching nu{sub 1} transition of SF{sub 6} and the fundamental transition of N{sub 2}, and its intensity scales as the product of the partial densities of the gases. The observed process is evidence of double incoherent Raman scattering (DRS) by SF{sub 6}-N{sub 2}, in which both molecules simultaneously undergo two Raman-allowed transitions. The band was found to be almost fully depolarized, in agreement with previous observations in other systems and with theoretical predictions. Its integrated intensity is about one-third higher than the total area predicted by the leading-order dipole-induced dipole model. This discrepancy suggests that DRS is a practical means of assessing the quality of intermolecular potential models, which, in the case of SF{sub 6}-N{sub 2}, is still believed to be not good enough. Our work is expected to open the door to a multitude of studies involving complicated processes encountered in nonpolar gases and their mixtures, which are of direct relevance to atmospheric research.

  14. Climatology of the O+ temperatures over Arecibo for the historical deep solar minimum using Incoherent Scatter Radar and airglow data.

    NASA Astrophysics Data System (ADS)

    Santos, P. T.; Brum, C. G. M.; Kerr, R.; Noto, J.

    2014-12-01

    At Arecibo Observatory (AO) a comprehensive description of the ionosphere and thermosphere environment is achieved by the synergy between the Incoherent Scatter Radar (ISR) and the optical instruments nested on site. An example of this synergy is present in his work where optical and radar techniques were reconciled in order to obtain the O+ temperature variability for 2008 and 2009. During this period, a historical deep solar minimum condition was registered with a remarkable absence of sunspots for a long period (translated into a decreasing in the EUV-UV irradiance). This particular feature implies in an important tool to investigate the variability of O+ temperature, once that any variation can be related to season (modulated by the neutral atmosphere) and/or another modulator different than solar energy input. The OII 7320 Å twilight airglow data used in this work were obtained during new moon periods using a high-spectral resolution Fabry-Perot Interferometer (FPI) with CCD array detection. The FPI was configured with 0.9 cm plate spacing, which produced a free spectral range of 0.298Å and a spectral resolution of 0.03Å, sufficient to sample line width temperatures as low as 500K. A very narrow 3Å Full Width at Half Maximum (FWHM) three-cavity interference filter was also used.

  15. Energy dissipation drives the gradient signal amplification through an incoherent type-1 feed-forward loop

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui

    2015-09-01

    We present here the analytical relation between the gain of eukaryotic gradient sensing network and the associated thermodynamic cost. By analyzing a general incoherent type-1 feed-forward loop, we derive the gain function (G ) through the reaction network and explicitly show that G depends on the nonequilibrium factor (0 ≤γ ≤1 with γ =0 and 1 representing irreversible and equilibrium reaction systems, respectively), the Michaelis constant (KM), and the turnover ratio (rcat) of the participating enzymes. We further find the maximum possible gain is intrinsically determined by KM/Gmax=(1 /KM+2 ) /4 . Our model also indicates that the dissipated energy (measured by -lnγ ), from the intracellular energy-bearing bioparticles (e.g., ATP), is used to generate a force field Fγ∝(1 -√{γ }) that reshapes and disables the effective potential around the zero gain region, which leads to the ultrasensitive response to external chemical gradients.

  16. A model for water motion in crystals of lysozyme based on an incoherent quasielastic neutron-scattering study.

    PubMed Central

    Bon, C; Dianoux, A J; Ferrand, M; Lehmann, M S

    2002-01-01

    This paper reports an incoherent quasielastic neutron scattering study of the single particle, diffusive motions of water molecules surrounding a globular protein, the hen egg-white lysozyme. For the first time such an analysis has been done on protein crystals. It can thus be directly related and compared with a recent structural study of the same sample. The measurement temperature ranged from 100 to 300 K, but focus was on the room temperature analysis. The very good agreement between the structural and dynamical studies suggested a model for the dynamics of water in triclinic crystals of lysozyme in the time range approximately 330 ps and at 300 K. Herein, the dynamics of all water molecules is affected by the presence of the protein, and the water molecules can be divided into two populations. The first mainly corresponds to the first hydration shell, in which water molecules reorient themselves fivefold to 10-fold slower than in bulk solvent, and diffuse by jumps from hydration site to hydration site. The long-range diffusion coefficient is five to sixfold less than for bulk solvent. The second group corresponds to water molecules further away from the surface of the protein, in a second incomplete hydration layer, confined between hydrated macromolecules. Within the time scale probed they undergo a translational diffusion with a self-diffusion coefficient reduced approximately 50-fold compared with bulk solvent. As protein crystals have a highly crowded arrangement close to the packing of macromolecules in cells, our conclusion can be discussed with respect to solvent behavior in intracellular media: as the mobility is highest next to the surface, it suggests that under some crowding conditions, a two-dimensional motion for the transport of metabolites can be dominant. PMID:12202382

  17. High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations

    NASA Technical Reports Server (NTRS)

    Burchill, J. K.; Clemmons, J. H.; Knudsen, D. J.; Larsen, M.; Nicolls, M. J.; Pfaff, R. F.; Rowland, D.; Sangalli, L.

    2012-01-01

    We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling.

  18. A novel technique for studying F-region ionization patches with the Resolute Bay Incoherent Scatter Radar - North

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; Hosokawa, K.; St-Maurice, J.; Shiokawa, K.

    2013-12-01

    The northward facing Resolute Bay Incoherent Scatter Radar - North (RISR-N) and the soon to be operational southward facing RISR-Canada (RISR-C) systems are both exceptional platforms for investigating F-region ionization patches and the polar ionosphere. To advance patch research using these systems, an algorithm has been developed for detecting F-region ionization patches with the RISR-N system. The algorithm is based on the definition of a patch put forward by Crowley [1996]: a volume of F-region plasma with a density that is twice that of the background ionosphere. In this work, the algorithm is applied to the sizeable RISR-N dataset, providing valuable insight into the prevalence of patches over Resolute Bay over a time frame of several years. Additional questions concerning patches are also addressed using the algorithm, including: when compared to each other, do the occurrence rates of patches identified by the Optical Mesosphere and Thermosphere Imagers (OMTI), Polar Dual Auroral Radar Network (PolarDARN) and RISR-N instruments (whose fields-of-view overlap over Resolute Bay) agree? Namely, for every patch that is detected with RISR-N and/or PolarDARN, is there a corresponding patch seen optically? Lastly, using the algorithm, is it possible to advance our ability to distinguish patches from other coherent backscatter echoes detected by PolarDARN? Crowley, G. (1996), Critical review of ionospheric patches and blobs, in Review of Radio Science: 1993-1996, edited by W. R. Stone, pp. 619 648, Oxford Univ. Press, Oxford, U. K.

  19. Energy dissipation drives the gradient signal amplification through an incoherent type-1 feed-forward loop.

    PubMed

    Lan, Ganhui

    2015-09-01

    We present here the analytical relation between the gain of eukaryotic gradient sensing network and the associated thermodynamic cost. By analyzing a general incoherent type-1 feed-forward loop, we derive the gain function (G) through the reaction network and explicitly show that G depends on the nonequilibrium factor (0≤γ≤1 with γ=0 and 1 representing irreversible and equilibrium reaction systems, respectively), the Michaelis constant (K_{M}), and the turnover ratio (r_{cat}) of the participating enzymes. We further find the maximum possible gain is intrinsically determined by K_{M}/G_{max}=(1/K_{M}+2)/4. Our model also indicates that the dissipated energy (measured by -lnγ), from the intracellular energy-bearing bioparticles (e.g., ATP), is used to generate a force field F_{γ}∝(1-sqrt[γ]) that reshapes and disables the effective potential around the zero gain region, which leads to the ultrasensitive response to external chemical gradients. PMID:26465493

  20. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  1. Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Grydeland, T.; Samara, M.

    2014-10-01

    Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including spectral shape and altitude extent. We believe that NEIALs occur with a continuum of morphological characteristics, although we find that most NEIALs observed with PFISR fall into two general categories. The first group occurs at fairly low altitudes - F region or below - and have power at, and spread between, the ion-acoustic peaks. The second group contains the type of NEIALs that have previously been observed with the EISCAT radars, those that extend to high altitudes (600 km or more) and often have large asymmetries in the power enhancements between the two ion-acoustic shoulders. We find that there is a correlation between the auroral structures and the type of NEIALs observed, and that the auroral structures present during NEIAL events are consistent with the likely NEIAL generation mechanisms inferred in each case. The first type of NEIAL - low altitude - is the most commonly observed with PFISR and is most often associated with active, structured auroral arcs, such as substorm growth phase, and onset arcs and are likely generated by Langmuir turbulence. The second type of NEIAL - high altitude - occurs less frequently in the PFISR radar and is associated with aurora that contains large fluxes of low-energy electrons, as can happen in poleward boundary intensifications as well as at substorm onset and is likely the result of current-driven instabilities and in some cases Langmuir turbulence as well. In addition, a preliminary auroral photometry analysis revealed that there is an

  2. Coherent to incoherent cross section ratio for 59.54 keV gamma rays at scattering angle of 110°

    SciTech Connect

    Singh, M. P.; Singh, Bhajan; Sandhu, B. S.; Sharma, Amandeep

    2015-08-28

    The coherent (Rayleigh) to incoherent (Compton) scattering cross-section ratio of elements, in the range 13 ≤ Z ≤ 82, are determined experimentally for 59.54 keV incident gamma photons. An HPGe (High purity germanium) semiconductor detector is employed, at scattering angle of 110°, to record the spectra originating from interactions of incident gamma photons with the target under investigation. The intensity ratio of Rayleigh to Compton scattered peaks observed in the recorded spectra, and corrected for photo-peak efficiency of gamma detector and absorption of photons in the target and air, along with the other required parameters provides the differential cross-section ratio. The measured values of cross-section ratio are found to agree with theoretical predictions based upon non-relativistic form factor, relativistic form factor, modified form factor and S-matrix theory.

  3. Protein Dynamics and Stability: The Distribution of Atomic Fluctuations in Thermophilic and Mesophilic Dihydrofolate Reductase Derived Using Elastic Incoherent Neutron Scattering

    SciTech Connect

    Meinhold, Lars; Clement, David; Tehei, M; Daniel, R. M.; Finney, J.L.; Smith, Jeremy C

    2008-11-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two.

  4. Photonic generation of bipolar direct-sequence UWB signals based on optical spectral shaping and incoherent frequency-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Ye, Jun; Jian, Shuisheng

    2016-06-01

    A novel technology to obtain binary phase-coded ultrawideband (UWB) signals for direct-sequence spread-spectrum communication systems is investigated by using a cost-effective incoherent source. The bipolar encoding is performed based on an all-fiber spectrum shaper composed of two FBG arrays to tailor the optical spectrum, and a section of single-mode fiber to achieve incoherent frequency-to-time conversion. We demonstrate a 1.325-Gb/s UWB encoding system by the use of binary spreading codes of 4-chip length via computer simulations. The proposed bipolar UWB encoding technology can be applied to high-speed UWB-over-fiber communication systems.

  5. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    SciTech Connect

    Shi, L.; Skinner, J. L.

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  6. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih.

    PubMed

    Shi, L; Skinner, J L

    2015-07-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS. PMID:26156484

  7. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    NASA Astrophysics Data System (ADS)

    Shi, L.; Skinner, J. L.

    2015-07-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  8. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(α,β) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(α,β) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  9. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Fischer, W.; Benedetto, E.; Rumolo, G.; Schulte, D.; Tomas, R.; Zimmermann, Frank; Franchetti, G.; Ohmi, Kazuhito; Sonnad, K.G.; Vay, Jean-Luc; Pivi, M.T.F.; Raubenheimer, Tor O.; /SLAC

    2008-01-24

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e{sup +}e{sup -} scattering processes is also estimated. Options for future code development are reviewed.

  10. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  11. Investigation of sudden electron density depletions observed in the dusk sector by the Poker Flat, Alaska incoherent scatter radar in summer

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Nicolls, M. J.; St.-Maurice, J.-P.; Goodwin, L.; Ruohoniemi, J. M.

    2014-12-01

    This paper investigates unusually deep and sudden electron density depletions (troughs) observed in the Poker Flat (Alaska) Incoherent Scatter Radar data in middle summer of 2007 and 2008. The troughs were observed in the premidnight sector during periods of weak magnetic and solar activity. The density recovered to normal levels around midnight. At the time when the electron density was undergoing its steep decrease, there was usually a surge of the order of 100 to 400 K in the ion temperature that lasted less than 1 h. The Ti surges were usually related to similar surges in the AE index, indicating that the high-latitude convection pattern was expanding and intensifying at the time of the steep electron density drop. The convection patterns from the Super Dual Auroral Radar Network also indicate that the density troughs were associated with the expansion of the convection pattern to Poker Flat. The sudden decreases in the electron density are difficult to explain in summer because the high-latitude region remains sunlit for most of the day. This paper suggests that the summer density troughs result from lower latitude plasma that had initially been corotating in darkness for several hours post sunset and brought back toward the sunlit side as the convection pattern expanded. The magnetic declination of ~22° east at 300 km at Poker Flat greatly facilitates the contrast between the plasma convecting from lower latitudes and the plasma that follows the high-latitude convection pattern.

  12. Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Rodrigues, F. S.; Fejer, B. G.; Milla, M. A.

    2016-02-01

    We conducted a comprehensive analysis of the vertical drifts and equatorial spread F (ESF) measurements made by the Jicamarca incoherent scatter radar (ISR) between 1994 and 2013. The ISR measurements allowed us to construct not only updated climatological curves of quiet-time vertical plasma drifts but also time-versus-height maps of ESF occurrence over the past two solar cycles. These curves and maps allowed us to better relate the observed ESF occurrence patterns to features in the vertical drift curves than previously possible. We identified an excessively high occurrence of post-midnight F region irregularities during December solstice and low solar flux conditions. More importantly, we also found a high occurrence of ESF events during sudden stratospheric warming (SSW) events. We also proposed and evaluated metrics of evening enhancement of the vertical drifts and ESF occurrence, which allowed us to quantify the relationship between evening drifts and ESF development. Based on a day-to-day analysis of these metrics, we offer estimates of the minimum pre-reversal enhancement (PRE) peak (and mean PRE) values observed prior to ESF development for different solar flux and seasonal conditions. We also found that ESF irregularities can reach the altitudes at least as high as 800 km at the magnetic equator even during low solar flux conditions.

  13. An incoherent scatter radar study of the midnight temperature maximum that occurred at Arecibo during a sudden stratospheric warming event in January 2010

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Zhou, Qihou; Zhang, Shaodong; Aponte, Nestor; Sulzer, Michael

    2016-06-01

    We present an analysis of the thermospheric midnight temperature maximum, a large increment of temperature around midnight. The analysis is based on data collected from the Arecibo incoherent scatter radar during 14-21 January 2010. The experiment overlaps with a major sudden stratospheric warming (SSW) event which commenced on 18 January 2010. Throughout the observation, the ion temperature exhibited moderate increase around postmidnight during 14-17 January, while it showed more intense increment during 18-21 January. In particular, on 20 January, the amplitude of the midnight temperature maximum (MTM) is 310 K, which is seldom seen at Arecibo. During the SSW, the meridional wind reverses toward the pole just before the commencement of the MTM. Then, the poleward wind and the ion temperature maximize almost at the same time. The variation of meridional wind and the MTM are consistent with the Whole Atmosphere Model (WAM) studies, which suggested that the variation is due to effects from an upward propagating terdiurnal tide. On the nights of 18-19 January, the MTM showed clear phase variation at the heights of 265, 303, and 342 km. A strong terdiurnal tide has been observed during the SSW and it is likely generated from low atmosphere and propagating upward. Our results provide direct observational evidence that the propagating upward terdiurnal tide plays an important role in causing the MTM, which supports the WAM simulations.

  14. Comparison of IRI-2012 with JASON-1 TEC and incoherent scatter radar observations during the 2008-2009 solar minimum period

    NASA Astrophysics Data System (ADS)

    Ji, Eun-Young; Jee, Geonhwa; Lee, Changsup

    2016-08-01

    The 2008-2009 solar minimum period was unprecedentedly deep and extended. We compare the IRI-2012 with global TEC data from JASON-1 satellite and with electron density profiles observed from incoherent scatter radars (ISRs) at middle and high latitudes for this solar minimum period. Global daily mean TECs are calculated from JASON-1 TECs to compare with the corresponding IRI TECs during the 2008-2009 period. It is found that IRI underestimates the global daily mean TEC by about 20-50%. The comparison of global TEC maps further reveals that IRI overall underestimates TEC for the whole globe except for the low-latitude region around the equatorial anomaly, regardless of season. The underestimation is particularly strong in the nighttime winter hemisphere where the ionosphere seems to almost disappear in IRI. In the daytime equatorial region, however, the overestimation of IRI is mainly due to the misrepresentation of the equatorial anomaly in IRI. Further comparison with ISR electron density profiles confirms the significant underestimation of IRI at night in the winter hemisphere.

  15. A Local Empirical Model of the E and F Region Ionosphere Based on 30 Years of Millstone Hill Incoherent Scatter Radar Data

    NASA Astrophysics Data System (ADS)

    Holt, J. M.

    2002-12-01

    Improved specifications and predictions of the ionosphere/thermosphere system are an important objective of the National Space Weather Program. As a contribution toward meeting this objective, we are developing a series of empirical models of the average behavior and variability of key parameters which characterize the ionosphere/thermosphere system. Here we present a local model of the E and F regions above Millstone Hill (42.6 N, 288.5 W) based on Millstone Hill Incoherent Scatter Radar data from 1970 to the present. The model parameters are electron density, ion temperature, electron temperature, geomagnetic-field-aligned ion drift and electric field. Time resolution is one hour, seasonal resolution is one month, altitude coverage is 100-1000 km and altitude resolution ranges from 5 km in the lower E-region to 300 km in the upper F-region. The model includes solar flux (F10.7) and geomagnetic activity (Ap) dependencies. Software to recover model values as well as a Web interface to the model is available at http://www.openmadrigal.org.

  16. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  17. Scattering of VHF and UHF radar signals from the turbulent air

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Yeh, K. C.

    1980-04-01

    In the derivation of Booker-Gordon scattering cross sections in a turbulent atmosphere, certain assumptions have been made so that the power scattered within the scattering volume will add coherently. This results in a scattered power that is proportional to the effective scattering volume. As the scattering volume increases without bound, it leads to a physically unreasonable result of infinite scattered power. The paper examines these assumptions. The scattering cross sections are studied taking into account the possible phase incoherence of the scattered fields within the scattering volume. In addition, the effect of a thin turbulent layer on the complex autocorrelation function is investigated. The turbulence is assumed to be locally frozen. Expressions for both the Doppler shift and the correlation time have been derived.

  18. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  19. Measuring predictability in ultrasonic signals: an application to scattering material characterization.

    PubMed

    Carrión, Alicia; Miralles, Ramón; Lara, Guillermo

    2014-09-01

    In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy. PMID:24952468

  20. Digital signal processing based on inverse scattering transform.

    PubMed

    Turitsyna, Elena G; Turitsyn, Sergei K

    2013-10-15

    Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. PMID:24321955

  1. Cross Comparison of Electron Density and Electron Temperature Observations from the DICE CubeSat Langmuir Probes and the Millstone Hill Incoherent Scatter Radar.

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Erickson, P. J.; Crowley, G.; Pilinski, M.; Barjatya, A.; Fish, C. S.

    2014-12-01

    The Dynamic Ionosphere CubeSat Experiment (DICE) consists of two identical 1.5U CubeSats deployed simultaneously from a single P-POD (Poly Picosatellite Orbital Deployer) into the same orbit. Several observational campaigns were planned between the DICE CubeSats and the mid-latitude Millstone Hill Incoherent Scatter Radar (ISR) in order to calibrate the DICE measurements of electron density and electron temperature. In this presentation, we compare in-situ observations from the Dynamic Ionosphere CubeSat Experiment (DICE) and from the Millstone Hill ISR. Both measurements are cross-calibrated against an assimilative model of the global ionospheric electron density. The electron density and electron temperature were obtained for three Millstone Hill DICE overflights (2013-03-12, 2013-03-15, 2013-03-17). We compare the data during quiet and geomagnetically disturbed conditions and find evidence of an storm enhanced density (SED) plume in the topside ionosphere on 2013-03-17 at 19? UTC. During this disturbed interval, American longitude sector high density plasma was convected near 15 SLT towards the noontime cusp. DICE was selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The DICE twin satellites were launched on a Delta II rocket on October 28, 2011. The satellites are flying in a "leader-follower" formation in an elliptical orbit which ranges from 820 to 400 km in altitude. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities and a science grade magnetometer to measure DC and AC geomagnetic fields. The purpose of these measurements was to permit accurate identification of storm-time features such as the SED bulge and plume. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), and Embry-Riddle Aeronautical University. In this paper we present a comparison of data from DICE and Millstone Hill

  2. Small angle scattering signals for (neutron) computerized tomography

    SciTech Connect

    Strobl, M.; Treimer, W.; Hilger, A.

    2004-07-19

    Small angle neutron scattering is a well-established tool for the determination of microscopic structures in various materials. With the ultrasmall angle neutron scattering technique (USANS), structures with sizes of approximately 50 nm to 50 {mu}m can be resolved by a double crystal diffractometer (DCD). USANS signals recorded with a special DCD were used for tomographic purposes investigating the macroscopic structure of a sample with a maximum resolution of 200 {mu}m. Thereby, macroscopic regions within the sample with different ultrasmall angle scattering properties, i.e., with different microscopic structures, could be imaged by the means of tomographic reconstruction from projections (on a macroscopic scale)

  3. Brillouin amplification and processing of the Rayleigh scattered signal.

    PubMed

    Mermelstein, David; Shacham, Eliashiv; Biton, Moran; Sternklar, Shmuel

    2015-07-15

    Brillouin amplification of Rayleigh scattering is demonstrated using two different configurations. In the first technique, the Rayleigh scattering and amplification occurs simultaneously in the same fiber. In the second technique, the amplification takes place in a second fiber. The differences between the two techniques are delineated. Using the second technique, we demonstrate single-sideband off-resonant Brillouin amplification of the Rayleigh signal. This technique is shown to enhance the SNR of a signal that is due to vibration-induced strain on the fiber. PMID:26176464

  4. Use of Multiband Acousto-optic Filters for Spectrally Encoded Signals Generation in Incoherent Optical Communication Systems

    NASA Astrophysics Data System (ADS)

    Byshevski-Konopko, O. A.; Proklov, V. V.; Filatov, A. L.; Lugovskoi, A. V.; Korablev, E. M.

    New acousto-optical (AO) coder of spectrally optical signals for optical code division multiple access systems (O-CDMA) was proposed and investigated. The coder was developed on a base of multi-frequency acousto-optical filter (MAOF). Control RF signals for MAOF were synthesized taking into account intermodulation distortions and interferences between different carrier frequencies incoming to MAOF. An industrial LED was used under system investigation.

  5. Persistent misconceptions about incoherence in electron microscopy.

    PubMed

    Van Dyck, D

    2011-06-01

    Incoherence in electron microscopic imaging occurs when during the observation the microscope and the object are subject to fluctuations. In order to speed up the computer simulation of the images, approximations are used that are considered as valid. In this paper we will question the validity of these approximations and show that in specific cases they can lead to erroneous results. It is shown in particular in the case of one single vibrating atom that the thermal diffuse scattering that causes the signal in HAADF STEM is not only dependent on Z but also on the mean square displacement of the atom so that it can even be large for light atoms in soft matter, provided the right HAADF aperture is used. In HREM imaging the diffuse scattering leaks out of the coherent (elastic) wave and is redistributed in the background. This might explain the mismatch in elastic contrast (Stobbs factor) especially for crystals with a thickness beyond the extinction distance, where also the HAADF signal saturates and the elastic (coherent) component vanishes. PMID:21664551

  6. Structure of hydrogenous liquids: separation of coherent and incoherent cross sections using polarised neutrons

    NASA Astrophysics Data System (ADS)

    Stunault, A.; Vial, S.; Pusztai, L.; Cuello, G. J.; Temleitner, L.

    2016-04-01

    The determination of the coherent structure factor of hydrogenous liquids is very difficult: while X-rays are barely sensitive to hydrogen, neutrons results still lack accuracy due to the contamination of the scattering intensities by a huge spin-incoherent signal from the 1H atoms. Using polarised neutrons with polarisation analysis, one can experimentally separate the coherent and incoherent contributions to the scattered intensity. We present the upgrade of the D3 polarised hot neutron diffractometer at ILL to study hydrogenated liquids. We show first data obtained from a test sample of water and detail the data reduction leading to an unprecedented accuracy in the extraction of the coherent signal, representative of the structure.

  7. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  8. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    SciTech Connect

    Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20

  9. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  10. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  11. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  12. The Expected Impact of Multiple Scattering on ATLID Signals

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.

    2016-06-01

    ATLID stands for "ATmospheric LIDar" and is the lidar to be flown on the Earth Clouds and Radiation Explorer (EarthCARE) platform in 2018. ATLID is a High-Spectral Resolution (HSRL) system operating at 355nm with a narrower field-of-view and lower orbit than the CALIPSO lidar. In spite of the smaller footprint multiple-scattering (MS) will have an important impact on ATLID cloud signals and, in some aspects, the accurate treatment of MS will be more important for ATLID than CALIPSO. On the other hand, the relationship between integrated backscatter and integrated MS induced depolarization in water clouds will be similar between ATLID and CALIPSO indicating that a CALIPSO-like strategy for cloud-phase identification can be successfully applied to ATLID.

  13. Investigation on global positioning system signal scattering and propagation over the rough sea surface

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Guo, Li-Xin; Wu, Zhen-Sen

    2010-05-01

    This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.

  14. Discriminant Incoherent Component Analysis.

    PubMed

    Georgakis, Christos; Panagakis, Yannis; Pantic, Maja

    2016-05-01

    Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings. PMID:27008268

  15. Incoherent imaging by z-contrast stem: Towards 1{angstrom} resolution

    SciTech Connect

    Pennycook, S.J.; Jesson, D.E.; McGibbon, A.J.

    1993-12-01

    By averaging phase correlations between scattered electrons a high angle detector in the scanning transmission electron microscope (STEM) can provide an incoherent, Z-contrast image at atomic resolution. Phase coherence is effectively destroyed through a combination of detector geometry (transverse incoherence) and phonon scattering (longitudinal incoherence). Besides having a higher intrinsic resolution, incoherent imaging offers the possibility of robust reconstruction to higher resolutions, provided that some lower frequency information is present in the image. this should have value for complex materials and regions of complex atomic arrangements such as grain boundaries. Direct resolution of the GaAs sublattice with a 300kV is demonstrated.

  16. Comparison between nighttime ionosonde, incoherent scatter radar, AE-E satellite, and HF Doppler observations of F region vertical electrodynamic plasma drifts in the vicinity of the magnetic equator

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2006-11-01

    Nighttime F region vertical drifts were made using an ionosonde for the equatorial station Ibadan (7.4°N, 3.9°E, 6°S dip) from 1 year of data during 1957-1958 International Geophysical Year (IGY) that corresponds to a period of solar maximum for undisturbed condition. We compare the seasonal vertical drifts with measurements made by incoherent scatter radar, AE-E satellite, and HF Doppler for equatorial F region vertical drifts. We find a comparable variability pattern during periods of high F layer heights during equinox and the December solstice, and the opposite behavior occurs during June solstice. The drifts are predominantly downward between 2000 and 0500 LT intervals. Ionosonde drifts are smaller in values by either a factor of two or three than other methods, except for consistent June solstice ionosonde and satellite magnitudes. The equinoctial average prereversal enhancements measured by the four techniques are roughly comparable (about 36 m/s) and occur at the same local time (1900 LT) for all the seasons. The evening reversal times are similar, apart from June solstice that exhibits large variations. The morning reversal times are also in accord except for the equinoctial Jicamarca drift. Our observations indicate that ionosonde drifts measurements are in better agreement with vertical drifts results at other equatorial stations.

  17. System and method for linearly amplifying optical analog signals by backward Raman scattering

    DOEpatents

    Lin, Cheng-Heui

    1988-01-01

    A system for linearly amplifying an optical analog signal by backward stimulated Raman scattering comprises a laser source for generating a pump pulse; and an optic fiber having two opposed apertures, a first aperture for receiving the pump pulse and a second aperture for receiving the optical analog signal, wherein the optical analog signal is linearly amplified to an amplified optical analog signal.

  18. System and method for linearly amplifying optical analog signals by backward Raman scattering

    DOEpatents

    Lin, Cheng-Heui

    1988-07-05

    A system for linearly amplifying an optical analog signal by backward stimulated Raman scattering comprises a laser source for generating a pump pulse; and an optic fiber having two opposed apertures, a first aperture for receiving the pump pulse and a second aperture for receiving the optical analog signal, wherein the optical analog signal is linearly amplified to an amplified optical analog signal.

  19. Softness of atherogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS).

    PubMed

    Mikl, Christian; Peters, Judith; Trapp, Marcus; Kornmueller, Karin; Schneider, Wolfgang J; Prassl, Ruth

    2011-08-31

    Apolipoprotein B100 (apoB100)-containing plasma lipoproteins (LDL and VLDL) supply tissues and cells with cholesterol and fat. During lipolytic conversion from VLDL to LDL the size and chemical composition of the particles change, but the apoB100 molecule remains bound to the lipids and regulates the receptor mediated uptake. The molecular physical parameters which control lipoprotein remodeling and enable particle stabilization by apoB100 are largely unknown. Here, we have compared the molecular dynamics and elasticities of VLDL and LDL derived by elastic neutron scattering temperature scans. We have determined thermal motions, dynamical transitions, and molecular fluctuations, which reflect the temperature-dependent motional coupling between lipid and protein. Our results revealed that lipoprotein particles are extremely soft and flexible. We found substantial differences in the molecular resiliences of lipoproteins, especially at higher temperatures. These discrepancies not only can be explained in terms of lipid composition and mobility but also suggest that apoB100 displays different dynamics dependent on the lipoprotein it is bound to. Hence, we suppose that the inherent conformational flexibility of apoB100 permits particle stabilization upon lipid exchange, whereas the dynamic coupling between protein and lipids might be a key determinant for lipoprotein conversion and atherogenicity. PMID:21790144

  20. A Quantitative Model of Glucose Signaling in Yeast Reveals an Incoherent Feed Forward Loop Leading to a Specific, Transient Pulse of Transcription

    NASA Astrophysics Data System (ADS)

    Kuttykrishnan, Sooraj; Sabina, Jeffrey; Langton, Laura; Johnston, Mark; Brent, Michael R.

    The ability to design and engineer organisms demands the ability to predict kinetic responses of novel regulatory networks built from well-characterized biological components. Surprisingly, few validated kinetic models of complex regulatory networks have been derived by combining models of the network components. A major bottleneck in producing such models is the difficulty of measuring in vivo rate constants for components of complex networks. We demonstrate that a simple, genetic approach to measuring rate constants in vivo produces an accurate kinetic model of the complex network that Saccharomyces cerevisiae employs to regulate the expression of genes encoding glucose transporters. The model predicts a transient pulse of transcription of HXT4 (but not HXT2 or HXT3) in response to addition of a small amount of glucose to cells, an outcome we observed experimentally. Our model also provides a mechanistic explanation for this result: HXT24 are governed by a type 2, incoherent feed forward regulatory loop involving the Rgt1 and Mig2 transcriptional repressors. The efficiency with which Rgt1 and Mig2 repress expression of each HXT gene determines which of them have a pulse of transcription in response to glucose. Finally, the model correctly predicts how lesions in the feed forward loop change the kinetics of induction of HXT4 expression.

  1. Effects Of Substrate Scattering On Bar-Code Scanning Signals

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Sklar, David

    1983-04-01

    When a beam of light strikes a piece of paper or similar substrate, a portion of its energy penetrates into the bulk and, due to multiple scattering, may re-emerge at some distance from the point of entry. We refer to this phenomenon as substrate scattering. In this paper we describe a general model for scattering substrates and, using linear systems theory, we investigate its implications for bar-code scanning. We show that the effects of substrate scattering can be represented as a modified reflectance distribution associated with the original printed reflectance pattern. This effective distribution is shown to be independent of the details of scanning system configuration. We show that under a broad range of conditions substrate scattering will decrease modulation and will cause scanners to overestimate barwidths. A specific diffusion model of the scattering process is developed, providing a family of functions which can be used in empirical studies. We conclude that the scattering distributions will not even be approximately Gaussian. Experimental results are presented which are consistent with this conclusion and inconsistent with a Gaussian model. Further experimental results are presented which show that, for typical substrates, depth of modulation may be decreased by 20 percent or more and perceived bar-width increases will be on the order of one mil.

  2. Calculates Thermal Neutron Scattering Kernel.

    Energy Science and Technology Software Center (ESTSC)

    1989-11-10

    Version 00 THRUSH computes the thermal neutron scattering kernel by the phonon expansion method for both coherent and incoherent scattering processes. The calculation of the coherent part is suitable only for calculating the scattering kernel for heavy water.

  3. Effects of multiple scattering on scintillation of transionospheric radio signals

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Yeh, K. C.; Youakim, M. Y.; Wernik, A. W.

    1974-01-01

    Recent development in the optical scintillation theory has been adapted to the ionospheric geometry in order to study the ionospheric scintillation phenomenon in the presence of multiple scattering. Under approximations well satisfied in typical ionospheres for a frequency above about 20 MHz, the first through fourth moment equations have been derived and some analytic solutions given. The fourth moment equation has also been solved numerically. The numerical results show clearly the occurrence of focusing and saturation phenomena. The new multiple-scatter effects are emphasized.

  4. Experimental Determination of Dual-Wavelength Mie Lidar Geometric form Factor Combining Side-Scatter and Back-Scatter Signals

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Tao, Zongming; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2016-06-01

    In theory, lidar overlap factor can be derived from the difference between the particle backscatter coefficient retrieved from lidar elastic signal without overlap correction and the actual particle backscatter coefficient, which can be obtained by other measured techniques. The side-scatter signal using a CCD camera is testified to be a powerful tool to detect the particle backscatter coefficient in near ground layer during night time. In experiment, by combining side-scatter and backscatter signals the geometric form factor for vertically-pointing Mie lidar in 532 nm channel is determined successfully, which is corrected by an iteration algorithm combining the retrieved particle backscatter coefficient using CCD sidescatter method and Fernald method. In this study, the method will be expanded to 1064 nm channel in dual-wavelength Mie lidar during routine campaigns. The experimental results in different atmosphere conditions demonstrated that the method present in this study is available in practice.

  5. Separating Scattering from Intrinsic Attenuation

    NASA Astrophysics Data System (ADS)

    van Wijk, K.; Scales, J. A.

    2003-12-01

    The subsurface appears disordered at all length-scales. Therefore, wave propatation at seismic or ultrasonic frequencies is subject to complicated scatterings. A pulse propagating in the subsurface loses energy at each scattering off an impedance contrast, but also decreases in amplitude as the impulse interacts with fluids in the rock. We call the latter non-elastic effect "intrinsic Q", while the former is "scattering Q". It is often the fluids in the rocks that are of interest, but conventional reflection and transmission of the incident pulse only cannot deceipher the individual components of Q due to scattering and fluid movement in the pore-space. We present an approach that can unravel these two mechanisms, allowing a separate estimate of absorption. This method treats the propagation of the average intensity in the framework of radiative transfer (RT); the arrival of (what is left of) the incident pulse is modeled as the coherent energy, whereas the later arriving multiply scattered events form the incoherent intensity. The coherent pulse decays exponentially due to a combination of scattering and absorption, and so does the incoherent intensity. However, multiple scattering can re-direct energy back to the receiver, supplying a gain-term at later times that makes up the incoherent intensity. Strictly speaking, one can invert for scattering and absorption from the intensity at late times only, often modeled with the late-time equivalent of RT, diffusion. However, we will show that fitting both early- and late-time signal with RT constrains absorption and scattering constants more rigorously. These ideas are illustrated by laboratory and sonic-logging measurements.

  6. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections

    PubMed Central

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-01-01

    Purpose: To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Methods: Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f^β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. Results: The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results

  7. TGF-β signaling deficient fibroblasts enhance Hepatocyte Growth Factor signaling in mammary carcinoma cells to promote scattering and invasion

    PubMed Central

    Cheng, Nikki; Chytil, Anna; Shyr, Yu; Joly, Alison; Moses, Harold L.

    2009-01-01

    Fibroblasts are major cellular components of the tumor microenvironment, regulating tumor cell behavior in part through secretion of extracellular matrix proteins, growth factors and angiogenic factors. In previous studies, conditional deletion of the type II TGF-β receptor in fibroblasts (Tgfbr2FspKO) was shown to promote mammary tumor metastasis in fibroblast: epithelial cell co-transplantation studies in mice, correlating with increased expression of HGF. Here, we advance our findings to show that Tgfbr2FspKO fibroblasts enhance HGF/c-Met and HGF/Ron signaling to promote scattering and invasion of mammary carcinoma cells. Blockade of c-Met and Ron by siRNA silencing and pharmacologic inhibitors significantly reduced mammary carcinoma cell scattering and invasion caused by Tgfbr2FspKO fibroblasts. Moreover, neutralizing antibodies to c-Met and Ron significantly inhibited HGF-induced cell scattering and invasion correlating with reduced Stat3 and p42/44MAPK phosphorylation. Investigation of the Stat3 and MAPK signaling pathways by pharmacologic inhibition and siRNA silencing revealed a cooperative interaction between the two pathways to regulate HGF- induced invasion, scattering and motility of mammary tumor cells. Furthermore, while c-Met was found to regulate both the Stat3 and MAPK signaling pathways, Ron was found to regulate Stat3, but not MAPK signaling in mammary carcinoma cells. These studies demonstrate a tumor suppressive role for TGF-β signaling in fibroblasts, in part by suppressing HGF signaling between mammary fibroblasts and epithelial cells. These studies characterize complex functional roles for HGF and TGF-β signaling in mediating tumor: stromal interactions during mammary tumor cell scattering and invasion, with important implications in the metastatic process. PMID:18922968

  8. Optical wavefront shaping for the enhancement of Raman signal in scattering media

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2016-03-01

    The ability to non-invasively focus light through scattering media has significant applications in many fields ranging from nanotechnology to deep tissue sensing. Until recently, the multiple light scattering events that occur in complex media such as biological tissue have inhibited the focusing ability and penetration depth of optical tools. Through the use of optical wavefront shaping, the spatial distortions due to these scattering events can be corrected, and the incident light can be focused through the scattering medium. Here, we demonstrate that wavefront shaping can be used to non-invasively enhance the Raman signal of a material through a scattering medium. Raman signal enhancement was achieved using backscattered light and a continuous sequential algorithm. Our results show the potential of wavefront shaping as an important addition to non-invasive detection techniques.

  9. Signals of strong electronic correlation in ion scattering processes

    NASA Astrophysics Data System (ADS)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  10. First measurement of electron temperature from signal ratios in a double-pass Thomson scattering system

    SciTech Connect

    Tojo, H.; Itami, K.; Hatae, T.; Ejiri, A.; Yamaguchi, T.; Takase, Y.; Hiratsuka, J.

    2012-02-15

    This paper presents an experimental demonstration to determine electron temperature (T{sub e}) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T{sub e} can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T{sub e} measured from the ratio (T{sub e,r}) and T{sub e} measured from a standard method (T{sub e,s}) showed a good agreement with <|T{sub e,r}-T{sub e,s}|/T{sub e,s}>= 7.3%.

  11. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.

    PubMed

    Yoo, SeokJae; Park, Q-Han

    2015-01-01

    We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration, and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures. PMID:26403593

  12. Heterodyne signal-to-noise ratios in acoustic mode scattering experiments

    NASA Technical Reports Server (NTRS)

    Cochran, W. R.

    1980-01-01

    The relation between the signal to noise ratio (SNR) obtained in heterodyne detection of radiation scattered from acoustic modes in crystalline solids and the scattered spectral density function is studied. It is shown that in addition to the information provided by the measured frequency shifts and line widths, measurement of the SNR provides a determination of the absolute elasto-optical (Pockel's) constants. Examples are given for cubic crystals, and acceptable SNR values are obtained for scattering from thermally excited phonons at 10.6 microns, with no external perturbation of the sample necessary. The results indicate the special advantages of the method for the study of semiconductors.

  13. Signal sources in elastic light scattering by biological cells and tissues: what can elastic light scattering spectroscopy tell us?

    NASA Astrophysics Data System (ADS)

    Xu, M.; Wu, Tao T.; Qu, Jianan Y.

    2008-02-01

    We used a unified Mie and fractal model to analyze elastic light spectroscopy of cell suspensions to obtain the size distributions of cells and nuclei, their refractive indices, and the background refractive index fluctuation inside the cell, for different types of cells, including human cervical squamous carcinoma epithelial (SiHa) cells, androgen-independent malignant rat prostate carcinoma epithelial (AT3.1) cells, non-tumorigenic fibroblast (Rat1p) cells in the plateau phase of growth, and tumorigenic fibroblast (Rat1-T1E) cells in the exponential phase of growth. Signal sources contributing to the scattering (μs) and reduced scattering (μ 's) coefficients for these cells of various types or at different growth stages are compared. It is shown that the contribution to μ s from the nucleus is much more important than that from the background refractive index fluctuation. This trend is more significant with increase of the probing wavelength. On the other hand, the background refractive index fluctuation overtakes the nucleus and may even dominate in the contribution to reduced scattering. The implications of the above findings on biomedical light scattering techniques are discussed.

  14. The upper transition height over the Kharkiv incoherent scatter radar before, during and after the extreme minimum of the solar activity: Observational results and comparison with the IRI-2012 model

    NASA Astrophysics Data System (ADS)

    Kotov, Dmytro; Truhlik, Vladimir; Richards, Philipp; Huba, Joseph; Chernogor, Leonid; Bogomaz, Oleksandr; Domnin, Igor

    2014-05-01

    Variations in the diurnal minimum of upper transition height (height at which total light ions fraction is 50%) over Kharkiv, Ukraine are considered for vernal and autumnal equinoxes from 2006 to 2010. The data were obtained using the incoherent scatter radar of the Institute of ionosphere [1]. It was found that the decrease of daily F10.7 values approximately by 22 % (from 82 for spring 2006 to 67 for autumn 2007) was accompanied by a decrease in the upper transition height approximately by 19% too (from 518 km to 436 km). The linear correlation coefficient between the upper transition height and daily F10.7 was approximately 0.81. It should be noted that according to our knowledge such low values of upper transition height is the minimum ever recorded. In 2008-2009, the upper transition height over Kharkiv was up to 40 km lower than over the equator [2] and even up to 10-15 km lower than over Arecibo [3]. A comparison of the observational results with the IRI-2012 model [4] was made. It was found that the IRI-2012 model overestimates upper transition height up to 100 km in 2006, and 2010. The model also overestimates the upper transition height up to 150 km during the extreme solar minimum (2008-2009). It is clearly seen that for solar minimum under consideration latitudinal dependence of upper transition height according to observational data have decreasing character in contrast to the model dependence. Such behavior can be called latitudinal inversion of upper transition height. Strong dependence of upper transition height on Ap index was found for the conditions under consideration. It is suggested that model values for 2006 and 2010 are overestimated due to a higher geomagnetic activity during the satellite measurements (1974) underlying the model for the low level of solar activity compared with geomagnetic conditions for 2006 and 2010. Perhaps this led to the fact that the model does not show latitudinal inversion, which occurs only at very low geomagnetic

  15. Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: Channel scattering function

    NASA Astrophysics Data System (ADS)

    Rogers, Neil C.; Cannon, Paul S.; Groves, Keith M.

    2009-02-01

    The design and operation of transionospheric VHF and UHF radars requires knowledge of amplitude and phase scintillation due to ionospheric scattering. Phase coherence is of particular importance where long coherent integration periods and large bandwidths are required. A thin phase screen, parabolic equation based, Trans-Ionospheric Radio Propagation Simulator (TIRPS) is described. Modeled channel scattering functions (CSFs) are compared to experimental VHF and UHF data derived from the Advanced Research Projects Agency Long-range Tracking and Instrumentation Radar on Kwajalein Island (9.4°N, 166.8°E). TIRPS quantitatively reproduces the experimental results, including the quasi-parabolic profile observed in the measured CSFs under strong turbulence conditions. Variations in the simulated CSF with ionospheric phase screen parameters are also presented. Under conditions of high integrated strength of turbulence (CkL), a low phase spectral index (p = 1), indicating relatively dense small-scale irregularities, produces pronounced range spreading. Conversely, when the spectral index is high (p = 4), indicative of strong focusing/defocusing by large-scale irregularities, there is increased Doppler spreading and, when the outer scale of irregularities is large, a greater likelihood of asymmetry of the CSF about the zero Doppler axis.

  16. The effect of scattering-medium parameters on signal magnitude under acousto-optic tomography

    NASA Astrophysics Data System (ADS)

    Zyuryukina, O. V.; Volkova, E. K.; Perchenko, M. I.; Solov'ev, A. P.

    2014-04-01

    We have experimentally studied the influence of scattering anisotropy parameter g of a medium on the magnitude of signal S (visualization parameter) at an ultrasonic frequency that is registered upon acoustooptic tomography. Aqueous solutions of mixtures of cream and skimmed milk with different ratios between them were used as scattering media. The optical properties of media (absorption coefficient μa and reduced scattering coefficient μ' S ) have been measured on a spectrophotometer (Perkin-Elmer Lambda 950 UV-VIS-NIR) using the inverse adding-doubling technique. As a result of the investigation, we have found that there is a certain correlation between the value of the scattering anisotropy parameter g of aqueous solutions of investigated mixtures and the percentage of the mixture in the aqueous solution, which ensures the required small value of extinction coefficient μ of the scattering medium. An increase in signal S has been revealed with increasing anisotropy parameter g of the medium at a invariable value of extinction coefficient μ. We have concluded that, to solve an inverse problem on the acousto-optic tomography, it is necessary to take into account possible changes in the g factor in scattering media, including biological ones.

  17. Analytical multiple scattering correction to the Mie theory: Application to the analysis of the lidar signal

    NASA Technical Reports Server (NTRS)

    Flesia, C.; Schwendimann, P.

    1992-01-01

    The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.

  18. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  19. The experimental study on Doppler echo signals with different scattering surfaces for velocity measurement

    NASA Astrophysics Data System (ADS)

    Wang, Leng-ping; Feng, Di; Ou, Pan; Yang, De-zhao

    2011-06-01

    Laser Doppler velocimetry has the ability to measure speed and surface vibrations non-intrusively with high precision. In this study the Doppler spectrum shift and spectrum broadening of echo signals by moving targets are investigated. The interaction between moving object and the laser beam of laser Doppler velocimetry have been described by varying rotating velocity, the angular velocity, distance and incident facula. By using different scattering surfaces, such as Polytetrafluoroethylene (PTFE) and sandpaper with different grain sizes, the characteristics of echo signals' Doppler spectra have been studied experimentally in detail. The results show that Doppler spectrum distribution is changed with different scattering surfaces. Meanwhile, in order to get a high measuring accuracy, the moving object's scattering characteristics must be considered carefully.

  20. An experimental study of the temporal statistics of radio signals scattered by rain

    NASA Technical Reports Server (NTRS)

    Hubbard, R. W.; Hull, J. A.; Rice, P. L.; Wells, P. I.

    1973-01-01

    A fixed-beam bistatic CW experiment designed to measure the temporal statistics of the volume reflectivity produced by hydrometeors at several selected altitudes, scattering angles, and at two frequencies (3.6 and 7.8 GHz) is described. Surface rain gauge data, local meteorological data, surveillance S-band radar, and great-circle path propagation measurements were also made to describe the general weather and propagation conditions and to distinguish precipitation scatter signals from those caused by ducting and other nonhydrometeor scatter mechanisms. The data analysis procedures were designed to provide an assessment of a one-year sample of data with a time resolution of one minute. The cumulative distributions of the bistatic signals for all of the rainy minutes during this period are presented for the several path geometries.

  1. Equations for Estimating the Strength of TV Signals Scattered by Wind Turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Sengupta, Dipak L.

    1994-01-01

    purposes of consistency. Next, the concept of a signal scatter ratio is introduced, which defines the fraction of the signal impinging on a wind turbine that is scattered by its blades onto a nearby receiver. Equations from references are modified for the calculation of experimental scatter ratios (from measured signals containing interference) and idealized scatter ratios (from rotor characteristics and relative locations of the transmitter, the turbine, and the receiver). Experimental and idealized scatter ratios are then calculated and compared for 75 cases from the literature, in which TVI measurements were made around a variety of wind turbines. An empirical equation is then defined for estimating the probability that an actual scatter ratio will differ from an idealized ratio by a given amount. Finally a sample calculation of the size of a potential TV interference zone around a hypothetical wind power station is presented.

  2. Equations for estimating the strength of TV signals scattered by wind turbines

    NASA Astrophysics Data System (ADS)

    Spera, David A.; Sengupta, Dipak L.

    1994-05-01

    purposes of consistency. Next, the concept of a signal scatter ratio is introduced, which defines the fraction of the signal impinging on a wind turbine that is scattered by its blades onto a nearby receiver. Equations from references are modified for the calculation of experimental scatter ratios (from measured signals containing interference) and idealized scatter ratios (from rotor characteristics and relative locations of the transmitter, the turbine, and the receiver). Experimental and idealized scatter ratios are then calculated and compared for 75 cases from the literature, in which TVI measurements were made around a variety of wind turbines. An empirical equation is then defined for estimating the probability that an actual scatter ratio will differ from an idealized ratio by a given amount. Finally a sample calculation of the size of a potential TV interference zone around a hypothetical wind power station is presented.

  3. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging.

    PubMed

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method's applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method's advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  4. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  5. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Dobson, Chris; Eskridge, Richard; Wehrmeyer, Joseph A.

    1997-01-01

    A novel technique for extracting Q-branch Raman signals scattered by a diatomic species from the emission spectrum resulting from the irradiation of combustion products using a broadband excimer laser has been developed. This technique is based on the polarization characteristics of vibrational Raman scattering and can be used for both single-shot Raman extraction and time-averaged data collection. The Q-branch Raman signal has a unique set of polarization characteristics which depend on the direction of the scattering while fluorescence signals are unpolarized. For the present work, a calcite crystal is used to separate the horizonal component of a collected signal from the vertical component. The two components are then sent through a UV spectrometer and imaged onto an intensified CCD camera separately. The vertical component contains both the Raman signal and the interfering fluorescence signal. The horizontal component contains the fluorescence signal and a very weak component of the Raman signal; hence, the Raman scatter can be extracted by taking the difference between the two signals. The separation of the Raman scatter from interfering fluorescence signals is critically important to the interpretation of the Raman for cases in which a broadband ultraviolet (UV) laser is used as an excitation source in a hydrogen-oxygen flame and in all hydrocarbon flames. The present work provides a demonstration of the separation of the Raman scatter from the fluorescence background in real time.

  6. The No-Higgs Signal: Strong WW Scattering at the LHC

    SciTech Connect

    Michael S. Chanowitz

    2004-12-07

    Strong WW scattering at the LHC is discussed as a manifestation of electroweak symmetry breaking in the absence of a light Higgs bosom. The general framework of the Higgs mechanism--with or without a Higgs boson--is reviewed, and unitarity is shown to fix the scale of strong WW scattering. Strong WW scattering is also shown to be a possible outcome of five-dimensional models, which do not employ the usual Higgs mechanism at the TeV scale. Precision electroweak constraints are briefly discussed. Illustrative LHC signals are reviewed for models with QCD-like dynamics, stressing the complementarity of the W{sup {+-}}Z and like-charge W{sup +}W{sup +} + W{sup -}W{sup -} channels.

  7. DOA estimation for local scattered CDMA signals by particle swarm optimization.

    PubMed

    Chang, Jhih-Chung

    2012-01-01

    This paper deals with the direction-of-arrival (DOA) estimation of local scattered code-division multiple access (CDMA) signals based on a particle swarm optimization (PSO) search. For conventional spectral searching estimators with local scattering, the searching complexity and estimating accuracy strictly depend on the number of search grids used during the search. In order to obtain high-resolution and accurate DOA estimation, a smaller grid size is needed. This is time consuming and it is unclear how to determine the required number of search grids. In this paper, a modified PSO is presented to reduce the required search grids for the conventional spectral searching estimator with the effects of local scattering. Finally, several computer simulations are provided for illustration and comparison. PMID:22737004

  8. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belenov, A. F.; Ponomarenko, P. V.; Sinitsyn, V. G.; Yampol'Skii, Yu. M.

    1993-12-01

    The results of an experimental study of quasi-periodic variations of the Doppler shift (DS) of decimeter-wave signals scattered by artificial ionospheric turbulence are presented. It is suggested that ionospheric MHD waves of natural origin are a possible cause of such variations. The amplitude of the magnetic component of such waves that leads to observable values of DS variations is estimated to be 1γ.

  9. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence

    SciTech Connect

    Belenov, A.F.; Ponomarenko, P.V.; Sinitsyn, V.G.; Yampol`skii, Yu.M.

    1994-06-01

    The results of an experimental study of quasi-periodic variations of the Doppler shift (DS) of decimeter-wave signals scattered by artificial ionospheric turbulence are presented. It is suggested that ionospheric MHD waves of natural origin are a possible cause of such variations. The amplitude of the magnetic component of such waves that leads to observable values of DS variations is estimated to be 1{gamma}.

  10. Digital spatially incoherent Fresnel holography

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Brooker, Gary

    2007-04-01

    We present a new method for recording digital holograms under incoherent illumination. Light is reflected from a 3D object, propagates through a diffractive optical element (DOE), and is recorded by a digital camera. Three holograms are recorded sequentially, each for a different phase factor of the DOE. The three holograms are superposed in the computer, such that the result is a complex-valued Fresnel hologram. When this hologram is reconstructed in the computer, the 3D properties of the object are revealed.

  11. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal readout.

    PubMed

    Brayton, D B; Kalb, H T; Crosswy, F L

    1973-06-01

    A dual-scatter laser Doppler velocimeter (LDV) system designed for measuring wind tunnel flow velocity is described. The system simultaneously measures two orthogonal velocity components of a flowing fluid at a common point in the flow. Essential single-velocity component dual-scatter concepts are presented to simplify the description of the more sophisticated two-component system. To implement the two-component system three laser beams with a 0 degrees , 45 degrees , and 90 degrees polarization plane relationship are focused to a common point in the flow by the system-transmitting optics. The beams interfere to form two perpendicular sets of interference fringe planes that are orthogonally polarized. The system-receiving optics collect and separate the orthogonally polarized components of laser radiation scattered from micron-size particles moving with the flowing fluid through the ringes. The system requires no artificial seeding, since intrinsic test section aerosols are utilized for radiation scattering. The passage of each scatter particle through the interference fringes simultaneously produces two frequency-burst-type photodetected signals, the frequencies of which are directly proportional to two perpendicular components of particle velocity. The system photodetection, signal-conditioning, and data acquisition instrumentation is specifically designed to process the frequency burst information in the time domain as opposed to spectrum analysis or frequency domain processing. The system was initially evaluated in an AEDC wind tunnel operating over a Mach number range from 0.6 to 1.5. The LDV and calculated wind tunnel mean velocity data agreed to within 1.25%; flow direction deviations of a few milliradians were resolved. PMID:20125494

  12. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  13. Applying an optical space-time coding method to enhance light scattering signals in microfluidic devices.

    PubMed

    Mei, Zhe; Wu, Tsung-Feng; Pion-Tonachini, Luca; Qiao, Wen; Zhao, Chao; Liu, Zhiwen; Lo, Yu-Hwa

    2011-09-01

    An "optical space-time coding method" was applied to microfluidic devices to detect the forward and large angle light scattering signals for unlabelled bead and cell detection. Because of the enhanced sensitivity by this method, silicon pin photoreceivers can be used to detect both forward scattering (FS) and large angle (45-60°) scattering (LAS) signals, the latter of which has been traditionally detected by a photomultiplier tube. This method yields significant improvements in coefficients of variation (CV), producing CVs of 3.95% to 10.05% for FS and 7.97% to 26.12% for LAS with 15 μm, 10 μm, and 5 μm beads. These are among the best values ever demonstrated with microfluidic devices. The optical space-time coding method also enables us to measure the speed and position of each particle, producing valuable information for the design and assessment of microfluidic lab-on-a-chip devices such as flow cytometers and complete blood count devices. PMID:21915241

  14. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product. PMID:22418557

  15. Design and development of detector signal conditioning electronics for SST-1 Thomson scattering system.

    PubMed

    Thakar, Aruna; Kumar, Ajai; Thomas, Jinto; Chavda, Chhaya

    2008-09-01

    An IR enhanced thermoelectrically cooled Si-avalanche photodiode (Si-APD) module is used for detection of scattered photons from plasma electrons. Present design of signal conditioning electronics for the APD has fast (50 MHz) and slow (500 kHz) channels to measure scattered and plasma background light, respectively. We report design analysis for different stages and their performance. The performance of fast channel is analyzed for two different group delays, speed, linearity, and its cross-talk with slow channel. Temperature dependence of APD's responsivity is studied in the wavelength range of 900-1060 nm. A minimum detection of approximately 25 photoelectrons (with SN=1) in the range of 5 to 25 degrees C is achieved at an APD gain of 75 in the present design. PMID:19044411

  16. Design and development of detector signal conditioning electronics for SST-1 Thomson scattering system

    SciTech Connect

    Thakar, Aruna; Kumar, Ajai; Thomas, Jinto; Chavda, Chhaya

    2008-09-15

    An IR enhanced thermoelectrically cooled Si-avalanche photodiode (Si-APD) module is used for detection of scattered photons from plasma electrons. Present design of signal conditioning electronics for the APD has fast (50 MHz) and slow (500 kHz) channels to measure scattered and plasma background light, respectively. We report design analysis for different stages and their performance. The performance of fast channel is analyzed for two different group delays, speed, linearity, and its cross-talk with slow channel. Temperature dependence of APD's responsivity is studied in the wavelength range of 900-1060 nm. A minimum detection of {approx}25 photoelectrons (with S/N=1) in the range of 5 to 25 deg. C is achieved at an APD gain of 75 in the present design.

  17. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  18. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; Moskvin, I. V.; Rietveld, M. T.; Kosch, M. J.; Thidé, B.

    2002-09-01

    Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs) in the auroral E-region were carried out on the London Tromsø St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London Tromsø St. Petersburg path.

  19. Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering

    SciTech Connect

    Kirian, Richard A.; Schmidt, Kevin E.; Wang Xiaoyu; Doak, R. Bruce; Spence, John C. H.

    2011-07-15

    It has been suggested that the three-dimensional structure of one particle may be reconstructed using the scattering from many identical, randomly oriented copies ab initio, without modeling or a priori information. This may be possible if these particles are frozen in either space or time, so that the conventional two-dimensional small-angle x-ray scattering (SAXS) distribution contains fluctuations and is no longer isotropic. We consider the magnitude of the correlated fluctuation SAXS (CFSAXS) signal for typical x-ray free-electron laser (XFEL) beam conditions and compare this against the errors derived with the inclusion of Poisson photon counting statistics. The resulting signal-to-noise ratio (SNR) is found to rapidly approach a limit independent of the number of particles contributing to each diffraction pattern, so that the addition of more particles to a ''single-particle-per-shot'' experiment may be of little value, apart from reducing solvent background. When the scattering power is significantly less than one photon per particle per Shannon pixel, the SNR grows in proportion to incident flux. We provide simulations for protein molecules in support of these analytical results, and discuss the effects of solvent background scatter. We consider the SNR dependence on resolution and particle size, and discuss the application of the method to glasses and liquids, and the implications of more powerful XFELs, smaller focused beams, and higher pulse repetition rates for this approach. We find that an accurate CFSAXS measurement may be acquired to subnanometer resolution for protein molecules if a 9-keV beam containing 10{sup 13} photons is focused to a {approx}100-nm spot diameter, provided that the effects of solvent background can be reduced sufficiently.

  20. Abl Kinases Regulate HGF/Met Signaling Required for Epithelial Cell Scattering, Tubulogenesis and Motility

    PubMed Central

    Li, Ran; Knight, Jennifer F.; Park, Morag; Pendergast, Ann Marie

    2015-01-01

    Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling. PMID:25946048

  1. Optimum Physics-Based Signal Processing in a Random Wave Scattering Environment

    NASA Astrophysics Data System (ADS)

    Premus, Vincent E.

    A physics-based approach to the design of optimum signal processing algorithms for ocean acoustic remote sensing is presented. The approach merges physical and statistical modeling of acoustic scattering from a randomly rough ocean bottom with the principles of Bayesian inference and parameter estimation theory. The work seeks to exploit the synergistic relationship between accurate physical modeling of the propagation/scattering medium and optimum detection/estimation theory. Within this framework, the problems of acoustic seafloor characterization and robust target detection in the presence of environmental uncertainty are addressed. Accurate modeling of the wave scattering physics, based on the 3-dimensional Helmholtz-Kirchhoff theory and a geologically motivated parametrization of seafloor morphology, is of central importance to this work. In the seafloor characterization problem, the approach attempts to connect the correlation statistics of the scattered acoustic field with the seafloor microroughness wavenumber spectrum by constructing the a posteriori probability density function of the spectrum parameters. Maximum a posteriori probability estimates of the surface model parameters are obtained from two forms of acoustic data, backscattering strength angular dependence and backscatter spatial coherence. In the detection problem, a general theoretical framework for deriving the optimum detector in the case of uncertain reverberation spatial coherence is first presented in which the exact analytical form of the scattered field pdf is presumed to be arbitrary or unknown. A specialization to the case of Gaussian reverberation is then made. Simulation results, presented in terms of receiver operation characteristic (ROC) curves, illustrate the robust performance realizable by the optimum detection algorithm that properly accounts for environmental uncertainty within a Bayesian framework.

  2. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    NASA Astrophysics Data System (ADS)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  3. Forward scattering of a pulsed continuous wave signal through laminar and turbulent thermal plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Stephen G.

    1993-09-01

    The results of an experiment examining the forward propagation of an acoustic signal through a buoyant plume are discussed. Two distinct testing sights were used. One made use of a small fresh water tank in NUWC to provide a controlled plume. The other used a larger salt water tank at Woods Hole Oceanographic Institute (WHOI) to create a more realistic oceanic model. Using the Born and Rytov approximations, an estimation of the effects of the laminar plume on the propagated signal are shown. As the plume moves from laminar to turbulent, the scintillation index and the Fourier transform of the magnitude square response provide insight into the nature of the transition. Finally, from the turbulent response a model for the scattering function is developed.

  4. Quantitative phase imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.

  5. Applying new data-entropy and data-scatter methods for optical digital signal analysis

    NASA Astrophysics Data System (ADS)

    McMillan, N. D.; Egan, J.; Denieffe, D.; Riedel, S.; Tiernan, K.; McGowan, G.; Farrell, G.

    2005-06-01

    This paper introduces for the first time a numerical example of the data-entropy 'quality-budget' method. The paper builds on an earlier theoretical investigation into the application of this information theory approach for opto-electronic system engineering. Currently the most widely used way of analysing such a system is with the power budget. This established method cannot however integrate noise of different generic types. The traditional power budget approach is not capable of allowing analysis of a system with different noise types and specifically providing a measure of signal quality. The data-entropy budget first introduced by McMillan and Reidel on the other hand is able to handle diverse forms of noise. This is achieved by applying the dimensionless 'bit measure' in a quality-budget to integrate the analysis of all types of losses. This new approach therefore facilitates the assessment of both signal quality and power issues in a unified way. The software implementation of data-entropy has been utilised for testing on a fiber optic network. The results of various new quantitative data-entropy measures on the digital system are given and their utility discussed. A new data mining technique known as data-scatter also introduced by McMillan and Reidel provides a useful visualisation of the relationships between data sets and is discussed. The paper ends by giving some perspective on future work in which the data-entropy technique, providing the objective difference measure on the signals, and data-scatter technique, providing qualitative information on the signals, are integrated together for optical communication applications.

  6. Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.; Pospelov, M.; Stadnik, Y. V.

    2016-06-01

    We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state-of-the-art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant) and to scan the parameter space—the dark matter mass, the mediator mass, and the effective coupling strength—to see if there is any part of the parameter space that could potentially explain the DAMA modulation signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching ˜50 %, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments.

  7. Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

    NASA Astrophysics Data System (ADS)

    Das, G. M.; Parit, M. K.; Laha, R.; Dantham, V. R.

    2016-05-01

    Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Raman signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.

  8. Optimal coherent control of coherent anti-Stokes Raman scattering: Signal enhancement and background elimination

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Shuang, Feng; Shi, Junhui; Rabitz, Herschel; Wang, Haifeng; Cheng, Ji-Xin

    2012-04-01

    The ability to enhance resonant signals and eliminate the non-resonant background is analyzed for coherent anti-Stokes Raman scattering (CARS). The analysis is done at a specific frequency as well as for broadband excitation using femtosecond pulse-shaping techniques. An appropriate objective functional is employed to balance resonant signal enhancement against non-resonant background suppression. Optimal enhancement of the signal and minimization of the background can be achieved by shaping the probe pulse alone while keeping the pump and Stokes pulses unshaped. In some cases analytical forms for the probe pulse can be found, and numerical simulations are carried out for other circumstances. It is found that a good approximate optimal solution for resonant signal enhancement in two-pulse CARS is a superposition of linear and arctangent-type phases for the pump. The well-known probe delay method is shown to be a quasi-optimal scheme for broadband background suppression. The results should provide a basis to improve the performance of CARS spectroscopy and microscopy.

  9. Identification of complex scattered signals with a fast real-time hybrid electro-optical correlator

    NASA Astrophysics Data System (ADS)

    Majumdar, Arun K.; Sandomirsky, Sergey

    1997-10-01

    The goal of this work was to develop a fast optical correlator for automatic real-time target recognition. The tremendous importance of optical correlators for military and civilian applications was recognized recently and approved by a US conference committee of senators nd representatives. This publication presents the experimental results of detecting and identifying complex scattered signals by using an innovative, hybrid electro-optical correlator. Our technique is based on achieving optical correlation by utilizing state-of-the-art devices: time delay integration, charge coupled devices, liquid crystal displays, and electronically controllable light sources. Results of the experiment with our optical correlator, performed with simulated sonar signals with a center frequency of 100 kHz and duration of 8 to 512 pulses, show the possibility of recognizing a Doppler shift of 20 Hz. This Doppler shift corresponds to a target velocity of 20.7 m/sec. Simulation results indicate that we can achieve significant correlation for a noisy signal by using appropriate signal length. Our experiments demonstrate that we can perform approximately 1010 multiply accumulate operations per second with the high parallel optical corrector, compared to approximately 106 multiply accumulate operations per second using a Pentium 133 MHz personal computer. This new optical correlation scheme can provide solutions for overcoming the inherent shortcomings attributable to the low dynamic range of CCD, and the problem of compatibility caused by different pixel patterns between LCD and CCD by making use of high-quality optics and modern means of achieving uniform illumination.

  10. Optical telecommunications system and signal analysis using data-entropy and multiple-centroid data-scatter

    NASA Astrophysics Data System (ADS)

    Egan, J.; McMillan, N. D.; Denieffe, D.; Riedel, S.; Doyle, G.; Farrell, G.

    2005-09-01

    The data-entropy quality-budget developed by the authors is used as an alternative to the conventional power budget. The traditional power budget approach is not capable of providing a full analysis of a system with different noise types and specifically providing a measure of signal quality. The quality-budget addressed this issue by applying its dimensionless 'bit measure' to integrate the analysis of all types of losses. A data-entropy visualisation is produced for each set of points in a reference and test signal. This data-entropy signal is a measure of signal disorder and reflects the power loss and types of signal degradation experienced by the test signal. To analyse the differences between two signals an algorithm known as phase-coherent data-scatter (PCDS) is used to assess levels of attenuation, dispersion, jitter, etc. Practical analysis of telecommunications signals using the new multiple-centroid (MC) PCDS is presented here for the first time. MC-PCDS is then used to analyse differences between sets of data-entropy signals and digital signals. The theory behind MC data-scatter is discussed and its advantages for the quantification of signal degradations are assessed. Finally, a brief consideration is given to the use of pattern recognition algorithms to measure optical signal degrading factors.

  11. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    USGS Publications Warehouse

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  12. A scattering analysis of echoes due to biosonar signals emitted by foraging beaked whales

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin A.; Stanton, Timothy K.; Lavery, Andone C.; Johnson, Mark P.; Madsen, Peter T.; Tyack, Peter L.

    2005-09-01

    Blainville's beaked whales (Mesoplodon densirostris) hunt their prey by echolocation at depths of more than 500 meters. These whales use a FM upswept, ultrasonic click, of greater than an octave bandwidth to search for, localize, and close on individual prey which generally consist of mesopelagic fishes and squid. It is well known that acoustic scattering from organisms of varying morphology (e.g., swimbladder-bearing or fluidlike) is strongly frequency dependent. However, it is unknown if the broadband nature of the whales' outgoing signal, and the frequency dependence of the echoes, is a key component in the classification and selection of their prey. Non-invasive, acoustic ``Dtags,'' which sample stereo acoustic data at a rate which satisfies the high-frequency Nyquist criterion for the animal's transmit signal, were affixed to beaked whales. The Dtags successfully recorded transmitted signals and associated echoes. Structure was observed in the frequency content of echoes from isolated targets in the water column which may be used for classification by the whales. An analysis of the echoes identified as possibly due to prey has demonstrated that multiple classes of frequency responses are present. These results will be compared with the frequency responses of possible prey types.

  13. Signal intensity transfer function determination on thermal systems with stray light or scattering present

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Haefner, David P.; Burks, Thomas J.

    2015-05-01

    Accurate Signal Intensity Transfer Functions (SITF) measurements are necessary to determine the calibration factor in the 3D noise calculation of an electro-optical imaging system. The typical means for measuring a sensor's SITF is to place the sensor in a flooded field environment at a distance that is relatively close to the aperture of the emitter. Unfortunately, this arrangement has the potential to allow for additional contributions to the SITF in the form of scattering or stray light if the optics are not designed properly in the system under test. Engineers at the US Army Night Vision and Electronic Sensors Directorate are working to determine a means of evaluating the contribution due to scatting or stray light.

  14. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    SciTech Connect

    Chapman, D. A.; Kraus, D.; Falcone, R. W.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T.; Gericke, D. O.; Glenzer, S. H.; Guymer, T. M.; Neumayer, P.; Redmer, R.; and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  15. Measurement of the sound velocity in fluids using the echo signals from scattering particles.

    PubMed

    Lenz, Michael; Bock, Martin; Kühnicke, Elfgard; Pal, Josef; Cramer, Andreas

    2012-01-01

    With conventional methods the sound velocity c in fluids can be determined using the back wall echo. This paper proposes a novel technique, in which the signals reflected by scattering particles suspended in a fluid are analysed instead. The basic idea is that the particles generate the strongest echo signal when being located in the sound field maximum. Therefore the position of the echo signal maximum is a measure for the propagation time to the sound field maximum. Provided that calibration data or sound field simulations for the ultrasonic transducer are available, this propagation time suffices to determine both sound velocity and the location of the sound field maximum. The feasibility of the new approach is demonstrated by different kinds of experiments: (i) Measurements of the sound velocity c in four fluids covering the wide range between 1116 and 2740m/s. The results show good agreement with values published elsewhere. (ii) Using the dependence of the sound velocity on temperature, it is possible to vary c over the comparatively small range between 1431 and 1555m/s with increments of less than 10m/s. The measured statistical variation of 1.4m/s corresponds to a relative uncertainty not worse than 0.1%. (iii) The focus position, i.e. the distance of the maximum of the sound field from the transducer, was varied by time-shifted superposition of the receive signals belonging to the different elements of an annular array. The results indicate that the novel method is even capable of measuring profiles of the sound velocity along the ultrasonic beam non-invasively. PMID:21824636

  16. Thomson Scattering on the HBT-EP Tokamak

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Hanson, J. M.; James, R.; Maurer, D. A.; Mauel, M. E.; Navratil, G. A.; Pedersen, T. S.

    2007-11-01

    Thomson scattering can be used as a non-invasive method for measuring local electron density and temperature in plasmas. We describe the HBT-EP Thomson Scattering diagnostic, which is based on a design in use at DIII-D [1]. A five-channel interference filter polychrometer measures incoherent scattered light from an 8ns, 800mJ, 1064nm Nd:YAG laser pulse. A set of pre-amplification circuits designed by Princeton Scientific Instruments [2] has recently been installed for signal detection using avalanche photodiodes. System layout, alignment, and straylight level reduction techniques will be outlined. Rayleigh and Raman scattering calibration procedures have been used to absolutely calibrate the collection optics and detection system. Recent progress on diagnosing different HBT-EP plasmas using the Thomson scattering diagnostic will be presented. [1] T. N. Carlstrom, et al, Rev. Sci. Instr. 61, 2858, 1990. [2] D. Johnson, et al, Rev. Sci. Instr. 72, 1, 1129, 2001.

  17. Optimized Signal-To Ratio with Shot Noise Limited Detection in Stimulated Raman Scattering Microscopy

    NASA Astrophysics Data System (ADS)

    Moester, M. J. B.; Ariese, F.; de Boer, J. F.

    2015-04-01

    We describe our set-up for Stimulated Raman Scattering (SRS) microscopy with shot noise limited detection for a broad window of biologically relevant laser powers. This set-up is used to demonstrate that the highest signal-to-noise ratio (SNR) in SRS with shot noise limited detection is achieved with a time-averaged laser power ratio of 1:2 of the unmodulated and modulated beam. In SRS, two different coloured laser beams are incident on a sample. If the energy difference between them matches a molecular vibration of a molecule, energy can be transferred from one beam to the other. By applying amplitude modulation to one of the beams, the modulation transfer to the other beam can be measured. The efficiency of this process is a direct measure for the number of molecules of interest in the focal volume. Combined with laser scanning microscopy, this technique allows for fast and sensitive imaging with sub-micrometre resolution. Recent technological advances have resulted in an improvement of the sensitivity of SRS applications, but few show shot noise limited detection. The dominant noise source in this SRS microscope is the shot noise of the unmodulated, detected beam. Under the assumption that photodamage is linear with the total laser power, the optimal SNR shifts away from equal beam powers, where the most signal is generated, to a 1:2 power ratio. Under these conditions the SNR is maximized and the total laser power that could induce photodamage is minimized. Compared to using a 1:1 laser power ratio, we show improved image quality and a signal-to-noise ratio improvement of 8 % in polystyrene beads and C. Elegans worms. Including a non-linear damage mechanism in the analysis, we find that the optimal power ratio converges to a 1:1 ratio with increasing order of the non-linear damage mechanism.

  18. Decoupled polarization dynamics of incoherent waves and bimodal spectral incoherent solitons.

    PubMed

    Fusaro, A; Garnier, J; Michel, C; Xu, G; Fatome, J; Wright, L G; Wise, F W; Picozzi, A

    2016-09-01

    We consider the propagation of strongly incoherent waves in optical fibers in the framework of the vector nonlinear Schrödinger equation (VNLSE) accounting for the Raman effect. On the basis of the wave turbulence theory, we derive a kinetic equation that greatly simplifies the VNLSE and provides deep physical insight into incoherent wave dynamics. When applied to the study of polarization effects, the theory unexpectedly reveals that the linear polarization components of the incoherent wave evolve independently from each other, even in the presence of weak fiber birefringence. When applied to light propagation in bimodal fibers, the theory reveals that the incoherent modal components can be strongly coupled. After a complex transient, the modal components self-organize into a vector spectral incoherent soliton: The two solitons self-trap and propagate with a common velocity in frequency space. PMID:27607955

  19. Compton Scattering from Bulk and Surface of Water

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-03-01

    Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.

  20. Incoherent radar measurements from the D-Region: What can we learn from the spectral shape?

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina

    Radar backscatter is a widely used powerful tool for studying the mesosphere. Coherent radar systems are especially useful for studying such phenomena as PMSE and PMWE. They are capable of measuring power, wind velocity, and spectral width during the time and in the height range of the PMSE/PMWE events. The Incoherent Scatter Radars (ISR) are additionally capable of measuring collision frequencies, temperatures, electron density, and many other derived parameters in the altitude range from 70 to 90 km regardless of the special events but when the background ionization is sufficiently high. In the tropo - and mesosphere, the Doppler spectra from coherent scatter have a well-known Gaussian form. The shape of the Doppler spectra of the ISR can be different depending on the physical process producing the radar echo. Therefore, the shape of the spectra or the Autocorrelation function (ACF) can be used to derive some characteristics of the scattering media. ISR Doppler spectra have a Gaussian shape when the correlation length of the plasma motion is much larger than the observed fluctuation wavelength. When the correlation length of the plasma motion is much shorter than the observed fluctuation wavelength, the Doppler spectrum exhibits the Lorentzian shape. This means, that Lorentzian type Doppler spectra are usually prevalent in mesospheric measurements. As an example, the main effect of charged dust on the radar Doppler spectrum is a very narrow Lorentzian line superimposed on the well-known background spectrum. From the characteristics of this additional Lorentzian line, we are able to obtain altitude profiles of the smoke particle number density and the mean particle radius. We present some results of the dust particle properties derived from Arecibo ISR measurements (18 ° N, 66 ° E, 430 MHz). We also show a comparison of spectra measured by the EISCAT VHF (224 MHz) and UHF (929 MHz) radars at Tromsø (69 ° N, 19 ° E). During strong PMSE events, i.e., when

  1. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-09-01

    We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.

  2. Incoherently coupled dark-bright photorefractive solitons

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Segev, Mordechai; Coskun, Tamer H.; Christodoulides, Demetrios N.; Kivshar, Yuri S.; Afanasjev, Vsevolod V.

    1996-11-01

    We report the observation of incoherently coupled dark-bright spatial soliton pairs in a biased bulk photorefractive crystal. When such a pair is decoupled, the dark component evolves into a triplet structure, whereas the bright one decays into a self-defocusing beam.

  3. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  4. Coherent versus incoherent sequential quantum measurements

    SciTech Connect

    Filip, Radim

    2011-03-15

    We compare a trade-off between knowledge and decoherence for the incoherent and coherent partial sequential compatible measurements on single-qubit systems. The individual partial measurement nondestructively monitors basis states of the system by single-qubit meter. For the same decoherence caused by this unbiased measurement, the individual coherent measurement gives more knowledge than the incoherent one. For identical sequential coherent measurements, knowledge accumulated not additively increases more slowly than for the incoherent measurements. The overall knowledge can be accumulated using an adaptive measurement strategy on the meters if the single-qubit coherence of meters is kept. On the other hand, preservation of the mutual qubit coherence between the meters necessary for the collective measurement strategy is not required. A loss of single-qubit coherence degrades the coherent measurements back to the incoherent ones. Since the decoherence caused by the measurement process is a quadratic function of knowledge extracted by the individual measurement, Zeno-like behavior can be observed for repetitive weak compatible measurements. This unconditional universal effect does not depend on any dynamics of the qubit and it is a direct consequence of optimally controlled sequential evolution of quantum information.

  5. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.

    2002-07-01

    Multiple scattering is a major source that limits light penetration into biotissues, thereby preventing visualization of the deep microstructures for high-resolution optical imaging techniques. The optical clearing approach is a new adventure in biomedical optics for manipulating the optical properties of tissue; for example, the scattering coefficient and the degree of forward scattering of photons, by the use of the chemical administration method in order to improve the optical imaging depth, particularly for the recently developed optical coherence tomography (OCT). This paper investigates systematically how the multiple scattering affects signal attenuation and localization in general, and how the alterations of optical properties of tissue enhance the optical imaging depth and signal localization in particular, by the use of Monte Carlo simulations through the separate considerations of the least scattered photons (LSP) and multiple scattered photons (MSP). The LSP are those photons that contribute to the precise OCT signal, i.e. localization, and the MSP are those that degrade the OCT signal. It is shown that with either the reduction of the scattering coefficient or the increase of the degree of forward scattering, signal localization and imaging depth for OCT is enhanced. Whilst the increase of the anisotropic factor of the medium is more efficient in improving signal localization, it introduces more scattering events for the photons travelling within the tissue for both the LSP and MSP. It is also found that the OCT imaging resolution is almost reduced exponentially with the increase of the probing depth as opposed to the claimed system resolution. We demonstrate that optical clearing could be a useful tool to improve the imaging resolution when the light progressively penetrates the high scattering medium. Experimental results are also presented to show intuitively how multiple scattering affects OCT signal profiles by the use of intralipid solution and

  6. An analytic formula for the relativistic incoherent Thomson backscattering spectrum for a drifting bi-Maxwellian plasma

    SciTech Connect

    Naito, O.

    2015-08-15

    An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, the diagnostics might be used to measure local electron current density in fusion plasmas.

  7. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  8. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR

    SciTech Connect

    Lee, W. R.; Park, M. K.; Lee, J. H.; Kim, H. S.; Kim, K. H.

    2012-09-15

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  9. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider

    DOE PAGESBeta

    Lappi, T.; Venugopalan, R.; Mantysaari, H.

    2015-02-25

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.

  10. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider.

    PubMed

    Lappi, T; Mäntysaari, H; Venugopalan, R

    2015-02-27

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model. PMID:25768758

  11. Report on coordinated satellite and incoherent scatter observations

    NASA Technical Reports Server (NTRS)

    Calderon, C. H. J.

    1975-01-01

    Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the cooperative sounding rocket program are reported. The following types of data were acquired: (1) electron density and temperature; (2) vertical plasma drift, (3) electrojet relative echo power density; (4) electrojet doppler shift and condition; and (5) 150 km echoing region.

  12. Coordinated satellite and incoherent scatter observations. [of the ionosphere

    NASA Technical Reports Server (NTRS)

    Calderon, C. H. J.

    1975-01-01

    Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the Cooperative Sounding Rocket Program are reported. The following types of data were acquired: (1) electron density and temperature, (2) vertical plasma drift, (3) electrojet relative echo power density, (4) electrojet Doppler shift and condition, and (5) 150 km echoing region.

  13. Vertical spatial coherence model for a transient signal forward-scattered from the sea surface

    USGS Publications Warehouse

    Yoerger, E.J.; McDaniel, S.T.

    1996-01-01

    The treatment of acoustic energy forward scattered from the sea surface, which is modeled as a random communications scatter channel, is the basis for developing an expression for the time-dependent coherence function across a vertical receiving array. The derivation of this model uses linear filter theory applied to the Fresnel-corrected Kirchhoff approximation in obtaining an equation for the covariance function for the forward-scattered problem. The resulting formulation is used to study the dependence of the covariance on experimental and environmental factors. The modeled coherence functions are then formed for various geometrical and environmental parameters and compared to experimental data.

  14. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.

    PubMed

    Kim, Hoon

    2010-01-18

    We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format. PMID:20173999

  15. Incoherent neutral pion photoproduction on 12C.

    PubMed

    Tarbert, C M; Watts, D P; Aguar, P; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Bekrenev, V; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R; Downie, E J; Föhl, K; Glazier, D I; Grabmayr, P; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Kashevarov, V L; Knezevic, A; Kondratiev, R; Korolija, M; Kotulla, M; Krambrich, D; Krusche, B; Lang, M; Lisin, V; Livingston, K; Lugert, S; Macgregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; Mekterovic, D; Metag, V; Nefkens, B M K; Nikolaev, A; Novotny, R; Owens, R O; Pedroni, P; Polonski, A; Prakhov, S N; Price, J W; Rosner, G; Rost, M; Rostomyan, T; Schadmand, S; Schumann, S; Sober, D; Starostin, A; Supek, I; Thomas, A; Unverzagt, M; Walcher, Th; Zehr, F

    2008-04-01

    We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The 12C(gamma,pi(0))(12)C*(4.4 MeV) reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a pi(0) spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the Delta in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a Delta-hole model. PMID:18517938

  16. Ultrasonic Thermometry Inside Tissues Based on High-resolution Detection of Spectral Shifts in Overtones of Scattering Signals

    NASA Astrophysics Data System (ADS)

    Bazán, I.; Ramos, A.; Ramírez, A.; Leija, L.

    Some research results of cooperation works in biomedical engineering, established among current national projects of Mexico and Spain, are resumed. They are related to coordinated activities of three R & D groups, with the aim to achieve high-resolution ultrasonic thermometry into tissue phantoms with internal reflectors of a non-invasive way. Advanced spectral techniques are being used to extract thermal information in echo-signals acquired from biological phantoms with internal structures having a quasi-regular scattering distribution as, for instance, it happens in the liver tissues where a rather regular separation between scatterers has been reported. These techniques can indicate pathologies related to thermal increases due to the presence of disease. Small changes with temperature can be detected in the location of overtones of the fundamental resonance related to the separation of internal reflectors. But, this requires discarding the influence of the echoes noise on the thermal estimation results. A first evaluation of these spectral analysis techniques is performed, using echo-signals acquired from a phantom in the temperature range with medical interest, where the noise influence is shown for different levels of SNR in the echoes, using signals derived of a mathematical model for hepatic tissue echoes, where the average power, signal to noise ratio and inter-arrival time standard deviation, were taken into account. It seems that our high-resolution spectral option could be applied to detect some pathologies in tissues having regular scattering, but new advances must be performed with real tissues, in order to confirm the potential resolution of this approach.

  17. A setup for simultaneous measurement of infrared spectra and light scattering signals: Watching amyloid fibrils grow from intact proteins

    SciTech Connect

    Li, Yang; Maurer, Jürgen; Roth, Andreas; Vogel, Vitali; Winter, Ernst; Mäntele, Werner

    2014-08-15

    A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the deposition of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.

  18. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons

    PubMed Central

    Liao, Chien-Sheng; Wang, Pu; Wang, Ping; Li, Junjie; Lee, Hyeon Jeong; Eakins, Gregory; Cheng, Ji-Xin

    2015-01-01

    In vivo vibrational spectroscopic imaging is inhibited by relatively slow spectral acquisition on the second scale and low photon collection efficiency for a highly scattering system. Recently developed multiplex coherent anti-Stokes Raman scattering and stimulated Raman scattering techniques have improved the spectral acquisition time down to microsecond scale. These methods using a spectrometer setting are not suitable for turbid systems in which nearly all photons are scattered. We demonstrate vibrational imaging by spatial frequency multiplexing of incident photons and single photodiode detection of a stimulated Raman spectrum within 60 μs. Compared to the spectrometer setting, our method improved the photon collection efficiency by two orders of magnitude for highly scattering specimens. We demonstrated in vivo imaging of vitamin E distribution on mouse skin and in situ imaging of human breast cancerous tissues. The reported work opens new opportunities for spectroscopic imaging in a surgical room and for development of deep-tissue Raman spectroscopy toward molecular level diagnosis. PMID:26601311

  19. Color transparency in incoherent electroproduction of {rho} mesons off nuclei

    SciTech Connect

    Nemchik, J.; Kopeliovich, B. Z.; Potashnikova, I. K.

    2013-04-15

    Color transparency (CT) phenomena in elastic electroproduction of vector mesons off nuclei are usually infected by the onset of coherence length (CL) effects. However, at low energies corresponding to the CLAS experiment at Jefferson Lab (JLab), one can study practically the net CT effects, since CL is much shorter than the nuclear radius. We investigate various manifestations of CT effects using rigorous quantum mechanical approach based on the path integral technique. We include also the effects of {rho} meson decay inside the nucleus leading to a rise of the nuclear suppression towards small values of Q{sup 2}. Motivated by the last CLAS data we predict the A, Q{sup 2} and l{sub c} dependence of nuclear transparency for {rho}{sup 0} mesons produced incoherently off nuclei. We also perform predictions for expected signal of CT corresponding to the planned JLab upgrade to 12 GeV electron beam.

  20. A high temperature high pressure cell for quasielastic neutron scattering.

    PubMed

    Yang, F; Kaplonski, J; Unruh, T; Mamontov, E; Meyer, A

    2011-08-01

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts. PMID:21895254

  1. A high temperature high pressure cell for quasielastic neutron scattering

    SciTech Connect

    Yang, F.; Meyer, A.; Kaplonski, J.; Unruh, T.; Mamontov, E.

    2011-08-15

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm{sup 3}. The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.

  2. Nonlinear light scattering in molecules triggered by an impulsive X-ray Raman process

    PubMed Central

    Dorfman, Konstantin E.; Bennett, Kochise; Zhang, Yu; Mukamel, Shaul

    2013-01-01

    The time-and-frequency resolved nonlinear light scattering (NLS) signals from a time evolving charge distribution of valence electrons prepared by impulsive X-ray pulses are calculated using a superoperator Green's function formalism. The signal consists of a coherent ~ N2-scaling difference frequency generation and an incoherent fluorescence ~ N-scaling component where N is the number of active molecules. The former is given by the classical Larmor formula based on the time-dependent charge density. The latter requires additional information about the electronic structure and may be recast in terms of transition amplitudes representing quantum matter pathways. PMID:24465122

  3. Experimental confirmation of neoclassical Compton scattering theory

    SciTech Connect

    Aristov, V. V.; Yakunin, S. N.; Despotuli, A. A.

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  4. [The Mie scattering lidar return signal denoising research based on EMD-DISPO].

    PubMed

    Zhang, Yi-Kun; Ma, Xiao-Chang; Hua, Deng-Xin; Chen, Hao; Liu, Cai-Xuan

    2011-11-01

    Lidar echo signal is a typical non-steady-state, non-stationary signal, and difficult to be dealt with by the traditional filtering methods. As a new signal processing theory proposed in recent years, empirical mode decomposition method can adaptively divide the lidar echo signal into different intrinsic mode function (IMF) components according to different time scale, and noise mainly concentrates in the high-frequency component. However, when filtered with simply removing high frequency component, the useful signal will be possibly reduced. In the present paper, a new method which combines empirical mode decomposition (EMD) with Savitzky-Golay filter is proposed. With experiments, it is indicated that our approach not only removes the noise component effectively but also maintains the useful signal, then will improve the accuracy in the next phase of data processing. PMID:22242503

  5. Neutron diffraction of hydrogenous materials: Measuring incoherent and coherent intensities separately

    NASA Astrophysics Data System (ADS)

    Temleitner, László; Stunault, Anne; Cuello, Gabriel J.; Pusztai, László

    2015-07-01

    Accurate determination of the coherent static structure factor of any disordered material containing substantial amounts of proton nuclei has proven to be rather problematic by neutron diffraction, due to the large incoherent cross section of 1H. This problem has continued to set severe obstacles to the reliable determination of liquid structures of hydrogenous materials up to this day, by introducing large uncertainties whenever a sample with a 1H content larger than about 20% had to be investigated by neutron diffraction. Huge theoretical efforts over the past 40 years which were aimed at estimating the incoherent background of such data did not result in any practical solution to the problem. Here, we present data for the coherent and incoherent contributions to the total static structure of mixtures of light and heavy water. The measurements were done using the polarized neutron diffraction technique, which uniquely allows determination of the two contributions separately. The data covers a wide range of momentum transfer (0.8-21 Å-1) and the entire composition range, i.e., light water contents between 0 and 100% at five different values. We show that the measured incoherent scattering can be approximated by a Gaussian function. The separately measured coherent intensities exhibit signs of small inelastic contributions. Out of several possible approaches, we have chosen to subtract a cubic background using the reverse Monte Carlo algorithm. This algorithm has the advantage of requiring an actual physical model with thousands of realistic water molecules at the correct density describing the corrected data. Finally, coherent static structure factors for five different compositions of liquid H2O and D2O mixtures are presented for which the huge incoherent background could actually be measured and separated, instead of being approximated as it has been done so far. These experimental results provide a strong hope that determining the structure of hydrogenous

  6. GNSS Ocean Reflected Signals

    NASA Astrophysics Data System (ADS)

    Hoeg, P.

    2012-12-01

    Ocean reflected signals from the GNSS satellites (received at low-Earth orbiting satellites, airplanes and fixed mountain locations) describe the ocean surface mean height, waves, roughness, spectral reflectivity and emissivity. The estimated accuracy of the average surface height is of the order of 10 cm for smooth conditions. Thus global observations could be an important new contribution to long-term variations of the ocean mean height as well as the monitoring of ocean mesoscale eddies, which result in sea-height changes much larger than the accuracy of the GNSS technique for reflected signals. The ocean reflected signals can be divided into two set of measurements, 1) high elevation measurements (equal to low incidence angles) and 2) low elevation grazing angle measurements. For the first type the ocean reflection cross-section has a limited extent. The reflected signal is coherent with smaller errors due to ocean waves, sampling rate and the internal processing method of the receiver. For low elevations, the signal reveals the incoherent scatter process at the reflection zone. To quantify the potential of the GNSS signals for determining spectral reflectivity at low elevations, we present ocean reflection GPS measurements from the Haleakala Summit on Maui, Hawaii, revealing the spectral characteristics of both the direct satellite signal and the ocean reflected signal for low elevation angles. The characteristics of the reflected signal depend on the scattering properties of the sea surface and the footprint of the reflection zone. While the footprint size and shape in turn depends on the signal incidence angle, the ocean mean tilt, and the relative velocities of transmitter and receiver to the reflection point. Thus the scattering properties of the sea surface are related to the sea surface roughness. We present the spectral properties of the signals as received by a high precision GPS instrument, simultaneously in both phase-locked mode and open-loop raw

  7. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    PubMed

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis. PMID:21196983

  8. Quantum Radiation Reaction: From Interference to Incoherence

    NASA Astrophysics Data System (ADS)

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-01

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  9. Incoherent beam shaping with freeform mirror

    NASA Astrophysics Data System (ADS)

    Michaelis, Dirk; Kudaev, Sergey; Steinkopf, Ralf; Gebhardt, Andreas; Schreiber, Peter; Bräuer, Andreas

    2008-08-01

    Beam shaping of incoherent light sources (LEDs, halogen lamps) for arbitrary target light distribution is obtained by a single free-shape mirror. Special design algorithm ensures continuous profile without abrupt changes and shadowing regions. The mirror is manufactured by single point diamond turning combined with Fast-Tool-Servo (FTS) for simultaneous figuring of base surface and fine structure (for redistributing the light energy). Lateral and axial resolution of the fine structure is determined by FTS and considered during the design and data transfer. Directly turned surfaces can be used as replication tools for polymer or glass moulding and embossing.

  10. Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications.

    PubMed

    Lee, Eun Seong; Lee, Jae Yong; Yoo, Yong Shim

    2007-01-01

    The nonlinear optical interference of two successively generated coherent anti-Stokes Raman scattering (CARS) signals from two different samples placed in series is demonstrated for the imaging performance, in which a collinear phase matching geometry is used. The relative phase of two CARS signals is controlled by a phase-shifting unit made of dispersive glass materials of which the thickness can be precisely varied. The clear interference fringes are observed as the thickness of the phase-shifting unit changes. The interference effect is then utilized to achieve a better quality CARS image of a biological tissue taken from a mouse skin. Placing the tissue in the second sample position and performing raster scans of the laser beams on it, we can acquire a CARS image of higher contrast compared to the normal image obtained without interferometric implementation. PMID:17477725