Sample records for incorporate biological knowledge

  1. Incorporating Biological Knowledge into Evaluation of Casual Regulatory Hypothesis

    NASA Technical Reports Server (NTRS)

    Chrisman, Lonnie; Langley, Pat; Bay, Stephen; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Biological data can be scarce and costly to obtain. The small number of samples available typically limits statistical power and makes reliable inference of causal relations extremely difficult. However, we argue that statistical power can be increased substantially by incorporating prior knowledge and data from diverse sources. We present a Bayesian framework that combines information from different sources and we show empirically that this lets one make correct causal inferences with small sample sizes that otherwise would be impossible.

  2. Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization

    PubMed Central

    Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya

    2014-01-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid

  3. Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.

    PubMed

    Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping

    2018-01-01

    Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to

  4. Boolean network inference from time series data incorporating prior biological knowledge.

    PubMed

    Haider, Saad; Pal, Ranadip

    2012-01-01

    Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.

  5. Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology

    PubMed Central

    2012-01-01

    Background An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data. Results We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information. Conclusions The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge. PMID:22578440

  6. Report of the matrix of biological knowledge workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morowitz, H.J.; Smith, T.

    1987-10-30

    Current understanding of biology involves complex relationships rooted in enormous amounts of data. These data include entries from biochemistry, ecology, genetics, human and veterinary medicine, molecular structure studies, agriculture, embryology, systematics, and many other disciplines. The present wealth of biological data goes beyond past accumulations now include new understandings from molecular biology. Several important biological databases are currently being supported, and more are planned; however, major problems of interdatabase communication and management efficiency abound. Few scientists are currently capable of keeping up with this ever-increasing wealth of knowledge, let alone searching it efficiently for new or unsuspected links and importantmore » analogies. Yet this is what is required if the continued rapid generation of such data is to lead most effectively to the major conceptual, medical, and agricultural advances anticipated over the coming decades in the United States. The opportunity exists to combine the potential of modern computer science, database management, and artificial intelligence in a major effort to organize the vast wealth of biological and clinical data. The time is right because the amount of data is still manageable even in its current highly-fragmented form; important hardware and computer science tools have been greatly improved; and there have been recent fundamental advances in our comprehension of biology. This latter is particularly true at the molecular level where the information for nearly all higher structure and function is encoded. The organization of all biological experimental data coordinately within a structure incorporating our current understanding - the Matrix of Biological Knowledge - will provide the data and structure for the major advances foreseen in the years ahead.« less

  7. From Noise to Order: The Psychological Development of Knowledge and Phenocopy in Biology

    ERIC Educational Resources Information Center

    Piaget, Jean

    1975-01-01

    Shows that one of the most general processes in the development of cognitive structures consists in replacing exogenous knowledge by endogenous reconstructions that reconstitute the same forms but incorporate them into systems whose internal composition is a pre-requisite. Biologically equivalent process is discussed. (Author/AM)

  8. Bayesian network prior: network analysis of biological data using external knowledge

    PubMed Central

    Isci, Senol; Dogan, Haluk; Ozturk, Cengizhan; Otu, Hasan H.

    2014-01-01

    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods. Availability: Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP. Contact: hasan.otu@bilgi.edu.tr Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24215027

  9. Synthetic biology between technoscience and thing knowledge.

    PubMed

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Incorporating biological control into IPM decision making

    USDA-ARS?s Scientific Manuscript database

    Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, thr...

  11. The Incorporation and Abjection of Official Knowledge

    ERIC Educational Resources Information Center

    Kearl, Benjamin Kelsey

    2012-01-01

    In this essay, the author analyzes two theoretical perspectives--incorporation and abjection--that inform official knowledge generally and high school American history textbooks specifically. While contemporary textbooks increasingly depict the experiences of historically marginalized groups such as women, African Americans, Latinos, American…

  12. Incorporating linguistic knowledge for learning distributed word representations.

    PubMed

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  13. Incorporating Linguistic Knowledge for Learning Distributed Word Representations

    PubMed Central

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581

  14. SVS: data and knowledge integration in computational biology.

    PubMed

    Zycinski, Grzegorz; Barla, Annalisa; Verri, Alessandro

    2011-01-01

    In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.

  15. Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks.

    PubMed

    Wang, Chenguang; Song, Yangqiu; El-Kishky, Ahmed; Roth, Dan; Zhang, Ming; Han, Jiawei

    2015-08-01

    One of the key obstacles in making learning protocols realistic in applications is the need to supervise them, a costly process that often requires hiring domain experts. We consider the framework to use the world knowledge as indirect supervision. World knowledge is general-purpose knowledge, which is not designed for any specific domain. Then the key challenges are how to adapt the world knowledge to domains and how to represent it for learning. In this paper, we provide an example of using world knowledge for domain dependent document clustering. We provide three ways to specify the world knowledge to domains by resolving the ambiguity of the entities and their types, and represent the data with world knowledge as a heterogeneous information network. Then we propose a clustering algorithm that can cluster multiple types and incorporate the sub-type information as constraints. In the experiments, we use two existing knowledge bases as our sources of world knowledge. One is Freebase, which is collaboratively collected knowledge about entities and their organizations. The other is YAGO2, a knowledge base automatically extracted from Wikipedia and maps knowledge to the linguistic knowledge base, Word-Net. Experimental results on two text benchmark datasets (20newsgroups and RCV1) show that incorporating world knowledge as indirect supervision can significantly outperform the state-of-the-art clustering algorithms as well as clustering algorithms enhanced with world knowledge features.

  16. Neuro-symbolic representation learning on biological knowledge graphs.

    PubMed

    Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert

    2017-09-01

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. The Effect of Knowledge Linking Levels in Biology Lessons upon Students' Knowledge Structure

    ERIC Educational Resources Information Center

    Wadouh, Julia; Liu, Ning; Sandmann, Angela; Neuhaus, Birgit J.

    2014-01-01

    Knowledge structure is an important aspect for defining students' competency in biology learning, but how knowledge structure is influenced by the teaching process in naturalistic biology classroom settings has scarcely been empirically investigated. In this study, 49 biology lessons in the teaching unit "blood and circulatory system" in…

  18. Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks

    PubMed Central

    Wang, Chenguang; Song, Yangqiu; El-Kishky, Ahmed; Roth, Dan; Zhang, Ming; Han, Jiawei

    2015-01-01

    One of the key obstacles in making learning protocols realistic in applications is the need to supervise them, a costly process that often requires hiring domain experts. We consider the framework to use the world knowledge as indirect supervision. World knowledge is general-purpose knowledge, which is not designed for any specific domain. Then the key challenges are how to adapt the world knowledge to domains and how to represent it for learning. In this paper, we provide an example of using world knowledge for domain dependent document clustering. We provide three ways to specify the world knowledge to domains by resolving the ambiguity of the entities and their types, and represent the data with world knowledge as a heterogeneous information network. Then we propose a clustering algorithm that can cluster multiple types and incorporate the sub-type information as constraints. In the experiments, we use two existing knowledge bases as our sources of world knowledge. One is Freebase, which is collaboratively collected knowledge about entities and their organizations. The other is YAGO2, a knowledge base automatically extracted from Wikipedia and maps knowledge to the linguistic knowledge base, Word-Net. Experimental results on two text benchmark datasets (20newsgroups and RCV1) show that incorporating world knowledge as indirect supervision can significantly outperform the state-of-the-art clustering algorithms as well as clustering algorithms enhanced with world knowledge features. PMID:26705504

  19. Synthetic biology and the ethics of knowledge

    PubMed Central

    Douglas, Thomas; Savulescu, Julian

    2011-01-01

    Synthetic biologists aim to generate biological organisms according to rational design principles. Their work may have many beneficial applications, but it also raises potentially serious ethical concerns. In this article, we consider what attention the discipline demands from bioethicists. We argue that the most important issue for ethicists to examine is the risk that knowledge from synthetic biology will be misused, for example, in biological terrorism or warfare. To adequately address this concern, bioethics will need to broaden its scope, contemplating not just the means by which scientific knowledge is produced, but also what kinds of knowledge should be sought and disseminated. PMID:20935316

  20. OWL reasoning framework over big biological knowledge network.

    PubMed

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  1. OWL Reasoning Framework over Big Biological Knowledge Network

    PubMed Central

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076

  2. "Violent Intent Modeling: Incorporating Cultural Knowledge into the Analytical Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Nibbs, Faith G.

    2007-08-24

    While culture has a significant effect on the appropriate interpretation of textual data, the incorporation of cultural considerations into data transformations has not been systematic. Recognizing that the successful prevention of terrorist activities could hinge on the knowledge of the subcultures, Anthropologist and DHS intern Faith Nibbs has been addressing the need to incorporate cultural knowledge into the analytical process. In this Brown Bag she will present how cultural ideology is being used to understand how the rhetoric of group leaders influences the likelihood of their constituents to engage in violent or radicalized behavior, and how violent intent modeling canmore » benefit from understanding that process.« less

  3. Creative design inspired by biological knowledge: Technologies and methods

    NASA Astrophysics Data System (ADS)

    Tan, Runhua; Liu, Wei; Cao, Guozhong; Shi, Yuan

    2018-05-01

    Biological knowledge is becoming an important source of inspiration for developing creative solutions to engineering design problems and even has a huge potential in formulating ideas that can help firms compete successfully in a dynamic market. To identify the technologies and methods that can facilitate the development of biologically inspired creative designs, this research briefly reviews the existing biological-knowledge-based theories and methods and examines the application of biological-knowledge-inspired designs in various fields. Afterward, this research thoroughly examines the four dimensions of key technologies that underlie the biologically inspired design (BID) process. This research then discusses the future development trends of the BID process before presenting the conclusions.

  4. Biological knowledge is more tentative than physics knowledge: Taiwan high school adolescents' views about the nature of biology and physics.

    PubMed

    Tsai, Chin-Chung

    2006-01-01

    Many educational psychologists believe that students' beliefs about the nature of knowledge, called epistemological beliefs, play an essential role in their learning process. Educators also stress the importance of helping students develop a better understanding of the nature of knowledge. The tentative and creative nature of science is often highlighted by contemporary science educators. However, few previous studies have investigated students' views of more specific knowledge domains, such as biology and physics. Consequently, this study developed a questionnaire to assess students' views specifically about the tentative and creative nature of biology and physics. From a survey of 428 Taiwanese high school adolescents, this study found that although students showed an understanding of the tentative and creative nature of biology and physics, they expressed stronger agreement as to the tentativeness of biology than that of physics. In addition, male students tended to agree more than did females that physics had tentative and creative features and that biology had tentative features. Also, students with more years of science education tended to show more agreement regarding the creative nature of physics and biology than those with fewer years.

  5. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  6. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  7. Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.

    PubMed

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available.

  8. Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources

    PubMed Central

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available. PMID:23826291

  9. Knowledge base and functionality of concepts of some Filipino biology teachers in five biology topics

    NASA Astrophysics Data System (ADS)

    Barquilla, Manuel B.

    2018-01-01

    This mixed research, is a snapshot of some Filipino Biology teachers' knowledge structure and how their concepts of the five topics in Biology (Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics) functions and develops inside a biology classroom. The study focuses on the six biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and the other three (3) are under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilized classroom discourses, concept maps, interpretative case-study method, bracketing method, and concept analysis for qualitative part; the quantitative part uses a nonparametric statistical tool, Kendall's tau Coefficient for determining relationship and congruency while measures of central tendencies and dispersion (mean, and standard deviation) for concept maps scores interpretation. Knowledge Base of Biology teachers were evaluated by experts in field of specialization having a doctorate program (e.g. PhD in Genetics) and PhD Biology candidates. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. The evaluation of teachers' knowledge base by experts indicated that teachers' knowledge of (65%) is lower than the minimum (75%) recommended by ABD-el-Khalick and Boujaoude (1997). Thus, the experts believe that content knowledge of the teachers is hardly adequate for their teaching assignment. Moreover, the teachers in this study do not systematically use reallife situation to apply the concepts they teach. They can identify concepts too abstract for their student; however, they seldom use innovative ways to bring the discussion to their students' level of readiness and

  10. Knowledge-making distinctions in synthetic biology.

    PubMed

    O'Malley, Maureen A; Powell, Alexander; Davies, Jonathan F; Calvert, Jane

    2008-01-01

    Synthetic biology is an increasingly high-profile area of research that can be understood as encompassing three broad approaches towards the synthesis of living systems: DNA-based device construction, genome-driven cell engineering and protocell creation. Each approach is characterized by different aims, methods and constructs, in addition to a range of positions on intellectual property and regulatory regimes. We identify subtle but important differences between the schools in relation to their treatments of genetic determinism, cellular context and complexity. These distinctions tie into two broader issues that define synthetic biology: the relationships between biology and engineering, and between synthesis and analysis. These themes also illuminate synthetic biology's connections to genetic and other forms of biological engineering, as well as to systems biology. We suggest that all these knowledge-making distinctions in synthetic biology raise fundamental questions about the nature of biological investigation and its relationship to the construction of biological components and systems. (c) 2007 Wiley Periodicals, Inc.

  11. Incorporating biological information in sparse principal component analysis with application to genomic data.

    PubMed

    Li, Ziyi; Safo, Sandra E; Long, Qi

    2017-07-11

    Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.

  12. On the Limitations of Biological Knowledge

    PubMed Central

    Dougherty, Edward R; Shmulevich, Ilya

    2012-01-01

    Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity. PMID:23633917

  13. SSGP: SNP-set based genomic prediction to incorporate biological information

    USDA-ARS?s Scientific Manuscript database

    Genomic prediction has emerged as an effective approach in plant and animal breeding and in precision medicine. Much research has been devoted to an improved accuracy in genomic prediction, and one of the potential ways is to incorporate biological information. Due to the statistical and computation...

  14. A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations

    USGS Publications Warehouse

    Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.

    2016-01-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  15. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    PubMed

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  16. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course.

    PubMed

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students' perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (posttest) of the course. Alignment between student perception and determined knowledge was significantly more accurate on the posttest compared with the pretest. Students whose determined knowledge was in the upper quartile had significantly better alignment between their perception and determined knowledge on the pre- and posttest than students in the lower quartile. No difference exists between how students perceived their knowledge between upper- and lower-quartile students. There was a significant difference in alignment of perception and determined knowledge between males and females on the posttest, with females being more accurate in their perception of knowledge. This study provides evidence of discrepancies that exist between what students perceive they know and what they actually know. © 2014 B. Ziegler and L. Montplaisir. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. The Integration of Javanese Indigenous Knowledge in Biology Learning Resources Development

    NASA Astrophysics Data System (ADS)

    Anazifa, D.; Hadi, R. F.

    2017-02-01

    The student’s difficulties in learning and understanding Biology concepts are caused by the adoption of scientific phenomenon that not suitable with the environment they live in. Students who comes from the Javanese background sometimes find the Biology concepts hard to understand. Science content that comes from the West sometimes is not suitable with the student’s background, because the cultural and geographical background that underlining the science development are different. It can potentially cause the clash in constructing knowledge of students. The proportion of western knowledge and indigenous knowledge has to be balanced, in order to give the scientific rationale of the natural phenomenon that faced by students in everyday life. The ethnoscience experienced by student is still in the form of concrete experience as a result of the interaction with the nature. As one of the largest tribe in Indonesia, Javanese has many unique cultures that can be adopted in science classroom especially in Biology class. The role on ethnoscience in the context of developing Biology learning resources is to connect the science concept with the real world situation. By considering indigenous knowledge as one of learning resources, teachers can start to adjust the Javanese indigenous knowledge into the curriculum. This paper is literature review which will present the background, rationale, and procedure in integrating Javanese indigenous knowledge into Biology classroom as learning resources. The integration of Javanese indigenous knowledge in Biology learning resources development is necessary in order to connect the Biology concept into real situation.

  18. AIDS Knowledge: The Media and the Biology Teacher.

    ERIC Educational Resources Information Center

    Vener, Arthur M.; Krupka, Lawrence R.

    1988-01-01

    Reports on a study to determine the level of knowledge college students possessed about Acquired Immune Deficiency Syndrome. Concluded that overall enhancement of knowledge occurred among young adults and that mass media was partially responsible. Lists biological terms necessary for understanding the disease. (RT)

  19. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    PubMed

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  20. Effects of Biology Teachers' Professional Knowledge and Cognitive Activation on Students' Achievement

    ERIC Educational Resources Information Center

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-01-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge--pedagogical content knowledge (PCK) and content knowledge (CK)--and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on…

  1. The Social Construction of Biological Knowledge.

    ERIC Educational Resources Information Center

    Bain, Linda L.

    The influence of biological science research on the development of physical education curriculum is examined in this paper. The social construction of scientific knowledge is described as occurring in the selection of problems to be studied, the collection and interpretation of data, the dissemination of results, and the educational uses of…

  2. Preservice Biology Teachers' Professional Knowledge: Structure and Learning Opportunities

    ERIC Educational Resources Information Center

    Großschedl, Jörg; Harms, Ute; Kleickmann, Thilo; Glowinski, Ingrid

    2015-01-01

    What learning opportunities in higher education promote the development of content knowledge (CK), pedagogical content knowledge (PCK), and pedagogical knowledge (PK)? In order to investigate this question, a cross-sectional study with a total of 274 German preservice biology teachers (21.5% male, average age 22.8 years) was conducted in German…

  3. A Shadow Curriculum: Incorporating Students' Interests into the Formal Biology Curriculum

    ERIC Educational Resources Information Center

    Hagay, Galit; Baram-Tsabari, Ayelet

    2011-01-01

    Students have been largely ignored in discussions about how best to teach science, and many students feel the curriculum is detached from their lives and interests. This article presents a strategy for incorporating students' interests into the formal Biology curriculum, by drawing on the political meaning of "shadow government" as alternative…

  4. A digital protection system incorporating knowledge based learning

    NASA Astrophysics Data System (ADS)

    Watson, Karan; Russell, B. Don; McCall, Kurt

    A digital system architecture used to diagnoses the operating state and health of electric distribution lines and to generate actions for line protection is presented. The architecture is described functionally and to a limited extent at the hardware level. This architecture incorporates multiple analysis and fault-detection techniques utilizing a variety of parameters. In addition, a knowledge-based decision maker, a long-term memory retention and recall scheme, and a learning environment are described. Preliminary laboratory implementations of the system elements have been completed. Enhanced protection for electric distribution feeders is provided by this system. Advantages of the system are enumerated.

  5. CHALLENGES OF PROCESSING BIOLOGICAL DATA FOR INCORPORATION INTO A LAKE EUTROPHICATION MODEL

    EPA Science Inventory

    A eutrophication model is in development as part of the Lake Michigan Mass Balance Project (LMMBP). Successful development and calibration of this model required the processing and incorporation of extensive biological data. Data were drawn from multiple sources, including nutrie...

  6. Effects of Subject-Matter Knowledge in the Teaching of Biology and Physics.

    ERIC Educational Resources Information Center

    Hashweh, Maher Z.

    An analysis of science teacher's knowledge of specific biology and physics topics and the effects of this knowledge on their planning for instruction and on simulated teaching are discussed in this report. Six experienced secondary school teachers participated in the study. Each teacher's knowledge of a biology topic and a physics topic was…

  7. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    ERIC Educational Resources Information Center

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest…

  8. Microarray missing data imputation based on a set theoretic framework and biological knowledge.

    PubMed

    Gan, Xiangchao; Liew, Alan Wee-Chung; Yan, Hong

    2006-01-01

    Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.

  9. Mapping biological ideas: Concept maps as knowledge integration tools for evolution education

    NASA Astrophysics Data System (ADS)

    Schwendimann, Beat Adrian

    Many students leave school with a fragmented understanding of biology that does not allow them to connect their ideas to their everyday lives (Wandersee, 1989; Mintzes, Wandersee, & Novak, 1998; Mintzes, Wandersee, & Novak, 2000a). Understanding evolution ideas is seen as central to building an integrated knowledge of biology (Blackwell, Powell, & Dukes, 2003; Thagard & Findlay, 2010). However, the theory of evolution has been found difficult to understand as it incorporates a wide range of ideas from different areas (Bahar et al., 1999; Tsui & Treagust, 2003) and multiple interacting levels (Wilensky & Resnick, 1999; Duncan & Reiser, 2007; Hmelo-Silver et al., 2007). Research suggests that learners can hold a rich repertoire of co-existing alternative ideas of evolution (for example, Bishop & Anderson, 1990; Demastes, Good, & Peebles, 1996; Evans, 2008), especially of human evolution (for example, Nelson, 1986; Sinatra et al., 2003; Poling & Evans, 2004). Evolution ideas are difficult to understand because they often contradict existing alternative ideas (Mayr, 1982; Wolpert, 1994; Evans, 2008). Research suggests that understanding human evolution is a key to evolution education (for example, Blackwell et al., 2003; Besterman & Baggott la Velle, 2007). This dissertation research investigates how different concept mapping forms embedded in a collaborative technology-enhanced learning environment can support students' integration of evolution ideas using case studies of human evolution. Knowledge Integration (KI) (Linn et al., 2000; Linn et al., 2004) is used as the operational framework to explore concept maps as knowledge integration tools to elicit, add, critically distinguish, group, connect, and sort out alternative evolution ideas. Concept maps are a form of node-link diagram for organizing and representing connections between ideas as a semantic network (Novak & Gowin, 1984). This dissertation research describes the iterative development of a novel biology

  10. The acquisition of biological knowledge during childhood: Cognitive conflict or tabula rasa?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Clinical interviews were conducted with three elementary school children, who varied in age but not in family or school environment, to determine the extent to which they held naive misconceptions about important biological topics and to determine agewise trends in the development of biological knowledge. Does early biological knowledge acquisition follow a pattern of spontaneous naive theory construction and cognitive conflict or does it follow a pattern of gradual accretion to an initially blank slate? Contrary to findings in the physical sciences, little evidence was found for biological misconceptions as knowledge acquisition appeared to more directly follow the gradual accretion hypothesis with the primary source of that knowledge adult authority rather than personal experience. However, conceptual change teaching is still advocated due to its ability to provoke students to consider and test alternative conceptions (even if they are not their own) as a means of encouraging the development of important general reasoning patterns utilized in the testing of causal hypotheses.

  11. Advancing landscape change research through the incorporation of Inupiaq knowledge

    USGS Publications Warehouse

    Eisner, Wendy R.; Cuomo, Chris J.; Hinkel, Kenneth M.; Jones, Benjamin M.; Brower, Ronald H.

    2009-01-01

    Indigenous knowledge is a valuable but under-used source of information relevant to landscape change research. We interviewed Iñupiat elders, hunters, and other knowledge-holders in the villages of Barrow and Atqasuk on the western Arctic Coastal Plain of northern Alaska to gain further insight into the processes governing the ubiquitous lakes and the dynamics of landscape change in this region of continuous permafrost. The interviews provided a suite of information related to lakes and associated drained lake basins, as well as knowledge on landforms, environmental change, human events, and other phenomena. We were able to corroborate many observations independently and verify the timing of several large and significant lake drainage events using either aerial photography or remotely sensed time series. Data collected have been incorporated into a geodatabase to develop a multi-layer Geographic Information System that will be useful for local and scientific communities. This research demonstrates that indigenous knowledge can reveal a new understanding of landscape changes on the Arctic Coastal Plain in general and on lake processes in particular. We advocate ongoing, community-oriented research throughout the Arctic as a means of assessing and responding to the consequences of rapid environmental change.

  12. [Physicians' knowledge in Israel on the biology and control of head lice].

    PubMed

    Mumcuoglu, Kosta Y; Mumcuoglu, Michael; Danilevich, Maria; Gilead, Leon

    2008-10-01

    Health providers such as physicians, nurses and pharmacists should be knowledgeable about the biology of head lice and the ways to control them effectively, in order to reduce the proportion of children infested with head lice. To evaluate the knowledge of physicians in Israel on the biology and epidemiology of lice, as well as their experience with infested individuals and their preferences for diagnosis, prophylaxis and control. An anonymous questionnaire with 37 questions was used. The first 20 questions addressed the general knowledge of physicians on lice biology and control, while the remaining 17 questions were related to their personal experience with lice and louse treatment. Out of 273 physicians interviewed 66.8% had good knowledge of lice, while the remaining 33.2% had some knowledge on lice. The difference between the groups of physicians with medium and good knowledge on lice was borderline significant (P=0.0722), with the dermatologists borderline significantly less knowledgeable than the rest (P=0.0765). Significant differences were found between those physicians with 4-6 or 11-20 years of professional experience and the remaining groups (twice P<0.001). Although the percentage of female physicians who had a good knowledge on louse biology and control was higher than male physicians (39.4% and 29.4%, respectively), the differences were borderline significant (P=0.09). Pediatricians and dermatologists examined significantly more children than family physicians and general practitioners (P <0.001). The results of this study suggest that healthcare professionals' knowledge is of paramount importance for the correct diagnosis and control of head louse infestations.

  13. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    PubMed

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p < 0.0001). The five-day molecular biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Fostering Students' Conceptual Knowledge in Biology in the Context of German National Education Standards

    NASA Astrophysics Data System (ADS)

    Förtsch, Christian; Dorfner, Tobias; Baumgartner, Julia; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2018-04-01

    The German National Education Standards (NES) for biology were introduced in 2005. The content part of the NES emphasizes fostering conceptual knowledge. However, there are hardly any indications of what such an instructional implementation could look like. We introduce a theoretical framework of an instructional approach to foster students' conceptual knowledge as demanded in the NES (Fostering Conceptual Knowledge) including instructional practices derived from research on single core ideas, general psychological theories, and biology-specific features of instructional quality. First, we aimed to develop a rating manual, which is based on this theoretical framework. Second, we wanted to describe current German biology instruction according to this approach and to quantitatively analyze its effectiveness. And third, we aimed to provide qualitative examples of this approach to triangulate our findings. In a first step, we developed a theoretically devised rating manual to measure Fostering Conceptual Knowledge in videotaped lessons. Data for quantitative analysis included 81 videotaped biology lessons of 28 biology teachers from different German secondary schools. Six hundred forty students completed a questionnaire on their situational interest after each lesson and an achievement test. Results from multilevel modeling showed significant positive effects of Fostering Conceptual Knowledge on students' achievement and situational interest. For qualitative analysis, we contrasted instruction of four teachers, two with high and two with low student achievement and situational interest using the qualitative method of thematic analysis. Qualitative analysis revealed five main characteristics describing Fostering Conceptual Knowledge. Therefore, implementing Fostering Conceptual Knowledge in biology instruction seems promising. Examples of how to implement Fostering Conceptual Knowledge in instruction are shown and discussed.

  15. Using expert knowledge to incorporate uncertainty in cause-of-death assignments for modeling of cause-specific mortality

    USGS Publications Warehouse

    Walsh, Daniel P.; Norton, Andrew S.; Storm, Daniel J.; Van Deelen, Timothy R.; Heisy, Dennis M.

    2018-01-01

    Implicit and explicit use of expert knowledge to inform ecological analyses is becoming increasingly common because it often represents the sole source of information in many circumstances. Thus, there is a need to develop statistical methods that explicitly incorporate expert knowledge, and can successfully leverage this information while properly accounting for associated uncertainty during analysis. Studies of cause-specific mortality provide an example of implicit use of expert knowledge when causes-of-death are uncertain and assigned based on the observer's knowledge of the most likely cause. To explicitly incorporate this use of expert knowledge and the associated uncertainty, we developed a statistical model for estimating cause-specific mortality using a data augmentation approach within a Bayesian hierarchical framework. Specifically, for each mortality event, we elicited the observer's belief of cause-of-death by having them specify the probability that the death was due to each potential cause. These probabilities were then used as prior predictive values within our framework. This hierarchical framework permitted a simple and rigorous estimation method that was easily modified to include covariate effects and regularizing terms. Although applied to survival analysis, this method can be extended to any event-time analysis with multiple event types, for which there is uncertainty regarding the true outcome. We conducted simulations to determine how our framework compared to traditional approaches that use expert knowledge implicitly and assume that cause-of-death is specified accurately. Simulation results supported the inclusion of observer uncertainty in cause-of-death assignment in modeling of cause-specific mortality to improve model performance and inference. Finally, we applied the statistical model we developed and a traditional method to cause-specific survival data for white-tailed deer, and compared results. We demonstrate that model selection

  16. A convenient dichotomy: critical eyes on the limits to biological knowledge

    NASA Astrophysics Data System (ADS)

    Milne, Catherine

    2011-06-01

    In The Secret Identity of a Biology Textbook: straight and naturally sexed, Jesse Bazzul and Heather Sykes conduct a case study of a biology textbook as an oppressive instructional material. Using queer theory they explore how the text of the biology textbook produces "truths" about sex, gender, and sexuality. Their analysis is complemented by the Forum papers by Jay Lemke and Francis Broadway who broaden the analysis examining the way that what counts as knowledge in science is a political decision while also encouraging authors, including Bazzul and Sykes, to also look critically at their own theoretical lenses. In this paper I pull together their ideas while exploring cultural contexts for a more nuanced representation of biological knowledge and the politics of what it means to know science.

  17. Primary School Student Teachers' Perceived and Actual Knowledge in Biology

    ERIC Educational Resources Information Center

    Eija, Yli-Panula; Eila, Jeronen; Pongsakdi, Nonmanut

    2017-01-01

    Individuals' perceptions of their knowledge can have an important role in shaping their cognition and influencing their behaviour. However, there has been a scarcity of studies in biology on how perceived knowledge relates to actual knowledge. The focus of this article is on quantitative results analysing and interpreting student teachers'…

  18. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Direct Experience with Nature and the Development of Biological Knowledge

    ERIC Educational Resources Information Center

    Longbottom, Sarah E.; Slaughter, Virginia

    2016-01-01

    Research Findings: An emerging consensus is that casual, direct contact with nature influences the development of children's biological knowledge. Here we review the existing literature on this topic, focusing on the effects of (a) rural versus urban rearing environments and (b) pet ownership and care on children's biological concepts and…

  20. Incorporating zebrafish omics into chemical biology and toxicology.

    PubMed

    Sukardi, Hendrian; Ung, Choong Yong; Gong, Zhiyuan; Lam, Siew Hong

    2010-03-01

    In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.

  1. Current knowledge and attitudes: Russian olive biology, ecology and management

    Treesearch

    Sharlene E. Sing; Kevin J. Delaney

    2016-01-01

    The primary goals of a two-day Russian olive symposium held in February 2014 were to disseminate current knowledge and identify data gaps regarding Russian olive biology and ecology, distributions, integrated management, and to ascertain the feasibility and acceptance of a proposed program for classical biological control of Russian olive. The symposium was...

  2. Knowledge Transfer in Biology and Translation across External Representations: Experts' Views and Challenges for Learning

    ERIC Educational Resources Information Center

    Schonborn, Konrad J.; Bogeholz, Susanne

    2009-01-01

    Recent curriculum reform promotes core competencies such as desired "content knowledge" and "communication" for meaningful learning in biology. Understanding in biology is demonstrated when pupils can apply acquired knowledge to new tasks. This process requires the transfer of knowledge and the subordinate process of translation across external…

  3. Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information.

    PubMed

    Safo, Sandra E; Li, Shuzhao; Long, Qi

    2018-03-01

    Integrative analysis of high dimensional omics data is becoming increasingly popular. At the same time, incorporating known functional relationships among variables in analysis of omics data has been shown to help elucidate underlying mechanisms for complex diseases. In this article, our goal is to assess association between transcriptomic and metabolomic data from a Predictive Health Institute (PHI) study that includes healthy adults at a high risk of developing cardiovascular diseases. Adopting a strategy that is both data-driven and knowledge-based, we develop statistical methods for sparse canonical correlation analysis (CCA) with incorporation of known biological information. Our proposed methods use prior network structural information among genes and among metabolites to guide selection of relevant genes and metabolites in sparse CCA, providing insight on the molecular underpinning of cardiovascular disease. Our simulations demonstrate that the structured sparse CCA methods outperform several existing sparse CCA methods in selecting relevant genes and metabolites when structural information is informative and are robust to mis-specified structural information. Our analysis of the PHI study reveals that a number of gene and metabolic pathways including some known to be associated with cardiovascular diseases are enriched in the set of genes and metabolites selected by our proposed approach. © 2017, The International Biometric Society.

  4. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    PubMed Central

    Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (posttest) of the course. Alignment between student perception and determined knowledge was significantly more accurate on the posttest compared with the pretest. Students whose determined knowledge was in the upper quartile had significantly better alignment between their perception and determined knowledge on the pre- and posttest than students in the lower quartile. No difference exists between how students perceived their knowledge between upper- and lower-quartile students. There was a significant difference in alignment of perception and determined knowledge between males and females on the posttest, with females being more accurate in their perception of knowledge. This study provides evidence of discrepancies that exist between what students perceive they know and what they actually know. PMID:26086662

  5. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    NASA Astrophysics Data System (ADS)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  6. Ontological knowledge structure of intuitive biology

    NASA Astrophysics Data System (ADS)

    Martin, Suzanne Michele

    It has become increasingly important for individuals to understand infections disease, as there has been a tremendous rise in viral and bacterial disease. This research examines systematic misconceptions regarding the characteristics of viruses and bacteria present in individuals previously educated in biological sciences at a college level. 90 pre-nursing students were administered the Knowledge Acquisition Device (KAD) which consists of 100 True/False items that included statements about the possible attributes of four entities: bacteria, virus, amoeba, and protein. Thirty pre-nursing students, who incorrectly stated that viruses were alive, were randomly assigned to three conditions. (1) exposed to information about the ontological nature of viruses, (2) Information about viruses, (3) control. In the condition that addressed the ontological nature of a virus, all of those participants were able to classify viruses correctly as not alive; however any items that required inferences, such as viruses come in male and female forms or viruses breed with each other to make baby viruses were still incorrectly answered by all conditions in the posttest. It appears that functional knowledge, ex. If a virus is alive or dead, or how it is structured, is not enough for an individual to have a full and accurate understanding of viruses. Ontological knowledge information may alter the functional knowledge but underlying inferences remain systematically incorrect.

  7. Fostering synergy between cell biology and systems biology.

    PubMed

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. High School Biology Students' Knowledge and Certainty about Diffusion and Osmosis Concepts

    ERIC Educational Resources Information Center

    Odom, Arthur L.; Barrow, Lloyd H.

    2007-01-01

    The purpose of this study was to investigate students' understanding about scientifically acceptable content knowledge by exploring the relationship between knowledge of diffusion and osmosis and the students' certainty in their content knowledge. Data was collected from a high school biology class with the Diffusion and Osmosis Diagnostic Test…

  9. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    NASA Astrophysics Data System (ADS)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  10. Developmental "roots" in mature biological knowledge.

    PubMed

    Goldberg, Robert F; Thompson-Schill, Sharon L

    2009-04-01

    Young children tend to claim that moving artifacts and nonliving natural kinds are alive, but neglect to ascribe life to plants. This research tested whether adults exhibit similar confusions when verifying life status in a speeded classification task. Experiment 1 showed that undergraduates encounter greater difficulty (reduced accuracy and increased response times) in determining life status for plants, relative to animals, and for natural and moving nonliving things, relative to artifacts and non-moving things. Experiment 2 replicated these effects in university biology professors. The professors showed a significantly reduced effect size for living things, as compared with the students, but still showed greater difficulty for plants than animals, even as no differences from the students were apparent in their responses to nonliving things. These results suggest that mature biological knowledge relies on a developmental foundation that is not radically overwritten or erased with the profound conceptual changes that accompany mastery of the domain.

  11. Integrated Bio-Entity Network: A System for Biological Knowledge Discovery

    PubMed Central

    Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng

    2011-01-01

    A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677

  12. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    ERIC Educational Resources Information Center

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  13. Nature or Nurture? A Lesson Incorporating Students' Interests in a High-School Biology Class

    ERIC Educational Resources Information Center

    Hagay, Galit; Peleg, Ran; Laslo, Esti; Baram-Tsabari, Ayelet

    2013-01-01

    We present a case study of a lesson that incorporates high school students' interests in heredity alongside the requirements of the curriculum. This was done by collecting students' questions in advance and inserting them in strategic places in the biology curriculum, thus creating a "shadow curriculum". The idea underlying the lesson…

  14. Teaching Statistics in Biology: Using Inquiry-based Learning to Strengthen Understanding of Statistical Analysis in Biology Laboratory Courses

    PubMed Central

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754

  15. Teaching statistics in biology: using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses.

    PubMed

    Metz, Anneke M

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.

  16. [Knowledge and power at a molecular level; biological psychiatry in a social context].

    PubMed

    Verhoeff, B

    2009-01-01

    How do we acquire our knowledge about psychiatric disorders and how did the current biologically way of thinking in psychiatry originate? With the help of the philosophy of Michel Foucault and Nikolas Rose this essay describes the conditions that made possible today's biological approach in psychiatry. It will become clear that research in the life sciences and the psychiatric knowledge arising from this research are shaped and formed in a complex network of social, economic, political and scientific forces. The biological approach to psychiatric disorders is the product of present-day relationships between scientific developments and commercial corporations.

  17. Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks

    ERIC Educational Resources Information Center

    Irez, Serhat

    2016-01-01

    Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…

  18. Structuring and extracting knowledge for the support of hypothesis generation in molecular biology

    PubMed Central

    Roos, Marco; Marshall, M Scott; Gibson, Andrew P; Schuemie, Martijn; Meij, Edgar; Katrenko, Sophia; van Hage, Willem Robert; Krommydas, Konstantinos; Adriaans, Pieter W

    2009-01-01

    Background Hypothesis generation in molecular and cellular biology is an empirical process in which knowledge derived from prior experiments is distilled into a comprehensible model. The requirement of automated support is exemplified by the difficulty of considering all relevant facts that are contained in the millions of documents available from PubMed. Semantic Web provides tools for sharing prior knowledge, while information retrieval and information extraction techniques enable its extraction from literature. Their combination makes prior knowledge available for computational analysis and inference. While some tools provide complete solutions that limit the control over the modeling and extraction processes, we seek a methodology that supports control by the experimenter over these critical processes. Results We describe progress towards automated support for the generation of biomolecular hypotheses. Semantic Web technologies are used to structure and store knowledge, while a workflow extracts knowledge from text. We designed minimal proto-ontologies in OWL for capturing different aspects of a text mining experiment: the biological hypothesis, text and documents, text mining, and workflow provenance. The models fit a methodology that allows focus on the requirements of a single experiment while supporting reuse and posterior analysis of extracted knowledge from multiple experiments. Our workflow is composed of services from the 'Adaptive Information Disclosure Application' (AIDA) toolkit as well as a few others. The output is a semantic model with putative biological relations, with each relation linked to the corresponding evidence. Conclusion We demonstrated a 'do-it-yourself' approach for structuring and extracting knowledge in the context of experimental research on biomolecular mechanisms. The methodology can be used to bootstrap the construction of semantically rich biological models using the results of knowledge extraction processes. Models specific

  19. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  20. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    PubMed

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Evolving Strategies for the Incorporation of Bioinformatics Within the Undergraduate Cell Biology Curriculum

    PubMed Central

    Honts, Jerry E.

    2003-01-01

    Recent advances in genomics and structural biology have resulted in an unprecedented increase in biological data available from Internet-accessible databases. In order to help students effectively use this vast repository of information, undergraduate biology students at Drake University were introduced to bioinformatics software and databases in three courses, beginning with an introductory course in cell biology. The exercises and projects that were used to help students develop literacy in bioinformatics are described. In a recently offered course in bioinformatics, students developed their own simple sequence analysis tool using the Perl programming language. These experiences are described from the point of view of the instructor as well as the students. A preliminary assessment has been made of the degree to which students had developed a working knowledge of bioinformatics concepts and methods. Finally, some conclusions have been drawn from these courses that may be helpful to instructors wishing to introduce bioinformatics within the undergraduate biology curriculum. PMID:14673489

  2. The Notion of Scientific Knowledge in Biology

    NASA Astrophysics Data System (ADS)

    Morante, Silvia; Rossi, Giancarlo

    2016-03-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of

  3. Developmental “Roots” in Mature Biological Knowledge

    PubMed Central

    Goldberg, Robert F.; Thompson-Schill, Sharon L.

    2009-01-01

    Young children tend to claim that moving artifacts and nonliving natural kinds are alive, but neglect to ascribe life to plants. This research tested whether adults exhibit similar confusions when verifying life status in a speeded classification task. Experiment 1 showed that undergraduates encounter greater difficulty (reduced accuracy and increased response times) in determining life status for plants, relative to animals, and for natural and moving nonliving things, relative to artifacts and non-moving things. Experiment 2 replicated these effects in university biology professors. The professors showed a significantly reduced effect size for living things, as compared with the students, but still showed greater difficulty for plants than animals, even as no differences from the students were apparent in their responses to nonliving things. These results suggest that mature biological knowledge relies on a developmental foundation that is not radically overwritten or erased with the profound conceptual changes that accompany mastery of the domain. PMID:19399979

  4. Noun and knowledge retrieval for biological and non-biological entities following right occipitotemporal lesions.

    PubMed

    Bruffaerts, Rose; De Weer, An-Sofie; De Grauwe, Sophie; Thys, Miek; Dries, Eva; Thijs, Vincent; Sunaert, Stefan; Vandenbulcke, Mathieu; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik

    2014-09-01

    We investigated the critical contribution of right ventral occipitotemporal cortex to knowledge of visual and functional-associative attributes of biological and non-biological entities and how this relates to category-specificity during confrontation naming. In a consecutive series of 7 patients with lesions confined to right ventral occipitotemporal cortex, we conducted an extensive assessment of oral generation of visual-sensory and functional-associative features in response to the names of biological and nonbiological entities. Subjects also performed a confrontation naming task for these categories. Our main novel finding related to a unique case with a small lesion confined to right medial fusiform gyrus who showed disproportionate naming impairment for nonbiological versus biological entities, specifically for tools. Generation of visual and functional-associative features was preserved for biological and non-biological entities. In two other cases, who had a relatively small posterior lesion restricted to primary visual and posterior fusiform cortex, retrieval of visual attributes was disproportionately impaired compared to functional-associative attributes, in particular for biological entities. However, these cases did not show a category-specific naming deficit. Two final cases with the largest lesions showed a classical dissociation between biological versus nonbiological entities during naming, with normal feature generation performance. This is the first lesion-based evidence of a critical contribution of the right medial fusiform cortex to tool naming. Second, dissociations along the dimension of attribute type during feature generation do not co-occur with category-specificity during naming in the current patient sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard.

    PubMed

    Jing, Xia; Kay, Stephen; Marley, Thomas; Hardiker, Nicholas R; Cimino, James J

    2012-02-01

    The current volume and complexity of genetic tests, and the molecular genetics knowledge and health knowledge related to interpretation of the results of those tests, are rapidly outstripping the ability of individual clinicians to recall, understand and convey to their patients information relevant to their care. The tailoring of molecular genetics knowledge and health knowledge in clinical settings is important both for the provision of personalized medicine and to reduce clinician information overload. In this paper we describe the incorporation, customization and demonstration of molecular genetic data (mainly sequence variants), molecular genetics knowledge and health knowledge into a standards-based electronic health record (EHR) prototype developed specifically for this study. We extended the CCR (Continuity of Care Record), an existing EHR standard for representing clinical data, to include molecular genetic data. An EHR prototype was built based on the extended CCR and designed to display relevant molecular genetics knowledge and health knowledge from an existing knowledge base for cystic fibrosis (OntoKBCF). We reconstructed test records from published case reports and represented them in the CCR schema. We then used the EHR to dynamically filter molecular genetics knowledge and health knowledge from OntoKBCF using molecular genetic data and clinical data from the test cases. The molecular genetic data were successfully incorporated in the CCR by creating a category of laboratory results called "Molecular Genetics" and specifying a particular class of test ("Gene Mutation Test") in this category. Unlike other laboratory tests reported in the CCR, results of tests in this class required additional attributes ("Molecular Structure" and "Molecular Position") to support interpretation by clinicians. These results, along with clinical data (age, sex, ethnicity, diagnostic procedures, and therapies) were used by the EHR to filter and present molecular genetics

  6. Exploring Biology Teachers' Pedagogical Content Knowledge in the Teaching of Genetics in Swaziland Science Classrooms

    ERIC Educational Resources Information Center

    Mthethwa-Kunene, Eunice; Onwu, Gilbert Oke; de Villiers, Rian

    2015-01-01

    This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students' preconceptions and learning difficulties. Data sources of teacher knowledge base…

  7. Subject-specific pedagogical content knowledge: Implications for alternatively and traditionally trained biology teachers

    NASA Astrophysics Data System (ADS)

    Ravgiala, Rebekah Rae

    Theories regarding the development of expertise hold implications for alternative and traditional certification programs and the teachers they train. The literature suggests that when compared to experts in the field of teaching, the behaviors of novices differ in ways that are directly attributed to their pedagogical content knowledge. However, few studies have examined how first and second year biology teachers entering the profession from traditional and alternative training differ in their demonstration of subject-specific pedagogical content knowledge. The research problem in this multicase, naturalistic inquiry investigated how subject-specific pedagogical content knowledge was manifested among first and second year biology teachers in the task of transforming subject matter into forms that are potentially meaningful to students when explicit formal training has been and has not been imparted to them as preservice teachers. Two first year and two second year biology teachers were the subjects of this investigation. Allen and Amber obtained their certification through an alternative summer training institute in consecutive years. Tiffany and Tricia obtained their certification through a traditional, graduate level training program in consecutive years. Both programs were offered at the same northeastern state university. Participants contributed to six data gathering techniques including an initial semi-structured interview, responses to the Conceptions of Teaching Science questionnaire (Hewson & Hewson, 1989), three videotaped biology lessons, evaluation of three corresponding lesson plans, and a final semi-structured interview conducted at the end of the investigation. An informal, end-of-study survey intended to offer participants an opportunity to disclose their thoughts and needs as first year teachers was also employed. Results indicate that while conceptions of teaching science may vary slightly among participants, there is no evidence to suggest that

  8. "A mission-driven discipline": the growth of conservation biology.

    PubMed

    Meine, Curt; Soulé, Michael; Noss, Reed E

    2006-06-01

    Conservation biology emerged in the mid-1980s, drawing on established disciplines and integrating them in pursuit of a coherent goal: the protection and perpetuation of the Earth's biological diversity. Opportunistic in its borrowing and application of knowledge, conservation biology had its roots within the established biological sciences and resource management disciplines but has continually incorporated insights from the empirical experience of resource managers, from the social sciences and humanities, and from diverse cultural sources. The Society for Conservation Biology (SCB) has represented the field's core constituency, while expanding that constituency in keeping with the field's integrative spirit. Conservation Biology has served as SCB's flagship publication, promoting research, dialog, debate, and application of the field's essential concepts. Over the last 20 years the field, SCB, and the journal have evolved to meet changing conservation needs, to explore gaps in our knowledge base, to incorporate new information from related fields, to build professional capacity, and to provide expanded opportunities for international participation. In turn, the field, SCB, and journal have prompted change in related fields, organizations, and publications. In its dedication to advancing the scientific foundations of biodiversity conservation and placing that science at the service of society in a world whose variety, wildness, and beauty we care for conservation biology represents both a continuation and radical reconfiguration of the traditional relationship between science and conservation.

  9. Weaving Traditional Ecological Knowledge into Biological Education: A Call to Action.

    ERIC Educational Resources Information Center

    Kimmerer, Robin Wall

    2002-01-01

    Traditional ecological knowledge has value not only for the wealth of biological information it contains but also for the cultural framework of respect, reciprocity, and responsibility in which it is embedded. (Contains 48 references.) (DDR)

  10. Investigating Lebanese Grade Seven Biology Teachers Mathematical Knowledge and Skills: A Case Study

    ERIC Educational Resources Information Center

    Raad, Nawal Abou; Chatila, Hanadi

    2016-01-01

    This paper investigates Lebanese grade 7 biology teachers' mathematical knowledge and skills, by exploring how they explain a visual representation in an activity depending on the mathematical concept "Function". Twenty Lebanese in-service biology teachers participated in the study, and were interviewed about their explanation for the…

  11. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    PubMed

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  12. Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data

    PubMed Central

    2014-01-01

    Background High-throughput omics technologies have enabled the measurement of many genes or metabolites simultaneously. The resulting high dimensional experimental data poses significant challenges to transcriptomics and metabolomics data analysis methods, which may lead to spurious instead of biologically relevant results. One strategy to improve the results is the incorporation of prior biological knowledge in the analysis. This strategy is used to reduce the solution space and/or to focus the analysis on biological meaningful regions. In this article, we review a selection of these methods used in transcriptomics and metabolomics. We combine the reviewed methods in three groups based on the underlying mathematical model: exploratory methods, supervised methods and estimation of the covariance matrix. We discuss which prior knowledge has been used, how it is incorporated and how it modifies the mathematical properties of the underlying methods. PMID:25033193

  13. Negotiating the dynamics of uncomfortable knowledge: The case of dual use and synthetic biology

    PubMed Central

    Marris, Claire; Jefferson, Catherine; Lentzos, Filippa

    2014-01-01

    Institutions need to ignore some knowledge in order to function. This is “uncomfortable knowledge” because it undermines the ability of those institutions to pursue their goals (Rayner, 2012). We identify three bodies of knowledge that are relevant to understandings of the dual use threat posed by synthetic biology but are excluded from related policy discussions. We demonstrate how these “unknown knowns” constitute uncomfortable knowledge because they disrupt the simplified worldview that underpins contemporary discourse on the potential misuse of synthetic biology by malign actors. We describe how these inconvenient truths have been systematically ignored and argue that this is because they are perceived as a threat by organisations involved in the promotion of synthetic biology as well as by those involved in managing biosecurity risks. This has led to a situation where concerns about the biosecurity threat posed by synthetic biology are not only exaggerated, but are, more importantly, misplaced. This, in turn, means that related policies are misdirected and unlikely to have much impact. We focus on the dynamics of discussions about synthetic biology and dual use to demonstrate how the same “knowns” that are denied or dismissed as “unknown knowns” in certain circumstances are sometimes mobilised as “known knowns” by the same category of actors in a different context, when this serves to sustain the goals of the individuals and institutions involved. Based on our own experience, we argue that negotiating the dynamics of uncomfortable knowledge is a difficult, but necessary, component of meaningful transdisciplinary collaborations. PMID:25484910

  14. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  15. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    PubMed

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  16. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms

    ERIC Educational Resources Information Center

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections…

  17. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    ERIC Educational Resources Information Center

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge…

  18. The impact of ecolabel knowledge to purchase decision of green producton biology students

    NASA Astrophysics Data System (ADS)

    Sigit, Diana Vivanti; Fauziah, Rizky; Heryanti, Erna

    2017-08-01

    The world needs real solutions to reduce the impact of environmental damages. Students as agents of changes have a role to overcome these problems. One of the important solution is to be a critical consumer who has purchase decisions in a green product. To show the quality of an environmental friendly product, it is then required an ecolabel on the green product which indicates that the product has been through the production processed and come from environmental friendly substances. The research aimed at finding out whether there was an impact of ecolabel knowledge with purchase decision of green product on biology students. This research was conducted in Biology Department. This research used a survey descriptive method. The population used was biology students of Universitas Negeri Jakarta while the sampling technique was done through simple random sampling technique with 147 respondents. Instrument used were ecolabel knowledge test and a questionnaire of green product purchase decision. The result of prerequisite test showed that the data was normally distributed and homogenous variance. The regression model obtained was Ŷ=77.083+ 0.370X. Meanwhile, the determinant coefficient (r2) obtained was 0.047 or 4.7% that mean ecolabel knowledge just contributed 4,71% to the green product purchase decision. These implied that many factors contributed in the purchase decision of green product instead of ecolabel knowledge.

  19. The Regional Advisory Councils: what is their potential to incorporate stakeholder knowledge into fisheries governance?

    PubMed

    Linke, Sebastian; Dreyer, Marion; Sellke, Piet

    2011-03-01

    The protection of the Baltic Sea ecosystem is exacerbated by the social, environmental and economic complexities of governing European fisheries. Increased stakeholder participation and knowledge integration are suggested to improve the EU's Common Fisheries Policy (CFP), suffering from legitimacy, credibility and compliance problems. As a result, the CFP was revised in 2002 to involve fisheries representatives, NGOs and other stakeholders through so called Regional Advisory Councils (RACs) in the policy process. We address the RAC's task to incorporate stakeholder knowledge into the EU's fisheries governance system in empirical and theoretical perspectives. Drawing on a four-stage governance concept we subsequently suggest that a basic problem is a mismatch between participation purpose (knowledge inclusion) and the governance stage at which RACs are formally positioned (evaluation of management proposals). We conclude that, if the aim is to broaden the knowledge base of fisheries management, stakeholders need to be included earlier in the governance process.

  20. HIV/AIDS Content Knowledge and Presentation Strategies in Biology for Effective Use in Everyday Life

    ERIC Educational Resources Information Center

    Mnguni, Lindelani; Abrie, Mia

    2012-01-01

    HIV/AIDS education should empower students to create knowledge using everyday life experiences. Such knowledge should then be used to construe experience and resolve social problems such as risk behaviour that leads to infection. In South Africa, attempts to reduce the spread of HIV include incorporating HIV/AIDS education in the biology…

  1. Elaboration of Cognitive Knowledge of Biology from Childhood to Adulthood.

    ERIC Educational Resources Information Center

    Fisher, Kathleen M.

    Word association techniques were used to examine the growth of biological knowledge over a period of years, from fourth-grade to college students. Results were analyzed by classifying stimulus-response word pairs according to the nature of the relationship between the words in each pair. Three hypotheses were tested: (1) the proportion of enactive…

  2. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    PubMed Central

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  3. Thinking about Digestive System in Early Childhood: A Comparative Study about Biological Knowledge

    ERIC Educational Resources Information Center

    AHI, Berat

    2017-01-01

    The current study aims to explore how children explain the concepts of biology and how biological knowledge develops across ages by focusing on the structure and functions of the digestive system. The study was conducted with 60 children. The data were collected through the interviews conducted within a think-aloud protocol. The interview data…

  4. XML-based data model and architecture for a knowledge-based grid-enabled problem-solving environment for high-throughput biological imaging.

    PubMed

    Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif

    2008-03-01

    High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.

  5. Ways of incorporating photographic images in learning and assessing high school biology: A study of visual perception and visual cognition

    NASA Astrophysics Data System (ADS)

    Nixon, Brenda Chaumont

    This study evaluated the cognitive benefits and costs of incorporating biology-textbook and student-generated photographic images into the learning and assessment processes within a 10th grade biology classroom. The study implemented Wandersee's (2000) 20-Q Model of Image-Based Biology Test-Item Design (20-Q Model) to explore the use of photographic images to assess students' understanding of complex biological processes. A thorough review of the students' textbook using ScaleMaster R with PC Interface was also conducted. The photographs, diagrams, and other representations found in the textbook were measured to determine the percentage of each graphic depicted in the book and comparisons were made to the text. The theoretical framework that guided the research included Human Constructivist tenets espoused by Mintzes, Wandersee and Novak (2000). Physiological and cognitive factors of images and image-based learning as described by Robin (1992), Solso (1997) and Wandersee (2000) were examined. Qualitative case study design presented by Yin (1994), Denzin and Lincoln (1994) was applied and data were collected through interviews, observations, student activities, student and school artifacts and Scale Master IIRTM measurements. The results of the study indicate that although 24% of the high school biology textbook is devoted to photographic images which contribute significantly to textbook cost, the teacher and students paid little attention to photographic images other than as aesthetic elements for creating biological ambiance, wasting valuable opportunities for learning. The analysis of the photographs corroborated findings published by the Association American Association for the Advancement of Science that indicated "While most of the books are lavishly illustrated, these representations are rarely helpful, because they are too abstract, needlessly complicated, or inadequately explained" (Roseman, 2000, p. 2). The findings also indicate that applying the 20-Q

  6. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    PubMed

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Nursing and the new biology: towards a realist, anti-reductionist approach to nursing knowledge.

    PubMed

    Nairn, Stuart

    2014-10-01

    As a system of knowledge, nursing has utilized a range of subjects and reconstituted them to reflect the thinking and practice of health care. Often drawn to a holistic model, nursing finds it difficult to resist the reductionist tendencies in biological and medical thinking. In this paper I will propose a relational approach to knowledge that is able to address this issue. The paper argues that biology is not characterized by one stable theory but is often a contentious topic and employs philosophically diverse models in its scientific research. Biology need not be seen as a reductionist science, but reductionism is nonetheless an important current within biological thinking. These reductionist currents can undermine nursing knowledge in four main ways. Firstly, that the conclusions drawn from reductionism go far beyond their data based on an approach that prioritizes biological explanations and eliminates others. Secondly, that the methods employed by biologists are sometimes weak, and the limitations are insufficiently acknowledged. Thirdly, that the assumptions that drive the research agenda are problematic, and finally that uncritical application of these ideas can be potentially disastrous for nursing practice. These issues are explored through an examination of the problems reductionism poses for the issue of gender, mental health, and altruism. I then propose an approach based on critical realism that adopts an anti-reductionist philosophy that utilizes the conceptual tools of emergence and a relational ontology. © 2014 John Wiley & Sons Ltd.

  8. Incorporation of multiple cloud layers for ultraviolet radiation modeling studies

    NASA Technical Reports Server (NTRS)

    Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.

    1994-01-01

    Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.

  9. Exploring Biology Teachers' Pedagogical Content Knowledge in the Teaching of Genetics in Swaziland Science Classrooms

    NASA Astrophysics Data System (ADS)

    Mthethwa-Kunene, Eunice; Oke Onwu, Gilbert; de Villiers, Rian

    2015-05-01

    This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students' preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students' work samples. The results showed that the teachers' individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students' internalization of the concepts. The finding that all four teachers lacked knowledge of students' genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers' continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.

  10. Resisting Official Knowledge: The Incorporation and Abjection of Race and Poverty in High School American History Textbooks, 1960s-2000s

    ERIC Educational Resources Information Center

    Kearl, Benjamin Kelsey

    2014-01-01

    Through an interpretive analysis of how high school American history textbooks depict the urban-riots of the late-1960s, in this article the author discusses how textbooks incorporate and abject official knowledge related to the intersections of race and poverty. Incorporation is related with Raymond Williams' theory of the selective tradition and…

  11. Biosocial Conservation: Integrating Biological and Ethnographic Methods to Study Human-Primate Interactions.

    PubMed

    Setchell, Joanna M; Fairet, Emilie; Shutt, Kathryn; Waters, Siân; Bell, Sandra

    2017-01-01

    Biodiversity conservation is one of the grand challenges facing society. Many people interested in biodiversity conservation have a background in wildlife biology. However, the diverse social, cultural, political, and historical factors that influence the lives of people and wildlife can be investigated fully only by incorporating social science methods, ideally within an interdisciplinary framework. Cultural hierarchies of knowledge and the hegemony of the natural sciences create a barrier to interdisciplinary understandings. Here, we review three different projects that confront this difficulty, integrating biological and ethnographic methods to study conservation problems. The first project involved wildlife foraging on crops around a newly established national park in Gabon. Biological methods revealed the extent of crop loss, the species responsible, and an effect of field isolation, while ethnography revealed institutional and social vulnerability to foraging wildlife. The second project concerned great ape tourism in the Central African Republic. Biological methods revealed that gorilla tourism poses risks to gorillas, while ethnography revealed why people seek close proximity to gorillas. The third project focused on humans and other primates living alongside one another in Morocco. Incorporating shepherds in the coproduction of ecological knowledge about primates built trust and altered attitudes to the primates. These three case studies demonstrate how the integration of biological and social methods can help us to understand the sustainability of human-wildlife interactions, and thus promote coexistence. In each case, an integrated biosocial approach incorporating ethnographic data produced results that would not otherwise have come to light. Research that transcends conventional academic boundaries requires the openness and flexibility to move beyond one's comfort zone to understand and acknowledge the legitimacy of "other" kinds of knowledge. It is

  12. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2016-12-01

    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.

  13. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed Central

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-01-01

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. PMID:26101205

  14. Interactions among Children in Scholastic Contexts and Knowledge Acquisition in Biology

    ERIC Educational Resources Information Center

    Ponce, Corinne; Schneeberger, Patricia

    2002-01-01

    This article presents the first results of an investigation in a scholastic context aimed a determining the conditions that favour the acquisition of knowledge in biology within interactions in groups of 4 pupils. There were three work sessions in small groups, and some sessions in class groups. The pupils' conceptions were assessed at the…

  15. Influence of using challenging tasks in biology classrooms on students' cognitive knowledge structure: an empirical video study

    NASA Astrophysics Data System (ADS)

    Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.

    2016-08-01

    Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.

  16. On Crowd-verification of Biological Networks

    PubMed Central

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O’Neel, Bruce; Peitsch, Manuel C.; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K.; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  17. Data Integration and Mining for Synthetic Biology Design.

    PubMed

    Mısırlı, Göksel; Hallinan, Jennifer; Pocock, Matthew; Lord, Phillip; McLaughlin, James Alastair; Sauro, Herbert; Wipat, Anil

    2016-10-21

    One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.

  18. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-06-22

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. The human biology--saturated with experience.

    PubMed

    Getz, Linn; Kirkengen, Anna Luise; Ulvestad, Elling

    2011-04-08

    The human being is a self-reflecting, relationship-oriented, goal-directed organism in search of meaning. The process of coordinating and developing knowledge about how experience associated with self-conscience, relationships and values can contribute to development of health and disease is a great challenge for the medical profession. We present a theory-guided synthesis of new scientific knowledge from fields such as epigenetics, psycho-neuro-endocrino-immunology, stress research and systems biology. The sources are articles in acknowledged journals and books, chosen to provide insight into associations between life history (biography) and the human body (biology) in a wide sense. Research shows that information about biography, i.e. experienced meaning and relationships, is literally incorporated into the human organism. Epigenetics illustrates the fundamental biological potential for context-dependent adaptation. Further, studies have shown that different types of existential strain may disturb systems for human physiological adaptation, affect structures in the brain and subsequently render the organism vulnerable for disease. However, a sense of belonging and a perception of being supported and acknowledged can contribute to strengthening or restoring health. The traditional approach to increasing biomedical knowledge has prevented insight into the medical significance of experience. The new knowledge necessitates a reorientation of theory and practice within the medical profession both with respect to individuals and society.

  20. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    ERIC Educational Resources Information Center

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge,…

  1. Recommendations for incorporating biologicals into management of moderate to severe plaque psoriasis: individualized patient approaches.

    PubMed

    Langley, Richard G; Ho, Vincent; Lynde, Charles; Papp, Kim A; Poulin, Yves; Shear, Neil; Toole, Jack; Zip, Catherine

    2006-01-01

    Psoriasis is a T-cell mediated skin disease that affects approximately 2% of the population worldwide. Despite the prevalence of the disease and long-standing efforts to develop strategies to treat it, there is a need for safe and effective therapies to treat psoriasis, particularly the more severe forms. Biological agents such as alefacept, efalizumab, etanercept, and infliximab have been recognized as a class of treatment distinct from other forms of therapy in the treatment algorithm of psoriasis. Recent national and international consensus meetings have developed statements that position biological agents as an important addition to the treatment armamentarium for moderate to severe psoriasis, along with phototherapy and traditional systemic agents. There has been consensus that treatment should be individualized to each patient's needs and circumstances. Biological agents offer the hope of safe, effective, long-term management of moderate to severe psoriasis. As new agents receive approval from Health Canada, the available range of therapeutic options for treating this chronic disease will broaden. A Canadian Psoriasis Expert Panel recently convened in February 2005 to analyze, based on a series of clinical case scenarios, the indications, contraindications, and considerations for and against each of the four biological agents, derived from product labelling, where available, and from the efficacy and safety data from phase 3 and earlier clinical trials, as well as post-marketing reports. The Panel has formulated a set of recommendations for incorporating these biological agents into the current treatment paradigm of moderate to severe plaque psoriasis and has identified the preferred biological agents for each patient based on individual needs and circumstances.

  2. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    NASA Astrophysics Data System (ADS)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert

  3. Content-Related Knowledge of Biology Teachers from Secondary Schools: Structure and learning opportunities

    NASA Astrophysics Data System (ADS)

    Großschedl, Jörg; Mahler, Daniela; Kleickmann, Thilo; Harms, Ute

    2014-09-01

    Teachers' content-related knowledge is a key factor influencing the learning progress of students. Different models of content-related knowledge have been proposed by educational researchers; most of them take into account three categories: content knowledge, pedagogical content knowledge, and curricular knowledge. As there is no consensus about the empirical separability (i.e. empirical structure) of content-related knowledge yet, a total of 134 biology teachers from secondary schools completed three tests which were to capture each of the three categories of content-related knowledge. The empirical structure of content-related knowledge was analyzed by Rasch analysis, which suggests content-related knowledge to be composed of (1) content knowledge, (2) pedagogical content knowledge, and (3) curricular knowledge. Pedagogical content knowledge and curricular knowledge are highly related (rlatent = .70). The latent correlations between content knowledge and pedagogical content knowledge (rlatent = .48)-and curricular knowledge, respectively (rlatent = .35)-are moderate to low (all ps < .001). Beyond the empirical structure of content-related knowledge, different learning opportunities for teachers were investigated with regard to their relationship to content knowledge, pedagogical content knowledge, and curricular knowledge acquisition. Our results show that an in-depth training in teacher education, professional development, and teacher self-study are positively related to particular categories of content-related knowledge. Furthermore, our results indicate that teaching experience is negatively related to curricular knowledge, compared to no significant relationship with content knowledge and pedagogical content knowledge.

  4. A Short Note on Haroutunian's View of Piaget's Biological Conception of Knowledge.

    ERIC Educational Resources Information Center

    Doll, William E., Jr.

    1981-01-01

    The author discusses major premises of a paper, by Sophie Haroutunian (Educational Theory, v30 n3), that relates Jean Piaget's conception of knowledge to his biological theory of equilibrium. Doll argues that Piaget's theory of equilibration (striving for control over the environment) is not sufficiently appreciated by Haroutunian. (PP)

  5. CONCEPTUAL FRAMEWORK FOR THE CHEMICAL EFFECTS IN BIOLOGICAL SYSTEMS (CEBS) TOXICOGENOMICS KNOWLEDGE BASE

    EPA Science Inventory

    Conceptual Framework for the Chemical Effects in Biological Systems (CEBS) T oxicogenomics Knowledge Base

    Abstract
    Toxicogenomics studies how the genome is involved in responses to environmental stressors or toxicants. It combines genetics, genome-scale mRNA expressio...

  6. Incorporating Feature-Based Annotations into Automatically Generated Knowledge Representations

    NASA Astrophysics Data System (ADS)

    Lumb, L. I.; Lederman, J. I.; Aldridge, K. D.

    2006-12-01

    Earth Science Markup Language (ESML) is efficient and effective in representing scientific data in an XML- based formalism. However, features of the data being represented are not accounted for in ESML. Such features might derive from events (e.g., a gap in data collection due to instrument servicing), identifications (e.g., a scientifically interesting area/volume in an image), or some other source. In order to account for features in an ESML context, we consider them from the perspective of annotation, i.e., the addition of information to existing documents without changing the originals. Although it is possible to extend ESML to incorporate feature-based annotations internally (e.g., by extending the XML schema for ESML), there are a number of complicating factors that we identify. Rather than pursuing the ESML-extension approach, we focus on an external representation for feature-based annotations via XML Pointer Language (XPointer). In previous work (Lumb &Aldridge, HPCS 2006, IEEE, doi:10.1109/HPCS.2006.26), we have shown that it is possible to extract relationships from ESML-based representations, and capture the results in the Resource Description Format (RDF). Thus we explore and report on this same requirement for XPointer-based annotations of ESML representations. As in our past efforts, the Global Geodynamics Project (GGP) allows us to illustrate with a real-world example this approach for introducing annotations into automatically generated knowledge representations.

  7. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  8. Opportunities and Strategies to Incorporate Ecosystem Services Knowledge and Decision Support Tools into Planning and Decision Making in Hawai`i

    NASA Astrophysics Data System (ADS)

    Bremer, Leah L.; Delevaux, Jade M. S.; Leary, James J. K.; J. Cox, Linda; Oleson, Kirsten L. L.

    2015-04-01

    Incorporating ecosystem services into management decisions is a promising means to link conservation and human well-being. Nonetheless, planning and management in Hawai`i, a state with highly valued natural capital, has yet to broadly utilize an ecosystem service approach. We conducted a stakeholder assessment, based on semi-structured interviews, with terrestrial ( n = 26) and marine ( n = 27) natural resource managers across the State of Hawai`i to understand the current use of ecosystem services (ES) knowledge and decision support tools and whether, how, and under what contexts, further development would potentially be useful. We found that ES knowledge and tools customized to Hawai`i could be useful for communication and outreach, justifying management decisions, and spatial planning. Greater incorporation of this approach is clearly desired and has a strong potential to contribute to more sustainable decision making and planning in Hawai`i and other oceanic island systems. However, the unique biophysical, socio-economic, and cultural context of Hawai`i, and other island systems, will require substantial adaptation of existing ES tools. Based on our findings, we identified four key opportunities for the use of ES knowledge and tools in Hawai`i: (1) linking native forest protection to watershed health; (2) supporting sustainable agriculture; (3) facilitating ridge-to-reef management; and (4) supporting statewide terrestrial and marine spatial planning. Given the interest expressed by natural resource managers, we envision broad adoption of ES knowledge and decision support tools if knowledge and tools are tailored to the Hawaiian context and coupled with adequate outreach and training.

  9. Opportunities and strategies to incorporate ecosystem services knowledge and decision support tools into planning and decision making in Hawai'i.

    PubMed

    Bremer, Leah L; Delevaux, Jade M S; Leary, James J K; J Cox, Linda; Oleson, Kirsten L L

    2015-04-01

    Incorporating ecosystem services into management decisions is a promising means to link conservation and human well-being. Nonetheless, planning and management in Hawai'i, a state with highly valued natural capital, has yet to broadly utilize an ecosystem service approach. We conducted a stakeholder assessment, based on semi-structured interviews, with terrestrial (n = 26) and marine (n = 27) natural resource managers across the State of Hawai'i to understand the current use of ecosystem services (ES) knowledge and decision support tools and whether, how, and under what contexts, further development would potentially be useful. We found that ES knowledge and tools customized to Hawai'i could be useful for communication and outreach, justifying management decisions, and spatial planning. Greater incorporation of this approach is clearly desired and has a strong potential to contribute to more sustainable decision making and planning in Hawai'i and other oceanic island systems. However, the unique biophysical, socio-economic, and cultural context of Hawai'i, and other island systems, will require substantial adaptation of existing ES tools. Based on our findings, we identified four key opportunities for the use of ES knowledge and tools in Hawai'i: (1) linking native forest protection to watershed health; (2) supporting sustainable agriculture; (3) facilitating ridge-to-reef management; and (4) supporting statewide terrestrial and marine spatial planning. Given the interest expressed by natural resource managers, we envision broad adoption of ES knowledge and decision support tools if knowledge and tools are tailored to the Hawaiian context and coupled with adequate outreach and training.

  10. Genetic Pedagogical Content Knowledge (PCK) Ability Profile of Prospective Biology Teacher

    NASA Astrophysics Data System (ADS)

    Purwianingsih, W.; Muthmainnah, E.; Hidayat, T.

    2017-02-01

    Genetics is one of the topics or subject matter in biology that are considered difficult. Student difficulties of understanding genetics, can be caused by lack of understanding this concept and the way of teachers teach. Pedagogical Content Knowledge (PCK) is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches. The aims of study was to analyze genetic PCK ability profile of prospective biology teacher.13 student of sixth semester Biology education department who learned Kapita Selekta Biologi SMA course, participated in this study. PCK development was measured by CoRes (Content Representation). Before students fill CoRes, students are tested mastery genetic concepts through a multiple-choice test with three tier-test. Data was obtained from the prior CoRes and its revisions, as well as the mastery concept in pre and post test. Results showed that pre-test of genetic mastery concepts average on 55.4% (low category) and beginning of the writing CoRes, student get 43.2% (Pra PCK). After students get lecture and simulating learning, the post-test increased to 63.8% (sufficient category) and PCK revision is also increase 58.1% (growing PCK). It can be concluded that mastery of subject matter could affects the ability of genetic PCK.

  11. Women care about local knowledge, experiences from ethnomycology.

    PubMed

    Garibay-Orijel, Roberto; Ramírez-Terrazo, Amaranta; Ordaz-Velázquez, Marisa

    2012-07-18

    Gender is one of the main variables that influence the distribution of local knowledge. We carried out a literature review concerning local mycological knowledge, paying special attention to data concerning women's knowledge and comparative gender data. We found that unique features of local mycological knowledge allow people to successfully manage mushrooms. Women are involved in every stage of mushroom utilization from collection to processing and marketing. Local mycological knowledge includes the use mushrooms as food, medicine, and recreational objects as well as an aid to seasonal household economies. In many regions of the world, women are often the main mushroom collectors and possess a vast knowledge about mushroom taxonomy, biology, and ecology. Local experts play a vital role in the transmission of local mycological knowledge. Women participate in the diffusion of this knowledge as well as in its enrichment through innovation. Female mushroom collectors appreciate their mycological knowledge and pursue strategies and organization to reproduce it in their communities. Women mushroom gatherers are conscious of their knowledge, value its contribution in their subsistence systems, and proudly incorporate it in their cultural identity.

  12. Biological standards for the Knowledge-Based BioEconomy: What is at stake.

    PubMed

    de Lorenzo, Víctor; Schmidt, Markus

    2018-01-25

    The contribution of life sciences to the Knowledge-Based Bioeconomy (KBBE) asks for the transition of contemporary, gene-based biotechnology from being a trial-and-error endeavour to becoming an authentic branch of engineering. One requisite to this end is the need for standards to measure and represent accurately biological functions, along with languages for data description and exchange. However, the inherent complexity of biological systems and the lack of quantitative tradition in the field have largely curbed this enterprise. Fortunately, the onset of systems and synthetic biology has emphasized the need for standards not only to manage omics data, but also to increase reproducibility and provide the means of engineering living systems in earnest. Some domains of biotechnology can be easily standardized (e.g. physical composition of DNA sequences, tools for genome editing, languages to encode workflows), while others might be standardized with some dedicated research (e.g. biological metrology, operative systems for bio-programming cells) and finally others will require a considerable effort, e.g. defining the rules that allow functional composition of biological activities. Despite difficulties, these are worthy attempts, as the history of technology shows that those who set/adopt standards gain a competitive advantage over those who do not. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Knowledge of Adverse Drug Reaction Reporting and the Pharmacovigilance of Biological Medicines: A Survey of Healthcare Professionals in Ireland.

    PubMed

    O'Callaghan, J; Griffin, B T; Morris, J M; Bermingham, Margaret

    2018-06-01

    In Europe, changes to pharmacovigilance legislation, which include additional monitoring of medicines, aim to optimise adverse drug reaction (ADR) reporting systems. The legislation also makes provisions related to the traceability of biological medicines. The objective of this study was to assess (i) knowledge and general experience of ADR reporting, (ii) knowledge, behaviours, and attitudes related to the pharmacovigilance of biologicals, and (iii) awareness of additional monitoring among healthcare professionals (HCPs) in Ireland. Hospital doctors (n = 88), general practitioners (GPs) (n = 197), nurses (n = 104) and pharmacists (n = 309) completed an online questionnaire. There were differences in mean knowledge scores relating to ADR reporting and the pharmacovigilance of biologicals among the HCP groups. The majority of HCPs who use biological medicines in their practice generally record biologicals by brand name but practice behaviours relating to batch number recording differed between some professions. HCPs consider batch number recording to be valuable but also regard it as being more difficult than brand name recording. Most respondents were aware of the concept of additional monitoring but awareness rates differed between some groups. Among those who knew about additional monitoring, there was higher awareness of the inverted black triangle symbol among pharmacists (> 86.4%) compared with hospital doctors (35.1%), GPs (35.6%), and nurses (14.9%). Hospital pharmacists had more experience and knowledge of ADR reporting than other practising HCPs. This study highlights the important role hospital pharmacists play in post-marketing surveillance. There is a need to increase pharmacovigilance awareness of biological medicines and improve systems to support their batch traceability.

  14. Conceptual Model-Based Systems Biology: Mapping Knowledge and Discovering Gaps in the mRNA Transcription Cycle

    PubMed Central

    Somekh, Judith; Choder, Mordechai; Dori, Dov

    2012-01-01

    We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM), a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure—the objects that comprise the system, and behavior—how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point—the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model. PMID:23308089

  15. Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius) fed biologically incorporated lead

    USGS Publications Warehouse

    Custer, T.W.; Franson, J.C.; Pattee, O.H.

    1984-01-01

    American kestrels were fed a diet containing 0.5, 120, 212, and 448 ppm (dry wt) biologically incorporated lead (Pb) for 60 days. The diet consisted of homogenized 4-wk-old cockerels raised on feed mixed with and without lead. No kestrels died and weights did not differ among treatment groups. The control group (0.5 ppm Pb) had the lowest mean concentration of lead and the high dietary group had the highest for the following tissues: Kidney, liver, femur, brain, and blood. Concentrations of lead were significantly correlated among tissues. There were no differences among treatment groups for packed cell volume, hemoglobin concentration, or erythrocyte count.

  16. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith

    2009-01-01

    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  17. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan

    2017-12-01

    As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.

  18. Does the transition to an active-learning environment for the introductory course reduce students' overall knowledge of the various disciplines in biology?

    PubMed

    Simurda, Maryanne C

    2012-01-01

    As biology education is being redesigned toward an interdisciplinary focus and as pedagogical trends move toward active-learning strategies and investigative experiences, a restructuring of the course content for the Introductory Biology course is necessary. The introductory course in biology has typically been a survey of all the biosciences. If the total number of topics covered is reduced, is the students' overall knowledge of biology also reduced? Our introductory course has been substantially modified away from surveying the biological sciences and toward providing a deep understanding of a particular biological topic, as well as focusing on developing students' analytical and communication skills. Because of this shift to a topic-driven approach for the introductory course, we were interested in assessing our graduating students' overall knowledge of the various biological disciplines. Using the Major Field Test - Biology (Educational Testing Service (ETS), Princeton, NJ), we compared the test performance of graduating students who had a traditional lecture-based introductory course to those who had a topic-driven active-learning introductory course. Our results suggest that eliminating the traditional survey of biology and, instead, focusing on quantitative and writing skills at the introductory level do not affect our graduating students' overall breadth of knowledge of the various biosciences.

  19. Pre-Service Science Teachers' Pedagogical Content Knowledge in the Physics, Chemistry, and Biology Topics

    ERIC Educational Resources Information Center

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…

  20. A semantic web framework to integrate cancer omics data with biological knowledge

    PubMed Central

    2012-01-01

    Background The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. Results For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. Conclusions We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily. PMID:22373303

  1. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  2. Colonizing nature: scientific knowledge, colonial power and the incorporation of India into the modern world-system.

    PubMed

    Baber, Z

    2001-03-01

    In this paper, the role of scientific knowledge, institutions and colonialism in mutually co-producing each other is analysed. Under the overarching rubric of colonial structures and imperatives, amateur scientists sought to deploy scientific expertise to expand the empire while at the same time seeking to take advantage of the opportunities to develop their careers as 'scientists'. The role of a complex interplay of structure and agency in the development of modern science, not just in India but in Britain too is analysed. The role of science and technology in the incorporation of South Asian into the modern world system, as well as the consequences of the emergent structures in understanding the trajectory of modern science in post-colonial India is examined. Overall, colonial rule did not simply diffuse modern science from the core to the periphery. Rather the colonial encounter led to the development of new forms of scientific knowledge and institutions both in the periphery and the core.

  3. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity.

    PubMed

    Ahlberg, Ernst; Amberg, Alexander; Beilke, Lisa D; Bower, David; Cross, Kevin P; Custer, Laura; Ford, Kevin A; Van Gompel, Jacky; Harvey, James; Honma, Masamitsu; Jolly, Robert; Joossens, Elisabeth; Kemper, Raymond A; Kenyon, Michelle; Kruhlak, Naomi; Kuhnke, Lara; Leavitt, Penny; Naven, Russell; Neilan, Claire; Quigley, Donald P; Shuey, Dana; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; White, Angela; Wichard, Joerg; Zwickl, Craig; Myatt, Glenn J

    2016-06-01

    Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Women care about local knowledge, experiences from ethnomycology

    PubMed Central

    2012-01-01

    Gender is one of the main variables that influence the distribution of local knowledge. We carried out a literature review concerning local mycological knowledge, paying special attention to data concerning women’s knowledge and comparative gender data. We found that unique features of local mycological knowledge allow people to successfully manage mushrooms. Women are involved in every stage of mushroom utilization from collection to processing and marketing. Local mycological knowledge includes the use mushrooms as food, medicine, and recreational objects as well as an aid to seasonal household economies. In many regions of the world, women are often the main mushroom collectors and possess a vast knowledge about mushroom taxonomy, biology, and ecology. Local experts play a vital role in the transmission of local mycological knowledge. Women participate in the diffusion of this knowledge as well as in its enrichment through innovation. Female mushroom collectors appreciate their mycological knowledge and pursue strategies and organization to reproduce it in their communities. Women mushroom gatherers are conscious of their knowledge, value its contribution in their subsistence systems, and proudly incorporate it in their cultural identity. PMID:22809491

  5. Reproductive biology knowledge, and behaviour of teenagers in East, Central and Southern Africa: the Zimbabwe case study.

    PubMed

    Mbizvo, M T; Kasule, J; Gupta, V; Rusakaniko, S; Gumbo, J; Kinoti, S N; Mpanju-Shumbusho, W; Sebina-Zziwa; Mwateba, R; Padayachy, J

    1995-11-01

    Sexuality in the teenager is often complicated by unplanned/unwanted pregnancy, abortion and the risks of STDs including AIDS. There is therefore a need for improved understanding of factors affecting adolescent sexuality and the implementation of programmes designed to improve their knowledge, risk awareness and subsequent behavioural outcomes. A multicentre study of reproductive health knowledge and behaviour followed by a health education intervention was undertaken amongst teenagers in selected countries of East, Central and Southern Africa. Reported here are findings at baseline derived from the Zimbabwe component on reproductive biology knowledge and behavior. A self-administered questionnaire was used among 1 689 adolescent pupils drawn from rural, urban, co-education, single sex, boarding and day secondary schools in Zimbabwe. Correct knowledge on reproductive biology as measured by the meaning and interpretation of menstruation and wet dreams varied by school from 68 pc to 86 pc, with a significant trend (p < 0,01) based on level of education at baseline. The reported mean age at which menarche took place was 13,5 years +/- 1,3 (mean +/- SD). First coitus was reported to have taken place at the mean age of 12 years for boys and 13,6 years for girls. Seventeen pc of the adolescent pupils reported that they were sexually experienced and 33,2 had relationships. There were misconceptions reported on menstruation with 23 pc reporting that it was an illness. Peers, followed by magazines were the first sources of information on various aspects of reproductive biology, both of which might not provide the correct first information. Among pupils reporting that they were sexually experienced, the largest proportion (56 pc) had unprotected sex. The findings point to the need for targeting the adolescent pupils for information on reproductive biology and increased awareness on the risks of pregnancy, STDs and HIV.

  6. Developing a kidney and urinary pathway knowledge base

    PubMed Central

    2011-01-01

    Background Chronic renal disease is a global health problem. The identification of suitable biomarkers could facilitate early detection and diagnosis and allow better understanding of the underlying pathology. One of the challenges in meeting this goal is the necessary integration of experimental results from multiple biological levels for further analysis by data mining. Data integration in the life science is still a struggle, and many groups are looking to the benefits promised by the Semantic Web for data integration. Results We present a Semantic Web approach to developing a knowledge base that integrates data from high-throughput experiments on kidney and urine. A specialised KUP ontology is used to tie the various layers together, whilst background knowledge from external databases is incorporated by conversion into RDF. Using SPARQL as a query mechanism, we are able to query for proteins expressed in urine and place these back into the context of genes expressed in regions of the kidney. Conclusions The KUPKB gives KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. The Semantic Web technologies we use, together with the background knowledge from the domain’s ontologies, allows both rapid conversion and integration of this knowledge base. The KUPKB is still relatively small, but questions remain about scalability, maintenance and availability of the knowledge itself. Availability The KUPKB may be accessed via http://www.e-lico.eu/kupkb. PMID:21624162

  7. Knowledge management for systems biology a general and visually driven framework applied to translational medicine.

    PubMed

    Maier, Dieter; Kalus, Wenzel; Wolff, Martin; Kalko, Susana G; Roca, Josep; Marin de Mas, Igor; Turan, Nil; Cascante, Marta; Falciani, Francesco; Hernandez, Miguel; Villà-Freixa, Jordi; Losko, Sascha

    2011-03-05

    To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype-phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein

  8. Knowledge management for systems biology a general and visually driven framework applied to translational medicine

    PubMed Central

    2011-01-01

    Background To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub

  9. Using Multiple Lenses to Examine the Development of Beginning Biology Teachers' Pedagogical Content Knowledge for Teaching Natural Selection Simulations

    NASA Astrophysics Data System (ADS)

    Sickel, Aaron J.; Friedrichsen, Patricia

    2018-02-01

    Pedagogical content knowledge (PCK) has become a useful construct to examine science teacher learning. Yet, researchers conceptualize PCK development in different ways. The purpose of this longitudinal study was to use three analytic lenses to understand the development of three beginning biology teachers' PCK for teaching natural selection simulations. We observed three early-career biology teachers as they taught natural selection in their respective school contexts over two consecutive years. Data consisted of six interviews with each participant. Using the PCK model developed by Magnusson et al. (1999), we examined topic-specific PCK development utilizing three different lenses: (1) expansion of knowledge within an individual knowledge base, (2) integration of knowledge across knowledge bases, and (3) knowledge that explicitly addressed core concepts of natural selection. We found commonalities across the participants, yet each lens was also useful to understand the influence of different factors (e.g., orientation, subject matter preparation, and the idiosyncratic nature of teacher knowledge) on PCK development. This multi-angle approach provides implications for considering the quality of beginning science teachers' knowledge and future research on PCK development. We conclude with an argument that explicitly communicating lenses used to understand PCK development will help the research community compare analytic approaches and better understand the nature of science teacher learning.

  10. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification

    DOE PAGES

    Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; ...

    2013-01-01

    Background . The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective . To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods . The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expertmore » knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results . The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions . Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less

  12. A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification

    PubMed Central

    Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Varnum, Susan M.; Brown, Joseph N.; Riensche, Roderick M.; Adkins, Joshua N.; Jacobs, Jon M.; Hoidal, John R.; Scholand, Mary Beth; Pounds, Joel G.; Blackburn, Michael R.; Rodland, Karin D.; McDermott, Jason E.

    2013-01-01

    Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification. PMID:24223463

  13. A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.

    2013-10-01

    Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integratedmore » into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less

  14. You can exercise your way out of HIV and other stories: The role of biological knowledge in adolescents' evaluation of myths

    NASA Astrophysics Data System (ADS)

    Keselman, Alla; Kaufman, David R.; Patel, Vimla L.

    2004-07-01

    A primary objective for science education is to impart robust knowledge that has applicability to real-world problems. This article presents research investigating the relationship between adolescents' conceptual understanding of the biological basis of HIV and critical reasoning. Middle and high school students were interviewed about their understanding of HIV and were subsequently asked to evaluate scenarios that contained myths about HIV. On the basis of their responses to the interview questions, students' understanding of HIV was categorized into three models, naïve, intermediate, and advanced. The results indicate that knowledge mediated students' responses in specific ways. Students at different levels of HIV knowledge reasoned in qualitatively different ways about the myths. A significant relationship was found between students' understanding of HIV biology and the level of biological reasoning. We found that students who employed cellular-level biological reasoning were more likely to reject the myths than students who employed just system-level reasoning or nonspecific biological reasoning. The findings emphasize the importance of conceptual understanding in the critical evaluation of information that may serve as a basis for making decisions about HIV. We conclude with discussing the implications of the findings for science and health education.

  15. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    PubMed

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  16. Knowledge-driven genomic interactions: an application in ovarian cancer.

    PubMed

    Kim, Dokyoon; Li, Ruowang; Dudek, Scott M; Frase, Alex T; Pendergrass, Sarah A; Ritchie, Marylyn D

    2014-01-01

    Effective cancer clinical outcome prediction for understanding of the mechanism of various types of cancer has been pursued using molecular-based data such as gene expression profiles, an approach that has promise for providing better diagnostics and supporting further therapies. However, clinical outcome prediction based on gene expression profiles varies between independent data sets. Further, single-gene expression outcome prediction is limited for cancer evaluation since genes do not act in isolation, but rather interact with other genes in complex signaling or regulatory networks. In addition, since pathways are more likely to co-operate together, it would be desirable to incorporate expert knowledge to combine pathways in a useful and informative manner. Thus, we propose a novel approach for identifying knowledge-driven genomic interactions and applying it to discover models associated with cancer clinical phenotypes using grammatical evolution neural networks (GENN). In order to demonstrate the utility of the proposed approach, an ovarian cancer data from the Cancer Genome Atlas (TCGA) was used for predicting clinical stage as a pilot project. We identified knowledge-driven genomic interactions associated with cancer stage from single knowledge bases such as sources of pathway-pathway interaction, but also knowledge-driven genomic interactions across different sets of knowledge bases such as pathway-protein family interactions by integrating different types of information. Notably, an integration model from different sources of biological knowledge achieved 78.82% balanced accuracy and outperformed the top models with gene expression or single knowledge-based data types alone. Furthermore, the results from the models are more interpretable because they are framed in the context of specific biological pathways or other expert knowledge. The success of the pilot study we have presented herein will allow us to pursue further identification of models predictive

  17. Biological knowledge bases using Wikis: combining the flexibility of Wikis with the structure of databases.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves

    2010-09-01

    In recent years, the number of knowledge bases developed using Wiki technology has exploded. Unfortunately, next to their numerous advantages, classical Wikis present a critical limitation: the invaluable knowledge they gather is represented as free text, which hinders their computational exploitation. This is in sharp contrast with the current practice for biological databases where the data is made available in a structured way. Here, we present WikiOpener an extension for the classical MediaWiki engine that augments Wiki pages by allowing on-the-fly querying and formatting resources external to the Wiki. Those resources may provide data extracted from databases or DAS tracks, or even results returned by local or remote bioinformatics analysis tools. This also implies that structured data can be edited via dedicated forms. Hence, this generic resource combines the structure of biological databases with the flexibility of collaborative Wikis. The source code and its documentation are freely available on the MediaWiki website: http://www.mediawiki.org/wiki/Extension:WikiOpener.

  18. Teaching About "Brain and Learning" in High School Biology Classes: Effects on Teachers' Knowledge and Students' Theory of Intelligence.

    PubMed

    Dekker, Sanne; Jolles, Jelle

    2015-01-01

    This study evaluated a new teaching module about "Brain and Learning" using a controlled design. The module was implemented in high school biology classes and comprised three lessons: (1) brain processes underlying learning; (2) neuropsychological development during adolescence; and (3) lifestyle factors that influence learning performance. Participants were 32 biology teachers who were interested in "Brain and Learning" and 1241 students in grades 8-9. Teachers' knowledge and students' beliefs about learning potential were examined using online questionnaires. Results indicated that before intervention, biology teachers were significantly less familiar with how the brain functions and develops than with its structure and with basic neuroscientific concepts (46 vs. 75% correct answers). After intervention, teachers' knowledge of "Brain and Learning" had significantly increased (64%), and more students believed that intelligence is malleable (incremental theory). This emphasizes the potential value of a short teaching module, both for improving biology teachers' insights into "Brain and Learning," and for changing students' beliefs about intelligence.

  19. Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university

    NASA Astrophysics Data System (ADS)

    Tavares, Gustavo Medina; Bobrowski, Vera Lucia

    2018-03-01

    The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students' perceptions towards evolution, and studies can help to reveal those factors. We used a conceptual questionnaire, the Measure of Acceptance of the Theory of Evolution (MATE) instrument, and a Knowledge test to assess (1) the level of acceptance and understanding of 23 undergraduate Biology students nearing the end of their course, (2) other factors that could affect these levels, including course structure, and (3) the most difficult topics regarding evolutionary biology. The results of this study showed that the students, on average, had a 'Very High Acceptance' (89.91) and a 'Very Low Knowledge' (59.42%) of Evolutionary theory, and also indicated a moderate positive correlation between the two (r = 0.66, p = .001). The most difficult topics were related to the definition of evolution and dating techniques. We believe that the present study provides evidence for policymakers to reformulate current school and university curricula in order to improve the teachers' acceptance and understanding of evolution and other biological concepts, consequently, helping students reduce their misconceptions related to evolutionary biology.

  20. A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks.

    PubMed

    Browne, Fiona; Wang, Haiying; Zheng, Huiru; Azuaje, Francisco

    2010-03-01

    This study applied a knowledge-driven data integration framework for the inference of protein-protein interactions (PPI). Evidence from diverse genomic features is integrated using a knowledge-driven Bayesian network (KD-BN). Receiver operating characteristic (ROC) curves may not be the optimal assessment method to evaluate a classifier's performance in PPI prediction as the majority of the area under the curve (AUC) may not represent biologically meaningful results. It may be of benefit to interpret the AUC of a partial ROC curve whereby biologically interesting results are represented. Therefore, the novel application of the assessment method referred to as the partial ROC has been employed in this study to assess predictive performance of PPI predictions along with calculating the True positive/false positive rate and true positive/positive rate. By incorporating domain knowledge into the construction of the KD-BN, we demonstrate improvement in predictive performance compared with previous studies based upon the Naive Bayesian approach. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. 78 FR 68058 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., computational, and systems biology data can better inform risk assessment. This draft document is available for...

  2. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK: A FRAMEWORK FOR ORGANIZING BIOLOGICAL KNOWLEDGE LEADING TO HEALTH RISKS.

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecul...

  3. The effect of parents' conversational style and disciplinary knowledge on children's observation of biological phenomena

    NASA Astrophysics Data System (ADS)

    Eberbach, Catherine

    This study was designed to better understand how children begin to make the transition from seeing the natural world to scientifically observing the natural world during shared family activity in an informal learning environment. Specifically, this study addressed research questions: (1) What is the effect of differences in parent conversational style and disciplinary knowledge on children's observations of biological phenomena? (2) What is the relationship between parent disciplinary knowledge and conversational style to children's observations of biological phenomena? and (3) Can parents, regardless of knowledge, be trained to use a teaching strategy with their children that can be implemented in informal learning contexts? To address these questions, 79 parent-child dyads with children 6-10 years old participated in a controlled study in which half of the parents used their natural conversational style and the other half were trained to use particular conversational strategies during family observations of pollination in a botanical garden. Parents were also assigned to high and low knowledge groups according to their disciplinary knowledge of pollination. Data sources included video recordings of parent-child observations in a garden, pre-post child tasks, and parent surveys. Findings revealed that parents who received training used the conversational strategies more than parents who used their natural conversational style. Parents and children who knew more about pollination at the start of the study exhibited higher levels of disciplinary talk in the garden, which is to be expected. However, the use of the conversational strategies also increased the amount of disciplinary talk in the garden, independent of what families knew about pollination. The extent to which families engaged in disciplinary talk in the garden predicted significant variance in children's post-test scores. In addition to these findings, an Observation Framework (Eberbach & Crowley, 2009

  4. Local knowledge and perception of biological soil crusts by land users in the Sahel (Niger)

    NASA Astrophysics Data System (ADS)

    J-M Ambouta, K.; Hassan Souley, B.; Malam Issa, O.; Rajot, J. L.; Mohamadou, A.

    2012-04-01

    Local knowledge, i.e. knowledge based on accumulation of observations is of great interest for many scientific fields as it can help for identification, evaluation and selection of relevant indicators and furthermore for progress through conservation goals. This study aimed at gathering and understanding the local knowledge and perception of biological soil crusts (BSC) by users of land, pastoralists that cross the Sahel and sedentary farmers. The methodological approach is based on a semi-direct surveys conducted on a north-south rainfall gradient (350 to 650 mm/year) including agricultural- and pastoral-dominated areas in western Niger. Denomination, formation processes, occurrence, distribution and role of biological soil crusts are among the major issues of the inquiry. The results of the surveys showed that BSC are mainly identified by the names of "Bankwado" and "Korobanda", respectively in hausa and zarma langages, what means "toad back". Other denominations varying according to region, ethnic groups and users are used. They are all related to the aspects, colors and behaviour of BSC with regard wetting and drying cycle. From the point of view of users depressed areas and land lied fallow are favourable places for the occurrence of BSC, while cultivation and observed changes in rainfall regimes represent negative factors. The formation processes of BSC are mainly related to the occurrence and the impact of rain and wind on soil surface. Their roles in protecting soil against degradation or as an indicator of soil fertility were recognised by at least 83% of farmers and breeders. This study reveals significant aspects of BSC already validated by scientific knowledge. Integrating the two forms of knowledge will help to define relevant indicators of soil surface dynamics and to perform practices to minimize farming and grazing impacts on BSCs.

  5. Measuring the Disparities between Biology Undergraduates' Perceptions and Their Actual Knowledge of Scientific Literature with Clickers

    ERIC Educational Resources Information Center

    Bandyopadhyay, Aditi

    2013-01-01

    This article demonstrates an innovative method used to determine the need for information literacy among science undergraduate students at Adelphi University. Using clickers technology, this study measured the disconnect between biology undergraduates' perceived and actual knowledge of scientific literature. The quantitative data collected in the…

  6. Using a Module-based Laboratory To Incorporate Inquiry into a Large Cell Biology Course

    PubMed Central

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin–La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the “big picture,” and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills. PMID:16220145

  7. Creating Illusions of Knowledge: Learning Errors that Contradict Prior Knowledge

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Barber, Sarah J.; Rajaram, Suparna; Ornstein, Peter A.; Marsh, Elizabeth J.

    2013-01-01

    Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks…

  8. Teaching About “Brain and Learning” in High School Biology Classes: Effects on Teachers' Knowledge and Students' Theory of Intelligence

    PubMed Central

    Dekker, Sanne; Jolles, Jelle

    2015-01-01

    This study evaluated a new teaching module about “Brain and Learning” using a controlled design. The module was implemented in high school biology classes and comprised three lessons: (1) brain processes underlying learning; (2) neuropsychological development during adolescence; and (3) lifestyle factors that influence learning performance. Participants were 32 biology teachers who were interested in “Brain and Learning” and 1241 students in grades 8–9. Teachers' knowledge and students' beliefs about learning potential were examined using online questionnaires. Results indicated that before intervention, biology teachers were significantly less familiar with how the brain functions and develops than with its structure and with basic neuroscientific concepts (46 vs. 75% correct answers). After intervention, teachers' knowledge of “Brain and Learning” had significantly increased (64%), and more students believed that intelligence is malleable (incremental theory). This emphasizes the potential value of a short teaching module, both for improving biology teachers' insights into “Brain and Learning,” and for changing students' beliefs about intelligence. PMID:26648900

  9. A modified Wright-Fisher model that incorporates Ne: A variant of the standard model with increased biological realism and reduced computational complexity.

    PubMed

    Zhao, Lei; Gossmann, Toni I; Waxman, David

    2016-03-21

    The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have

  10. Do Knowledge-Component Models Need to Incorporate Representational Competencies?

    ERIC Educational Resources Information Center

    Rau, Martina Angela

    2017-01-01

    Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…

  11. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    PubMed Central

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2016-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments. PMID:26834702

  12. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    PubMed

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  13. Development of the Neuron Assessment for Measuring Biology Students’ Use of Experimental Design Concepts and Representations

    PubMed Central

    Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students’ competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not measure how well students use standard symbolism to visualize biological experiments. We propose an assessment-design process that 1) provides background knowledge and questions for developers of new “experimentation assessments,” 2) elicits practices of representing experiments with conventional symbol systems, 3) determines how well the assessment reveals expert knowledge, and 4) determines how well the instrument exposes student knowledge and difficulties. To illustrate this process, we developed the Neuron Assessment and coded responses from a scientist and four undergraduate students using the Rubric for Experimental Design and the Concept-Reasoning Mode of representation (CRM) model. Some students demonstrated sound knowledge of concepts and representations. Other students demonstrated difficulty with depicting treatment and control group data or variability in experimental outcomes. Our process, which incorporates an authentic research situation that discriminates levels of visualization and experimentation abilities, shows potential for informing assessment design in other disciplines. PMID:27146159

  14. Shaping biological knowledge: applications in proteomics.

    PubMed

    Lisacek, F; Chichester, C; Gonnet, P; Jaillet, O; Kappus, S; Nikitin, F; Roland, P; Rossier, G; Truong, L; Appel, R

    2004-01-01

    The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa) and a hypothesis-driven (focus on whole bacterial proteomes) approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  15. Teachers' Journal Club: Bridging between the Dynamics of Biological Discoveries and Biology Teachers

    ERIC Educational Resources Information Center

    Brill, Gilat; Falk, Hedda; Yarden, Anat

    2003-01-01

    Since biology is one of the most dynamic research fields within the natural sciences, the gap between the accumulated knowledge in biology and the knowledge that is taught in schools, increases rapidly with time. Our long-term objective is to develop means to bridge between the dynamics of biological discoveries and the biology teachers and…

  16. StrateGene: object-oriented programming in molecular biology.

    PubMed

    Carhart, R E; Cash, H D; Moore, J F

    1988-03-01

    This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object.

  17. Development of an Item Bank for the Assessment of Knowledge on Biology in Argentine University Students.

    PubMed

    Cupani, Marcos; Zamparella, Tatiana Castro; Piumatti, Gisella; Vinculado, Grupo

    The calibration of item banks provides the basis for computerized adaptive testing that ensures high diagnostic precision and minimizes participants' test burden. This study aims to develop a bank of items to measure the level of Knowledge on Biology using the Rasch model. The sample consisted of 1219 participants that studied in different faculties of the National University of Cordoba (mean age = 21.85 years, SD = 4.66; 66.9% are women). The items were organized in different forms and into separate subtests, with some common items across subtests. The students were told they had to answer 60 questions of knowledge on biology. Evaluation of Rasch model fit (Zstd >|2.0|), differential item functioning, dimensionality, local independence, item and person separation (>2.0), and reliability (>.80) resulted in a bank of 180 items with good psychometric properties. The bank provides items with a wide range of content coverage and may serve as a sound basis for computerized adaptive testing applications. The contribution of this work is significant in the field of educational assessment in Argentina.

  18. Analyzing beliefs and practices of a Mexican high school biology teacher

    NASA Astrophysics Data System (ADS)

    Verjovsky, Janet; Waldegg, Guillermina

    2005-04-01

    This article explores the beliefs and practices of a high school biology teacher through three interrelated theoretical frameworks: common knowledge, collaborative learning, and communities of practice. The data were obtained from an in-depth case study of Maria, a biology teacher from a Mexican public high school that was participating in a 4-year international science project using collaborative learning and information and communication technology. Her beliefs and practices were explored by means of questionnaires, semi-structured interviews, and nonparticipant observation of classes. Through the use of the three-component framework, the degrees of coherence between practice and beliefs that guide the teacher's daily behavior became apparent, as well as the difficulties of incorporating innovations due to institutional constraints.

  19. Do Zoo Visitors Need Zoology Knowledge to Understand Conservation Messages? An Exploration of the Public Understanding of Animal Biology and of the Conservation of Biodiversity in a Zoo Setting

    ERIC Educational Resources Information Center

    Dove, Tracy; Byrne, Jenny

    2014-01-01

    This study explores the current knowledge and understanding about animal biology of zoo visitors and investigates whether knowledge of animal biology influences the ability of people to understand how human activity affects biodiversity. Zoos can play a role in the development of scientific literacy in the fields of animal biology and biodiversity…

  20. A Biological Conception of Knowledge: One Problematic Consequence.

    ERIC Educational Resources Information Center

    Haroutunian, Sophie

    1980-01-01

    Piaget's use of the equilibrium model to define knowledge results in a cybernetic conception of knowledge that cannot explain how knowledge becomes possible. The knowledge that behaviors apply discriminately must be acquired, and cannot be programed, and therefore cannot be learned. (FG)

  1. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts To Educate High School Students about Alcohol

    PubMed Central

    2015-01-01

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional development either at a conference-based workshop (NSTA or NCSTA) or via distance learning to learn how to incorporate the APEP modules into their teaching. They field-tested the modules in their classes during the following year. Teacher knowledge of chemistry and biology concepts increased significantly following professional development, and was maintained for at least a year. Their students (n = 14 014) demonstrated significantly higher scores when assessed for knowledge of both basic and advanced chemistry and biology concepts compared to students not using APEP modules in their classes the previous year. Higher scores were achieved as the number of modules used increased. These findings are consistent with our previous studies, demonstrating higher scores in chemistry and biology after students use modules that integrate topics interesting to them, such as drugs (the Pharmacology Education Partnership). PMID:24803686

  2. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    PubMed Central

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p < 0.001);. The higher-achieving students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  3. Verbal final exam in introductory biology yields gains in student content knowledge and longitudinal performance.

    PubMed

    Luckie, Douglas B; Rivkin, Aaron M; Aubry, Jacob R; Marengo, Benjamin J; Creech, Leah R; Sweeder, Ryan D

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p < 0.001);. The higher-achieving students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning.

  4. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  5. Consistent visualizations of changing knowledge

    PubMed Central

    Tipney, Hannah J.; Schuyler, Ronald P.; Hunter, Lawrence

    2009-01-01

    Networks are increasingly used in biology to represent complex data in uncomplicated symbolic form. However, as biological knowledge is continually evolving, so must those networks representing this knowledge. Capturing and presenting this type of knowledge change over time is particularly challenging due to the intimate manner in which researchers customize those networks they come into contact with. The effective visualization of this knowledge is important as it creates insight into complex systems and stimulates hypothesis generation and biological discovery. Here we highlight how the retention of user customizations, and the collection and visualization of knowledge associated provenance supports effective and productive network exploration. We also present an extension of the Hanalyzer system, ReOrient, which supports network exploration and analysis in the presence of knowledge change. PMID:21347184

  6. Preparation, Purification, and Secondary Structure Determination of Bacillus Circulans Xylanase. A Molecular Laboratory Incorporating Aspects of Molecular Biology, Biochemistry, and Biophysical Chemistry

    ERIC Educational Resources Information Center

    Russo, Sal; Gentile, Lisa

    2006-01-01

    A project module designed for biochemistry or cellular and molecular biology student which involves determining the secondary structure of Bacillus circulans xylanase (BCX) by circular dichroism (CD) spectroscopy under conditions that compromise its stabilizing intramolecular forces is described. The lab model enhanced students knowledge of the…

  7. Development of the Neuron Assessment for Measuring Biology Students' Use of Experimental Design Concepts and Representations.

    PubMed

    Dasgupta, Annwesa P; Anderson, Trevor R; Pelaez, Nancy J

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students' competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not measure how well students use standard symbolism to visualize biological experiments. We propose an assessment-design process that 1) provides background knowledge and questions for developers of new "experimentation assessments," 2) elicits practices of representing experiments with conventional symbol systems, 3) determines how well the assessment reveals expert knowledge, and 4) determines how well the instrument exposes student knowledge and difficulties. To illustrate this process, we developed the Neuron Assessment and coded responses from a scientist and four undergraduate students using the Rubric for Experimental Design and the Concept-Reasoning Mode of representation (CRM) model. Some students demonstrated sound knowledge of concepts and representations. Other students demonstrated difficulty with depicting treatment and control group data or variability in experimental outcomes. Our process, which incorporates an authentic research situation that discriminates levels of visualization and experimentation abilities, shows potential for informing assessment design in other disciplines. © 2016 A. P. Dasgupta et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Using Student Self-Assessment of Biological Concepts in an Introductory Biology Course.

    ERIC Educational Resources Information Center

    Heinze-Fry, Jane Ann

    1992-01-01

    Describes the author's methods to establish what students enrolled in an introductory biology course for nonmajors know about biology prior to instruction. The project also compared preinstructional knowledge to postinstructional knowledge. Beginning students knew the least about plant transport/chemical control and cellular metabolism. Students…

  9. Educative Mentoring: How a Mentor Supported a Preservice Biology Teacher's Pedagogical Content Knowledge Development

    NASA Astrophysics Data System (ADS)

    Barnett, Ellen; Friedrichsen, Patricia J.

    2015-11-01

    Research suggests discipline-specific, educative mentoring can help preservice teachers develop more sophisticated pedagogical content knowledge (PCK). However, there are few studies examining the nature of mentors' practice and how mentors influence preservice teacher's (PST) PCK. The purpose of this case study was to describe the strategies used by a secondary biology mentor teacher to support the development of a PST's PCK. The primary data sources were the transcripts of audio-recorded, daily meetings between the mentor and the PST during two curriculum units: DNA/Protein Synthesis and Evolution. The mentor influenced the PST's teaching orientation by repeatedly comparing teacher- and student-centered approaches, asking him to consider how students learn, and asking him to self-assess whether his instruction aligned with his teaching beliefs. The mentor helped the PST develop topic-specific knowledge of instructional strategies by sharing strategies she used previously, modeling critical reflection, and inviting him to critically reflect on his own instructional strategies. Topic-specific knowledge of students' understanding of science was developed by discussing common student misconceptions revealed in students' conversations and by sharing the results of test-item analysis from previous unit tests. The mentor helped develop the PST's topic-specific knowledge of assessment by helping him critically analyze and revise previous examinations to better align with the current curriculum units. Topic-specific knowledge of curricula was developed by jointly grappling with decisions about concept sequencing within units. The study includes implications for research, science teacher education, and professional development for mentors.

  10. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.

    PubMed

    Arévalo, Fabian; Uscategui, Yomaira L; Diaz, Luis; Cobo, Martha; Valero, Manuel F

    2016-11-01

    In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues. © The Author(s) 2016.

  11. The Medawar Lecture 2001 Knowledge for vision: vision for knowledge

    PubMed Central

    Gregory, Richard L

    2005-01-01

    An evolutionary development of perception is suggested—from passive reception to active perception to explicit conception—earlier stages being largely retained and incorporated in later species. A key is innate and then individually learned knowledge, giving meaning to sensory signals. Inappropriate or misapplied knowledge produces rich cognitive phenomena of illusions, revealing normally hidden processes of vision, tentatively classified here in a ‘peeriodic table’. Phenomena of physiology are distinguished from phenomena of general rules and specific object knowledge. It is concluded that vision uses implicit knowledge, and provides knowledge for intelligent behaviour and for explicit conceptual understanding including science. PMID:16147519

  12. On the optimal design of molecular sensing interfaces with lipid bilayer assemblies - A knowledge based approach

    NASA Astrophysics Data System (ADS)

    Siontorou, Christina G.

    2012-12-01

    Biosensors are analytic devices that incorporate a biochemical recognition system (biological, biologicalderived or biomimic: enzyme, antibody, DNA, receptor, etc.) in close contact with a physicochemical transducer (electrochemical, optical, piezoelectric, conductimetric, etc.) that converts the biochemical information, produced by the specific biological recognition reaction (analyte-biomolecule binding), into a chemical or physical output signal, related to the concentration of the analyte in the measuring sample. The biosensing concept is based on natural chemoreception mechanisms, which are feasible over/within/by means of a biological membrane, i.e., a structured lipid bilayer, incorporating or attached to proteinaceous moieties that regulate molecular recognition events which trigger ion flux changes (facilitated or passive) through the bilayer. The creation of functional structures that are similar to natural signal transduction systems, correlating and interrelating compatibly and successfully the physicochemical transducer with the lipid film that is self-assembled on its surface while embedding the reconstituted biological recognition system, and at the same time manage to satisfy the basic conditions for measuring device development (simplicity, easy handling, ease of fabrication) is far from trivial. The aim of the present work is to present a methodological framework for designing such molecular sensing interfaces, functioning within a knowledge-based system built on an ontological platform for supplying sub-systems options, compatibilities, and optimization parameters.

  13. Knowledge discovery and system biology in molecular medicine: an application on neurodegenerative diseases.

    PubMed

    Fattore, Matteo; Arrigo, Patrizio

    2005-01-01

    The possibility to study an organism in terms of system theory has been proposed in the past, but only the advancement of molecular biology techniques allow us to investigate the dynamical properties of a biological system in a more quantitative and rational way than before . These new techniques can gave only the basic level view of an organisms functionality. The comprehension of its dynamical behaviour depends on the possibility to perform a multiple level analysis. Functional genomics has stimulated the interest in the investigation the dynamical behaviour of an organism as a whole. These activities are commonly known as System Biology, and its interests ranges from molecules to organs. One of the more promising applications is the 'disease modeling'. The use of experimental models is a common procedure in pharmacological and clinical researches; today this approach is supported by 'in silico' predictive methods. This investigation can be improved by a combination of experimental and computational tools. The Machine Learning (ML) tools are able to process different heterogeneous data sources, taking into account this peculiarity, they could be fruitfully applied to support a multilevel data processing (molecular, cellular and morphological) that is the prerequisite for the formal model design; these techniques can allow us to extract the knowledge for mathematical model development. The aim of our work is the development and implementation of a system that combines ML and dynamical models simulations. The program is addressed to the virtual analysis of the pathways involved in neurodegenerative diseases. These pathologies are multifactorial diseases and the relevance of the different factors has not yet been well elucidated. This is a very complex task; in order to test the integrative approach our program has been limited to the analysis of the effects of a specific protein, the Cyclin dependent kinase 5 (CDK5) which relies on the induction of neuronal

  14. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    PubMed

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  15. College Re-Culturing, Marketisation and Knowledge: The Meaning of Incorporation

    ERIC Educational Resources Information Center

    Smith, Rob

    2015-01-01

    The further education (FE) sector in England has experienced two decades of marketisation. This article takes as its focus the first five years of incorporation (1993-1998) for one case study college in a city ("Coppleton") in the West Midlands of England, five years that were dominated by a contract dispute. Data from interviews with…

  16. Visualization Skills and Their Incorporation in Biology Curriculum

    ERIC Educational Resources Information Center

    Osodo, J.; Amory, A.; Graham-Jolly, M.; Indoshi, F. C.

    2010-01-01

    Many graduates of various levels and disciplines appear unable to practically apply their knowledge in problem solving situations. However, few education systems are adopting modern education practices such as visualization skills that intrinsically motivate and engage learners and are at the same time flexible enough to consider students'…

  17. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions.

    PubMed

    Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred

    2016-08-30

    High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.

  18. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education

    ERIC Educational Resources Information Center

    Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…

  19. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  20. Teachers' instructional goals for science practice: Identifying knowledge gaps using cultural-historical activity theory (CHAT)

    NASA Astrophysics Data System (ADS)

    Farrar, Cynthia Hamen

    In AP Biology, the course goal, with respect to scientific acts and reasoning, has recently shifted toward a reform goal of science practice, where the goal is for students to have a scientific perspective that views science as a practice of a community rather than a body of knowledge. Given this recent shift, this study is interested in the gaps that may exist between an individual teacher's instructional goal and the goals of the AP Biology course. A Cultural-Historical Activity Theory (CHAT) methodology and perspective is used to analyze four teachers' knowledge, practice, and learning. Teachers have content knowledge for teaching, a form of knowledge that is unique for teaching called specialized content knowledge. This specialized content knowledge (SCK) defines their instructional goals, the student outcomes they ultimately aim to achieve with their students. The study employs a cultural-historical continuum of scientific acts and reasoning, which represents the development of the AP Biology goal over time, to study gaps in their instructional goal. The study also analyzes the contradictions within their teaching practice and how teachers address those contradictions to shift their instructional practice and learn. The findings suggest that teachers have different interpretations of the AP Biology goals of science practice, placing their instructional goal at different points along the continuum. Based on the location of their instructional goal, different micro-communities of teachers exist along the continuum, comprised of teachers with a shared goal, language, and culture of their AP Biology teaching. The in-depth study of one teacher's AP Biology teaching, using a CHAT perspective, provides a means for studying the mechanisms that connect SCK to classroom actions and ultimately to instructional practice. CHAT also reveals the nature and importance of contradictions or cognitive dissonance in teacher learning and the types of support teachers need to

  1. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  2. Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2013-12-15

    A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier

  3. Biology Factual Knowledge at Eleventh Grade of Senior High School Students in Pacitan based on Favorite Schools

    NASA Astrophysics Data System (ADS)

    Yustiana, I. A.; Paidi; Mercuriani, I. S.

    2018-03-01

    This study aimed to determine the Biology factual knowledge at eleventh grade of senior high school students in Pacitan based on favorite schools. This research was a descriptive research by using survey method. The population in this study was all of senior high school students in Pacitan. The sampling technique used purposive sampling technique and obtained 3 favorite schools and 3 non-favorite schools. The technique of collecting data used test form which was as the instrument of the research. Data analysis technique used Mann-Whitney U test. Based on the test, it was obtained p = 0,000 (p <0,05) so there was a significant difference between the factual knowledge of the students in the favorite schools and non-favorite schools in Pacitan. The factual knowledge of students in favorite schools was higher with an average of 5.32 while non-favorite schools were obtained an average of 4.36.

  4. Adding Confidence to Knowledge

    ERIC Educational Resources Information Center

    Goodson, Ludwika Aniela; Slater, Don; Zubovic, Yvonne

    2015-01-01

    A "knowledge survey" and a formative evaluation process led to major changes in an instructor's course and teaching methods over a 5-year period. Design of the survey incorporated several innovations, including: a) using "confidence survey" rather than "knowledge survey" as the title; b) completing an instructional…

  5. Incorporating computational resources in a cancer research program

    PubMed Central

    Woods, Nicholas T.; Jhuraney, Ankita; Monteiro, Alvaro N.A.

    2015-01-01

    Recent technological advances have transformed cancer genetics research. These advances have served as the basis for the generation of a number of richly annotated datasets relevant to the cancer geneticist. In addition, many of these technologies are now within reach of smaller laboratories to answer specific biological questions. Thus, one of the most pressing issues facing an experimental cancer biology research program in genetics is incorporating data from multiple sources to annotate, visualize, and analyze the system under study. Fortunately, there are several computational resources to aid in this process. However, a significant effort is required to adapt a molecular biology-based research program to take advantage of these datasets. Here, we discuss the lessons learned in our laboratory and share several recommendations to make this transition effectively. This article is not meant to be a comprehensive evaluation of all the available resources, but rather highlight those that we have incorporated into our laboratory and how to choose the most appropriate ones for your research program. PMID:25324189

  6. Biology Procedural Knowledge at Eleventh Grade of Senior High School in West Lampung Based on Curriculum

    NASA Astrophysics Data System (ADS)

    Sari, T. M.; Paidi; Mercuriani, I. S.

    2018-03-01

    This study was aim to determine Biology procedural knowledge of senior high school in West Lampung based on curriculum at 11th grade in even semester. This research was descriptive research. The population was all students of senior high school in West Lampung. The sampling technique in this research used purposive sampling technique, so the researcher obtained 3 schools using K13 and 3 schools using KTSP. Data collecting technique used instrument test. Data analysis technique used U-Mann Whitney test. The result showed that p=0.028 (p<0.05), so there was significant differences between school using K13 and KTSP. The procedural knowledge of schools which using K13 is higher than school which using KTSP, with the mean score K13=4.35 and KTSP=4.00

  7. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2.

    PubMed

    Thiele, Ines; Hyduke, Daniel R; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan M T; Hsiung, Chao A; De Keersmaecker, Sigrid C J; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L; Shin, Sook-il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M; Zengler, Karsten; Palsson, Bernhard O; Adkins, Joshua N; Bumann, Dirk

    2011-01-18

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

  8. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiele, Ines; Hyduke, Daniel R.; Steeb, Benjamin

    2011-01-01

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of thismore » reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Finally, taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.« less

  9. Examining the pedagogical content knowledge and practice of experienced secondary biology teachers for teaching diffusion and osmosis

    NASA Astrophysics Data System (ADS)

    Lankford, Deanna

    Teachers are the most important factor in student learning (National Research Council, 1996); yet little is known about the specialized knowledge held by experienced teachers. The purpose of this study was twofold: first, to make explicit the pedagogical content knowledge (PCK) for teaching diffusion and osmosis held by experienced biology teachers and, second, to reveal how topic-specific PCK informs teacher practice. The Magnusson et al. (1999) PCK model served as the theoretical framework for the study. The overarching research question was: When teaching lessons on osmosis and diffusion, how do experienced biology teachers draw upon their topic-specific pedagogical content knowledge? Data sources included observations of two consecutive lessons, three semi-structured interviews, lesson plans, and student handouts. Data analysis indicated five of the six teachers held a constructivist orientation to science teaching and engaged students in explorations of diffusion and osmosis prior to introducing the concepts to students. Explanations for diffusion and osmosis were based upon students' observations and experiences during explorations. All six teachers used representations at the molecular, cellular, and plant organ levels to serve as foci for explorations of diffusion and osmosis. Three potential learning difficulties identified by the teachers included: (a) understanding vocabulary terms, (b) predicting the direction of osmosis, and (c) identifying random molecular motion as the driving force for diffusion and osmosis. Participants used student predictions as formative assessments to reveal misconceptions before instruction and evaluate conceptual understanding during instruction. This study includes implications for teacher preparation, research, and policy.

  10. Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET

    PubMed Central

    Androsova, Ganna; del Sol, Antonio

    2015-01-01

    High-throughput technologies have led to the generation of an increasing amount of data in different areas of biology. Datasets capturing the cell’s response to its intra- and extra-cellular microenvironment allows such data to be incorporated as signed and directed graphs or influence networks. These prior knowledge networks (PKNs) represent our current knowledge of the causality of cellular signal transduction. New signalling data is often examined and interpreted in conjunction with PKNs. However, different biological contexts, such as cell type or disease states, may have distinct variants of signalling pathways, resulting in the misinterpretation of new data. The identification of inconsistencies between measured data and signalling topologies, as well as the training of PKNs using context specific datasets (PKN contextualization), are necessary conditions to construct reliable, predictive models, which are current challenges in the systems biology of cell signalling. Here we present PRUNET, a user-friendly software tool designed to address the contextualization of a PKNs to specific experimental conditions. As the input, the algorithm takes a PKN and the expression profile of two given stable steady states or cellular phenotypes. The PKN is iteratively pruned using an evolutionary algorithm to perform an optimization process. This optimization rests in a match between predicted attractors in a discrete logic model (Boolean) and a Booleanized representation of the phenotypes, within a population of alternative subnetworks that evolves iteratively. We validated the algorithm applying PRUNET to four biological examples and using the resulting contextualized networks to predict missing expression values and to simulate well-characterized perturbations. PRUNET constitutes a tool for the automatic curation of a PKN to make it suitable for describing biological processes under particular experimental conditions. The general applicability of the implemented

  11. Synthetic Biology: Knowledge Accessed by Everyone (Open Sources)

    ERIC Educational Resources Information Center

    Sánchez Reyes, Patricia Margarita

    2016-01-01

    Using the principles of biology, along with engineering and with the help of computer, scientists manage to copy. DNA sequences from nature and use them to create new organisms. DNA is created through engineering and computer science managing to create life inside a laboratory. We cannot dismiss the role that synthetic biology could lead in…

  12. Disentangling the Role of Domain-Specific Knowledge in Student Modeling

    NASA Astrophysics Data System (ADS)

    Ruppert, John; Duncan, Ravit Golan; Chinn, Clark A.

    2017-08-01

    This study explores the role of domain-specific knowledge in students' modeling practice and how this knowledge interacts with two domain-general modeling strategies: use of evidence and developing a causal mechanism. We analyzed models made by middle school students who had a year of intensive model-based instruction. These models were made to explain a familiar but unstudied biological phenomenon: late onset muscle pain. Students were provided with three pieces of evidence related to this phenomenon and asked to construct a model to account for this evidence. Findings indicate that domain-specific resources play a significant role in the extent to which the models accounted for provided evidence. On the other hand, familiarity with the situation appeared to contribute to the mechanistic character of models. Our results indicate that modeling strategies alone are insufficient for the development of a mechanistic model that accounts for provided evidence and that, while learners can develop a tentative model with a basic familiarity of the situation, scaffolding certain domain-specific knowledge is necessary to assist students with incorporating evidence in modeling tasks.

  13. Simulating the Incorporation of Geochemical Proxies into Scleractinian Coral Skeletons: Effects of Different Environmental and Biological Factors and Implications for Paleo-reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, W.

    2017-12-01

    Chemical and isotopic compositions of scleractinian coral skeletons reflect the physicochemical condition of the seawater in which corals grow. This makes coral skeleton one of the best archives of ocean climate and biogeochemical changes. A number of coral-based geochemical proxies have been developed and applied to reconstruct past seawater conditions, such as temperature, pH, carbonate chemistry and nutrient concentrations. Detailed laboratory and field-based studies of these proxies, however, indicate interpretation of the geochemistry of coral skeletons is not straightforward, due to the presence of `vital effects' and the variations of empirical proxy calibrations among and within different species. This poses challenges for the broad application of many geochemical proxies in corals, and highlights the need to better understand the fundamental processes governing the incorporation of different proxies. Here I present a numerical model that simulates the incorporation of a suite of geochemical proxies into coral skeletons, including δ11B, Mg/Ca, Sr/Ca, U/Ca, B/Ca and Ba/Ca. This model, building on previous theoretical studies of coral calcification, combines our current understanding of coral calcification mechanism with experimental constraints on the isotope and element partition during carbonate precipitation. It enables quantitative evaluation of the effects of different environmental and biological factors on each proxy. Specifically, this model shows that (1) the incorporation of every proxy is affected by multiple seawater parameters (e.g. temperature, pH, DIC) as opposed to one single parameter, and (2) biological factors, particularly the interplay between enzymatic alkalinity pumping and the exchange of coral calcifying fluid with external seawater, also exert significant controls. Based on these findings, I propose an inverse method for simultaneously reconstructing multiple seawater physicochemical parameters, and compare the performance of this

  14. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities.

  15. Teacher knowledge and discourse control: Quantitative evidence from novice biology teachers' classrooms

    NASA Astrophysics Data System (ADS)

    Carlsen, William S.

    This article describes the effects of science teacher subject-matter knowledge on classroom discourse at the level of individual utterances. It details one of three parallel analyses conducted in a year-long study of language in the classrooms of four new biology teachers. The conceptual framework of the study predicts that when teaching unfamiliar subject matter, teachers use a variety of discourse strategies to constrain student talk to a narrowly circumscribed topic domain. This article includes the results of an utterance-by-utterance analysis of teacher and student talk in a 30-lesson sample of science instruction. Data are broken down by classroom activity (e.g., lecture, laboratory, group work) for several measures, including mean duration of utterances, domination of the speaking floor by the teacher, frequency of teacher questioning, cognitive level of teacher questions, and student verbal participation. When teaching unfamiliar topics, the four teachers in this study tended to talk more often and for longer periods of time, ask questions frequently, and rely heavily on low cognitive level questions. The rate of student questions to the teacher varied with classroom activity. In common classroom communicative settings, student questions were less common when the teacher was teaching unfamiliar subject matter. The implications of these findings include a suggestion that teacher knowledge may be an important unconsidered variable in research on the cognitive level of questions and teacher wait-time.

  16. [Knowledge and adherence to bio-safety measures and biological accidents by nursing students during their clinical practice].

    PubMed

    Merino-de la Hoz, Felicitas; Durá-Ros, María Jesús; Rodríguez-Martín, Elías; González-Gómez, Silvia; Mariano López-López, Luis; Abajas-Bustillo, Rebeca; de la Horra-Gutiérrez, Inmaculada

    2010-01-01

    To identify the degree of knowledge and performance of bio-safety measures by nursing students and knowing the type of biological accidents suffered during their clinical practice. A cross-sectional study was conducted on the students of three Nursing courses held in May of 2008. Data was collected by an anonymous self-administered questionnaire, with a return of 54%. A total of 97% of students seemed to know the standard biosafety measures, and all of them (100%) stated that those measures must be applied to every patient. However, the reality of clinical practice shows that biosafety measures are only partially applied. An average of 60.2% implement the personal hygiene measures, 66.1% use physical barriers, and 44% use sharp materials safely. Around 32.25% of the students have suffered some biological accident, with a greater incidence in the second year: administering injections (24%), drawing blood samples with Venojet needles (18%) and recapping used needles (17%). The high level of knowledge shown by the students on standard precautions is not always shown in clinical practice. There are significant deficiencies in student safety practices: recapping of used needles continues to be one of the most common risk practices carried out. Copyright (c) 2009 Elsevier España, S.L. All rights reserved.

  17. Incorporating Social Media in the Classroom

    ERIC Educational Resources Information Center

    McMeans, April

    2015-01-01

    Incorporating social media into the classroom will provide a positive, upbeat learning environment that students are engaged in on a regular basis. In doing this, educators will be ensuring discussion, collaboration, critical thinking, and creativity amongst their students. Social media is a knowledgeable topic for our students, and it is an…

  18. Incorporating bioterrorism content in the nursing curriculum: a creative approach.

    PubMed

    Carter, Melondie R; Gaskins, Susan W

    2010-07-01

    The community health faculty has developed a creative and comprehensive approach with community agencies to present bioterrorism content that could be useful to community health faculty in other schools of nursing. Since September 11, 2001, the United States has recognized that the threat of bioterrorism is real. Nurses are recognized by the American Association of Colleges of Nursing as key players in disaster response efforts. However, bioterrorism knowledge among nurses and nursing students has been reported to be low, and textbooks do not include comprehensive information about bioterrorism preparedness. Our college of nursing has collaborated with the U.S. Public Health Department to design a creative educational experience for community health students on bioterrorism and disaster preparedness. Content areas include the National Stockpile, the Planned Response to Pandemic Influenza provided by the U.S. Public Health Department, recognition and treatment of biological threats, and the care of patients with smallpox. Copyright 2010, SLACK Incorporated.

  19. Prior knowledge guided active modules identification: an integrated multi-objective approach.

    PubMed

    Chen, Weiqi; Liu, Jing; He, Shan

    2017-03-14

    Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance.

  20. Knowledge-intensive software design systems: Can too much knowledge be a burden?

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    While acknowledging the considerable benefits of domain-specific, knowledge-intensive approaches to automated software engineering, it is prudent to carefully examine the costs of such approaches, as well. In adding domain knowledge to a system, a developer makes a commitment to understanding, representing, maintaining, and communicating that knowledge. This substantial overhead is not generally associated with domain-independent approaches. In this paper, I examine the downside of incorporating additional knowledge, and illustrate with examples based on our experience in building the SIGMA system. I also offer some guidelines for developers building domain-specific systems.

  1. Knowledge-intensive software design systems: Can too much knowledge be a burden?

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    While acknowledging the considerable benefits of domain-specific, knowledge-intensive approaches to automated software engineering, it is prudent to carefully examine the costs of such approaches, as well. In adding domain knowledge to a system, a developer makes a commitment to understanding, representing, maintaining, and communicating that knowledge. This substantial overhead is not generally associated with domain-independent approaches. In this paper, I examine the downside of incorporating additional knowledge, and illustrate with examples based on our experiences building the SIGMA system. I also offer some guidelines for developers building domain-specific systems.

  2. Expansion of Biology Teachers' Pedagogical Content Knowledge (PCK) During a Long-Term Professional Development Program

    NASA Astrophysics Data System (ADS)

    Rozenszajn, Ronit; Yarden, Anat

    2014-02-01

    Experienced teachers possess a unique teaching knowledge comprised of an inter-related set of knowledge and beliefs that gives direction and justification to a teacher's actions. This study examined the expansion of two components of pedagogical content knowledge (PCK) of three in-service teachers in the course of a professional development program aimed at designing new teaching and learning materials suggested by the teachers themselves. The research presents an enlargement of previous PCK representations by focusing on a detailed representation of two main PCK domains: teaching and learning, including ten PCK components that emerged in the course of data analysis. This representation enabled revealing the unique PCK held by each teacher and to characterize the expansion of the two components of the participating teachers' PCK during the long-term professional development program. Retention of major parts of the expanded PCK a year after termination of the program implies that designing and implementing new teaching and learning materials based on the teachers' experiences, needs, and knowledge in a workshop format accompanied by biology and science education courses might provide a powerful means for PCK expansion. We recommend that designers of professional development programs be aware of the unique PCK held by each teacher in order to promote meaningful professional development of each teacher. Moreover, the PCK representations that were identified in the course of this study enabled clarifying the "orientation toward teaching science" category of PCK which appears to be unclear in current literature.

  3. Synthetic Biology: Putting Synthesis into Biology

    PubMed Central

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  4. A new incorporation mechanism for trivalent actinides into bioapatite: a TRLFS and EXAFS study.

    PubMed

    Holliday, Kiel; Handley-Sidhu, Stephanie; Dardenne, Kathy; Renshaw, Joanna; Macaskie, Lynne; Walther, Clemens; Stumpf, Thorsten

    2012-02-28

    One of the most toxic byproducts of nuclear power and weapons production is the transuranics, which have a high radiotoxicity and long biological half-life due to their tendency to accumulate in the skeletal system. This accumulation is inhomogeneous and has been associated with the chemical properties and structure of the bone material rather than its location or function. This suggests a chemical driving force to incorporation and requires an atomic scale mechanistic understanding of the incorporation process. Here we propose a new incorporation mechanism for trivalent actinides and lanthanides into synthetic and biologically produced hydroxyapatite. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure have been used to demonstrate that trivalent actinides and lanthanides incorporate into the amorphous grain boundaries of apatite. This incorporation site can be used to explain patterns in uptake and distribution of radionuclides in the mammalian skeletal system. © 2012 American Chemical Society

  5. Using Multiple Lenses to Examine the Development of Beginning Biology Teachers' Pedagogical Content Knowledge for Teaching Natural Selection Simulations

    ERIC Educational Resources Information Center

    Sickel, Aaron J.; Friedrichsen, Patricia

    2018-01-01

    Pedagogical content knowledge (PCK) has become a useful construct to examine science teacher learning. Yet, researchers conceptualize PCK development in different ways. The purpose of this longitudinal study was to use three analytic lenses to understand the development of three beginning biology teachers' PCK for teaching natural selection…

  6. Development of the biology card sorting task to measure conceptual expertise in biology.

    PubMed

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  7. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    PubMed Central

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  8. Influence of Content Knowledge on Pedagogical Content Knowledge: The Case of Teaching Photosynthesis and Plant Growth

    ERIC Educational Resources Information Center

    Kapyla, Markku; Heikkinen, Jussi-Pekka; Asunta, Tuula

    2009-01-01

    The aim of the research was to investigate the effect of the amount and quality of content knowledge on pedagogical content knowledge (PCK). The biological content photosynthesis and plant growth was used as an example. The research sample consisted of 10 primary and 10 secondary (biology) teacher students. Questionnaires, lesson preparation task…

  9. 78 FR 59927 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., Computational, and Systems Biology [External Review Draft]'' (EPA/600/R-13/214A). EPA is also announcing that... Advances in Molecular, Computational, and Systems Biology [External Review Draft]'' is available primarily...

  10. Evolving Strategies for the Incorporation of Bioinformatics within the Undergraduate Cell Biology Curriculum

    ERIC Educational Resources Information Center

    Honts, Jerry E.

    2003-01-01

    Recent advances in genomics and structural biology have resulted in an unprecedented increase in biological data available from Internet-accessible databases. In order to help students effectively use this vast repository of information, undergraduate biology students at Drake University were introduced to bioinformatics software and databases in…

  11. Creating illusions of knowledge: learning errors that contradict prior knowledge.

    PubMed

    Fazio, Lisa K; Barber, Sarah J; Rajaram, Suparna; Ornstein, Peter A; Marsh, Elizabeth J

    2013-02-01

    Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks before they read stories that contained errors (e.g., "Franklin invented the light bulb"). On a later general-knowledge test, participants reproduced story errors despite previously answering the questions correctly. This misinformation effect was found even for questions that were answered correctly on the initial test with the highest level of confidence. Furthermore, prior knowledge offered no protection against errors entering the knowledge base; the misinformation effect was equivalent for previously known and unknown facts. Errors can enter the knowledge base even when learners have the knowledge necessary to catch the errors. 2013 APA, all rights reserved

  12. Learning Biology by Designing

    ERIC Educational Resources Information Center

    Janssen, Fred; Waarlo, Arend Jan

    2010-01-01

    According to a century-old tradition in biological thinking, organisms can be considered as being optimally designed. In modern biology this idea still has great heuristic value. In evolutionary biology a so-called design heuristic has been formulated which provides guidance to researchers in the generation of knowledge about biological systems.…

  13. InCoB2012 Conference: from biological data to knowledge to technological breakthroughs

    PubMed Central

    2012-01-01

    Ten years ago when Asia-Pacific Bioinformatics Network held the first International Conference on Bioinformatics (InCoB) in Bangkok its theme was North-South Networking. At that time InCoB aimed to provide biologists and bioinformatics researchers in the Asia-Pacific region a forum to meet, interact with, and disseminate knowledge about the burgeoning field of bioinformatics. Meanwhile InCoB has evolved into a major regional bioinformatics conference that attracts not only talented and established scientists from the region but increasingly also from East Asia, North America and Europe. Since 2006 InCoB yielded 114 articles in BMC Bioinformatics supplement issues that have been cited nearly 1,000 times to date. In part, these developments reflect the success of bioinformatics education and continuous efforts to integrate and utilize bioinformatics in biotechnology and biosciences in the Asia-Pacific region. A cross-section of research leading from biological data to knowledge and to technological applications, the InCoB2012 theme, is introduced in this editorial. Other highlights included sessions organized by the Pan-Asian Pacific Genome Initiative and a Machine Learning in Immunology competition. InCoB2013 is scheduled for September 18-21, 2013 at Suzhou, China. PMID:23281929

  14. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  15. The Effects of the SUN Project on Teacher Knowledge and Self-Efficacy Regarding Biological Energy Transfer Are Significant and Long-Lasting: Results of a Randomized Controlled Trial

    PubMed Central

    Batiza, Ann Finney; Gruhl, Mary; Zhang, Bo; Harrington, Tom; Roberts, Marisa; LaFlamme, Donna; Haasch, Mary Anne; Knopp, Jonathan; Vogt, Gina; Goodsell, David; Hagedorn, Eric; Marcey, David; Hoelzer, Mark; Nelson, Dave

    2013-01-01

    Biological energy flow has been notoriously difficult to teach. Our approach to this topic relies on abiotic and biotic examples of the energy released by moving electrons in thermodynamically spontaneous reactions. A series of analogical model-building experiences was supported with common language and representations including manipulatives. These materials were designed to help learners understand why electrons move in a hydrogen explosion and hydrogen fuel cell, so they could ultimately understand the rationale for energy transfer in the mitochondrion and the chloroplast. High school biology teachers attended a 2-wk Students Understanding eNergy (SUN) workshop during a randomized controlled trial. These treatment group teachers then took hydrogen fuel cells, manipulatives, and other materials into their regular biology classrooms. In this paper, we report significant gains in teacher knowledge and self-efficacy regarding biological energy transfer in the treatment group versus randomized controls. Significant effects on treatment group teacher knowledge and self-efficacy were found not only post–SUN workshop but even 1 yr later. Teacher knowledge was measured with both a multiple-choice exam and a drawing with a written explanation. Teacher confidence in their ability to teach biological energy transfer was measured by a modified form of the Science Teaching Efficacy Belief Instrument, In-Service A. Professional development implications regarding this topic are discussed. PMID:23737635

  16. The effects of the SUN project on teacher knowledge and self-efficacy regarding biological energy transfer are significant and long-lasting: results of a randomized controlled trial.

    PubMed

    Batiza, Ann Finney; Gruhl, Mary; Zhang, Bo; Harrington, Tom; Roberts, Marisa; LaFlamme, Donna; Haasch, Mary Anne; Knopp, Jonathan; Vogt, Gina; Goodsell, David; Hagedorn, Eric; Marcey, David; Hoelzer, Mark; Nelson, Dave

    2013-06-01

    Biological energy flow has been notoriously difficult to teach. Our approach to this topic relies on abiotic and biotic examples of the energy released by moving electrons in thermodynamically spontaneous reactions. A series of analogical model-building experiences was supported with common language and representations including manipulatives. These materials were designed to help learners understand why electrons move in a hydrogen explosion and hydrogen fuel cell, so they could ultimately understand the rationale for energy transfer in the mitochondrion and the chloroplast. High school biology teachers attended a 2-wk Students Understanding eNergy (SUN) workshop during a randomized controlled trial. These treatment group teachers then took hydrogen fuel cells, manipulatives, and other materials into their regular biology classrooms. In this paper, we report significant gains in teacher knowledge and self-efficacy regarding biological energy transfer in the treatment group versus randomized controls. Significant effects on treatment group teacher knowledge and self-efficacy were found not only post-SUN workshop but even 1 yr later. Teacher knowledge was measured with both a multiple-choice exam and a drawing with a written explanation. Teacher confidence in their ability to teach biological energy transfer was measured by a modified form of the Science Teaching Efficacy Belief Instrument, In-Service A. Professional development implications regarding this topic are discussed.

  17. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  18. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  19. "You Can Exercise Your Way out of HIV" and Other Stories: The Role of Biological Knowledge in Adolescents' Evaluation of Myths

    ERIC Educational Resources Information Center

    Keselman, Alla; Kaufman, David R.; Patel, Vimla L.

    2004-01-01

    A primary objective for science education is to impart robust knowledge that has applicability to real-world problems. This article presents research investigating the relationship between adolescents' conceptual understanding of the biological basis of HIV and critical reasoning. Middle and high school students were interviewed about their…

  20. Preservice Biology Teachers' Conceptions about the Tentative Nature of Theories and Models in Biology

    ERIC Educational Resources Information Center

    Reinisch, Bianca; Krüger, Dirk

    2018-01-01

    In research on the nature of science, there is a need to investigate the role and status of different scientific knowledge forms. Theories and models are two of the most important knowledge forms within biology and are the focus of this study. During interviews, preservice biology teachers (N = 10) were asked about their understanding of theories…

  1. Virtual fetal pig dissection as an agent of knowledge acquisition and attitudinal change in female high school biology students

    NASA Astrophysics Data System (ADS)

    Maloney, Rebecca Scudari

    One way to determine if all students can learn through the use of computers is to introduce a lesson taught completely via computers and compare the results with those gained when the same lesson is taught in a traditional manner. This study attempted to determine if a virtual fetal pig dissection can be used as a viable alternative for an actual dissection for females enrolled in high school biology classes by comparing the knowledge acquisition and attitudinal change between the experimental (virtual dissection) and control (actual dissection) groups. Two hundred and twenty-four students enrolled in biology classes in a suburban all-girl parochial high school participated in this study. Female students in an all-girl high school were chosen because research shows differences in science competency and computer usage between the genders that may mask the performance of females on computer-based tasks in a science laboratory exercise. Students who completed the virtual dissection scored significantly higher on practical test and objective tests that were used to measure knowledge acquisition. Attitudinal change was measured by examining the students' attitudes toward dissections, computer usage in the classroom, and toward biology both before and after the dissections using pre and post surveys. Significant results in positive gain scores were found in the virtual dissection group's attitude toward dissections, and their negative gain score toward virtual dissections. Attitudinal changes toward computers and biology were not significant. A purposefully selected sample of the students were interviewed, in addition to gathering a sample of the students' daily dissection journals, as data highlighting their thoughts and feelings about their dissection experience. Further research is suggested to determine if a virtual laboratory experience can be a substitute for actual dissections, or may serve as an enhancement to an actual dissection.

  2. A new organismal systems biology: how animals walk the tight rope between stability and change.

    PubMed

    Padilla, Dianna K; Tsukimura, Brian

    2014-07-01

    The amount of knowledge in the biological sciences is growing at an exponential rate. Simultaneously, the incorporation of new technologies in gathering scientific information has greatly accelerated our capacity to ask, and answer, new questions. How do we, as organismal biologists, meet these challenges, and develop research strategies that will allow us to address the grand challenge question: how do organisms walk the tightrope between stability and change? Organisms and organismal systems are complex, and multi-scale in both space and time. It is clear that addressing major questions about organismal biology will not come from "business as usual" approaches. Rather, we require the collaboration of a wide range of experts and integration of biological information with more quantitative approaches traditionally found in engineering and applied mathematics. Research programs designed to address grand challenge questions will require deep knowledge and expertise within subfields of organismal biology, collaboration and integration among otherwise disparate areas of research, and consideration of organisms as integrated systems. Our ability to predict which features of complex integrated systems provide the capacity to be robust in changing environments is poorly developed. A predictive organismal biology is needed, but will require more quantitative approaches than are typical in biology, including complex systems-modeling approaches common to engineering. This new organismal systems biology will have reciprocal benefits for biologists, engineers, and mathematicians who address similar questions, including those working on control theory and dynamical systems biology, and will develop the tools we need to address the grand challenge questions of the 21st century. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. Prior knowledge-based approach for associating ...

    EPA Pesticide Factsheets

    Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and bio-effects data to evaluate risks associated with chemicals present in the environment. We used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near two wastewater treatment plants. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data was also mapped to the assembly models to statistically evaluate the likelihood of a chemical contributing to the observed biological responses. The prior knowledge approach was able reasonably hypothesize the biological impacts at one site but not the other. Chemicals most likely contributing to the observed biological responses were identified at each location. Despite limitations to the approach, knowledge assembly models have strong potential for associating chemical occurrence with potential biological effects and providing a foundation for hypothesis generation to guide research and/or monitoring efforts relat

  4. Background Knowledge in Learning-Based Relation Extraction

    ERIC Educational Resources Information Center

    Do, Quang Xuan

    2012-01-01

    In this thesis, we study the importance of background knowledge in relation extraction systems. We not only demonstrate the benefits of leveraging background knowledge to improve the systems' performance but also propose a principled framework that allows one to effectively incorporate knowledge into statistical machine learning models for…

  5. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.

    PubMed

    Li, Baoe; Hao, Jingzu; Min, Yang; Xin, Shigang; Guo, Litong; He, Fei; Liang, Chunyong; Wang, Hongshui; Li, Haipeng

    2015-06-01

    TiO2 nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO2 nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Professional Development for Biology Teachers in the Knowledge Economy

    ERIC Educational Resources Information Center

    Eiser, Simone; Knight, Bruce Allen

    2008-01-01

    Increasingly, the general media cover new advancements and research in the field of biology. Stem cell research, emerging diseases and bioethics are some of the issues gaining public attention. The rate of increase of these new developments creates additional challenges to teachers of biology as they try to remain abreast of new information and…

  7. Upgrading Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  8. MO-G-304-01: FEATURED PRESENTATION: Expanding the Knowledge Base for Data-Driven Treatment Planning: Incorporating Patient Outcome Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, SP; Quon, H; Cheng, Z

    2015-06-15

    Purpose: To extend the capabilities of knowledge-based treatment planning beyond simple dose queries by incorporating validated patient outcome models. Methods: From an analytic, relational database of 684 head and neck cancer patients, 372 patients were identified having dose data for both left and right parotid glands as well as baseline and follow-up xerostomia assessments. For each existing patient, knowledge-based treatment planning was simulated for by querying the dose-volume histograms and geometric shape relationships (overlap volume histograms) for all other patients. Dose predictions were captured at normalized volume thresholds (NVT) of 0%, 10%, 20, 30%, 40%, 50%, and 85% and weremore » compared with the actual achieved doses using the Wilcoxon signed-rank test. Next, a logistic regression model was used to predict the maximum severity of xerostomia up to three months following radiotherapy. Baseline xerostomia scores were subtracted from follow-up assessments and were also included in the model. The relative risks from predicted doses and actual doses were computed and compared. Results: The predicted doses for both parotid glands were significantly less than the achieved doses (p < 0.0001), with differences ranging from 830 cGy ± 1270 cGy (0% NVT) to 1673 cGy ± 1197 cGy (30% NVT). The modelled risk of xerostomia ranged from 54% to 64% for achieved doses and from 33% to 51% for the dose predictions. Relative risks varied from 1.24 to 1.87, with maximum relative risk occurring at 85% NVT. Conclusions: Data-driven generation of treatment planning objectives without consideration of the underlying normal tissue complication probability may Result in inferior plans, even if quality metrics indicate otherwise. Inclusion of complication models in knowledge-based treatment planning is necessary in order to close the feedback loop between radiotherapy treatments and patient outcomes. Future work includes advancing and validating complication models in the

  9. Biological Applications in the Mathematics Curriculum

    ERIC Educational Resources Information Center

    Marland, Eric; Palmer, Katrina M.; Salinas, Rene A.

    2008-01-01

    In this article we provide two detailed examples of how we incorporate biological examples into two mathematics courses: Linear Algebra and Ordinary Differential Equations. We use Leslie matrix models to demonstrate the biological properties of eigenvalues and eigenvectors. For Ordinary Differential Equations, we show how using a logistic growth…

  10. Incorporating political socialization theory into baccalaureate nursing education.

    PubMed

    Brown, S G

    1996-01-01

    Political socialization theory explains how an individual develops a political belief system. As the health care system undergoes dramatic changes, nursing faculty should use political socialization theory to enhance the education of student nurses. A political thread can be woven through the nursing curricula, and students can be socialized to the political role. The new generation of nurses must incorporate a political component into their professional role identity. Political socialization theory can guide nursing faculty as knowledge of the political system and political skills are incorporated into nursing curricula.

  11. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    NASA Astrophysics Data System (ADS)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  12. Making Invasion models useful for decision makers; incorporating uncertainty, knowledge gaps, and decision-making preferences

    Treesearch

    Denys Yemshanov; Frank H Koch; Mark Ducey

    2015-01-01

    Uncertainty is inherent in model-based forecasts of ecological invasions. In this chapter, we explore how the perceptions of that uncertainty can be incorporated into the pest risk assessment process. Uncertainty changes a decision maker’s perceptions of risk; therefore, the direct incorporation of uncertainty may provide a more appropriate depiction of risk. Our...

  13. Meeting Report: Incorporating Genomics Research into Undergraduate Curricula

    ERIC Educational Resources Information Center

    Dyer, Betsey Dexter; LeBlanc, Mark D.

    2002-01-01

    In the first of two National Science Foundation (NSF)-funded workshops, 30 professors of biology and computer science from 18 institutions met at Wheaton College in Norton, Massachusetts, on June 6-7, 2002, to share ideas on how to incorporate genomics research into undergraduate curricula. The participants included nine pairs or trios of…

  14. Teacher Education and the New Biology

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2006-01-01

    Recent years have seen a growth not only in biological knowledge but also, and more significantly for teacher education, in the types of knowledge manifested in biology. No longer, therefore, is it adequate for teachers to retain a Mertonian or a Popperian conception of science. Today's teachers of science need also to be able to help their…

  15. The Notion of Scientific Knowledge in Biology

    ERIC Educational Resources Information Center

    Morante, Silvia; Rossi, Giancarlo

    2016-01-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the…

  16. Incorporation of nanoparticles into polymersomes: size and concentration effects.

    PubMed

    Jaskiewicz, Karmena; Larsen, Antje; Schaeffel, David; Koynov, Kaloian; Lieberwirth, Ingo; Fytas, George; Landfester, Katharina; Kroeger, Anja

    2012-08-28

    Because of the rapidly growing field of nanoparticles in therapeutic applications, understanding and controlling the interaction between nanoparticles and membranes is of great importance. While a membrane is exposed to nanoparticles its behavior is mediated by both their biological and physical properties. Constant interplay of these biological and physicochemical factors makes selective studies of nanoparticles uptake demanding. Artificial model membranes can serve as a platform to investigate physical parameters of the process in the absence of any biofunctional molecules and/or supplementary energy. Here we report on photon- and fluorescence-correlation spectroscopic studies of the uptake of nanosized SiO(2) nanoparticles by poly(dimethylsiloxane)-block-poly(2-methyloxazoline) vesicles allowing species selectivity. Analogous to the cell membrane, polymeric membrane incorporates particles using membrane fission and particles wrapping as suggested by cryo-TEM imaging. It is revealed that the incorporation process can be controlled to a significant extent by changing nanoparticles size and concentration. Conditions for nanoparticle uptake and controlled filling of polymersomes are presented.

  17. Supplementing Introductory Biology with On-Line Curriculum

    ERIC Educational Resources Information Center

    McGroarty, Estelle; Parker, Joyce; Heidemann, Merle; Lim, Heejun; Olson, Mark; Long, Tammy; Merrill, John; Riffell, Samuel; Smith, James; Batzli, Janet; Kirschtel, David

    2004-01-01

    We developed web-based modules addressing fundamental concepts of introductory biology delivered through the LON-CAPA course management system. These modules were designed and used to supplement large, lecture-based introductory biology classes. Incorporating educational principles and the strength of web-based instructional technology, choices…

  18. Virtually the Same: A Comparison of STEM Students' Content Knowledge, Course Performance, and Motivation to Learn in Virtual and Face-to-Face Introductory Biology Laboratories. Research and Teaching

    ERIC Educational Resources Information Center

    Reece, Amber J.; Butler, Malcolm B.

    2017-01-01

    Biology I is a required course for many science, technology, engineering, and mathematics (STEM) majors and is often their first college-level laboratory experience. The replacement of the traditional face-to-face laboratory experience with virtual laboratories could influence students' content knowledge, motivation to learn biology, and overall…

  19. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.

    PubMed

    Munkhdalai, Tsendsuren; Li, Meijing; Batsuren, Khuyagbaatar; Park, Hyeon Ah; Choi, Nak Hyeon; Ryu, Keun Ho

    2015-01-01

    Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to the recent growth in the amount of biomedical literature. We present a semi-supervised learning method that efficiently exploits unlabeled data in order to incorporate domain knowledge into a named entity recognition model and to leverage system performance. The proposed method includes Natural Language Processing (NLP) tasks for text preprocessing, learning word representation features from a large amount of text data for feature extraction, and conditional random fields for token classification. Other than the free text in the domain, the proposed method does not rely on any lexicon nor any dictionary in order to keep the system applicable to other NER tasks in bio-text data. We extended BANNER, a biomedical NER system, with the proposed method. This yields an integrated system that can be applied to chemical and drug NER or biomedical NER. We call our branch of the BANNER system BANNER-CHEMDNER, which is scalable over millions of documents, processing about 530 documents per minute, is configurable via XML, and can be plugged into other systems by using the BANNER Unstructured Information Management Architecture (UIMA) interface. BANNER-CHEMDNER achieved an 85.68% and an 86.47% F-measure on the testing sets of CHEMDNER Chemical Entity Mention (CEM) and Chemical Document Indexing (CDI) subtasks, respectively, and achieved an 87.04% F-measure on the official testing set of the BioCreative II gene mention task, showing remarkable performance in both chemical and biomedical NER. BANNER-CHEMDNER system is available at: https://bitbucket.org/tsendeemts/banner-chemdner.

  20. Effects of Teacher Use of Analogies on Achievement of High School Biology Students with Varying Levels of Cognitive Ability and Prior Knowledge.

    ERIC Educational Resources Information Center

    Burns, Joseph C.; Okey, James R.

    This study investigated the effects of analogy-based and conventional lecture-based instructional strategies on the achievement of four classes of high school biology students (N=123). Prior to treatment, students were assessed for cognitive ability and prior knowledge of the analogy vehicle. The analogy-based treatment consisted of teacher…

  1. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  2. Commonalities in Biology.

    ERIC Educational Resources Information Center

    Brett, William J.

    1998-01-01

    Discusses Boyer's proposal to incorporate the seven human commonalities into college courses so that students will become less parochial and more global individuals. Describes the application of this commonalities approach to both a general education course and an introductory course for biology majors. Commonalities are presented in a…

  3. Design of a Knowledge Driven HIS

    PubMed Central

    Pryor, T. Allan; Clayton, Paul D.; Haug, Peter J.; Wigertz, Ove

    1987-01-01

    Design of the software architecture for a knowledge driven HIS is presented. In our design the frame has been used as the basic unit of knowledge representation. The structure of the frame is being designed to be sufficiently universal to contain knowledge required to implement not only expert systems, but almost all traditional HIS functions including ADT, order entry and results review. The design incorporates a two level format for the knowledge. The first level as ASCII records is used to maintain the knowledge base while the second level converted by special knowledge compilers to standard computer languages is used for efficient implementation of the knowledge applications.

  4. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  5. The Integration of Biology into Calculus Courses

    ERIC Educational Resources Information Center

    Comar, Timothy D.

    2008-01-01

    This article discusses the incorporation of biological content into existing calculus courses without significantly changing the courses. This is exemplified by the common laboratory course taken by students in all first semester calculus courses at Benedictine University. Several biologically oriented projects are implemented in this laboratory…

  6. Development of a Knowledge Base for Incorporating Technology into Courses

    ERIC Educational Resources Information Center

    Rath, Logan

    2013-01-01

    This article discusses a project resulting from the request of a group of faculty at The College at Brockport to create a website for best practices in teaching and technology. The project evolved into a knowledge base powered by WordPress. Installation and configuration of WordPress resulted in the creation of custom taxonomies and post types,…

  7. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  8. Research to knowledge: promoting the training of physician-scientists in the biology of pregnancy.

    PubMed

    Sadovsky, Yoel; Caughey, Aaron B; DiVito, Michelle; D'Alton, Mary E; Murtha, Amy P

    2018-01-01

    Common disorders of pregnancy, such as preeclampsia, preterm birth, and fetal growth abnormalities, continue to challenge perinatal biologists seeking insights into disease pathogenesis that will result in better diagnosis, therapy, and disease prevention. These challenges have recently been intensified with discoveries that associate gestational diseases with long-term maternal and neonatal outcomes. Whereas modern high-throughput investigative tools enable scientists and clinicians to noninvasively probe the maternal-fetal genome, epigenome, and other analytes, their implications for clinical medicine remain uncertain. Bridging these knowledge gaps depends on strengthening the existing pool of scientists with expertise in basic, translational, and clinical tools to address pertinent questions in the biology of pregnancy. Although PhD researchers are critical in this quest, physician-scientists would facilitate the inquiry by bringing together clinical challenges and investigative tools, promoting a culture of intellectual curiosity among clinical providers, and helping transform discoveries into relevant knowledge and clinical solutions. Uncertainties related to future administration of health care, federal support for research, attrition of physician-scientists, and an inadequate supply of new scholars may jeopardize our ability to address these challenges. New initiatives are necessary to attract current scholars and future generations of researchers seeking expertise in the scientific method and to support them, through mentorship and guidance, in pursuing a career that combines scientific investigation with clinical medicine. These efforts will promote breadth and depth of inquiry into the biology of pregnancy and enhance the pace of translation of scientific discoveries into better medicine and disease prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Detection of mitogen-induced lymphocyte proliferation by bromodeoxyuridine (BrdU) incorporation in the chicken.

    PubMed

    Motobu, Maki; El-Abasy, Moshira; Na, Ki-Jeong; Hirota, Yoshikazu

    2002-04-01

    3H-thymidine (3H-TdR) incorporation assay has been generally used to measure lymphocyte proliferation in the chicken. Disadvantages of this assay are that radioisotope is biological hazard to the person and environment and that it can not measure which subset of lymphocytes proliferates. In this study, bromodeoxyuridine (BrdU) incorporation assay by flow cytometry was compared with 3H-TdR incorporation assay. As a result, BrdU incorporation assay showed a strong correlation with 3H-TdR incorporation assay, and it could be applied simultaneously to detect BrdU incorporation and expression of cell surface marker antigens. These results suggest that the BrdU incorporation assay by flow cytometry is useful to analyze lymphocyte proliferation in detail.

  10. Marine Education Knowledge Inventory.

    ERIC Educational Resources Information Center

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  11. Incorporating immigrants: integrating theoretical frameworks of adaptation.

    PubMed

    Treas, Judith

    2015-03-01

    To encourage research on immigrants and aging by analyzing theoretical commonalities in the two fields and identifying potential contributions of aging theories, specifically to the understanding of neglected age differences in the pace of immigrant incorporation. Survey of the historical development of assimilation theory and its successors and systematic comparison of key concepts in aging and immigrant incorporation theories. Studies of immigrants, as well as of the life course, trace their origins to the Chicago School at the turn of the 20th century. Today, both theoretical perspectives emphasize adaptation as a time-dependent, multidimensional, nonlinear, and multidirectional process. Immigrant incorporation theories have not fully engaged with a key concern of aging theory-why there are age differences. Insights from cognitive aging and developmental biology, life-span developmental psychology, and age stratification and the life course suggest explanations for age differences in the speed of immigrant incorporation. Theories of adaptation to aging and theories of immigrant incorporation developed so independently that they neglected the subject they have in common, namely, older immigrants. Because they address similar conceptual problems and share key assumptions, a productive dialogue between two vibrant fields is long overdue. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Incorporating Community Knowledge to Lahar Hazard Maps: Canton Buenos Aires Case Study, at Santa Ana (Ilamatepec) Volcano

    NASA Astrophysics Data System (ADS)

    Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.

    2015-12-01

    Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.

  13. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    PubMed

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  14. Collaborative Research Seed Grants for Integrating Knowledges and Creating New Knowledge

    ERIC Educational Resources Information Center

    Freitag, Amy

    2015-01-01

    Incorporating different ways of knowing in research and management has the potential to bring creativity to environmental problem-solving through integrating ways of knowing and innovation via co-producing knowledge. To gain these benefits, North Carolina Sea Grant Extension offers small annual grants called Fisheries Resource Grants to paired…

  15. A method and implementation for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model

    NASA Astrophysics Data System (ADS)

    Swanson, Steven Roy

    The objective of the dissertation is to improve state estimation performance, as compared to a Kalman filter, when non-constant, or changing, biases exist in the measurement data. The state estimation performance increase will come from the use of a fuzzy model to determine the position and velocity gains of a state estimator. A method is proposed for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model. This method consists of using a fuzzy model to determine the gains of the state estimator, converting the heuristic knowledge into the fuzzy model, and then optimizing the fuzzy model with a genetic algorithm. This method is applied to the problem of state estimation of a cascaded global positioning system (GPS)/inertial reference unit (IRU) navigation system. The GPS position data contains two major sources for position bias. The first bias is due to satellite errors and the second is due to the time delay or lag from when the GPS position is calculated until it is used in the state estimator. When a change in the bias of the measurement data occurs, a state estimator will converge on the new measurement data solution. This will introduce errors into a Kalman filter's estimated state velocities, which in turn will cause a position overshoot as it converges. By using a fuzzy model to determine the gains of a state estimator, the velocity errors and their associated deficiencies can be reduced.

  16. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills

    PubMed Central

    KÖLLER, OLAF

    2016-01-01

    ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532

  17. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills.

    PubMed

    Kampa, Nele; Köller, Olaf

    2016-09-01

    National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students' achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory-driven two-dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments.

  18. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and

  19. Biology. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 18 biology investigations found in the student manual. These investigations focus on concepts related to:…

  20. A Convenient Dichotomy: Critical Eyes on the Limits to Biological Knowledge

    ERIC Educational Resources Information Center

    Milne, Catherine

    2011-01-01

    In "The Secret Identity of a Biology Textbook: straight and naturally sexed," Jesse Bazzul and Heather Sykes conduct a case study of a biology textbook as an oppressive instructional material. Using queer theory they explore how the text of the biology textbook produces "truths" about sex, gender, and sexuality. Their analysis is complemented by…

  1. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biological Soil Crust Technical Reference

    Science.gov Websites

    Technical Reference Our understanding of the biology, ecology and physiology of biological soil crusts has published studies on soil crusts. The attached PDF file is a 90-page report that summarizes our current state of knowledge about biological soil crusts, with emphasis on crusts found in the western United

  4. Promoting knowledge integration of scientific principles and environmental stewardship: Assessing an issue-based approach to teaching evolution and marine conservation

    NASA Astrophysics Data System (ADS)

    Zimmerman, Timothy David

    2005-11-01

    Students and citizens need to apply science to important issues every day. Yet the design of science curricula that foster integration of science and everyday decisions is not well understood. For example, can curricula be designed that help learners apply scientific reasons for choosing only environmentally sustainable seafood for dinner? Learners must develop integrated understandings of scientific principles, prior experiences, and current decisions in order to comprehend how everyday decisions impact environmental resources. In order to investigate how such integrated understandings can be promoted within school science classes, research was conducted with an inquiry-oriented curriculum that utilizes technology and a visit to an informal learning environment (aquarium) to promote the integration of scientific principles (adaptation) with environmental stewardship. This research used a knowledge integration approach to teaching and learning that provided a framework for promoting the application of science to environmental issues. Marine biology, often forsaken in classrooms for terrestrial biology, served as the scientific context for the curriculum. The curriculum design incorporated a three-phase pedagogical strategy and new technology tools to help students integrate knowledge and experiences across the classroom and aquarium learning environments. The research design and assessment protocols included comparisons among and within student populations using two versions of the curriculum: an issue-based version and a principle-based version. These inquiry curricula were tested with sophomore biology students attending a marine-focused academy within a coastal California high school. Pretest-posttest outcomes were compared between and within the curricular treatments. Additionally, comparisons were made between the inquiry groups and seniors in an Advanced Placement biology course who attend the same high school. Results indicate that the inquiry curricula

  5. The Use of Clinical Interviews to Develop Inservice Secondary Science Teachers' Nature of Science Knowledge and Assessment of Student Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Peters-Burton, Erin E.

    2013-01-01

    To fully incorporate nature of science knowledge into classrooms, teachers must be both proficient in their own nature of science knowledge, but also skillful in translating their knowledge into a learning environment which assesses student knowledge. Twenty-eight inservice teachers enrolled in a graduate course which in part required a clinical…

  6. Automatic acquisition of domain and procedural knowledge

    NASA Technical Reports Server (NTRS)

    Ferber, H. J.; Ali, M.

    1988-01-01

    The design concept and performance of AKAS, an automated knowledge-acquisition system for the development of expert systems, are discussed. AKAS was developed using the FLES knowledge base for the electrical system of the B-737 aircraft and employs a 'learn by being told' strategy. The system comprises four basic modules, a system administration module, a natural-language concept-comprehension module, a knowledge-classification/extraction module, and a knowledge-incorporation module; details of the module architectures are explored.

  7. Supporting High School Student Accomplishment of Biology Content Using Interactive Computer-Based Curricular Case Studies

    NASA Astrophysics Data System (ADS)

    Oliver, Joseph Steve; Hodges, Georgia W.; Moore, James N.; Cohen, Allan; Jang, Yoonsun; Brown, Scott A.; Kwon, Kyung A.; Jeong, Sophia; Raven, Sara P.; Jurkiewicz, Melissa; Robertson, Tom P.

    2017-11-01

    Research into the efficacy of modules featuring dynamic visualizations, case studies, and interactive learning environments is reported here. This quasi-experimental 2-year study examined the implementation of three interactive computer-based instructional modules within a curricular unit covering cellular biology concepts in an introductory high school biology course. The modules featured dynamic visualizations and focused on three processes that underlie much of cellular biology: diffusion, osmosis, and filtration. Pre-tests and post-tests were used to assess knowledge growth across the unit. A mixture Rasch model analysis of the post-test data revealed two groups of students. In both years of the study, a large proportion of the students were classified as low-achieving based on their pre-test scores. The use of the modules in the Cell Unit in year 2 was associated with a much larger proportion of the students having transitioned to the high-achieving group than in year 1. In year 2, the same teachers taught the same concepts as year 1 but incorporated the interactive computer-based modules into the cell biology unit of the curriculum. In year 2, 67% of students initially classified as low-achieving were classified as high-achieving at the end of the unit. Examination of responses to assessments embedded within the modules as well as post-test items linked transition to the high-achieving group with correct responses to items that both referenced the visualization and the contextualization of that visualization within the module. This study points to the importance of dynamic visualization within contextualized case studies as a means to support student knowledge acquisition in biology.

  8. Designing Interventions Informed by Scientific Knowledge About Effects of Early Adversity: A Translational Neuroscience Agenda for Next Generation Addictions Research

    PubMed Central

    Fisher, Philip A.; Berkman, Elliot T.

    2015-01-01

    In spite of extensive scientific knowledge about the neurobiological systems and neural pathways underlying addictions, only limited progress has been made to reduce the population-level incidence of addictions by using prevention and treatment programs. In this area of research the translation of basic neuroscience of causal mechanisms to effective interventions has not been fully realized. In this article we describe how an understanding of the effects of early adverse experiences on brain and biological development may provide new opportunities to achieve impact at scale with respect to reduction of addictions. We propose four categories of new knowledge that translational neuroscience investigations of addictions should incorporate to be successful. We then describe a translational neuroscience-informed smoking cessation intervention based on this model. PMID:26985399

  9. Extending the knowledge in histochemistry and cell biology.

    PubMed

    Heupel, Wolfgang-Moritz; Drenckhahn, Detlev

    2010-01-01

    Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.

  10. Developing biology teachers' pedagogical content knowledge through learning study: the case of teaching human evolution

    NASA Astrophysics Data System (ADS)

    Bravo, Paulina; Cofré, Hernán

    2016-11-01

    This work explores how pedagogical content knowledge (PCK) on evolution was modified by two biology teachers who participated in a professional development programme (PDP) that included a subsequent follow-up in the classroom. The PDP spanned a semester and included activities such as content updates, collaborative lesson planning, and the presentation of planned lessons. In the follow-up part, the lessons were videotaped and analysed, identifying strategies, activities, and conditions based on student learning about the theory of evolution. Data were collected in the first round with an interview before the training process, identifying these teachers' initial content representation (CoRe) for evolution. Then, a group interview was conducted after the lessons, and, finally, an interview of stimulated recall with each teacher was conducted regarding the subject taught to allow teachers to reflect on their practice (final CoRe). This information was analysed by the teachers and the researchers, reflecting on the components of the PCK, possible changes, and the rationale behind their actions. The results show that teachers changed their beliefs and knowledge about the best methods and strategies to teach evolution, and about students' learning obstacles and misconceptions on evolution. They realised how a review of their own practices promotes this transformation.

  11. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    NASA Astrophysics Data System (ADS)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  12. The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: a systems biology approach.

    PubMed

    Calçada, Dulce; Vianello, Dario; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; de Graaf, Albert; Kremer, Bas; van Ommen, Ben; Feskens, Edith; Santoro, Aurelia; Franceschi, Claudio; Bouwman, Jildau

    2014-01-01

    Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the mediators and pathways involved in these phenomena, mainly through the application of high-throughput screening methods, valued for their molecular comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes whose behavior must be understood at multiple levels of biological organization (molecular, cellular, organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with incorporation of mechanistic knowledge on interactions between inflammatory and metabolic mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the age-associated functional decline of the corresponding systems. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Does Increasing Biology Teacher Knowledge of Evolution and the Nature of Science Lead to Greater Preference for the Teaching of Evolution in Schools?

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Schonfeld, Irvin Sam

    2007-01-01

    This study investigated whether or not an increase in secondary science teacher knowledge about evolution and the nature of science gained from completing a graduate-level evolution course was associated with greater preference for the teaching of evolution in schools. Forty-four precertified secondary biology teachers participated in a 14-week…

  14. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education

    PubMed Central

    Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge. Previous results showed the BCST could differentiate between different populations, namely non–biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST to three additional populations, using a cross-sectional design: entering biology majors (EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, ABM did not initially sort like experts any more frequently than EBM. However, once the deep-feature framework was revealed, ABM were able to sort like experts more readily than did EBM. These results are consistent with the conclusion that biology education enables advanced biology students to use an expert-like conceptual framework. However, these results are also consistent with a process of “selection,” wherein students who persist in the major may have already had an expert-like conceptual framework to begin with. These results demonstrate the utility of the BCST in measuring differences between groups of students over the course of their undergraduate education. PMID:28213584

  15. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    PubMed

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2017-05-01

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  16. Central Component Descriptors for Levels of Technological Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Niess, Margaret L.

    2013-01-01

    Technological pedagogical content knowledge (TPACK) proposes a theoretical framework that incorporates four central components: an overarching conception of what it means to teach with technology, knowledge of students' thinking and understandings of specific topics with technologies, knowledge of curricular materials that incorporate…

  17. [History of the Strasbourg Society of Biology].

    PubMed

    Antony, Pierre; Romier, Christophe; Mantz, Jean-Marie

    2017-01-01

    The Society of Biology of Strasbourg (SBS) is a learned society that was created in 1919 based on the model of the Society of Biology of which it is a subsidiary. Like its Parisian colleague, SBS aims at diffusing and promoting scientific knowledge in biology. To achieve this goal, SBS initiated since its creation a dialogue interface between researchers in biology and physicians, and more recently with other scientific disciplines, industry and the civil society. At the dawn of its first century, the Society of Biology of Strasbourg must continue to reinvent itself to pursue its development and to fulfil its mission of sharing scientific knowledge. This work continues in strong collaboration with our partners that share with SBS the willingness to foster excellence in biological research in Strasbourg, its region and beyond. © Société de Biologie, 2017.

  18. Conceptualising GP teachers' knowledge: a pedagogical content knowledge perspective.

    PubMed

    Cantillon, Peter; de Grave, Willem

    2012-05-01

    Most teacher development initiatives focus on enhancing knowledge of teaching (pedagogy), whilst largely ignoring other important features of teacher knowledge such as subject matter knowledge and awareness of the learning context. Furthermore, teachers' ability to learn from faculty development interventions is limited by their existing (often implicit) pedagogical knowledge and beliefs. Pedagogical content knowledge (PCK) represents a model of teacher knowledge incorporating what they know about subject matter, pedagogy and context. PCK can be used to explore teachers' prior knowledge and to structure faculty development programmes so that they take account of a broader range of teachers' knowledge. We set out to examine the application of a PCK model in a general practice education setting. This study is part of a larger study that employed a mixed method approach (concept mapping, phenomenological interviews and video-stimulated recall) to explore features of GP teachers' subject matter knowledge, pedagogical knowledge and knowledge of the learning environment in the context of a general practice tutorial. This paper presents data on GP teachers' pedagogical and context knowledge. There was considerable overlap between different GP teachers' knowledge and beliefs about learners and the clinical learning environment (i.e. knowledge of context). The teachers' beliefs about learners were largely based on assumptions derived from their own student experiences. There were stark differences, however, between teachers in terms of pedagogical knowledge, particularly in terms of their teaching orientations (i.e. transmission or facilitation orientation) and this was manifest in their teaching behaviours. PCK represents a useful model for conceptualising clinical teacher prior knowledge in three domains, namely subject matter, learning context and pedagogy. It can and should be used as a simple guiding framework by faculty developers to inform the design and delivery of

  19. Using student motivation to design groups in a non-majors biology course for team-based collaborative learning: Impacts on knowledge, views, attitudes, and perceptions

    NASA Astrophysics Data System (ADS)

    Walters, Kristi L.

    The importance of student motivation and its connection to other learning variables (i.e., attitudes, knowledge, persistence, attendance) is well established. Collaborative work at the undergraduate level has been recognized as a valuable tool in large courses. However, motivation and collaborative group work have rarely been combined. This project utilized student motivation to learn biology to place non-major biology undergraduates in collaborative learning groups at East Carolina University, a mid-sized southeastern American university, to determine the effects of this construct on student learning. A pre-test measuring motivation to learn biology, attitudes toward biology, perceptions of biology and biologists, views of science, and content knowledge was administered. A similar post-test followed as part of the final exam. Two sections of the same introductory biology course (n = 312) were used and students were divided into homogeneous and heterogeneous groups (based on their motivation score). The heterogeneous groups (n = 32) consisted of a mixture of different motivation levels, while the homogeneous groups (n = 32) were organized into teams with similar motivation scores using tiers of high-, middle-, and low-level participants. Data analysis determined mixed perceptions of biology and biologists. These include the perceptions biology was less intriguing, less relevant, less practical, less ethical, and less understandable. Biologists were perceived as being neat and slightly intelligent, but not very altruistic, humane, ethical, logical, honest, or moral. Content knowledge scores more than doubled from pre- to post-test. Half of the items measuring views of science were not statistically significantly different from pre- to post-test. Many of the factors for attitudes toward biology became more agreeable from pre- to post-test. Correlations between motivation scores, participation levels, attendance rates, and final course grades were examined at both the

  20. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-01-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139

  1. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    NASA Astrophysics Data System (ADS)

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-06-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

  2. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-06-17

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

  3. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  4. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    PubMed

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  5. Biological Nature of Knowledge in the Learning Organisation

    ERIC Educational Resources Information Center

    Hall, William P.

    2005-01-01

    Purpose: To develop a biological approach to the analysis of learning organisations based on complexity theory, autopoiesis, and evolutionary epistemology. Design/methodology/approach: This paper synthesises ideas from disciplines ranging from physics, epistemology and philosophy of science to military affairs, to sketch a scientific framework in…

  6. Tacit knowledge.

    PubMed

    Walker, Alexander Muir

    2017-04-01

    Information that is not made explicit is nonetheless embedded in most of our standard procedures. In its simplest form, embedded information may take the form of prior knowledge held by the researcher and presumed to be agreed to by consumers of the research product. More interesting are the settings in which the prior information is held unconsciously by both researcher and reader, or when the very form of an "effective procedure" incorporates its creator's (unspoken) understanding of a problem. While it may not be productive to exhaustively detail the embedded or tacit knowledge that manifests itself in creative scientific work, at least at the beginning, we may want to routinize methods for extracting and documenting the ways of thinking that make "experts" expert. We should not back away from both expecting and respecting the tacit knowledge the pervades our work and the work of others.

  7. Biology Today: Parasites and Human Ecology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1984-01-01

    Offers various reasons why the study of parasites and the diseases they cause should be incorporated into classroom biology discussions. Examples of several parasitic diseases and their ecological significance are provided. (JN)

  8. Incorporating Learning Outcomes into an Introductory Geotechnical Engineering Course

    ERIC Educational Resources Information Center

    Fiegel, Gregg L.

    2013-01-01

    The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding…

  9. Incorporating Allee effects into the potential biological removal level

    USGS Publications Warehouse

    Hadier, Humza; Oldfield, Sarah; Tu, Tiffany; Moreno, Rosa; Diffendorfer, Jay E.; Eager, Eric A.; Erickson, Richard A.

    2017-01-01

    Potential biological removal (PBR) is an approach used to calculate sustainable harvest and “take” limits for populations. PBR was originally derived assuming logistic growth while ignoring the effects of small population size (i.e., an Allee effect). We derived a version of PBR that includes an Allee effect (i.e., small population size or densities limiting population growth rates). We found that PBR becomes less conservative when it fails to consider an Allee effect. Specifically, sustainable harvest and take levels based upon PBR with an Allee effect were between approximately 51% and 66% of levels based upon PBR without an Allee effect. Managers and biologists using PBR may need to consider the limitations if an Allee effect may be present in the species being modeled.

  10. Data warehousing in molecular biology.

    PubMed

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  11. Three forms of assessment of prior knowledge, and improved performance following an enrichment programme, of English second language biology students within the context of a marine theme

    NASA Astrophysics Data System (ADS)

    Feltham, Nicola F.; Downs, Colleen T.

    2002-02-01

    The Science Foundation Programme (SFP) was launched in 1991 at the University of Natal, Pietermaritzburg, South Africa in an attempt to equip a selected number of matriculants from historically disadvantaged schools with the skills, resources and self-confidence needed to embark on their tertiary studies. Previous research within the SFP biology component suggests that a major contributor to poor achievement and low retention rates among English second language (ESL) students in the Life Sciences is the inadequate background knowledge in natural history. In this study, SFP student background knowledge was assessed along a continuum of language dependency using a set of three probes. Improved student performance in each of the respective assessments examined the extent to which a sound natural history background facilitated meaningful learning relative to ESL proficiency. Student profiles and attitudes to biology were also examined. Results indicated that students did not perceive language to be a problem in biology. However, analysis of the student performance in the assessment probes indicated that, although the marine course provided the students with the background knowledge that they were initially lacking, they continued to perform better in the drawing and MCQ tools in the post-tests, suggesting that it is their inability to express themselves in the written form that hampers their development. These results have implications for curriculum development within the constructivist framework of the SFP.

  12. Bioterrorism and biological threats dominate federal health security research; other priorities get scant attention.

    PubMed

    Shelton, Shoshana R; Connor, Kathryn; Uscher-Pines, Lori; Pillemer, Francesca Matthews; Mullikin, James M; Kellermann, Arthur L

    2012-12-01

    The federal government plays a critical role in achieving national health security by providing strategic guidance and funding research to help prevent, respond to, mitigate, and recover from disasters, epidemics, and acts of terrorism. In this article we describe the first-ever inventory of nonclassified national health security-related research funded by civilian agencies of the federal government. Our analysis revealed that the US government's portfolio of health security research is currently weighted toward bioterrorism and emerging biological threats, laboratory methods, and development of biological countermeasures. Eight of ten other priorities identified in the Department of Health and Human Services' National Health Security Strategy-such as developing and maintaining a national health security workforce or incorporating recovery into planning and response-receive scant attention. We offer recommendations to better align federal spending with health security research priorities, including the creation of an interagency working group charged with minimizing research redundancy and filling persistent gaps in knowledge.

  13. Space Biology: Patterns of Life

    ERIC Educational Resources Information Center

    Salisbury, Frank B.

    1971-01-01

    Present knowledge about Mars is compared with past beliefs about the planet. Biological experiments that indicate life may exist on Mars are interpreted. Life patterns or biological features that might be postulated for extraterrestrial life are presented at the molecular, cellular, organism, and ecosystem levels. (DS)

  14. Knowledge Acquisition: A Review of Tools and Ideas.

    DTIC Science & Technology

    1987-08-01

    tools. However, none could be applied directly to solving the problem of acquiring knowledge for the ASPA. RECOMMENDATIONS Develop a tool based on...the social sciences. BACKGROUND Because of the newness and complexity of the knowledge acquisition problem, the background of the knowledge...4. Minimal (does not incorporate any unnecessary complexities ) 5. Expected (experts are not in disagreement over any important aspect) (Grover 1983

  15. The Physics of Marine Biology.

    ERIC Educational Resources Information Center

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  16. Biology. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 18 biology investigations. These investigations focus on concepts related to: organisms; classification; populations;…

  17. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary

  18. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    PubMed

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  19. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Biological cycling of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Hitchcock, D. R.; Wechsler, A. E.

    1972-01-01

    A detailed critical review was conducted of present knowledge of the influence of biological processes on the cycling of selected atmospheric gas constituents--methane, carbon monoxide, and gaseous compounds of nitrogen (nitrous oxide, ammonia, nitric oxide, and nitrogen dioxide) and sulfur (hydrogen sulfide and sulfur dioxide). The identification was included of biological and other sources of each gas, a survey of abundance measurements reported in the literature, and a review of the atmospheric fate of each contituent. Information is provided on which to base conclusions regarding the importance of biological processes on the atmospheric distribution and surface-atmosphere exchange of each constituent, and a basis for estimating the adequacy of present knowledge of these factors. A preliminary analysis was conducted of the feasibility of monitoring the biologically influenced temporal and spatial variations in abundance of these gases in the atmosphere from satellites.

  1. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  2. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.

    PubMed

    Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala

    2018-03-01

    The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells

    PubMed Central

    Serfling, Robert; Lorenz, Christian; Etzel, Maja; Schicht, Gerda; Böttke, Thore; Mörl, Mario

    2018-01-01

    Abstract The pyrrolysyl-tRNA synthetase/tRNAPyl pair is the most versatile and widespread system for the incorporation of non-canonical amino acids (ncAAs) into proteins in mammalian cells. However, low yields of ncAA incorporation severely limit its applicability to relevant biological targets. Here, we generate two tRNAPyl variants that significantly boost the performance of the pyrrolysine system. Compared to the original tRNAPyl, the engineered tRNAs feature a canonical hinge between D- and T-loop, show higher intracellular concentrations and bear partially distinct post-transcriptional modifications. Using the new tRNAs, we demonstrate efficient ncAA incorporation into a G-protein coupled receptor (GPCR) and simultaneous ncAA incorporation at two GPCR sites. Moreover, by incorporating last-generation ncAAs for bioorthogonal chemistry, we achieve GPCR labeling with small organic fluorophores on the live cell and visualize stimulus-induced GPCR internalization. Such a robust system for incorporation of single or multiple ncAAs will facilitate the application of a wide pool of chemical tools for structural and functional studies of challenging biological targets in live mammalian cells. PMID:29177436

  4. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  5. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  6. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs.

    PubMed

    Roth, Wera; Hecker, David; Fava, Eugenio

    2016-01-01

    MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.

  7. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  8. A knowledge base of the chemical compounds of intermediary metabolism.

    PubMed

    Karp, P D

    1992-08-01

    This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.

  9. Context Dependence of Students' Views about the Role of Equations in Understanding Biology

    ERIC Educational Resources Information Center

    Watkins, Jessica; Elby, Andrew

    2013-01-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become…

  10. Biology Majors' Performance in a Biomathematics Course

    ERIC Educational Resources Information Center

    Mahir, Nevin; Çetin, Nezahat; Üreyen, Mehmet

    2007-01-01

    The recent considerable developments in the field of biology have necessitated the knowledge of mathematics and its applications in biology. Therefore; most of the universities, now, believe that it is essential to include mathematics courses in the curricula of biology departments. Taking this fact into consideration, this study aims at exploring…

  11. Using the Principles of BIO2010 to Develop an Introductory, Interdisciplinary Course for Biology Students

    PubMed Central

    Adams, Peter; Goos, Merrilyn

    2010-01-01

    Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate program. Inspired by the National Research Council's BIO2010 report, a new interdisciplinary first-year course (SCIE1000) was created, incorporating mathematics and computer programming in the context of modern science. In this study, the perceptions of biological science students enrolled in SCIE1000 in 2008 and 2009 are measured. Analysis indicates that, as a result of taking SCIE1000, biological science students gained a positive appreciation of the importance of mathematics in their discipline. However, the data revealed that SCIE1000 did not contribute positively to gains in appreciation for computing and only slightly influenced students' motivation to enroll in upper-level quantitative-based courses. Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, real-world contexts to enhance student perceptions toward the relevance of mathematics. The results support the recommendation from BIO2010 that mathematics should be introduced to biology students in first-year courses using real-world examples, while challenging the benefits of introducing programming in first-year courses. PMID:20810961

  12. Characteristics of Knowledge Interconnectedness in Teaching

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2006-01-01

    The subject of the paper presents establishing basic characteristics, forms and levels of knowledge interconnectedness in teaching, especially in mathematics and biology teaching. The analysis was realized by considering basic theoretical views in this field, as well as by establishing features and levels of knowledge interconnectedness in the…

  13. Ultra-Structure database design methodology for managing systems biology data and analyses

    PubMed Central

    Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C

    2009-01-01

    substantial benefits for biological information systems, the largest being the integration of diverse information sources into a common framework. This facilitates systems biology research by integrating data from disparate high-throughput techniques. It also enables us to readily incorporate new data types, sources, and domain knowledge with no change to the database structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard problem of data management and integration in the systems biology era. PMID:19691849

  14. A biological compression model and its applications.

    PubMed

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  15. Essentialist Reasoning and Knowledge Effects on Biological Reasoning in Young Children

    ERIC Educational Resources Information Center

    Herrmann, Patricia A.; French, Jason A.; DeHart, Ganie B.; Rosengren, Karl S.

    2013-01-01

    Biological kinds undergo a variety of changes during their life span, and these changes vary in degree by organism. Understanding that an organism, such as a caterpillar, maintains category identity over its life span despite dramatic changes is a key concept in biological reasoning. At present, we know little about the developmental trajectory of…

  16. Socioemotional, Personality, and Biological Development: Illustrations from a Multilevel Developmental Psychopathology Perspective on Child Maltreatment.

    PubMed

    Cicchetti, Dante

    2016-01-01

    Developmental theories can be affirmed, challenged, and augmented by incorporating knowledge about atypical ontogenesis. Investigations of the biological, socioemotional, and personality development in individuals with high-risk conditions and psychopathological disorders can provide an entrée into the study of system organization, disorganization, and reorganization. This article examines child maltreatment to illustrate the benefit that can be derived from the study of individuals subjected to nonnormative caregiving experiences. Relative to an average expectable environment, which consists of a species-specific range of environmental conditions that support adaptive development among genetically normal individuals, maltreating families fail to provide many of the experiences that are required for normal development. Principles gleaned from the field of developmental psychopathology provide a framework for understanding multilevel functioning in normality and pathology. Knowledge of normative developmental processes provides the impetus to design and implement randomized control trial (RCT) interventions that can promote resilient functioning in maltreated children.

  17. "The evil virus cell": Students‘ knowledge and beliefs about viruses

    PubMed Central

    Enzinger, Sonja M.; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p < 0.01, η2p = 0.17). Specific post-hoc tests by means of the Tukey test showed significant differences between all groups (p < .01) with the exception of 1st year non-biology students and grade 10 high school students. Students enrolled in university-level biology outperformed all other groups, even though they had not yet encountered this topic at their courses; part of this phenomenon might be due to their affinity for learning about biological topics. However, even many first-year biology students had a high number of severe misconceptions, e.g., defining a virus as a pro- or eukaryotic cell, or falsely naming malaria as a viral disease. Since there was no significant difference in virus-related knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school

  18. "The evil virus cell": Students' knowledge and beliefs about viruses.

    PubMed

    Simon, Uwe K; Enzinger, Sonja M; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p < 0.01, η2p = 0.17). Specific post-hoc tests by means of the Tukey test showed significant differences between all groups (p < .01) with the exception of 1st year non-biology students and grade 10 high school students. Students enrolled in university-level biology outperformed all other groups, even though they had not yet encountered this topic at their courses; part of this phenomenon might be due to their affinity for learning about biological topics. However, even many first-year biology students had a high number of severe misconceptions, e.g., defining a virus as a pro- or eukaryotic cell, or falsely naming malaria as a viral disease. Since there was no significant difference in virus-related knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school

  19. The inorganic side of chemical biology.

    PubMed

    Lippard, Stephen J

    2006-10-01

    Bioinorganic chemistry remains a vibrant discipline at the interface of chemistry and the biological sciences. Metal ions function in numerous metalloenzymes, are incorporated into pharmaceuticals and imaging agents, and inspire the synthesis of catalysts used to achieve many chemical transformations.

  20. Robotics-inspired biology.

    PubMed

    Gravish, Nick; Lauder, George V

    2018-03-29

    For centuries, designers and engineers have looked to biology for inspiration. Biologically inspired robots are just one example of the application of knowledge of the natural world to engineering problems. However, recent work by biologists and interdisciplinary teams have flipped this approach, using robots and physical models to set the course for experiments on biological systems and to generate new hypotheses for biological research. We call this approach robotics-inspired biology; it involves performing experiments on robotic systems aimed at the discovery of new biological phenomena or generation of new hypotheses about how organisms function that can then be tested on living organisms. This new and exciting direction has emerged from the extensive use of physical models by biologists and is already making significant advances in the areas of biomechanics, locomotion, neuromechanics and sensorimotor control. Here, we provide an introduction and overview of robotics-inspired biology, describe two case studies and suggest several directions for the future of this exciting new research area. © 2018. Published by The Company of Biologists Ltd.

  1. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education.

    PubMed

    Bissonnette, Sarah A; Combs, Elijah D; Nagami, Paul H; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I; Tanner, Kimberly D

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge. Previous results showed the BCST could differentiate between different populations, namely non-biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST to three additional populations, using a cross-sectional design: entering biology majors (EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, ABM did not initially sort like experts any more frequently than EBM. However, once the deep-feature framework was revealed, ABM were able to sort like experts more readily than did EBM. These results are consistent with the conclusion that biology education enables advanced biology students to use an expert-like conceptual framework. However, these results are also consistent with a process of "selection," wherein students who persist in the major may have already had an expert-like conceptual framework to begin with. These results demonstrate the utility of the BCST in measuring differences between groups of students over the course of their undergraduate education. © 2017 S. A. Bissonnette et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    PubMed Central

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  3. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    PubMed

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  4. Controversy in Biology Classrooms—Citizen Science Approaches to Evolution and Applications to Climate Change Discussions

    PubMed Central

    Yoho, Rachel A.; Vanmali, Binaben H.

    2016-01-01

    The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education PMID:27047604

  5. Controversy in Biology Classrooms-Citizen Science Approaches to Evolution and Applications to Climate Change Discussions.

    PubMed

    Yoho, Rachel A; Vanmali, Binaben H

    2016-03-01

    The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to "hot topics" of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education.

  6. A multimedia Anatomy Browser incorporating a knowledge base and 3D images.

    PubMed Central

    Eno, K.; Sundsten, J. W.; Brinkley, J. F.

    1991-01-01

    We describe a multimedia program for teaching anatomy. The program, called the Anatomy Browser, displays cross-sectional and topographical images, with outlines around structures and regions of interest. The user may point to these structures and retrieve text descriptions, view symbolic relationships between structures, or view spatial relationships by accessing 3-D graphics animations from videodiscs produced specifically for this program. The software also helps students exercise what they have learned by asking them to identify structures by name and location. The program is implemented in a client-server architecture, with the user interface residing on a Macintosh, while images, data, and a growing symbolic knowledge base of anatomy are stored on a fileserver. This architecture allows us to develop practical tutorial modules that are in current use, while at the same time developing the knowledge base that will lead to more intelligent tutorial systems. PMID:1807699

  7. Criteria and Indicators as Negotiated Knowledge and the Challenge of Transfer

    ERIC Educational Resources Information Center

    Bormann, Inka

    2007-01-01

    This paper aims to understand the effects on which criteria and indicators for (education for) sustainable development [(E)SD] are based in terms of knowledge transfer. Therefore, (E)SD criteria and indicators in general are regarded as negotiated and established knowledge, incorporating expectations. As such, this knowledge can be spread…

  8. Environmental Awareness: Relating Current Issues to Biology.

    ERIC Educational Resources Information Center

    DeFina, Anthony

    1995-01-01

    Presents examples of incorporating environmental issues into lesson plans to raise the level of students' environmental awareness. Topics include: ecology, taxonomy, biochemistry, energy reactions, cell structure and function, genetics and development, and human biology. (JRH)

  9. Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks

    PubMed Central

    Bennett, Kristin P.

    2014-01-01

    We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238

  10. [Biologic therapy in idiopathic inflammatory myopathy].

    PubMed

    Selva-O'Callaghan, Albert; Ramos Casals, Manel; Grau Junyent, Josep M

    2014-09-15

    The aim of this article is to study the evidence-based knowledge related to the use of biological therapies in patients diagnosed with idiopathic inflammatory myopathy (dermatomyositis, polymyositis and inclusion body myositis). In this review the leading published studies related to the use of biological therapy in patients with myositis are analysed; mainly those with high methodological standards, that means randomized and controlled studies. Methodological drawbacks due to the rarity and heterogeneity of these complex diseases are also addressed. Up to now is not possible to ascertain the biologics as a recommended therapy in patients with myositis, at least based in the current evidence-based knowledge, although it can not be neglected as a therapeutic option in some clinical situations, taking into account the scarce of effective treatments in those patients, especially in refractory myositis. Future studies probably will help to better define the role of biological therapies in patients with idiopathic inflammatory myopathy. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  11. Content-Related Knowledge of Biology Teachers from Secondary Schools: Structure and Learning Opportunities

    ERIC Educational Resources Information Center

    Großschedl, Jörg; Mahler, Daniela; Kleickmann, Thilo; Harms, Ute

    2014-01-01

    Teachers' content-related knowledge is a key factor influencing the learning progress of students. Different models of content-related knowledge have been proposed by educational researchers; most of them take into account three categories: content knowledge, pedagogical content knowledge, and curricular knowledge. As there is no consensus about…

  12. Intuitive biological thought: Developmental changes and effects of biology education in late adolescence.

    PubMed

    Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D

    2017-02-01

    A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Incorporating biologically based models into assessments of risk from chemical contaminants

    NASA Technical Reports Server (NTRS)

    Bull, R. J.; Conolly, R. B.; De Marini, D. M.; MacPhail, R. C.; Ohanian, E. V.; Swenberg, J. A.

    1993-01-01

    The general approach to assessment of risk from chemical contaminants in drinking water involves three steps: hazard identification, exposure assessment, and dose-response assessment. Traditionally, the risks to humans associated with different levels of a chemical have been derived from the toxic responses observed in animals. It is becoming increasingly clear, however, that further information is needed if risks to humans are to be assessed accurately. Biologically based models help clarify the dose-response relationship and reduce uncertainty.

  14. A Problem-Sorting Task Detects Changes in Undergraduate Biological Expertise over a Single Semester

    PubMed Central

    Hoskinson, Anne-Marie; Maher, Jessica Middlemis; Bekkering, Cody; Ebert-May, Diane

    2017-01-01

    Calls for undergraduate biology reform share similar goals: to produce people who can organize, use, connect, and communicate about biological knowledge. Achieving these goals requires students to gain disciplinary expertise. Experts organize, access, and apply disciplinary knowledge differently than novices, and expertise is measurable. By asking introductory biology students to sort biological problems, we investigated whether they changed how they organized and linked biological ideas over one semester of introductory biology. We administered the Biology Card Sorting Task to 751 students enrolled in their first or second introductory biology course focusing on either cellular–molecular or organismal–population topics, under structured or unstructured sorting conditions. Students used a combination of superficial, deep, and yet-uncharacterized ways of organizing and connecting biological knowledge. In some cases, this translated to more expert-like ways of organizing knowledge over a single semester, best predicted by whether students were enrolled in their first or second semester of biology and by the sorting condition completed. In addition to illuminating differences between novices and experts, our results show that card sorting is a robust way of detecting changes in novices’ biological expertise—even in heterogeneous populations of novice biology students over the time span of a single semester. PMID:28408406

  15. MS-READ: Quantitative measurement of amino acid incorporation.

    PubMed

    Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon; Ling, Jiqiang; Ibba, Michael; Rinehart, Jesse

    2017-11-01

    Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. On the debate about teleology in biology: the notion of "teleological obstacle".

    PubMed

    Ribeiro, Manuel Gustavo Leitão; Larentis, Ariane Leites; Caldas, Lúcio Ayres; Garcia, Tomás Coelho; Terra, Letícia Labati; Herbst, Marcelo Hawrylak; Almeida, Rodrigo Volcan

    2015-12-01

    Among the epistemological obstacles described by Gaston Bachelard, we contend that unitary and pragmatic knowledge is correlated to the teleological categories of Ernst Mayr and is the basis for prevailing debate on the notion of "function" in biology. Given the proximity of the aspects highlighted by these authors, we propose to associate the role of teleological thinking in biology and the notion of unitary and pragmatic knowledge as an obstacle to scientific knowledge. Thus, teleological thinking persists acting as an epistemological obstacle in biology, according to Bachelardian terminology. Our investigation led us to formulate the "teleological obstacle," which we consider important for the future of biology and possibly other sciences.

  17. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes.

    PubMed

    Shao, Jinlong; Yu, Na; Kolwijck, Eva; Wang, Bing; Tan, Ke Wei; Jansen, John A; Walboomers, X Frank; Yang, Fang

    2017-11-01

    To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.

  18. A unique large-scale undergraduate research experience in molecular systems biology for non-mathematics majors.

    PubMed

    Kappler, Ulrike; Rowland, Susan L; Pedwell, Rhianna K

    2017-05-01

    Systems biology is frequently taught with an emphasis on mathematical modeling approaches. This focus effectively excludes most biology, biochemistry, and molecular biology students, who are not mathematics majors. The mathematical focus can also present a misleading picture of systems biology, which is a multi-disciplinary pursuit requiring collaboration between biochemists, bioinformaticians, and mathematicians. This article describes an authentic large-scale undergraduate research experience (ALURE) in systems biology that incorporates proteomics, bacterial genomics, and bioinformatics in the one exercise. This project is designed to engage students who have a basic grounding in protein chemistry and metabolism and no mathematical modeling skills. The pedagogy around the research experience is designed to help students attack complex datasets and use their emergent metabolic knowledge to make meaning from large amounts of raw data. On completing the ALURE, participants reported a significant increase in their confidence around analyzing large datasets, while the majority of the cohort reported good or great gains in a variety of skills including "analysing data for patterns" and "conducting database or internet searches." An environmental scan shows that this ALURE is the only undergraduate-level system-biology research project offered on a large-scale in Australia; this speaks to the perceived difficulty of implementing such an opportunity for students. We argue however, that based on the student feedback, allowing undergraduate students to complete a systems-biology project is both feasible and desirable, even if the students are not maths and computing majors. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):235-248, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Network analysis reveals stage-specific changes in zebrafish embryo development using time course whole transcriptome profiling and prior biological knowledge.

    PubMed

    Zhang, Yuji

    2015-01-01

    Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among

  20. The SwissLipids knowledgebase for lipid biology

    PubMed Central

    Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471

  1. Agroterrorism, Biological Crimes, and Biological Warfare Targeting Animal Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Terry M.; Logan-Henfrey, Linda; Weller, Richard E.

    2000-04-12

    There is a rising level of concern that agriculture might be targeted for economic sabotage by terrorists. Knowledge gathered about the Soviet Union biological weapons program and Iraq following the Gulf War, confirmed that animals and agricultural crops were targets of bioweapon development. These revelations are particularly disturbing in light of the fact that both countries are States Parties to the Biological and Toxin Weapons Convention that entered into force in 1975. The potential for misusing biotechnology to create more virulent pathogens and the lack of international means to detect unethical uses of new technologies to create destructive bioweapons ismore » of increasing concern. Disease outbreaks, whether naturally occurring or intentionally, involving agricultural pathogens that destroy livestock and crops would have a profound impact on a country's infrastructure, economy and export markets. This chapter deals with the history of agroterrorism, biological crimes and biological warfare directed toward animal agriculture, specifically, horses, cattle, swine, sheep, goats, and poultry.« less

  2. Biological Control of Southern Pine Beetle

    Treesearch

    Fred M. Stephen; C. Wayne Berisford

    2011-01-01

    Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...

  3. Imaging and the new biology: What's wrong with this picture?

    NASA Astrophysics Data System (ADS)

    Vannier, Michael W.

    2004-05-01

    The Human Genome has been defined, giving us one part of the equation that stems from the central dogma of molecular biology. Despite this awesome scientific achievement, the correspondence between genomics and imaging is weak, since we cannot predict an organism's phenotype from even perfect knowledge of its genetic complement. Biological knowledge comes in several forms, and the genome is perhaps the best known and most completely understood type. Imaging creates another form of biological information, providing the ability to study morphology, growth and development, metabolic processes, and diseases in vitro and in vivo at many levels of scale. The principal challenge in biomedical imaging for the future lies in the need to reconcile the data provided by one or multiple modalities with other forms of biological knowledge, most importantly the genome, proteome, physiome, and other "-ome's." To date, the imaging science community has not set a high priority on the unification of their results with genomics, proteomics, and physiological functions in most published work. Images are relatively isolated from other forms of biological data, impairing our ability to conceive and address many fundamental questions in research and clinical practice. This presentation will explain the challenge of biological knowledge integration in basic research and clinical applications from the standpoint of imaging and image processing. The impediments to progress, isolation of the imaging community, and mainstream of new and future biological science will be identified, so the critical and immediate need for change can be highlighted.

  4. The Use of a Knowledge Survey as an Indicator of Student Learning in an Introductory Biology Course

    PubMed Central

    2005-01-01

    A knowledge survey (KS) is a series of content-based questions sequenced in order of presentation during a course. Students do not answer the questions; rather, they rank their confidence in their ability to answer each question. A 304-question KS was designed and implemented for a multisection, multi-instructor introductory biology course to determine whether this tool could be used to assess student learning. The KS was administered during the first 2 wk and the last 2 wk of the semester online via WebCT. Results were scored using one point for each “not confident” response (level 1), two points for each “possibly confident” response (level 2), and three points for each “confident” response (level 3). We found that scores increased significantly between the pre- and post-KS, indicating that student confidence in their knowledge of the course material increased over the semester. However, the correlation between student confidence and final grades was negligible or low, and chi-square tests show that KS scores and matched exam questions were not significantly related. We conclude that under the conditions implemented in our study, the KS does not reliably measure student learning as measured by final grades or exam questions. PMID:16341258

  5. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    PubMed Central

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math–biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  6. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    PubMed

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  7. Cancer biology and implications for practice.

    PubMed

    Rieger, Paula Trahan

    2006-08-01

    The media seem to announce a new scientific discovery related to cancer daily. Oncology nurses are challenged to keep up with the explosion of new knowledge and to understand how it ultimately relates to the care of patients with cancer. A framework for classifying new knowledge can be useful as nurses seek to understand the biology of cancer and its related implications for practice. To understand the molecular roots of cancer, healthcare practitioners specializing in cancer care require insight into genes, their messages, and the proteins produced from those messages, as well as the new tools of molecular biology.

  8. Targeted Therapy Database (TTD): A Model to Match Patient's Molecular Profile with Current Knowledge on Cancer Biology

    PubMed Central

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M.; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-01-01

    Background The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. Objective To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. Methods To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. Results and Conclusions We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit

  9. Targeted Therapy Database (TTD): a model to match patient's molecular profile with current knowledge on cancer biology.

    PubMed

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-08-10

    The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit the available knowledge on cancer biology with the

  10. Incorporating medication indications into the prescribing process.

    PubMed

    Kron, Kevin; Myers, Sara; Volk, Lynn; Nathan, Aaron; Neri, Pamela; Salazar, Alejandra; Amato, Mary G; Wright, Adam; Karmiy, Sam; McCord, Sarah; Seoane-Vazquez, Enrique; Eguale, Tewodros; Rodriguez-Monguio, Rosa; Bates, David W; Schiff, Gordon

    2018-04-19

    The incorporation of medication indications into the prescribing process to improve patient safety is discussed. Currently, most prescriptions lack a key piece of information needed for safe medication use: the patient-specific drug indication. Integrating indications could pave the way for safer prescribing in multiple ways, including avoiding look-alike/sound-alike errors, facilitating selection of drugs of choice, aiding in communication among the healthcare team, bolstering patient understanding and adherence, and organizing medication lists to facilitate medication reconciliation. Although strongly supported by pharmacists, multiple prior attempts to encourage prescribers to include the indication on prescriptions have not been successful. We convened 6 expert panels to consult high-level stakeholders on system design considerations and requirements necessary for building and implementing an indications-based computerized prescriber order-entry (CPOE) system. We summarize our findings from the 6 expert stakeholder panels, including rationale, literature findings, potential benefits, and challenges of incorporating indications into the prescribing process. Based on this stakeholder input, design requirements for a new CPOE interface and workflow have been identified. The emergence of universal electronic prescribing and content knowledge vendors has laid the groundwork for incorporating indications into the CPOE prescribing process. As medication prescribing moves in the direction of inclusion of the indication, it is imperative to design CPOE systems to efficiently and effectively incorporate indications into prescriber workflows and optimize ways this can best be accomplished. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  12. Biological satellite scientific devices

    NASA Astrophysics Data System (ADS)

    Perepech, B. L.; Rumiantsev, V. P.; Galkin, V. M.; Shakhvorostov, S. V.; Rvachev, S. S.

    1991-02-01

    The paper describes the NA SBS 9 systems developed for the ninth Cosmos-2044 biological test mission. The NA SBS 9 life support systems designed for monkeys and rats follow standard design of BIOS-Vivarium and BIOS-Primate units. The main features of NA SBS 9 include the use of a recently developed HF physiological data recorder Skat-3; the incorporation into BIOS-Primate of two units intended for biorhythmic studies (the BBI-Zh system for studying beetles and the VITALOG developed by NASA for studies on monkeys); and a new version of BIOS-Primate system incorporating a capacitance-link and an inductance-link temperature transmitters and a brain tissue oxygen tension control channel.

  13. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    PubMed

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1988-09-01

    The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.

  15. Knowledge representation and management: transforming textual information into useful knowledge.

    PubMed

    Rassinoux, A-M

    2010-01-01

    To summarize current outstanding research in the field of knowledge representation and management. Synopsis of the articles selected for the IMIA Yearbook 2010. Four interesting papers, dealing with structured knowledge, have been selected for the section knowledge representation and management. Combining the newest techniques in computational linguistics and natural language processing with the latest methods in statistical data analysis, machine learning and text mining has proved to be efficient for turning unstructured textual information into meaningful knowledge. Three of the four selected papers for the section knowledge representation and management corroborate this approach and depict various experiments conducted to .extract meaningful knowledge from unstructured free texts such as extracting cancer disease characteristics from pathology reports, or extracting protein-protein interactions from biomedical papers, as well as extracting knowledge for the support of hypothesis generation in molecular biology from the Medline literature. Finally, the last paper addresses the level of formally representing and structuring information within clinical terminologies in order to render such information easily available and shareable among the health informatics community. Delivering common powerful tools able to automatically extract meaningful information from the huge amount of electronically unstructured free texts is an essential step towards promoting sharing and reusability across applications, domains, and institutions thus contributing to building capacities worldwide.

  16. On the Growth of Scientific Knowledge: Yeast Biology as a Case Study

    PubMed Central

    He, Xionglei; Zhang, Jianzhi

    2009-01-01

    The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration. PMID:19300476

  17. On the growth of scientific knowledge: yeast biology as a case study.

    PubMed

    He, Xionglei; Zhang, Jianzhi

    2009-03-01

    The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration.

  18. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    PubMed

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Valuing Local Knowledge: Indigenous People and Intellectual Property Rights.

    ERIC Educational Resources Information Center

    Brush, Stephen B., Ed.; Stabinsky, Doreen, Ed.

    Intellectual property enables individuals to gain financially from sharing unique and useful knowledge. Compensating indigenous people for sharing their knowledge and resources might both validate and be an equitable reward for indigenous knowledge of biological resources, and might promote the conservation of those resources. This book contains…

  20. Do Knowledge Arrangements Affect Student Reading Comprehension of Genetics?

    ERIC Educational Resources Information Center

    Wu, Jen-Yi; Tung, Yu-Neng; Hwang, Bi-Chi; Lin, Chen-Yung; Che-Di, Lee; Chang, Yung-Ta

    2014-01-01

    Various sequences for teaching genetics have been proposed. Three seventh-grade biology textbooks in Taiwan share similar key knowledge assemblages but have different knowledge arrangements. To investigate the influence of knowledge arrangements on student understanding of genetics, we compared students' reading comprehension of the three texts…

  1. Selection platforms for directed evolution in synthetic biology

    PubMed Central

    Tizei, Pedro A.G.; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B.

    2016-01-01

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules–gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function–be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. PMID:27528765

  2. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    ERIC Educational Resources Information Center

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the…

  3. Knowledge-Based Hierarchies: Using Organizations to Understand the Economy

    ERIC Educational Resources Information Center

    Garicano, Luis; Rossi-Hansberg, Esteban

    2015-01-01

    Incorporating the decision of how to organize the acquisition, use, and communication of knowledge into economic models is essential to understand a wide variety of economic phenomena. We survey the literature that has used knowledge-based hierarchies to study issues such as the evolution of wage inequality, the growth and productivity of firms,…

  4. Incorporating quality and safety education for nurses competencies in simulation scenario design.

    PubMed

    Jarzemsky, Paula; McCarthy, Jane; Ellis, Nadege

    2010-01-01

    When planning a simulation scenario, even if adopting prepackaged simulation scenarios, faculty should first conduct a task analysis to guide development of learning objectives and cue critical events. The authors describe a strategy for systematic planning of simulation-based training that incorporates knowledge, skills, and attitudes as defined by the Quality and Safety Education for Nurses (QSEN) initiative. The strategy cues faculty to incorporate activities that target QSEN competencies (patient-centered care, teamwork and collaboration, evidence-based practice, quality improvement, informatics, and safety) before, during, and after simulation scenarios.

  5. In silico biology of bone modelling and remodelling: adaptation.

    PubMed

    Gerhard, Friederike A; Webster, Duncan J; van Lenthe, G Harry; Müller, Ralph

    2009-05-28

    Modelling and remodelling are the processes by which bone adapts its shape and internal structure to external influences. However, the cellular mechanisms triggering osteoclastic resorption and osteoblastic formation are still unknown. In order to investigate current biological theories, in silico models can be applied. In the past, most of these models were based on the continuum assumption, but some questions related to bone adaptation can be addressed better by models incorporating the trabecular microstructure. In this paper, existing simulation models are reviewed and one of the microstructural models is extended to test the hypothesis that bone adaptation can be simulated without particular knowledge of the local strain distribution in the bone. Validation using an experimental murine loading model showed that this is possible. Furthermore, the experimental model revealed that bone formation cannot be attributed only to an increase in trabecular thickness but also to structural reorganization including the growth of new trabeculae. How these new trabeculae arise is still an unresolved issue and might be better addressed by incorporating other levels of hierarchy, especially the cellular level. The cellular level sheds light on the activity and interplay between the different cell types, leading to the effective change in the whole bone. For this reason, hierarchical multi-scale simulations might help in the future to better understand the biomathematical laws behind bone adaptation.

  6. Mining textural knowledge in biological images: Applications, methods and trends.

    PubMed

    Di Cataldo, Santa; Ficarra, Elisa

    2017-01-01

    Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.

  7. Utilizing Expert Knowledge in Estimating Future STS Costs

    NASA Technical Reports Server (NTRS)

    Fortner, David B.; Ruiz-Torres, Alex J.

    2004-01-01

    A method of estimating the costs of future space transportation systems (STSs) involves classical activity-based cost (ABC) modeling combined with systematic utilization of the knowledge and opinions of experts to extend the process-flow knowledge of existing systems to systems that involve new materials and/or new architectures. The expert knowledge is particularly helpful in filling gaps that arise in computational models of processes because of inconsistencies in historical cost data. Heretofore, the costs of planned STSs have been estimated following a "top-down" approach that tends to force the architectures of new systems to incorporate process flows like those of the space shuttles. In this ABC-based method, one makes assumptions about the processes, but otherwise follows a "bottoms up" approach that does not force the new system architecture to incorporate a space-shuttle-like process flow. Prototype software has been developed to implement this method. Through further development of software, it should be possible to extend the method beyond the space program to almost any setting in which there is a need to estimate the costs of a new system and to extend the applicable knowledge base in order to make the estimate.

  8. The influence of pedagogical content knowledge (PCK) for teaching macroevolution on student outcomes in a general education biology course

    NASA Astrophysics Data System (ADS)

    Walter, Emily Marie

    This study investigated the influence of pedagogical content knowledge (PCK) for teaching macroevolution on non-science majors' knowledge of macroevolution and evolution acceptance. The nature and sources of an experienced faculty member's PCK and instruction as enacted PCK (Park & Oliver, 2008) were examined to consider the influence of these components on students' knowledge of macroevolution and evolution acceptance. The study used a mixed methods approach to understand how PCK influences student outcomes, and is one of the first to examine the influence of PCK on student outcomes at the post-secondary level. In addition, the study is one of few to document a significant relationship between knowledge of evolution and evolution acceptance, including how instruction influenced these outcomes. The case selected for study was a general education biology class: 270 students and their instructor. To examine the nature and sources of the instructor's PCK for teaching macroevolution, the course was observed in its entirety, the instructor was interviewed before, during, and after the evolution unit, and artifacts were collected from the evolution unit. Interview and observational protocols for the instructor were developed based on the Magnussson, Kracjik, & Borko (1999) model of PCK. The instructor was found to have deep knowledge of learners, and this knowledge in turn informed the other components of her PCK. Her knowledge of learners was built through reflecting on student exam outcomes, referencing the pedagogical literature, interactions with students, and discussions with colleagues. These findings have implications for faculty professional development. The influence of the course was examined both quantitatively and qualitatively. Students were surveyed using the Measure of Understanding of Macroevolution (Nadelson & Southerland, 2010a) the Measure of Acceptance of the Theory of Evolution (Rutledge & Warden, 1999, 2007). From pre- to post-test, students became

  9. Knowledge Activation and Schema Construction.

    ERIC Educational Resources Information Center

    Alvarez, Marino C.

    This study examined how instruction that encourages critical thinking about what has been read can lead to incorporated knowledge that can be retrieved and applied to other related settings. Case-based learning (an instructional method long used with graduate business, law, and medical students) is one method that can be used to foster critical…

  10. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  11. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  12. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery

    PubMed Central

    Bernard, Guillaume; Pathmanathan, Jananan S; Lannes, Romain; Lopez, Philippe; Bapteste, Eric

    2018-01-01

    Abstract Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns. PMID:29420719

  13. Engaging Non-Science Majors in Biology, One Disease at a Time

    ERIC Educational Resources Information Center

    Garcia, Rebecca; Rahman, Alvina; Klein, Janette Gomos

    2015-01-01

    We designed a human biology course that interests nonmajors while improving science literacy through student engagement, using a constructivist-inspired, topic-centered approach. This way of learning highlights common diseases that provide a basis to incorporate specific biological concepts. The topic-centered approach triggers interest and…

  14. Assessing Vermont's stream health and biological integrity using artificial neural networks and Bayesian methods

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Fytilis, N.; Stevens, L.

    2012-12-01

    incorporation of a Bayesian classifier allows one to explicitly incorporate existing knowledge and expert opinion into the data analysis. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of proactive adaptive watershed management applications.

  15. Biological fabrication of cellulose fibers with tailored properties

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R.; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-01

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.

  16. Knowledge representation for fuzzy inference aided medical image interpretation.

    PubMed

    Gal, Norbert; Stoicu-Tivadar, Vasile

    2012-01-01

    Knowledge defines how an automated system transforms data into information. This paper suggests a representation method of medical imaging knowledge using fuzzy inference systems coded in XML files. The imaging knowledge incorporates features of the investigated objects in linguistic form and inference rules that can transform the linguistic data into information about a possible diagnosis. A fuzzy inference system is used to model the vagueness of the linguistic medical imaging terms. XML files are used to facilitate easy manipulation and deployment of the knowledge into the imaging software. Preliminary results are presented.

  17. A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities.

    PubMed

    Soneson, Charlotte; Fontes, Magnus

    2012-01-01

    Analysis of multivariate data sets from, for example, microarray studies frequently results in lists of genes which are associated with some response of interest. The biological interpretation is often complicated by the statistical instability of the obtained gene lists, which may partly be due to the functional redundancy among genes, implying that multiple genes can play exchangeable roles in the cell. In this paper, we use the concept of exchangeability of random variables to model this functional redundancy and thereby account for the instability. We present a flexible framework to incorporate the exchangeability into the representation of lists. The proposed framework supports straightforward comparison between any 2 lists. It can also be used to generate new more stable gene rankings incorporating more information from the experimental data. Using 2 microarray data sets, we show that the proposed method provides more robust gene rankings than existing methods with respect to sampling variations, without compromising the biological significance of the rankings.

  18. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  19. INCORPORATING ROUTINE ACTIVITIES, ACTIVITY SPACES, AND SITUATIONAL DEFINITIONS INTO THE SOCIAL SCHEMATIC THEORY OF CRIME.

    PubMed

    Simons, Ronald L; Burt, Callie H; Barr, Ashley B; Lei, Man-Kit; Stewart, Eric

    2014-11-01

    Simons and Burt's (2011) social schematic theory (SST) of crime posits that adverse social factors are associated with offending because they promote a set of social schemas (i.e., a criminogenic knowledge structure) that elevates the probability of situational definitions favorable to crime. This study extends the SST model by incorporating the role of contexts for action. Furthermore, the study advances tests of the SST by incorporating a measure of criminogenic situational definitions to assess whether such definitions mediate the effects of schemas and contexts on crime. Structural equation models using 10 years of panel data from 582 African American youth provided strong support for the expanded theory. The results suggest that childhood and adolescent social adversity fosters a criminogenic knowledge structure as well as selection into criminogenic activity spaces and risky activities, all of which increase the likelihood of offending largely through situational definitions. Additionally, evidence shows that the criminogenic knowledge structure interacts with settings to amplify the likelihood of situational definitions favorable to crime.

  20. "Shut up and Squat!" Learning Body Knowledge within the Gym

    ERIC Educational Resources Information Center

    Andreasson, Jesper

    2014-01-01

    The aim of this article is to describe and analyse learning processes among bodybuilders in bodybuilding environments, focusing on the ways activities form the basis for incorporation of both physical and cultural knowledge. Emanating from an ethnographic study, the arguments are based on a constructionist approach to knowledge. The result…

  1. Isotopic incorporation rates for shark tissues from a long-term captive feeding study.

    PubMed

    Kim, Sora Lee; del Rio, Carlos Martínez; Casper, Dave; Koch, Paul L

    2012-07-15

    Stable isotope analysis has provided insight into the dietary and habitat patterns of many birds, mammals and teleost fish. A crucial biological parameter to interpret field stable isotope data is tissue incorporation rate, which has not been well studied in large ectotherms. We report the incorporation of carbon and nitrogen into the tissues of leopard sharks (Triakis semifasciata). Because sharks have relatively slow metabolic rates and are difficult to maintain in captivity, no long-term feeding study has been conducted until the point of isotopic steady state with a diet. We kept six leopard sharks in captivity for 1250 days, measured their growth, and serially sampled plasma, red blood cells and muscle for stable carbon and nitrogen isotope analysis. A single-compartment model with first-order kinetics adequately described the incorporation patterns of carbon and nitrogen isotopes for these three tissues. Both carbon and nitrogen were incorporated faster in plasma than in muscle and red blood cells. The rate of incorporation of carbon into muscle was similar to that predicted by an allometric equation relating isotopic incorporation rate to body mass that was developed previously for teleosts. In spite of their large size and unusual physiology, the rates of isotopic incorporation in sharks seem to follow the same patterns found in other aquatic ectotherms.

  2. Biology in Context: Teachers' Professional Development in Learning Communities

    ERIC Educational Resources Information Center

    Elster, Doris

    2009-01-01

    Biology in Context ("bik") is a project that aims to improve biology teaching in lower secondary schools in Germany. Based on a theoretical framework derived from the National Educational Standards, four competence areas should be fostered in biology education: subject knowledge; inquiry acquisition; subject-related communication; and…

  3. Integrated Analysis of Pharmacologic, Clinical, and SNP Microarray Data using Projection onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing

    PubMed Central

    Pounds, Stan; Cao, Xueyuan; Cheng, Cheng; Yang, Jun; Campana, Dario; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.

    2010-01-01

    Powerful methods for integrated analysis of multiple biological data sets are needed to maximize interpretation capacity and acquire meaningful knowledge. We recently developed Projection Onto the Most Interesting Statistical Evidence (PROMISE). PROMISE is a statistical procedure that incorporates prior knowledge about the biological relationships among endpoint variables into an integrated analysis of microarray gene expression data with multiple biological and clinical endpoints. Here, PROMISE is adapted to the integrated analysis of pharmacologic, clinical, and genome-wide genotype data that incorporating knowledge about the biological relationships among pharmacologic and clinical response data. An efficient permutation-testing algorithm is introduced so that statistical calculations are computationally feasible in this higher-dimension setting. The new method is applied to a pediatric leukemia data set. The results clearly indicate that PROMISE is a powerful statistical tool for identifying genomic features that exhibit a biologically meaningful pattern of association with multiple endpoint variables. PMID:21516175

  4. An Imaging Roadmap for Biology Education: From Nanoparticles to Whole Organisms

    ERIC Educational Resources Information Center

    Kelley, Daniel J.; Davidson, Richard J.; Nelson, David L.

    2008-01-01

    Imaging techniques provide ways of knowing structure and function in biology at different scales. The multidisciplinary nature and rapid advancement of imaging sciences requires imaging education to begin early in the biology curriculum. Guided by the National Institutes of Health (NIH) Roadmap initiatives, we incorporated a nanoimaging, molecular…

  5. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  6. Effect of active packaging incorporated with triclosan on bacteria adhesion.

    PubMed

    Camilloto, Geany P; Pires, Ana Clarissa S; Soares, Nilda de Fátima F; Araújo, Emiliane A; Andrade, Nélio J; Ferreira, Sukarno O

    2010-10-01

    Antimicrobial polyethylene and cellulose based films incorporated with triclosan were studied. The antimicrobial efficacy, the hydrophobicity, microscopic and the mechanical characteristics of the films, as well free energy of adhesion between bacteria and antimicrobial films were evaluated. It was observed that both polyethylene and cellulose based films incorporated with the antimicrobial were homogeneous. Furthermore, the addition of triclosan did not affect mechanical characteristics of the films (P > 0.05). However, triclosan incorporated into polyethylene films reduced its hydrophobicity while antimicrobial cellulose based films became more hydrophobic. The adhesion was thermodynamically favorable between tested bacteria and polyethylene films. On the other hand, the adhesion to triclosan cellulose based film was thermodynamically unfavorable to Staphylococcus aureus and Escherichia coli and favorable to Listeria innocua and Pseudomonas aeruginosa. Polyethylene and cellulose based films showed inhibitory effect against S. aureus and E. coli, being the inhibition halo higher for polyethylene films. This study improves the knowledge about antimicrobial films.

  7. The Experience of Addiction as Told by the Addicted: Incorporating Biological Understandings into Self-Story

    PubMed Central

    Hammer, Rachel R; Dingel, Molly J; Ostergren, Jenny E; Nowakowski, Katherine E; Koenig, Barbara A

    2012-01-01

    How do the addicted view addiction against the framework of formal theories that attempt to explain the condition? In this empirical paper, we report on the lived experience of addiction based on 63 semi-structured, open-ended interviews with individuals in treatment for alcohol and nicotine abuse at five sites in Minnesota. Using qualitative analysis, we identified four themes that provide insights into understanding how people who are addicted view their addiction, with particular emphasis on the biological model. More than half of our sample articulated a biological understanding of addiction as a disease. Themes did not cluster by addictive substance used; however, biological understandings of addiction did cluster by treatment center. Biological understandings have the potential to become dominant narratives of addiction in the current era. Though the desire for a “unified theory” of addiction seems curiously seductive to scholars, it lacks utility. Conceptual “disarray” may actually reflect a more accurate representation of the illness as told by those who live with it. For practitioners in the field of addiction, we suggest the practice of narrative medicine with its ethic of negative capability as a useful approach for interpreting and relating to diverse experiences of disease and illness. PMID:23081782

  8. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    PubMed

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  9. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics

    PubMed Central

    Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming

    2012-01-01

    Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research. PMID:22371823

  10. Reinvigorating Introductory Biology: A Theme-based, Investigative Approach To Teaching Biology Majors.

    ERIC Educational Resources Information Center

    Norton, Cynthia G.; Gildensoph, Lynne H.; Phillips, Martha M.; Wygal, Deborah D.; Olson, Kurt H.; Pellegrini, John J.; Tweeten, Kathleen A.

    1997-01-01

    Describes the reform of an introductory biology curriculum to reverse high attrition rates. Objectives include fostering self-directed learning, emphasizing process over content, and offering laboratory experiences that model the way to acquire scientific knowledge. Teaching methods include discussion, group mentoring, laboratory sections, and…

  11. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  12. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  13. [The practice and discussion of the physical knowledge stepping into genetics teaching].

    PubMed

    Luo, Shen; Luo, Peigao

    2014-09-01

    Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.

  14. Pre-Existing Background Knowledge Influences Socioeconomic Differences in Preschoolers' Word Learning and Comprehension

    ERIC Educational Resources Information Center

    Kaefer, Tanya; Neuman, Susan B.; Pinkham, Ashley M.

    2015-01-01

    The goal of the current study is to explore the influence of knowledge on socioeconomic discrepancies in word learning and comprehension. After establishing socioeconomic differences in background knowledge (Study 1), the authors presented children with a storybook that incorporates this knowledge (Study 2). Results indicated that middle-income…

  15. Does Creationism Belong in the Biology Curriculum?

    ERIC Educational Resources Information Center

    Skoog, Gerald

    1978-01-01

    The inclusion of evolution as a topic in secondary school biology texts is examined in detail. The recent upsurge of mandates by the creationists is discussed with respect to current scientific knowledge and religious theology. Reasons for the exclusion of creationism in the biology curriculum are justified. (MA)

  16. A knowledge discovery object model API for Java

    PubMed Central

    Zuyderduyn, Scott D; Jones, Steven JM

    2003-01-01

    Background Biological data resources have become heterogeneous and derive from multiple sources. This introduces challenges in the management and utilization of this data in software development. Although efforts are underway to create a standard format for the transmission and storage of biological data, this objective has yet to be fully realized. Results This work describes an application programming interface (API) that provides a framework for developing an effective biological knowledge ontology for Java-based software projects. The API provides a robust framework for the data acquisition and management needs of an ontology implementation. In addition, the API contains classes to assist in creating GUIs to represent this data visually. Conclusions The Knowledge Discovery Object Model (KDOM) API is particularly useful for medium to large applications, or for a number of smaller software projects with common characteristics or objectives. KDOM can be coupled effectively with other biologically relevant APIs and classes. Source code, libraries, documentation and examples are available at . PMID:14583100

  17. Selection platforms for directed evolution in synthetic biology.

    PubMed

    Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B

    2016-08-15

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. © 2016 The Author(s).

  18. Virtual Tissues and Developmental Systems Biology (book chapter)

    EPA Science Inventory

    Virtual tissue (VT) models provide an in silico environment to simulate cross-scale properties in specific tissues or organs based on knowledge of the underlying biological networks. These integrative models capture the fundamental interactions in a biological system and enable ...

  19. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  20. Knowledge Discovery from Biomedical Ontologies in Cross Domains.

    PubMed

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

  1. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  2. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control.

    PubMed

    Gurarie, David; King, Charles H; Yoon, Nara; Li, Emily

    2016-08-04

    Schistosoma parasites sustain a complex transmission process that cycles between a definitive human host, two free-swimming larval stages, and an intermediate snail host. Multiple factors modify their transmission and affect their control, including heterogeneity in host populations and environment, the aggregated distribution of human worm burdens, and features of parasite reproduction and host snail biology. Because these factors serve to enhance local transmission, their inclusion is important in attempting accurate quantitative prediction of the outcomes of schistosomiasis control programs. However, their inclusion raises many mathematical and computational challenges. To address these, we have recently developed a tractable stratified worm burden (SWB) model that occupies an intermediate place between simpler deterministic mean worm burden models and the very computationally-intensive, autonomous agent models. To refine the accuracy of model predictions, we modified an earlier version of the SWB by incorporating factors representing essential in-host biology (parasite mating, aggregation, density-dependent fecundity, and random egg-release) into demographically structured host communities. We also revised the snail component of the transmission model to reflect a saturable form of human-to-snail transmission. The new model allowed us to realistically simulate overdispersed egg-test results observed in individual-level field data. We further developed a Bayesian-type calibration methodology that accounted for model and data uncertainties. The new model methodology was applied to multi-year, individual-level field data on S. haematobium infections in coastal Kenya. We successfully derived age-specific estimates of worm burden distributions and worm fecundity and crowding functions for children and adults. Estimates from the new SWB model were compared with those from the older, simpler SWB with some substantial differences noted. We validated our new SWB

  3. 2016 Summer Series - Michael Flynn - Synthetic Biological Membrane

    NASA Image and Video Library

    2016-08-02

    Full understanding leads to creation capability, which results in customization capacity. Synthetic biology uses our knowledge of biology to engineer novel biological devices or organisms that can perform tasks not found in nature. For Human space exploration, synthetic biology approaches will reduce risk, mass carried and increase Human reach. Michael Flynn will discuss the International Space Station (ISS) water recycling and his current work on developing a water filtration system capable of self-repair.

  4. The human biology of Jim Tanner.

    PubMed

    Cameron, Noël

    2012-09-01

    In 1940, during his second year of medical training, Jim Tanner expressed the desire to work, 'where physiology, psychology and sociology meet'. His subsequent exposure to the breadth of an American medical education and to the social and economic environment of post-war Europe distilled his belief in the importance of viewing the human in a broad context. Following his visits to the American longitudinal growth studies in 1948. Jim's dreams of a broad scientific discipline that incorporated both the biology and ecology of the human were strengthened by an inspirational group of embryonic human biologists with whom he developed '… the new Human Biology …' from the '… Physical Anthropology of old…'. With Jo Weiner, Derek Roberts, Geoffrey Harrison, Arthur Mourant, Nigel Barnicot and Kenneth Oakley, Jim was to form the Society for the Study of Human Biology in 1958. The development of human biology over the next 50 years was shaped by the expertise and diversity of that group of visionary scientists who conceived the scientific discipline of 'human biology' in which biology, behaviour and social context define the human species.

  5. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    PubMed Central

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  6. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    PubMed

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  7. Promoting Systems Thinking through Biology Lessons

    ERIC Educational Resources Information Center

    Riess, Werner; Mischo, Christoph

    2010-01-01

    This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the…

  8. Bayesian regression discontinuity designs: incorporating clinical knowledge in the causal analysis of primary care data.

    PubMed

    Geneletti, Sara; O'Keeffe, Aidan G; Sharples, Linda D; Richardson, Sylvia; Baio, Gianluca

    2015-07-10

    The regression discontinuity (RD) design is a quasi-experimental design that estimates the causal effects of a treatment by exploiting naturally occurring treatment rules. It can be applied in any context where a particular treatment or intervention is administered according to a pre-specified rule linked to a continuous variable. Such thresholds are common in primary care drug prescription where the RD design can be used to estimate the causal effect of medication in the general population. Such results can then be contrasted to those obtained from randomised controlled trials (RCTs) and inform prescription policy and guidelines based on a more realistic and less expensive context. In this paper, we focus on statins, a class of cholesterol-lowering drugs, however, the methodology can be applied to many other drugs provided these are prescribed in accordance to pre-determined guidelines. Current guidelines in the UK state that statins should be prescribed to patients with 10-year cardiovascular disease risk scores in excess of 20%. If we consider patients whose risk scores are close to the 20%  risk score threshold, we find that there is an element of random variation in both the risk score itself and its measurement. We can therefore consider the threshold as a randomising device that assigns statin prescription to individuals just above the threshold and withholds it from those just below. Thus, we are effectively replicating the conditions of an RCT in the area around the threshold, removing or at least mitigating confounding. We frame the RD design in the language of conditional independence, which clarifies the assumptions necessary to apply an RD design to data, and which makes the links with instrumental variables clear. We also have context-specific knowledge about the expected sizes of the effects of statin prescription and are thus able to incorporate this into Bayesian models by formulating informative priors on our causal parameters. © 2015 The

  9. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.

    PubMed

    Kapranas, Apostolos; Tena, Alejandro

    2015-01-07

    Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.

  10. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part 2: chemistry and biology of the cereal herbicide pinoxaden.

    PubMed

    Muehlebach, Michel; Cederbaum, Fredrik; Cornes, Derek; Friedmann, Adrian A; Glock, Jutta; Hall, Gavin; Indolese, Adriano F; Kloer, Daniel P; Le Goupil, Gael; Maetzke, Thomas; Meier, Hans; Schneider, Rudolf; Stoller, André; Szczepanski, Henry; Wendeborn, Sebastian; Widmer, Hansjuerg

    2011-12-01

    Pinoxaden is a new cereal herbicide that provides outstanding levels of post-emergence activity against a broad spectrum of grass weed species for worldwide selective use in both wheat and barley. Factors influencing activity and tolerance to pinoxaden were in part linked to distinct structural parts of the active ingredient. Three complementary contributions that decisively impact upon the herbicidal potency against grasses were identified: a preferred 2,6-diethyl-4-methyl aromatic substitution pattern, a dione area suitable for proherbicide formation and beneficial adjuvant effects. The uptake and translocation pattern of pinoxaden when coapplied with its tailored adjuvant were analysed by autoradiography, indicating extensive and rapid penetration, followed by effective distribution throughout the plant. Crop injury reduction on incorporation of the [1,4,5]oxadiazepane ring into the aryldione template was reinforced with safener technology. Comparative studies on the behaviour of pinoxaden applied either alone or in combination with the safener cloquintocet-mexyl demonstrated that addition of the safener resulted in significant enhancement of metabolic degradation in wheat and barley, providing excellent crop tolerance and a substantial selectivity margin without adverse effects on weed control. The biological potential of pinoxaden and its active principle pinoxaden dione in terms of grass weed control and tolerance in cereals was fully exploited by inclusion of the safener cloquintocet-mexyl in the formulation in combination with a specific and tailor-made tank-mix adjuvant based on methylated rape seed oil. Copyright © 2011 Society of Chemical Industry.

  11. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system.

    PubMed

    Senderov, Viktor; Simov, Kiril; Franz, Nico; Stoev, Pavel; Catapano, Terry; Agosti, Donat; Sautter, Guido; Morris, Robert A; Penev, Lyubomir

    2018-01-18

    The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.

  12. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    PubMed

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  13. Biological Inquiry: A New Course and Assessment Plan in Response to the Call to Transform Undergraduate Biology

    PubMed Central

    Goldey, Ellen S.; Abercrombie, Clarence L.; Ivy, Tracie M.; Kusher, Dave I.; Moeller, John F.; Rayner, Doug A.; Smith, Charles F.; Spivey, Natalie W.

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students’ interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students. PMID:23222831

  14. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Clients' Willingness to Incorporate Religion or Spirituality in Counseling: A Brief Report

    ERIC Educational Resources Information Center

    Diallo, Abdoulaye

    2013-01-01

    A total of 84 individuals with addiction issues (e.g., drugs, sex, weight, food, and codependency) were asked about their willingness to incorporate religion or spirituality in their counseling. These respondents expressed willingness to deal with religion or spirituality in counseling if the counselor was knowledgeable about their religion or…

  16. Incorporation of Prior Knowledge of Signal Behavior Into the Reconstruction to Accelerate the Acquisition of Diffusion MRI Data.

    PubMed

    Abascal, Juan F P J; Desco, Manuel; Parra-Robles, Juan

    2018-02-01

    Diffusion MRI data are generally acquired using hyperpolarized gases during patient breath-hold, which yields a compromise between achievable image resolution, lung coverage, and number of -values. In this paper, we propose a novel method that accelerates the acquisition of diffusion MRI data by undersampling in both the spatial and -value dimensions and incorporating knowledge about signal decay into the reconstruction (SIDER). SIDER is compared with total variation (TV) reconstruction by assessing its effect on both the recovery of ventilation images and the estimated mean alveolar dimensions (MADs). Both methods are assessed by retrospectively undersampling diffusion data sets ( =8) of healthy volunteers and patients with Chronic Obstructive Pulmonary Disease (COPD) for acceleration factors between x2 and x10. TV led to large errors and artifacts for acceleration factors equal to or larger than x5. SIDER improved TV, with a lower solution error and MAD histograms closer to those obtained from fully sampled data for acceleration factors up to x10. SIDER preserved image quality at all acceleration factors, although images were slightly smoothed and some details were lost at x10. In conclusion, we developed and validated a novel compressed sensing method for lung MRI imaging and achieved high acceleration factors, which can be used to increase the amount of data acquired during breath-hold. This methodology is expected to improve the accuracy of estimated lung microstructure dimensions and provide more options in the study of lung diseases with MRI.

  17. Diolistics: incorporating fluorescent dyes into biological samples using a gene gun

    PubMed Central

    O’Brien, John A.; Lummis, Sarah C.R.

    2007-01-01

    The hand-held gene gun provides a rapid and efficient method of incorporating fluorescent dyes into cells, a technique that is becoming known as diolistics. Transporting fluorescent dyes into cells has, in the past, used predominantly injection or chemical methods. The use of the gene gun, combined with the new generation of fluorescent dyes, circumvents some of the problems of using these methods and also enables the study of cells that have proved difficult traditionally to transfect (e.g. those deep in tissues and/or terminally differentiated); in addition, the use of ion- or metabolite-sensitive dyes provides a route to study cellular mechanisms. Diolistics is also ideal for loading cells with optical nanosensors – nanometre-sized sensors linked to fluorescent probes. Here, we discuss the theoretical considerations of using diolistics, the advantages compared with other methods of inserting dyes into cells and the current uses of the technique, with particular consideration of nanosensors. PMID:17945370

  18. Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay

    Treesearch

    Anke Schirp; Rebecca E. Ibach; David E. Pendleton; Michael P. Wolcott

    2008-01-01

    Much of the research on wood-plastic composites (WPC) has focused on formulation development and processing while high biological durability of the material was assumed. The gap between assumption and knowledge in biodeterioration of WPC needs to be reduced. Although some information on the short-term resistance of WPC against biological degradation is available, long-...

  19. Academic Knowledge Construction and Multimodal Curriculum Development

    ERIC Educational Resources Information Center

    Loveless, Douglas J., Ed.; Griffith, Bryant, Ed.; Bérci, Margaret E., Ed.; Ortlieb, Evan, Ed.; Sullivan, Pamela, Ed.

    2014-01-01

    While incorporating digital technologies into the classroom has offered new ways of teaching and learning into educational processes, it is essential to take a look at how the digital shift impacts teachers, school administration, and curriculum development. "Academic Knowledge Construction and Multimodal Curriculum Development" presents…

  20. Collaborative Instructional Strategies to Enhance Knowledge Convergence

    ERIC Educational Resources Information Center

    Draper, Darryl C.

    2015-01-01

    To promote knowledge convergence through collaborative learning activities in groups, this qualitative case study involved a layered approach for the design and delivery of a highly collaborative learning environment incorporating various instructional technologies grounded in learning theory. In a graduate-level instructional technology course,…

  1. A Problem-Sorting Task Detects Changes in Undergraduate Biological Expertise over a Single Semester.

    PubMed

    Hoskinson, Anne-Marie; Maher, Jessica Middlemis; Bekkering, Cody; Ebert-May, Diane

    2017-01-01

    Calls for undergraduate biology reform share similar goals: to produce people who can organize, use, connect, and communicate about biological knowledge. Achieving these goals requires students to gain disciplinary expertise. Experts organize, access, and apply disciplinary knowledge differently than novices, and expertise is measurable. By asking introductory biology students to sort biological problems, we investigated whether they changed how they organized and linked biological ideas over one semester of introductory biology. We administered the Biology Card Sorting Task to 751 students enrolled in their first or second introductory biology course focusing on either cellular-molecular or organismal-population topics, under structured or unstructured sorting conditions. Students used a combination of superficial, deep, and yet-uncharacterized ways of organizing and connecting biological knowledge. In some cases, this translated to more expert-like ways of organizing knowledge over a single semester, best predicted by whether students were enrolled in their first or second semester of biology and by the sorting condition completed. In addition to illuminating differences between novices and experts, our results show that card sorting is a robust way of detecting changes in novices' biological expertise-even in heterogeneous populations of novice biology students over the time span of a single semester. © 2017 A.-M. Hoskinson et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License(http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Epigenetics: Biology's Quantum Mechanics

    PubMed Central

    Jorgensen, Richard A.

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene – the molecular biological view and the epigenetic view – are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  4. Co-production of knowledge: An Inuit Indigenous Knowledge perspective

    NASA Astrophysics Data System (ADS)

    Daniel, R.; Behe, C.

    2017-12-01

    A "co-production of knowledge" approach brings together different knowledge systems while building equitable and collaborative partnerships from `different ways of knowing.' Inuit Indigenous Knowledge is a systematic way of thinking applied to phenomena across biological, physical, cultural and spiritual systems; rooted with a holistic understanding of ecosystems (ICC Alaska 2016). A holistic image of Arctic environmental change is attained by bringing Indigenous Knowledge (IK) holders and scientists together through a co-production of knowledge framework. Experts from IK and science should be involved together from the inception of a project. IK should be respected as its own knowledge system and should not be translated into science. A co-production of knowledge approach is important in developing adaptation policies and practices, for sustainability and to address biodiversity conservation (Daniel et al. 2016). Co-production of knowledge is increasingly being recognized by the scientific community at-large. However, in many instances the concept is being incorrectly applied. This talk will build on the important components of co-production of knowledge from an Inuit perspective and specifically IK. In this presentation we will differentiate the co-production of knowledge from a multi-disciplinary approach or multi-evidence based decision-making. We underscore the role and value of different knowledge systems with different methodologies and the need for collaborative approaches in identifying research questions. We will also provide examples from our experiences with Indigenous communities and scientists in the Arctic. References: Inuit Circumpolar Council of Alaska. 2016. Alaskan Inuit Food Security Conceptual Framework: How to Assess the Arctic From An Inuit Perspective, 201pp. Daniel, R., C. Behe, J. Raymond-Yakoubian, E. Krummel, and S. Gearhead. Arctic Observing Summit White Paper Synthesis, Theme 6: Interfacing Indigenous Knowledge, Community

  5. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA

    USGS Publications Warehouse

    Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.

    2017-01-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.

  6. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA.

    PubMed

    Schroeder, Anthony L; Martinović-Weigelt, Dalma; Ankley, Gerald T; Lee, Kathy E; Garcia-Reyero, Natalia; Perkins, Edward J; Schoenfuss, Heiko L; Villeneuve, Daniel L

    2017-02-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation. Published by Elsevier Ltd.

  7. Knowledge-based commodity distribution planning

    NASA Technical Reports Server (NTRS)

    Saks, Victor; Johnson, Ivan

    1994-01-01

    This paper presents an overview of a Decision Support System (DSS) that incorporates Knowledge-Based (KB) and commercial off the shelf (COTS) technology components. The Knowledge-Based Logistics Planning Shell (KBLPS) is a state-of-the-art DSS with an interactive map-oriented graphics user interface and powerful underlying planning algorithms. KBLPS was designed and implemented to support skilled Army logisticians to prepare and evaluate logistics plans rapidly, in order to support corps-level battle scenarios. KBLPS represents a substantial advance in graphical interactive planning tools, with the inclusion of intelligent planning algorithms that provide a powerful adjunct to the planning skills of commodity distribution planners.

  8. Leveraging advances in biology to design biomaterials

    NASA Astrophysics Data System (ADS)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  9. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  10. "Model Your Genes the Mathematical Way"--A Mathematical Biology Workshop for Secondary School Teachers

    ERIC Educational Resources Information Center

    Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard

    2008-01-01

    This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…

  11. Using a "Primer Unit" in an Introductory Biology Course: "A Soft Landing"

    ERIC Educational Resources Information Center

    Marbach-Ad, Gili; Ribke, Melina; Gershoni, Jonathan M.

    2006-01-01

    This study aimed to facilitate students' entrance to an introductory cell biology course for biology majors. The most prominent difficulty in this introductory course, is students' poor background-knowledge, such as a lack of understanding of very basic concepts and terms, and the huge differences in students' background knowledge. In order to…

  12. Public Understanding of Plant Biology: Voices from the Bottom of the Garden

    ERIC Educational Resources Information Center

    Watts, Mike

    2015-01-01

    Many household gardeners accumulate considerable knowledge of plant biology through a range of informal learning sources. This knowledge seldom relates to school biology and is driven by interest, keen motivation and what is termed here "vital relevance." A small opportunity sample of 12 gardeners (6 M, 6 F) is interviewed in terms of…

  13. The Relationship between Biology Classes and Biological Reasoning and Common Heath Misconceptions

    ERIC Educational Resources Information Center

    Keselman, Alla; Hundal, Savreen; Chentsova-Dutton, Yulia; Bibi, Raquel; Edelman, Jay A.

    2015-01-01

    This study investigates the relationship among (1) college major, (2) knowledge used in reasoning about common health beliefs, and (3) judgment about the accuracy of those beliefs. Seventy-four college students, advanced biology and non-science majors, indicated their agreement or disagreement with commonly believed, but often inaccurate,…

  14. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  15. Incorporating 12-Step Group Attendance in Addictions Courses: A Cross-Cultural Experience

    ERIC Educational Resources Information Center

    MacMaster, Samuel A.; Holleran, Lori K.

    2005-01-01

    The development of cultural competency skills is important for a clinician in any cross-cultural setting where a working knowledge of the client's culture is important to the delivery of services. This paper suggests that incorporating attendance at Twelve Step recovery programs may begin to facilitate cultural competency for students, or at the…

  16. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    PubMed

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  17. Knowledge-driven enhancements for task composition in bioinformatics.

    PubMed

    Sutherland, Karen; McLeod, Kenneth; Ferguson, Gus; Burger, Albert

    2009-10-01

    A key application area of semantic technologies is the fast-developing field of bioinformatics. Sealife was a project within this field with the aim of creating semantics-based web browsing capabilities for the Life Sciences. This includes meaningfully linking significant terms from the text of a web page to executable web services. It also involves the semantic mark-up of biological terms, linking them to biomedical ontologies, then discovering and executing services based on terms that interest the user. A system was produced which allows a user to identify terms of interest on a web page and subsequently connects these to a choice of web services which can make use of these inputs. Elements of Artificial Intelligence Planning build on this to present a choice of higher level goals, which can then be broken down to construct a workflow. An Argumentation System was implemented to evaluate the results produced by three different gene expression databases. An evaluation of these modules was carried out on users from a variety of backgrounds. Users with little knowledge of web services were able to achieve tasks that used several services in much less time than they would have taken to do this manually. The Argumentation System was also considered a useful resource and feedback was collected on the best way to present results. Overall the system represents a move forward in helping users to both construct workflows and analyse results by incorporating specific domain knowledge into the software. It also provides a mechanism by which web pages can be linked to web services. However, this work covers a specific domain and much co-ordinated effort is needed to make all web services available for use in such a way, i.e. the integration of underlying knowledge is a difficult but essential task.

  18. Biology and control of Varroa destructor.

    PubMed

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.

  19. iBiology: communicating the process of science

    PubMed Central

    Goodwin, Sarah S.

    2014-01-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124

  20. INCORPORATING ROUTINE ACTIVITIES, ACTIVITY SPACES, AND SITUATIONAL DEFINITIONS INTO THE SOCIAL SCHEMATIC THEORY OF CRIME*

    PubMed Central

    BARR, ASHLEY B.; LEI, MAN-KIT; STEWART, ERIC

    2014-01-01

    Simons and Burt’s (2011) social schematic theory (SST) of crime posits that adverse social factors are associated with offending because they promote a set of social schemas (i.e., a criminogenic knowledge structure) that elevates the probability of situational definitions favorable to crime. This study extends the SST model by incorporating the role of contexts for action. Furthermore, the study advances tests of the SST by incorporating a measure of criminogenic situational definitions to assess whether such definitions mediate the effects of schemas and contexts on crime. Structural equation models using 10 years of panel data from 582 African American youth provided strong support for the expanded theory. The results suggest that childhood and adolescent social adversity fosters a criminogenic knowledge structure as well as selection into criminogenic activity spaces and risky activities, all of which increase the likelihood of offending largely through situational definitions. Additionally, evidence shows that the criminogenic knowledge structure interacts with settings to amplify the likelihood of situational definitions favorable to crime. PMID:26392633

  1. Using information and communication technology (ICT) to the maximum: learning and teaching biology with limited digital technologies

    NASA Astrophysics Data System (ADS)

    Van Rooy, Wilhelmina S.

    2012-04-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes previously too small, large, slow or fast to be taught. Indeed, much of bioscience can now be effectively taught via digital technology, since its representational and symbolic forms are in digital formats. Purpose: This paper is part of a larger Australian study dealing with the technologies and modalities of learning biology in secondary schools. Sample: The classroom practices of three experienced biology teachers, working in a range of NSW secondary schools, are compared and contrasted to illustrate how the challenges of limited technologies are confronted to seamlessly integrate what is available into a number of molecular genetics lessons to enhance student learning. Design and method: The data are qualitative and the analysis is based on video classroom observations and semi-structured teacher interviews. Results: Findings indicate that if professional development opportunities are provided where the pedagogy of learning and teaching of both the relevant biology and its digital representations are available, then teachers see the immediate pedagogic benefit to student learning. In particular, teachers use ICT for challenging genetic concepts despite limited computer hardware and software availability. Conclusion: Experienced teachers incorporate ICT, however limited, in order to improve the quality of student learning.

  2. Lessons we learned from high-throughput and top-down systems biology analyses about glioma stem cells.

    PubMed

    Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel

    2014-01-01

    A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.

  3. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    PubMed

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  4. Understanding students' explanations of biological phenomena: Conceptual frameworks or p-prims?

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry A.; Abrams, Eleanor; Cummins, Catherine L.; Anzelmo, Julie

    2001-07-01

    This study explores two differing perspectives of the nature of students' biological knowledge structures, conceptual frameworks, and p-prims. Students from four grade levels and from three regions of the United States were asked to explain a variety of biological phenomena. Students' responses to the interview probes were analyzed to describe 1) patterns in the nature of students' explanations across grade levels and interview probes, and 2) the consistency of students' explanations across individual interview probes and across the range of probes. The results were interpreted from both perspectives of knowledge structures. While definitive assertions supporting either perspective could not be made, each hypothesis was explored. Although the more prevalent description of student conceptions within a broader conceptual framework could not be discounted, the p-prim of need as a rationale for change was also found to offer a useful description of knowledge frameworks for this content area. The difficulties endemic to the use of biology for the study of basic knowledge structures are also discussed.

  5. Effect of simulation on knowledge of advanced cardiac life support, knowledge retention, and confidence of nursing students in Jordan.

    PubMed

    Tawalbeh, Loai I; Tubaishat, Ahmad

    2014-01-01

    This study examined the effect of simulation on nursing students' knowledge of advanced cardiac life support (ACLS), knowledge retention, and confidence in applying ACLS skills. An experimental, randomized controlled (pretest-posttest) design was used. The experimental group (n = 40) attended an ACLS simulation scenario, a 4-hour PowerPoint presentation, and demonstration on a static manikin, whereas the control group (n = 42) attended the PowerPoint presentation and a demonstration only. A paired t test indicated that posttest mean knowledge of ACLS and confidence was higher in both groups. The experimental group showed higher knowledge of ACLS and higher confidence in applying ACLS, compared with the control group. Traditional training involving PowerPoint presentation and demonstration on a static manikin is an effective teaching strategy; however, simulation is significantly more effective than traditional training in helping to improve nursing students' knowledge acquisition, knowledge retention, and confidence about ACLS. Copyright 2014, SLACK Incorporated.

  6. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    PubMed Central

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  7. What Should Be in the Biology Curriculum?

    ERIC Educational Resources Information Center

    Leyser, Ottoline

    2014-01-01

    The ever-increasing amount of biological knowledge has resulted in compression of topics in the curriculum to a précis of current understanding. This gives the impression that biology is about a list of things we know. This misconception is extremely damaging, contributing to the idea that science is an impersonal process that generates facts,…

  8. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  9. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    PubMed

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  10. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    PubMed Central

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information literacy instruction and then proceed to select, update, and write about a current research topic in an upper-level cell biology course is described. Students research the chosen topic using paper and electronic resources, generate a list of relevant articles, prepare abstracts based on papers read, and, finally, prepare a “state-of-the-art” paper on the topic. This approach, which extends over most of one semester, has resulted in a number of well-researched and well-written papers that incorporate some of the latest research in cell biology. The steps in this project have also led to students who are prepared to address future projects on new and complex topics. The project is part of an undergraduate course in cell biology, but parts of the assignments can be modified to fit a variety of subject areas and levels. PMID:16341261

  11. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual

  12. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    ERIC Educational Resources Information Center

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  13. Looking Through a Social Lens: Conceptualising Social Aspects of Knowledge Management for Global Health Practitioners.

    PubMed

    Limaye, Rupali J; Sullivan, Tara M; Dalessandro, Scott; Jenkins, Ann Hendrix

    2017-04-13

    Knowledge management plays a critical role in global health. Global health practitioners require knowledge in every aspect of their jobs, and in resource-scarce contexts, practitioners must be able to rely on a knowledge management system to access the latest research and practice to ensure the highest quality of care. However, we suggest that there is a gap in the way knowledge management is primarily utilized in global health, namely, the systematic incorporation of human and social factors. In this paper, we briefly outline the evolution of knowledge management and then propose a conceptualization of knowledge management that incorporates human and social factors for use within a global health context. Our conceptualization of social knowledge management recognizes the importance of social capital, social learning, social software and platforms, and social networks , all within the context of a larger social system and driven by social benefit . We then outline the limitations and discuss future directions of our conceptualization, and suggest how this new conceptualization is essential for any global health practitioner in the business of managing knowledge.

  14. Field Markup Language: biological field representation in XML.

    PubMed

    Chang, David; Lovell, Nigel H; Dokos, Socrates

    2007-01-01

    With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.

  15. Biomaterial science meets computational biology.

    PubMed

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  16. The knowledge-attitude dissociation in geriatric education: can it be overcome?

    PubMed

    Koh, Gerald C H; Merchant, Reshma A; Lim, Wee Shiong; Amin, Zubair

    2012-09-01

    A knowledge-attitude dissociation often exists in geriatrics where knowledge but not attitudes towards elderly patients improve with education. This study aims to determine whether a holistic education programme incorporating multiple educational strategies such as early exposure, ageing simulation and small group teaching results in improving geriatrics knowledge and attitudes among medical students. We administered the 18-item University of California Los Angeles (UCLA) Geriatric Knowledge Test (GKT) and the Singapore-modified 16-item UCLA Geriatric Attitudes Test (GAT) to 2nd year students of the old curriculum in 2009 (baseline reference cohort, n = 254), and before and after the new module to students of the new curriculum in 2010 (intervention cohort, n = 261), both at the same time of the year. At baseline, between the baseline reference and intervention cohort, there was no difference in knowledge (UCLA-GKT Score: 31.6 vs 33.5, P = 0.207) but attitudes of the intervention group were worse than the baseline reference group (UCLA-GAT Score: 3.53 vs 3.43, P = 0.003). The new module improved both the geriatric knowledge (UCLA-GKT Score: 34.0 vs 46.0, P <0.001) and attitudes (UCLA-GAT Score: 3.43 vs 3.50, P <0.001) of the intervention cohort. A geriatric education module incorporating sound educational strategies improved both geriatric knowledge and attitudes among medical students.

  17. On the utilization of engineering knowledge in design optimization

    NASA Technical Reports Server (NTRS)

    Papalambros, P.

    1984-01-01

    Some current research work conducted at the University of Michigan is described to illustrate efforts for incorporating knowledge in optimization in a nontraditional way. The incorporation of available knowledge in a logic structure is examined in two circumstances. The first examines the possibility of introducing global design information in a local active set strategy implemented during the iterations of projection-type algorithms for nonlinearly constrained problems. The technique used algorithms for nonlinearly constrained problems. The technique used combines global and local monotinicity analysis of the objective and constraint functions. The second examines a knowledge-based program which aids the user to create condigurations that are most desirable from the manufacturing assembly viewpoint. The data bank used is the classification scheme suggested by Boothroyd. The important aspect of this program is that it is an aid for synthesis intended for use in the design concept phase in a way similar to the so-called idea-triggers in creativity-enhancement techniques like brain-storming. The idea generation, however, is not random but it is driven by the goal of achieving the best acceptable configuration.

  18. An Approach to Risk-Based Design Incorporating Damage Tolerance Analyses

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Glaessgen, Edward H.; Sleight, David W.

    2002-01-01

    Incorporating risk-based design as an integral part of spacecraft development is becoming more and more common. Assessment of uncertainties associated with design parameters and environmental aspects such as loading provides increased knowledge of the design and its performance. Results of such studies can contribute to mitigating risk through a system-level assessment. Understanding the risk of an event occurring, the probability of its occurrence, and the consequences of its occurrence can lead to robust, reliable designs. This paper describes an approach to risk-based structural design incorporating damage-tolerance analysis. The application of this approach to a candidate Earth-entry vehicle is described. The emphasis of the paper is on describing an approach for establishing damage-tolerant structural response inputs to a system-level probabilistic risk assessment.

  19. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXIII - Information technology and aerospace knowledge diffusion: Exploring the intermediary-end user interface in a policy framework

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Bishop, Ann P.; Kennedy, John M.

    1992-01-01

    Federal attempts to stimulate technological innovation have been unsuccessful because of the application of an inappropriate policy framework that lacks conceptual and empirical knowledge of the process of technological innovation and fails to acknowledge the relationship between knowledge production, transfer, and use as equally important components of the process of knowledge diffusion. This article argues that the potential contributions of high-speed computing and networking systems will be diminished unless empirically derived knowledge about the information-seeking behavior of members of the social system is incorporated into a new policy framework. Findings from the NASA/DoD Aerospace Knowledge Diffusion Research Project are presented in support of this assertion.

  20. The use of concept maps during knowledge elicitation in ontology development processes – the nutrigenomics use case

    PubMed Central

    Castro, Alexander Garcia; Rocca-Serra, Philippe; Stevens, Robert; Taylor, Chris; Nashar, Karim; Ragan, Mark A; Sansone, Susanna-Assunta

    2006-01-01

    Background Incorporation of ontologies into annotations has enabled 'semantic integration' of complex data, making explicit the knowledge within a certain field. One of the major bottlenecks in developing bio-ontologies is the lack of a unified methodology. Different methodologies have been proposed for different scenarios, but there is no agreed-upon standard methodology for building ontologies. The involvement of geographically distributed domain experts, the need for domain experts to lead the design process, the application of the ontologies and the life cycles of bio-ontologies are amongst the features not considered by previously proposed methodologies. Results Here, we present a methodology for developing ontologies within the biological domain. We describe our scenario, competency questions, results and milestones for each methodological stage. We introduce the use of concept maps during knowledge acquisition phases as a feasible transition between domain expert and knowledge engineer. Conclusion The contributions of this paper are the thorough description of the steps we suggest when building an ontology, example use of concept maps, consideration of applicability to the development of lower-level ontologies and application to decentralised environments. We have found that within our scenario conceptual maps played an important role in the development process. PMID:16725019

  1. Technological Funds of Knowledge in Children's Play: Implications for Early Childhood Educators

    ERIC Educational Resources Information Center

    Mawson, Brent

    2011-01-01

    The technological knowledge the children bring with them into early childhood settings is not well documented or understood. This article discusses the technological knowledge and understanding of the nature of technology present within children's collaborative play in two New Zealand early childhood settings. The children incorporated a wide…

  2. Removing the center from computing: biology's new mode of digital knowledge production.

    PubMed

    November, Joseph

    2011-06-01

    This article shows how the USA's National Institutes of Health (NIH) helped to bring about a major shift in the way computers are used to produce knowledge and in the design of computers themselves as a consequence of its early 1960s efforts to introduce information technology to biologists. Starting in 1960 the NIH sought to reform the life sciences by encouraging researchers to make use of digital electronic computers, but despite generous federal support biologists generally did not embrace the new technology. Initially the blame fell on biologists' lack of appropriate (i.e. digital) data for computers to process. However, when the NIH consulted MIT computer architect Wesley Clark about this problem, he argued that the computer's quality as a device that was centralized posed an even greater challenge to potential biologist users than did the computer's need for digital data. Clark convinced the NIH that if the agency hoped to effectively computerize biology, it would need to satisfy biologists' experimental and institutional needs by providing them the means to use a computer without going to a computing center. With NIH support, Clark developed the 1963 Laboratory Instrument Computer (LINC), a small, real-time interactive computer intended to be used inside the laboratory and controlled entirely by its biologist users. Once built, the LINC provided a viable alternative to the 1960s norm of large computers housed in computing centers. As such, the LINC not only became popular among biologists, but also served in later decades as an important precursor of today's computing norm in the sciences and far beyond, the personal computer.

  3. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions

    PubMed Central

    Trites, Andrew W.; Rosen, David A. S.; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion—an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric—Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal—and they should

  4. An Introductory "How-to" Guide for Incorporating Microbiome Research into Integrative and Comparative Biology.

    PubMed

    Kohl, Kevin D

    2017-10-01

    Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Education and Thinking: The Role of Knowledge

    DTIC Science & Technology

    1983-06-21

    failing to construct a representation of the problem. Through carefully designed problem " exercises , the program elicits procedures for reasoning and...guiding spirits. Polya -. .,• . . .. ~ -, • ° -. -- , ",r , • , , . . .. • . . , . .-r. Page9 9 recommends that explicit attention be paid to heuristic...reflects, according to Carey, a reorganization of knowledge brought about by school learning and world knowledge: for 4- to 7-year olds, biological

  6. Incorporating an audience response system into veterinary dermatology lectures: effect on student knowledge retention and satisfaction.

    PubMed

    Plant, Jon D

    2007-01-01

    Veterinary educators are charged with delivering large amounts of information to adult students, who benefit from a more interactive learning environment than is often achieved through didactic lectures. Audience response systems (ARS) with wireless keypad technology facilitate interactive learning and have been used successfully in the education of health professionals. The objectives of this pilot study were to determine the effect of an ARS on the knowledge retention of veterinary dermatology students and to survey student attitudes concerning its use. A cohort-controlled trial was conducted to evaluate the potential benefits of ARS for short-term and long-term knowledge retention. Students also participated in four hours of student-directed case simulations using ARS technology. Students were surveyed regarding opinions on the use of the ARS. The mean short-term knowledge-retention test scores of groups A (ARS+) and B (ARS-) were 81% and 78%, respectively. The mean long-term knowledge-retention test scores of groups A and B were 54% and 55%, respectively. The differences between groups were not significant for either time period (p = 0.32, p = 0.77). Although benefits to short-term and long-term knowledge retention were not detected in this pilot study, all students responding to the survey perceived a benefit and supported the use of ARS in the clinical veterinary curriculum. ARS technology provides a tool for lecturers to create an interactive learning environment well suited for teaching veterinary dermatology.

  7. From systems biology to systems biomedicine.

    PubMed

    Antony, Paul M A; Balling, Rudi; Vlassis, Nikos

    2012-08-01

    Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A Problem-Sorting Task Detects Changes in Undergraduate Biological Expertise over a Single Semester

    ERIC Educational Resources Information Center

    Hoskinson, Anne-Marie; Maher, Jessica Middlemis; Bekkering, Cody; Ebert-May, Diane

    2017-01-01

    Calls for undergraduate biology reform share similar goals: to produce people who can organize, use, connect, and communicate about biological knowledge. Achieving these goals requires students to gain disciplinary expertise. Experts organize, access, and apply disciplinary knowledge differently than novices, and expertise is measurable. By asking…

  9. Computational biology for cardiovascular biomarker discovery.

    PubMed

    Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel

    2009-07-01

    Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.

  10. Integration of Biological Applications into the Core Undergraduate Curriculum: A Practical Strategy

    ERIC Educational Resources Information Center

    Komives, Claire; Prince, Michael; Fernandez, Erik; Balcarcel, Robert

    2011-01-01

    A web database of solved problems has been created to enable faculty to incorporate biological applications into core courses. Over 20% of US ChE departments utilized problems from the website, and 19 faculty attended a workshop to facilitate teaching the modules. Assessment of student learning showed some gains related to biological outcomes, as…

  11. The mammary gland in domestic ruminants: a systems biology perspective.

    PubMed

    Ferreira, Ana M; Bislev, Stine L; Bendixen, Emøke; Almeida, André M

    2013-12-06

    Milk and dairy products are central elements in the human diet. It is estimated that 108kg of milk per year are consumed per person worldwide. Therefore, dairy production represents a relevant fraction of the economies of many countries, being cattle, sheep, goat, water buffalo, and other ruminants the main species used worldwide. An adequate management of dairy farming cannot be achieved without the knowledge on the biological mechanisms behind lactation in ruminants. Thus, understanding the morphology, development and regulation of the mammary gland in health, disease and production is crucial. Presently, innovative and high-throughput technologies such as genomics, transcriptomics, proteomics and metabolomics allow a much broader and detailed knowledge on such issues. Additionally, the application of a systems biology approach to animal science is vastly growing, as new advances in one field of specialization or animal species lead to new lines of research in other areas or/and are expanded to other species. This article addresses how modern research approaches may help us understand long-known issues in mammary development, lactation biology and dairy production. Dairy production depends upon the knowledge of the morphology and regulation of the mammary gland and lactation. High-throughput technologies allow a much broader and detailed knowledge on the biology of the mammary gland. This paper reviews the major contributions that genomics, transcriptomics, metabolomics and proteomics approaches have provided to understand the regulation of the mammary gland in health, disease and production. In the context of mammary gland "omics"-based research, the integration of results using a Systems Biology Approach is of key importance. © 2013.

  12. Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI

    Treesearch

    Daniel L. Schmoldt

    1997-01-01

    Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...

  13. Students Perceptions of the Incorporation of Games into Classroom Instruction for Basic and Clinical Pharmacokinetics

    PubMed Central

    Stegall-Zanation, Jennifer; Dupuis, Robert E.

    2007-01-01

    Objective To develop classroom games as alternatives to traditional pharmacokinetic instruction. Design Three classroom games were created for the following purposes: simple semester review, application of pharmacokinetics in a community-pharmacy setting, and development of critical thinking skills and concept application. All the games incorporated some degree of group activity. Assessment A survey was conducted of students' attitudes towards the incorporation of games into the classroom. A comparison of final examination scores to scores from the previous year was used to determine whether incorporating games hindered learning. Conclusions Overall, students found the games enjoyable, but some students questioned how much they learned. Although the games appeared to have a positive impact on grades and incorporated more than just factual, book knowledge (eg, critical thinking skills), determining how these games improved learning will require further assessment. PMID:17533430

  14. Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis

    PubMed Central

    Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien

    2017-01-01

    ABSTRACT Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we

  15. Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis.

    PubMed

    Andrade, Ana Cláudia Dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-11-15

    Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii , causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a

  16. Development of a Value Inquiry Model in Biology Education.

    ERIC Educational Resources Information Center

    Jeong, Eun-Young; Kim, Young-Soo

    2000-01-01

    Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…

  17. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    ERIC Educational Resources Information Center

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  18. Publishing activities improves undergraduate biology education

    PubMed Central

    Smith, Michelle K

    2018-01-01

    Abstract To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom. PMID:29672697

  19. Publishing activities improves undergraduate biology education.

    PubMed

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  20. Biological fabrication of cellulose fibers with tailored properties.

    PubMed

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-15

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton ( Gossypium hirsutum ) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.